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Abstract

We introduce an abstract class of bosonic QFT Hamiltonians and study their spectral
and scattering theories. These Hamiltonians are of the form H = dI'(w) + V acting on the
bosonic Fock space I'(h), where w is a massive one-particle Hamiltonian acting on § and V'
is a Wick polynomial Wick(w) for a kernel w satisfying some decay properties at infinity.

We describe the essential spectrum of H, prove a Mourre estimate outside a set of thresh-
olds and prove the existence of asymptotic fields. Our main result is the asymptotic com-
pleteness of the scattering theory, which means that the CCR representations given by the
asymptotic fields are of Fock type, with the asymptotic vacua equal to the bound states of H.
As a consequence H is unitarily equivalent to a collection of second quantized Hamiltonians.

1 Introduction

1.1 Introduction

In recent years a lot of effort was devoted to the spectral and scattering theory of various models
of Quantum Field Theory like models of non-relativistic matter coupled to quantized radiation or
self-interacting relativistic models in dimension 141 (see among many others the papers [AHH]|,
[DG1], [DG2|, [FGSch], [FGS], [LL], [P], [Sp] and references therein). Substantial progress was
made by applying to these models methods originally developed in the study of N—particle
Schroedinger operators, namely the Mourre positive commutator method and the method of
propagation observables to study the behavior of the unitary group e *H for large times.

Up to now, the most complete results (valid for example for arbitrary coupling constants)
on the spectral and scattering theory for these models are available only for massive models and
for localized interactions. (For results on massless models see for example [FGS| and references
therein).

It turns out that for this type of models, the details of the interaction are often irrelevant.
The essential feature of the interaction is that it can be written as a Wick polynomial, with a
symbol (see below) which decays sufficiently fast at infinity.

The conjugate operator (for the Mourre theory), or the propagation observables (for the proof
of propagation estimates), are chosen as second quantizations of corresponding operators on the
one-particle space b.



In applications the one-particle kinetic energy is usually the operator (k? + mQ)% acting on
L?(R%, dk), which clearly has a nice spectral and scattering theory. Therefore the necessary
one-particle operators are easy to construct.

Our goal in this paper is to describe an abstract class of bosonic QFT Hamiltonians to which
the methods and results of [DG2|, [DG1] can be naturally extended.

Let us first briefly describe this class of models. We consider Hamiltonians of the form:

H = Hy+ V, acting on the bosonic Fock space I'(f),

where Hy = dI'(w) is the second quantization of the one-particle kinetic energy w and V =
Wick(w) is a Wick polynomial. To define H without ambiguity, we assume that Hy + V is
essentially selfdjoint and bounded below on D(Hy) N D(V).

The Hamiltonian H is assumed to be massive, namely we require that w > m > 0 and
moreover that powers of the number operator NP for p € N are controlled by sufficiently high
powers of the resolvent (H + b)~™. These bounds are usually called higher order estimates.

The interaction V is supposed to be a Wick polynomial. If for example h = L%(R¢, dk), this
means that V' is a finite sum V =3 5 Wick(wp,q) where Wick(wy,q) is formally defined as:

Wick(wp ) = /a*(K)a(K’)wp’q(K, K')dKdK’,

for
K = (kla"- 7kp)7 K/ = ( /17'-'7]{:1)7 CL*(K) = H?:la*(ki)v CL*(K,) = H?:la(k,‘)v
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and wy 4(K, K') is a scalar function separately symmetric in K and K’. To define Wick(w)
as an unbounded operator on I'(h), the functions wy, , are supposed to be in LQ(R(p+q)d). The
functions wy 4 are then the distribution kernels of a Hilbert-Schmidt operator w,, 4 from ®Zh into
®Eh. Putting together these operators we obtain a Hilbert-Schmidt operator w on I'(h) which is
called the Wick symbol of the interaction V.

In physical situations, this corresponds to an interaction which has both a space and an
ultraviolet cutoff (in one space dimension, only a space cutoff is required).

As said above, it is necessary to assume that the one-particle energy w has a nice spectral
and scattering theory. It is possible to formulate the necessary properties of w in a very abstract
framework, based on the existence of only two auxiliary Hamiltonians on §. The first one is
a conjugate operator a for w, in the sense of the Mourre method. The second one is a weight
operator (x), which is used both to control the ’order’ of various operators on h) and as a way to
localize bosons in ). Note that the one-particle energy w may have bound states.

The first basic result on spectral theory that we obtain is the HVZ theorem, which describes
the essential spectrum of H. If 0egs(w) = [Moo, +00[ for some my, > m > 0, then we show that

Oess(H) = [inf 0 (H) 4+ Moo, +00],

in particular H always has a ground state.

We then consider the Mourre theory and prove that the second quantized Hamiltonian A =
dI'(a) is a conjugate operator for H. In particular this proves the local finiteness of point
spectrum outside of the set of thresholds, which is equal to

T(H) = opp(H) + dI’(l)(T(w)),



where 7(w) is the set of thresholds of w for a and dI'"(E) for E C R is the set of all finite sums
of elements of E.

The scattering theory for our abstract Hamiltonians follows the standard approach based on
the asymptotic Weyl operators. These are defined as the limits:

WE(h) =s- lim W (h)e ™ h e ph(w),
t—+oo

where h.(w) is the continuous spectral subspace for w and hy = e *h, The asymptotic Weyl
operators define two CCR representations over h(w). Due to the fact that the theory is massive,
it is rather easy to see that these representations are of Fock type. The main problem of scat-
tering theory is to describe their vacua, i.e. the spaces of vectors annihilated by the asymptotic
annihilation operators a®(h) for h € be(w).

The main result of this paper is that the vacua coincide with the bound states of H. As a
consequence one sees that H is unitarily equivalent to the asymptotic Hamiltonian:

Hppoy @1+ 1® dI'(w), acting on Hpp(H) @ I'(he(w)).

This result is usually called the asymptotic completeness of wave operators. It implies that H
is unitarily equivalent to a direct sum of E; + dI'(wjg,(.)), where E; are the eigenvalues of H.
In more physical terms, asymptotic completeness means that for large times any initial state
asymptotically splits into a bound state and a finite number of free bosons.

