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Abstract

We introduce an abstract class of bosonic QFT Hamiltonians and study their spectral

and scattering theories. These Hamiltonians are of the form H = dΓ(ω) + V acting on the

bosonic Fock space Γ(h), where ω is a massive one-particle Hamiltonian acting on h and V
is a Wick polynomial Wick(w) for a kernel w satisfying some decay properties at in�nity.

We describe the essential spectrum of H, prove a Mourre estimate outside a set of thresh-

olds and prove the existence of asymptotic �elds. Our main result is the asymptotic com-

pleteness of the scattering theory, which means that the CCR representations given by the

asymptotic �elds are of Fock type, with the asymptotic vacua equal to the bound states of H.

As a consequence H is unitarily equivalent to a collection of second quantized Hamiltonians.

1 Introduction

1.1 Introduction

In recent years a lot of e�ort was devoted to the spectral and scattering theory of various models
of Quantum Field Theory like models of non-relativistic matter coupled to quantized radiation or
self-interacting relativistic models in dimension 1+1 (see among many others the papers [AHH],
[DG1], [DG2], [FGSch], [FGS], [LL], [P], [Sp] and references therein). Substantial progress was
made by applying to these models methods originally developed in the study of N−particle
Schroedinger operators, namely the Mourre positive commutator method and the method of
propagation observables to study the behavior of the unitary group e−itH for large times.

Up to now, the most complete results (valid for example for arbitrary coupling constants)
on the spectral and scattering theory for these models are available only for massive models and
for localized interactions. (For results on massless models see for example [FGS] and references
therein).

It turns out that for this type of models, the details of the interaction are often irrelevant.
The essential feature of the interaction is that it can be written as a Wick polynomial, with a
symbol (see below) which decays su�ciently fast at in�nity.

The conjugate operator (for the Mourre theory), or the propagation observables (for the proof
of propagation estimates), are chosen as second quantizations of corresponding operators on the
one-particle space h.

1



In applications the one-particle kinetic energy is usually the operator (k2 + m2)
1
2 acting on

L2(Rd, dk), which clearly has a nice spectral and scattering theory. Therefore the necessary
one-particle operators are easy to construct.

Our goal in this paper is to describe an abstract class of bosonic QFT Hamiltonians to which
the methods and results of [DG2], [DG1] can be naturally extended.

Let us �rst brie�y describe this class of models. We consider Hamiltonians of the form:

H = H0 + V, acting on the bosonic Fock space Γ(h),

where H0 = dΓ(ω) is the second quantization of the one-particle kinetic energy ω and V =
Wick(w) is a Wick polynomial. To de�ne H without ambiguity, we assume that H0 + V is
essentially selfdjoint and bounded below on D(H0) ∩ D(V ).

The Hamiltonian H is assumed to be massive, namely we require that ω ≥ m > 0 and
moreover that powers of the number operator Np for p ∈ N are controlled by su�ciently high
powers of the resolvent (H + b)−m. These bounds are usually called higher order estimates.

The interaction V is supposed to be a Wick polynomial. If for example h = L2(Rd, dk), this
means that V is a �nite sum V =

∑
p,q∈I Wick(wp,q) where Wick(wp,q) is formally de�ned as:

Wick(wp,q) =
∫
a∗(K)a(K ′)wp,q(K,K ′)dKdK ′,

for
K = (k1, . . . , kp), K ′ = (k′1, . . . , k

′
q), a

∗(K) = Πp
i=1a

∗(ki), a∗(K ′) = Πq
i=1a(k′i),

and wp,q(K,K ′) is a scalar function separately symmetric in K and K ′. To de�ne Wick(w)
as an unbounded operator on Γ(h), the functions wp,q are supposed to be in L2(R(p+q)d). The
functions wp,q are then the distribution kernels of a Hilbert-Schmidt operator wp,q from ⊗qsh into
⊗psh. Putting together these operators we obtain a Hilbert-Schmidt operator w on Γ(h) which is
called the Wick symbol of the interaction V .

In physical situations, this corresponds to an interaction which has both a space and an
ultraviolet cuto� (in one space dimension, only a space cuto� is required).

As said above, it is necessary to assume that the one-particle energy ω has a nice spectral
and scattering theory. It is possible to formulate the necessary properties of ω in a very abstract
framework, based on the existence of only two auxiliary Hamiltonians on h. The �rst one is
a conjugate operator a for ω, in the sense of the Mourre method. The second one is a weight
operator 〈x〉, which is used both to control the 'order' of various operators on h and as a way to
localize bosons in h. Note that the one-particle energy ω may have bound states.

The �rst basic result on spectral theory that we obtain is the HVZ theorem, which describes
the essential spectrum of H. If σess(ω) = [m∞,+∞[ for some m∞ ≥ m > 0, then we show that

σess(H) = [inf σ(H) +m∞,+∞[,

in particular H always has a ground state.
We then consider the Mourre theory and prove that the second quantized Hamiltonian A =

dΓ(a) is a conjugate operator for H. In particular this proves the local �niteness of point
spectrum outside of the set of thresholds, which is equal to

τ(H) = σpp(H) + dΓ(1)(τ(ω)),
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where τ(ω) is the set of thresholds of ω for a and dΓ(1)(E) for E ⊂ R is the set of all �nite sums
of elements of E.

The scattering theory for our abstract Hamiltonians follows the standard approach based on
the asymptotic Weyl operators. These are de�ned as the limits:

W±(h) = s- lim
t→±∞

eitHW (ht)e−itH , h ∈ hc(ω),

where hc(ω) is the continuous spectral subspace for ω and ht = e−itωh. The asymptotic Weyl
operators de�ne two CCR representations over hc(ω). Due to the fact that the theory is massive,
it is rather easy to see that these representations are of Fock type. The main problem of scat-
tering theory is to describe their vacua, i.e. the spaces of vectors annihilated by the asymptotic
annihilation operators a±(h) for h ∈ hc(ω).

The main result of this paper is that the vacua coincide with the bound states of H. As a
consequence one sees that H is unitarily equivalent to the asymptotic Hamiltonian:

H|Hpp(H) ⊗ 1l + 1l⊗ dΓ(ω), acting on Hpp(H)⊗ Γ(hc(ω)).

This result is usually called the asymptotic completeness of wave operators. It implies that H
is unitarily equivalent to a direct sum of Ei + dΓ(ω|hc(ω)), where Ei are the eigenvalues of H.
In more physical terms, asymptotic completeness means that for large times any initial state
asymptotically splits into a bound state and a �nite number of free bosons.

We conclude the introduction by describing the examples of abstract QFT Hamiltonians to
which our results apply.

The �rst example is the space-cuto� P (ϕ)2 model with a variable metric, which corresponds
to the quantization of a non-linear Klein-Gordon equation with variable coe�cients in one space
dimension.

The one-particle space is h = L2(R,dx) and the usual relativistic kinetic energy (D2 +m2)
1
2

is replaced by the square root h
1
2 of a second order di�erential operator h = Da(x)D + c(x),

where a(x)→ 1 and c(x)→ m2
∞ for m∞ > 0 when x→∞. (It is also possible to treat functions

c having di�erent limits m2
±∞ > 0 at ±∞).

The interaction is of the form:

V =
∫

R
g(x) :P (x, ϕ(x)) : dx,

where g ≥ 0 is a function on R decaying su�ciently fast at ∞, P (x, λ) is a bounded below

polynomial of even degree with variable coe�cients, ϕ(x) = φ(ω−
1
2 δx) is the relativistic �eld

operator and : : denotes the Wick ordering.
This model is considered in details in [GP], applying the abstract arguments in this paper.

Note that some conditions on the eigenfunctions and generalized eigenfunctions of h are necessary
in order to prove the higher order estimates.

The analogous model for constant coe�cients was considered in [DG1]. Even in the constant
coe�cient case we improve the results in [DG1] by removing an unpleasant technical assumption
on g, which excluded to take g compactly supported.

The second example is the generalization to higher dimensions. The one-particle energy ω is:

ω = (
∑

1≤i,j≤d
Diaij(x)Dj + c(x))

1
2 ,
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where h =
∑

1≤i,j≤dDiaij(x)Dj + c(x) is an elliptic second order di�erential operator converging

to D2 +m2
∞ when x→∞. The interaction is now∫

R
g(x)P (x, ϕκ(x))dx,

where P is as before and ϕκ(x) = φ(ω−
1
2F (ω ≤ κ)δx) is now the UV-cuto� relativistic �eld.

Here because of the UV cuto�, the Wick ordering is irrelevant. Again some conditions on
eigenfunctions and generalized eigenfunctions of h are necessary.

We believe that our set of hypotheses should be su�ciently general to consider also Klein-
Gordon equations on other Riemannian manifolds, like for example manifolds equal to the union
of a compact piece and a cylinder R+ ×M , where the metric on R+ ×M is of product type.

1.2 Plan of the paper

We now describe brie�y the plan of the paper.
Section 2 is a collection of various auxiliary results needed in the rest of the paper. We �rst

recall in Subsects. 2.1 and 2.2 some arguments connected with the abstract Mourre theory and
a convenient functional calculus formula. In Subsect. 2.3 we �x some notation connected with
one-particle operators. Standard results taken from [DG1], [DG2] on bosonic Fock spaces and
Wick polynomials are recalled in Subsects. 2.4 and 2.6.

The class of abstract QFT Hamiltonians that we will consider in the paper is described in
Sect. 3. The results of the paper are summarized in Sect. 4. In Sect. 5 we give examples of
abstract QFT Hamiltonians to which all our results apply, namely the space-cuto� P (ϕ)2 model
with a variable metric, and the analogous models in higher dimensions, where now an ultraviolet
cuto� is imposed on the polynomial interaction.

Sect. 6 is devoted to the proof of commutator estimates needed in various localization
arguments. The spectral theory of abstract QFT Hamiltonians is studied in Sect. 7. The essential
spectrum is described in Subsect. 7.1, the virial theorem and Mourre's positive commutator
estimate are proved in Subsects. 7.2, 7.4 and 7.5. The results of Sect. 7 are related to those of
[1], where abstract bosonic and fermionic QFT Hamiltonians are considered using a C∗−algebraic
approach instead of the geometrical approach used in our paper. Our result on essential spectrum
can certainly be deduced from the results in [1]. However the Mourre theory in [1] requires that
the one-particle Hamiltonian ω has no eigenvalues and also that ω is a�liated to an abelian
C∗−algebra O such that eitaOe−ita = O, where a is the one-particle conjugate operator. In
concrete examples, this second assumption seems adapted to constant coe�cients one-particle
Hamiltonians and not satis�ed by the examples we describe in Sect. 5.

In Sect. 8 we describe the scattering theory for abstract QFT Hamiltonians. The existence
of asymptotic Weyl operators and asymptotic �elds is shown in Subsect. 8.1. Other natural
objects, like the wave operators and extended wave operators are de�ned in Subsects. 8.2, 8.3.

Propagation estimates are shown in Sect. 9. The most important are the phase-space prop-
agation estimates in Subsect. 9.2, 9.3 and the minimal velocity estimate in Subsect. 9.4.

Finally asymptotic completeness is proved in Sect. 10. The two main steps is the proof
of geometric asymptotic completeness in Subsect. 10.4, identifying the vacua with the states for
which no bosons escape to in�nity. The asymptotic completeness itself is shown in Subsect. 10.5.

Various technical proofs are collected in the Appendix.
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2 Auxiliary results

In this section we collect various auxiliary results which will be used in the sequel.

2.1 Commutators

Let A be a selfadjoint operator on a Hilbert space H. If B ∈ B(H) on says that B is of class
C1(A) [ABG] if the map

R 3 t 7→ eitABe−itA ∈ B(H)

is C1 for the strong topology.
If H is selfadjoint on H, one says that H is of class C1(A) [ABG] if for some (and hence all)

z ∈ C\σ(H), (H − z)−1 is of class C1(A). The classes Ck(A) for k ≥ 2 are de�ned similarly.
If H is of class C1(A), the commutator [H, iA] de�ned as a quadratic form on D(A) ∩D(H)

extends then uniquely as a bounded quadratic form on D(H). The corresponding operator in
B(D(H),D(H)∗) will be denoted by [H, iA]0.

If H is of class C1(A) then the virial relation holds (see [ABG]):

1l{λ}(H)[H, iA]01l{λ}(H) = 0, λ ∈ R.

An estimate of the form
1lI(H)[H, iA]01lI(H) ≥ c01lI(H) +K,

where I ⊂ R is a compact interval, c0 > 0 and K a compact operator on H, or:

1lI(H)[H, iA]01lI(H) ≥ c01lI(H),

is called a (strict) Mourre estimate on I. An operator A such that the Mourre estimate holds
on I is called a conjugate operator for H (on I). Under an additional regularity condition of H
w.r.t. A (for example if H is of class C2(A)), it has several important consequences like weighted
estimates on (H − λ ± i0)−1 for λ ∈ I (see e.g. [ABG]) or abstract propagation estimates (see
e.g. [HSS]).

We now recall some useful machinery from [ABG] related with the best constant c0 in the
Mourre estimate. Let H be a selfadjoint operator on a Hilbert space H and B be a quadratic
form with domain D(HM ) for some M ∈ N such that the virial relation

(2.1) 1l{λ}(H)B1l{λ}(H) = 0, λ ∈ R,

is satis�ed. We set

ρBH(λ) := sup{a ∈ R| ∃ χ ∈ C∞0 (R), χ(λ) 6= 0, χ(H)Bχ(H) ≥ aχ2(H)},

ρ̃BH(λ) := sup{a ∈ R| ∃ χ ∈ C∞0 (R), χ(λ) 6= 0,∃K compact, χ(H)Bχ(H) ≥ aχ2(H) +K}.

The functions, ρBH , ρ̃
B
H are lower semi-continuous and it follows from the virial relation that

ρBH(λ) <∞ i� λ ∈ σ(H), ρ̃BH(λ) <∞ i� λ ∈ σess(H) (see [ABG, Sect. 7.2]). One sets:

τB(H) := {λ| ρ̃BH(λ) ≤ 0}, κB(H) := {λ| ρBH(λ) ≤ 0},

which are closed subsets of R, and

µB(H) := σpp(H)\τB(H).
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The virial relation and the usual argument shows that the eigenvalues of H in µB(H) are of
�nite multiplicity and are not accumulation points of eigenvalues. In the next lemma we collect
several abstract results adapted from [ABG], [BG].

Lemma 2.1 i) if λ ∈ µB(H) then ρBH(λ) = 0. If λ 6∈ µB(H) then ρBH(λ) = ρ̃BH(λ).
ii) ρBH(λ) > 0 i� ρ̃BH(λ) > 0 and λ 6∈ σpp(H), which implies that

κB(H) = τB(H) ∪ σpp(H).

iii) Let H = H1 ⊕ H2, H = H1 ⊕ H2, B = B1 ⊕ B2, where Bi, H,B are as above and satisfy
(2.1). Then

ρBH(λ) = min(ρB1
H1

(λ), ρB2
H2

(λ)).

iv) Let H = H1 ⊗H2, H = H1 ⊗ 1l + 1l⊗H2, B = B1 ⊗ 1l + 1l⊗ B2, where Hi, Bi, H,B are as
above, satisfy (2.1) and Hi are bounded below. Then

ρBH(λ) = inf
λ1+λ2=λ

(
ρB1
H1

(λ1) + ρB2
H2

(λ2)
)
.

Proof. i), ii) can be found in [ABG, Sect. 7.2], in the case B = [H, iA] for A a selfjadjoint
operator such that H ∈ C1(A). This hypothesis is only needed to ensure the virial relation (2.1).
iii) is easy and iv) can be found in [BG, Prop. Thm. 3.4] in the same framework. Again it is
easy to see that the proof extends verbatim to our situation. 2

Assume now that H, A are two selfadjoint operators on a Hilbert space H such that the
quadratic form [H, iA] de�ned on D(HM ) ∩ D(A) for some M uniquely extends as a quadratic
form B on D(HM ) and the virial relation (2.1) holds. Abusing notation we will in the rest of
the paper denote by ρ̃AH , ρ

A
H , τA(H), κA(H) the objects introduced above for B = [H, iA]. The

set τA(H) is usually called the set of thresholds of H for A.

2.2 Functional calculus

If χ ∈ C∞0 (R), we denote by χ̃ ∈ C∞0 (C) an almost analytic extension of χ, satisfying

χ̃|R = χ,

|∂ zχ̃(z)| ≤ Cn|Imz|n, n ∈ N.

We use the following functional calculus formula for χ ∈ C∞0 (R) and A selfadjoint:

(2.2) χ(A) =
i

2π

∫
C
∂ zχ̃(z)(z −A)−1dz ∧ d z.

2.3 Abstract operator classes

In this subsection we introduce a poor man's version of pseudodi�erential calculus tailored to
our abstract setup. It rests on two positive selfadjoint operators ω and 〈x〉 on the one-particle
space h. Later ω will of course be the one-particle Hamiltonian. The operator 〈x〉 will have two
purposes: �rst as a weight to control various operators, and second as an observable to localize
particles in h.
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We �x selfadjoint operators ω, 〈x〉 on h such that:

ω ≥ m > 0, 〈x〉 ≥ 1,

there exists a dense subspace S ⊂ h such that ω, 〈x〉 : S → S.

To understand the terminology below the reader familiar with the standard pseudodi�erential
calculus should think of the example

h = L2(Rd), ω = (D2
x + 1)

1
2 , 〈x〉 = (x2 + 1)

1
2 , and S = S(Rd).

To control various commutators later it is convenient to introduce the following classes of
operators on h. If a, b : S → S we set adab = [a, b] as an operator on S.

De�nition 2.2 For m ∈ R, 0 ≤ δ < 1
2 and k ∈ N we set

Sm(0) = {b : S → h | 〈x〉sb〈x〉−s−m ∈ B(h), s ∈ R},

and for k ≥ 1:

Smδ,(k) = {b : S → S | 〈x〉−sadα〈x〉adβωb〈x〉s−m+(1−δ)β−δα ∈ B(h) α+ β ≤ k, s ∈ R},

where the multicommutators are considered as operators on S.

The parameter m control the "order" of the operator: roughly speaking an operator in Smδ,(k) is

controlled by 〈x〉m. The parameter k is the number of commutators of the operator with 〈x〉
and ω that are controlled. The lower index δ controls the behavior of multicommutators: one
looses 〈x〉δ for each commutator with 〈x〉 and gains 〈x〉1−δ for each commutator with ω.

The operator norms of the (weighted) multicommutators above can be used as a family of
seminorms on Smδ,(k).

The spaces Smδ,(k) for δ = 0 will be denoted simply by Sm(k). We will use the following natural
notation for operators depending on a parameter:

if b = b(R) belongs to Smδ,(k) for all R ≥ 1 we will say that

b ∈ O(Rµ)Smδ,(k),

if the seminorms of R−µb(R) in Smδ,(k) are uniformly bounded in R. The following lemma is easy.

Lemma 2.3 i)
Sm1

δ,(k) × S
m2

δ,(k) ⊂ S
m1m2

δ,(k) .

ii) Let b ∈ S(m)
(0) . Then J( 〈x〉R )b〈x〉s ∈ O(Rm+s) for m+ s ≥ 0 if J ∈ C∞0 (R) and for all s ∈ R if

J ∈ C∞0 (]0,+∞[).

Proof. i) follows from Leibniz rule applied to the operators ad〈x〉 and adω. ii) is immediate. 2
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2.4 Fock spaces.

In this subsection we recall various de�nitions on bosonic Fock spaces. We will also collect some
bounds needed later.

Bosonic Fock spaces.

If h is a Hilbert space then

Γ(h) :=
∞⊕
n=0

⊗ns h,

is the bosonic Fock space over h. Ω ∈ Γ(h) will denote the vacuum vector. The number operator
N is de�ned as

N
∣∣∣⊗n

s h
= n1l.

