
OBSTRUCTIONS TO RATIONAL POINTS VIA ÉTALE HOMOTOPY

KĘSTUTIS ČESNAVIČIUS

Abstract. Recently Harpaz and Schlank have explained how to use the theory of étale homotopy
to obtain new obstructions to existence of rational points on algebraic varieties X defined over a
number field K. We explain the construction of their obstructions and discuss the relations to other
known obstructions, such as the (étale) Brauer-Manin obstruction and the descent obstruction.

1. Introduction

1.1. The basic question. One of the basic questions in aritmetic geometry is given an algebraic
variety X{K (that is, a finite type separated scheme over SpecK) over a field K decide whether it
has a rational point, i.e., whether there is a K-morphism SpecK Ñ X. It is customary to denote
this set of rational points (i.e., morphisms)XpKq and ask whetherXpKq ‰ H, is finite, etc. In these
notes we will fix K to be a number field, for instance, K could be Q, the field of rational numbers,
and will assume X to be smooth over K and geometrically integral. In particular, this means that
X will be integral. These assumptions will be in place throughout, unless noted otherwise.

1.2. The local-global principle. Perhaps the most classical approach to finding obstructions to
existence of rational points, i.e., reasons why XpKq “ H, is the idea to look first for Kv-points of
X; here and in the sequel Kv denotes the completion of K at a place v. Indeed, precomposing with
SpecKv Ñ SpecK one gets an injection XpKq ãÑ XpKvq (for a K-scheme Y we write XpY q for
the set of K-morphisms Y Ñ X and abuse notation to let XpRq “ XpSpecRq for a ring R) and
observes that the absence of Kv-points XpKvq “ H implies the absence of K-points of X. Doing
this for all places v one gets an injection

XpKq ãÑ
ź

v

XpKvq, (1.2.1)

and observing that it factors through the adelic points of X

XpKq ãÑ XpAq Ñ
ź

v

XpKvq (1.2.2)

one summarizes that X has no K-points if it has no adelic points. Here A denotes the ring of adeles
of K, that is, the restricted direct product

ź1

v

pKv,Ovq “ tpxvq P
ź

v

Kv | for all but finitely many v one has xv P Ovu,

where Ov is the valuation ring of Kv for a nonarchimedean place of v and Ov “ Kv (or whatever
you like) for an archimedean place v.

Searching for obstructions in terms of local points XpKvq is natural in the sense that it is usually
much easier to decide whether XpKvq “ H. This is because using Hensel’s lemma the search for a
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Kv-point can often be reduced to the search for an Fq-point for some finite field Fq (and different
X) which is, afterall, a finite computation.

The converse implication, namely, the claim that X has a rational point whenever it has an adelic
point is the celebrated Hasse principle or local-global principle. Unfortunately, this implication
doesn’t always hold. The most well-known class of varieties X for which the Hasse principle holds
is quadric hypersurfaces in projective space.

Theorem 1.2.3 (Hasse-Minkowski). Let X be a quadric hypersurface in PnK . Then XpAq ‰ H ùñ

XpKq ‰ H.

1.3. Other obstructions. The failure of the Hasse principle in general leads one to search for
more refined obstructions to existence of rational points. We will discuss some of those obstructions
in the next section and proceed to construct the étale homotopy obstruction (with its variations)
recently introduced by Harpaz and Schlank [HS11] in the rest of these notes. The étale homotopy
obstruction is a functorial (in X) set XpAqh with

XpKq Ă XpAqh Ă XpAq,
so that we can say that the absence of rational points on X is explained by the étale homotopy
obstruction if XpAqh “ H.

More precisely, we will construct functorial obstruction sets, which we collectively call étale homotopy
obstructions, fitting in the diagram

XpAqZh �
�

// ¨ ¨ ¨
� � // XpAqZh,n �

�
// ¨ ¨ ¨
� � // XpAqZh,1 �

�
// XpAq

XpKq �
�

// XpAqh �
�

//
?�

OO

¨ ¨ ¨
� � // XpAqh,n �

�
//

?�

OO

¨ ¨ ¨
� � // XpAqh,1

?�

OO

(1.3.1)

and will explain (in the next section, before actually constructing them) how they relate to classical
obstructions, such as the (étale) Brauer-Manin obstruction and the descent obstruction. Note that
it is clear that the étale homotopy obstruction XpAqh is the strongest of the ones considered in the
diagram (1.3.1), in the sense that the emptiness of any other obstruction set implies the emptiness
of XpAqh, i.e., if the absence of rational points is explained by some obstruction in the diagram
then it is also explained by the étale homotopy obstruction. The obstruction set XpAqZh is called
the étale homology obstruction.

2. Relations to classical obstructions

All the obstructions that we discuss in this section are intermediate sets XpKq Ă XpAq? Ă XpAq
so that we can say that the absence of rational points is explained by the obstruction at hand if
XpAq? “ H.

2.1. The Brauer-Manin obstruction. The construction of the Brauer-Manin obstruction uses
the familiar Brauer-Hasse-Noether exact sequence from global class field theory (it is usually given
in the language of Galois cohomology but we recall that étale cohomology over a field is Galois
cohomology)

0 Ñ H2
étpK,Gmq Ñ

à

v

H2
étpKv,Gmq

ř

v invv
ÝÝÝÝÝÑ Q{ZÑ 0.