We conclude the introduction by describing the examples of abstract QFT Hamiltonians to
which our results apply.

The first example is the space-cutoff P(¢)2 model with a variable metric, which corresponds
to the quantization of a non-linear Klein-Gordon equation with variable coefficients in one space
dimension.

The one-particle space is h = L?(R, dz) and the usual relativistic kinetic energy (D? + mQ)%
is replaced by the square root h3 of a second order differential operator h = Da(x)D + c(x),
where a(z) — 1 and c(x) — m2, for ms > 0 when 2 — co. (It is also possible to treat functions
c having different limits m3 ., > 0 at +00).

The interaction is of the form:

V= /R 9(x) P, o(x)): du,

where g > 0 is a function on R decaying sufficiently fast at oo, P(x,\) is a bounded below
polynomial of even degree with variable coefficients, p(z) = gb(w*%éx) is the relativistic field
operator and : : denotes the Wick ordering.

This model is considered in details in [GP], applying the abstract arguments in this paper.
Note that some conditions on the eigenfunctions and generalized eigenfunctions of h are necessary
in order to prove the higher order estimates.

The analogous model for constant coefficients was considered in [DG1]|. Even in the constant
coefficient case we improve the results in [DG1]| by removing an unpleasant technical assumption
on g, which excluded to take g compactly supported.

The second example is the generalization to higher dimensions. The one-particle energy w is:

w= ( Z Diaij(x)Dj + C(ZC))%,

1<i,j<d



where h = 3, ; .oy Diaij(x)Dj +c(x) is an elliptic second order differential operator converging
to D? +m?2, when x — oo. The interaction is now

/ 9(2) Pz, on(2))d,
R

where P is as before and ¢.(x) = gzﬁ(w*%F(w < K)0z) is now the UV-cutoff relativistic field.
Here because of the UV cutoff, the Wick ordering is irrelevant. Again some conditions on
eigenfunctions and generalized eigenfunctions of h are necessary.

We believe that our set of hypotheses should be sufficiently general to consider also Klein-
Gordon equations on other Riemannian manifolds, like for example manifolds equal to the union
of a compact piece and a cylinder R x M, where the metric on RT x M is of product type.

1.2 Plan of the paper

We now describe briefly the plan of the paper.

Section 2 is a collection of various auxiliary results needed in the rest of the paper. We first
recall in Subsects. 2.1 and 2.2 some arguments connected with the abstract Mourre theory and
a convenient functional calculus formula. In Subsect. 2.3 we fix some notation connected with
one-particle operators. Standard results taken from [DG1|, [DG2| on bosonic Fock spaces and
Wick polynomials are recalled in Subsects. 2.4 and 2.6.

The class of abstract QFT Hamiltonians that we will consider in the paper is described in
Sect. 3. The results of the paper are summarized in Sect. 4. In Sect. 5 we give examples of
abstract QFT Hamiltonians to which all our results apply, namely the space-cutoff P(p)s model
with a variable metric, and the analogous models in higher dimensions, where now an ultraviolet
cutoff is imposed on the polynomial interaction.

Sect. 6 is devoted to the proof of commutator estimates needed in various localization
arguments. The spectral theory of abstract QFT Hamiltonians is studied in Sect. 7. The essential
spectrum is described in Subsect. 7.1, the virial theorem and Mourre’s positive commutator
estimate are proved in Subsects. 7.2, 7.4 and 7.5. The results of Sect. 7 are related to those of
[1], where abstract bosonic and fermionic QF T Hamiltonians are considered using a C*—algebraic
approach instead of the geometrical approach used in our paper. Our result on essential spectrum
can certainly be deduced from the results in [1]. However the Mourre theory in [1] requires that
the one-particle Hamiltonian w has no eigenvalues and also that w is affiliated to an abelian
C*—algebra O such that e®Qe™1® = O, where a is the one-particle conjugate operator. In
concrete examples, this second assumption seems adapted to constant coefficients one-particle
Hamiltonians and not satisfied by the examples we describe in Sect. 5.

In Sect. 8 we describe the scattering theory for abstract QFT Hamiltonians. The existence
of asymptotic Weyl operators and asymptotic fields is shown in Subsect. 8.1. Other natural
objects, like the wave operators and extended wave operators are defined in Subsects. 8.2, 8.3.

Propagation estimates are shown in Sect. 9. The most important are the phase-space prop-
agation estimates in Subsect. 9.2, 9.3 and the minimal velocity estimate in Subsect. 9.4.

Finally asymptotic completeness is proved in Sect. 10. The two main steps is the proof
of geometric asymptotic completeness in Subsect. 10.4, identifying the vacua with the states for
which no bosons escape to infinity. The asymptotic completeness itself is shown in Subsect. 10.5.

Various technical proofs are collected in the Appendix.



2 Auxiliary results

In this section we collect various auxiliary results which will be used in the sequel.

2.1 Commutators

Let A be a selfadjoint operator on a Hilbert space H. If B € B(H) on says that B is of class
CY(A) |[ABG] if the map

R >t e Be ™ ¢ B(H)
is C'! for the strong topology.

If H is selfadjoint on H, one says that H is of class C*(A) [ABG] if for some (and hence all)
z € C\o(H), (H — 2)~! is of class C1(A). The classes C*¥(A) for k > 2 are defined similarly.

If H is of class C(A), the commutator [H,iA] defined as a quadratic form on D(A) N D(H)
extends then uniquely as a bounded quadratic form on D(H). The corresponding operator in
B(D(H),D(H)*) will be denoted by [H,14]o.

If H is of class C1(A) then the virial relation holds (see [ABG]):

]I{A}(H)[H,IA]Q]I{)\}(H) =0, AeR.

An estimate of the form
1, (H)[H,iAlol;(H) > col;(H) + K,

where I C R is a compact interval, cg > 0 and K a compact operator on H, or:
1;(H)[H, iAol (H) > colf(H),

is called a (strict) Mourre estimate on I. An operator A such that the Mourre estimate holds
on [ is called a conjugate operator for H (on I). Under an additional regularity condition of H
w.r.t. A (for example if H is of class C?(A)), it has several important consequences like weighted
estimates on (H — A £i0)~! for A\ € I (see e.g. [ABG]) or abstract propagation estimates (see
e.g. [HSS]).

