Selmer groups as flat cohomology groups
by
Kestutis Cesnavicius
Bachelor of Science, Jacobs University, 2010
submitted to the Department of Mathematics ARCHIVES

in partial fulfillment of the requirements for the degree of  ™3Srarls B IFVTE

PR— ot s i A A ¥

t

{
Doctor of Philosophy N |
: g :

§
o
i

at, the ' LIBRARIES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2014

(© Massachusetts Institute of Technology 2014. All rights reserved.

Signature redacted

Author ..
Department of Mathematics
May 2, 2014

Signature redacted

< Bjorn Poonen
Claude Shannon Professor of Mathematics
Thesis Supervisor

Certified by........

Signature redacted
Accepted by ...... T

Alexei Borodin
Chairman, Department Committee on Graduate Students






Selmer groups as flat cohomology groups
by

Kestutis Cesnavicius

Submitted to the Department of Mathematics
on May 2, 2014, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Abstract

Given a prime number p, Bloch and Kato showed how the p®™-Selmer group of an abelian
variety A over a number field K is determined by the p-adic Tate module. In general,
the p™-Selmer group Sel,~» A need not be determined by the mod p™ Galois representation
A[p™]; we show, however, that this is the case if p is large enough. More precisely, we
exhibit a finite explicit set of rational primes 3 depending on K and A, such that Sel,m A
is determined by A[p™] for all p € ¥. In the course of the argument we describe the flat
cohomology group Hg (O, Alp™]) of the ring of integers of K with coefficients in the p™-
torsion A[p™] of the Néron model of A by local conditions for p ¢ ¥, compare them with
the local conditions defining Sel,m A, and prove that A[p™] itself is determined by A[p™] for
such p. Our method sharpens the relationship between Selm A and Hy, (Ok, A[p™]) which
was observed by Mazur and continues to work for other isogenies ¢ between abelian varieties
over global fields provided that deg ¢ is constrained appropriately. To illustrate it, we exhibit
resulting explicit rank predictions for the elliptic curve 11A1 over certain families of number
fields. Standard glueing techniques developed in the course of the proofs have applications
to finite flat group schemes over global bases, permitting us to transfer many of the known
local results to the global setting.
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1. INTRODUCTION

Let K be a number field, let 4 — Spec K be a dimension g abelian variety, and let p be a prime
number. Fiv a separable closure K of I, Tate conjectured [Tat66, p. 134] that the p-adic Tate
module TpA = lim A[p™] (K) determines A up to an isogeny of degree prime to p, and Faltings
proved this in |Falg83, §1 b)]'. One can ask whether A[p] alone determines A to some extent.
Consideration of the case g = 1, p = 2 shows that for small p one cannot expect much in this
direction. However, at least if ¢ = 1 and K = @Q, for p large enough (depending on A) the Frey—
Mazur conjecture [Kra99, Conj. 3] predicts that A[p] should determine A up to an isogeny of degree?
prime to p.

Consider now the p®-Selmer group Sel,» A « H'(K, A[p™]), which consists of the classes of cocy-
cles whose restrictions lie in A(K,) ® Qp/Zp, = HY(K,, A[p®]) for every place v of K. Note that
A[pPN(K) = Vo A/T,A with VA = T,A ®z, Qp, so T A determines the Galois cohomology groups
appearing in the definition of Sel,» A. Since an isogeny of degree prime to p induces an isomorphism
on p*-Selmer groups, the theorem of Faltings implies that T, A determines Selyx A up to isomor-
phism. One may expect, however, a more direct and more explicit description of Sely» A in terms
of T),A. For this, it suffices to give definitions of the subgroups A(K,) ® Qp/Z, = H'(K,, A[p™])
in terms of T, A.

Bloch and Kato found the desired definitions in [BK90]: if v { p, then A(K,) ® Qp/Z, = 0; if v | p,
then, letting Beis be the crystalline period ring of Fontaine and working with Galois cohomology
groups formed using continuous cochains in the sense of [Tat76, §2], they define

H{(Ky, VpA) := Ker(H'(K,, V,4) — H'(Ky, VyA®q, Beris)),
and prove that
A(Ky) @ Qp/Zy = Im(H} (K, VpA) — HY(K,, V,A/TyA) = HY(K,, A[p™))).

Considering the p-Selmer group Sel, A and A[p] instead of Sel,e A and A[p™] (equivalently, Sel,» A
and 73,A), in light of the Frey-Mazur conjecture, one may expect a direct description of Sel, A in
terms of A[p] for large p. We give such a description as a special case of

Theorem 1.1. Fiz an extension of number fields L/K, o K-isogeny ¢: A — B between abelian
varieties, and let A[¢] and AL[@] be the kernels of the induced homomorphisms between the Néron
models over the rings of integers O and Or. Let v (resp., w) denote a place of K (resp., L),
let cap and cpy (Tesp., caw and cpy) be the corresponding local Tamagawa factors for v,w § o
(cf. §8.7). let ey be the absolute ramification index if v { 00, set ep = maxy, ey, and see §1.17 for
other notation.

(a) (i) (Corollary 7.3.) The pullback map
Hioi (O, Al¢]) — H' (K, A[¢]) (1.L1)
s an isomorphism onto the preimage of Hv{oo Hflppf(Ov,A[g{)]) c HﬂmHI(Kv,A[qb]).

1By [Tat6i6, Lemmas 1 and 3], the quoted result of Faltings implies the bijectivity of
Zp @ Hom(A, B) — Homg, g/, (IpA, 15 B)

for all abelian varieties A, B over K. In particular, if .: T, A — T, B, there is an isogeny ¢: A — B whose reduction
mod p agrees with ¢ mod p, hence p { deg ¢.

2The degree condition can be added, since up to isomorphism only finitely many abelian varieties are K-isogenous
to A [Zar85, Thm. 1.
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(1i) (Proposition 9.8 (d).) If the reduction of A at all v | deg ¢ is semiabelian, deg ¢ is prime
to ﬂv,{m CAvCB., and either 2t dego or A(K,) equipped with its archimedean topology
is connected for all real v, then H}pp,.(o,\-, A[#]) = Selg A inside H' (K, A[¢]).

(b) (Proposition 5.9.) Assume that A has good reduction ot all v | degd. If e, <p—1 for cvery

prime p | deg ¢, then the Op-group scheme AL[@] is determined up to isomorphism by the
Gal(L/K)-module A[¢](L).

Thus, if (deg ¢, I—[w)(Oo CAwCBw) = 1, the reduction of A is good at all v | deg¢, and e, < p—1
for every p | deg (in particular, 2 { deg¢), then the ¢-Selmer group Sely, A, < H'(L, A[¢]) is
determined by the Gal(L/K)-module A[¢](L).

Corollary 1.2. If A has potential good reduction everywhere and p is large enough (depending on
A), then A[p™] determines Selpm Ay for every finite extension L/K.

Proof. Indeed, by a theorem of McCallum [ELL96, pp. 801-802], ¢ < 29+ 1 for a prime ¢ | ca,,. O

Remarks.

1.3.

1.4.

1.5.

1.6.

1.7.

1.8.

1.9.

Relationships similar to (ii) between Selmer groups and flat cohomology groups are not new
and have been (implicitly) observed already in [Maz72] and subsequently used by Mazur,
Schneider, Kato, and others (often after passing to p™-Sclmer groups as is customary in
Iwasawa theory). However, the description of H flppf(C')K,A[fﬁ]) by local conditions in (i) is
new and works even if A[¢] is not Og-flat thanks to Proposition 2.11; consequently, (ii) is
more precise than what seems to be available in the literature.

In the case of elliptic curves, Mazur and Rubin find in [MR13, Thm. 3.1 and 6.1] (see also
[AS05, 6.6] for a similar result of Cremona and Mazur) that under assumptions different from
those of Theorem 1.1, p”-Selmer groups are determined by mod p™ Galois representations
together with additional data including the set of places of potential multiplicative reduction.
It is unclear to us whether their results can be recovered from the ones presented here.

The Selmer type description of a flat cohomology group as in (i) continues to hold with other
Og-group schemes G as coefficients. For instance, G can be a finite flat group scheme or
a Néron model; see Theorem 7.2 for a general result of this type. Choosing G = A to be
the Néron model of A leads to a reproof of the étale cohomological interpretation of the
Shafarevich-Tate group ITI(A) in Proposition 7.5; such interpretation is implicit already in
the arguments of [Ray65, 11.§3] and is proved in [Maz72, Appendix]. Our argument is more
direct: in the proof of loc. cit. the absence of Theorem 7.2 is circumvented with a diagram
chase that uses cohomology with supports exact sequences.

In Theorem 1.1 (a), it is possible to relate Sely A and H, ((Ok, A[#]) under weaker hy-
potheses than those of (ii), see Proposition 9.8 (a).

The interpretation of Selmer groups as flat cohomology groups is useful beyond the case when
¢ is multiplication by an integer. For an example, see the last sentence of Remark 9.10.

Theorem 1.1 is stronger than its restriction to the case I = K. Indeed, the analogue of
ep < p — 1 may fail for L but hold for K. This comes at the expense of A*[¢] and Sely Ay,
being determined by A[¢](L) as a Gal(L/K)-module, rather than as a Gal(L/L)-module.

To determine an explicit finite set of rational primes ¥ depending on K, L, A, and B such

that Sely Ay, is determined by the Gal(L/K)-module A[¢](L) whenever deg¢ is coprime to

the elements of £, let & consist of all primes below a place of bad reduction for 4, all primes
8



dividing a local Tamagawa factor of Ay, or By, the prime 2, and all odd primes p ramified in
K for which e, = p—1 (since e, < [ : ], one can include all the primes p < [K : Q] + 1

for simplicity). Taking L = K and A = B yields the set ¥ promised in the abstract.

1.10. In Theorem 1.1, is the subgroup B(L)/¢A(L) (equivalently, the quotient II(4.)[¢]) also
determined by A[¢](L)? The answer is ‘no’. Indeed, in [CMOO0, p. 24] Cremona and Mazur
report® that the elliptic curves 2531F1 and 2534G1 over Q@ have isomorphic mod 3 repre-
sentations, but 2634F1 has rank 0, whereas 2534G1 has rank 2. Since 3 is prime to the
conductor 2534 and the local Tamagawa factors co = 44, ¢y = 1, ¢181 = 2 (resp., cg = 13,
c; = 2, c1g1 = 1) of 2534F1 (resp., 2534G1), Theorem 1.1 indeed applies to these curves.
Another example (loc. cit.) is the pair 4592D1 and 4592G1 with ¢ = 5 and ranks 0 and 2.

For an odd prime p and elliptic curves F and E’ over Q with E[p] = E’[p] and prime
to p conductors and local Tamagawa factors, Theorem 1.1, expected finiteness of III, and
Cassels—Tate pairing predict that tk £(Q) = rk E’(Q) mod 2. Can one prove this directly?

The analogue of Theorem 1.1 in the function field case is

Theorem 1.11. Let S be a (connected) proper smooth curve over a finite field, let I be its function
field, let ¢: A — B be a K-isogeny between abelian varieties, and let A[¢p] — S be the kernel of the
induced homomorphism between the Néron models over S. For a closed point s € S, let (55, s be the
completion of the local ring at s, let IA(S,S be the fraction field of @S,s, and let ca s and cp s be the
corresponding local Tamagawa factors (cf. §8.7).

(a) (i) (Corollary 7.3.) The pullback map Hflppf(S,A[qb]) — H}ppf(K,A[é]) is an isomorphism

onto the preimage of [], Hflppf(@g,s,A[qb]) < I Hflppf( A's,s,A[qﬁ]) where the products
are indexed by the closed s€ S.

(ii) (Proposition 8.9 (e).) If char K t deg ¢, then Hy (S, A[¢]) < H' (K, A[8]) consists of
the everywhere unramified cohomology classes.

(#i) (Proposition 9.8 (d).) If the reduction of A is semiabelian everywhere and deg ¢ s prime
to [ s ca,s¢B.s, then Hflppf(S, Alp]) = Sely A inside H}ppf(K, Ald]).

(b) (Corollary 3.9.) If char K { deg ¢, then the S-group scheme Al is determined up to isomor-
phism by Ald); actually, Al¢] — S is just the Néron model of A[¢p] — Spec K.

Thus, if (deg ¢, char K [ [, cascps) = 1, then the ¢-Selmer subgroup Sely A < HY\(K, A[¢]) is deter-
mined by A[$] and in fact consists of the everywhere unramified cohomology classes of H(K, A[¢]).

Remarks.

1.12. The prevalence of the unramified condition in the final conclusion of Theorem 1.11 is due
to the following extension of a well-known lemma of Cassels [Cas65, 4.1] proved in Proposi-
tion 8.9 (f): for a nonarchimedean place v of a global field K and a K-isogeny ¢: A — B, if
(deg ¢, capcpo charF,) = 1, then the condition at v defining the ¢-Selmer group is the un-
ramified cohomology subgroup H} (K., A[¢]) < H'(K,, A[¢]); Cassels assumes in addition
that v is a place of good reduction (when ca, = cpp = 1). If A is an elliptic curve and K is
a number field, this generalization has also been observed by Schacfer and Stoll [SS04, 4.5].

3Assuming the Birch and Swinnerton-Dyer conjecture to compute Shafarevich-Tate groups analytically. This is
unnecessary for us, since full 2-descent finds provably correct ranks of 2534£1, 2534G1, 459201, and 4592G1.
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If (deg ¢, cavcp0charFy) = 1, then HE (I, A[¢]) = prpf(OU,A[qb]) inside HY(K,, A[#])
by Proposition 8.9 (f). Thus, a further extension of Cassels’ lemma to all residue characteris-
tics is Proposition 8.8 (e): if (deg ¢, ca,vCBw) = 1 and A has semiabelian reduction at v in case
charF, | deg¢, then the condition at v defining Sel, A i Hy (O, A[8]) < H'(IK,, A[$]).
This conclusion has also been observed by Mazur and Rubin [MR13, Prop. 5.8 in the case
dimA =1 and ¢ = p™.

1.13. Injectivity of the pullback maps in Theorems 1.1 (i) and 1.11 (i) are special cases of The-
orem 6.1: such injectivity continues to hold with a closed subgroup of a Néron model as
coefficients for the cohomology groups (or pointed sets in the noncommutative case).

1.14. Models of finite group schemes over global bases. The glueing techniques developed in
§4 with the purpose of proving Theorem 1.1 (b) apply to the study of finite flat group schemes over
global bases. More precisely, let K be a number field, let O be its ring of integers, and fix a rational
prime p. An O -model (of its generic fiber) is a commutative quasi-finite flat separated Og-group
scheme G killed by a power of p such that G, | 1~ Spec Ok [%] is a Néron model (cf. §2.2 for Néron

models) and Go, — Spec O, is finite flat for each v | p; see §5.1 for the definition in the general
setting. A commutative finite flat Og-group scheme G of p-power order is precisely a finite Q-
model, which in turn is nothing else than an QO x-model G for which the Gal(K/K)-module G(K) is
unramified away from p (cf. §5.1). Studying general Og-models amounts to allowing ramification
away from p.