The first map is obtained from the contravariant functoriality of étale cohomology, whereas the
second one is the sum of invariant maps H2

étpKv,Gmq
invv
ÝÝÑ Q{Z from local class field theory (for
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nonarchimedean v the map invv is an isomorphism). For a scheme X the étale cohomology group
H2

étpX,Gmq is often called the Brauer group of X (note that it is contravariant in X), so that the
exact sequence above could be rewritten as

0 Ñ BrpKq Ñ
à

v

BrpKvq

ř

v invv
ÝÝÝÝÝÑ Q{ZÑ 0. (2.1.1)

Using this sequence one can define the Brauer-Manin pairing

BrpXq ˆXpAq Ñ Q{Z (2.1.2)

by noting that an adelic point of X gives rise to a collection of local points pxvq P
ś

vXpKvq, so
that an element A P BrpXq gives rise to a collection of local Brauer elements px˚vAq P

ś

v BrpKvq,
and we can sum up their invariants:

pA, pxvqq ÞÑ
ÿ

v

invvpx
˚
vAq.

Using a model X of X over the ring of S-integers for a big enough set S of places of K one can
justify the finiteness of the sum on the right hand side (cf. [Sko01, p. 101]) so that the pairing is
well defined. The exact sequence (2.1.1) shows that XpKq Ă XpAq is in the right kernel XpAqBr of
the pairing (2.1.2). This right kernel XpAqBr is the Brauer-Manin obstruction set and we say that
the absence of rational points on X is explained by the Brauer-Manin obstruction if XpAqBr “ H.
Its relation to the étale homotopy obstructions is as follows.

Theorem 2.1.3 ([HS11, Theorem 10.1]). The Brauer-Manin obstruction is equivalent to the étale
homology obstruction. More precisely,

XpAqBr “ XpAqZh.

2.2. The descent obstruction. Let X be a (smooth, geometrically connected) K-variety and
let G be an affine algebraic K-group (so in particular, a K-variety). An (fppf) G-torsor over X
is a scheme Y f

ÝÑ X together with a right action of G ˆK X over X such that fppf locally Y is
(equivariantly) isomorphic to G ˆK X with the right translation action on itself. More precisely,
there should exist a family tUi Ñ Xu of jointly surjective, flat, and locally of finite presentation
morphisms such that each Y ˆX Ui with the induced GˆK Ui-action is (equivariantly) isomorphic
over Ui to GˆK Ui with the right translation action over itself.

Given a G-torsor Y f
ÝÑ X one can twist it by the elements σ of the nonabelian Galois cohomology

set H1pK,Gq to get torsors Y σ fσ
ÝÑ X. We don’t want to get into explaining this here so we simply

assert that by doing this one gets a partition

XpKq “
ğ

σPH1pX,Gq

fσpY σpKqq,

and refer the reader to [Sko01, §2, esp. formula (2.12)] for details. Since each Y σpKq Ă Y σpAq we
get that

XpKq Ă XpAqf :“
ď

σPH1pX,Gq

fσpY σpAqq Ă XpAq. (2.2.1)

Doing this for all torsors over X under affine algebraic K-groups G one gets

XpKq Ă
č

f

XpAqf “: XpAqdesc Ă XpAq. (2.2.2)

The obstruction set XpAqdesc is called the descent obstruction. One can also consider its variants
where in the intersection in (2.2.2) one only takes torsors under finite or finite abelian affine algebraic
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K-groups. The obtained obstruction sets are denoted XpAqfin and XpAqfin-ab, respectively. Their
relation to étale homotopy obstructions from diagram (1.3.1) is as follows.

Theorem 2.2.3 ([HS11, Theorem 9.3]).

XpAqfin “ XpAqh,1,

XpAqfin-ab “ XpAqZh,1.

It was proved by Skorobogatov in [Sko09] that for projective X the descent obstruction is equivalent
to the étale Brauer-Manin obstruction that we will introduce in the next section. In more precise
terms, XpAqdesc “ XpAqét,Br so that Theorem 2.3.1 furnishes a relation of the descent obstruction
with the étale homotopy obstruction for projective X.

2.3. The étale Brauer-Manin obstruction. The étale Brauer-Manin obstruction is a synthesis
of the ideas of sections 2.1 and 2.2. Namely, one observes that in the setting of (2.2.1) one has
Y σpKq Ă Y σpAqBr so that in fact

XpKq Ă XpAqf,Br :“
ď

σPH1pX,Gq

fσpY σpAqBrq.

If one does this for all torsors under finite affine algebraic K-groups G one gets (the intersection
runs over all such f)

XpKq Ă
č

f

XpAqf,Br “: XpAqét,Br.

The obstruction set XpAqét,Br is called the étale Brauer-Manin obstruction.

Theorem 2.3.1 ([HS11, Theorem 11.1]). The étale Brauer-Manin obstruction is equivalent to the
étale homotopy obstruction. More precisely,

XpAqét,Br “ XpAqh.

3. Simplicial constructions

We warn the reader that the constructions in this section are often ad hoc. This is because we do
not want to detour into generalities of simplicial homotopy theory but prefer to define just what we
need later and proceed. For a more appropriate treatment of the contents of this section one can
consult any text on simplicial homotopy theory, for instance [GJ09].