We now recall some useful machinery from [ABG] related with the best constant ¢y in the
Mourre estimate. Let H be a selfadjoint operator on a Hilbert space H and B be a quadratic
form with domain D(HM) for some M € N such that the wirial relation

(2.1) H{A}(H>BH{A}(H) =0, AeR,
is satisfied. We set
PB(N) = supla € R| 3 x € CF(R), x(\) £ 0, x(H)BX(H) > ax*(H)},
FE(N) = supla € R| 3 x € CF(R), X(\) # 0,3 K compact, x(H)Bx(H) > ax*(H) + K}.

The functions, pg, ﬁg are lower semi-continuous and it follows from the virial relation that
pB(A\) < < iff A € o(H), pB(N) < 00 iff A € 0ess(H) (see [ABG, Sect. 7.2]). One sets:

mp(H) == {A pr(\) <0}, sp(H) = {) pjj(A) <0},
which are closed subsets of R, and

pp(H) = opp(H)\7p(H).



The virial relation and the usual argument shows that the eigenvalues of H in up(H) are of
finite multiplicity and are not accumulation points of eigenvalues. In the next lemma we collect
several abstract results adapted from [ABG]|, [BG].

Lemma 2.1 4) if A € up(H) then pB(\) = 0. If \ & pp(H) then pB(X\) = pB(N).
i) pB(\) > 0 iff pB(N) > 0 and \ & opp(H), which implies that

kp(H) =71(H)Uop,(H).

i) Let H = H1 © Ho, H = Hy ® Hy, B = By @ By, where B;, H, B are as above and satisfy
(2.1). Then
pB () = min(pB! (), pB2 (V).
w) Let H=H1®Ho, H=H; @ 14+ 1® Hy, B= By ® 1+ 1® By, where H;, B;, H, B are as
above, satisfy (2.1) and H; are bounded below. Then
Biyy — B B
pr(A\) = inf | (pgll(h) + pHi(&)) :

Proof. i), ii) can be found in [ABG, Sect. 7.2|, in the case B = [H,i4] for A a selfjadjoint
operator such that H € C'(A). This hypothesis is only needed to ensure the virial relation (2.1).

i) is easy and 4v) can be found in [BG, Prop. Thm. 3.4| in the same framework. Again it is
easy to see that the proof extends verbatim to our situation. O

Assume now that H, A are two selfadjoint operators on a Hilbert space H such that the
quadratic form [H,iA] defined on D(HM) N D(A) for some M uniquely extends as a quadratic
form B on D(H™) and the virial relation (2.1) holds. Abusing notation we will in the rest of
the paper denote by g4, pir, Ta(H), ka(H) the objects introduced above for B = [H,iA]. The
set 74(H) is usually called the set of thresholds of H for A.

2.2 Functional calculus
If x € C§°(R), we denote by x € C§°(C) an almost analytic extension of x, satisfying

XUR =X,
|0zx(2)] < Cp[Imz|™, n € N.

We use the following functional calculus formula for y € C§°(R) and A selfadjoint:
(22) (A) = = / 9=3(2)(z — A)1dz A d7.
2 C

2.3 Abstract operator classes

In this subsection we introduce a poor man’s version of pseudodifferential calculus tailored to
our abstract setup. It rests on two positive selfadjoint operators w and (x) on the one-particle
space . Later w will of course be the one-particle Hamiltonian. The operator (x) will have two
purposes: first as a weight to control various operators, and second as an observable to localize
particles in b.



We fix selfadjoint operators w, (x) on b such that:

w>m>0, (x) >1,

there exists a dense subspace S C b such that w, (z) : § — S.

To understand the terminology below the reader familiar with the standard pseudodifferential
calculus should think of the example

h=IL2RY), w=(D2+1)2, (2)=(22+1)2, and S = S(RY).
To control various commutators later it is convenient to introduce the following classes of
operators on . If a,b: S — S we set ad,b = [a,b] as an operator on S.

Definition 2.2 Form e R, 0 <9 < % and k € N we set
Sy = {0: S = b [ (2)°{x)"*"™ € B(h), seR},
and for k > 1:
Syl = {b: 8 — S| (z)"*ad, adlb(z)* 1000 ¢ B(h) a+B <k, seR},
where the multicommutators are considered as operators on S.

The parameter m control the "order" of the operator: roughly speaking an operator in Sg‘(k) is
controlled by (z)™. The parameter k is the number of commutators of the operator with (z)
and w that are controlled. The lower index § controls the behavior of multicommutators: one
looses (z)° for each commutator with (z) and gains (z)'~° for each commutator with w.

The operator norms of the (weighted) multicommutators above can be used as a family of
seminorms on 53{% .

The spaces Sg‘(k) for § = 0 will be denoted simply by SEZ). We will use the following natural
notation for operators depending on a parameter:

if b = b(R) belongs to S5 for all R > 1 we will say that

b € O(R")S§ 1),
if the seminorms of R™#b(R) in S5 are uniformly bounded in R. The following lemma is easy.

Lemma 2.3 i)

Say ¥ 5.0 © Sai)

ii) Let b S Then J(h)b(x)* € O(R™) for m+5 > 0 if J € C§°(R) and for all s € R if
J € C(]0, +00]).

Proof. i) follows from Leibniz rule applied to the operators ad,) and ad,. i) is immediate. O



2.4 Fock spaces.

In this subsection we recall various definitions on bosonic Fock spaces. We will also collect some
bounds needed later.

Bosonic Fock spaces.

If b is a Hilbert space then

(h) :== P ey,
n=0

is the bosonic Fock space over h. Q € T'(h) will denote the vacuum vector. The number operator
N is defined as

N( = nl.
X< b
We define the space of finite particle vectors:

Lhn(h) :={u € I'(h) | for some n € N, Tjg,,)(N)u = u},

The creation-annihilation operators on I'(h) are denoted by a*(h) and a(h). We denote by

¢(h) : (a*(h) + a(h)), W(h) := ),

1
V2
the field and Weyl operators.

dI’ operators.