We de�ne the space of �nite particle vectors:

Γfin(h) := {u ∈ Γ(h) | for some n ∈ N, 1l[0,n](N)u = u},

The creation-annihilation operators on Γ(h) are denoted by a∗(h) and a(h). We denote by

φ(h) :=
1√
2

(a∗(h) + a(h)), W (h) := eiφ(h),

the �eld and Weyl operators.

dΓ operators.

If r : h1 → h2 is an operator one sets:

dΓ(r) : Γ(h1)→ Γ(h2),

dΓ(r)
∣∣∣⊗n

s h1

:=
n∑
j=1

1l⊗(j−1) ⊗ r ⊗ 1l⊗(n−j),

with domain Γfin(D(r)). If r is closeable, so is dΓ(r).

Γ operators.

If q : h1 7→ h2 is bounded one sets:

Γ(q) : Γ(h1) 7→ Γ(h2)

Γ(q)
∣∣∣⊗n

s h1

= q ⊗ · · · ⊗ q.

Γ(q) is bounded i� ‖q‖ ≤ 1 and then ‖Γ(q)‖ = 1.

dΓ(r, q) operators.
If r, q are as above one sets:

dΓ(q, r) : Γ(h1)→ Γ(h2),

dΓ(q, r)
∣∣∣⊗n

s h1

:=
n∑
j=1

q⊗(j−1) ⊗ r ⊗ q⊗(n−j),
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with domain Γfin(D(r)). We refer the reader to [DG1, Subsects 3.5, 3.6, 3.7] for more details.

Tensor products of Fock spaces.

If h1, h2 are two Hilbert spaces, one denote by U : Γ(h1)⊗ Γ(h2)→ Γ(h1 ⊕ h2) the canonical
unitary map (see e.g. [DG1, Subsect. 3.8] for details).

If H = Γ(h), we set
Hext := H⊗H ' Γ(h⊕ h).

The second copy of H will be the state space for bosons living near in�nity in the spectral theory
of a Hamiltonian H acting on H.

Let H = dΓ(ω) + V be an abstract QFT Hamiltonian de�ned in Subsect. 3.1 Then we set:

Hscatt := H⊗ Γ(hc(ω)).

The Hilbert space Γ(hc(ω)) will be the state space for free bosons in the scattering theory of a
Hamiltonian H acting on H. We will need also:

Hext := H ⊗ 1l + 1l⊗ dΓ(ω), acting on Hext.

Clearly Hscatt ⊂ Hext and Hext preserves Hscatt. We will use the notation

N0 := N ⊗ 1l, N∞ := 1l⊗N, as operators on Hext or Hscatt.

Identi�cation operators.

The identi�cation operator is de�ned as

I : Hext → H,

I := Γ(i)U,

where U is de�ned as above for h1 = h2 = h and:

i : h⊕ h→ h,

(h0, h∞) 7→ h0 + h∞.

We have:

I
n
Π
i=1

a∗(hi)Ω⊗
p

Π
i=1

a∗(gi)Ω :=
n
Π
i=1

a∗(hi)
p

Π
i=1

a∗(gi)Ω, hi ∈ h, gi ∈ h.

If ω is a selfadjoint operator as above, we denote by Iscatt the restriction of I to Hscatt.
Note that ‖i‖ =

√
2 so Γ(i) and hence I, Iscatt are unbounded. As domain for I (resp. Iscatt)

we can choose for example D(N∞) ⊗ Γfin(h) (resp. D(N∞) ⊗ Γfin(hc(ω))). We refer to [DG1,
Subsect. 3.9] for details.

Operators I(j) and dI(j, k).

Let j0, j∞ ∈ B(h) and set j = (j0, j∞). We de�ne

I(j) : Γfin(h)⊗ Γfin(h)→ Γfin(h)

9



I(j) := IΓ(j0)⊗ Γ(j∞).

If we identify j with the operator

(2.3)
j : h⊕ h→ h,

j(h0 ⊕ h∞) := j0h0 + j∞h∞,

then we have
I(j) = Γ(j)U.

We deduce from this identity that if j0j
∗
0 + j∞j

∗
∞ = 1l (resp. j0j∗0 + j∞j

∗
∞ ≤ 1l) then I∗(j) is

isometric (resp. is a contraction).
Let j = (j0, j∞), k = (k0, k∞) be pairs of maps from h to h. We de�ne

dI(j, k) : Γfin(h)⊗ Γfin(h)→ Γfin(h)

as follows:
dI(j, k) := I(dΓ(j0, k0)⊗ Γ(j∞) + Γ(j0)⊗ dΓ(j∞, k∞)).

Equivalently, treating j and k as maps from h⊕ h to h as in (2.3), we can write

dI(j, k) := dΓ(j, k)U.

We refer to [DG1, Subsects. 3.10, 3.11] for details.

Various bounds.

Proposition 2.4 i) let a, b two selfadjoint operators on h with b ≥ 0 and a2 ≤ b2. Then

dΓ(a)2 ≤ dΓ(b)2.

ii) let b ≥ 0, 1 ≤ α. Then:
dΓ(b)α ≤ Nα−1dΓ(bα).

iii) let 0 ≤ r and 0 ≤ q ≤ 1. Then:

dΓ(q, r) ≤ dΓ(r).

iv) Let r, r1, r2 ∈ B(h) and ‖q‖ ≤ 1. Then:

|(u2|dΓ(q, r2r1)u1)| ≤ ‖dΓ(r2r
∗
2)

1
2u2‖‖dΓ(r∗1r1)

1
2u1‖,

‖N−
1
2 dΓ(q, r)u‖ ≤ ‖dΓ(r∗r)

1
2u‖.

v) Let j0j
∗
0 + j∞j

∗
∞ ≤ 1, k0, k∞ selfadjoint. Then:

|(u2|dI∗(j, k)u1)| ≤ ‖dΓ(|k0|)
1
2 ⊗ 1lu2‖‖dΓ(|k0|)

1
2u1‖

+‖1l⊗ dΓ(|k∞|)
1
2u2‖‖dΓ(|k∞|)

1
2u1‖, u1 ∈ Γ(h), u2 ∈ Γ(h)⊗ Γ(h).

‖(N0 +N∞)−
1
2 dI∗(j, k)u‖ ≤ ‖dΓ(k0k

∗
0 + k∞k

∗
∞)

1
2u‖, u ∈ Γ(h).

Proof. i) is proved in [GGM, Prop. 3.4]. The other statements can be found in [DG1, Sect. 3].
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2.5 Heisenberg derivatives

Let H be a selfadjoint operator on Γ(h) such that H = dΓ(ω) + V on D(Hm) for some m ∈
N where ω is selfadjoint and V symmetric. We will use the following notations for various
Heisenberg derivatives:

d0 = ∂
∂t + [ω, i· ] acting on B(h),

D0 = ∂
∂t + [H0, i· ], D = ∂

∂t + [H, i· ], acting on B(Γ(h)),

where the commutators on the right hand sides are quadratic forms.
If R 3 t 7→M(t) ∈ B(D(H),H) is of class C1 then:

(2.4) Dχ(H)M(t)χ(H) = χ(H)D0M(t)χ(H) + χ(H)[V, iM(t)]χ(H),

for χ ∈ C∞0 (R).
If R 3 m(t) ∈ B(h) is of class C1 and H0 = dΓ(ω) then:

D0dΓ(m(t)) = dΓ(d0m(t)).

2.6 Wick polynomials

In this subsection we recall some results from [DG1, Subsect. 3.12].
We set

Bfin(Γ(h)) := {B ∈ B(Γ(h)) | for some n ∈ N 1l[0,n](N)B1l[0,n](N) = B}.

Let w ∈ B(⊗psh,⊗qsh). We de�ne the operator

Wick(w) : Γfin(h)→ Γfin(h)

as follows:

(2.5) Wick(w)
∣∣∣⊗n

s h
:=

√
n!(n+ q − p)!

(n− p)!
w ⊗s 1l⊗(n−p).

The operator Wick(w) is called a Wick monomial of order (p, q). This de�nition extends to
w ∈ Bfin(Γ(h)) by linearity. The operator Wick(w) is called a Wick polynomial and the operator
w is called the symbol of the Wick polynomial Wick(w). If w =

∑
(p,q)∈I wp,q for wp,q of order

(p, q) and I ⊂ N �nite, then
deg(w) := sup

(p,q)∈I
p+ q

is called the degree of Wick(w). If h1, . . . , hp, g1, . . . , gq ∈ h then:

Wick (| g1 ⊗s · · · ⊗s gq)(hp ⊗s · · · ⊗s h1)|) = a∗(q1) · · · a∗(gq)a(hp) · · · a(h1).

We recall some basic properties of Wick polynomials.
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Lemma 2.5

i) Wick(w)∗ = Wick(w∗) as a identity on Γfin(h).

ii) If s- limws = w, for ws, w of order (p, q) then for k +m ≥ (p+ q)/2:

s- lim
s

(N + 1)−kWick(ws)(N + 1)−m = (N + 1)−kWick(w)(N + 1)−m.

iii) ‖(N + 1)−kWick(w)(N + 1)−m‖ ≤ C‖w‖B(Γ(h)),

uniformly for w of degree less than p and k +m ≥ p/2.

Most of the time the symbols of Wick polynomials will be Hilbert-Schmidt operators. Let us
introduce some more notation in this context: we set

B2
fin(Γ(h)) := B2(Γ(h)) ∩Bfin(Γ(h)),

where B2(H) is the set of Hilbert-Schmidt operators on the Hilbert space H. Recall that ex-
tending the map:

B2(H) 3 |u)(v| 7→ u⊗ v ∈ H ⊗H

by linearity and density allows to unitarily identify B2(H) with H⊗H, where H is the Hilbert
space conjugate to H. Using this identi�cation, B2

fin(Γ(h)) is identi�ed with Γfin(h)⊗ Γfin(h) or
equivalently to Γfin(h⊕ h). We will often use this identi�cation in the sequel.

If u ∈ ⊗ms h, v ∈ ⊗ns h, w ∈ B(⊗psh,⊗qsh) with m ≤ p, n ≤ q, then one de�nes the contracted
symbols:

(v|w :=
(

(v| ⊗s 1l⊗(q−n)
)
w ∈ B(⊗psh,⊗q−ns h),

w|u) := w
(
|u)⊗s 1l⊗(p−m)

)
∈ B(⊗p−ms h,⊗qsh),

(v|w|u) :=
(

(v| ⊗s 1l⊗(q−n)
)
w
(
|u)⊗s 1l⊗(p−m)

)
∈ B(⊗p−ms h,⊗q−ns h).

If a is selfadjoint on h and w ∈ B2
fin(Γ(h)), we set

9dΓ(a)w9 =
∑

1≤i<∞
‖(a)i ⊗ 1lΓ(h)w‖B2

fin(Γ(h)) +
∑

1≤i<∞
‖1lΓ(h) ⊗ (a)iw‖B2

fin(Γ(h)),

where the sums are �nite since w ∈ B2
fin(Γ(h)) ' Γfin(h) ⊗ Γfin(h) and one uses the convention

‖au‖ = +∞ if u 6∈ D(a).
We collect now some bounds on various commutators with Wick polynomials.

Proposition 2.6 i) Let b a selfadjoint operator on h and w ∈ Bfin(Γ(h)). Then:

[dΓ(b),Wick(w)] = Wick([dΓ(b), w]),

as quadratic form on D(dΓ(b)) ∩ D(Ndeg(w)/2).
ii) Let q a unitary operator on h and w ∈ Bfin(Γ(h)). Then

Γ(q)Wick(w)Γ(q)−1 = Wick(Γ(q)wΓ(q)−1).
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iii) Let w ∈ Bfin(Γ(h)) of order (p, q) and h ∈ h. Then:

(2.6) [Wick(w), a∗(h)] = pWick
(
w|h)

)
, [Wick(w), a(h)] = qWick

(
(h|w

)
,

(2.7) W (h)Wick(w)W (−h) =
p∑
s=0

q∑
r=0

p!
s!
q!
r!

(
i√
2

)p+q−r−sWick(ws,r),

where

(2.8) ws,r = (h⊗(q−r)|w|h⊗(p−s)).

Proposition 2.7 i) Let q ∈ B(h), ‖q‖ ≤ 1 and w ∈ B2
fin(h). Then for m+ k ≥ deg(w)/2:

(2.9)
‖(N + 1)−m[Γ(q),Wick(w)](N + 1)−k‖

≤ C 9 dΓ(1l− q)w 9 .

ii) Let j = (j0, j∞) with j0, j∞ ∈ B(h), ‖j∗0j0 + j∗∞j∞‖ ≤ 1. Then for m+ k ≥ deg(w)/2:

(2.10)
‖(N0 +N∞ + 1)−m

(
I∗(j)Wick(w)− (Wick(w)⊗ 1l)I∗(j)

)
(N + 1)−k‖

≤ C 9 dΓ(1l− j0)w 9 +C 9 dΓ(j∞)w 9 .

3 Abstract QFT Hamiltonians

In this section we de�ne the class of abstract QFT Hamiltonians that we will consider in this
paper.

3.1 Hamiltonians

Let ω be a selfadjoint operator on h and w ∈ B2
fin(Γ(h)) such that w = w∗. We set

H0 := dΓ(ω), V := Wick(w).

Clearly H0 is selfadjoint and V symmetric on D(Nn) for n ≥ deg(w)/2 by Lemma 2.5.
We assume:

(H1) infσ(ω) = m > 0,

(H2) H0 + V is essentially selfadjoint and bounded below on D(H0) ∩ D(V ).

We set
H := H0 + V .

In the sequel we �x b > 0 such that H + b ≥ 1. We assume:

(H3)
∀n ∈ N, ∃ p ∈ N such that ‖NnH0(H + b)−p‖ <∞,

∀P ∈ N, ∃ P < M ∈ N such that ‖NM (H + b)−1(N + 1)−P ‖ <∞.

The bounds in (H3) are often called higher order estimates.

De�nition 3.1 A Hamiltonian H on Γ(h) satisfying (Hi) for 1 ≤ i ≤ 3 will be called an abstract
QFT Hamiltonian.
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3.2 Hypotheses on the one-particle Hamiltonian

The study of the spectral and scattering theory of abstract QFT Hamiltonians relies heavily on
corresponding statements for the one-particle Hamiltonian ω. The now standard approach to
such results is through the proof of a Mourre estimate and suitable propagation estimates on the
unitary group e−itω.

Many of these results can be formulated in a completely abstract way. A convenient setup
is based on the introduction of only three selfadjoint operators on the one-particle space h, the
Hamiltonian ω, a conjugate operator a for ω and a weight operator 〈x〉. In this subsection we
describe the necessary abstract hypotheses and collect various technical results used in the sequel.
We will use the abstract operator classes introduced in Subsect. 2.3.

Commutator estimates.

We assume that there exists a selfadjoint operator 〈x〉 ≥ 1 for ω such that:

(G1 i) there exists a subspace S ⊂ h such that S is a core for ω, ω2 and the operators ω, 〈x〉
for z ∈ C\σ(〈x〉), (〈x〉 − z)−1, F (〈x〉) for F ∈ C∞0 (R) preserve S.

(G1 ii) [〈x〉, ω] belongs to S0
(3).

De�nition 3.2 An operator 〈x〉 satisfying (G1) will be called a weight operator for ω.

Dynamical estimates.

Particles living at time t in 〈x〉 ≥ ct for some c > 0 are interpreted as free particles. The
following assumption says that states in hc(ω) describe free particles:

(S) there exists a subspace h0 dense in hc(ω) such that for all h ∈ h0 there exists ε > 0 such
that

‖1l[0,ε](
〈x〉
|t|

)e−itωh‖ ∈ O(t−µ), µ > 1.

(We recall that hc(ω) is the continuous spectral subspace for ω).
Note that (S) can be deduced from (G1), (M1) and (G4), assuming that ω ∈ C3(a). The

standard way to see this is to prove �rst a strong propagation estimate (see e.g. [HSS]):

F (
|a|
|t|
≤ ε)χ(ω)e−itω(a+ i)−2 ∈ O(t−2),

in norm if χ ∈ C∞0 (R) is supported away from κa(ω), and then to obtain a corresponding estimate
with a replaced by 〈x〉 using (G4) and arguments similar to those in [GN, Lemma A.3].

The operators [ω, i〈x〉] and [ω, i[ω, i〈x〉]] are respectively the instantaneous velocity and ac-
celeration for the weight 〈x〉. The following condition means roughly that the acceleration is
positive:

(G2) there exists 0 < ε < 1
2 such that

[ω, i[ω, i〈x〉]] = γ2 + r−1−ε,

where γ = γ∗ ∈ S−
1
2

ε,(2) and r−1−ε ∈ S−1−ε
(0) .
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Mourre theory and local compactness.

We now state hypotheses about the conjugate operator a:

(M1 i) ω ∈ C1(a), [ω, ia]0 ∈ B(h).
(M1 ii) ρaω ≥ 0, τa(ω) is a closed countable set.

We will also need the following condition which allows to localize the operator [ω, ia]0 using
the weight operator 〈x〉.

(G3) a preserves S and [〈x〉, [ω, ia]0] belongs to S0
(0).

Note that if a preserves S then [ω, a]0 = ωa− aω on S. Therefore [〈x〉, [ω, a]0] in (G3) is well
de�ned as an operator on S.

We will also need some conditions which roughly say that a is controlled by 〈x〉. This allows
to translate propagation estimates for a into propagation estimates for 〈x〉.

(G4) a belongs to S1
(0).

Note that by Lemma 2.3 i), a2 ∈ S2
(0) hence a〈x〉

−1 and a2〈x〉−2 are bounded.
We state also an hypothesis on local compactness:

(G5) 〈x〉−ε(ω + 1)−ε is compact on h for some 0 < ε ≤ 1
2 .

Comparison operator.

To get a sharp Mourre estimate for abstract QFT Hamiltonians, it is convenient to assume
the existence of a comparison operator ω∞ such that:

(C i) C−1ω2
∞ ≤ ω2 ≤ Cω2

∞, for some C > 0,

(C ii) ω∞ satis�es (G1), (M1), (G3) for the same 〈x〉 and a and κaω∞ ⊂ τ
a
ω∞ .

Note that the last condition in (C ii) is satis�ed if ω∞ has no eigenvalues.

(C iii) ω−
1
2 (ω − ω∞)ω−

1
2 〈x〉ε and [ω − ω∞, ia]0〈x〉ε are bounded for some ε > 0.

Some consequences.

We now state some standard consequences of (G1).

Lemma 3.3 Assume (H1), (G1). Then for F ∈ C∞0 (R):

i) [F (
〈x〉
R

), adk〈x〉ω] = R−1F ′(
〈x〉
R

)[〈x〉, adk〈x〉ω] +M(R), k = 0, 1,

where M(R) ∈ O(R−2)S0
(0) ∩O(R−1)S−1

(0) .

ii) F ( 〈x〉R ) : D(ω)→ D(ω) and ωF ( 〈x〉R )ω−1 ∈ O(1),

iii) [F ( 〈x〉R ), [ω, 〈x〉]] ∈ O(R−1),

iv) F ( 〈x〉R )[ω, i〈x〉](1− F1)( 〈x〉R ) ∈ O(R−2),

if F1 ∈ C∞0 (R) and FF1 = F .
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Assume (H1), (M1 i), (G3). Then for F ∈ C∞0 (R):

v) [F (
〈x〉
R

), [ω, ia]0] ∈ O(R−1)

Assume (H1), (G1), (G2). Then for F ∈ C∞0 (R):

vi) F (
〈x〉
R

) : D(ω2) 7→ D(ω2) and [ω2, F (
〈x〉
R

)]ω−1 ∈ O(R−1).