3.1. Simplicial objects. Let ∆ denote the category of finite ordinal numbers and order pre-
serving maps. In other words, the objects of ∆ are finite sets rns “ t0, 1, . . . , nu, n ě 0, while
Hom∆prns, rmsq is the set of all nondecreasing functions f : rns Ñ rms.

Definition 3.1.1. Suppose C is a category. A simplicial object in C is a functor X : ∆op Ñ C,
and we will denote Xprnsq P C by Xn. A morphism between two simplicial objects is a natural
transformation of corresponding functors. The resulting category of simplicial objects in C is denoted
C∆op .

The objects of Set∆op
are simplicial sets. For each rns the functor ∆n : ∆op Ñ Set represented by

rns is called the standard n-simplex. For an X P Set∆op
the set Xn is the set of n-simplices of X; by

Yoneda’s lemma it identifies with the set of simplicial set maps (natural transformations) ∆n Ñ X.
4



3.2. Coskeleta. For each n ě 0 let ∆ďn denote the full subcategory of ∆ spanned by rms, m ď n.
A functorY : ∆ďn Ñ C is an n-truncated simplicial object in C and the collection of such is organized
into a category C∆op

ďn . Precomposing with the inclusion ι : ∆ďn Ñ ∆ induces a functor

trn : C∆op
Ñ C∆op

ďn ,

called the n-truncation. Suppose C is complete (has all finite limits). The general theory of right Kan
extensions then tells us (cf. [ML98, §X.3]) that trn admits a right adjoint Ranι which is computed
by declaring RanιY to be the right Kan extension of Y along ι. It is customary to denote this right
adjoint by coskn, call it the n-coskeleton functor, and give it in a more pedestrian (and useful) way:
for m ě 0 one has (the second equality is Yoneda’s lemma)

pcosknYqm “ lim
ÐÝ

rksÑrms
kďn

Yk “ lim
ÐÝ

∆kÑ∆m

kďn

Yk (3.2.1)

with the natural pcosknYqpfq : pcosknYqm1 Ñ pcosknYqm for nondecreasing f : rms Ñ rm1s which
we leave for the reader to explicate. One can verify that these formulas indeed define a right adjoint
to trn, but in fact they are a special case of more general formulas used to compute right Kan
extensions.

Remark 3.2.2. Note that for m ď n one has pcosknYqm – Ym because in this case the indexing
categories in (3.2.1) have terminal (remember, Y is contravariant) objects id : rms Ñ rms and
id : ∆m Ñ ∆m, respectively. We say that coskn doesn’t change the n-skeleton.

Proposition 3.2.3. For m ě n there is a natural isomorphism of functors

coskm ˝ trm ˝ coskn – coskn .

Proof. One can work this out using a combination of adjointness tricks, formula (3.2.1), and Re-
mark 3.2.2.

Alternatively, if C is cocomplete (has finite colimits), like is the case for the category of sets, then in
a manner analogous to the above one can define the left adjoint to trn called the n-skeleton functor
skn. The conclusion then follows from the uniqueness of adjoints and the following computation:

HompX, coskmptrmpcosknpYqqqq – HomptrmpXq, trmpcosknpYqqq

– HompskmptrmpXqq, cosknpYqq

– HomptrnpskmptrmpXqqq,Yq

– HomptrnpXq,Yq

– HompX, cosknpYqq.

To justify the penultimate step one needs to observe that skm doesn’t change the m-skeleton which
is justified similarly to Remark 3.2.2.

In fact, even though we were assuming that C is cocomplete this is not necessary. One could first do
the Yoneda embedding ι : C Ñ SetC

op
of C into the presheaf category SetC

op
which is (co)complete

and then do the argument there. For this to work one would need to observe that by doing this
coskeleta are brought to coskeleta. This is because ι preserves limits and coskeleta are defined in
terms of limits. The one sentence "proof" that we gave in the beginning results from translating
this argument into the language that avoids mentioning Yoneda. �
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3.3. Geometric realization. Given a simplicial set X one can form a topological space |X|, called
the geometric realization of X, in the following way: for ∆n set |∆n| to be the standard topological
n-simplex tpt0, . . . , tnq | ti ě 0, t0 ` ¨ ¨ ¨ ` tn “ 1u Ă Rn`1; this is functorial in that f : rns Ñ rms
gives a map |∆n| Ñ |∆m| by sending ptiq0ďiďn to p

ř

jPf´1piq tjq0ďiďm and extending linearly. For
a general X one sets (the colimit is taken over the comma category ∆n Ó X of standard simplices
over X)

|X| “ lim
ÝÑ

∆nÑX

|∆n| (3.3.1)

and notes that this defines a functor |¨| : Set∆op
Ñ Top which agrees with our previous definition

of |∆n| because when X “ ∆n the indexing category for the colimit above has the final object
id : ∆n Ñ ∆n.