If r : h1 — b9 is an operator one sets:
dl'(r) :T'(h1) — I'(h2),

dF(T) e Z ]]®(j—1) Qr® ]1®(”—j)7
®: h j=1

with domain ', (D(r)). If r is closeable, so is dI'(r).

I" operators.

If ¢ : h1 +— b9 is bounded one sets:

I'(q) : T(h1) — T'(h2)

I'(q) qR-®q.

®r
I'(¢) is bounded iff ||¢|| < 1 and then ||T'(q)|| = 1.

dI'(r, q) operators.
If r, ¢ are as above one sets:

dl'(g,r) :T'(h1) — I'(h2),

dF Q7 r = S q®(]_1) ® r ® q®(n_]),
() ®: h j=1



with domain I'g, (D(r)). We refer the reader to [DG1, Subsects 3.5, 3.6, 3.7| for more details.
Tensor products of Fock spaces.

If b1, ho are two Hilbert spaces, one denote by U : I'(h1) @ I'(h2) — T'(h1 @ b2) the canonical
unitary map (see e.g. [DG1, Subsect. 3.8] for details).
If H=T(h), we set
H™ :=HRH~T(hoh).

The second copy of H will be the state space for bosons living near infinity in the spectral theory
of a Hamiltonian H acting on H.
Let H = dI'(w) + V be an abstract QFT Hamiltonian defined in Subsect. 3.1 Then we set:

H* = H @ T(he(w)).

The Hilbert space I'(he(w)) will be the state space for free bosons in the scattering theory of a
Hamiltonian H acting on H. We will need also:

H™ := H® 1+ 1®dl(w), acting on H™",
Clearly H5" C H™ and H®' preserves H5*". We will use the notation

No:=N®1, Ny:=1®N, as operators on H™*" or H5?,

Identification operators.

The identification operator is defined as
I:H™ — H,
I:=T0)U,
where U is defined as above for h; = ho = b and:

i:hebh—h,
(ho,hoo)Hh0+hoo.

We have:

n p
1:[1 a'*(hl) Hl a*(gZ)Q7 hz € b7 g; € h

n p
I'T a*(h)2® '1;[1 a*(g;)Q =

i=1 7

If w is a selfadjoint operator as above, we denote by I3t the restriction of I to HS",

Note that ||i|| = v/2 so I'(i) and hence I, I°®* are unbounded. As domain for I (resp. I5¢t)
we can choose for example D(N*®) ® I'gy(h) (resp. D(N®) ® T'an(he(w))). We refer to [DGI,
Subsect. 3.9] for details.

Operators 1(j) and dI(j, k).
Let jo,joo € B(h) and set j = (jo, joo). We define

I(j) : Tan(h) ® Tan(h) — Tan(h)



1(j) = I1T(jo) ® T'(joo)-
If we identify j with the operator
J:h@&bh—b,

](hO @ hoo) = jOhO + ]oohooa

(2.3)

then we have
I(3) =T()U.

We deduce from this identity that if jojj + joojae = 1 (resp. Jojy + Joodie < 1) then I*(j) is
isometric (resp. is a contraction).
Let 7 = (Jo,Joo), k = (ko, koo) be pairs of maps from h to h. We define

dl(jv k) : Fﬁn(h) ® Fﬁn(h) - Fﬁn(b)

as follows:
dI(j,k) == I(dT(jo, ko) ® I'(jeo) + I'(jo) @ AT (Joo, koo))-

Equivalently, treating j and k as maps from h @ b to h as in (2.3), we can write
dI(j,k) :=dl'(j, k)U.

We refer to [DG1, Subsects. 3.10, 3.11] for details.

Various bounds.

Proposition 2.4 i) let a,b two selfadjoint operators on b with b > 0 and a® < b>. Then
dl'(a)? < dT(b)2

i) let b>0, 1 < a. Then:
dr(b)™ < N~ 1T (b*).

i) let 0 <71 and 0 < q < 1. Then:
dl'(gq,r) < dL(r).
i) Let r,r1,r2 € B(h) and ||q|| < 1. Then:
|(u2|dT (g, r2r1)un)| < ([T (rorg) Zua|[[dT(riry) Fua

|N2dL (g, r)ul| < [T ()2l .
v) Let jojs + Joodie < 1, ko, keo selfadjoint. Then:

|(ualdI* (j, Kyur)| - < [[AT(Ikol)? ® Tua|l[|dT (ko) 2w
+|1® AT (koo ) 2ua | [AT(Jkoo|) 2 ||, 1 € T(B), ua € T(h) @ T(H).
1(No + Noo)™2dI* (j, k)ul| < [[AT (kok; + kookic)2ull, u € T(h).

Proof. i) is proved in [GGM, Prop. 3.4]. The other statements can be found in [DG1, Sect. 3|.

10



2.5 Heisenberg derivatives

Let H be a selfadjoint operator on I'(h) such that H = dI'(w) + V on D(H™) for some m €
N where w is selfadjoint and V symmetric. We will use the following notations for various
Heisenberg derivatives:

do = % + [w,i-] acting on B(h),
Do = &+ [Ho.i], D =%+ [H,i-], acting on BL(h)),

where the commutators on the right hand sides are quadratic forms.
IfR>t— M(t) € B(D(H),H) is of class C! then:

(2.4) Dx(H)M(t)x(H) = x(H)DoM (t)x(H) + x(H)[V,iM (t)|x(H),

for x € C°(R).
If R > m(t) € B(h) is of class C! and Hy = dI'(w) then:

Dodl(m(t)) = dT(dgm(t)).

2.6 Wick polynomials

In this subsection we recall some results from [DG1, Subsect. 3.12].
We set

Bin(T'(h)) := {B € B(I'(h)) | for some n € N Tjg ;) (N) Bl ) (N) = B}
Let w € B(®%h, ®Ih). We define the operator
Wick(w) : T'in(h) — Tan(h)
as follows:

| —n)!
(2.5) WiCk(w)‘(@"b - n.((gitg)! Py . 180D,

The operator Wick(w) is called a Wick monomial of order (p,q). This definition extends to
w € Bgy(T'(h)) by linearity. The operator Wick(w) is called a Wick polynomial and the operator
w is called the symbol of the Wick polynomial Wick(w). If w =37, ey wpq for wpq of order
(p,q) and I C N finite, then
deg(w) := sup p+gq
(pg)el
is called the degree of Wick(w). If hq,...,hp, g1,...,94 € b then:
Wick (| g1 s+ B4 gq)(hp @5 -+ @5 b)) = a*(q1) - a*(g)alhy) - alhy).