Let b ∈ S−µδ,(1) for µ ≥ 0 and F ∈ C∞0 (R\{0}). Then:

vii) [F (
〈x〉
R

), b] ∈ O(R−µ−1+δ).

In i) for k = 0 the commutator on the l.h.s. is considered as a quadratic form on D(ω).

Lemma 3.4 Let ω∞ be a comparison operator satisfying (C). Then for F ∈ C∞(R) with F ≡ 0
near 0, F ≡ 1 near +∞ we have:

ω−
1
2 (ω − ω∞)F (

〈x〉
R

)ω−
1
2 , [ω − ω∞, ia]F (

〈x〉
R

) ∈ o(R0).

The proof of Lemmas 3.3, 3.4 will be given in the Appendix.

3.3 Hypotheses on the interaction

We now formulate the hypotheses on the interaction V . If j ∈ C∞(R), we set for R ≥ 1
jR = j( 〈x〉R ).

For the scattering theory of abstract QFT Hamiltonians, we will need the following decay
hypothesis on the symbol of V :

(Is) 9 dΓ(jR)w9 ∈ O(R−s), s > 0 if j ≡ 0 near 0, j ≡ 1 near ±∞.

Note that if w ∈ B2
fin(Γ(h)) and j is as above then

(3.1) 9dΓ(jR)w9 ∈ o(R0), when R→∞.

Another type of hypothesis concerns the Mourre theory. We �x a conjugate operator a for ω
such that (M1) holds and set

A := dΓ(a).

For the Mourre theory, we will impose:

(M2) w ∈ D(A⊗ 1l− 1l⊗A).

If hypothesis (G4) holds then a〈x〉−1 is bounded. It follows that the condition

(D) 9 dΓ(〈x〉s)w9 <∞, for some s > 1

implies both (Is) for s > 1 and (M2).
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4 Results

For the reader convenience, we summarize in this section the results of the paper. To simplify
the situation we will assume that all the various hypotheses hold, i.e. we assume conditions (Hi),
1 ≤ i ≤ 3, (Gi), 1 ≤ i ≤ 5, (S), (M1), (C) and (D). However various parts of Thm. 4.1 hold
under smaller sets of hypotheses, we refer the reader to later sections for precise statements.

The notation dΓ(1)(E) for a set E ⊂ R is de�ned in Subsect. 7.3.

Theorem 4.1 Let H be an abstract QFT Hamiltonian. Then:

1. if σess(ω) = [m∞,+∞[ then

σess(H) = [inf σ(H) +m∞,+∞[.

2. The Mourre estimate holds for A = dΓ(a) on R\τ , where

τ = σpp(H) + dΓ(1)(τa(ω)),

where τa(ω) is the set of thresholds of ω for a and dΓ(1)(E) for E ⊂ R is de�ned in (7.18).

3. The asymptotic Weyl operators:

W±(h) := s- lim
t±∞

eitHW (e−itωh)e−itH exist for all h ∈ hc(ω),

and de�ne two regular CCR representations over hc(ω).

4. There exist unitary operators Ω±, called the wave operators:

Ω± : Hpp(H)⊗ Γ(hc(ω))→ Γ(h)

such that
W±(h) = Ω±1l⊗W (h)Ω±∗, h ∈ hc(ω),

H = Ω±(H|Hpp(H) ⊗ 1l + 1l⊗ dΓ(ω))Ω±∗.

Parts (1), (2), (3), (4) are proved respectively in Thms. 7.1, 7.10, 8.1 and 10.6.
Statement (1) is the familiar HVZ theorem, describing the essential spectrum of H.
Statement (2) is the well-known Mourre estimate. Under additional conditions, it is possible

to deduce from it resolvent estimates which imply in particular that the singular continuous
spectrum of H is empty. In our case this result follows from (4), provided we know that ω has
no singular continuous spectrum.

Statement (3) is rather easy. Statement (4) is the most important result of this paper, namely
the asymptotic completeness of wave operators.

Remark 4.2 Assume that there exist another operator ω∞ on h such that ω|hc(ω) is unitarily
equivalent to ω∞. Typically this follows from the construction of a nice scattering theory for the
pair (ω, ω∞). Then since dΓ(ω) restricted to Γ(hc(ω)) is unitarily equivalent to dΓ(ω∞), we can
replace ω by ω∞ in statement (4) of Thm. 4.1.
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5 Examples

In this section we give examples of QFT Hamiltonians to which we can apply Thm. 4.1. Our
two examples are space-cuto� P (ϕ)2 Hamiltonians for a variable metric, and similar P (ϕ)d+1

models for d ≥ 2 if the interaction term has also an ultraviolet cuto�. For µ ∈ R we denote by
Sµ(Rd) the space of C∞ functions on Rd such that:

∂αx f(x) ∈ O(〈x〉−µ−α) α ∈ Nd, where 〈x〉 = (1 + x2)
1
2 .

5.1 Space-cuto� P (ϕ)2 models with variable metric

We �x a second order di�erential operator on h = L2(R):

h := Da(x)D + c(x), D = −i∂x,

where a(x) ≥ c0, c(x) ≥ c0 for some c0 > 0 and a(x) − 1, c(x) − m2
∞ ∈ S−µ(R) for some

m∞, µ > 0. We set:

ω := h
1
2

and consider the free Hamiltonian

H0 = dΓ(ω), acting on Γ(h).

To de�ne the interaction, we �x a real polynomial with x−dependent coe�cients:

(5.1) P (x, λ) =
2n∑
p=0

ap(x)λp, a2n(x) ≡ a2n > 0,

and a function g ∈ L1(R) with g ≥ 0. For x ∈ R, one sets

ϕ(x) := φ(ω−
1
2 δx),

where δx is the Dirac distribution at x. The associated P (ϕ)2 interaction is formally de�ned as:

V :=
∫

R
g(x) :P (x, ϕ(x)) : dx,

where : : denotes the Wick ordering.
In [GP] we prove the following theorem. Condition (B3) below is formulated in terms of a

(generalized) basis of eigenfunctions of h. To be precise we say that the families {ψl(x)}l∈I and
{ψ(x, k)}k∈R form a generalized basis of eigenfunctions of h if:

ψl(·) ∈ L2(R), ψ(·, k) ∈ S ′(R),

hψl = εlψl, εl ≤ m2
∞, l ∈ I,

hψ(·, k) = (k2 +m2
∞)ψ(·, k), k ∈ R,∑

l∈I |ψl)(ψl|+
1

2π

∫
R |ψ(·, k))(ψ(·, k)|dk = 1l.
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Theorem 5.1 Assume that:

(B1) gap ∈ L2(R), 0 ≤ p ≤ 2n, g ∈ L1(R), g ≥ 0, g(ap)2n/(2n−p) ∈ L1(R), 0 ≤ p ≤ 2n− 1,

(B2) 〈x〉sgap ∈ L2(R) ∀ 0 ≤ p ≤ 2n, for some s > 1.

Assume moreover that for a measurable function M : R → R+ with M(x) ≥ 1 there exists a
generalized basis of eigenfunctions of h such that:

(B3)

{ ∑
l∈I ‖M−1(·)ψl(·)‖2∞ <∞,

‖M−1(·)ψ(·, k)‖∞ ≤ C, k ∈ R.

(B4) gapM s ∈ L2(R), g(apM s)2n/(2n−p+s) ∈ L1(R), ∀ 0 ≤ s ≤ p ≤ 2n− 1.

Then the Hamiltonian

H = dΓ(ω) +
∫

R
g(x) :P (x, ϕ(x)) : dx

satis�es all the hypotheses of Thm. 4.1 for the weight operator 〈x〉 = (1 + x2)
1
2 and conjugate

operator a = 1
2(x〈Dx〉−1Dx + hc).

Remark 5.2 If g is compactly supported we can take M(x) = +∞ outside supp g, and the
meaning of (B3) is that the sup norms ‖ ‖∞ are taken only on supp g.

Remark 5.3 Condition (B3) is discussed in details in [GP], where many su�cient conditions
for its validity are given. As an example let us simply mention that if a(x)− 1, c(x)−m2

∞ and
the coe�cients ap are in the Schwartz class S(R), then all conditions in Thm. 5.1 are satis�ed.

5.2 Higher dimensional examples

We work now on L2(Rd) for d ≥ 2 and consider

ω = (
∑

1≤i,j≤d
Diaij(x)Dj + c(x))

1
2

where aij , c are real, [aij ](x) ≥ c01l, c(x) ≥ c0 for some c0 > 0 and [aij ] − 1l ∈ S−µ(Rd),
c(x)−m2

∞ ∈ S−µ(Rd) for some m∞, µ > 0.
The free Hamiltonian is as above

H0 = dΓ(ω),

acting on the Fock space Γ(L2(Rd)).
Since d ≥ 2 it is necessary to add an ultraviolet cuto� to make sense out of the formal

expression ∫
Rd

g(x)P (x, ϕ(x))dx.

We set
ϕκ(x) := φ(ω−

1
2χ(

ω

κ
)δx),

where χ ∈ C∞0 ([−1, 1]) is a cuto� function equal to 1 on [−1
2 ,

1
2 ] and κ � 1 is an ultraviolet

cuto� parameter. Since ω−
1
2χ(ωκ )δx ∈ L2(Rd), ϕκ(x) is a well de�ned selfadjoint operator on

Γ(L2(Rd)).
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If P (x, λ) is as in (5.1) and g ∈ L1(Rd), then

V :=
∫

Rd

g(x)P (x, ϕκ(x))dx,

is a well de�ned selfadjoint operator on Γ(L2(Rd)). We have then the following theorem. As
before we consider a generalized basis {ψl(x)}l∈I and {ψ(x, k)}k∈Rd of eigenfunctions of h.

Theorem 5.4 Assume that:

(B1) gap ∈ L2(Rd), 0 ≤ p ≤ 2n, g ∈ L1(Rd), g ≥ 0, g(ap)2n/(2n−p) ∈ L1(Rd), 0 ≤ p ≤ 2n− 1,

(B2) 〈x〉sgap ∈ L2(Rd) ∀ 0 ≤ p ≤ 2n, for some s > 1.

Assume moreover that for a measurable function M : Rd → R+ with M(x) ≥ 1 there exists a
generalized basis of eigenfunctions of h such that:

(B3)

{ ∑
l∈I ‖M−1(·)ψl(·)‖2∞ <∞,

‖M−1(·)ψ(·, k)‖∞ ≤ C, k ∈ R.

(B4) gapM s ∈ L2(Rd), g(apM s)2n/(2n−p+s) ∈ L1(Rd), ∀ 0 ≤ s ≤ p ≤ 2n− 1.

Then the Hamiltonian

H = dΓ(ω) +
∫

Rd

g(x)P (x, ϕκ(x))dx

satis�es all the hypotheses of Thm. 4.1 for the weight operator 〈x〉 = (1 + x2)
1
2 and conjugate

operator a = 1
2(x · 〈Dx〉−1Dx + hc).

Remark 5.5 Su�cient conditions for (B3) to hold with M(x) ≡ 1 are given in [GP].

6 Commutator estimates

In this section we collect various commutator estimates, needed in Sect. 7.

6.1 Number energy estimates

We recall �rst some notation from [DG1]: let an operator B(t) depending on some parameter t
map ∩nD(Nn) ⊂ H into itself. We will write

(6.1) B(t) ∈ (N + 1)mON (tp) for m ∈ R if

‖(N + 1)−m−kB(t)(N + 1)k‖ ≤ Ck〈t〉p, k ∈ Z.

If (6.1) holds for any m ∈ R, then we will write

B(t) ∈ (N + 1)−∞ON (tp).

Likewise, for an operator C(t) that maps ∩nD(Nn) ⊂ H into ∩nD((N0 +N∞)n) ⊂ Hext we
will write

(6.2) C(t) ∈ (N + 1)mǑN (tp) for m ∈ R if
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‖(N0 +N∞)−m−kC(t)(N + 1)k‖ ≤ Ck〈t〉p, k ∈ Z.

If (6.2) holds for any m ∈ R, then we will write

B(t) ∈ (N + 1)−∞ǑN (tp).

The notation (N + 1)oN (tp), (N + 1)mǒN (tp) are de�ned similarly.

Lemma 6.1 Let H be an abstract QFT Hamiltonian. Then:
i) for all P ∈ N there exists α > 0 such that for all 0 ≤ s ≤ P

N s+α(H − z)−1N−s ∈ O(|Imz|−1), uniformly for z ∈ C\R ∩ {|z| ≤ R}.

ii) for χ ∈ C∞0 (R) we have
‖Nmχ(H)Np‖ <∞, m, p ∈ N.

Proof. ii) follows directly from (H3). It remains to prove i). Let us �x P ∈ N and M > P such
that

(6.3) NM (H + b)−1(N + 1)−P ∈ B(H).

We deduce also from (H3) and interpolation that there exists α > 0 such that

(6.4) Nα(H + b)−1 ∈ B(H).

We can choose α > 0 small enough such that δ = (M − α)/P > 1. Interpolating between (6.3)
and (6.4) we obtain �rst that Nα+δx(H + b)−1(N + 1)−x is bounded for all x ∈ [0, P ]. Since
δ > 1, we get that

(6.5) ‖Nα(s+1)(H + b)−1(N + 1)−sα‖ <∞, s ∈ [0, Pα−1].

Without loss of generality we can assume that α−1 ∈ N, and we will prove by induction on s ∈ N
that

(6.6) N (s+1)α(H − z)−1(N + 1)−sα ∈ O(|Imz|−1),

uniformly for z ∈ C\R ∩ {|z| ≤ R} and 0 ≤ s ≤ Pα−1.
For s = 0 (6.6) follows from the fact that Nα(H + b)−1 is bounded. Let us assume that (6.6)

holds for s− 1. Then we write:

N (s+1)α(H − z)−1(N + 1)−sα

= N (s+1)α(H + b)−1N−sαN sα(H + b)(H − z)−1(N + 1)−sα

= N (s+1)α(H + b)−1N−sαN sα(1l + (b+ z)(H − z)−1)(N + 1)−sα,

so (6.6) for s follows from (6.5) and the induction hypothesis. We extend then (6.6) from integer
s ∈ [0, Pα−1] to all s ∈ [0, Pα−1] by interpolation. Denoting sα by s we obtain i). 2
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6.2 Commutator estimates

Lemma 6.2 Let H be an abstract QFT Hamiltonian and 〈x〉 a weight operator for ω. Let

q ∈ C∞0 (R), 0 ≤ q ≤ 1, q ≡ 1 near 0. Set for R ≥ 1 qR = q( 〈x〉R ). Then for χ ∈ C∞0 (R):

[Γ(qR), χ(H)] ∈
{

(N + 1)−∞ON (R− inf(s,1)) under hypothesis (Is),
(N + 1)−∞oN (R0) otherwise.

Proof. In all the proof M and P will denote integers chosen su�ciently large. We prove the
lemma under hypothesis (Is) s > 0, the general case being handled replacing hypothesis (Is) by
the estimate (3.1). Clearly Γ(qR) preserves D(Nn). We have

(6.7) [H0,Γ(qR)] = dΓ(qR, [ω, qR]),

By Lemma 3.3 i), [ω, qR] ∈ O(R−1) and hence [H0,Γ(qR)](H0 + 1)−1 is bounded. Therefore,
Γ(qR) preserves D(H0). As in [DG1, Lemma 7.11] the following identity is valid as a operator
identity on D(H0) ∩ D(NP ):

[H,Γ(qR)] = [H0,Γ(qR)] + [V,Γ(qR)] =: T.

From (6.7) and Prop. 2.4 iv) we get that

[Γ(qR), H0] ∈ (N + 1)ON (R−1).

Using Prop. 2.7 i) and hypothesis (Is), we get that

[Γ(qR), V ] ∈ (N + 1)nON (R−s), n ≥ deg(w)/2

which gives

(6.8) T ∈ (N + 1)nO(R− inf(s,1)).

Let now
T (z) := [Γ(qR), (z −H)−1]

= −(z −H)−1[Γ(qR), H](z −H)−1.

By (H3) D(HM ) ⊂ D(H0) ∩ D(NP ), so the following identity holds on D(HM ):

T (z) = (z −H)−1T (z −H)−1.

Let now χ1 ∈ C∞0 (R) with χ1χ = χ and χ̃1, χ̃ be almost analytic extensions of χ1, χ. We write:

Nm[χ(H),Γ(qR)]Np

= Nmχ1(H)[χ(H),Γ(qR)]Np +Nm[χ1(H),Γ(qR)]χ(H)Np

= i
2π

∫
C ∂ zχ̃(z)Nmχ1(H)T (z)Npdz ∧ d z

+ i
2π

∫
C ∂ zχ̃1(z)NmT (z)χ(H)Npdz ∧ d z.

Using Lemma 6.1 i) and (6.8), we obtain that for all n1 ∈ N there exists n2 ∈ N such that

Nn1T (z)(N + 1)−n2 , (N + 1)−n2T (z)Nn1 ∈ O(|Imz|−2), uniformly for z ∈ C\R ∩ {|z| ≤ R}.
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Using also Lemma 6.1 ii), we obtain that

Nm[χ(H),Γ(qR)]Np ∈ O(R− inf(s,1)),

which completes the proof of the Lemma. 2

Let j0 ∈ C∞0 (R), j∞ ∈ C∞(R), 0 ≤ j0, 0 ≤ j∞, j2
0 + j2

∞ ≤ 1, j0 = 1 near 0 (and hence j∞ = 0
near 0). Set for R ≥ 1 jR = (j0( 〈x〉R ), j∞( 〈x〉R )).

Lemma 6.3 Let H be an abstract QFT Hamiltonian and 〈x〉 a weight operator for ω. Then for
χ ∈ C∞0 (R):

χ(Hext)I∗(jR)− I∗(jR)χ(H) ∈
{

(N + 1)−∞Ǒ(R− inf(s,1)) under hypothesis (Is),
(N + 1)−∞ǒ(R0)otherwise.

Proof. Again we will only prove the lemma under hypothesis (Is). As in [DG1, Lemma 7.12],
we have:

Hext
0 I∗(jR)− I∗(jR)H0 ∈ (N + 1)O(‖[ω, jR0 ]‖+ ‖[ω, jR∞]‖).

Writing [ω, jR∞] = [(1− j∞)R, ω], we obtain that ‖[ω, jR0 ]‖+ ‖[ω, jR∞]‖ ∈ O(R−1), hence:

(6.9) Hext
0 I∗(jR)− I∗(jR)H0 ∈ (N + 1)ǑN (R−1).

This implies that I∗(jR) sends D(H0) into D(Hext
0 ), and since I∗(jR)N = (N0 + N∞)I∗(jR),

I∗(jR) sends also D(Nn) into D((N0 +N∞)n).
Next by Prop. 2.7 ii) and condition (Is) we have

(6.10) (V ⊗ 1l)I∗(jR)− I∗(jR)V ∈ (N + 1)nǑN (R−s), n ≥ deg(w)/2.

This and (6.9) show that as an operator identity on D(H0) ∩ D(Nn) we have

(6.11) HextI∗(jR)− I∗(jR)H ∈ (N + 1)nǑN (R−min(1,s)).

Using then (H3) and the fact that I∗(jR) sends D(H0) into D(Hext
0 ) and D(Nn) into D((N0 +

N∞)n), we obtain the following operator identity on D(HM ) for M large enough:

T (z) := (z −Hext)−1I∗(jR)− I∗(jR)(z −H)−1

= (z −Hext)−1
(
I∗(jR)H −HextI∗(jR)

)
(z −H)−1,

uniformly for z ∈ C\R ∩ {|z| ≤ R}.
Using then Lemma 6.1 i) (and its obvious extension for Hext), we obtain that for all n1 ∈ N

there exists n2 ∈ N such that

(6.12) (N0 +N∞)n1T (z)(N + 1)−n2 , (N0 +N∞ + 1)−n2T (z)Nn1 ∈ O(|Imz|−2)R− inf(s,1).