3.4. Kan complexes. A morphism X Ñ Y of simplicial sets is called a cofibration if it is a
monomorphism (levelwise injective); it is called a weak equivalence if the induced |X| Ñ |Y| is
a homotopy equivalence. An acyclic cofibration is a map which is both a cofibration and a weak
equivalence. A map of simplicial sets X Ñ Y is a Kan fibration (or simply a fibration) if it has
the right lifting property with respect to all acyclic cofibrations. What this condition means is that
given a commutative diagram

A //

��

X

��

B //

>>

Y

the indicated lift exists making both triangles commute whenever AÑ B is an acyclic cofibration.
A simplicial set X is Kan or fibrant if the unique map XÑ ˚ “ ∆0 to the terminal object is a Kan
fibration.

3.5. Fibrant replacement. Let X be a simplicial set. A fibrant replacement of X is an acyclic
cofibration XÑ Y with Y fibrant. It turns out that a fibrant replacement exists for any simplicial
set X and, moreover, can be done functorially: there is a functor Ex8 : Set∆op

Ñ Set∆op
together

with a natural transformation Id Ñ Ex8 such that for each X P Set∆op
the obtained XÑ Ex8pXq

is a fibrant replacement of X. We do not attempt to give proofs of the assertions that we just made,
the construction of Ex8 is carried out in [GJ09, III.§4] and we direct the reader there for details.

3.6. Postnikov towers. Another technicality that will make an appearance in the sequel is the
notion of a Postnikov tower of a fibrant simplicial set X. This is a sequence of maps

¨ ¨ ¨ Ñ PnpXq Ñ ¨ ¨ ¨ Ñ P1pXq Ñ P0pXq (3.6.1)

where PipXq “ coski`1ptri`1pXqq and the morphisms are induced from natural transformations

Pi`1p´q Ñ Pip´q (3.6.2)

which are adjoint to the natural transformations tri`1pPi`1p´qq
„
ÝÑ tri`1p´q (cf. Remark 3.2.2).

In a similar vein, one has natural transformations

Id Ñ Pip´q (3.6.3)

which are compatible with (3.6.2).

The simplicial set PnpXq is called the nth Postnikov piece of X. Note that the Postnikov tower is
functorial in the sense that a map X Ñ Y induces maps PipXq Ñ PipYq fitting into an infinite
commutative ladder between the Postnikov towers of X and Y. Also, one may consider truncated
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Postnikov towers by which we mean that one only takes Postnikov pieces up to some fixed level n
in (3.6.1). Clearly, this is a functorial operation as well.

The main utility of the Postnikov tower is to decompose the homotopical information carried by a
fibrant simplicial set X into pieces PnpXq which are often easier to study. This is because the first
n ` 1 homotopy groups (the homotopy groups of a simplicial set are defined to be the homotopy
groups of the geometric realization) of PnpXq are those of X while the other homotopy groups
πkpPnpXqq, k ą n vanish, so that the nth Postnikov piece captures the information contained in
the first n ` 1 homotopy groups of X. For instance, from a homotopic point of view P0pXq only
remembers the path components of X, P1pXq remembers the fundamental group in addition, and
so on.

4. Pro-categories

A category I is called cofiltered if it is nonempty, for any x, y P I there is a z P I together with
morphisms z Ñ x, z Ñ y, and for any two morphisms f, g : xÑ y with the same source and target
there is a morphism h : z Ñ x such that fh “ gh.

Definition 4.1. Let C be a category. The pro-category of C, denoted Pro C, is the category whose
objects are functors F : I Ñ C with I a small cofiltered category, and whose morphisms between
F : I Ñ C and G : J Ñ C are

HomPro CpF,Gq “ lim
ÐÝ
jPJ

lim
ÝÑ
iPI

HomCpF piq, Gpjqq. (4.2)

A couple of observations are in order:

‚ Just by staring at the formula (4.2) it may not be immediately clear how the composition
in Pro C works. Key to understanding it is noting that every object in the target must be
hit by a morphism from the source. Alternatively, one can use an equivalent approach to
pro-categories outlined below (Remark 4.3), or a mixture of both approaches (objects from
Definition 4.1, morphisms from Remark 4.3).

‚ If the indexing categories I and J are the same I “ J then any natural transformation
between F and G gives rise to a morphism between F and G in Pro C.

‚ Restricting to only those functors F for which I contains one object and one morphism
realizes C as a full subcategory of Pro C.

‚ One should think of Pro C as obtained from C by "formally adding filtered limits". There is
a way to make this statement precise but we will not do this here.

Remark 4.3. There is another way to deal with pro-categories which elucidates more clearly the
morphisms between F and G and in particular how the composition of morphisms in Pro C works.
Namely, one could use the contravariant Yoneda embedding C ÞÑ pSetCqop sending an object C P C
to the representable functor HomCpC,´q. Under this point of view F as above is a filtered direct
system of representable covariant functors F piq : C Ñ Set, and we can identify it with the colimit
lim
ÝÑiPI F piq taken in the functor category. The set of natural transformations between lim

ÝÑiPI F piq

and lim
ÝÑjPJ Gpjq is (we use Yoneda’s lemma repeatedly)