Our main results concerning Qg -models G are Corollary 4.4 together with Theorem 5.4, which say
that G is determined by Gx together with (Go,),|p; moreover, a compatible tuple (Gk, (G0, )v|p)
glues to an Og-model G. Effectively, the study of Og-models of a fixed generic fiber G amounts to
the study of finite flat @,~-models of Gk, for v | p, permitting us to transfer many of the known local
results to the global setting. For instance, we obtain uniqueness of Og-models of a fixed generic
fiber G for K of low ramification at places above p (Proposition 5.7 (c)), show that the product
over all v | p of Kisin’s moduli of finite flat group schemes varieties continues to parametrize models
over global bases (Proposition 5.17), and show that a p-divisible group over K extends (uniquely)
to Ok if and only if all its layers have finite Og-models (§5.19 and Proposition 5.21); see §5 for
other results of this sort. The description of Hflppf((’);(, G) € HY(K,Gk) by local conditions as in
Remark 1.5 holds for every Og-model G; see §§9.2-9.5 for a discussion of this.

Example 1.15. We illustrate the utility of our methods and results by estimating the 5-Selmer
group of the base change E of the elliptic curve F = 1141 to any number field K. This curve has
also been considered by Tom Fisher, who described in [Fis03, 2.1] the ¢-Selmer groups of Ey for
the two degree 5 isogenies ¢ of Ex defined over Q. We restrict to 11.A1 for the sake of concreteness
(and to get precise conclusions (a)—(f)), although our argument leads to estimates analogous to
(1.15.2) for every elliptic curve A over Q and an odd prime p of good reduction for A such that

Alp] = Z/pZ @ pp.

Let &K — Spec Ok be the Néron model of Ex. Since E[5] = Z/5Z & ps (compare |Gre99, pp. 120—
121}), by Proposition 5.9 and its proof, £X[5] =~ Z/57Z O @ us. Thus, exploiting the exact sequence

0— us — Gy, 3, Gy, — 0 together with Example 9.3,
dimp, Hflppf(OK, EX[5]) = 2dimp, Clg[5] + dimp, O /O = 2hE + o8 10 1 4l (1.15.1)
where Clg is the ideal class group, r& and & are the numbers of real and complex places, and

RE = dimg, Clg[5], uf = dimg, 15(Ok).
10



Since component groups of Néron models of elliptic curves with split multiplicative reduction are
cyclic, (1.15.1) and Proposition 9.8 (a) give

20 + 8 el 1T uf {0 | 11} < dimg, Sels Ex < 205 +r8 0 — 140l 14 {0 | 11}. (1.15.2)
Thus, the obtained estimate is most preeise when K has a single place above 11. Also,

dimp, Sels Exc =71 + 8 — 1+ uf + #{v | 11} mod 2, (1.15.3)

5
because the b-parity conjecture is known for Ex [DDO08]. When K ranges over the quadratic
extensions of Q, due to (1.15.2), the conjectured unboundedness of 5-ranks h of ideal class groups
(which a priori has nothing to do with £) is equivalent to the unboundedness of dimg; Sels E;
in particular, it is implied by the folklore! conjecture that the ranks of quadratic twists of a fixed
elliptic curve over Q (in our case, E) are unbounded.

It is curious to observe some concrete conclusions that (1.15.2) and (1.15.3) offer (note that pre-
cise rank expectations are possible due to (1.15.2)-—the sole growth follows already from parity
considerations):

(a) As is also well known, rk E(Q) = 0.
(b) If K is imaginary quadratic with A¥ = 0 and 11 is inert or ramified in K, then tk E(K) =

¢) If K is imaginary quadratic with A = 0 and 11 splits in K, then either rk E(K) = 1, or
5
tk E(K) = 0 and corkg, III(Ex)[5*] = 1. Mazur in [Maz79, Thm. on p. 237| and Gross in
[Gro82, Prop. 3] proved that rk E(K) = 1.

(d) If F'is a quadratic extension of a K as in (c¢) in which none of the places of K above 11 split
and A" = 0, then either rk E(F) = 2, or II(Er)[5%°] is infinite.

(e) If K is real quadratic with hf& = 0 and 11 is inert or ramified in K, then either rk B(K) = 1,
or tk E(K) = 0 and corkg, III(Ek)[5*] = 1. In the latter case HI(Ex)[p™] is infinite for
every prime p, because the p-parity conjecture is known for Ex for every p by [DD10, 1.4]
(applied to E and its quadratic twist by K). Gross proved in [Gro82, Prop. 2| that if 11 is
inert, then rk E(K) = 1.

(f) If K is cubic with a complex place (or quartic totally imaginary), a single place above 11,
and hE = 0, then either rk E(K) = 1, or tk E(K) = 0 and corkg, HI(Ex)[5%°] = 1

How can one construct the predicted rational points? In (c¢) and the inert case of (e), [Gro82]
explains that Heegner point constructions account for the predicted rank growth. However, (d) and
(f) concern situations that seem to be beyond the scope of applicability of the existing methods for
systematic construction of rational points of infinite order.

1.16. The contents of the paper. We begin by collecting several general results concerning
Néron models and their torsors in §2 and proceed in §3 by proving various short exact sequences
involving open subgroups of Néron models of abelian varieties. These give appropriate analogues
of Kummer sequences when working with Néron models. We devote §4 to a standard fpqe descent
result enabling us to glue schemes over global bases from their local base changes, which leads
in §5 to global analogues of familiar local results concerning finite flat group schemes. Injectivity
of (1.1.1) and related maps is argued in §6, which also discusses embeddings of finite flat group
schemes into Néron models. In §7, exploiting §4, we study the question of Hflppf with appropriate
coefficients over Dedekind bases being described by local conditions. We restrict to local bases in

§8 to compare the subgroups B(K,)/pA(Ky), H (O, A[#]), and Hy (Ky, A[8]) of HY(K,, A[¢])

4Which does not mean “widely believed”.
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under appropriate hypotheses. The local analysis is used in §9 to compare the ¢-Selmer group and
Hflppf(OK,A[gb]). For cross-reference purposes, several known results from algebraic geometry are
gathered in Appendix A.

1.17. Conventions. When nceded, a choice of a separable closure A of a field K will be made
implicitly, as will be a choice of an embedding K < I for an overfield L/K. If v is a place of a
global field K, then K, is the corresponding completion; for v { <0, the ring of integers and the
residue field of K, are denoted by O, and F,. If K is a number field, O is its ring of integers. For
a local ring R, its henselization, strict henselization, and completion are R*, R%" and R Forsesd
with S a scheme, Og ¢, mg 4, and k(s) are the local ring at s, its maximal ideal, and its residue field.
We call a morphism fppf if it is flat, surjective, and locally of finite presentation. An fppf torsor is
a torsor for the fppf topology (as opposed to a torsor that itself is fppf over the base). The fppf,
big étale, and étale sites of S are Spypr, Sg,, and Sg; the objects of Syppr and Sy, are all S-schemes,
while those of Sy are all schemes étale over S. The cohomology groups computed in Sy and Sg,pr
are denoted by HY (S,G) and Hfippf(S, G); usually G will be represented by a commutative S-group
algebraic space locally of finite presentation. Galois cohomology groups are denoted by H®. For
G as above, the -functorial identification H (K, G) =~ H'(K,G(K)) is made implicitly (similarly
in the noncommutative case for ¢ < 1, cf. §A 4) Sois H4(S,G) = fppf(S G) for smooth G as in
Proposition A.2 (see Proposition A.6 for the noncommutative case); it is é-functorial as well. In
the presence of f: S’ — S, it is understood that fppf(S, G) — lcppf(.S” f*G) is the d-functorial
pullback. We frequent the shorthand X7 for the base change of X — S along T — S. An algebraic
group over a field K is a finite type smooth K-group scheme. For an integer n and a scheme S, the
open subscheme on which n is invertible is S[1].

Since [SP, Definition 025Y] is our definition of an algebraic space (see also [SP, Lemma 076M]),
when citing other references we need to make sure that the implicit quasi-separatedness assumption
is met. Better behavior under descent is our reason for resorting to algebraic spaces. The reader
only interested in Theorems 1.1 and 1.11 can stick to schemes: due to affineness of A[¢], its torsors
are schemes (see Proposition 3.3).

2. NERON MODELS

Our analysis of Selmer groups will be based on a study of Néron models of abelian varieties. This
section is devoted to various concepts and results in the theory of Néron models. We set notation
in §§2.1-2.2, record ways to recognize and construct Néron models in §§2.3-2.17, and investigate
their torsors in §§2.18-2.21.

2.1. Dedekind schemes. These are the connected Noetherian normal schemes S of dimension
< 1. Connectedness (due to which S # (J) is not necessary but simplifies the notdtlon (though
not the proofs). A nonempty open U < S as well as Spec Og 4, Spec Os s+ and Spec Oq sforse S
are Dedekind schemes as well. The main cases of interest are S being a (connected) proper smooth

curve and S = Spec Ok for the ring of integers Ok of a number field or a nonarchimedean local
field K.

Let K be the function field of S. If X is an S-scheme, X'k is the generic fiber of X. A nongeneric
s € S is closed, and the complement of a nonempty open subscheme U < S is a finite union of
closed points. A normal Noetherian local ring of dimension < 1, such as Og for s € S, is either
a discrete valuation ring or a field. The fraction fields of (’)h s Og’fs, and (55 s will be denoted by

Ks o Ks ., and Kg s, respectively. Note that Ogg, (95 o Og,”'s, and @S,s are either fields (if s is the
12



generic point) or discrete valuation rings sharing a common uniformizer [BLR90, §2.3 Prop. 10]. In
the latter case, Ogq, O?:..w and Og ¢ share the residue fields (cf. [EGA 1V, 18.6.6 (iii)] for Oﬁ L)
The introduced notation will be in force in this section.

2.2. Néron (1ft) models. An S-group scheme X is a Néron model {of X)) if it is separated,
of finite type, smooth, and satisfies the Néron property: the restriction to the generic fiber map
Homg(Z,X) — Hompg(Zk, Xk) is bijective for every smooth S-scheme Z (which determines A’
from Xk up to a unique isomorphism). Dropping the finite type requirement, one obtains the
definition of a Néron Ift model, which is locally of finite type because of smoothness. Of course, a
Néron model is also a Néron 1ft model. No further generality is obtained if X" is an algebraic space in
these definitions: a separated group algebraic space locally of finite type over a locally Noetherian
base of dimension < 1 is a scheme [Ana73, 4.B].

Proposition 2.3.

(a) A finite type (resp., locally of finite type) X — S is a Néron model (resp., Néron Ift model)
if and only if so is Xo, , — SpecOg; for every closed s € S.

(b) If X — S is a Néron model (resp., Néron Ift model), then so are
XO’&,S — Spec (’)gﬁ, X@S‘s — SpecOg s, and XO%’,’S — Spec O%{’s

for a closed s € S.

Proof.
(a) See [BLRY0, §1.2 Prop. 4] and [BLR90, p. 290].
(b) Combine (a) and [BLR90, §10.1 Prop. 3]. O

Proposition 2.4. A proper smooth S-group scheme G is a Néron model.

Proof. Proposition 2.3 (a) reduces to the local case S = Spec Og s, when the conclusion is clear due to
[BLRYO, §7.1 Thm. 1] as G (Oghs) — G(K ghs) is bijective by the valuative criterion of properness. [

Proposition 2.5. Let G and H be Néron models over S. A sheaf of groups £ on Sgpt that is an
extension 1 — H — & — G — 1 is represented by a Néron model.

Proof. By Proposition A.8, the S-group algebraic space £ is separated, of finite type, and smooth,
and so in fact a scheme [BLR90, §6.6 Cor. 3]. The proof of [BLR90, §7.5 Prop. 1 (b)] based on the
same method as the proof of Proposition 2.4 now shows that £ is a Néron model. O

Remark 2.6. One can use Proposition 2.5 to reduce Proposition 2.4 to the familiar cases of G being
an abelian scheme or finite étale. Indeed, as we now show, a proper smooth group scheme G over
a connected base scheme S is an extension of a finite étale S-group scheme by an abelian scheme.
Let G — G be the open S-subgroup scheme such that (G%) is the identity component of G for
every s € S [EGA IVs, 15.6.5]. We claim that G = G is also closed, rendering the smooth G® — 5
proper. Granting this, due to the constancy of fiber dimension of G [EGA 1V3, 15.6.6 (iii) 8]
(this is the only place where connectedness of S is used), G — S is an abelian scheme, and, by
Proposition A.13 (c¢)-(d), G/GY is a separated smooth S-algebraic space of finite type. Working
fiberwise, G/G® — S is quasi-finitc by [SP, Lemma 06RW], and hence a scheme by [LMBO00, A.2}.
It then inherits properness from G [EGA 11, 5.4.3 (ii)], and hence is finite étale [EGA 1V3, 8.11.1].
To complete the argument we now show that G° = G is closed. Since G — S is of finite presentation
and the formation G° commutes with arbitrary base change, duc to the usual limit arguments, we
13



can assume that S is affine, then Noetherian, then also local, and finally also complete (using fpqc
descent in this last step). In the latter case, [EGA III;, 5.5.2] applied to the connected GY shows
that G — S inherits properness from its special fiber. The desired properness of G < G follows.

An important source ot Néron models is Theorem 2.13; for its formulation, we recall the notions of

2.7. Schematic image and schematic dominance. For a scheme morphism X ER Y, its
schematic ¥mage is the initial closed subscheme Y’ — Y through which f factors. By [SP, Lemma
01R6], the schematic image exists. If for each open U < Y the schematic image of fy is U, then
f is schematically dominant [EGA 1V3, 11.10.2]. If f is quasi-compact, then the induced X — Y’
is schematically dominant |SP, Lemma 01R8]|, and in this case the formation of Y’ commutes with
flat base change [EGA 1V3, 11.10.5 (ii) a)l.

The schematic image of a morphism of algebraic spaces is defined analogously to the case of schemes;
its existence is guaranteed by [SP, Lemma 082X]. If the morphism is in addition quasi-compact,
then the formation of the schematic image again commutes with flat base change [SP, Lemma 089E].

Lemma 2.8 (Transitivity of schematic images for algebraic spaces). For a scheme T and morphisms
of T-algebraic spaces f: X =Y and g: Y — Z, let Y — Y and Z’ < Z be the schematic images
of f and gly+. Then Z' — Z is also the schematic image of go f.

Proof. Since a section of a closed immersion of algebraic spaces is an isomorphism, the proof of
[EGA I, 9.5.5] given for schemes continues to work for algebraic spaces. O
Lemma 2.9. Let T be a scheme and f: X — Y and g1,92: Y — Z morphisms of T-algebraic
- spaces. If Z — T is separated, gy o f = ga o f, and the schematic image of f is Y, then g1 = go.

Proof. The proof of |[EGA 1, 9.5.6] given for schemes continues to work for algebraic spaces. ]

Recall that S is a connected Dedekind scheme with function field K.
Proposition 2.10. Let Y be an S-algebraic space and H a closed subalgebraic space of Vi .

(a) The schematic image H of H — Y s the unique S-flat closed subalgebraic space of Y with
generic fiber H. In particular, a flat Y is the schematic image of its generic fiber.

(b) For an S-algebraic space V' and a closed subalgebraic space H' < Y} whose schematic image
in V' is denoted by H', the schematic image of H xxg H' — Y xg YV is H xg H'.

(¢) For a flat S-algebraic space X, an S-morphism f: X — Y factors through H if and only if
fx factors through H.

(d) If Y is an S-group and H is a K-subgroup, then H is an S-subgroup of V.