We recall some basic properties of Wick polynomials.

11



Lemma 2.5
i) Wick(w)* = Wick(w™) as a identity on Ign(h).

i) If s-limwg = w, for ws,w of order (p,q) then for k+m > (p+ q)/2:

5-lim (N + 1) *Wick(ws)(N +1)"™ = (N + 1) *Wick(w)(N + 1),

i) ||(N + 1) Wick(w)(N +1)"™|| < Cllwl|| ).
uniformly for w of degree less than p and k+m > p/2.

Most of the time the symbols of Wick polynomials will be Hilbert-Schmidt operators. Let us
introduce some more notation in this context: we set

B, (T(h)) == B*(L'(h)) N Ben(T'(H)),

where B?(H) is the set of Hilbert-Schmidt operators on the Hilbert space H. Recall that ex-
tending the map: -
B H)3 |u)(v|—u@TcH®H

by linearity and density allows to unitarily identify B?(H) with H ® H, where H is the Hilbert
space conjugate to H. Using this identification, BZ_(T'(h)) is identified with gn(h) @ Dan(h) or
equivalently to T'g,(h @ ). We will often use this identification in the sequel.

If u € ™h, v € Q"h, w € B(xLh, ®¢h) with m < p, n < ¢, then one defines the contracted
symbols:

(v|w := ((v\ ®s ﬂ®(q_n)) w € B(@fh, "),

wlu) = w (]u) ®Rs ]l®(p*m)) € B(®¢ b, @dbh),

(vleolu) = ((v] @ 1°0 ) w (ju) ©, 1967 € B ", 01 "),
If a is selfadjoint on h and w € B2 (I'(h)), we set

[ (@)wll = > l(a)i Irgywlisz () + > lipg © (@iwl gz (r(n));

fin
1<i<o0 1<i<o0

where the sums are finite since w € B2 (I'(h)) ~ T'n(h) ® Tan(h) and one uses the convention

|lau|| = +o0 if u & D(a).
We collect now some bounds on various commutators with Wick polynomials.

Proposition 2.6 i) Let b a selfadjoint operator on by and w € Bg,(I'(h)). Then:
[dT'(b), Wick(w)] = Wick([d['(b), w]),

as quadratic form on D(dT'(b)) N D(Ndeg(w)/Q),
it) Let q a unitary operator on ) and w € Bgn(I'(h)). Then

I'(q)Wick(w)I'(q) ™" = Wick(I(q)wI'(q) ™).
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iii) Let w € Bgn(T'(h)) of order (p,q) and h € h. Then:

(2.6) [(Wick(w), a*(h)] = pWick(w|h)),  [Wick(w),a(h)] = ¢Wick((h|w),
P q .
(2.7) W (h)Wick(w)W (~h) = 3> 3~ fqu:(i)m—’“—swmk(ws,r),
s=0 r=0 s \/i
where
(2.8) ws,r = (W20 h2P=9)),

Proposition 2.7 i) Let g € B(h), |lq|| <1 and w € B2 (h). Then for m + k > deg(w)/2:
29 (N + 1) [T(q), Wick(w)|(N +1)7|
< Cflar( - gl
i1) Let j = (josjoo) With jo, joo € B(H), [jijo + jiedooll < 1. Then for m + k > deg(w)/2:
|(No + Nog + 1)~ (I (j) Wick(w) — (Wick(w) & )T*(j) ) (N + 1)7¥|
< C 1T — jo)w | +C || dT(so)w |] -

(2.10)

3 Abstract QFT Hamiltonians

In this section we define the class of abstract QFT Hamiltonians that we will consider in this
paper.

3.1 Hamiltonians

Let w be a selfadjoint operator on h and w € B2 (I'(h)) such that w = w*. We set
Hy :=dl'(w), V := Wick(w).

Clearly Hy is selfadjoint and V' symmetric on D(N™) for n > deg(w)/2 by Lemma 2.5.
We assume:
(H1) info(w) =m >0,

(H2) Hp+V is essentially selfadjoint and bounded below on D(Hp) N D(V).

We set
H:=Hy+V.

In the sequel we fix b > 0 such that H +b > 1. We assume:
Vn € N,3p € N such that [|[N"Ho(H +b)7P| < oo,

(H3)
VP €N, 3P < M €N such that |[NM(H + b)Y (N +1)77| < cc.

The bounds in (H3) are often called higher order estimates.

Definition 3.1 A Hamiltonian H on I'(h) satisfying (Hi) for 1 < i < 3 will be called an abstract
QFT Hamiltonian.

13



3.2 Hypotheses on the one-particle Hamiltonian

The study of the spectral and scattering theory of abstract QFT Hamiltonians relies heavily on
corresponding statements for the one-particle Hamiltonian w. The now standard approach to
such results is through the proof of a Mourre estimate and suitable propagation estimates on the
unitary group e .

Many of these results can be formulated in a completely abstract way. A convenient setup
is based on the introduction of only three selfadjoint operators on the one-particle space b, the
Hamiltonian w, a conjugate operator a for w and a weight operator (x). In this subsection we
describe the necessary abstract hypotheses and collect various technical results used in the sequel.
We will use the abstract operator classes introduced in Subsect. 2.3.

Commutator estimates.
We assume that there exists a selfadjoint operator (x) > 1 for w such that:

(G1 i) there exists a subspace S C b such that S is a core for w, w? and the operators w, (x)
for z € C\o({z)), ((z) — 2)7L, F((z)) for F € C§°(R) preserve S.

(G1 i) [(x),w] belongs to S?S).
Definition 3.2 An operator (x) satisfying (G1) will be called a weight operator for w.

Dynamical estimates.

Particles living at time ¢ in (x) > ct for some ¢ > 0 are interpreted as free particles. The
following assumption says that states in h.(w) describe free particles:

(S) there exists a subspace by dense in he(w) such that for all h € hg there exists € > 0 such
that

z —itw _
Vﬂ[o,e](ﬁtﬁ)e WhleOo®™),  u>1

(We recall that h.(w) is the continuous spectral subspace for w).