HompSetCqopplimÝÑ
iPI

F piq, lim
ÝÑ
jPJ

Gpjqq “ HomSetCplimÝÑ
jPJ

Gpjq, lim
ÝÑ
iPI

F piqq “ lim
ÐÝ
jPJ

HomSetCpGpjq, limÝÑ
iPI

F piqq

“ lim
ÐÝ
jPJ
plim
ÝÑ
iPI

F piqqpGpjqq “ lim
ÐÝ
jPJ

lim
ÝÑ
iPI

F piqpGpjqq “ lim
ÐÝ
jPJ

lim
ÝÑ
iPI

HomCpF piq, Gpjqq.
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This is precisely the formula in (4.2). This calculation therefore shows that Pro C in the sense of
Definition 4.1 is (anti)equivalent to the category of pro-representable covariant functors (functors
isomorphic to ones of the form above) and natural transformations between them. From our point
of view, however, this approach is inferior to Definition 4.1 even though the resulting categories
are equivalent. This is because many different diagrams (functors F : I Ñ C) can give rise to the
same pro-representable covariant functor, and if one only remembers the latter, one has forgotten
the properties of the diagrams which gave rise to it.

5. Hypercoverings

5.1. Hypercoverings. Let Xét denote the étale site of X, i.e., the category of étale schemes over
X whose coverings are jointly surjective families.

A hypercovering of X is a simplicial object U in Xét such that

‚ U0 Ñ X is surjective;

‚ For each n ě 0 the natural morphism Un`1 Ñ cosknptrnpUqq is surjective.

5.2. Čech hypercoverings. The principal example of a hypercovering is that of a Čech hypercov-
ering. Namely, let U Ñ X be an étale cover. For instance, U could be the disjoint union

Ů

Ui where
the collection tUi Ñ Xu of étale morphisms is jointly surjective. Then one sets U “ cosk0 U and
notes that U is a hypercovering because the first condition is verified due to Remark 3.2.2, while the
second one follows from Proposition 3.2.3. Using formula (3.2.1) one sees that Un “ UˆX ¨ ¨ ¨ˆXU is
the pn`1q-fold fiber product. At this point it becomes clear that U is just the usual Čech simplicial
object associated to the covering U Ñ X.

Note a peculiar property of U which follows from Proposition 3.2.3: all the morphisms Un`1 Ñ

cosknptrnpUqq are isomorphisms. Getting rid of this and allowing arbitrary refinements at every
stage is the principal feature of hypercoverings that makes them a useful generalization of Čech
hypercoverings.

Even though we will later be talking about étale homotopy, the advantages of using hypercoverings
surface already at the cohomology level. Namely, recall that in general one cannot use Čech coho-
mology to compute étale cohomology of a sheaf even if one passes to finer and finer coverings. This
is mended by Verdier’s hypercovering theorem which says that étale cohomology can be computed
by computing Čech-like cohomology for finer and finer hypercoverings. We will not make this more
precise here but see [SGA 4.2, Exposé V §7].

5.3. Homotopies. It is clear what a morphism of hypercoverings of X is: a natural transformation
of corresponding functors. However, we will want to consider morphisms only "up to homotopy".
To make sense of this first define a functor b : pXétq

∆op
ˆ Set∆op

Ñ pXétq
∆op which takes pU ,Kq to

U bK given by pU bKqn “
Ů

kPKn
Un with the structure morphisms pU bKqpfq for f : rms Ñ rns

defined by Upfq : Un Ñ Um going from the copy of Un corresponding to k P Kn to the copy of Um
corresponding to Kpfqpkq P Km. Now call two morphisms f, g : U Ñ V of hypercoverings U ,V of
X strictly homotopic if there is a commutative diagram

U \ U
f\g

##

i
��

U b∆1

h
// V
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where i is the morphism which is given on each factor U – Ub∆0 of the coproduct by idU bj where
j : r0s Ñ r1s is the map with image t0u for the first factor and the map with image t1u for the second
(by Yoneda’s lemma such j give rise to corresponding morphisms j : ∆0 Ñ ∆1). Two morphisms
f, g : U Ñ V are homotopic if they are related by a chain of strict homotopies. The relation of
homotopy thus defined is an equivalence relation; one also sees easily that if f is homotopic to g
then uf is homotopic to ug and fv is homotopic to gv whenever the compositions make sense. Now
HRpXq, the homotopy category of hypercoverings of X, is defined to be the category whose objects
are hypercoverings ofX and whose morphisms are homotopy classes of morphisms of hypercoverings.

Remark 5.3.1. In our construction of the notion of homotopy we have not used any properties of
Xét except that it has (finite) coproducts. Nor have we used that U and V are hypercoverings rather
than arbitrary simplicial objects in Xét. Therefore, the construction goes through for any category
C with coproducts and we arrive at a notion of homotopic morphisms between simplicial objects in
C. For instance, if C “ Set one has a notion of homotopic maps between simplicial sets. Equipped
with this notion one defines the homotopy category of simplicial sets, denoted HopSet∆op

q, to be
the category whose objects are fibrant simplicial sets (cf. section 3.4) and whose morphisms are
homotopy classes of morphisms of simplicial sets in the sense just discussed.

Proposition 5.3.2. HRpXq is cofiltered.

Proof. See [AM69, Corollary 8.13]. �

This is in fact one of the main advantages of passing to the homotopy category: the second condition
in the definition of cofiltered (cf. section 4) would hold anyway because products of hypercoverings
are hypercoverings, but to get the third condition one passes to homotopy classes of morphisms.