(e) If X is a flat S-algebraic space and Y is separated, then there is at most one S-morphism
X — Y extending a given X — Yi.

(f) If Y is a separated S-group and H is a K -subgroup, then the closed S-subgroup H is separated.
Moreover, H is killed by n (resp., is commutative) if so is H.

(9) If Y is a finite type S-group and H is a finite K-group, then H is a quasi-finite S-group.

Proof.



(a) Choose an étale surjection U — Y for some scheme U. By the known scheme case [EGA 1Vs,
2.8.5] and the flat base change aspect of §2.7, H x y U is the unique S-flat closed subscheme of
{7 with generic fiber H xy, Ug. Its S-flatness implies that of H thanks to [SP, Lemma 06ET].

For the uniqueness claim, the interpretation in [SP, Lemma 03MB| of closed subalgebraic
spaces in terms of their quasi-coherent sheaves of ideals reduces to showing that S-flat closed
subalgebraic spaces H; < Ho < Y sharing H as their generic fiber are equal. Due to
[SP, Lemma 041Y], this can be checked étale locally on ), and it holds after base change to U.

(b) This results from the S-flatness and uniqueness claims of (a).

(¢) Combine the déﬁnition of H, Lemma 2.8 applied to the composition Xx — X ER Y, and (a).
(d) The diagrams giving the group scheme structure of Y restrict to H due to (a), (b), and (c).
(e) Combine (a) and Lemma 2.9.

(f) Separatedness is inherited from Y. The rest follows from (e).

By (a) and (d), H is a finite type flat S-group with Hx = H. Choose an étale surjection
U — H with U a locally of finite type flat S-scheme. The generic fiber Uy is locally quasi-
finite. By [SP, Definition 03XJ|, it remains to check that U is also locally quasi-finite. For
this, working locally on U, we assume that U — S is affine. Since we seek to show that the
fibers of u are finite, we may also assume that S is local.

Due to flatness and (a), U is the scheme-theoretic union of the schematic images of the
irreducible components of Ug. To show the finiteness of the special fiber of U7, we can
therefore pass to these S-flat schematic images and assume that U is irreducible, in which
case the conclusion results from [BLR90, §2.4 Prop. 4]. O

Proposition 2.10 enables us to extend [GMB13, Prop. 3.1] beyond the affine case:

Proposition 2.11. Let S be a connected Dedekind scheme, K its function ﬁeld G — 5 a separated
S-group algebraic space, and G < G the schematic image of G — G, so G is an S -flat closed
subgroup of G by P70p037twn 2.10 (a) and (d). For a torsor X — S under G for the fppf topology,
the schematic image X of X — X is a torsor under G for the fppf topology. The assignment
X~ X s Sfunctorial and fumzshes an equivalence of categories between torsors under G and those
under G. The change of group” functor resulting from G c G is quasi-tnverse to X +— X. In
particular, prpf(S, (_}’) prpf(S,Q) is bijective.

Proof. Torsor sheaves are the same as torsor algebraic spaces thanks to Proposition A.5.

The action m01phl<;m G xg X — X restricts to G xg X — X thanks to Proposition 2.10 (c), which
also shows that X (T) = X(T) for every fppf T — S, so ‘X( ) # & for some such T. Since X, and

hence also X', inherits separatedness from G, employing in addition Proposition 2.10 (b) and (e),

) (ga,x . .
we see that the 1501110rph18m G xgX L‘(-]—(—}> X x¢ X and 1ts inverse restrict to the analogous

isomorphism G X g X - X X g X and its inverse. In conclusion, X is a torsor under G for the fppf
topology. The functoriality of X — X also results from Proposition 2.10 (c).

We turn to the remaining quasi-inverse claim. For a torsor X’ under G for the fppf topology, the
natural map i: X’ < X' x9G =: X is a closed immersion, as one checks fppf locally on S. Moreover,

i is an isomorphism and &” inherits flatness from G. Thus, due to Proposition 2.10 (a) and (c),
15



X' = X inside X functorially in A”. Conversely, for a torsor X under G, the natural X¥xg—-x
is an isomorphism, as can be checked fppf locally on 5; this isomorphism is functorial in X, ]

2.12. Group smoothenings. For a finite type S-group scheme G with smooth generic fiber, its
group smoothening is an S-homomorphism G’ L G with a finite type smooth S-group scheme ¢’
satisfying: for a finite type smooth Z — 5, every S-morphism Z — G factors uniquely through ¢.
If a group smoothening of G exists, it is unique up to a unique isomorphism. Due to spreading out
(applied to Z), the formation of G’ commutes with localization on S, so tx is an isomorphism.

Theorem 2.13 ([BLR90, §7.1 Cor. 6]). A closed K-smooth subgroup scheme G < Xy of the generic
fiber of a Néron model X — S admits a Néron model, which s given by the group smoothening of
the schematic image G of G — X. Consequently, G is a Néron model if and only if it is S-smooth.

Corollary 2.14. A smooth S-group scheme G is a closed subgroup of a Néron model if and only if
it is a Néron model itself.

Proof. To see that G inherits the Néron property, use Proposition 2.10 (¢) for smooth schemes X. O

Etale Néron models are particularly pleasant to deal with due to
Proposition 2.15. Let G be a finite étale K -group scheme.
(a) The Néron model G — S of G exists and is separated quasi-finite étale.

(b) G — S is finite if and only if G(K) is unramified at all nongeneric s€ S (i.e., if and only if
the finite (Kgs)™ -group G(I?ss)“’ is constant for all such s, where (Kgs)™ = Frac(Og,s)S”').

(c) G — Gx is an equivalence between the category of étale Néron models over S and that of finite
étale K -group schemes that is compatible with kernels and finite products. When restricted
to the full subcategory of finite étale G, it is also compatible with gquotients.

(d) Commutative finite étale S-group schemes form an abelian subcategory of the category of
abelian sheaves on Sg that is equivalent by the exact generic fiber functor to the category of
finite discrete Gal(K /K )-modules that are unramified at all nongeneric points of S.

Proof. The Néron property of a finite étale S-group scheme can be verified directly by reducing to
the constant case (alternatively, use Proposition 2.4). Thus, for existence in (a), spreading-out and
[BLR90, §1.4 Prop. 1 and §6.5 Cor. 3] reduces to the case of a strictly local S, when G — § is
obtained from G by extending the constant subgroup G(K) = G to a constant subgroup over S

[BLR9O, §7.1 Thm. 1]. The other claims of (a), as well as (b), are immediate from construction.
Since a quotient of finite étale group schemes is finite étale, (c) follows, and it implies (d). |

Remarks.

2.16. The existence in (a) can also be argued with the help of restriction of scalars and normaliza-
tion to reduce to the constant case.

2.17. Without restricting to finite étale G in (c), compatibility with quotients fails. Indeed, short
exactness of a sequence of Gal(K/K)-modules does not imply that of the corresponding
sequence of Néron models. An example is a nonsemisimple ramified extension H of two
trivial mod p characters: by (b), the Néron model of H is not finite, whereas every extension
of finite S-group schemes must again be finite due to Proposition A.8.

We now consider fppf (equivalently, étale, cf. Proposition A.6) torsors under a Néron (1ft) model.
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Proposition 2.18 (|Ray70, Thm. X1 3.1 1)}). Every fppf torsor under a Néron model is repre-
sentable by a scheme.

We do not know whether representability by schemes fails for torsors under Néron Ift models.

Proposition 2.19. An fppf torsor T — S under a Néron Ift model X — S is « separated smooth
S-algebraic space that has the Néron property for smooth S-algebraic spaces. If X is a Néron model,
then T — S is of finite type.

Proof. By Propositions A.5 and A.6, 7 trivializes over an étale cover S’ — S and is representable by
an S-algebraic space. Every S-algebraic space Z is the quotient of an étale equivalence relation of
schemes, so in checking Néron bijectivity of 7(Z) — T(Zk), one is reduced to the case of a smooth
S-scheme Z. As Néron property is preserved under étale base change, in the commutative diagram

T(Z) —_—} T(ZS/) ::; T(ZS’XSS”)
Lok I
T(Zk) ——T((Zs) i) =3 T((Zsrx55')K)

with equalizer rows, b and ¢ are bijective, hence so is a, giving the Néron property of 7. The other
claimed properties are inherited from A by descent |SP, Lemmas 0421, 0429, and 041U]. U

Corollary 2.20. For a Néron Ift model X — S,

. §1.17

Hi oo(S,X) 5 Hi (K, X)) = HY(K, Xk) (2.20.1)
is injective (cf. §A.4 for the notation).
Proof. An fppf torsor under A is determined by its generic fiber due to Proposition 2.19. O

If S is local, it is possible to determine the image of (2.20.1):

Proposition 2.21. Let R be a discrete valuation ring, and set K := Frac R and K®" :— Frac R%".
For a Néron Ift model X over S = Spec R, the image of the injection v from (2.20.1) is the unramified
cohomology subset

I:=Ker(HY(K, Xg) — HY(K®*", Xan)),
which consists of all the Xk -torsors that trivialize over K°®. In other words, an Xk -torsor T extends
to an X -torsor if and only of T(KSh) # .

Proof. By Proposition A.6, every X-torsor 7 trivializes over an étale cover U — S. Moreover,
Spec R*" — Spec R factors through U, so 7 trivializes over R®". This yields Im¢ < I.

By construction, R*" is a filtered direct limit of local étale R-algebras R’ which are discrete valuation
rings sharing a uniformizer with R; if K’ = FracI?’, then K sh - lim K ’. Let T be an Xg-torsor
with T(K*") # (&, we will show that it extends to an X-torsor 7, thus proving I < Im¢. Since T
is locally of finite presentation, T(K") = lim T(K’) [LMBOO, 4.18 (i)], so T" trivializes over some
K'; we fix the corresponding R’. The descent datum on Tk with respect to K’/K transports along
an isomorphism of torsors to Xxs and then, since Néron property is preserved under &tale base
change, to a descent datum on Xg with respect to R'/R, all compatibly with the torsor structure.
This compatibility together with the effectivity of the descent datum on A for algebraic spaces
[LMB00, 1.6.4|, equips the descended 7 — Spec K with the structure of an X-torsor trivialized over
R’'. By construction, Tx = T as Xk-torsors. 0
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3. EXACT SEQUENCES INVOLVING NERON MODELS OF ABELIAN VARIETIES

The short exact sequences gathered in this section are crucial for the fppf cohomological approach to
Selmer groups and have been used repeatedly in the literature, but their proofs scem hard to locate.

3.1. Open subgroups of A. Let S be a connected Dedekind scheme (ef. §2.1), let K be its
function field, let A — Spec K be an abelian variety, and let A — S be its Néron model. For a
nongeneric s € S, let ®¢ be the finite étale k(s)-group scheme A,/.A? of connected components of

the special fiber A;. For each s, choose a E(s)-subgroup I's € @5 (equivalently, a Gal(k(s)/k(s))-
submodule T'g(k(s)) < ®4(k(s))). For all s but finitely many, A, is an abelian variety, so @5 = 0
and I's = ®,. Consequently, one obtains the open S-subgroup scheme A" < 4 by removing for each

s the connected components of A, not in I'y. By construction, for each S-scheme T, the sections in

AY(T) are those T ER A for which the composition of f: Ts — A and A; — @, factors through
I's c ®,. If T'; = 0 for each s, one obtains the open S-subgroup A° — A that fiberwise consists of
connected components of identity. Of course, Ty = &, for all s leads to A® = A. For s € S, we
denote the base change (A”), by AL.

For a closed s € S, denote by is: Speck(s) — S the resulting closed immersion. Since i* Al = AL,
under the adjunction i*¥ - 4s, the homomorphism AL Z2, T corresponds to the homomorphism

Al g Al Jonlma), is«['s mapping f € A'(T) to 750 fs. In particular, for every choice of (= T,
there is a Cartesian square

AT AT

| ] o1

@5 is*f\sL*‘“” @s igals.

Proposition 3.2. For all choices of subgroups f’s c I'y < &,, the sequence

0— Al > AT & i (Te/T) — 0
b3
is exact in Sg, Sg,, and Sgppt-

Proof. Left exactness is clear from (3.1.1) and left exactness of is, whereas to check the remaining
surjectivity of a in Sy, on stalks, it suffices to consider strictly local rings (O, m) of Sp, centered at
a nongeneric s € § with f‘s # I's. Let a < m be the ideal generated by the image of mg,. In the
conmnutative diagram

AT(0) 22 (1, /F)(0/a)

lb Ild
AT(O/m) —S (T,/T.)(O/m),

b is surjective due to Hensel-lifting for the smooth AB — Spec O |BLR90, §2.3 Prop. 5|, ¢ is surjective

due to invariance of the rational component group of the smooth AE'(E} — Spec k(s) upon passage

to a separably closed overfield [EGA IVy, 17.16.3 (ii)], whereas d is bijective since (Fs/f’s)@/a is

finite étale over the Henselian local (O/a, m/a) [EGA 1Vy, 18.5.15|. The desired surjectivity of a(O)

follows (by limit arguments [EGA IV, 8.14.2], a induces a(Q) on the stalk at O). 0
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Let A% Bbea K-isogeny of abelian varicties. This induces A 2, B on the Néron models over S.
Proposition 3.3. The kernel A[¢] — S s affine. Every torsor under A|¢| for the fppf topology is
representable.

Proof. Aflineness is a special case of [Ana73, 2.3.2]. Representability of torsors is a special case of
Proposition A.7. U

Lemma 3.4. The following are equivalent:
(a) A 2%, B s quasi-finite;
(b) A° 2, B0 s surjective (as a morphism of schemes);
(c) AL B s flat.
When the equivalent conditions hold, A° 2B s a surjection of fppf sheaves.
Proof. Due to the fibral criterion of flatness [EGA TV3, 11.3.11] to handle (¢), the conditions (a)—(c)

can be checked fiberwise on S. We show that they are equivalent for the fiber at s S.

Since A, B are fppf over S, by |BLR90, §2.4 Prop. 4], dim A = dim A, dim B = dim B, and hence
dim A = dim B,. Therefore, by [SGA 3] new, VIg, 1.2 et 1.3], (a)e>(b). If ¢, is flat, then ¢,(AY) is
both open and closed (loc. cit.), and hence equals BY. Thus, (c)=(b). Conversely, if ¢ is surjective,
it is flat [SGA 3 yew, VIa 5.4.1], s0 (b)=(c).

For the last claim, by (b) and (c), ¢ is fppf, and hence a surjection of represented fppf sheaves. [
3.5. Semiabelian reduction. One says that A has semiabelian reduction at a nongeneric s € S if
AY is an extension of an abelian variety by a torus.
Lemma 3.6. The equivalent conditions of Lemnma 8.4 hold if

(d) A has semiabelian reduction at all nongeneric s € S with char k(s) | deg ¢.
If ¢ is multiplication by n, then (d) is equivalent to the conditions of Lemma 3.4.
Proof. For a commutative connected algebraic group G over a field &k, multiplication by n is surjective
on G, provided that G is a semiabelian variety if chark { n: it is surjective on abelian varieties and

tori for every k and induces an isomorphism on Lie G if char k { n, so [SGA 3 new, VIg 1.2] applies.
This gives (d)=(b) by considering the isogeny v¢: B — A with kernel ¢(A[deg ¢]), so porp = deg .