Let us again pick χ1 ∈ C∞0 (R) with χ1χ = χ. We have:

(N0 +N∞)m
(
χ(Hext)I∗(jR)− I∗(jR)χ(H)

)
Nm

= (N0 +N∞)mχ1(Hext)
(
χ(Hext)I∗(jR)− I∗(jR)χ(H)

)
Nm

+(N0 +N∞)m
(
χ1(Hext)I∗(jR)− I∗(jR)χ1(H)

)
χ(H)Nm

= i
2π

∫
C ∂ zχ̃(z)(N0 +N∞)mχ1(Hext)T (z)Nmdz ∧ d z

+ i
2π

∫
C ∂ zχ̃1(z)(N0 +N∞)mT (z)χ(H)Nmdz ∧ d z.
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Using Lemma 6.1 i), (6.12), the above operator is O(R− inf(s,1)) as claimed. 2

7 Spectral analysis of abstract QFT Hamiltonians

In this section we study the spectral theory of our abstract QFT Hamiltonians. The essential
spectrum is described in Subsect. 7.1. The Mourre estimate is proved in Subsect. 7.4. An
improved version with a smaller threshold set is proved in Subsect. 7.5.

7.1 HVZ theorem and existence of a ground state

Theorem 7.1 Let H be an abstract QFT Hamiltonian and let 〈x〉 be a weight operator for ω.
Assume hypotheses (G1), (G5). Then

i) if σess(ω) ⊂ [m∞,+∞[ then

σess(H) ⊂ [inf σ(H) +m∞,+∞[.

ii) if σess(ω) = [m∞,+∞[ then

σess(H) = [inf σ(H) +m∞,+∞[.

Proof. Let us pick functions j0, j∞ ∈ C∞(R) with 0 ≤ j0 ≤ 1, j0 ∈ C∞0 (R), j0 ≡ 1 near 0 and
j2
0 + j2

∞ = 1. For R ≥ 1, jR is de�ned as in Subsect. 6.2 and we set qR = (jR0 )2. From Subsect.
2.4 we know that

I(jR)I∗(jR) = 1l.

We �rst prove i). Let χ ∈ C∞0 (]−∞, infσ(H) +m∞[). Using Lemma 6.3 we get:

(7.1)

χ(H) = χ(H)I(jR)I∗(jR)

= I(jR)χ(Hext)I∗(jR) + o(R0)

=
∑M

k=0 I(jR)1l{k}(N∞)χ(Hext)I∗(jR) + o(R0),

for some M , using the fact that H is bounded below and ω ≥ m > 0. Using again Lemma 6.3,
we have:

(7.2)

I(jR)1l{0}(N∞)χ(Hext)I∗(jR)

= I(jR)1l{0}(N∞)I∗(jR)χ(H) + o(R0)

= Γ(qR)χ(H) + o(R0).

It remains to treat the other terms in (7.1). Because of the support of χ and using again Lemma
6.3, we have:

I(jR)1l{k}(N∞)χ(Hext)I∗(jR)

= I(jR)1l{k}(N∞)1l⊗ F (dΓ(ω) < m∞)χ(Hext)I∗(jR)

= I(jR)1l{k}(N∞)1l⊗ F (dΓ(ω) < m∞)I∗(jR)χ(H) + o(R0),
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where F (λ < m∞) is a cuto� function supported in ]−∞,m∞[.
From hypothesis (H3), it follows that 1l[P,+∞[(N)χ(H) tends to 0 in norm when P → +∞.

Since I∗(jR) is isometric, we obtain:

I(jR)1l{k}(N∞)1l⊗ F (dΓ(ω) < m∞)I∗(jR)χ(H)

= I(jR)1l{k}(N∞)1l⊗ F (dΓ(ω) < m∞)I∗(jR)1l[0,P ](N)χ(H) + o(R0) + o(P 0),

where the error term o(P 0) is uniform in R. Next we use the following identity from [DG2,
Subsect. 2.13]:

1l{k}(N∞)I∗(jR)1l{n}(N) = Ik(
n!

(n− k)!k!
)

1
2 jR0 ⊗ · · · ⊗ jR0︸ ︷︷ ︸

n−k

⊗ jR∞ ⊗ · · · ⊗ jR∞︸ ︷︷ ︸
k

,

where Ik is the natural isometry between
⊗n h and

⊗n−k h⊗
⊗k h.

We note next that if F ∈ C∞0 (R) is supported in ] − ∞,m∞[, F (ω) is compact on h, so
F (ω)jR∞ tends to 0 in norm when R → ∞ since s- limR→∞ j

R
∞ = 0. It follows from this remark

that for each k ≥ 1 and n ≤ P :

I(jR)1l{k}(N∞)1l⊗ F (dΓ(ω) < m∞)I∗(jR)1l{n}(N) = oP (R0),

and hence

(7.3) I∗(jR)1l{k}(N∞)χ(Hext)I(jR) = o(P 0) + o(R0) + oP (R0) = o(R0),

if we choose �rst P large enough and then R large enough. Collecting (7.1), (7.2) and (7.3) we
�nally get that

χ(H) = Γ(qR)χ(H) + o(R0).

We use now that for each R Γ(qR)(H0 + 1)−
1
2 is compact on Γ(h), which follows easily from

(H1) and (G5) (see e.g. [DG2, Lemma 4.2]). We obtain that χ(H) is compact as a norm limit
of compact operators. Therefore σess(H) ⊂ [infσ(H) +m∞,+∞[.

Let us now prove ii). Note that it follows from i) that H admits a ground state. Let
λ = infσ(H) + ε for ε > m∞. Since ε ∈ σess(ω), there exists unit vectors hn ∈ D(ω) such that
limn→∞(ω − ε)hn = 0 and w − limn→∞ hn = 0. Let u ∈ Γ(h) a normalized ground state of H
and set

un = a∗(hn)u.

Since u ∈ D(N) by (H3) un is well de�ned. Moreover since w − limhn = 0, we obtain that
lim ‖un‖ = 1 and w − limun = 0. Since u ∈ D(H∞), we know from (H3) that u,Hu ∈ D(N∞)
and hence the following identity is valid:

H0a
∗(hn)u = a∗(hn)H0u+ a∗(ωhn)u = a∗(hn)Hu− a∗(hn)V u+ a∗(ωhn)u,

which shows that un = a∗(hn)u ∈ D(H0). Clearly un ∈ D(N∞), so un ∈ D(H) and

(H − λ)un = (H0 + V − λ)un

= a∗(hn)(H − λ)u+ a∗(ωhn)u+ [V, a∗(hn)]u

= a∗((ω − ε)hn)u+ [V, a∗(hn)]u.

We can compute the Wick symbol of [V, a∗(hn)] using Prop. 2.6. Using the fact that hn tends
weakly to 0 and Lemma 2.5 iii) we obtain that [V, a∗(hn)]u tends to 0 in norm. Similarly the
term a∗((ω − ε)hn)u tends to 0 in norm. Therefore (un) is a Weyl sequence for λ. 2
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7.2 Virial theorem

LetH be an abstract QFT Hamiltonian. We �x a selfadjoint operator a on h such that hypothesis
(M1 i) holds and set

A := dΓ(a).

On the interaction V we impose hypothesis (M2).

Lemma 7.2 Assume (M1 i) and set ωt = eitaωe−ita. Then:
i) eita induces a strongly continuous group on D(ω) and

sup
|t|≤1
‖ωt(ω + 1)−1‖ <∞, sup

|t|≤1
‖ω(ωt + 1)−1‖ <∞.

ii) sup
0<|t|≤1

|t|−1‖(ω − ωt)‖ <∞, s- lim
t→0

t−1(ω − ωt) = −[ω, ia]0.

Proof. The �rst statement of i) follows from [GG, Appendix]. This fact clearly implies the �rst
bound in i). The second follows from ω(ωt + 1)−1 = e−itaωt(ω + 1)−1eita. We deduce then from
i) that

(7.4) sup
|t|,|s|≤1

‖ωs(ωt + 1)−1‖ <∞.

Since ω ∈ C1(a) we have:

(ωt + 1)−1 − (ω + 1)−1 =
∫ t

0
eisa(ω + 1)−1[ω, ia]0(ω + 1)−1e−isads,

as a strong integral, and hence:

(ω − ωt) = (ωt + 1)
(
(ωt + 1)−1 − (ω + 1)−1

)
(ω + 1)

=
∫ t

0 (ωt + 1)(ωs + 1)−1eisa[ω, ia]0e−isa(ωs + 1)−1(ω + 1)ds.

Using (7.4) we obtain ii). 2

We set now

A := dΓ(a), Hs = eisAHe−isA, H0,s = eisAH0e−isA, Vs = eisAV e−isA,

and introduce the quadratic forms [H0, iA], [V, iA], [H, iA] with domains D(H0)∩D(A), D(Nn)∩
D(A) and D(Hm) ∩ D(A) for n ≥ degw/2 and m large enough.

Proposition 7.3 Let H be an abstract QFT Hamiltonian such that (M1 i), (M2) hold. Then:
i) [H0, iA] extends uniquely as a bounded operator from D(N) to H, denoted by [H0, iA]0,

ii) [V, iA] extends uniquely as a bounded operator from D(NM ) to H for M large enough,
denoted by [V, iA]0,

iii) [H, iA] extends uniquely as a bounded operator from D(HP ) to H for P large enough,
denoted by [H, iA]0 and equal to [H0, iA]0 + [V, iA]0,
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iv) for r large enough (H + b)−r is in C1(A) and the following identity is valid as a bounded
operators identity from D(A) to H:

(7.5) A(H + b)−r = (H + b)−rA+ i
d
ds

(Hs + b)−r|s=0,

where

(7.6)
d
ds

(Hs + b)−r|s=0 =
r−1∑
j=0

(H + b)−r+j([H0, iA]0 + [V, iA]0)(H + b)−j−1

is a bounded operator on H.

Proof. We have [H0, iA] = dΓ([ω, ia]), which using hypothesis (M1 i) and Prop. 2.4 i) implies
that [H0, iA](N + 1)−1 is bounded. The fact that the extension is unique follows from the fact
that D(a) ∩ D(ω) is dense in h since ω ∈ C1(a).

Let us now check ii). Through the identi�cation of B2
fin(h) with Γfin(h)⊗Γfin(h), we get from

Prop. 2.6 that
[V, iA] = [Wick(w), iA] = Wick(w(1))

where w(1) = (dΓ(a)⊗ 1l− 1l⊗ dΓ(a))w. By (M2) w(1) ∈ B2
fin(h) which implies that [V, iA](N+

1)−n is bounded for n ≥ degw/2 using Lemma 2.5. The fact that the extension is unique is
obvious.

By the higher order estimates we have [H, iA] = [H0, iA] + [V, iA] on D(A) ∩ D(HM ) for M
large enough, so [H, iA]0(H + b)−M is bounded, again by the higher order estimates. To prove
that the extension is unique we need to show that D(A) ∩ D(HM ) is dense in D(HM ) for M
large enough. Let u = (H + b)−Mv ∈ D(HM ) and uε = (H + b)−M (1 + iεA)−1v. Clearly uε → u
in D(HM ) when ε → 0. Next uε belongs to D(HM ) and to D(A) since (H + b)−M is in C1(A)
by iv). This completes the proof of iii).

It remains to prove iv). We start by proving some auxiliary properties of Hs. Since H0,s =
dΓ(ωs), we obtain using Lemma 7.2 i) and Prop. 2.4 i) that

(7.7) sup
|s|≤1
‖H0(H0,s + 1)−1‖ <∞.

The same arguments show also that D(H0) = D(H0,s) ie eisA preserves D(H0). Since eisA

preserves D(Nn) we obtain from the higher order estimates that

(7.8) Hs = H0,s + Vs on D(HP ).

Let us �x n ≥ degw/2. Conjugating the bounds in (H3) by eisA, we obtain that there exists
p ∈ N such that

N2nH2
0,s ≤ C(Hs + b)2p, uniformly in |s| ≤ 1.

Using also (7.7) we obtain

(7.9) N2nH2
0 ≤ C(Hs + b)2p, uniformly in |s| ≤ 1.

Let us show that for r large enough:

(7.10) ‖(Hs + b)−r − (H + b)−r‖ ≤ C|s|, |s| ≤ 1.
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Using (7.8), we can write for P large enough:

(7.11)

((Hs + b)−r − (H + b)−r) (H + b)−P

=
∑r−1

j=0(Hs + b)−r+j(H −Hs)(H + b)−j−1(H + b)−P

=
∑r−1

j=0(Hs + b)−r+j(H0 −H0,s + V − Vs)(H + b)−j−1(H + b)−P .

Using that H0,s −H0 = dΓ(ωs − ω), Lemma 7.2 ii) and Prop. 2.4 i) we obtain that

(7.12) ‖(H0,s −H0)(N + 1)−1‖ ≤ C|s|, |s| ≤ 1.

If r ≥ 2p then for 0 ≤ j ≤ r − 1 then either j + 1 ≥ p or r − j ≥ p. Using (7.9) and (7.12) we
deduce that

(7.13) ‖(Hs + b)−r+j(H0,s −H0)(H + b)−j−1‖ ≤ C|s|, |s| ≤ 1.

Next from Prop. 2.6, we have:

Vs = Wick(eisAwe−isA).

Through the identi�cation of B2
fin(h) with Γfin(h) ⊗ Γfin(h), the symbol eisAwe−isA is identi�ed

with eisA ⊗ e−isAw. From hypothesis (M2) and Prop. 2.5, we obtain that for M ≥ deg(w)/2:

(7.14) ‖(Vs − V )(N + 1)−M‖ ≤ C|s|, |s| ≤ 1.

By the same argument as above we obtain:

(7.15) ‖(Hs + b)−r+j(V − Vs)(H + b)−j−1‖ ≤ C|s|, |s| ≤ 1.

Combining (7.11), (7.15) and (7.13), we obtain (7.10).
Next from (7.12) we obtain by considering �rst �nite particle vectors that

s- lim
s→0

s−1(H0,s −H0)(N + 1)−1 exists.

We note next that by hypothesis (M2) we know that s−1(eisAwe−isA−w) converges in B2
fin(Γ(h))

when s→ 0. Using then Lemma 2.5 ii), we obtain also that

s- lim
s→0

s−1(Vs − V )(N + 1)−n exists.

From (7.11) we obtain that for r ≥ p and P large enough:

s- lim
s→0

s−1
(
(Hs + b)−r − (H + b)−r

)
exists on D(HP )

By (7.10) the strong limit exists on Γ(h), which shows that (H + b)−r is in C1(A). 2

Remark 7.4 The same proof as in Prop. 7.3 iv) shows that for r large enough and zi ∈ C\R,
the operator

∏r
i=1(zi −H)−1 is in C1(A). Using the functional calculus formula (2.2), it is easy

to deduce from this fact that χ(H) is in C1(A) for all χ ∈ C∞0 (R).
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The following proposition is the main consequence of Prop. 7.3.

Proposition 7.5 Let H be an abstract QFT Hamiltonian such that (M1 i), (M2) hold. Then
the virial relation holds:

(7.16) 1l{λ}(H)[H, iA]01l{λ}(H) = 0, λ ∈ R.

Proof. Let us �x r large enough such that (H+b)−r ∈ C1(A) so that (H+b)−r : D(A)→ D(A)
and [(H + b)−r, iA] extends as a bounded operator on H denoted by [(H + b)−r, iA]0. Moreover
from Prop. 7.3 iv) we have:

[(H + b)−r, iA]0 = −
r−1∑
j=0

(H + b)−r+j [H, iA]0(H + b)−j−1.

Let now u1, u2 ∈ H such that Hui = λui. Since (H + b)−r ∈ C1(A) and ui is an eigenvector of
(H + b)−r, we have the virial relation:

0 = (u1, [(H + b)−r, iA]0u2)

= −
∑r−1

j=0(u1, (H + b)−r+j [H, iA]0(H + b)−j−1u2)

= −
∑r−1

j=0(λ+ b)−r−1(u1, [H, iA]0u2)

= −r(λ+ b)−r−1(u1, [H, iA]0u2),

which proves the lemma. 2

7.3 Mourre estimate for second quantized Hamiltonians

In this subsection we will apply the abstract results in Subsect. 2.1 to second quantized Hamil-
tonians.

Let ω, a be two selfadjoint operators on h such that (H1), (M1) hold. Note that it follows
from Lemma 2.1 and the results recalled above it that (M1) imply also that

(7.17) κa(ω) is a closed countable set.

Clearly dΓ(ω) ∈ C1(dΓ(a)) and [dΓ(ω), idΓ(a)]0 = dΓ([ω, ia]0). Since dΓ(ω) and dΓ([ω, ia]0)
commute with N , we can restrict them to each n−particle sector ⊗ns h. We denote by

ρ
dΓ(A) (1)
dΓ(ω)

the corresponding restriction of ρ
dΓ(A)
dΓ(ω) to the range of 1l[1,+∞[(N).

Finally we introduce the following natural notation for E ⊂ R:

(7.18) dΓ(1)(E) =
+∞⋃
n=0

E + · · ·+ E︸ ︷︷ ︸
n

, dΓ(E) = {0} ∪ dΓ(1)(E).
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Remark 7.6 As an example of use of this notation, note that if b is a selfadjoint operator on
h, then:

σ(dΓ(b)) = {0} ∪ dΓ(σ(b)).

Note also that if E is a closed countable set included in [m,+∞[ for some m > 0, dΓ(1)(E) is a
closed countable set.

Lemma 7.7 Let ω, a be two selfadjoint operators on h such that (M1) holds. Then:

i) ρ
dΓ(a)
dΓ(ω) ≥ 0,

ii) ρ
dΓ(a) (1)
dΓ(ω) (λ) = 0 ⇒ λ ∈ dΓ(1)(κa(ω)).

Proof. We have [dΓ(ω), idΓ(a)] = dΓ([ω, ia]). Since dΓ(ω) ∈ C1(dΓ(a)) the virial relation is

satis�ed. Denote by ρn the restriction of ρ
dΓ(a)
dΓ(ω) to ⊗

n
s h. Applying Lemma 2.1 iv) we obtain

ρ0(λ) =
{

0, λ = 0,
+∞, λ 6= 0

,

ρn(λ) = inf
λ1+···λn=λ

(ρaω(λ1) + · · ·+ ρaω(λn))

for n ≥ 1. We note next that since ω ≥ m > 0, χ(dΓ(ω))1l[n,+∞[(N) = 0 if n is large enough,
where χ ∈ C∞0 (R). Therefore only a �nite number of n−particle sectors contribute to the

computation of ρ
dΓ(a)
dΓ(ω) near an energy level λ. We can hence apply Lemma 2.1 iii) and obtain

that ρ
dΓ(a)
dΓ(ω) ≥ 0.

Let us now prove the second statement of the lemma. Since ρaω(λ) = +∞ if λ 6∈ σ(ω), we
have ρaω(λ) = +∞ for λ < 0. Therefore

ρn(λ) = inf
In(λ)

(ρaω(λ1) + · · ·+ ρaω(λn)) ,

for In(λ) = {(λ1, . . . , λn)| λ1 + · · ·λn = λ, λi ≥ 0}. The function ρaω(λ1) + · · ·+ρaω(λn) is lower
semicontinuous on Rn, hence attains its minimum on the compact set In(λ). Therefore using
also that ρaω ≥ 0, we see that ρn(λ) = 0 i� λ ∈ κa(ω) + · · ·+κa(ω) (n factors). Using Lemma 2.1

iii) as above, we obtain that ρ
dΓ(A) (1)
dΓ(ω) (λ) = 0 implies that λ ∈ dΓ(1)(κa(ω)), which proves ii). 2

7.4 Mourre estimate for abstract QFT Hamiltonians

In this subsection we prove the Mourre estimate for abstract QFT Hamiltonians. Let H be an
abstract QFT Hamiltonian and a a selfadjoint operator on h such that (M1) holds. Let also 〈x〉
be a weight operator for ω.