5.4. Pullbacks of hypercoverings. Let f : Y Ñ X be a morphism of schemes and U a hypercov-
ering of X. The pullback of U is the simplicial object U ˆX Y in Yét which is obtained by taking
fiber products Un ˆX Y levelwise.

Proposition 5.4.1. U ˆX Y is a hypercovering of Y .

Proof. Firstly, U ˆX Y is well-defined because étale morphisms are stable under base change. So
are surjections, so that U0 ˆX Y Ñ Y is surjective. In fact, this also verifies the second condition
in the definition of a hypercovering because both truncations and coskeleta commute with fiber
products: this is trivial for trn and true for coskn because of formula (3.2.1) and the fact that limits
commute. �

The canonical isomorphism p
Ů

UiqˆX Y –
Ů

pUiˆX Y q shows that strict homotopies are preserved
under the functor ´ˆX Y , so that one gets a functor HRY {X : HRpXq Ñ HRpY q. The construction
of HRY {X is evidently functorial in the sense that there are natural isomorphisms

HRX{X – IdHRpXq and HRZ{Y ˝HRY {X – HRZ{X (5.4.2)

for Z Ñ Y Ñ X.

6. Étale homotopy type

We are now ready to give the definition of the étale homotopy type of X following Artin and
Mazur [AM69]. Observe that any scheme U in Xét is locally noetherian because U Ñ X is étale
hence locally of finite presentation. Therefore, the connected components of U are open ([EGA
I, 6.1.9]). We denote this set of connected components by π0pUq and observe that this defines a
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functor π0 : Xét Ñ Set. If one applies π0 levelwise to a simplicial object in Xét one therefore gets
a simplicial set. Postcomposing with the fibrant replacement functor Ex8 gives a fibrant simplicial
set and hence a functor (cf. Remark 5.3.1)

Ex8pπ0p´qq : HRpXq Ñ HopSet∆op
q. (6.1)

To see that Ex8 preserves homotopies one uses natural maps Ex8pXqˆ∆n Ñ Ex8pXqˆEx8p∆nq –

Ex8pXˆ∆nq the existence of which can be argued using the construction of Ex8 (which we haven’t
carried out). Since HRpXq is cofiltered (cf. Proposition 5.3.2) this functor can be viewed as an
element of Pro HopSet∆op

q which we denote by ÉtpXq and call the étale homotopy type of X.

Taking into account functors HRY {X together with natural isomorphisms (5.4.2) we see that the
construction of ÉtpXq is functorial in the sense that we get a functor

Ét : VarK Ñ Pro HopSet∆op
q.

Here VarK , the category of K-varieties (i.e., finite type separated schemes over K), can actually
be replaced by the category of locally noetherian schemes with no significant modification to the
construction.

A couple of remarks about étale homotopy type are in order, even though we will not need them
later. They are quite vague, however: this is because we haven’t developed enough theory to give
more details, which, together with proofs, can be found in [AM69].

‚ Verdier’s hypercovering theorem to which we have alluded to in section 5.2 implies that one
can recover étale cohomology of X (say, with constant coefficients) from its étale homotopy
type ÉtpXq.

‚ One can recover the étale fundamental group πét
1 pXq from ÉtpXq (really, from a variation of

ÉtpXq because one has to take care of basepoints).

‚ If K is embedded as a subfield of C and X is geometrically connected one can consider XpCq
with its complex topology which will be a connected topological space. Then one can recover
the profinite completion of the topological homotopy groups of XpCq from ÉtpXq (with the
same caveat about basepoints). Coupled with the previous observation this recovers the
classical isomorphism ([SGA 1, Exposé XII Corollaire 5.2]) between the étale fundamental
group of X and the profinite completion of the topological fundamental group of XpCq.

7. The étale homotopy obstruction

7.1. Relative étale homotopy type. The definition of the étale homotopy obstruction will use a
relative version (due to Harpaz and Schlank [HS11]) of the étale homotopy type functor introduced
in the last section. To define it first consider the full subcategory ĄHRpXq of HRpXq consisting
of hypercoverings that are levelwise separated and of finite type over X. Note that each HRY {X

restricts to a functor ĄHRpXq Ñ ĄHRpY q.

For U P ĄHRpXq one sets X “ X ˆK K (here K is a fixed algebraic closure of K) and consid-
ers HRX{XpUq “ U ˆX X – U ˆK K. One observes that ΓK , the Galois group of K over K,
acts on K and hence on HRX{XpUq. If one takes connected components levelwise, i.e., computes
π0pHRX{XpUqq, one gets a ΓK-simplicial set, i.e., a simplicial object in the category SetΓK of sets
equipped with a continuous ΓK-action. This is because each connected component of every UnˆKK
is defined over some finite extension of K and therefore is fixed by an open subgroup of ΓK (this is

10



the reason why we had to restrict to ĄHRpXq). The construction being functorial one gets a functor
(with the same remark on Ex8 concerning homotopies as in (6.1))

Ex8pπ0pHRX{Xp´qqq :
ĄHRpXq Ñ HopSet∆op

ΓK
q. (7.1.1)

We haven’t told the reader yet what HopSet∆op

ΓK
q is: its objects are X P Set∆op

ΓK
such that XΛ (the

fixed point simplicial set of Λ) is fibrant for every open subgroup Λ ď ΓK , its morphisms are
ΓK-equivariant simplicial set maps taken up to ΓK-equivariant homotopy in the way analogous to
Remark 5.3.1 (more checking concerning Ex8 that we omit).