To argue that (a)=>(d) if ¢ = n, take an s € S with char k(s) | n. Quasi-finiteness of multiplication
by n prevents Ag(s)alg from having G, as a subgroup, so Ag(s)alg is of unipotent rank 0, and hence
AY is a semiabelian variety as explained in [BLR90, §7.3 p. 178]. O
Remark 3.7. For an arbitrary ¢, (d) is not equivalent to (a)—(c) of Lemma 3.4: take
d) = id;‘h X A1 X A2 — A] X AQ

for an n for which (d) holds for As; (c) holds for this ¢, but (d) fails in general since A; is arbitrary.
Corollary 3.8. Suppose that A 2 Bis flat (due to Lemma 3.6, this ts the case if A has semiabelian
reduction at every nongeneric s € S with chark(s) | deg¢). Then A[¢p] — S is quasi-finite flat and

affine; it is also finite if A has good reduction everypwhere.
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Proof. By Lemma 3.4, A — B is quasi-finite flat, and A[¢] — S inherits these properties. Affineness
results from Proposition 3.3 (or also from [SGA 3 pew, XXV, 4.1 |). If A has good reduction, then
A is proper over S, and hence so is its closed subscheme A[¢], which then is finite due to quasi-
finiteness [EGA IV3, 8.11. 1]. r

Corollary 3.9. If chark(s) { deg¢ for all s€ S, then A[@] is the Néron model of A[d).

Proof. By Proposition 2.10 and Corollary 3.8, A[¢] is the schematic image of A[¢] — A and is
killed by deg ¢. Thus, due to Corollary 3.8 and Proposition A.9, A[p] — S is étale, and one invokes
Theorem 2.13. O

The analogue of 0 — A[¢] — B 0for A %, B faces complications due to possibly discon-
nected closed fibers. To state it in Proposition 3.10 (a), note that a choice of I'y < ®; yields ¢s(I's),
which give the open subgroup BT < B as in §3.1, and ¢: A" — B factors through BeI) — 3.

Proposition 3.10. If A 4 B s flat (e.q., if A has semiabelian reduction at all nongeneric s € S
with char k(s) | deg ¢, ¢f. Lemma 3.6), then for oll choices I's < ®, the sequences

(a) 0 — AT[¢] — AT L o) — g,
(b) 0 — A%[¢] — AT[¢] —> P, iss(Ts[s]) = 0

are exact in Sgppf.

Proof. In the commutative diagram

0 — A[p] — AT[¢] — D, isx(Ts[hs]) —— 0

0 y A0 » AU sxls ——— 0
lqj pr Psis *d’i
0 » BY » BT —— @, 54 (¢5(Ls)) —— 0,

the bottom horizontal sequences are short exact by Proposition 3.2, the left bottom ¢ is surjective
by Lemma 3.4, and the right vertical sequence is short exact in Sgppr because it is so in Sg, due to
exactness of each iz, in the étale topology. Both claims follow by invoking snake lemma. 0

Corollary 3.11. Suppose that A % B s flat. For an isogeny B 4 e of abelian varieties, which

induces B 3, C on Néron models, and for every choice of T's < &, the sequence

0— AT[¢] » Ao ¢] & BHD[y] — 0

is exact in Sppps.

Proof. Due to universality of quotients [Ray67, §3 iii)], pulling back Proposition 3.10 (a) along
B*D[y] — BT gives the claim. O

Remark 3.12. Corollary 3.11 requires no assumption on B Y, C. For instance, it applies when
¢ = n and ) = m are multiplication by n and m isogenies and A has semiabelian reduction at all
nongeneric s € S with char k(s) | n.
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4. GLUEING SCHEMES OVER GLOBAL BASES

Let S be a connected Dedekind scheme and K its function field. For a nongeneric s € S, set
Kg s := FracOg . The purpose of this convention (note that Kg, = K) is to clarify the statement
of Lemma 4.1 by making Og s and A g, notationally analogous to (/)g s and Kg‘, o

A standard descent lemma 4.1 formalizes the idea that an S-scheme amounts to a V-scheme for a
nonempty open V < S together with a compatible Og ;-scheme for every s € S —V. We use it in §5
through Corollary 4.4 to reduce questions about group schemes over global bases to the local case.
Its special case Claim 4.1.1 is key for Selmer type descriptions of sets of fppf torsors in §7.

Lemima 4.1. Let s1,...,s, € S be distinct nongeneric points, V := S — {s1,...,5p} the comple-
mentary open subscheme, and F the functor

X— (AXV, ‘Yos.sl NN 7XOS,3,,,, , QL (Xv)}(s’% = (X@S‘Si )KS~<"71 f07‘ 1<2< n)

from the category of S-algebraic spaces to the category of tuples consisting of a V -algebraic space, an
Og,s;-algebraic space for each i, and isomorphisms aq, ..., an as indicated (“glueing data”). Mor-
phisms n the target category are tuples of morphisms of V- and Og g, -algebraic spaces that are
compatible with the oy ’s.

(a) When restricted to the full subcategory of S-schemes, F' is an equivalence onto the full sub-
category of tuples of schemes that admit a quasi-affine open covering (see the proof for
the definition). The same conclusion holds with Ogs, and Kgs, replaced by Og s and

Kg,sz- := Frac O’l,,s_i or by Og s, and Kg,, = FracOgg, .

(b) When restricted to the full subcategory of S-algebraic spaces of finite presentation, F' is an
equivalence onto the full subcategory of tuples involving only algebraic spaces of finite presen-
tation. The same conclusion holds with Og ., and Kg s, replaced by Ogﬁ s and Kg iy

Proof. In (a), we say that a tuple of schemes admits a quasi-affine open covering if Xy = UjE 7 U;
and Xog, = Ujes Uiy for 1 < i < n with quasi-affine (over respective bases) open Uj, Uy; for
which the ; restrict to isomorphisms (Uj) g, — (Ui;j)Ks,,,- The definition is analogous in the
case of henselizations or completions, or for various categories of tuples considered below. Note that

F takes values in the claimed subcategory: an afline open covering of X gives a quasi-affine open
covering F(X).

Since F is the composite of X — (XS_{SI},X@S‘Sl,oq) and its analogue for s2,...,s, € 5 — {s;}
(and similarly for henselizations and completions), induction reduces us to the n = 1 case (in (a),
a quasi-affine open covering of an n-tuple descends to a quasi-affine open covering of the first entry
of the triple due to the inductive hypothesis applied to the schemes in the covering). In the sequel
s1=8, 01 =aq, V=38~ {s}, and we stop writing Kg ,; for K.

Postponing the cases of henselizations and completions, we now prove (a) and (b):

(a) Giving a descent datum with respect to the fpgc V| |SpecOg, — S amounts to giving
« because there are no nontrivial triple intersections. Thus, F' is fully faithful [BLR90,
§6.1 Thm. 6 (a)]. For essential surjectivity, by [SP, Lemma 0247], the quasi-affine open cover
descends and glues along descended quasi-affine open intersections to a desired X.

(b) Let m € K be a uniformizer of Og s; note that Og , is a filtered direct limit lim R of coordinate
rings of affine open subschemes of S containing s on which 7 is regular and vanishes only at
s. For essential surjectivity, given a (Y, Y, a: Yx — Vi) with ¥ — V and Y — Spec Og
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of finite presentation, first spread out Y to ' — Spec R and o to o: Y, s y

some R as above using limit considerations of [Ols06, proof of Prop. 2.2]. AQ in (a), o/ 01\ cs
a descent datum with respect to V| |Spec R — S which is effective [LMB00, 1.6.4], thus
yielding a desired X. Full faithfulness follows frow aualogous linit arguments using étale
(or Zariski) descent for morphisms of sheaves on Sy, and [LMB00, 4.18 (i)].

Before dealing with henselizations and completions we make a preliminary reduction concentrating
on the case of (’)S and K ’h . (that of (/9\5,,5 and I,\>g’3 is completely analogous). In the categories
described below morphlsms aIe tuples of morphisms which are compatible with the isomorphisms
that are specified as part of the data of an object.

Let % be the target category of F, and €" its analogue in the case of henselizations. We proved that
F'is an equivalence when restricted to the subcategories of (a) and (b}, so it remains to show that

G: € — %h’ (Y7y70“ Yk — yK) e (Y’ yOfé,s’ aKg,s: YKg,s — (yog,s)Kg,s>
is too. Let Z be the category of Og ,-algebraic spaces and 2" the category of triples
(Z’ Z’ﬁ: ZK»’%,S —~) ZKg,S)

consisting of a K-algebraic space, an (9’51. s-algebraic space, and an isomorphism as indicated. Let 2~
k)

be the analogous category of triples with (’)g, gand K g,s replaced by (55,5 and K 55 Let B: 9 — gh
be the base change functor and & the category of triples

(Y, (Z,2,8) e 9", ~v: Y > Z)

with Y a V—zﬂgebraic space. The diagram of functors

¥ S gh (Y, ), a) < > (VYo ogen ) (Y, 2, o)
(id B& j[{ I(id,B,id) III III
g? (Y, (yffvyog,’s7id)7a) = (}/’ (Y'Kvyo’éysvGKQS):id)r (Yv (YK7 Z,O{h),id).

is commutative up to a natural isomorphism given by the a’s. Moreover, H is an equivalence,
because the functor (Y,(Z, Z,8),v) — (Y, 2,80 TKE, ) is inverse to H. Thus, the restriction of G

to appropriate subcategories as in (a) and (b) is an equlv(xlence if and only if (id, B, id) is, which is
the case if the restriction of B is an equivalence. It remains to prove

Claim 4.1.1. Let B: 2 — 9" be the base change functor.

(a) When restricted to the full subcategory of Og s-schemes, B is an equivalence onto the full
subcategory of triples of schemes that admit a quasi- aﬁine open covering. The analogous
conclusion holds with (99 s K. ¢ and 2" replaced by Os 5 K 55, and 27

(b) When restricted to the full subcategory of Og s-algebraic spaces of finite presentation, B is
an equivalence onto the full subcategory of triples involving only algebraic spaces of finite
presentation.

To complete the proof of Lemma 4.1, we prove Claim 4.1.1:

(a) See |BLR90, §6.2 Prop. D.4 (b)|.
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(b) The method of proof was suggested to me by Brian Conrad. We first treat the case of Ogj <
and K ’Sl‘«, By construction, Og;‘s is a filtered direct limit of local étale Og ,-algebras R which
are discrete valuation rings sharing the residue field and a uniformizer with Og. Given
an object T = (2,2, ZK';é ~s Z[(g ) of G" with Z — Spec K and 2 — Spec(’)gys
of finite presentation, to show that it is in the essential image of the restricted B we first
descend Z to Z’ — Spec R for some R as above using limit considerations as in [Ols06, proof
of Prop. 2.2|. Similarly, Kg’s = limFrac(R) and § descends to f': Zpac(r) . I’;\rac( R)
after possibly increasing R. Transporting the descent datum on Z¥rac(r) With respect to
Frac(R)/K along (', one gets a descent datum on Zl’;\mC( Ry Which, as explained in [BLR90,

§6.2 proof of Lemma C.2|, extends uniquely to a descent datum on Z’ with respect to
R/Og . By [LMBO0O, 1.6.4], the descent datum is effective, giving an Qg s-algebraic space X
by construction, B(X) = T, and by [SP, Lemma 041V}, X is of finite presentation. The full
faithfulness of B follows from a similar limit argument using étale descent for morphisms of
sheaves on (Ogs)g, and [LMB0O0, 4.18 (i)]. O

Remarks.

4.2. As is immediate from fpqc descent, if P is a property of morphisms of schemes (resp., alge-
braic spaces) that is stable under base change and is fpqc local on the base, then analogues of
(a) (resp., (b)) hold after restricting further to subcategories involving only schemes (resp., al-
gebraic spaces) possessing P.

4.3. The functor F' commutes with fiber products since those in the target category are formed
componentwise. This continues to hold after restricting to the subcategories of (a)® and (b),
and also further to subcategories of schemes or algebraic spaces possessing P as in 4.2 if P
is in addition stable under composition. In particular, we obtain

Corollary 4.4. In the notation of Lemma 4.1, the functor
g— (gv,gos‘ﬁ, ey G0g,, 1 Qi (QV)KS,%, = (goS_Si)KSYSi for1<i<n) (4.4.1)

15 an equivalence of categories from the category of S-quasi-affine S-group schemes to the category of
tuples consisting of a V-quasi-affine V-group scheme, a quasi-affine Og g, -group scheme for each i,
and isomorphisms o, . .., on as indicated. The same conclusion holds with Og,, and Kg s, replaced
by Og’ s; and K g,sz- or by (53,911 and E’S,si,- If P is a property of morphisms of schemes stable under
base change and composition and fpge local on the base, the same conclusions hold after restricting
to subcategories involving only quasi-affine (over their bases) group schemes possessing P.

5. MODELS OF FINITE GROUP SCHEMES OVER GLOBAL BASES

Let S be a connected Dedekind scheme, K its function field, and G a finite commutative K-group
scheme. We study separated quasi-finite flat S-group schemes G equipped with an isomorphism
G -~ Q. Propositions 2.10 and A.11 show that such a G is commutative and allow to assume, as
we do for the rest of the section, that #G = p™ for some prime p, in which case G is killed by p™.
If S is the spectrum of the ring of integers of a finite extension of @Q,, finite flat G are the subject
of a vast body of literature starting with |TO70| and [Ray74]. The goal of the present section is to
use Corollary 4.4 to transfer some of the known results over local bases to those over global ones.
Since we cannot prove much otherwise, we assume that char K # p.

SFor (a), a quasi-affine open covering of the fiber product tuple 7% x1, T3 is given by the fiber products of the
opens in coverings of Ty, T, and T3 and is indexed by Ji x J; x .Js, where J; indexes a covering of T;.
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5.1. S-models. Let V = S[I—l)] be the open subscheme of S obtained by inverting p; the points
LT sp of § — V have residue characteristic p. A commutative quasi-finite S-group scheme G
with Gg of p-power order is an S-model (of its generic fiber) if Gy — V' is a Néron model and each
Q’os‘_ﬁi — Spee Og g, is finite flat. An S-model is separated and flat because these properties are fpqe
local; it is also S-affine due to [SGA 31 pew, XXV, 4.1| (applied to the homomorphisin towards the
zero group). A morphism of S-models is a morphism of S-group schemes. A commutative finite flat
S-group scheme of p-power order is an S-model due to Propositions 2.4 and A.9; allowing Gy — V
to be Néron instead of finite flat amounts to allowing ramification away from p, cf. Proposition 2.15.

Proposition 5.2. Let G and H be S-models.
(a) A morphism of S-models G — H is determined by its generic fiber.

(b} A sheaf of abelian groups € on Sgpe that is an extension of S-models 0 = H - & - G — 0
s represented by an S-model.

Proof.
(a) This is a special case of Proposition 2.10 (e).

(b) By Proposition A.8, £ is represented by a quasi-finite S-group scheme which is finite flat over
each Ogg,. Since Ex is of p-power order, € is an S-model by Proposition 2.5. O

5.3. S-models of a fixed G. These are S-models G — S equipped with a K-group scheme
isomorphism «: G — G their morphisms are required to be compatible with the a’s. Let
(G, S) be the resulting category of S-models of G; by Proposition 5.2 (a), the objects of .# (G, S)
have no nontrivial automorphisms. By Proposition 2.15 (a), .# (G, V) is the terminal category. Note
that #(G,Oss,), (G Kgsﬁog‘,s.;)’ and (G I?’ss.’@sysi) are simply the categories of finite flat

models of the base changed G, where Ag o = Frac Og’ s and Kg s, 1= FracOg,.