Note that (S) can be deduced from (G1), (M1) and (G/), assuming that w € C3(a). The
standard way to see this is to prove first a strong propagation estimate (see e.g. [HSS|):

PO < Ox@le ™ (a+0) 2 € 0,

in norm if xy € C§°(R) is supported away from k,(w), and then to obtain a corresponding estimate
with a replaced by (x) using (G4) and arguments similar to those in [GN, Lemma A.3|.

The operators [w,i(z)] and |w,i[w,i(x)]] are respectively the instantaneous welocity and ac-
celeration for the weight (z). The following condition means roughly that the acceleration is
positive:

(G2) there exists 0 < e < 3 such that
[wv i[wa 1<I>H = 72 +7r_1—,

—1—e¢

1
where v = v* € Sﬁ,é) and r_;_. € S(O)

14



Mourre theory and local compactness.
We now state hypotheses about the conjugate operator a:

(M1 i) w € Cl(a), [w,ialp € B(h).
(M1 i) p% >0, 7%w) is a closed countable set.

We will also need the following condition which allows to localize the operator [w,ia]o using
the weight operator (z).

(G3) a preserves S and [(z), [w, ia]o] belongs to S?o)'

Note that if a preserves S then [w, alg = wa —aw on S. Therefore [(z), [w, a]o] in (G3) is well
defined as an operator on S.

We will also need some conditions which roughly say that a is controlled by (z). This allows
to translate propagation estimates for a into propagation estimates for (x).

(G4) a belongs to S(lo).

Note that by Lemma 2.3 i), a® € 5(20) hence a(z)~! and a?(z)~2 are bounded.

We state also an hypothesis on local compactness:

- —€ 1
(G5) (x)~“(w+1)7° is compact on b for some 0 < e < 3.
Comparison operator.

To get a sharp Mourre estimate for abstract QFT Hamiltonians, it is convenient to assume
the existence of a comparison operator ws, such that:
(C i) C7'w?2 < w? < Cw2,, for some C >0,

(Cii) weo satisfies (G1), (M1), (G3) for the same (z) and a and s_ C 75_.
Note that the last condition in (C i) is satisfied if woo has no eigenvalues.

(C iii) ufé(w — woo)of%(a:)e and [w — weo, iao{x)€ are bounded for some € > 0.

Some consequences.

We now state some standard consequences of (G1).

Lemma 3.3 Assume (H1), (G1). Then for F € C3°(R):
i) [F(@), adlf@w] = R_IF’(<zR>)[<:c>, ad’&)w} + M(R), k=0,1,

where M(R) € O(R*Z)S?O) NO(R™1)S L.

if 1 € CP(R) and FFy = F.
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Assume (H1), (M1 1), (G3). Then for F € C°(R):

o) (F(D), 1o, ialg) € 07

Assume (H1), (G1), (G2). Then for F € C°(R):
vi) F(@) : D(w?) — D(w?) and [(.‘JQ,F(<:ER>)]w_1 € O(R™).
Let b € Sg(‘i) for 1 >0 and F € C§(R\{0}). Then:

vii) [F(@};),b] € O(R™#71H9),
In i) for k =0 the commutator on the Lh.s. is considered as a quadratic form on D(w).

Lemma 3.4 Let wo be a comparison operator satisfying (C). Then for F € C*°(R) with FF =0
near 0, F =1 near +o00 we have:

{x)
R

()

w_%(w—woo)F( )w_%, [w—woo,ia]F(f) € o(RY).

The proof of Lemmas 3.3, 3.4 will be given in the Appendix.

3.3 Hypotheses on the interaction

We now formulate the hypotheses on the interaction V. If j € C®(R), we set for R > 1
‘R . @
J = ]( R )

For the scattering theory of abstract QFT Hamiltonians, we will need the following decay
hypothesis on the symbol of V:

(Is) || dT(j®)w|| € O(R™), s>0 ifj=0near0, j =1 near + oc.

Note that if w € BZ (I'(h)) and j is as above then
(3.1) I1AT (%)l € o(R®), when R — oc.

Another type of hypothesis concerns the Mourre theory. We fix a conjugate operator a for w
such that (M1) holds and set
A :=dI'(a).

For the Mourre theory, we will impose:
(M2) weD(Ax1-1x A).
If hypothesis (G4) holds then a(x)~! is bounded. It follows that the condition
(D) ||| dI'({z)®)w||| < oo, for some s > 1

implies both (Is) for s > 1 and (M2).
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4 Results

For the reader convenience, we summarize in this section the results of the paper. To simplify

the situation we will assume that all the various hypotheses hold, i.e. we assume conditions (Hi),

1<i<3,(Gi),1<i<5h, (S),(M1), (C)and (D). However various parts of Thm. 4.1 hold

under smaller sets of hypotheses, we refer the reader to later sections for precise statements.
The notation dT')(E) for a set E C R is defined in Subsect. 7.3.

Theorem 4.1 Let H be an abstract QFT Hamiltonian. Then:
1. if Oess(w) = [Moo, +00[ then

Oess(H) = [inf o(H) + Mmoo, +00.

2. The Mourre estimate holds for A = dI'(a) on R\7, where
7 = opp(H) + AT (1(w)),
where 7,(w) is the set of thresholds of w for a and AT (E) for E C R is defined in (7.18).

3. The asymptotic Weyl operators:

WE(h) =5 tlji[m W (e ™ n)e M egist for all h € ho(w),

and define two regular CCR representations over he(w).

4. There exist unitary operators QF, called the wave operators:
O Hpp(H) @ I'(he(w)) — T'(h)

such that
W*(h) = Q1@ W(R)Q™, h € he(w),

H = O (Hpy, (1) @ 1+ 1@ dL (w))QF.

Parts (1), (2), (3), (4) are proved respectively in Thms. 7.1, 7.10, 8.1 and 10.6.

Statement (1) is the familiar HVZ theorem, describing the essential spectrum of H.

Statement (2) is the well-known Mourre estimate. Under additional conditions, it is possible
to deduce from it resolvent estimates which imply in particular that the singular continuous
spectrum of H is empty. In our case this result follows from (4), provided we know that w has
no singular continuous spectrum.