At this point one checks that the constructions in the proof of Proposition 5.3.2 can be done within
ĄHRpXq so that ĄHRpXq is cofiltered and the functor in (7.1.1) can be considered as an object Ét{KpXq

in Pro HopSet∆op

ΓK
q called the relative étale homotopy type of X{K. Using functors HRY {X one sees

as in the case of Artin-Mazur étale homotopy type that the construction of this object is functorial
so that one gets a functor

Ét{K : VarK Ñ Pro HopSet∆op

ΓK
q

called the relative étale homotopy type functor.

7.2. Variants using Postnikov towers. To define the étale homotopy obstruction we will need
a slight modification of the relative étale homotopy type functor Ét{K . Namely, given an object
tXiuiPI P Pro HopSet∆op

ΓK
q we can apply the Postnikov tower functor to each Xi to get an object

tPnpXiquiPI,ně0 (note that the new indexing category is still cofiltered). There are three things to
check to make sure that this is a legitimate thing to do:

1. Pnp´q brings ΓK-simplicial sets to ΓK-simplicial sets and equivariant maps to equivariant
maps (this is easily verified because we have formula (3.2.1) at our disposal and Pnp´q is a
functor).

2. The way we have defined HopSet∆op

ΓK
q we should make sure that each PnpXqΛ is Kan for each

open Λ ď ΓK given X satisfies this condition.

3. Each Pnp´q brings homotopic maps to homotopic maps (strict homotopies are required to
be ΓK-equivariant).

We are not going to check the last two claims but will remark that both follow because Pnp´q is
right adjoint and hence commutes with taking fixed points or products (such as ´ˆ∆1).

Since taking (truncated) Postnikov towers is functorial (cf. section 3.6), from the claims above that
we haven’t checked one sees that for 0 ď n ď 8 we get functors

p´qn : Pro HopSet∆op

ΓK
q Ñ Pro HopSet∆op

ΓK
q,

tXiuiPI ÞÑ tPmpXiquiPI,0ďmďn.

By this we mean that for n “ 8 we take the full Postnikov tower objectwise, whereas for finite n we
take all Postnikov pieces objectwise up to level n. Note that the indexing categories are cofiltered
if I is cofiltered.

One has evident natural transformations

Id Ñ p´qn
1

Ñ p´qn (7.2.1)

for n1 ě n which are compatible among one another in the obvious sense. Here the last natural
transformation results from simply forgetting part of the indexing diagram, whereas the first one is
an avatar of the natural transformations (3.6.3).
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The functors that are used to define étale homotopy obstructions are the composed functors pÉt{Kp´qq
n,

0 ď n ď 8 which we denote Ét
n
{Kp´q. The natural transformations (7.2.1) translate to natural

transformations

Ét{K Ñ Ét
n1

{K Ñ Ét
n
{K (7.2.2)

for n1 ě n which are again compatible.

7.3. Étale homotopy obstructions. For each 0 ď n ď 8 a rational point SpecK Ñ X gives
rise to a morphism Ét{KpSpecKq Ñ Ét

n
{KpXq (use (7.2.2)). If we denote by XnphKq the set of

morphisms Ét{KpSpecKq Ñ Ét
n
{KpXq in Pro HopSet∆op

ΓK
q then we get maps XpKq Ñ XnphKq,

0 ď n ď 8.

If v is a place of K with completion Kv we denote by Kv a fixed algebraic closure of Kv containing
the fixed algebraic closure K from section 7.1. The Galois group of Kv over Kv will be denoted
by Γv and we identify it with a closed subgroup of ΓK . Suppose one has a Kv-point of X, i.e., a
K-morphism SpecKv Ñ X. Since we have an inclusion K ãÑ Kv it gives rise to a Kv-point of X
and we have a commutative diagram

SpecKv

��

// X

��

SpecKv
// X

which for each 0 ď n ď 8 gives rise to a natural (in X) morphism1

Ét{KvpSpecKvq Ñ Ét{KpXq. (7.3.1)

It results from forgetting ΓK-action and remembering only Γv-action for hypercoverings which are
pulled back from X. Now apply Postnikov tower functors p´qn for each 0 ď n ď 8 and use (7.2.2)
to get natural (in X) morphisms

Ét{KvpSpecKvq Ñ Ét
n
{KpXq. (7.3.2)

If one denotes XnphKvq the set of morphisms Ét{KvpSpecKvq Ñ Ét
n
{KpXq one gets a map of sets

XnphKq Ñ XnphKvq which fits into a commutative diagram

XpKq //

��

XnphKq

��

XpKvq // XnphKvq.

1Here (and in the sequel when we consider similar maps) we are viewing Ét{KpXq as an object in Pro HopSet∆op

Γv
q.