Theorem 5.4. The base change functors
MG, S) = M(G,0g4,) % - x M (G,0s4,),
M(G,8) — MGy, Of, ) x--x M (Gen oL,

M(G,8) = MGy, ,Os5) % x MGz, 05,
)51 »8n

are equivalences of categories.

Proof. This follows from Corollary 4.4 by restricting the functors there to appropriate subcategories;
the cases of henselizations and completions being analogous, we explicate that of localizations.
Restrict (4.4.1) to the full subcategories of group schemes that are finite flat over each Og,, and are
Néron models over V' with K-fiber isomorphic to G. At this point, making the latter isomorphism
part of the data of an object identifies the source category with .# (G, S) and the target category
with #(G,O0s5,) x -+ x H(G,Og.4,) (both up to equivalences). O

27

Remark 5.5. Theorem 5.4 continues to hold after relaxing the definition of an S-model by requiring
it to be separated quasi-finite flat over each Og,, (and Néron over V). Indeed, such an S-model is
affine [SGA 31 new, XXV, 4.1], so Corollary 4.4 still applies.®

6Reliance on loc. cit. here and in §5.1 is superficial: Corollary 4.4 holds with “affine” replaced by “quasi-affine”
throughout, whereas a separated quasi-finite S-scheme is quasi-affine [EGA IV, 8.11.2].
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5.6. Integrally closed subdomains I? of a number field K. Necessarily, R is the ring of X-
integers Oy for a possibly infinite set ¥ of finite places of K, namely, the places appearing in
prime factorizations of denominators of elements of R. The Dedekind scheme Spec R has function
field K5 its nongeneric points correspond to finite places » of K not in 3. The nonempty open
subschemes of Spec Ok are the Spec O v as above with finite X.

Proposition 5.7. Suppose that K is a number field and S = Spec Ok 5: for an integrally closed
subdomain Ok yx < K (as in §5.6). Fix a finite commutative K-group scheme G of p-power order
(equivalently, a Gal(K/K)-representation G(K) on a finite p-primary abelian group).

(a) A tuple consisting of a finite flat Oy-model of Gk, for each v ¢ ¥ above p arises from a
unique O s;-model of G. Up to isomorphism there are only finitely many Ok x-models of G.

(b) A finite flat Ok x.-model of G exzists if and only if G(K) is unramified outside of & U {v | p}
and a finite flat Oy-model of G, exists for each v ¢ £ above p. In this case every O x-model

of G is fintte flat.

(c) If each v ¢ ¥ above p has absolute ramification index < p — 1, then up to isomorphism there
is at most one Ok x-model of G.

(d) For Ok x.-models G and G2 of G, a tuple consisting of a morphism (Gi)o, — (G2)o, of
Oy,-models of Gg, for each v & ¥ above p arises from a unique morphism G, — Go of Ok »-
models of G, in which case we write G1 = Go. There is at most one morphism G, — Ga, so
> defines a partial order on the set of isomorphism classes of Ok x-models of G.

(e) Two Ok x-models Gi and Go of G have the supremum and the infimum with respect to .

(f) If an Ok x-model of G exists, then the set of isomorphism classes of O y-models of G has
the unique maximum G and the unique minimum G~ with respect to =.

Proof. Combine Theorem 5.4 with

(a) Finiteness of the set of isomorphism classes of objects of 4 (Gk,,O,) [Maz70, top of p. 221};

(b) Proposition 2.15 (b);

(¢) The corresponding local result [Ray74, Thm. 3.3.3|;

(d) Proposition 5.2 (a);

(e) The corresponding local result [Ray74, Prop. 2.2.2};

(f) The corresponding local result [Ray74, Cor. 2.2.3]. O
Remark 5.8. In the case of finite flat models of order p, Proposition 5.7 (a) is [TO70, Lemma 4.

Proposition 5.9 (Theorem 1.1 (b)). Let L/K be an extension of number fields, ¢: A — B a
K -isogeny between abelian varieties, S := Spec Oy, and AL[$] the kernel of the homomorphism
induced by ¢y, between the Néron models over S. Assume that

(i) A has good reduction at all places v | deg ¢ of K;

(ii) ep < p—1 for every prime p | deg ¢, where ep := maxy, ey and ey is the absolute ramificalion
mndezx of v.

Then the Oy -group scheme A[¢] is determined up to isomorphism by the Gal(L/K)-module A[¢](L).
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Proof. The p-primary decomposition of AL[¢] from Proposition A.11 induces the K-rational -
primary decomposition of the generic fiber, so by Proposition 2.10 (a) and Corollary 3.8, the factors
of the former are AL[¢] for K-isogenies ¢ of prime power degree, reducing to the case deg ¢ = p™.

By Corollaries 3.8 and 3.9, A" 1718 the Néron model of the finite étale A[¢]r,, whereas A¥{olo
5[5 Ploy,

is finite flat for every place w of L above p. In conclusion, .AL[¢] is an S-model of A[¢]., and, due
to Proposition 5.7 (c), the claim follows if L = K. Thus, A¥[4] is determined, and it remains to
apply Proposition 5.7 (a): indeed, an abelian scheme is a Néron model {(compare Proposition 2.4),
so in general AL[dlo, = (A% [plo,)o, where v is the place of K below w. O

Remarks.

5.10. For a global ficld K of positive characteristic prime to deg ¢, the analogue of Proposition 5.9
is a special case of Corollary 3.9.

5.11. Dropping (ii) but keeping (i) (or assuming instead of (i) and (ii) that A has semiabelian
reduction at all v | deg¢ and L = K), the proof continues to give the same conclusion as
long as one argues that in the situation at hand A% [¢]o, is determined for each v | deg ¢ (in
the semiabelian reduction case one has to use Remark 5.5 instead of Proposition 5.7 (a)).

Although (ii) excludes the 2 | deg ¢ cases, Remark 5.11 can sometimes overcome this:

Example 5.12. Let K be a number field of odd discriminant, and let A — Spec K be an elliptic
curve with good reduction at all v | 2. Assume that A[2](K,) # (Z/2Z)? for every v | 2, so A[2]k,
has at most one K,-subgroup of order 2 for every such v. We show that under this assumption the
conclusion of Proposition 5.9 holds for 2: A — A, so, in particular, if HU,(OO CAw 15 odd and K is

totally imaginary, A[2] determines Sely A by Theorem 1.1.

Remark 5.11 reduces to proving that AX[2]o, is determined by A[2] g, for each v | 2; one of the key
assumptions is the unramifiedness of K, /Q2. We analyze the ordinary and supersingular reduction
cases separately; this is permissible since the cases are distinguishable: in the former, A[2]f, is
reducible, whereas in the latter it is not.

In the supersingular case, by [Ser72, p. 275, Prop. 12|, A[2] ke is irreducible and also an F4-vector
space scheme of dimension 1. By [Ray74, 3.3.2 3°|, A[2]osr is its unique finite flat O -model. By
schematic density (cf. Proposition 2.10 (e)) and limit considerations, the descent datum on A [2]on:
with respect to O))' /O, is uniquely determined by its restriction to the generic fiber, which in turn is
determined by A[2]k,. Fpqc descent along O /O, then implies that A[2]x, determines A%[2]p, .

In the ordinary case, the connected-étale decomposition shows that 4% [2]p, is an extension of
Z/27 o by (u2)o,. Therefore, since we assumed that A[2]x, determines its subgroup (u2)g,, it

also determines A% [2]o, due to the injectivity of
Extp, (Z/2Z, p2) = Hi, o (O, pi2) — Hi (Ko, pi2) = Extle (Z/27, o)
(extensions in the category of fppf sheaves of Z/2Z-modules, compare Example 6.14).
In the remainder of the section we collect several other results about S-models which, due to Corol-
lary 4.4, are consequences of their local counterparts. Unlike in Proposition 5.7, we no longer fix G.

Proposition 5.13. Suppose that K is a number field and S = Spec Ok x; for an integrally closed
subdomain Ok y, < K (as in §5.6).

(a) Every automorphism of G extends to an automorphism of its mazimal and minimal Ok x-
models Gt and G~ (cf. Proposition 5.7 (f)).
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If e, <p—1 for every v ¢ X above p, then
(b) For Ok x-models G and H, cocry homomorphisin G — Hie exlends uniquely to G — H,;
(e} For Ok s-models G and H, the map Bxto, (G, H) — Exti (G, Hy) (rrtensions of sheaves

KLY

of abelian groups on the fopf site) is injective;
(d) The kernel of a morphism of O x.-models is again a O y,-model;

(e) Finite flat Ok x-models form an abelian subcategory of the category of abelian sheaves on
Stopt that is equivalent by the exact generic fiber functor to the category of finite discrete
p-primary Gal(K/K)-modules that are unramified outside = U {v | p} and flat at all v ¢ %
above p (i.e., whose restrictions to Gal(K,/K,) admit finite flat O,-models for all v ¢ % ).

Proof.

(a) Use Corollary 4.4 to replace morphisms of Ok s;-models by morphisms of tuples as in (4.4.1),
and then use the Néron property to identify V-morphisms of the first entry with their generic
fibers. It remains to prove the corresponding well-known local result, as can be done by
considering Hopf algebras.

) After reasoning as in (a), apply the corresponding local result [Ray74, 3.3.6 1°].
) Combine (b) and Proposition 5.2 (b).
) Combine Proposition 2.15 (c) and the corresponding local result [Ray74, 3.3.6 1°].

(e) The full faithfulness and essential surjectivity follow from (b), Proposition 2.15 (b) and
Proposition 5.7 (a). For the abelian subcategory claim, existence of products, kernels, and
cokernels within the subcategory follows from (d), Proposition 2.15 (d), and [Ray74, 3.3.6 1°].
The generic fiber functor is exact because it is compatible with short exact sequences. [

5.14. [F-vector space schemes. Fix a characteristic p finite field F. A group scheme G is an
F-vector space scheme if its functor of points factors through the category of F-vector spaces (in
particular, G is commutative). An S-model of G that has an F-vector space scheme structure
extending that of G is an F-vector space S-model of G. Classification of finite locally free F-vector
space schemes of rank #IF over certain bascs is the subject of [Ray74]. Due to the restriction [Ray74,
p- 245 ()], typically this classification does not apply over global bases. We use Corollary 4.4 to
transfer some of the local results to the global setting.

Proposition 5.15. Suppose that K is a number field and S = Spec Ok 5y for an integrally closed
subdomain Ok x; © K (as in §5.6). Fix a finite F-vector space K -scheme G.

(a) If the mazimal and minimal Ok x:-models Gt and G~ of G exist (cf. Proposition 5.7 (f)),
they are F-vector space Ok x2-models of G.

(b) If #G = #F and for every v ¢ 3 above p, either e, < p~1, or ey = p—1 and the
Gal(K ,/Ky)-representation G(K,) is simple, then the F-vector space scheme structure of G
extends to every Ok x-model.

Proof.
(a) Apply Proposition 5.13 (a) to the automorphisms of G given by the elements of F*.

(b) To extend the automorphisms of & given by the elements of F* to an Ok yp-model of G,
argue as in the proof of Proposition 5.13 (a) and apply [Ray74, 3.3.2 2° et 3°]. |
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5.16. Kisin’s moduli. Suppose that K is a number field. Fix a continuous Gal( K /K )-representation
on a finite dimensional F-vector space V', which identifies with an étale F-vector space K-scheme.
For a place v of K above p, Kisin constructed [Kis09, 2.1.13] a projective F-scheme G Ry, ,0 Whose
F’-points arc in bhijection with isomorphism classes of T-vector space O -models of the extension of
scalars (Vi )y for every finite extension F'/F (this alone need not determine 9%y, o).

Proposition 5.17. Suppose that K is a number field and S = Spec Og 5 for an integrally closed
subdomain Ok v, < K (as in §5.6). Fiz o finite F-vector space K -scheme V and set

ng = Hg%w{wo.
VEL
vlp
For every finite extension F'/F, the W -points of the projective F-scheme J#y are in bijection with
isomorphism classes of F'-vector space O x-models of the extension of scalars Vi.

Proof. An F’-vector space Ok x-model of Vi is an Ok s-model of Vi to which the automorphisms
of V@ given by the elements of F'* extend. Due to Corollary 4.4 and the Néron property, it is
equivalent to require this for the base changed O,-models for every v ¢ ¥ above p. Thus, the third
equivalence of Theorem 5.4 for G = Vp and S = Spec Oy restricts to that between categories
involving only F’'-vector space models. O

Remark 5.18. Proposition 5.17 and the Weil conjectures prove the existence of algebraic integers
a1,---,0 and fBi,..., By such that for every n and a degree n extension F'/F, the number of
isomorphism classes of F'-vector space O y-models of Vi is o +---+ aff — BF — ... — B%.

5.19. p-divisible S-models. Returning to general S, a p-divisible S-model of height h is a sequence
G = (G[p"], in)ns0 of S-models G[p"] for which #G[p"]x = p™* and

0 — G[p" = G+ 2 Glp™H (5.19.1)

is exact for every n. A morphism G — H of p-divisible S-models (of possibly distinct heights) is a
compatible with the i,’s sequence of morphisms G[p"] — H[p"] of S-models; thus,

Hom(G, ) = lim Hom (G[p"], K[p").
Evidently, QOS“%, g@g R Q@SS., and Gg are p-divisible groups of height h over respective bases.

Since char K # p, the continuous Gal(K/K)-representation G(K) := lim G[p"] (K) on a finite free
Zyp-module of rank h determines the étale Gi. The category of p-divisible S-models contains that
of p-divisible groups over S as the full subcategory of G with all G[p"] finite; much like in §5.1, the
difference between the two categories stems from the possible ramification of G(K) away from p for
an arbitrary p-divisible S-model G.

Tate's full faithfulness theorem for p-divisible groups continues to hold for p-divisible S-models:

Proposition 5.20. The generic fiber functor from the category of p-divisible S-models to that of
p-divisible groups over K is fully faithful, i.e., for p-divisible S-models G and H, every Z,-linear
homomorphism G(K) — H(K) of Gal(K/K)-representations is induced from a unique morphism
G — H. In particular, a p-divisible S-model is determined by its generic fiber.

Proof. Due to Corollary 4.4 and the Néron property, giving a morphism § — #H amounts to giving

G(K) — H(K) (i.e., a morphism of the generic fiber p-divisible groups) together with its extensions

to morphisms Q@S'Si — Hog,, - The latter exist and are unique due to [Tat67, Thm. 4]. 0
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Raynaud’s criterion for existence of a p-divisible model continues to hold, too:
Proposition 5.21. For a p-divisible group G = (G[p"], in)nz0 over K, the following wre equivalent:
(e) G has a p-divisible S-model;
(d) Each G[p"] has an S-model;
(b) G extends to a p-divisible group over every Og,s,;
(¥ ) Each G[p™] has a finite flat model over cvery Ogs,.
The same conclusion holds if in (b) and (V') one replaces G, G[p"], and Os 5, by GKE'.& , G[pn][(fsx’s';
and O’S’:’Si or by G Rsa GU;”]RSM‘, and @,g,si. l T

Proof. We treat the case of localizations; those of henselizations and completions are similar.