Statement (3) is rather easy. Statement (4) is the most important result of this paper, namely
the asymptotic completeness of wave operators.

Remark 4.2 Assume that there exist another operator we on fy such that wy, () s unitarily
equivalent to woe. Typically this follows from the construction of a nice scattering theory for the
pair (w,weo). Then since dT'(w) restricted to T'(he(w)) is unitarily equivalent to dI'(ws), we can
replace w by weo in statement (4) of Thm. 4.1.
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5 Examples

In this section we give examples of QFT Hamiltonians to which we can apply Thm. 4.1. Our
two examples are space-cutoff P(y)e Hamiltonians for a variable metric, and similar P()q411
models for d > 2 if the interaction term has also an ultraviolet cutoff. For u € R we denote by
SH(RY) the space of C*° functions on R such that:

9%f(z) € O((z) ") a € N4, where (z) = (1 + xQ)%
5.1 Space-cutoff P(y); models with variable metric
We fix a second order differential operator on h = L(R):
h := Da(z)D + ¢(x), D = —id,,

where a(x) > co, c(x) > co for some cg > 0 and a(x) — 1,¢(z) — m2, € S7H(R) for some
Moo, b > 0. We set:

[N

w:=nh

and consider the free Hamiltonian
Hy = dI'(w), acting on I'(h).

To define the interaction, we fix a real polynomial with z—dependent coefficients:
2n

(5.1) P(x,\) = Zap(x))\p, agn(x) = ag, > 0,
p=0

and a function g € L'(R) with g > 0. For x € R, one sets

() == Pw35,),

where §, is the Dirac distribution at . The associated P(y)2 interaction is formally defined as:

V.= /]Rg(ﬂs) :P(z,o(z)): dx,

where : : denotes the Wick ordering.

In |GP]| we prove the following theorem. Condition (B3) below is formulated in terms of a
(generalized) basis of eigenfunctions of h. To be precise we say that the families {¢;(z)}er and
{t(x, k) }ker form a generalized basis of eigenfunctions of h if:

i) € L*(R), (k) € S'(R),

hy = ey, e <md,, Lel,

hp (- k) = (k% +m3 )¢ (- k), kER,

e 190l + gz Jg [0 E) (@ k) |dk = 1.
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Theorem 5.1 Assume that:
(B1) gay € Lz(R), 0<p<2n, ge€ Ll(R), g >0, g(ap)Q"/(Q"*p) € Ll(R), 0<p<2n-1,

(B2) (z)*ga, € L*(R) Y0 <p < 2n, for some s > 1.

Assume moreover that for a measurable function M : R — RT with M(x) > 1 there exists a
generalized basis of eigenfunctions of h such that:

{ Dier IM ()13 < oo,
(B3)
|’M71()w<7k)uoo < C, k e R.

(B4) ga,M* € L*(R), g(a,M*)*"/n=P+s) ¢ [HR), YO<s<p<2n-—1.

Then the Hamailtonian

H=dI'(w) + / g(z) : P(x,¢(x)): dzx
R

satisfies all the hypotheses of Thm. 4.1 for the weight operator (x) = (1 + $2)% and conjugate

operator a = %(m(Dx>_1Dz + he).

Remark 5.2 If g is compactly supported we can take M(x) = +oo outside suppg, and the
meaning of (B3) is that the sup norms || || are taken only on suppg.

Remark 5.3 Condition (B3) is discussed in details in [GP[, where many sufficient conditions
for its validity are given. As an ezample let us simply mention that if a(x) — 1, c(x) — m2, and

the coefficients a, are in the Schwartz class S(R), then all conditions in Thm. 5.1 are satisfied.

5.2 Higher dimensional examples

We work now on L?(R?) for d > 2 and consider

w=( Y_ Diay(x)D;+ c(x))?

1<ij<d

where a;;,c are real, [a;;](z) > coll, c(x) > co for some ¢g > 0 and [a;] — 1 € S™H#(RY),
c(x) —m?2, € STH(R?) for some Moo, it > 0.
The free Hamiltonian is as above
Hy =dI'(w),

acting on the Fock space T'(L?(R%)).
Since d > 2 it is necessary to add an ultraviolet cutoff to make sense out of the formal
expression

/ g(x)P(x, p(x))dz.
R

We set LW
onle) = 0w Ix(2)a),
where x € C§°([—1,1]) is a cutoff function equal to 1 on [—3, 1] and x > 1 is an ultraviolet

cutoff parameter. Since uféx(%)éx € L2(RY), pu(x) is a well defined selfadjoint operator on
['(L*(RY)).
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If P(x,)) is as in (5.1) and g € L'(R?), then
V= Adg(x)P(x,¢H(x))dx,
is a well defined selfadjoint operator on I'(L2(R?)). We have then the following theorem. As
before we consider a generalized basis {¢;(x)}ier and {¢(z, k) }cra of eigenfunctions of h.
Theorem 5.4 Assume that:
(B1) ga, € L*(RY), 0<p<2n, ge L'RY), g>0, g(ap)*/" P e L}RY,0<p<2n—1,

(B2) (z)%ga, € L*(RY) V0 < p < 2n, for some s > 1.

Assume moreover that for a measurable function M : RY — RT with M(x) > 1 there exists a
generalized basis of eigenfunctions of h such that:

{ Dier IMTHO()13 < oo,
(B3)
MY k)l < C, K ER.

(B4) ga,M* € L2(RY), g(a,M*)*"/n=p+s) ¢ [HRY), VO<s<p<2n—1.

Then the Hamiltonian

H=dI'(w) + /]Rd g(x)P(z, px(z))dx

satisfies all the hypotheses of Thm. 4.1 for the weight operator (x) = (1 4+ xQ)% and conjugate
operator a = 3(z - (D) 1D, + he).

Remark 5.5 Sufficient conditions for (B3) to hold with M(x) = 1 are given in [GP].

6 Commutator estimates

In this section we collect various commutator estimates, needed in Sect. 7.