Theorem 7.8 Let H be an abstract QFT Hamiltonian and a a selfadjoint operator on h such
that (M1) and (M2) hold. Let 〈x〉 be a weight operator for ω such that conditions (G1), (G3),
(G5) hold. Set

τ := σpp(H) + dΓ(1)(κa(ω))

and A = dΓ(a). Then:
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i) Let λ ∈ R\τ . Then there exists ε > 0, c0 > 0 and a compact operator K such that

1l[λ−ε,λ+ε](H)[H, iA]01l[λ−ε,λ+ε](H) ≥ c01l[λ−ε,λ+ε](H) +K.

ii) for all λ1 ≤ λ2 such that [λ1, λ2] ∩ τ = ∅ one has:

dim1l[λ1,λ2](H) <∞.

Consequently σpp(H) can accumulate only at τ , which is a closed countable set.
iii) Let λ ∈ R\(τ ∪ σpp(H)). Then there exists ε > 0 and c0 > 0 such that

1l[λ−ε,λ+ε](H)[H, iA]01l[λ−ε,λ+ε](H) ≥ c01l[λ−ε,λ+ε](H).

Proof. We note �rst that [H, iA]0 satis�es the virial relation by Prop. 7.5. Therefore we
will be able to apply the abstract results in Lemma 2.1 in our situation. Recall that Hext =
H ⊗ 1l + 1l⊗ dΓ(ω) and set

Aext = A⊗ 1l + 1l⊗A.

By Prop. 7.3 [H, iA]0 considered as an operator on H with domain D(HM ) is equal to H1 + V1,
where H1 = dΓ([ω, ia]0), V1 = [V, iA]0. Note that by (M2) V1 is a Wick polynomial with a
symbol in B2

fin(h), and by (G3), [〈x〉, [ω, ia]] is bounded on h. Therefore using Lemma 3.3 v) we
see that the analog of (6.11) holds for [H, iA]0. We obtain:

I∗(jR)[H, iA]0 = [Hext, iAext]0I∗(jR) + (N + 1)nǑN (R0),

for some n. We recall (7.2):

(7.19) χ(H) = Γ(qR)χ(H) + I(jR)χ(Hext)1l[1,+∞[(N∞)I∗(jR) + o(R0),

for qR = (jR0 )2.
Using then Lemma 6.3 and the higher order estimates (which hold also for Hext with the

obvious modi�cations), we obtain that:
(7.20)

χ(H)[H, iA]0χ(H) = Γ(qR)χ(H)[H, iA]0χ(H)

+I(jR)χ(Hext)[Hext, iAext]0χ(Hext)1l[1,+∞[(N∞)I∗(jR) + o(R0).

We will now prove by induction on n ∈ N the following statement:

H(n)

{
i) ρAH(λ) ≥ 0, for λ ∈]−∞, inf σ(H) + nm[,

ii) τA(H)∩]−∞, inf σ(H) + nm[⊂ σpp(H) + dΓ(κa(ω)).

Statement H(0) is clearly true since ρAH(λ) = +∞ for λ < inf σ(H).
Let us assume that H(n-1) holds. Let us denote by ρext (1) the restriction of ρA

ext

Hext to the
range of 1l[1,+∞[(N∞). This function is well de�ned since Hext and [Hext, iAext]0 commute with
N∞.

Let λ ∈]−∞, inf σ(H) + nm[. Using Lemma 2.1 iv) and the fact that ω ≥ m we obtain:

ρext (1)(λ) = inf
(λ1,λ2)∈I(n)(λ)

(
ρAH(λ1) + ρ

A (1)
H0

(λ2)
)
,
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where

I(n)(λ) = {(λ1, λ2)| λ1 + λ2 = λ, inf σ(H) ≤ λ1 ≤ inf σ(H) + (n− 1)m, 0 ≤ λ2 ≤ − inf σ(H)},

and the function ρ
A (1)
H0

is de�ned in Subsect. 7.3. Note that by H(n-1) i) and Lemma 7.7 i) the

two functions ρAH(λ1) and ρA (1)
H0

(λ2) are positive for (λ1, λ2) ∈ I(n)(λ). We deduce �rst from this
fact that:

(7.21) ρext (1)(λ) ≥ 0 for λ ∈]−∞, inf σ(H) + nm[.

Moreover using that the lower semicontinuous function ρAH(λ1) + ρ
A (1)
H0

(λ2) attains its minimum

on the compact set I(n)(λ) ⊂ R2, we obtain that

(7.22)
ρext (1)(λ) = 0, λ ∈]−∞, inf σ(H) + nm[⇒

λ = λ1 + λ2, where (λ1, λ2) ∈ I(n)(λ), ρAH(λ1) = ρ
A (1)
H0

(λ2) = 0.

From H(n-1) ii) and Lemma 2.1 ii) we get that

ρAH(λ1) = 0, λ1 ∈]−∞, inf σ(H) + (n− 1)m[⇒ λ1 ∈ σpp(H) + dΓ(κa(ω)).

From Lemma 7.7 ii) we know that

ρ
A (1)
H0

(λ2) = 0 ⇒ λ2 ∈ dΓ(1)(κa(ω)).

Using (7.22) we get that

(7.23) ρext (1)(λ) = 0, λ ∈]−∞, inf σ(H) + nm[⇒ λ ∈ σpp(H) + dΓ(1)(κa(ω)).

The operators Γ(qR)χ(H) and hence Γ(qR)χ(H)[H, iA]0χ(H) are compact on H. Choosing
hence R large enough in (7.20) we obtain using (7.19) and the fact that I(jR)I∗(jR) = 1l that

(7.24) ρ̃AH(λ) ≥ ρext (1)(λ), λ ∈]−∞, inf σ(H) + nm[.

By Lemma 2.1 i) this implies �rst that ρAH ≥ 0 on ] − ∞, inf σ(H) + nm[, i.e. H(n) i) holds.
Using then (7.23) we obtain that

ρ̃AH(λ) = 0, λ ∈]−∞, inf σ(H) + nm[⇒ λ ∈ σpp(H) + dΓ(1)(κa(ω)),

which proves H(n) ii). Since H(n) holds for any n we obtain statement i) of the theorem. The
fact that dim1l[λ1,λ2](H) < ∞ if [λ1, λ2] ∩ τ = ∅ follows from the abstract results recalled in
Subsect. 2.1. We saw in (7.17) that κa(ω) is a closed countable set. Using also Remark 7.6,
this implies by induction on n that τ∩]−∞, inf σ(H) + nm[ is a closed countable set for any n.
Finally statement iii) follows from Lemma 2.1. This completes the proof of the theorem. 2
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7.5 Improved Mourre estimate

Thm. 7.8 can be rephrased as:

τA(H) ⊂ σpp(H) + dΓ(1)(κa(ω)),

which is su�cient for our purposes. Nevertheless a little attention shows that one should expect
a better result, namely:

τA(H) ⊂ σpp(H) + dΓ(1)(τa(ω)),

i.e. eigenvalues of ω away from τa(ω) should not contribute to the set of thresholds of H. In this
subsection we prove this result if there exists a comparison operator ω∞ such that hypothesis
(C) holds.

We �x a function q ∈ C∞(R) such that

(7.25) 0 ≤ q ≤ 1, q ≡ 0 near 0, q ≡ 1 near 1.

Lemma 7.9 Assume (H1), (G1), (G3), (M1) for ω and ω∞ and (C). Set H0 = dΓ(ω), H∞ =
dΓ(ω∞). Let q as in (7.25) and χ ∈ C∞0 (R). Then:

(7.26) (χ2(H0)− χ2(H∞))Γ(qR) ∈ o(R0),

(7.27)

χ(H0)[H0, iA]0χ(H0)Γ(qR)

= χ(H∞)[H∞, iA]0χ(H∞)Γ(qR) + o(R0),

Assume additionally (G5). Then

(7.28) ρ̃aω = ρ̃aω∞ .

Proof. We will �rst prove the following estimates:

(7.29) [χ(Hε),Γ(qR)], (χ(H0)− χ(H∞)) Γ(qR) ∈ o(R0),

(7.30)
(Hε1 + i)−1[H0 −H∞, iA]0Γ(qR)(Hε2 + i)−1 ∈ o(R0)

(Hε1 + i)−1[[H∞, iA]0,Γ(qR)](Hε2 + i)−1 ∈ o(R0),

for ε, ε1, ε2 ∈ {0,∞}. If we use the identities

[dΓ(bi),Γ(qR)] = dΓ(qR, [bi, qR]), dΓ(b1 − b2)Γ(qR) = dΓ(qR, (b1 − b2)qR),

for b1 = ω, b2 = ω∞, Lemma 3.4, Lemma 3.3 (i) and the bounds in Prop. 2.4, it is easy to see
that uniformly in z ∈ C\R ∩ {|z| ≤ R}:

[(z −Hε)−1,Γ(qR)] ∈ O(R−1)|Imz|−2,

(z −Hε1)−1(H0 −H∞)Γ(qR)(z −Hε2)−1 ∈ o(R0)|Imz|−2.

Using the functional calculus formula (2.2) this implies (7.29). The proof of (7.30) is similar
using Lemma 3.4 and Lemma 3.3 (v). The proof of (7.27) is now easy: we move the operator
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Γ(qR) to the left, changing H0 into H∞ along the way, and then move Γ(qR) back to the right.
All errors terms are o(R0), by (7.29), (7.30). (7.26) follows from (7.29). If we restrict (7.26),
(7.27) to the one-particle sector we obtain that

(χ2(ω)− χ2(ω∞))qR ∈ o(R0),

χ(ω)[ω, ia]0χ(ω)qR = χ(ω∞)[ω∞, ia]0χ(ω∞)qR + o(R0).

Using (G5) and the fact that (1−q) ∈ C∞0 (R) we see that χ(Hε)(1−q)R is compact for ε = 0,∞.
Writing 1 = (1− q)R + qR, we easily obtain (7.28). 2

Theorem 7.10 Let H be an abstract QFT Hamiltonian satisfying the hypotheses of Thm. 7.8.
Let ω∞ be a comparison Hamiltonian on h such that (C1) holds. Then the conclusions of Thm.
7.8 hold for

τ := σpp(H) + dΓ(1)(τa(ω)).

Proof. We use the notation in the proof of Thm. 7.8. We pick a function q1 satisfying (7.25)
such that q1j∞ = j∞, so that

I∗(jR) = 1l⊗ Γ(qR1 )I∗(jR).

Therefore in (7.20) we can insert 1l⊗ Γ(qR1 ) to the left of I∗(jR). If we set

Hext
∞ := H ⊗ 1l + 1l⊗H∞,

then using the obvious extension of Lemma 7.9 to Hext and Hext
∞ , we obtain instead of (7.20):

(7.31)

χ(H)[H, iA]0χ(H)

= Γ(qR)χ(H)[H, iA]0χ(H)

+I(jR)χ(Hext
∞ )[Hext

∞ , iAext]0χ(Hext
∞ )1l[1,+∞[(N∞)I∗(jR) + o(R0).

Therefore in the later steps of the proof we can replace ω by ω∞. By assumption κa(ω∞) =
τa(ω∞) and by Lemma 7.9 τa(ω∞) = τa(ω). This completes the proof of the theorem. 2

8 Scattering theory for abstract QFT Hamiltonians

In this section we consider the scattering theory for our abstract QFT Hamiltonians. This theory
is formulated in terms of asymptotic Weyl operators, (see Thm. 8.1) which form regular CCR
representations over hc(ω). Using the fact that the theory is massive, it is rather easy to show
that this representation is of Fock type (see Thm. 8.5). The basic question of scattering theory,
namely the asymptotic completeness of wave operators, amounts then to prove that the space of
vacua for the two asymptotic CCR representations coincide with the space of bound states for
H. This will be shown in Thm. 10.6, using the propagation estimates of Sect. 9.

In all this section we only consider objects with superscript +, corresponding to t→ +∞. The
corresponding objects with superscript − corresponding to t→ −∞ have the same properties.

34



8.1 Asymptotic �elds

For h ∈ h we set ht := e−itωh. Recall that hc(ω) ⊂ h is the continuous spectral subspace for ω
and that by hypothesis (S) there exists a subspace h0 dense in hc(ω) such that for all h ∈ h0

there exists ε > 0 such that

‖1l[0,ε](
〈x〉
|t|

)e−itωh‖ ∈ O(t−µ), µ > 1.

Theorem 8.1 Let H be an abstract QFT Hamiltonian such that hypotheses (Is) for s > 1 and
(S) hold. Then: i) For all h ∈ hc(ω) the strong limits

(8.1) W+(h) := s- lim
t→+∞

eitHW (ht)e−itH

exist. They are called the asymptotic Weyl operators. The asymptotic Weyl operators can be
also de�ned using the norm limit:

(8.2) W+(h)(H + b)−n = lim
t→+∞

eitHW (ht)(H + b)−ne−itH ,

for n large enough.
ii) The map

(8.3) hc(ω) 3 h 7→W+(h)

is strongly continuous and for n large enough, the map

(8.4) h 3 hc(ω) 7→W+(h)(H + b)−n

is norm continuous.
iii) The operators W+(h) satisfy the Weyl commutation relations:

W+(h)W+(g) = e−i 1
2

Im(h|g)W+(h+ g).

iv) The Hamiltonian preserves the asymptotic Weyl operators:

(8.5) eitHW+(h)e−itH = W+(h−t).

Proof. The proof is almost identical to the proof of [DG1, Thm. 10.1], therefore we will only
sketch it. We have:

W (ht) = e−itH0W (h)eitH0 ,

which implies that, as a quadratic form on D(H0), one has

(8.6) ∂tW (ht) = −[H0, iW (ht)].

Using (8.6) and the fact that for n large enough D(Hn) ⊂ D(H0)∩D(V ), we have, as quadratic
forms on D(Hn):

∂teitHW (ht)e−itH = eitH [V, iW (ht)]e−itH .
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Integrating this relation we have as a quadratic form identity on D(Hn)

(8.7) eitHW (ht)e−itH −W (h) =
∫ t

0
eit′H [V, iW (ht′)]e−it′Hdt′.

We claim that for h ∈ h0 (see hypothesis (S)), and p ≥ degw/2:

(8.8) ‖[V,W (ht)](N + 1)−p‖ ∈ L1(dt).

In fact writing w as
∑

p+q≤deg(w)wp,q, where wp,q is of order (p, q) and using Prop. 2.6, we obtain
that

[Wick(wp,q),W (ht)] = W (ht)Wick(wp,q(t)),

where wp,q(t) is the sum of the symbols in the r.h.s. of (2.7) for (s, r) 6= (p, q). Using (Is) and

(S) we obtain writing 1l = 1l[0,ε](
〈x〉
〈t〉 ) + 1l]ε,+∞[(

〈x〉
〈t〉 ) that

‖wp,q(t)‖B2(h) ∈ L1(dt),

which proves (8.8) using Lemma 2.5.
Using then the higher order estimates, we obtain that the identity (8.7) makes sense as an

identity between bounded operators from D(Hn) to H for n large enough. It also proves that
the norm limit (8.2) exists for h ∈ h0. The rest of the proof is identical to [DG1, Thm. 10.1]. It
relies on the bound

‖
(
eitHW (ht)e−itH − eitHW (gt)e−itH

)
(H + b)−n‖

≤ ‖ (W (h)−W (g)) (N + 1)−1‖‖(N + 1)(H + b)−n‖

≤ C‖h− g‖(‖h‖2 + ‖g‖2 + 1).
2

Theorem 8.2 i) For any h ∈ hc(ω):

φ+(h) := −i
d
ds
W+(sh)|s=0

de�nes a self-adjoint operator, called the asymptotic �eld, such that

W+(h) = eiφ+(h).

ii) The operators φ+(h) satisfy in the sense of quadratic forms on D(φ+(h1)) ∩ D(φ+(h2)) the
canonical commutation relations

(8.9) [φ+(h2), φ+(h1)] = iIm(h2|h1).

iii)
eitHφ+(h)e−itH = φ+(h−t).

iv) For p ∈ N, there exists n ∈ N such that for hi ∈ hc(ω), 1 ≤ i ≤ p, D(Hn) ⊂ D(Πp
1φ

+(hi)),
p

Π
i=1

φ+(hi)(H + i)−n = s- lim
t→+∞

eitH
p

Π
i=1

φ(hi,t)e−itH(H + i)−n,

and the map

hc(ω)p 3 (h1, . . . , hp) 7→
p

Π
i=1

φ+(hi)(H + i)−n ∈ B(H)

is norm continuous.
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Proof. The proof is very similar to [DG1, Thm. 10.2] so we will only sketch it. Properties
i) and ii) are standard consequences of the fact that the asymptotic Weyl operators de�ne a
regular CCR representation (see e.g. [DG1, Sect. 2]). Property iii) follows from Thm. 8.1 iv). It
remains to prove iv). For �xed p we pick n ∈ N such that Np/2(H + b)−n is bounded. It follows
that

(8.10) sup
t∈R
‖eitHΠp

1φ(hi,t)(H + b)−ne−itH‖ <∞.

Let us �rst establish the existence of the strong limit

(8.11) s- lim
t→+∞

eitHΠp
1φ(hi,t)(H + b)−ne−itH =: R(h1, . . . , hp), for hi ∈ h.

If m is large enough such that H = H0 + V on D(Hm), then as quadratic form on D(Hm) we
have:

DΠp
1φ(hi,t)(H + b)−n = [V, iΠp

1φ(hi,t)](H + b)−n,

where the Heisenberg derivative D is de�ned in Subsect. 2.5. Next:

[V, iΠp
1φ(hi,t)](H + b)−n =

p∑
j=1

Πj−1
1 φ(hi,t)[V, iφ(hj,t)]Π

p
j+1φ(hi,t)(H + b)−n,

as an operator identity on D(Hm). The term [V, iφ(ht)] is by Prop. 2.6 a sum of Wick monomials
with kernels of the form wp,q|ht) or (ht|wp,q.

Arguing as in the proof of Thm. 8.1 we see from hypotheses (S) and (Is) for s > 1 that for
h ∈ h0

(8.12) ‖[V, iφ(ht)](H + b)−n‖ ∈ L1(dt).

This proves the existence of the limit (8.11) for u ∈ D(Hm), hi ∈ h0. The fact that the map

(8.13) hp 3 (h1, . . . , hp) 7→ Πp
j=1φ(hj)(H + b)−n ∈ B(H)

is norm continuous implies the existence of the limit for u ∈ D(Hm) and hi ∈ hc(ω). The
estimate (8.10) shows the existence of (8.11) for all u ∈ H.

We prove now iv). We recall that

(8.14) sup
|s|≤1,‖h‖≤C

∥∥∥(W (sh)− 1l
s

)
(N + 1)−1

∥∥∥ <∞,
and

(8.15) lim
s→0

sup
‖h‖≤C

∥∥∥(W (sh)− 1l
s

− iφ(h)
)

(N + 1)−1
∥∥∥ = 0.

We �x P ∈ N andM large enough so that NP+1(H+b)−M is bounded and prove iv) by induction
on 1 ≤ p ≤ P .

We have to show that D(HM ) ⊂ D(Πp
1φ

+(hi)) and that R(h1, . . . , hp) = Πp
1φ

+(hi)(H+b)−M .
This amounts to show that

R(h1, . . . , hp) = s- lim
s→0

(is)−1(W+(sh1)− 1l)Πp
2φ

+(hi)(H + b)−M .
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Note that by the induction assumption D(HM ) ⊂ D(Πp
2φ

+(hi)) and

(8.16) Πp
2φ

+(hi)(H + b)−M = s- lim
t→+∞

eitHΠp
2φ(hi,t)e−itH(H + b)−M .