By [Ray74, 2.3.1], (b)<(b'), whereas (a)=>(a’)=>(b) are evident. We prove the remaining (b)=(a).
By Theorem 5.4, the layers of the extensions over Og s, give rise to S-models G[p"] of G[p"], whereas
Corollary 4.4 and the Néron property furnish extensions

in: G[p"] = G[P™]  of in: G"] — G[p"M'].

The remaining exactness of (5.19.1) can be checked fpgc locally and hence follows from Proposi-
tion 2.15 (c) and the definition of a p-divisible group over Ogs,. O

6. CLOSED SUBGROUPS OF NERON MODELS

Let S be a connected Dedekind scheme and K its function field. The main result of this section,
Theorem 6.1, yields an obstruction for an S-group scheme G to occur as a closed subgroup of
a Néron (Ift) model over S. The obstruction is trivial for finite flat G, and we investigate the
possibility of commutative such G always occurring as closed subgroups of Néron models in the
discussion following Question 6.5.

Theorem 6.1. For an S-group scheme G, the map
HL ((8,G) — Hi¢(K, Gk) (6.1.1)
(cf. §A.4) is injective if there is a closed immersion G — X of S-group schemes with either
(a) X a Néron lft model, or
(b) X commutative satisfying
(i) X — S is separated and locally of finite presentation,
(1) X(S) — X(K) is surjective, and
(iii) HE (S, X) — Hi (K, Xk) s ingective.
Proof. In both cases, by replacing G with the schematic image of its generic fiber and invoking
Proposition 2.11, we may and do assume that G is flat.

(a) In terms of descent data with respect to a trivializing fppf S — S, an fppf G-torsor T is
described by the automorphism of the trivial right Ggrx g /-torsor given by left translation by
a g€ G(S xgS8"). The image of g in X(S' xg S’) describes an fppt X-torsor T by descent,
there is a G-equivariant closed immersion 7 < TY.
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For generically isomorphic fppf G-torsors 7, and 73, take a common trivializing S’ — S.
For the injectivity of (6.1.1), we seek a G-torsor isomorphism a: 7; — 73. In terms of
descent data, an isomorphism oy : (T1)n — (72)k of right Gy-torsors is induced by left
multiplication hy a certain h € G(S%); its image in X(S%) extends o to an Xy -torsor
isomorphism fx: (77 )k — (73" )k. By Proposition 2.19, Bx extends to an X-torsor
isomorphism B: 7% — 73*. Due to flatness of 7; — S, the schematic image of (7;)x — 7;*
is 7; |SP, Lemma 089E|. Thus, § restricts to a desired a: 7] — T3 by Lemma 2.8.

(b) By Proposition A.13 (d), Q := X' /G is a commutative separated S-group algebraic space. By
Proposition 2.10 (e), ¢ is injective in

‘)('(S) r Q(S) \Hflppf(Sz g) — Hy

LT

X(K) » Q(K) » Hi (K, Gio) —— Hi ((K, Xxe),

(5, &)

and it remains to apply the four lemma. U

Since a closed subalgebraic space of a scheme is a scheme, Proposition 2.18 and the proof of Theo-
rem 6.1 (a) reprove a special case of [Ana73, 4.D]:

Corollary 6.2. Every torsor under a closed subgroup scheme of a Néron model over S is repre-
sentable by a scheme.

Theorem 6.1 gives no obstruction for proper G:

Proposition 6.3. For a proper flat S-group scheme G,
Hflppf(S7 g) - Hflppf(}(v gK)
(cf. §A.4) is ingective.

Proof. For an fppf G-torsor T, let 7G := AutgT (the fppf sheaf of G-automorphisms of 7) be the
corresponding inner twist of G (compare [Gir71, 111.1.4.8). Since 7 G is fppf locally isomorphic to G,
it is a proper flat S-group scheme [SP, Lemma 045K], [Ana73, 4.B]. By [Gir71, 111.2.6.3, V.1.5.1.2],
there is a commutative diagram

Hflppf(S: g) — Hflppf(S7 Tg)

1 l

in which the horizontal “subtraction of the class of 7 (resp., Tx) isomorphisms map the class of
T (resp., Tk) to the class of the trivial torsor. Replacing G by TG and a generically isomorphic to
T fppf G-torsor 7’ by the corresponding T G-torsor, it remains to argue that a generically trivial
G-torsor T is trivial. We fix such a 7, which is a scheme [Ana73, 4.D].

Fix a p € T(K) with the intention of lifting it to a P € T(S). Since 7 inherits properness from

G, the valuative criterion extends p to ps € T(Oss) for every s € S. Each pg spreads out to a

neighborhood U, of s, compatibly on intersections Us; n Uy by Proposition 2.10 (e), and glueing

gives a desired P. ]
30



Remark 6.4. Proposition 6.3 applies to finite flat S-group schemes G. Its conclusion also holds for
the commutative S-models of §5.1: letting 7 be a generically trivial torsor under an S-model G,
a P e T(K) extends to an S[%]-pointv due to Proposition 2.19 and also to an Og g, -point for each
s; duce to properness of ’TOSY%; hence, Lemma 1.1 (2) extends P to an S-point trivializing 7. In
conclusion, Theorem 6.1 furnishes no obstruction regarding Questions 6.5 and 6.5":

Question 6.5. For a number field K, is every commutative finite flat O -group scheme a closed
subgroup of a Néron model of an abelian variety?

Question 6.5'. For a prime p and a number field K, is every O -model (cf. §5.1) a closed subgroup
of a Néron model of an abelian variety?

Remarks.
6.6. By Proposition A.11, Question 6.5" generalizes Question 6.5.

6.7. The answers are negative if one insists on abelian schemes (which are Néron models, cf. Propo-
sition 2.4): the only abelian scheme over Z is the trivial one [Fon85, p. 517 Corollaire],
[Abr87, Thm. 5].

6.8. Over local rings embeddings of finite flat group schemes into abelian schemes are possible
due to a theorem of Raynaud [BBM82, 3.1.1] (and [Mat89, 7.10]).

In the remainder of the section we discuss variants of these questions, settling the A = Q case:

Proposition 6.9. Fir a prime p # char K. If S has at most one point s of residue characteristic
p, then every S-model G (cf. §5.1) is a closed subgroup of the Néron model A of an abelian variety
A = Ak having good reduction at s (if s exists).

Proof. 1f no such s exists, then G is a Néron model itself. Take a closed immersion Gx — A into
an abelian variety over K (construct it over a finite separable extension trivializing G and take
restriction of scalars [CGP10, A.5.1, A.5.5, A.5.7, A.5.9], [BLR90, §7.6 Prop. 5 (f), (h)]). Letting
A — S be the Néron model of A and H the schematic image of Gx — A, Propositions 2.10 and A.9
with Corollary 2.14 give the desired G = H.

If s exists, then [BBM82, 3.1.1] gives a closed immersion i: Gog, <> Awog, of Og¢-group schemes
into an abelian scheme, which by Proposition 2.4 is the Néron model of A := (AOS,S) K- Letting
A — S be the Néron model of A, Proposition 2.3 (a) justifies the notation, whereas i spreads
out [EGA V3, 8.8.2 (i) et 8.10.5 (iv)] to a closed immersion Gy — Ay of U-group schemes for
some open U < S containing s. As in the first paragraph, the unique Gg_ (53 — As_(,) extending
Gk — Ak is a closed immersion and similarly over U n (S — {s}), so a desired closed immersion
G — A results by glueing. O

Remarks.

6.10. For a prime p # char K, let S, be the semilocal Dedekind scheme obtained from S by
localizing away from p. The proof above continues to answer Question 6.5 affirmatively as
long as Gg,,, — S(p) is a closed subgroup of the Néron model of an abelian variety.

6.11. The answer to Question 6.5 is negative if G is allowed to be separated quasi-finite flat. For
instance, an open subgroup G of a finite étale Qg -group scheme N with Gy = N but G # N
cannot be a closed subgroup of a Néron model due to Proposition 2.4 and Corollary 2.14.
To construct such G, take N' = Z/pZ ox and remove the closed subscheme complementary

to the identity section in some nongeneric fiber.
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6.12. For an S-flat closed subgroup G of a Néron model X and a smooth S-scheme T, due to
Proposition 2.10 (¢), G(T) identifies with the set of S-morphisms 7" — X whose geueric fiber
factors through G . In particular, G(T) — G (Tx) is bijective due to the Néron property
of X. Failnre of this bijectivity obstructs realizing G as a closed subgroup of a Néran model.
In Remark 6.11 this is witnessed with T' = N,

Question 6.13. For local S, which commutative separated quasi-finite flat S-group schemes are
closed subgroups of a Néron model?

Example 6.14. We construct a commutative separated quasi-finite flat group scheme G over
S := Spec Zy, for which, due to Theorem 6.1, failure of the injectivity of H flppf(S, G)—H flppf(K, Gx)
obstructs being a closed subgroup of a Néron model. Due to Corollary 2.14, we seek non-étale G.

Since 1 # Z)/Z;7 = H} (S, ) = ExtL(Z/pZ, 11,) (extensions in the category of sheaves of
' p fppf P N .

Z/pZ-modules on Sp,,), there is a nonsplit extension
O——»up—+7-{—>Z/pZS—>O. (6.14.1)
By Proposition A.8, H is represented by a finite flat S-group scheme. Let U < Z/pZS be the open

subgroup obtained by removing the closed subscheme of the special fiber complementary to the
identity section, set G := H S U, and observe the commutative diagram

0 > y G U » 0

| 1]

0 > ip > H ‘Z/pZS—>O.

By construction, G is an open subgroup of H, so it is separated quasi-finite flat (but not étale because
it admits a nontrivial homomorphism from ;). It remains to argue that Hflppf(S, G S H flppf (K,GKk)
is not injective. Since H — S is proper and (6.14.1) is nonsplit, H(K) = H(S) = ,(S) = 0.
Therefore, since H/G = Z/pZ S/ U, the injectivity of a would entail that of

(Z/pZJU)(S) = (Z/pLy/U)(K) = 0,
which fails because (Z/pZ o/U)(S) contains (Z/pZ S)(S’) ~ Z/pZ.

7. SELMER TYPE DESCRIPTIONS OF SETS OF TORSORS

The main result of this section is Theorem 7.2, which forms the basis of our approach to fppf
cohomological interpretation of Selmer groups by describing certain sets of torsors by local condi-
tions. In Proposition 7.5 it leads to a short reproof of a result of Mazur that gives étale (or fppf)
cohomological interpretation of Shafarevich-Tate groups.

Lemma 7.1. Let R be a discrete valuation ring, R its henselization, and set K := Frac R and
K" := Frac R". For a flat R-group algebraic space G of finite presentation, if the horizontal arrows in

Hflppf(Rﬂ g)(—> Hflppf(K’7 gK)

l |

I{fi)pf(th th)c—> Hflppf(l(h’ g](h)

(cf. §A.4) are injective, then the square is Cartesian. The same conclusion holds under analogous

assumptions with R" and K" replaced by R and K if G is quasi-affine.
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Proof. We first treat the case of R® and K. We need to show that every Gg-torsor Tx which,
when base changed to K", extends to a G gu-torsor Tpe, already extends to a G-torsor 7 — Spec R.
By Claim 4.1.1 (b), Tg» descends to an fppf R-algebraic space T, and various diagrams defining the
G-action descend, too. To argue that T i< a G-torsor, it remains to note that.

GxpT =T xgT, (g1t)— (gt,t) (7.1.1)

is an isomorphism, because it is so over R*. In the similar proof for R and I’{', to apply Claim 4.1.1
one appeals to Proposition A.7. O

Let S be a connected Dedekind scheme and K its function field. As in §4, to clarify analogies in
Theorem 7.2, we set Kg s := Frac Og for a nongeneric s € S.

Theorem 7.2. For a flat S-group algebraic space G of finite presentation, if the horizontal arrows
in (the products are indexed by the nongeneric s € S)

Hflppf(S’ g)L-——_-——> Hflppf(K) gI()

| | (7.2.1)

I_IS Hflppf(OS\S’ gOS,s) ]-—[S Hflppf('A’S,S’ gKS,s)
(cf. §A.4) are ingective and so is
Higp(V, Gv) — Hii (K, Gk) (7.2.2)

for every open V < S, then (7.2.1) is Cartesian. The same conclusion holds with Og s and Kg s
replaced by (’)’S‘, s and K g s (resp., (55,3 and R’S,s if G is a quasi-affine S-group scheme), if in addition
the bottom horizontal arrow in (7.2.1) stays injective with Og s and Kg s replaced by Og,s and Kg s
(resp., (55,5 and I/\'\'g,s).

Proof. By Lemma 7.1, assuming injectivity of the bottom horizontal arrow, the diagram

Hs Hflppf(05»37 gOS.s )L————) Hs Hflppf(K’S,S’ gKS,s)

l |

Hs Hflppf(og',s’ g@gb) 1—[8 Hflppf(Kg?s’ gKg',s)

is Cartesian and likewise for Og s and Kgg. It remains to argue that (7.2.1) is Cartesian.

We need to show that every Gx-torsor T which extends to a Gog -torsor Tog , for every nongeneric
s € S already extends to a G-torsor 7. Since Tx — Spec K inherits finite presentation from Gy, by
[01506, Prop. 2.2 and its proof] and [LMB0O, 4.18 (i)], for some nonempty open U < S, it spreads
out to a Ty — U which is faithfully flat, of finite presentation, has a Gy-action, and for which the
analogue of (7.1.1) over U is bijective. Consequently, Ty is a Gy-torsor.

To increase U by extending Ty over some s € S — U, use limit arguments as above to spread out

Tog . to a Gy-torsor Ty over some open neighborhood W < S of s. Since (7.2.2) is injective with

V = U n W, the torsors Ty and Ty are isomorphic over U n W, permitting us to glue them and

increase U. Iterating we arrive at the desirted U = S. (]
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Corollary 7.3. Let ¢: A — B be a K-isogeny between abelion varieties, and A[p] the kernel of the
induced S-homomorphism between the Néron models. The square

Hflppf (Sv A[Qﬂ)C Hflppf (Ar, A[Gﬂ)

l l

HS Hflppf(@s,sa A[¢] )g H prpf(K&S’ A[¢]I?Ss)

is Cartesian (the products are indexed by the nongeneric s € S).

Proof. Theorem 7.2 applies due to Proposition 2.3, Theorem 6.1, and Proposition 3.3. O
Remark 7.4. Due to Remark 6.4, another possible choice for G in Theorem 7.2 is a finite flat
S-group scheme or an S-model.

We now use Theorem 7.2 to give an alternative proof of the results of [Maz72, Appendix|.
Proposition 7.5. Suppose that S has a finite residue field at every nongeneric point. Fix an ebelian

variety A — Spec K, its Néron model A — S, and set

[II({A) := Ker (Hét(sa A) = HHét(@Svs’Aés,s)> ’

where the product is indexed by the nongeneric s€ S.

{(a) Let cs be the local Tamagawa factor of A at s (i.e., cs is the number of connected components
of As possessing a rational point). Then

(748, 4) : 1(A)] < T e

(b) TI(A) = Im(H} (S, A%) — HL(S, A)).
(c) TI(A) = Ker(H' (K, A) — [[, H'(Ks.s, A)).