To see that this is a legitimate thing to do one needs to check that if a ΓK-simplicial set X satisfies that XΛ is fibrant
for each open Λ ď ΓK then the same holds for open Λ1 ď Γv. We will not check this here but the reader who knows
the criterion of being a fibration in terms of lifting properties for inclusions of horns should have no trouble.
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Putting such diagrams together for all places v and remembering that XpKq Ñ
ś

vXpKvq factors
through XpAq (cf. (1.2.2)) one gets a diagram

XpKq //
� _

��

XnphKq

ln

��

XpAq

��

hn

''
ś

vXpKvq //
ś

vX
nphKvq.

Now one sets XpAqh,n :“ h´1
n plnpX

nphKqqq and lets XpAqh :“ XpAqh,8. These are the étale
homotopy obstruction sets that appear in the bottom part of the diagram (1.3.1). Their functoriality
in X is clear from the functoriality of (7.3.2) and Ét

n
{K . The fact that we have the natural inclusions

XpAqh,n1 ãÑ XpAqh,n for n1 ě n results from the natural transformations (7.2.2) which give rise to
a commutative diagram

XpKq //

��

Xn1phKq

ln1
��

// XnphKq

ln
��

XpAq
hn1 //

hn

66

ś

vX
n1phKvq //

ś

vX
nphKvq.

Since obviously XpKq Ă XpAqh, we recover the bottom part of (1.3.1).

7.4. Étale homology obstructions. The étale homology obstructions are the setsXpAqZh,XpAqZh,n
appearing in the top part of the diagram (1.3.1). They are defined in an analogous manner to étale
homotopy obstructions that we have seen in the previous section using the free abelian group func-
tor Zp´q applied levelwise to the simplicial sets appearing in the diagrams for Ét{KpXq and then
taking the corresponding Postnikov towers. Let us make this more precise.

Suppose you take a simplicial set X and apply the free abelian group functor Zp´q levelwise. You
get a simplicial set ZX which in fact is a simplicial (abelian) group (a simplicial object in the
category of (abelian) groups). As a set naturally includes to the free abelian group on that set one
has a natural transformation

Id Ñ Zp´q. (7.4.1)
If X is a ΓK-simplicial set then so is ZX (in fact it is even a simplicial ΓK-module). This defines a
functor

Zp´q : Set∆op

ΓK
Ñ Set∆op

ΓK

such that pZXqΛ is fibrant for any open subgroup Λ ď ΓK (actually, it is a general fact that the
underlying simplicial set of any simplicial group is fibrant, see [GJ09, Lemma I.3.4]). It is not hard
to see that ΓK-equivariantly homotopic maps between simplicial sets satisfying the condition that
we just spelled out (i.e., between the objects of HopSet∆op

ΓK
q) are still ΓK-equivariantly homotopic

after applying Zp´q. Therefore, this defines a functor

Zp´q : HopSet∆op

ΓK
q Ñ HopSet∆op

ΓK
q.

By applying it to each object in the diagram we get a functor

Zp´q : Pro HopSet∆op

ΓK
q Ñ Pro HopSet∆op

ΓK
q.
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In particular, we could consider the composed functor Z Ét{K : VarK Ñ Pro HopSet∆op

ΓK
q, as well as

its decorations pZ Ét{Kp´qq
n, 0 ď n ď 8 (cf. section 7.2) together with natural transformations

Ét{K Ñ Ét
n
{K Ñ pZ Ét{Kp´qq

n (7.4.2)

for 0 ď n ď 8 that result from (7.2.2) and (7.4.1).

At this point one takes (7.3.1) together with (7.4.2) to see that each Kv-point gives rise to a natural
(inX) morphism Ét{KvpSpecKvq Ñ pZ Ét{KpXqq

n and the story is much the same as in the previous
section. Namely, for 0 ď n ď 8 one denotes by XZ,nphKq (resp., XZ,nphKvq) the set of morphisms
Ét{KpSpecKq Ñ pZ Ét{KpXqq

n (resp., Ét{KvpSpecKvq Ñ pZ Ét{KpXqq
n) one gets commutative

diagrams

XpKq //

��

XZ,nphKq

��

XpKvq // XZ,nphKvq.

which fit into
XpKq //

��

XZ,nphKq

lZn

��

XpAq

��

hZn

((
ś

vXpKvq //
ś

vX
Z,nphKvq.

The étale homology obstruction sets are now defined XpAqZh,n :“ phZnq
´1plZnpX

Z,nphKqqq and one
lets XpAqZh :“ XpAqZh,8. The inclusions XpAqZh,n1 ãÑ XpAqZh,n for n1 ě n are obtained in the
same way as for the étale homotopy obstructions that we discussed in the previous section (there are
obvious analogues of the natural transformations (7.2.2)). This recovers the top part of (1.3.1). To
get the vertical arrows in (1.3.1) one uses the natural transformations (7.4.2) to argue commutative
diagrams

XpKq //

��

XnphKq

ln
��

// XZ,nphKq

lZn
��

XpAq hn //

hZn

66

ś

vX
nphKvq //

ś

vX
Z,nphKvq

which explicate the inclusions XpAqh,n ãÑ XpAqZh,n.

We have now justified the diagram (1.3.1). However, justification of the claims that we have made
in section 2 relating étale homotopy (and homology) obstructions to classical obstructions requires
much more work and we refer the reader to [HS11] for details.
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