Using (8.16) and the fact that eitHW (h1,t)e−itH is uniformly bounded in t, we have:

(is)−1(W+(sh1)− 1l)Πp
2φ

+(hi)(H + b)−M

= s- lim
t→+∞

eitH(is)−1(W (sh1,t)− 1l)Πp
2φ(hi,t)e−itH(H + b)−M .

So to prove iv), it su�ces to check that

(8.17) s- lim
s→0

s- lim
t→∞

eitHR(s, t)e−itH = 0,

for

R(s, t) =
(W (sh1,t)− 1l

s
− iφ(h1,t)

)
Πp

2φ(hi,t)(H + b)−M .

Using (8.14) and the higher order estimates, we see that R(s, t) is uniformly bounded for |s| ≤
1, t ∈ R, and using then (8.15) we see that lims→0 supt∈R ‖R(s, t)u‖ = 0, for u ∈ D(HM ). This
shows (8.17). The norm continuity result in iv) follows from the norm continuity of the map
(8.13). 2

Finally the following theorem follows from Thm. 8.2 as in [DG1, Subsect. 10.1].

Theorem 8.3 i) For any h ∈ hc(ω), the asymptotic creation and annihilation operators de�ned
on D(a+](h)) := D(φ+(h)) ∩ D(φ+(ih)) by

a+∗(h) := 1√
2

(φ+(h)− iφ+(ih)) ,

a+(h) := 1√
2

(φ+(h) + iφ+(ih)) .

are closed.
ii) The operators a+] satisfy in the sense of quadratic forms on D(a+#(h1)) ∩ D(a+#(h2)) the
canonical commutation relations

[a+(h1), a+∗(h2)] = (h1|h2)1l,

[a+(h2), a+(h1)] = [a+∗(h2), a+∗(h1)] = 0.

iii)

(8.18) eitHa+](h)e−itH = a+](h−t).

iv) For p ∈ N, there exists n ∈ N such that for hi ∈ hc(ω), 1 ≤ i ≤ p, D((H+i)n) ⊂ D(Πp
1a

+](hi))
and

Πp
1a

+](hi)(H + b)−n = s- lim
t→∞

eitHΠp
1a
](hi,t)(H + b)−ne−itH .
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8.2 Asymptotic spaces and wave operators

In this subsection we recall the construction of asymptotic vacuum spaces and wave operators
taken from [DG1, Subsect. 10.2] and adapted to our setup.

We de�ne the asymptotic vacuum space:

K+ := {u ∈ H | a+(h)u = 0, h ∈ hc(ω)}.

The asymptotic space is de�ned as

H+ := K+ ⊗ Γ(hc(ω)).

The proof of the following proposition is completely analogous to [DG1, Prop. 10.4].

Proposition 8.4 i) K+ is a closed H−invariant space.
ii) K+ is included in the domain of Πp

1a
+](hi) for hi ∈ hc(ω).

iii)
Hpp(H) ⊂ K+.

The asymptotic Hamiltonian is de�ned by

H+ := K+ ⊗ 1l + 1l⊗ dΓ(ω), for K+ := H
∣∣∣
K+
.

We also de�ne

(8.19)
Ω+ : H+ → H,

Ω+ψ ⊗ a∗(h1) · · · a∗(hp)Ω := a+∗(h1) · · · a+∗(hp)ψ, h1, . . . , hp ∈ hc(ω), ψ ∈ K+.

The map Ω+ is called the wave operator. The following theorem is analogous to [DG1, Thm.
10.5]

Theorem 8.5 Ω+ is a unitary map from H+ to H such that:

a+](h)Ω+ = Ω+1l⊗ a](h), h ∈ hc(ω),

HΩ+ = Ω+H+.

Proof. By general properties of regular CCR representations, (see [DG1, Prop. 4.2]) the
operator Ω+ is well de�ned and isometric. To prove that it is unitary, it su�ces to show that
the CCR representation hc(ω) 3 h 7→W+(h) admits a densely de�ned number operator (see e.g.
[DG1, Subsect. 4.2]).

Let n+ be the quadratic form associated to the CCR representation W+. Let us show that
D(n+) is dense in H. We �x n ∈ N such that

a+(h)(H + b)−n = s- lim
t→+∞

eitHa(ht)e−itH(H + b)−n, h ∈ hc(ω).
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For each �nite dimensional space f ⊂ hc(ω) set:

n+
f (u) =

dimf∑
i=1

‖a+(hi)u‖2,

for {hi} an orthonormal base of f. We have for u ∈ D(Hn):

n+
f (u) = lim

t→+∞

dimf∑
i=1
‖a(hi,t)e−itHu‖2

= lim
t→+∞

(e−itHu|dΓ(Pf,t)e−itHu),

if Pf,t is the orthogonal projection on e−itωf. But dΓ(Pf,t) ≤ N , so

n+
f (u) ≤ sup

t
‖N

1
2 e−itHu‖2 ≤ C‖(H + b)pu‖2,

for some p, by the higher order estimates. Therefore

D(Hp) ⊂ D(n+),

which for p large enough, which implies that D(n+) is densely de�ned. 2

8.3 Extended wave operator

In Subsect. 2.4 we introduced the scattering Hilbert space Hscatt ⊂ Hext. Clearly Hscatt is
preserved by Hext. We see that H+ is a subspace of Hscatt and

H+ = Hext∣∣H+
.

We de�ne the extended wave operator Ωext,+ : D(Ωext,+)→ H by:

D(Ωext,+) = D(H∞)⊗ Γfin(hc(ω)),

and

Ωext,+ψ ⊗ a∗(h1) · · · a∗(hp)Ω := a∗+(h1) · · · a∗+(hp)ψ, ψ ∈ D(H∞), hi ∈ hc(ω).

Note that Ωext,+ : Hscatt → H is unbounded and:

Ω+ = Ωext,+∣∣H+
.

Considering Ω+ as a partial isometry equal to 0 on Hscatt 	H+, we can rewrite this identity as:

(8.20) Ω+ = Ωext,+1lH+ ,

where 1lH+ denotes the projection onto H+ inside the space Hscatt.
Moreover using Thm. 8.3 iv), we obtain as in [DG1, Thm. 10.7] the following alternative

expression for Ωext,+.

40



Theorem 8.6 i) Let u ∈ D(Ωext,+). Then the limit

lim
t→+∞

eitHIe−itHext
u

exists and equals Ωext,+u.
ii) Let χ ∈ C∞0 (R). Then Ranχ(Hext) ⊂ D(Ωext,+), Iχ(Hext) and Ωext,+χ(Hext) are bounded
operators and

(8.21) s- lim
t→+∞

eitHIe−itHext
χ(Hext) = Ωext,+χ(Hext).

9 Propagation estimates

In this section we consider an abstract QFT Hamiltonian H and �x a weight operator 〈x〉. We
will prove various propagation estimates for H. The proof of the phase-space estimates will be
more involved than in [DG1], [DG2]. In fact the operator playing the role of the acceleration
[ω, i[ω, i〈x〉]] vanishes in the situation considered in these papers.

9.1 Maximal velocity estimates

The following proposition shows that bosons cannot propagate in the region 〈x〉 > vmaxt where

vmax := ‖[ω, i〈x〉]‖.

Proposition 9.1 Assume hypotheses (G1), (Is) for s > 1. Let χ ∈ C∞0 (R). Then for R′ > R >
vmax, one has: ∫ ∞

1

∥∥∥dΓ
(

1l[R,R′](
|x|
t

)
) 1

2

χ(H)e−itHu
∥∥∥2 dt

t
≤ C‖u‖2.

Proof. The proof is almost identical to [DG1, Prop. 11.2] so we will only sketch it. We �x
G ∈ C∞0 (]vmax,+∞[) with G ≥ 1l[R,R′] and set F (s) =

∫ +∞
s G2(t)dt. We use the propagation

observable Φ(t) = χ(H)dΓ(F ( 〈x〉t ))χ(H). We use that

d0F ( 〈x〉t ) = t−1G( 〈x〉t )([ω, i〈x〉]− 〈x〉t )G( 〈x〉t ) +O(t−2)

≤ −C0
t G

2( 〈x〉t ) +O(t−2)

by Lemma 3.3. The term χ(H)[V, idΓ(F ( 〈x〉t ))]χ(H) is O(t−s) in norm by hypothesis (Is), Lemma
2.5 and the higher order estimates. 2

9.2 Phase space propagation estimates

Set
v := [ω, i〈x〉],
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and recall from hypothesis (G2) that

[ω, iv] = γ2 + r−1−ε,

where γ ∈ S−
1
2

ε,(1), r−1−ε ∈ S−1−ε
(0) for some ε > 0.

We will show that for free bosons the instantaneous velocity v and the average velocity 〈x〉t
converge to each other when t→ ±∞.

Proposition 9.2 Assume (G1), (G2) and (Is) for s > 1 and let χ ∈ C∞0 (R) and 0 < c0 < c1.
Then

i)
∫ +∞

1
‖dΓ

(
(
〈x〉
t
− v)1l[c0,c1](

〈x〉
t

)(
〈x〉
t
− v)

) 1
2

χ(H)e−itHu‖2dt ≤ C‖u‖2,

ii)
∫ +∞

1
‖dΓ

(
γ1l[c0,c1](

〈x〉
t

)γ
) 1

2

χ(H)e−itHu‖2 dt
t
≤ C‖u‖2.

Proof. We follow the proof of [DG1, Prop. 11.3], [DG2, Prop. 6.2] with some modi�cations due
to our abstract setting.

It clearly su�ces to prove Prop. 9.2 for c1 > vmax + 1, which we will assume in what follows.
We �x a function F ∈ C∞(R), with F, F ′ ≥ 0, F (s) = 0 for s ≤ c0/2, F (s), F ′(s) ≥ d1 > 0 for
s ∈ [c0, c1]. We set

R0(s) =
∫ s

0
F 2(t)dt,

so that R0(s) = 0 for s ≤ c0/2, R′0(s), R0”(s) ≥ d2 > 0 for s ∈ [c0, c1]. Finally we �x another
function G ∈ C∞(R) with G(s) = 1 for s ≤ c1 + 1, G(s) = 0 for s ≥ c1 + 2, and set:

R(s) := G(s)R0(s).

The function R belongs to C∞0 (R) and satis�es:

(9.1) R(s) = 0 in [0, c0/2], R′(s) ≥ d31l[c0,c1](s) + χ1(s), R”(s) ≥ d31l[c0,c1](s) + χ2(s),

for χ1, χ2 ∈ C∞0 (]vmax,+∞[) and d3 > 0. We set

b(t) := R(
〈x〉
t

)− 1
2

(
R′(
〈x〉
t

)(
〈x〉
t
− v) + h.c.

)
,

which satis�es b(t) ∈ O(1) and use the propagation observable

Φ(t) = χ(H)dΓ(b(t))χ(H).

Using Lemma 3.3 we obtain that:

(9.2) ∂tb(t) =
1
t

(
R”(
〈x〉
t

)
〈x〉2

t2
− 1

2
〈x〉
t
R”(
〈x〉
t

)v − 1
2
vR”(

〈x〉
t

)
〈x〉
t

)
+O(t−2),

and

(9.3)
[ω, ib(t)] = 1

t

(
vR”( 〈x〉t )v − 1

2
〈x〉
t R”( 〈x〉t )v − 1

2vR”( 〈x〉t ) 〈x〉t
)

+1
2

(
R′( 〈x〉t )[ω, iv] + h.c.

)
+O(t−2).
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Adding (9.2) and (9.3) we obtain:

d0b(t) =
1
t
(
〈x〉
t
− v)R”(

〈x〉
t

)(
〈x〉
t
− v) +

1
2

(
R′(
〈x〉
t

)[ω, iv] + h.c.
)

+O(t−2).

By hypothesis (G2), we have:
[ω, iv] = γ2 + r−1−ε,

for γ ∈ S−
1
2

ε,(1), r−1−ε ∈ S−1−ε
(0) . Since 0 6∈ suppR′, we know by Lemma 2.3 that

R′(
〈x〉
t

)r−1−ε ∈ O(t−1−ε).

Using that γ ∈ S−
1
2

ε,(1), we get by Lemma 3.3 vii) that:

1
2

(
R′(
〈x〉
t

)γ2 + h.c.
)

= γR′(
〈x〉
t

)γ +O(t−3/2+ε).

Finally this gives:

d0b(t) =
1
t
(
〈x〉
t
− v)R”(

〈x〉
t

)(
〈x〉
t
− v) + γR′(

〈x〉
t

)γ +O(t−1−ε1),

for some ε1 > 0.
We note that R′ and R” are positive, except for the error terms due to χ1, χ2 in (9.1).

To handle these terms we pick χ3 ∈ C∞0 (]vmax,+∞[) such that χ3χi = χi, i = 1, 2. Then

[ 〈x〉t − v, χ3( 〈x〉t )] ∈ O(t−1) and [γ, χ3( 〈x〉t )] ∈ O(t−3/2+ε) by Lemma 3.3 i) and vii). This yields:

±1
t (
〈x〉
t − v)χ2( 〈x〉t )( 〈x〉t − v) = ±1

tχ3( 〈x〉t )( 〈x〉t − v)χ2( 〈x〉t )( 〈x〉t − v)χ3( 〈x〉t ) +O(t−2)

≤ C
t χ

2
3( 〈x〉t ) +O(t−2),

±γχ1( 〈x〉t )γ = ±χ3( 〈x〉t )γχ1( 〈x〉t )γχ3( 〈x〉t ) +O(t−3/2+ε)

≤ C
t χ

2
3( 〈x〉t ) +O(t−3/2+ε),

using that γ ∈ S−
1
2

(0) and Lemma 2.3. Using again (9.1), we �nally get:

(9.4)
d0b(t) ≥ C1

t ( 〈x〉t − v)1l[c0,c1](
〈x〉
t )( 〈x〉t − v) + C1γ1l[c0,c1](

〈x〉
t )γ

−C2
t χ

2
3( 〈x〉t ) +O(t−1−ε1),

for some C1, ε1 > 0.
To handle the commutator [V, idΓ(b(t))] we note that using Lemma 3.3 iv) and the fact that

0 6∈ suppR, we have

b(t) = 1l[ε,+∞[(
〈x〉
t

)b(t)1l[ε,+∞[(
〈x〉
t

) +O(t−2)

for some ε > 0. Using also hypothesis (Is) for s > 1, this implies that if V = Wick(w) then
9dΓ(b(t))w9 ∈ L1(dt). Using the higher order estimates this implies that

‖χ(H)[V, idΓ(b(t))χ(H)]‖ ∈ L1(dt).

The rest of the proof is as in [DG1, Prop. 11.3]. 2
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9.3 Improved phase space propagation estimates

In this subsection we will prove improved propagation estimates. We will use the following lemma
which is an analog of [DG2, Lemma 6.4] in our abstract setting. Its proof will be given in the
Appendix.

Lemma 9.3 Assume (H1), (G1), (G2) and set v = [ω, i〈x〉] which is a bounded operator on h.

Let c = ( 〈x〉t − v)2 + t−δ, δ > 0 and set ε0 = inf(δ, 1− δ/2). If J ∈ C∞0 (R) then:

i) J(
〈x〉
t

)c
1
2 ∈ O(1),

ii) [c
1
2 , J(

〈x〉
t

)] ∈ O(t−1+δ/2).

If J ∈ C∞0 (R\{0}) then for δ small enough:

iii)
J( 〈x〉t )d0c

1
2J( 〈x〉t )

= −1
tJ( 〈x〉t )c

1
2J( 〈x〉t ) + γJ( 〈x〉t )M(t)J( 〈x〉t )γ +O(t−1−ε1),

where ε1 > 0 and M(t) ∈ O(1).
If J, J1 ∈ C∞0 (R) and J1 ≡ 1 on supp J , then:

iv) |J(
〈x〉
t

)(
〈x〉
t
− v) + h.c.| ≤ CJ1(

〈x〉
t

)c
1
2J1(
〈x〉
t

) +O(t−ε0).

If J, J1, J2 ∈ C∞0 (R) with J2 ≡ 1 on supp J and supp J1, then:

v) ± (J(
〈x〉
t

)(
〈x〉
t
− v)c

1
2J1(
〈x〉
t

) + h.c.) ≤ C(
〈x〉
t
− v)J2

2 (
〈x〉
t

)(
〈x〉
t
− v) +O(t−ε0).

Proposition 9.4 Assume (G1), (G2), (Is) for s > 1. Let J ∈ C∞0 (]c0, c1[) for 0 < c0 < c1 and
χ ∈ C∞0 (R). Then:∫ +∞

1
‖dΓ(

∣∣∣∣J(
〈x〉
t

)(
〈x〉
t
− v) + h.c.

∣∣∣∣) 1
2χ(H)e−itHu‖2 dt

t
≤ C‖u‖2.

Proof. We �x J1 ∈ C∞0 (]c0, c1[) with J1 ≡ 1 on supp J and set

b(t) = J1(
〈x〉
t

)c
1
2J1(
〈x〉
t

), for c = (
〈x〉
t
− v)2 + t−δ,

and δ > 0 will be chosen small enough later. We will use the propagation observable

Φ(t) = χ(H)dΓ(b(t))χ(H).

Note that by Lemma 9.3 i) and the higher order estimates b(t), Φ(t) ∈ O(1). We �rst note that

χ(H)[V, idΓ(b(t))]χ(H) ∈ O(t−s),

using hypothesis (Is) and Lemma 9.3 i). Next

D0dΓ(b(t)) = dΓ(d0b(t)),
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d0b(t) =
(
d0J1(

〈x〉
t

)
)
c

1
2J1(
〈x〉
t

) + h.c.+ J1(
〈x〉
t

)(d0c
1
2 )J1(

〈x〉
t

).

By Lemma 9.3 iii) we know that choosing δ small enough:

J1( 〈x〉t )(d0c
1
2 )J1

〈x〉
t )

= −J1( 〈x〉t ) c
1
2

t J1( 〈x〉t ) + γJ1( 〈x〉t )M(t)J1( 〈x〉t )γ +O(t−1−ε1),

for some ε1 > 0 and M(t) ∈ O(1). By Lemma 9.3 iv) we get then that

−J1( 〈x〉t )(d0c
1
2 )J1( 〈x〉t )

≥ C
t

∣∣∣J( 〈x〉t )( 〈x〉t − v) + h.c.
∣∣∣− CγJ2

1 ( 〈x〉t )γ − Ct−1−ε1

for some ε1 > 0. Next by Lemma 3.3:

d0J1(
〈x〉
t

) = − 1
2t
J ′1(
〈x〉
t

)(
〈x〉
t
− v) +O(t−2),

which by Lemma 9.3 v) gives for J2 ∈ C∞0 (]c0, c1[) and J2 ≡ 1 on supp J1:(
d0J1(

〈x〉
t

)
)
c

1
2J1(
〈x〉
t

) + h.c. ≥ −C
t

(
〈x〉
t
− v)J2

2 (
〈x〉
t

)(
〈x〉
t
− v) +O(t−1−ε1)

for some ε1 > 0. Collecting the various estimates, we obtain �nally

−DΦ(t) ≥ C

t
χ(H)dΓ(

∣∣∣∣J(
〈x〉
t

)(
〈x〉
t
− v) + h.c.