(d) If S is the spectrum of the ring of integers of a number field or a proper smooth curve over
a finite field and II(A) := Ker(H!(K, A) — [], H'(Ky, A)) (the product is indeved by the
places of K ) is the Shafarevich-Tate group of A, then I(A) — NI(A) and

[LI(A) : TII(A)] H #ro(A )  oftlreal v}dim A4

real v

where mo(A(Ky)) is the group of connected components of the compact real Lie group A(K,).

(e) II(A) is finite if and only if so 1s HL (S, A).

Proof. Smoothness of A — S permits the interchangeable use of étale and fppf cohomology groups,
cf. Proposition A.2 (a).
(a) Indeed, it will be proved in Lemma 8.6 that #H élt(@S,SvAés ) = cs.

(b) Combine the cohomology sequence of the sequence from Proposition 3.2 with Lemma 8.6.
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(¢) Indeed, Theorem 7.2 and Corollary 2.20 give the Cartesian diagram
HL (S, A ———— HY(K, A)

| |

les Hélt((’)g,s ‘A(')g;ys)c—_—) Hs Hl (I(g',s’ A)

Working with henselizations suffices thanks to the injectivity of
HY (Kb, A) - HY(Ks,s, A),
for which we refer to [BLR90, §3.6 Cor. 10] (see also Proposition 2.18), and the bijectivity of
i ~
Hgt(oé,s’ Aogys) - ét(OS,s, A@s,s)’
which follows from Proposition A.2 (b).

(d) Since H'(K,,A) = mo(A(K,)) and #mo(A(K,)) < 244 for real v (compare [GHS81,
1.1 (3) and 1.3]), the claim follows from (c).

(e) Combine (a) and (d). O

8. IMAGES OF LOCAL KUMMER HOMOMORPHISMS AS FLAT COHOMOLOGY GROUPS

8.1. The image of the Kummer map. For a field £ and a k-isogeny ¢: A — B of abelian
varieties, Proposition 3.10 (a) yields the exact sequence

0—Af¢p] >AS B0 (8.1.1)

in the fppf topos of k. Its cohomology sequence gives the Kummer map B(k) Lo, Hflppf(k, Alo])
with image B(k)/¢A(k) = Imry < Hflppf(l;, Ald]).

If chark { deg¢ and %: B — A is the isogeny with kery = ¢(A[deg¢]), then @Lie ¥ is the
inverse of Lie ¢, proving étaleness of ¢ [BLR90, §2.2 Cor. 10], [SGA 31 pew, IVp 1.3]. In this case, ¢
is an étale surjection, (8.1.1) is exact already in the big étale topos, A[¢] — Speck is finite étale, and

HL (b, Ale) E HL(k, AL]) "2 H\(k, A[6]),

which restrict to identifications of the images of Kummer maps.
In this section we compare Im x4 with other natural subgroups of Hf_lppf(k, Alp]) for k as in

8.2. The setup. For the rest of the section, let S = Speco for a Henselian discrete valuation ring o,
let k = Fraco, let F be the residue field of 0, let i: SpecF — Spec o be the closed point, let ¢: A — B
be a k-isogeny of abelian varieties, let ¢: A — B be the induced S-homomorphism between the
Néron models, and let ® 4 and ®p be the étale F-group schemes of connected components of .4, and
Bg; write ¢ for ¢5: As — Bs and also for the induced ® 4 — ® 5. We use various open subgroups of
A and B constructed in §3.1.

8.3. The three subgroups of interest. The first one is Imky = Hflppf(k, Al@]) from §8.1.

The second subgroup is the image of H flppf(a, Alo) & H, f;pf(k, Al#]). By Theorem 6.1, a is injective,
and we identify Hflppf(o, Alg]) = Tma < Hy i (k, A[9]).
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The third subgroup is defined if char & 1 deg ¢ (so A[¢] is étale, cf. §8.1); it is the unramified subgroup
HL (k, A[#)) := Ker(H'(k, A[¢]) — HY(E" Alg])) < H(k, A[4)]), (8.3.1)

where k*P := Frac o®®. If o is the ring of integers of a nonarchimedean local field k, then A" is its

maximal unramified extension, and (8.3.1) recovers the usnal unramified subgroup.

While Im x4 is used to define the ¢-Selmer group, H flppf(o, Al¢]) and HL (k, A[$]) are easier to study
as they depend only on Al¢]. We investigate Im xy by detailing its relations with Hflppf(o, Ald])
and H} (k, A[¢]) in Propositions 8.8 and 8.9.

Lemma 8.4. If F is finite and G — SpecF s a commutative connected algebraic group, then
HI(F,G) =0 forj = 1.
Proof. The case j > 1 holds since F has cohomological dimension 1 and G(F) is a torsion group (as
IF is finite), and the case 7 = 1 is a well-known result of Lang [Lan56, Thm. 2]. O
Lemma 8.5. If Gal(F/F) = Z and M is a finite discrete Gal(F/F)-module, then

#HOF, M) = #H (F, M).

Proof. The maps in HY(F, M) = Eg)lm Fn HY(F,/F, M Cal(F/ Fn)) are inflation injections, whereas
#HY(F,/F, MCANF/Fn)y — 2 HO(F, M) [Ser79, VIIL§4 Prop. 8]. O

Lemma 8.6. Suppose that F is finite. For a subgroup I' < ®4 and j = 1, pullback induces
isomorphisms H{ppf(o,AF) =~ HI(F,T). In particular, #Hflppf(o,AF) = #D(F) and H{ppf(o,AF) =0
for j =2

Proof. Combine the cohomology sequence of 0 — A% — A% — I' - 0, Proposition A.2 (b), and
Lemmas 8.4 and 8.5. O

8.7. The local Tamagawa factors. These are cq = #P4(F) and cp := #Pp(F), ie., the
numbers of rational components of the special fibers of the Néron models A and B. If A and B
have good reduction, i.e., A and B are abelian schemes, then ¢4 = ¢ = 1. The sequences

0 — @4[¢](F) —>Pa(F) — (¢(24))(F) — 0,
0 — ($(@a))F) >P5(F) — (P5/¢(Pa))(F) — 0
of discrete Gal(F/F)-modules are exact, and hence

#® 4(F) : #0p(F) Op .
Fo@am = T20®,  im e < (¢<<I>A)) ). (8.7.)

We now compare the subgroups Im k4 and Hflppf(o, A[d]) of Ht?ppf(k, Alé]) discussed in §8.3:

Proposition 8.8. Suppose that F is finite and A 2, B s flat (the latter assumption holds if A has
semiabelian reduction in case charF | deg ¢, c¢f. Lemma 3.4).

(a) Then

" ( Hflppf(o, A[#]) ) #P4(F) BT1

)
Hy i (0, A[¢]) N Tm kg = H(6(@0))(F) < #Pa[o](F),

Im | #Op(F) ET) ( dp
# (H&)pwo,Am) A Tm w) - gom < #(awg) ©
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(b) There is an injection

Im kg _ by
fppf(O Ald]) nIm kg ((25(‘1),1)) (F).

(c) If deg ¢ is prime to cp, then @(F) = ($(L.4))(F), and hence, by (a), Im kg < Hy (0, A[¢]).
(d) If deg ¢ is prime to ca, then @ 4(F) = (¢(Pa)){F), and hence, by (a), Hflppf(o, Al¢]) € Imky.

(e) If deg ¢ is prime to cacp, then Imky = Hflppf(n,A[qﬁ]).

Proof.

(a) Let H flppf(qﬁ_) denote the map Hflppf(o, A) — H, flppf(o, B#(®4)} induced by ¢. The short exact
sequence 0 — A[¢] — A 2, B9(®a) () of Proposition 3.10 (a) together with A.12 (b) give

the commutative diagram

0 —— BX®4) (0) /¢ A(0) — (0, A[p]) — Ker Hi o (¢) —— 0

[

0 ——— B(k)/$A(k) —— H}, ik, A[g]) — HE 1 (k, A)[¢] — 0,

where the injectivity of the vertical arrows follows from the Néron property and Theorem 6.1.
By Lemma 8.6, Hflppf(qb) identifies with H!(F, ®,) LNy (F, p(®4)) induced by ¢; moreover,
h is onto. Since »
Hi,oi(0, Alg])
fppf(o Alg]) nIm kg

>~ Ker Hflppf(gb) ~ Kerh

and

#H'(F, @4) 55  #Pa(F)
#HUE, 3(2a))  #(P(Pa))(F)
the first claim follows. On the other hand,

Im g __BW)/SAGR) _ _B)/¢Al) _ _ Blo)
fppf(o Alp]) nImrky — BH®4)(0)/pAl0) — B@4)(0)/pA(0) ~ BH®a)(0)’

#Kerh =

(8.8.1)

Lemma 8.6 and the étale cohomology sequence of 0 — B¥®4) — B — i (®p/p(P,4)) — 0
from Proposition 3.2 give the exact sequence (cf. also Proposition A.2 (a))

B(O) ‘I’B R 1 . 1 N i (I)B
0— 51 (0) - (¢<@A>) (F) - H(F,¢(Pa)) - H (F,®p) - H (]F, —fb(‘I)A))’ (8.8.2)

where we have used the exactness of i, for the étale topology to obtain the last term.
Combining (8.8.1) and (8.8.2) yields the remaining

#( m g )" #(Pp/P(®4)(F) - #H'(F,85) 55 #Pp(F)

HE (0, A[p]) nlmrg ) — #H'(F,¢(®4)) - #H'(F, 05/$(®a))  #(6(@.0))(F)

(b) Combine (8.8.1) and (8.8.2).
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(c) Let ¢: B — A be the isogeny with ker¢ = ¢(A[degd]), so ¥ 0 ¢ = deg¢, and thus also
pop =dego. If (degop, #Pp(F)) =1, then

®p(F) = (deg $)(25(F)) < ((deg $)(Pp))(F) < (¢(24))(F) < ©5(F),
giving the desired ©p(F) = (¢(Pa) }F).

(d) Considering % as in the proof of (c), ®4[¢] < Paldeg ], so if (degp, #P4(F)) = 1, then
® 4[¢](F) = 0. The resulting ® 4(F) < ¢(®4)(F) is onto, since #H(F, D a[¢]) = #P4[4](F).

(e) Combine (c) and (d). O

We now compare the third subgroup H} (k, A[¢]) < H' (k, A[¢]) of §8.3 to Im k¢ and H flppf(o, Al#]):
Proposition 8.9. Suppose that char k 1 deg ¢.
(a) The Néron model G — Speco of A[¢p] — Speck exists and is étale.
(b) Hyi(0,G) — H'(k, A[¢]) is an isomorphism onto Hy (k, A[¢]).
(¢c) The image of Hflppf(o,A[qﬁ]) — HY(k, A[¢]) contains HL.(k, A[¢]).
(d) HL.(k, A[¢]) < Imkgy, if in addition
(a) F is finite,
(b) A% B is flat if char F | deg ¢, and
(¢) deg @ is prime to c4 or, more generally (cf. Proposition 8.8 (d)), #Pa(F) = #(¢(P4))(F).
(e) If charF { deg ¢, then Hy (o, A[#]) = Hp (k. A[¢]).
(f) Tmky = HE (0, A[p]) = Hy(k, A[$)), if in addition
(i) F s finite,
(i) charF { deg ¢, and
(iii) deg ¢ is prime to cacp or, more generally (cf. Proposition 8.8 (c)-(d)),
#D4(F) = #(0(2a))(F) = #2p(F).

Proof.
(a) By 8.1, if char k 1 deg ¢, then A[¢] — Speck is finite étale, so Proposition 2.15 applies.
(b) This is a special case of Proposition 2.21.

(c) Due to (b), it suffices to find an o-homomorphism G — A[¢] inducing an isomorphism on
generic fibers, which is provided by Theorem 2.13 (and §2.12).

(d) By Proposition 8.8 (a), H}ppf(o, Al¢]) < Im kg, so the conclusion results from (c).
(e) This follows from (b), because if charF { deg ¢, then G = A[¢] by Corollary 3.9.
(f) By Proposition 8.8 (a), Imkg = Hflppf(o, A[#]), so the conclusion results from (e). O
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9. SELMER GROUPS AS FLAT COHOMOLOGY GROUPS

Let K be a global field. If K is a number field, let § = SpecOg; if K is a function field, let &

be the proper smooth cnrve with function field K. A non archimedean place v of K (‘onmp(md
to a closed s € S, rendering K, Oy, and F, synonymous to 1\9S Os s, and k(s). This section
is concerned with relations between Selmer groups and certain flat cohomology groups of S: we

investigate Selmer groups of abelian varieties in §§9.7-9.10 and also those associated to an S-model
in §§9.2-9.5.

9.1. Selmer structures. Fix a finite discrete Gal(K/K)-module M. A Selner structure on M
is a choice of a subgroup of H'(K,, M) for each place v such that for all v but finitely many, the
unramified subgroup H} (K., M) c HY(K,, M) is chosen (compare [MRO7, Def. 1.2]); its Selmer
group is the subgroup of H!(K, M) obtained by imposing the chosen local conditions, i.e., it consists
of the cohomology classes whose restrictions to every H'(K,, M) lie in the chosen subgroups.

9.2. The Selmer structure of an S-model G with #G; = p™. It is given by the subgroups

B §1.17 . .
Hflppf(ovv gO'u) < H%)pf(KUa gKv) = Hl(Avy gKt,)a ifv { @0, and
HY(K,,Gk,) c HY(K,,GK,), if v | o0,

which is a legitimate choice by Remark 6.4 and Proposition 2.21 (implicitly, p # char K). By The-

orem 7.2 and Remark 7.4, the resulting Selmer group is nothing else but H}ppf(S, G) c HY(K,Gg),

which is finite, being contained in the finite (cf. [Mil06, 11.2.13 (a)]) Hélt(S[z—lj], Gspap) © HY(K,GKk)
P

(only the conditions away from p are imposed).

(9.2.1)

Example 9.3. If K is a number field and § = Z/p"Z , then (9.2.1) consists of the unramified sub-

groups for v { o0. The resulting Selmer subgroup of H 7 (K,Z/p"7Z) = Homeon (Gal(K/K), Z/p™7)
consists of the homomorphisms unramified at all the finite places. By the theory of the narrow
Hilbert class field, it identifies with Hom(Pic, (Ox), Z/p"Z), where Pic(Ok) is the narrow class
group of K. This is consistent with the description of H{ ((Ox,Z/p"Z) = H} (O, Z/p"7Z) as

Homeont (75 (Ok), Z/p" 7).