∣∣∣∣)χ(H)− CR1(t)− CR2(t) +O(t−1−ε1),

where

R1(t) = χ(H)dΓ(γJ2
1 (
〈x〉
t

)γ)χ(H), R2(t) =
1
t
χ(H)dΓ((

〈x〉
t
− v)J2

2 (
〈x〉
t

)(
〈x〉
t
− v))χ(H)

are integrable along the evolution by Prop. 9.2. We can then complete the proof as in [DG2,
Prop. 6.3]. 2

9.4 Minimal velocity estimate

In this subsection we prove the minimal velocity estimate. It says that for states with energy
away from thresholds and eigenvalues of H, at least one boson should escape to in�nity. We
recall that as in Subsect. 7.4, A = dΓ(a).

Lemma 9.5 Let H be an abstract QFT Hamiltonian. Assume (G4). Let k ∈ N, m = 1, 2 and
χ ∈ C∞0 (R). Then there exists C such that for any ε > 0 and q ∈ C∞0 ([−2ε, 2ε]) with 0 ≤ q ≤ 1
one has:

‖NkA
m

tm
Γ(qt)χ(H)‖ ≤ Cεm.

where qt = q( 〈x〉t ).
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Proof. Applying Prop. 2.4 ii) we get

(9.5) (dΓ(a))2m ≤ N2m−1dΓ(a2m).

Next

(9.6) Γ(qt)dΓ(a2m)Γ(qt) = dΓ((qt)2, qta2mqt) ≤ dΓ(qta2mqt),

by Prop. 2.4 iv). We write using (G4):

qta2mqt = Gt〈x〉−ma2m〈x〉−mGt ≤ Ct2m(Gt)2, m = 1, 2,

for Gt = G( 〈x〉t ) and G(s) = smq(s). Using that |G(s)| ≤ Cεm we obtain that

(9.7) qta2mqt ≤ Cε2mt2m, m = 1, 2.

From (9.7) and (9.5), (9.6) we obtain

(9.8) Γ(qt)N2kdΓ(a)2mΓ(qt) ≤ Cε2mt2mN2k+2m.

This implies the Lemma using the higher order estimates. 2

Proposition 9.6 Let H be an abstract QFT Hamiltonian. Assume hypotheses (Gi), for 1 ≤ i ≤
5, (M1), (M2), (Is) for s > 1. Let χ ∈ C∞0 (R) be supported in R\(τ ∪ σpp(H)). Then there
exists ε > 0 such that:∫ +∞

1

∥∥∥∥Γ
(

1l[0,ε]

(
|x|
t

))
χ(H)e−itHu

∥∥∥∥2 dt
t
≤ C‖u‖2.

Proof. Let us �rst prove the proposition for χ supported near an energy level λ ∈ R\τ ∪σpp(H).
By Thm. 7.8, we can �nd χ ∈ C∞0 (R) equal to 1 near λ such that for some c0 > 0:

(9.9) χ(H)[H, iA]0χ(H) ≥ c0χ
2(H).

Let ε > 0 be a parameter which will be �xed later. Let q ∈ C∞0 (|s| ≤ 2ε), 0 ≤ q ≤ 1, q = 1 near

{|s| ≤ ε} and let qt = q( 〈x〉t ).
We use the propagation observable

Φ(t) := χ(H)Γ(qt)
A

t
Γ(qt)χ(H).

We �x cuto� functions q̃ ∈ C∞0 (R), χ̃ ∈ C∞0 (R) such that

supp q̃ ⊂ [−4ε, 4ε], 0 ≤ q̃ ≤ 1, q̃q = q, χ̃χ = χ.

By Lemma 9.5 for m = 1 the observable Φ(t) is uniformly bounded. We have:

(9.10)

DΦ(t) = χ(H)dΓ(qt,d0q
t)At Γ(qt)χ(H) + h.c.

+χ(H)[V, iΓ(qt)]At Γ(qt)χ(H) + h.c.

+t−1χ(H)Γ(qt)[H, iA]Γ(qt)χ(H)

−t−1χ(H)Γ(qt)At Γ(qt)χ(H)

=: R1(t) +R2(t) +R3(t) +R4(t).
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We have used the fact, shown in the proof of Lemma 6.2, that Γ(qt) preserves D(H0) and D(Nn)
to expand the commutator [H, iΦ(t)] in (9.10).

Let us �rst estimate R2(t). By Prop. 2.7 and hypothesis (Is)

[V, iΓ(qt)] ∈ (N + 1)nON (t−s), s > 1,

for some n. Therefore by the higher order estimates and Lemma 9.5 for m = 1:

(9.11) R2(t) ∈ O(t−s), s > 1.

We estimate now R1(t). By Lemma 3.3 i):

d0q
t = − 1

2t

(
(
〈x〉
t
− v)q′(

〈x〉
t

) + h.c.
)

+ rt =:
1
t
gt + rt,

where rt ∈ O(t−2). By the higher order estimates ‖χ(H)dΓ(qt, rt)‖ ∈ O(t−2), which using
Lemma 9.5 for m = 1 yields

‖χ(H)dΓ(qt, rt)
A

t
Γ(qt)χ(H)‖ ∈ O(t−2).

Then we set

B1 := χ(H)dΓ(qt, gt)(N + 1)−
1
2 , B∗2 := (N + 1)

1
2
A

t
Γ(qt)χ(H),

and use the inequality

(9.12)
χ(H)dΓ(qt, gt)At Γ(qt)χ(H) + h.c. = B1B

∗
2 +B2B

∗
1

≥ −B1B
∗
1 −B2B

∗
2 .

We can write:

(9.13)

−B2B
∗
2 = −χ(H)χ̃(H)Γ(qt)Γ(q̃t)A

2

t2
(N + 1)Γ(q̃t)Γ(qt)χ̃(H)χ(H)

= χ(H)Γ(qt)χ̃(H)Γ(q̃t)A
2

t2
(N + 1)Γ(q̃t)χ̃(H)Γ(qt)χ(H) +O(t−1)

≥ −ε2C1χ(H)Γ2(qt)χ(H) +O(t−1).

In the �rst step we use that [χ̃(H),Γ(qt)] ∈ O(t−1) by Lemma 6.2 and that A
2

t2
(N+1)Γ(qt)χ(H) ∈

O(1) by Lemma 9.5 for m = 2. In the second step we use the following estimate analogous to
(9.8):

χ̃(H)Γ(q̃t)
A2

t2
(N + 1)Γ(q̃t)χ̃(H) ≤ C1ε

2.

Next we use Prop. 2.4 iv) to obtain:

B∗1B1 = χ(H)dΓ(qt, gt)2(N + 1)−1χ(H)

≤ χ(H)dΓ((gt)2)χ(H).

By Prop. 9.2, we obtain

(9.14)

∫ +∞

1
‖B1e−itHu‖2 dt

t
≤ C‖u‖2.
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To handle R3(t), we write using Lemma 6.2:

(9.15)

R3(t) = t−1Γ(qt)χ(H)[H, iA]χ(H)Γ(qt) +O(t−2)

≥ C0t
−1Γ(qt)χ2(H)Γ(qt)− Ct−2

≥ C0t
−1χ(H)Γ2(qt)χ(H)− Ct−2.

It remains to estimate R4(t). We write using Lemma 9.5:

(9.16)

R4(t) = −t−1χ(H)Γ(qt)At Γ(qt)χ(H)

= −t−1χ(H)Γ(qt)χ̃(H)Γ(q̃t)At Γ(q̃t)χ̃(H)Γ(qt)χ(H) +O(t−2)

≥ −εC2t
−1χ(H)Γ(qt)2χ(H) +O(t−2).

Collecting (9.13), (9.15) and (9.16), we obtain

(9.17)
−t−1B∗2(t)B2(t) +R3(t) +R4(t)

≥ (−ε2C1 + C0 − εC2)t−1χ(H)Γ(qt)2χ(H) +O(t−2).

We pick now ε small enough so that C̃0 = −ε2C1 +C0− εC2 > 0. Using (9.11), (9.14) and (9.17)
we conclude that

DΦ(t) ≥ C̃0

t
χ(H)Γ2(qt)χ(H)−R(t)− Ct−s, s > 1.

where R(t) is integrable along the evolution. We �nish the proof as in [DG1, Prop. 11.5]. 2

10 Asymptotic Completeness

In this section we prove the asymptotic completeness of wave operators. The �rst step is the
geometric asymptotic completeness, identifying the asymptotic vacua with the subspace of states
living at large times t in 〈x〉 ≤ εt for arbitrarily small ε > 0. In the second step, using the
minimal velocity estimate, one shows that these states have to be bound states of H.

10.1 Existence of asymptotic localizations

Theorem 10.1 Let H be an abstract QFT Hamiltonian. Assume hypotheses (G1), (G2), (Is)

for s > 1. Let q ∈ C∞0 (R), 0 ≤ q ≤ 1, q = 1 on a neighborhood of zero. Set qt = q( 〈x〉t ). Then
there exists

(10.1) s- lim
t→∞

eitHΓ(qt)e−itH =: Γ+(q).

We have

(10.2) Γ+(qq̃) = Γ+(q)Γ+(q̃),

(10.3) 0 ≤ Γ+(q) ≤ Γ+(q̃) ≤ 1l, if 0 ≤ q ≤ q̃ ≤ 1,

(10.4) [H,Γ+(q)] = 0.
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The proof is completely similar to the proof of [DG1, Thm. 12.1], using Prop. 9.4. An analogous
result is true for the free Hamiltonian H0.

Proposition 10.2 Assume hypotheses (H1), (G1), (G2). Let q ∈ C∞(R), 0 ≤ q ≤ 1, q ≡ 1
near ∞. Then there exists

(10.5) s- lim
t→∞

eitH0Γ(qt)e−itH0 =: Γ+
free(q).

Moreover if additionally q ≡ 0 near 0 then:

(10.6) Γ+
free(q) = Γ+

free(q)Γ(1lc(ω)),

where 1lc(ω) is the projection on the continuous spectral subspace of ω.

Proof. By density it su�ces to the existence of the limit (10.5) on Γfin(h).
Using the identity (see e.g. [DG1, Lemma 3.4]):

d
dt

Γ(rt) = dΓ(rt, r′t),

we obtain for a, b ∈ B(h):

Γ(a)− Γ(b) =
∫ 1

0
dΓ(ta+ (1− t)b, a− b)dt.

It follows then from Prop.2.4 that

B(h) 3 a 7→ Γ(a)(N + 1)−1 ∈ B(Γ(h))

is norm continuous. This implies that it su�ces to prove the existence of the limit for q ∈ C∞(R)
0 ≤ q ≤ 1 and q ≡ 1 near∞, q ≡ Cst near 0. In particular q′ ∈ C∞0 (R\{0}). We can then repeat
the proof of [DG1, Thm. 12.1], noting that the only place where q ≡ 1 near 0 is needed is to
control the commutator [V, iΓ(qt)] which is absent in our case. This proves (10.5). Restricting
(10.5) to the one-particle sector we obtain the existence of

(10.7) q+ := s- lim
t→+∞

eitωqte−itω.

By Lemma 3.3 i), we see that [χ(ω), q+] = 0 for each χ ∈ C∞0 (R) hence q+ commutes with ω.
If q ≡ 0 near 0 then clearly

1lpp(ω)q+ = q+1lpp(ω) = 0, and hence q+ = q+1lc(ω) = 1lc(ω)q+.

We note now that
Γ+

free(q) = Γ(q+),

which implies (10.6). 2
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10.2 The projection P +
0 .

Theorem 10.3 Let H be an abstract QFT Hamiltonian. Assume hypotheses (G1), (G2), (Is)
for s > 1. Let {qn} ∈ C∞0 (R) be a decreasing sequence of functions such that 0 ≤ qn ≤ 1,
qn =≡ 1 on a neighborhood of 0 and ∩∞n=1supp qn = {0}. Then

(10.8) P+
0 := s- lim

n→∞
Γ+(qn) exists.

P+
0 is an orthogonal projection independent on the choice of the sequence {qn}. Moreover:

[H,P+
0 ] = 0.

Moreover if (S) holds:

(10.9) RanP+
0 ⊂ K

+.

The range of P+
0 can be interpreted as the space of states asymptotically containing no bosons

away from the origin.
Proof. The proof is analogous to [DG1, Thm. 12.3]. We will only detail (10.9). Let n ∈ N such
that D(Hn) ⊂ D(a+∗(h)) for all h ∈ hc(ω). We will show that for u ∈ RanP+

0 :

(H + b)−na+(h)u = 0, h ∈ hc(ω).

Since h 7→ (H + b)−na+(h) is norm continuous by Thm. 8.2, we can assume that h ∈ h0. By (S)
and the fact that u ∈ RanP+

0 we can choose q ∈ C∞0 (R) with 0 ≤ q ≤ 1 such that:

u = lim
t→+∞

eitHΓ(qt)e−itHu, qtht ∈ o(1).

Then:
(H + b)−na+(h)u = limt→+∞ eitH(H + b)−na(ht)Γ(qt)e−itHu

= limt→+∞ eitH(H + b)−nΓ(qt)a(qtht)e−itHu

= 0,

using that (N + 1)−1a(qtht) ∈ o(1) and the higher order estimates. 2

10.3 Geometric inverse wave operators

Let j0 ∈ C∞0 (R), j∞ ∈ C∞(R), 0 ≤ j0, j∞, j
2
0 + j2

∞ ≤ 1, j0 = 1 near 0 (and hence j∞ = 0 near
0). Set j := (j0, j∞), jt = (jt0, j

t
∞).

As in Subsect. 2.4, we introduce the operator I(jt) : Hext → H.

Theorem 10.4 Assume (G1), (G2), (Is) for s > 1. Then:
i) The following limits exist:

(10.10) s- lim
t→+∞

eitHext
I∗(jt)e−itH ,
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(10.11) s- lim
t→+∞

eitHI(jt)e−itHext
.

If we denote (10.10) by W+(j), then (10.11) equals W+(j)∗ and ‖W+(j)‖ ≤ 1.
ii) For any bounded Borel function F one has

W+(j)F (H) = F (Hext)W+(j).

iii) Let q0, q∞ ∈ C∞(R), ∇q0,∇q∞ ∈ C∞0 (R), 0 ≤ q0, q∞ ≤ 1, q0 ≡ 1 near 0 and q∞ ≡ 1 near
∞. Set j̃ := (j̃0, j̃∞) := (q0j0, q∞j∞). Then

Γ+(q0)⊗ Γ+
free(q∞)W+(j) = W+(j̃).

iv) Assume additionally that j0 + j∞ = 1. Then RanW+(j) ⊂ Hscatt and if χ ∈ C∞0 (R):

Ωext,+χ(Hext)W+(j) = χ(H).

Note that statement iv) of Thm. 10.4 makes sense since RanW+(j) ⊂ Hscatt and χ(Hext)
preserves Hscatt.
Proof. Statements i), ii), iii) are proved exactly as in [DG1, Thm. 12.4], we detail only iv).

We pick q∞ ∈ C∞(R) with q∞ ≡ 1 near ∞, q∞ ≡ 0 near 0 and q∞j∞ = j∞. Applying iii)
for q0 ≡ 1, we obtain by iii) that 1l ⊗ Γ+

free(q∞)W+(j) = W+(j). Applying then (10.6) we get
that 1l⊗ Γ(1lc(ω))W+(j) = W+(j) i.e. RanW+(j) ⊂ Hscatt. The rest of the proof of iv) is as in
[DG1, Thm. 12.4]. 2

10.4 Geometric asymptotic completeness

In this subsection we will show that
RanP+

0 = K+.

We call this property geometric asymptotic completeness. It will be convenient to work in the
scattering space Hscatt and to treat Ω+ as a partial isometry Ω+ : Hscatt → H, as explained in
Subsect. 8.3.

Theorem 10.5 Assume (G1), (G2), (S), (Is) for s > 1. Let jn = (j0,n, j∞,n) satisfy the
conditions of Subsect. 10.3. Additionally, assume that j0,n + j∞,n = 1 and that for any ε > 0,
there exists m such that, for n > m, supp j0,n ⊂ [−ε, ε]. Then

Ω+∗ = w − lim
n→∞

W+(jn).

Besides
K+ = RanP+

0 .

Proof. The proof is analogous to [DG1, Thm. 12.5]. Since it is in important step, we will give
some details. If q ∈ C∞0 (R) is such that q = 1 in a neighborhood of 0, 0 ≤ q ≤ 1 then for
su�ciently big n we have qj0,n = j0,n. Therefore, for su�ciently big n by Thm. 10.4 iii)

(Γ+(q)⊗ 1l)W+(jn)−W+(jn) = 0.
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Hence

(10.12) w − lim
n→∞

(
P+

0 ⊗ 1lW+(jn)−W+(jn)
)

= 0.

Let χ ∈ C∞0 (R). We have

Ω+∗χ(H) = Ω+∗Ωext,+χ(Hext)W+(jn) (1)

= w − limn→∞Ω+∗Ωext,+χ(Hext)W+(jn) (2)

= w − limn→∞Ω+∗Ωext,+χ(Hext)P+
0 ⊗ 1lW+(jn) (3)

= w − limn→∞ P
+
0 ⊗ 1lχ(Hext)W+(jn) (4)

= w − limn→∞ P
+
0 ⊗ 1lW+(jn)χ(H) (5)

= w − limn→∞W
+(jn)χ(H) (6).

We use Thm. 10.4 in step (1), (10.12) in step (3), RanP+
0 ⊂ K+ in step (4), Thm. 10.4 ii) in

step (5) and (10.12) again in step (6). Clearly this implies that:

Ω+∗ = w − lim
n→∞

W+(jn).

Therefore by (10.12)
RanΩ+∗ ⊂ RanP+

0 ⊗ Γ(h) ⊂ K+ ⊗ Γ(h).

But by construction
RanΩ+∗ = K+ ⊗ Γ(h).

Hence K+ ⊗ Γ(h) = RanP+
0 ⊗ Γ(h), and therefore K+ = RanP+

0 . 2

10.5 Asymptotic completeness

In this subsection, we will prove asymptotic completeness.

Theorem 10.6 Assume hypotheses (Hi), 1 ≤ i ≤ 3, (Gi), 1 ≤ i ≤ 5, (Mi) i = 1, 2, (Is) for
s > 1 and (S). Then:

K+ = Hpp(H).

Proof. By Proposition 8.4 and geometric asymptotic completeness we already know that

Hpp(H) ⊂ K+ = RanP+
0 .

It remains to prove that P+
0 ≤ 1lpp(H). Let χ ∈ C∞0 (R\(τ ∪σpp(H))). We deduce from Prop. 9.6

in Subsect. 9.4 that there exists ε > 0 such that for q ∈ C∞0 ([−ε, ε]) with q(x) = 1 for |x| < ε/2
we have ∫ +∞

1
‖Γ(qt)χ(H)e−itHu‖2 dt

t
≤ c‖u‖2.

Since ‖Γ(qt)χ(H)e−itHu‖ → ‖Γ+(q)χ(H)u‖, we have Γ+(q)χ(H) = 0. This implies that

P+
0 ≤ 1lτ∪σpp(H).

Since τ is a closed countable set and σpp(H) can accumulate only at τ , we see that 1lpp(H) =
1lτ∪σpp(H). This completes the proof of the theorem. 2

52



A Appendix

A.1 Proof of Lemma 3.3

To prove i) we restrict the quadratic form [F ( 〈x〉R ), ω] to S. Using (2.2), we get

(A.1)

[F ( 〈x〉R ), ω] = i
2πR

∫
C ∂ zF̃ (z)(z − 〈x〉R )−1[〈x〉, ω](z − 〈x〉R )−1dz ∧ d z,

= i
2πR

∫
C ∂ zF̃ (z)(z − 〈x〉R )−2[〈x〉, ω]dz ∧ d z

+ i
2πR2

∫
C ∂ zF̃ (z)(z − 〈x〉R )−2ad2

〈x〉ω(z − 〈x〉R )−1dz ∧ d z

where the right hand sides are operators on S. Since ad2
〈x〉ω ∈ S0

(0), we see that the last term

belongs to R−2S0
(0). Using the bound 〈x〉R (z − 〈x〉R )−1 = O(|Imz|−1) for z ∈ supp F̃ , we see that

the last term belongs also to R−1S−1
(0) . This proves i) for k = 0.

Replacing ω by [ω, 〈x〉] and using that ad2
〈x〉[ω, 〈x〉] ∈ S

(0)
(0) we get also i) for k = 1.

ii) follows from i) for k = 0 since S is a core for ω. iii) and iv) are proved similarly. v) is
proved as i), replacing ω by [ω, ia]0 and using only the �rst line of (A.1). To prove vi) we restrict

again the quadratic form [F ( 〈x〉R ), ω2] to S and get:

(A.2)

[F ( 〈x〉R ), ω2]

= i
2πR

∫
C ∂ zF̃ (z)(z − 〈x〉R )−1[〈x〉, ω2](z − 〈x〉R )−1dz ∧ d z,

= i
2πR

∫
C ∂ zF̃ (z)(z − 〈x〉R )−1 (2[〈x〉, ω]ω + [ω, [〈x〉, ω]]) (z − 〈x〉R )−1dz ∧ d z,

where the right hand sides are operators on S. Note that [ω, [〈x〉, ω]] is bounded by (G2). We

use next that ω(z − 〈x〉R )−1ω−1 ∈ O(|Imz)|−2 uniformly in R ≥ 1 to obtain vi).
To prove vii), we pick another function F1 ∈ C∞0 (R\{0}) such that F1F = F and note that

[F (
〈x〉
R

), b] = F (
〈x〉
R

)[F1(
〈x〉
R

), b] + [F (
〈x〉
R

), b]F1(
〈x〉
R

).

Applying again (2.2), we get

[F (
〈x〉
R

), b] =
i

2πR

∫
C
∂ zF̃ (z)(z − 〈x〉

R
)−1[〈x〉, b](z − 〈x〉

R
)−1dz ∧ d z,

and the analogous formula for [F1( 〈x〉R ), b]. We use then that [〈x〉, b] ∈ S−µ+δ
(0) and Lemma 2.3,

moving powers of 〈x〉 through the resolvents either to the left or to the right to obtain vii). 2

A.2 Proof of Lemma 3.4.

We use the identity:

ω−
1
2 = c0

∫ +∞

0
s−

1
2 (ω + s)−1ds,

to get:

ω
1
2 [F (

〈x〉
R

), ω−
1
2 ] = c0

∫ +∞

0
s−

1
2ω

1
2 (ω + s)−1[F (

〈x〉
R

), ω](ω + s)−1ds ∈ O(R−1),
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since ω ≥ m > 0. Hence

ω−
1
2 (ω − ω∞)F ( 〈x〉R )ω−

1
2

= ω−
1
2 (ω − ω∞)ω−

1
2F ( 〈x〉R ) + ω−

1
2 (ω − ω∞)ω−

1
2ω

1
2 [F ( 〈x〉R ), ω−

1
2 ]

= ω−
1
2 (ω − ω∞)ω−

1
2 〈x〉ε〈x〉−εF ( 〈x〉R ) +O(R−1)

= O(R−ε) +O(R−1).

The second statement of the lemma is obvious. 2

A.3 Proof of Lemma 9.3.

Since by (G1) [v, 〈x〉] extends from S as a bounded operator on h and S is a core for 〈x〉, we get
that v preserves D(〈x〉). Since 〈x〉t − v is selfadjoint on D(〈x〉) we get

D(c) = D((
〈x〉
t
− v)2) = {u ∈ D(〈x〉)| (

〈x〉
t
− v)u ∈ D(〈x〉)} = D(〈x〉2),

so c is selfadjoint on D(〈x〉2). Since v ∈ S0
(0) we get by Lemma 2.3 that J( 〈x〉t )cJ( 〈x〉t ) ∈ O(1)

which proves i).

Let us now prove ii). We �rst consider the commutator [c, J( 〈x〉t )] for J ∈ C∞0 (R). We have

[c, J( 〈x〉t )] = ( 〈x〉t − v)[v, J( 〈x〉t )] + [v, J( 〈x〉t )]( 〈x〉t − v)

= t−1( 〈x〉t − v)J ′( 〈x〉t )[v, 〈x〉] + t−1J ′( 〈x〉t )[v, 〈x〉]( 〈x〉t − v)

+ ( 〈x〉t − v)M(t) +M(t)( 〈x〉t − v),

where M(t) ∈ t−2S0
(0) ∩ t

−1S−1
(0) by Lemma 3.3 i). This implies that the last two terms in the

r.h.s. are O(t−2). Using then that [v, J ′( 〈x〉t )] ∈ O(t−1) and [[v, 〈x〉], 〈x〉t ] ∈ O(t−1) since v ∈ S0
(3),

we see that
( 〈x〉t − v)J ′( 〈x〉t )[v, 〈x〉] = J ′( 〈x〉t )M1(t) +O(t−1),

J ′( 〈x〉t )[v, 〈x〉]( 〈x〉t − v) = J ′( 〈x〉t )M2(t) +O(t−1),

where Mi(t) ∈ O(1). This shows that:

(A.3) [c, J(
〈x〉
t

)] =
1
t
J ′(
〈x〉
t

)O(1) +O(t−2).

We will use the following identities valid for λ > 0:

(A.4) λ−
1
2 = c0

∫ +∞

0
s−

1
2 (λ+ s)−1ds, λ

1
2 = c0

∫ +∞

0
s−

1
2λ(λ+ s)−1ds,

and

(A.5) λ−
3
2 = 2c0

∫ +∞

0
s−

1
2 (λ+ s)−2ds,
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which follows by di�erentiating the �rst identity of (A.4) w.r.t. λ. A related obvious bound is:

(A.6)

∫ +∞

0
s−

1
2 (t−δ + s)−nds = O(t(n−

1
2

)δ), n ≥ 1.

From (A.4) we obtain that

(A.7) c
1
2 = c0

∫ +∞

0
s−

1
2 c(c+ s)−1ds, as a strong integral on D(c).

Therefore

[c
1
2 , J(

〈x〉
t

)] = c0

∫ +∞

0
s−

1
2

(
[c, J(

〈x〉
t

)](c+ s)−1 − c(c+ s)−1[c, J(
〈x〉
t

)](c+ s)−1

)
ds

We use the bounds

(A.8) ‖c(c+ s)−1‖ ≤ 1, ‖(c+ s)−1‖ ≤ (t−δ + s)−1,

and (A.3) to obtain

‖[c
1
2 , J(

〈x〉
t

)]‖ ≤ Ct−1

∫ +∞

0
s−

1
2 (t−δ + s)−1ds = O(t−1+δ/2),

by (A.4), which proves ii).
To prove iii) we �rst compute

(A.9) d0c = −2
t
(
〈x〉
t
− v)2 −

(
[ω, iv](

〈x〉
t
− v) + h.c.

)
− δt−δ−1.

We �rst rewrite the second term in the r.h.s. in a convenient way:
by (G2), we have

[ω, iv] = γ2 + r−1−ε, γ ∈ S−
1
2

ε,(1), r−1−ε ∈ S−1−ε
(0) .

Since v ∈ S0
(0), we get �rst that:

(A.10) (
〈x〉
t
− v)r−1−ε ∈ O(t−1)S−ε(0) + S−1−ε

(0) .

We claim also that

(A.11) [γ,
〈x〉
t
− v] ∈ O(t−1)S

− 1
2

+ε

(0) + S
−3/2+2ε
(0) .

Clearly [γ, 〈x〉] ∈ S−
1
2

+ε

(0) . To handle [γ, v] we use the Lie identity and write:

(A.12) i [γ, v] = −[γ, [ω, 〈x〉]] = [ω, [〈x〉, γ]] + [〈x〉, [ω, γ]] ∈ S−3/2+2ε
(0) ,

which proves (A.11). By Lemma 2.3 i), we get that

γ[γ,
〈x〉
t
− v], [γ,

〈x〉
t
− v]γ ∈ t−1S−1+ε

(0) + S−2+2ε
(0) ,
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and hence using that 0 < ε < 1
2 :

[ω, iv](
〈x〉
t
− v) + h.c.. = 2γ(

〈x〉
t
− v)γ +R2(t),

where R2(t) ∈ O(t−1)S−ε1(0) + S−1−ε1
(0) , for some ε1 > 0. We set now:

R0(t) = −2c
t
, R1(t) = −(δ − 2)t−δ−1, R3(t) = −2γ(

〈x〉
t
− v)γ,

and rewrite (A.9) as

d0c =
3∑
i=0

Ri(t).

Using (A.7), we obtain as a strong integral on D(c):

d0c
1
2 = c0

∫ +∞
0 s−

1
2

(
d0c(c+ s)−1 − c(c+ s)−1d0c(c+ s)−1

)
ds

=
3∑
i=0

c0

∫ +∞
0 s−

1
2

(
Ri(t)(c+ s)−1 − c(c+ s)−1Ri(t)(c+ s)−1

)
ds

=:
3∑
i=0

Ii(t).

Using (A.4) we obtain

I0(t) = −1
t
c

1
2 , I1(t) = Ct−δ−1c−

1
2 = O(t−δ/2−1).

It remains to handle the terms J( 〈x〉t )Ii(t)J( 〈x〉t ) for i = 2, 3. We write them as:

J( 〈x〉t )Ii(t)J( 〈x〉t ) = c0

∫ +∞
0 s−

1
2J( 〈x〉t )Ri(t)(c+ s)−1J( 〈x〉t )ds

−c0

∫ +∞
0 s−

1
2J( 〈x〉t )c(c+ s)−1Ri(t)(c+ s)−1J( 〈x〉t )ds.

We will need to use the fact that O 6∈ supp J . To do this we claim that if J, J1 ∈ C∞0 (R) with
J1 ≡ 1 near supp J then:

(A.13) J(
〈x〉
t

)(c+ s)−1(1− J1)(
〈x〉
t

) ∈ O(t−2(t−δ + s)−2) +O(t−2(t−δ + s)−3),

(A.14) J(
〈x〉
t

)c(c+ s)−1(1− J1)(
〈x〉
t

) ∈ O(t−2(t−δ + s)−1) +O(t−2(t−δ + s)−2).

We pick T1 ∈ C∞0 (R), T1 ≡ 1 on supp J ′1, T1 ≡ 0 on supp J . We write using (A.3):

J( 〈x〉t )(c+ s)−1(1− J1)( 〈x〉t )

= J( 〈x〉t )(c+ s)−1[c, J1( 〈x〉t )](c+ s)−1

= J( 〈x〉t )(c+ s)−1T1( 〈x〉t )O(t−1)(c+ s)−1 + J( 〈x〉t )(c+ s)−1O(t−2)(c+ s)−1

= J( 〈x〉t )(c+ s)−1[T1( 〈x〉t , c)](c+ s)−1O(t−1)(c+ s)−1 + J( 〈x〉t )(c+ s)−1O(t−2)(c+ s)−1

= J( 〈x〉t )(c+ s)−1O(t−1)(c+ s)−1O(t−1)(c+ s)−1 + J( 〈x〉t )(c+ s)−1O(t−2)(c+ s)−1.
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We obtain (A.13) using the bound ‖(c+ s)−1‖ ≤ (t−δ + s)−1. (A.14) follows from (A.13) using
that c(c+ s)−1 = 1l− s(c+ s)−1.

We hence �x a cuto� J1 ∈ C∞0 (R\{0}) such that J1 ≡ 1 on supp J and set

R̃i(t) = J1(
〈x〉
t

)Ri(t)J1(
〈x〉
t

),

and denote by Ĩi(t) the analogs of Ii(t) for Ri(t) replaced by R̃i(t).
We claim that:

(A.15) J(
〈x〉
t

)
(
Ii(t)− Ĩi(t)

)
J(
〈x〉
t

) ∈ O(t−2+5δ/2), i = 2, 3.

To prove (A.15), we note that Ĩi(t) is obtained from Ii(t) by inserting J1( 〈x〉t ) to the left and
right of Ri(t) under the integral sign. The error terms under the integral sign coming from this
insertion are estimated using (A.13), (A.14) and the fact that Ri(t) ∈ O(1) for i = 2, 3, since

γ ∈ S−
1
2

(0) . The integrals of these error terms are estimated using (A.6), which by a painful but

straightforward computation gives (A.15).
By Lemma 2.3 ii), we know that R̃2(t) ∈ O(t−1−ε1) for some ε1 > 0 small enough, hence

using the bounds (A.8) and (A.6), we obtain that for δ > 0 small enough

Ĩ2(t) and hence J(
〈x〉
t

)I2(t)J(
〈x〉
t

) ∈ O(t−1−ε2), ε2 > 0.

To treat Ĩ3(t), we use that

R̃3(t) = γ∗t (
〈x〉
t
− v)γt, for γt = γJ1(

〈x〉
t

).

We claim that

(A.16) [γt, c] ∈ O(t−3/2+ε).

Let us prove this claim. We write:

[γt, c] = (
〈x〉
t
− v)[γt,

〈x〉
t
− v] + [γt,

〈x〉
t
− v](

〈x〉
t
− v),

and

[γt, 〈x〉] = [γ, 〈x〉]J1(
〈x〉
t

), [γt, v] = [γ, v]J1(
〈x〉
t

) + γ[J1(
〈x〉
t

), v].

Now

(
〈x〉
t
− v)[γ, 〈x〉]J1(

〈x〉
t

), [γ, 〈x〉]J1(
〈x〉
t

)(
〈x〉
t
− v) ∈ O(t−

1
2

+ε).

This follows from the fact that [γ, 〈x〉] ∈ S−
1
2

+ε

(0) , 0 6∈ supp J1 and Lemma 2.3 ii). Similarly we

saw in (A.12) that [γ, v] ∈ S−3/2+2ε
(0) , which implies that:

(
〈x〉
t
− v)[γ, v]J1(

〈x〉
t

), [γ, v]J1(
〈x〉
t

)(
〈x〉
t
− v) ∈ O(t−3/2+2ε).
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Finally using Lemma 3.3 i) we write:

[J1(
〈x〉
t
, v)] =

1
t
J ′1(
〈x〉
t

)[〈x〉, v] +M(t), M(t) ∈ O(t−2)S0
(0) ∩O(t−1)S−1

(0) .

Since γ ∈ S−
1
2

(0) and [〈x〉, v] ∈ S0
(0), we get that

(
〈x〉
t
− v)γJ ′1(

〈x〉
t

)[〈x〉, v], γJ ′1(
〈x〉
t

)[〈x〉, v](
〈x〉
t
− v) ∈ O(t−

1
2 ),

and since M(t) ∈ O(t−2)S0
(0) ∩O(t−1)S−1

(0) :

(
〈x〉
t
− v)γM(t), γM(t)(

〈x〉
t
− v) ∈ O(t−2).

Collecting the various estimates we obtain (A.16).
From the estimate of [γt, c] we obtain:

(A.17) [γt, (c+ s)−1] ∈ O(t−3/2+ε(t−δ + s)−2),

(A.18) [γt, c(c+ s)−1] ∈ O(t−3/2+ε(t−δ + s)−1).

We now write:

Ĩ3(t) = c0

∫ +∞
0 s−

1
2γ∗t ( 〈x〉t − v)γt(c+ s)−1ds

−c0

∫ +∞
0 s−

1
2 c(c+ s)−1γ∗t ( 〈x〉t − v)γt(c+ s)−1ds

We �rst move γt to the right in the two integrals using (A.17) and the fact that

γ∗t (
〈x〉
t
− v) = J1(

〈x〉
t

)γ(
〈x〉
t
− v) ∈ O(1),

since γ ∈ S−
1
2

(0) . We obtain errors terms of size O(t−3/2+ε+5δ/2) using (A.6). We then move γ∗t to

the left in the second integral using (A.18) and the fact that

‖(〈x〉
t
− v)(c+ s)−1‖ ≤ ‖c

1
2 (c+ s)−1‖ ≤ tδ/2.

We obtain error terms of size O(t−3/2+ε+δ) using again (A.6). Hence for δ > 0 small enough, we
get:

Ĩ3(t) = c0

∫ +∞
0 γ∗t s

− 1
2 ( 〈x〉t − v)(c+ s)−1γtds

−c0

∫ +∞
0 γ∗t s

− 1
2 c(c+ s)−1( 〈x〉t − v)(c+ s)−1γtds

+O(t−1−ε1)

for some ε1 > 0. The integrals can be computed exactly since 〈x〉t − v commutes with c and are

equal to C1( 〈x〉t − v)c−
1
2 for some constant C1 and hence O(1). This yields:

J( 〈x〉t )Ĩ3(t)J( 〈x〉t ) = J( 〈x〉t )γ∗tM(t)γtJ( 〈x〉t ) +O(t−1−ε1)

= J( 〈x〉t )γM(t)γJ( 〈x〉t ) +O(t−1−ε1),
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for M(t) ∈ O(1). Using also (A.15), the same equality holds for J( 〈x〉t )I3(t)J( 〈x〉t ). Finally we

use that γJ( 〈x〉t ) ∈ O(t−
1
2 ), by Lemma 2.3 ii) and [γ, J( 〈x〉t )] ∈ O(t−3/2+ε), to get:

J(
〈x〉
t

)γM(t)γJ(
〈x〉
t

) = γJ(
〈x〉
t

)M(t)J(
〈x〉
t

)γ +O(t−2+ε).

Hence

J(
〈x〉
t

)I3(t)J(
〈x〉
t

) = γJ(
〈x〉
t

)M(t)J(
〈x〉
t

)γ +O(t−1−ε1),

which completes the proof of iii).
Let us now prove iv). Set

B0 = J(
〈x〉
t

)(
〈x〉
t
− v) + h.c., B1 = J1(

〈x〉
t

)c
1
2J1(
〈x〉
t

).

By Lemma 3.3 we have:

B2
0 = 4( 〈x〉t − v)J2( 〈x〉t )( 〈x〉t − v) +O(t−1)

≤ C( 〈x〉t − v)J4
1 ( 〈x〉t )( 〈x〉t − v) +O(t−1)

= CJ2
1 ( 〈x〉t )( 〈x〉t − v)2J1( 〈x〉t ) +O(t−1)

= CJ2
1 ( 〈x〉t )cJ2

1 ( 〈x〉t ) +O(t−δ)

= CJ1( 〈x〉t )c
1
2J2

1 ( 〈x〉t )c
1
2J1( 〈x〉t ) +O(t−ε0)

= CB2
1 +O(t−ε0),

where we used ii) in the last step. Applying then Heinz theorem we obtain that

|B0| ≤ C(B2
1 + t−ε0)

1
2 ≤ CB1 + Ct−ε0/2,

which proves iv).
To prove v) we set

B2 = J(
〈x〉
t

)(
〈x〉
t
− v)c

1
2J1(
〈x〉
t

) + h.c..

Using ii) and Lemma 3.3, we get:

±B2 = ±
(

( 〈x〉t − v)JJ1( 〈x〉t )c
1
2 + h.c.

)
+O(t−1+δ/2)

= ±
(
c

1
2 ( 〈x〉t − v)c−

1
2JJ1( 〈x〉t )c

1
2 + h.c.

)
+O(t−1+δ/2)

≤ Cc+O(t−1+δ/2)

≤ C( 〈x〉t − v)2 +O(t−ε0),

since ( 〈x〉t − v)c−
1
2 is bounded with norm O(1). Since B2 = J2( 〈x〉t )B2J2( 〈x〉t ) we get

±B2 ≤ CJ2(
〈x〉
t

)(
〈x〉
t
− v)2J2(

〈x〉
t

) +O(t−ε0) = C(
〈x〉
t
− v)J2

2 (
〈x〉
t

)(
〈x〉
t
− v) +O(t−ε0),

by Lemma 3.3. 2
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