9.4. Morphisms of S-models and Selmer groups. The map (K, Gx) — H*(K, H) induced

by a morphism G 1, U of S-models respects the Selmer subgroups: H}ppf(S, G) c HY(K, Gk) maps
into Hflppf(S,'H) c HYK,Hg). In particular, if G and H are S-models of a fixed G as in §5.3,
then f induces the inclusion Hg ((S,G) © Hy (S, M) inside H'(K,G). Motivated by the local
analogue (admitting a positive answer [Maz70]), one may ask whether an S-model is determined by
its Selmer group, i.e., whether the functor

g (gK7 Hflppf(Sv g) c H' (K7 gK))
is fully faithful. The answer is negative:

Example 9.5. For a prime p, let K = Q({pn) for some n > 1 excluding the (p,n) = (2,1) case and
consider S-models of G = Z/pZ K Letting v be the place above p, by the Oort—Tate classification

[TO70, pp. 14-16 Remarks 1 and 5] and [Tat97, 4.4.1 (c)], there are p"~! + 1 nonisomorphic finite

flat O,-models of G, which correspond to factorizations (1 — Cpn>(p_1)i . ZI_Z—B)-"’—‘B’_
pn

0 < ¢ < p™ ! and are linearly ordered, i.e., each maps to the next one. Proposition 5.7 (a) and

(d) therefore give p®~! + 1 nonisomorphic linearly ordered S-models of G. If p is regular, ie., p

does not divide the class number of K (e.g., p = 2 |Was97, 10.5]), then the Selmer groups of these
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S-models are subgroups of the —-lﬂ-——) + 1)-dimensional H} b p) =7 C.,n VT Cpre, =17P
P 53 P

(only the conditions away from p are nnposed), Due to d1n1enmon ma.sons, for p = ‘> and n = 3 tlns
space cannot have a flag of p 1 + | distinct subspaces, forcing some Selmer groups to coincide. We
do not know, however, if distinct S-models of M}( can have coinciding Seirmer groups for odd
p. Their defining local subgroups at v have been worked out by Mazur and Roberts [MR69, 9.3],
[Rob73, Thm. 1].

9.6. The setup. Let A 2, B be a K-isogeny between abelian varieties, and let A 2, B be the
induced S-homomorphism between their Néron models, which, for v { o0, induces ¢,: P4, — Ppay
between the groups of connected components of the special fibers of A and B at v. Denote the local
Tamagawa factors by ¢4, 1= #® 4 ,(F,) and cp = #Pp,(Fy).

9.7. Two sets of subgroups (compare §8.3). The first one is the images Im x4, < H flppf (Ky, Al])
of the local Kummer homomorphisms (cf. §8.1) for all places v of K; its Selmer group, defined as
in §9.1, is the ¢-Selmer group Sely, A < H, flppf(K,A[qS]).

The second one is
Hi ot (On, Aldlo,) © Hipe (Ko, Al9)), if v {0, and
HY(K,, A[¢]) ¢ HYK,, A[¢]), if v | o0,
and has the corresponding Selmer group Hflppf(S, Alg]) < Hflppf(K , Al¢]) by Corollary 7.3.
]

If char K 1 deg ¢, these are two Selmer structures on A[¢] by Proposition 8.9 (f).

Proposition 9.8. Suppose that A 2B s flat (e.g., that A has semiabelian reduction at all v { o0
with charlFy, | deg ¢, ¢f. Lemma 3.4).

(a) Taking intersections inside Hflppf(K , Al@]), one has

Sel¢,A (__?—_Biﬁ__) .
#( fppf(S A[¢D ﬂSel¢A> gvljf—c[o# Cbz:((I:'A‘-v) ( v)y

Hi, (S, Alg]) HY (K., A[p])
* ( Hi 1(S, Ald]) 0 Selg A H el 1] # ( T gy ) ‘

v real

(b) If deg ¢ is prime 10 [y ci,0, then Sely A < Hi (S, Al@]) inside Hy (K, A[#]).

c) If deg ¢ is prime to [ |,4. caw and cither 2 1 dego or A(K,) equipped with its archimedean
vico
topology is connected for all real v, then prpf(S,.A[qﬁ]) < Sely A inside prpf(K,A[ ?]).

(d) If deg ¢ is prime to Hv,{m CanCB v and either 21 deg ¢ or A(Ky) equipped with its archimedean
topology is connected for all real v, then HE (S, A[#]) = Sely A inside Hg (K, Alg)).

Proof. By §9.7, setting Hflppf((’),,,A[qﬁ]OU) = HY(K,, A[¢]) for v | co, there are injections

Sely A H Im kg,
HE (S, AL]) nSely A L L HE (00, Aldlo,) n gy

Hflppf(s’ A[¢]) - }prpf(o1h A[¢]O,,)
Hflppf(s, Al#]) N Sely A . Hflppf((%, Alplo,) nTm kg,
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This together with Proposition 8.8 (a), (¢}, (d), and (e) give the claim, since under the assumptions
of (c) and (d) the factors of (9.8.1) for v | oo vanish: H'(K,. A[¢]) = 0 unless 2 | deg¢ and v is

real, and also, by [GH81, 1.3], H}(K,, A) = mo(A(K,)). O
Remarks.
9.9. As in Proposition 8.9 (d) and (f), the assumptions on ¢4, and cp, in Proposition 9.8 (b),

(¢), and (d) (and hence also in Theorems 1.1 (ii) and 1.11 (iii)) can be weakened to
#Pp o (Fy) = #(Po(Paw))(Fy) for all v,
#D 4 o(Fy) = #(du(Panw))(Fy) for all v { oo, and
HDO 4 ,(Fy) = #(Pu(Pap))(Fy) = #Ppo(Fy) for all v { oo, respectively.

9.10. In practice, it is useful not to restrict Proposition 9.8 to the case when A has semiabelian
reduction at all v { oo with charF, | deg ¢. For instance, suppose that K is a number field, A
is an elliptic curve that has complex multiplication by an imaginary quadratic field F' ¢ K,
and ¢ = a € Endg(A) < F < K. Then Ay, 14 2, Ao (i is flat (even étale) because it
induces an automorphism of Lie .AOK[ 1y, which is a line bundle on Spec C’)K[é] On the other
hand, deg ¢ need not be invertible on Spec (’)K[é]. Proposition 9.8 applied to this example

leads to a different proof of [Rub99, 6.4], which facilitates the analysis of Selmer groups of
elliptic curves with complex multiplication by relating them to class groups.

APPENDIX A.

Let S be a scheme. For convenience of the reader we recall several general facts from algebraic
geometry used in the main body of the text, which mostly concern S-group algebraic spaces and
their torsors.

Lemma A.l. Let O be a Henselian local ring, a < O an ideal, and X o smooth O-algebraic space.
If X is not a scheme, assume that it is quasi-separated. Then the natural map X(0O) — X(O/a) is
surjective.

Proof. We include a. proof for the lack of reference. Assume that a # O, let o be the closed point of
Spec O (or of Spec O/a), and fix a b € X(O/a) with the intention of lifting it to a B € X(0O).

If X is a scheme, the local structure theorem for smooth morphisms [BLR90, §2.2 Prop. 11] applied
at b(0) allows us to assume that X — Spec O factors through X > A% with u étale and separated.
Lift w o b e A%(O/a) to a c € AB{O) and hence reduce to X being étale and separated over O, in
which case [EGA IVy, 18.5.11 (c) et 18.5.15] provides the unique section B € X(O) with B(0) = b(0).

In general, by [LMBO00, 6.3], b|, lifts to a ¢ € U(o) with U a smooth X-scheme. By the surjectivity
in the scheme case, c € (U x x,, O/a)(0) yields a lift d € U(O/a) of b. Since U is a smooth O-scheme,
dliftstoa DelU (C’)) whose image in X(O) is a desired B. O

Proposition A.2. Let G be a commutative smooth S-group algebraic space which is either quasi-
separated or a scheme.

(a) If j: Stppt — Set is the canonical morphism of sites, then R"j.G = 0 for n > 1, and the
natural maps HL, (S, j+G) — H}ppf(S', G) are tsomorphisms.

(b) If S = Spec O for a Henselian local ring O with residue field k, then the §-functorial coho-
mology pullback maps HE, (O, G)— H'f’ppf(k, Gr) are isomorphisms fori = 1.
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Proof. Invoke [Gro68, 11.1 et 11.7] with U = G (and use Lemma A.1 to check condition (L))—when
(R) in loc. cit. is modified by assuming U7 to be representable by a smooth algebraic space containing
the zero section, the proofs continue to work with the following caveats:

1. In 11.4, assume in addition that Xq = (J;
2. On p. 175, C'(U) is a smooth X -algebraic space by [SP, Proposition 05YF and Lemma 04 AM];

3. On p. 177, the desired quasi-coherence of N is argued as follows: let a: Xg — U be
the zero section; by [SP, Lemma 061C and Remark 061D], in the notation of loc. cit.,
Homoy, (a*Qu/x,Cx,/x) = N, so the conclusion follows from [SP, Lemmas 05ZF and 03M1];

4. To obtain 11.7 2°) and 3°), assume in addition that (L_)fmd (R) hold for every Henselian
(but not necessarily strictly Henselian) local X-scheme X. [

Remark A.3. As is clear from the proof of Lemma A.1, if G is étale (and either quasi-separated
or a scheme), then the conclusion of Proposition A.2 (b) also holds for i =0 .

A.4. H' and torsors. Let G be an S-group algebraic space. For commutative G, the clements of
the cohomology groups Hflppf(S, G) (resp., H}(S,G)) can be put in bijection with fppf (resp., étale)
torsors 7 under G, under which the trivial torsor corresponds to the identity element, and the
cohomology pullbacks for ¢ = 1 identify with base change of torsors: 7 — T xg 8 (cf. [Gir71,
111.3.5.4, 111.2.4.2, 111.2.4.5 et V.1.5.3]). Thus, for possibly noncommutative G, one writes Hflppf(S, Gg)
(resp., HL(S,G)) for the set of isomorphism classes of fppf (resp., étale) right torsors under G and
understands that H, flppf(S, G) (resp., H} (S,G)) is functorial in S by base change.

Proposition A.5. Every fppf torsor T under an S-group algebraic space G is representable by an
S-algebraic space.

Proof. Being an S-algebraic space is fppf local [SP, Lemma 04SK]. O
Proposition A.6. Fvery fopf torsor T under a smooth S-group algebraic space G trivializes over an

étale cover of 5. In particular, for smooth G, the natural map H ét (S,6) — Hflppf(S, G) is bijective.

Proof. By Proposition A.5 and [SP, Leminas 0429 and 041Q)], 7 is a smooth surjective S-algebraic
space. It trivializes over an étale cover of 7 by a scheme U. Since the smooth U — § has a section
étale locally [EGA IVy, 17.16.3 (i1)], we conclude. 0

Proposition A.7. Every fppf torsor under a quasi-affine [EGA 11, 5.1.1} S-group scheme G is

representable by a quasi-affine scheme.

Proof. By [SP, Lemma 0247] and [EGA IV, 2.7.1 (xiv)], representability and quasi-affineness of an
fppf sheaf T 1, § can be checked fppf locally on S. O

Proposition A.8. Let 1 - H — & — G — 1 be an exact sequence of sheaves of groups on Sgpps
with G representable by an S-scheme and H representable by an S-algebraic space.

(a) € is representable by an S-algebraic space.

(b) For a property P of morphisms of S-algebraic spaces that is stable under base change and
1s fppf local on the base, if H — S has P, then so does € — G. If, in addition, P is stable
under composition and H — S and G — S both have P, then so does £ — §.

(¢c) If H — S is quasi-affine, then so is & — G and £ is representable by an S-scheme.
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Proof.
{(a) Indeed, & — G is an fppf torsor under Hg, so the claim is a special case of Proposition A.5.
(b) Immediate from the proof of (a).
(¢) Quasi-affine morphisms are representable [SP, Lemma 03WM], hence the claim by (b). O

Proposition A.9. A quasi-finite fppf S-group scheme G whose fibers have orders that are prime to
the residue characteristic is étale.

Proof. This is |[TO70, p. 17, Lemma 5] if G is finite. In general, the proof is the same: [EGA IVy,
17.6.2 a) < ¢”)] reduces to S being the spectrum of an algebraically closed field, in which case G is
finite. One then uses the connected-étale sequence. 0

Lemma A.10. For a scheme S, let X, Y be S-schemes with Y(S) # &. If X xgY = S is
quasi-compact, locally of finite type, of finite type, separated, or flat, then so is X 2 s.

Proof. Working locally on S, in all cases we can assume that S is affine: S = Spec . Hence, since
X is a continuous image of X xg Y, it is quasi-compact if so is X xg Y.

A section ¢ of X xg Y — X exists by the Y(S) # J assumption and is locally of finite type
[EGA 1, 6.6.6 (v)]. Hence aoc = b is locally of finite type if so is a.

The finite type case follows by combining the quasi-compact and locally of finite type ones.

Since the diagonal morphism of the monomorphism ¢ is an isomorphism, ¢ is separated, hence so is
acc=>bifais.

Flatness can be checked on stalks, reducing further to a local C' and affine X = Spec A, Y = Spec B.
Since Y (S) # &, the C-module A is a direct summand of A ®¢ B, yielding the claim. a

Proposition A.11 ([BC09, 7.4.2]). Let S be a scheme and G a commutative S-group scheme. If
n,m € Z1 are relatively prime and nm kills G, then G = G[n] xg G{m]. If G is finite, quasi-finite,
separated, or flat, then so are G[n] and G[m]. In particular, a commutative separated quasi-finite
flat S-group scheme G killed by an N € Zx1 decomposes as a product of commutative separated
quasi-finite flat S-group schemes killed by prime power divisors of N; the factors are finite flat if so
s Q.

Proof. Checking on sections of represented fppf sheaves, 0 — G[n] — G > G[m] — 0 is split exact,
giving the first claim. If G is finite, then so is its closed subscheme G[n]; thus, if G is quasi-finite,
then G[n] and G[m] have finite fibers, hence are quasi-finite by Lemma A.10. Similarly, G[n] and
G[m] inherit separatedness or flatness from G. 0

A.12. Quotients by equivalence relations. Let R and X be sheaves on Sypps. A monomorphism

RS x x¢ X is an equivalence relation if §(T') is the graph of an equivalence relation on X (T')
for each S-scheme T (cf. [Ray67, §3]). Form the fppf quotient sheaf Y = X/R. By loc. cit., the
quotient is

(a) Effective, i.e., the canonical map R — X xy X is an isomorphism;

(b) Universal, i.e., for an fppf sheaf morphism Y’ — Y, the quotient of X xy Y’ by the base
changed equivalence relation R xy Y’ is Y7,
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For us, the case of interest is when H — G is an immersion of S-group algebraic spaces, X = G,
R=GxgH,and 6: G xgH — G x5 G is (g,h) — (g, gh); the resulting quotient is G/H.

Proposition A.13. For an immersion H 4G of S-group algebraic spaces, let Q := G/H be the
fopf quotient sheaf. Assume that §: G xgH — G x5 G given by (g,h) — (g,gh) is quasi-compact.

(a) If H — S is fppf, then Q is a quasi-separated S-algebraic space.

(b) For a property P of morphisms of algebraic spaces that is stable under base change and is
foof local on the base, if H — S has P, then so does G — Q.

(¢c) If H — S is fppf (resp., smooth) and P is a property of morphisms of algebraic spaces that
is fppf (resp., smooth) local on the source, then Q — S has P if and only if G — S does.

(d) If H — S is fppf and i is a closed immersion, then Q is a separated S-algebraic space.

Proof. Note that § is a base change of ¢, hence is quasi-compact whenever 7 is.

(a) Letting p1,p2 be the projections of G xg G, due to [LMB00, 10.4] it suffices to check that
p1 06 and ps o ¢ are fppf, which is so because both are base changes of H — 5.

(b) In the proof of [Ray67, Prop. 2| replace schemes by algebraic spaces and fpqc by fppf.
(¢) Indeed, G — Qs fppf (resp., smooth) by (b) and [SP, Lemmas 041Q, 041W, 041T, and 0429].

(d) Since §, being a base change of ¢, is a closed immersion, and the square

GxsH—3GxsG

L,

0—2 5 0x5Q

is Cartesian by A.12 (a), due to [SP, Lemma 0420] it remains to note that G — Qis fppf. O
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