6.1 Number energy estimates

We recall first some notation from |[DG1]: let an operator B(t) depending on some parameter ¢
map N, D(N™) C H into itself. We will write

(6.1) B(t) € (N + 1)"ON(t?) for m € R if

(N + 1) B@)(N + 1" < Cu(t)?, ke
If (6.1) holds for any m € R, then we will write

B(t) € (N +1)"°0n (t?).

Likewise, for an operator C(t) that maps N, D(N") C H into N, D((No + Nso)™) C H™*' we
will write

(6.2) C(t) € (N +1)"On(tP) for m € R if
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I(No + Noo) ™™ *C(6)(N + D)*|| < Gk (1), k € Z.
If (6.2) holds for any m € R, then we will write

B(t) € (N +1)"®0n ().
The notation (N + 1)on(tP), (N + 1)™on(tP) are defined similarly.

Lemma 6.1 Lelt H be an abstract QFT Hamiltonian. Then:
i) for all P € N there exists a > 0 such that for all0 < s < P

NSt H — 2)7IN~% € O(|Imz|™Y), uniformly for = € C\R N {|z| < R}.

i) for x € C§°(R) we have
IN"X(H)N*|| <00, m,peN.

Proof. i) follows directly from (H3). It remains to prove i). Let us fix P € N and M > P such
that

(6.3) NM(H +b)" (N +1)"F € B(H).
We deduce also from (H3) and interpolation that there exists o > 0 such that
(6.4) NY(H +b)~! € B(H).

We can choose a > 0 small enough such that 6 = (M — «)/P > 1. Interpolating between (6.3)
and (6.4) we obtain first that N®T9%(H + b)~'(N + 1)~ is bounded for all 2 € [0, P]. Since
0 > 1, we get that

(6.5) NG (H + b)"Y(N +1)7°%|| < 00, s € [0,Pa"].

Without loss of generality we can assume that a~! € N, and we will prove by induction on s € N
that

(6.6) NG — )7HN +1)7%% € O(|Tmz| 1),

uniformly for 2 € C\RN {|z| < R} and 0 < s < Pa~ L.
For s = 0 (6.6) follows from the fact that N%(H +b)~! is bounded. Let us assume that (6.6)
holds for s — 1. Then we write:

N(s—i—l)a(H _ Z)—I(N + 1)-5@
NCHS(H 4 b) "IN~ NS(H 4 B)(H — 2) YN 4 1)
— NEHIR( 4 5) NN 4 (b 2) (- 2) (N + 1),

so (6.6) for s follows from (6.5) and the induction hypothesis. We extend then (6.6) from integer
s € [0, Pa™!] to all s € [0, Pa™!] by interpolation. Denoting sa by s we obtain ). O
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6.2 Commutator estimates

Lemma 6.2 Let H be an abstract QFT Hamiltonian and (x) a weight operator for w. Let
q€CPR),0<qg<1,g=1near0. Set for R>1ql' = q(%). Then for x € Cg°(R):

R (N +1)"°0x (R~ ™D under hypothesis (Is),
[T(q™), x(H)] € { (N +1)"%0on(R) otherwise.

Proof. In all the proof M and P will denote integers chosen sufficiently large. We prove the
lemma under hypothesis (Is) s > 0, the general case being handled replacing hypothesis (Is) by
the estimate (3.1). Clearly I'(¢"?) preserves D(N™). We have

(6.7) [Ho, T'(q")] = d'(¢", [w, ¢™)),

By Lemma 3.3 i), [w,q"] € O(R™!) and hence [Hy,T'(¢®)](Ho + 1)~! is bounded. Therefore,
I'(¢®) preserves D(Hp). As in [DG1, Lemma 7.11] the following identity is valid as a operator
identity on D(Hy) N D(NFP):

[H,T(q")] = [Ho, T(¢")] + [V.T(¢")] =: T.
From (6.7) and Prop. 2.4 iv) we get that
[T(¢"). Ho] € (N +1)On(R™).
Using Prop. 2.7 i) and hypothesis (Is), we get that
[C(¢™),V] € (N +1)"On(R™), n > deg(w)/2
which gives
(6.8) T € (N + 1)"O(R~ (D),

Let now

= —(z = H)"'[[(¢"), H](z — H)~.
By (H3) D(HM) C D(Hy) N D(N?), so the following identity holds on D(HM):
T(z) = (2 — H)"'T(z— H)™".
Let now x1 € Cg°(R) with x1x = x and X1, X be almost analytic extensions of x1, x. We write:
N™[x(H),T(¢")|N?
= N™x1(H)[x(H),T(q")]N? + N™[x1(H), T (¢")]x(H)N”
= o [cO0zX(2)N™x1(H)T(z)NPdz AdZ
+o- [0 OzX1 (2)N™T(2)x(H)NPdz A d Z.
Using Lemma 6.1 7) and (6.8), we obtain that for all n; € N there exists no € N such that

NMT(2)(N 4 1), (N +1)"T(2)N™ € O(|Imz|~?), uniformly for z € C\R N {|z| < R}.
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Using also Lemma 6.1 4i), we obtain that
N™[x(H),T(¢")IN? € O(R™ 1)),
which completes the proof of the Lemma. O
Let jo € C§°(R), joo € C®(R), 0 < jo, 0 < jino, jo+72 < 1, jo = 1 near 0 (and hence jo, = 0
near 0). Set for R > 1 jf = (jo(%)ajoo(%)).
Lemma 6.3 Let H be an abstract QFT Hamiltonian and (z) a weight operator for w. Then for
x € C°(R):
exty e/ Ry _ pr(iR (N +1)=®O(R~ ™D under hypothesis (Is),
XHTIIGT) = FGH)X(H) € { (N 4+ 1)~6(R%) otherwise.
Proof. Again we will only prove the lemma under hypothesis (Is). As in [DG1, Lemma 7.12],
we have:
HET* (%) = I* (") Ho € (N + D)O([[[w, 551l + Il w 72]1I)-
Writing [w, j2] = [(1 — jeo)®,w], we obtain that ||[w, 5] + ||[w, iZ]|| € O(R™Y), hence:
(6.9) H (1) — (%) Hy € (N +1)On(R7Y).

This implies that I*(jf) sends D(Hyp) into D(HF), and since I*(jE)N = (Ng + Noo)I* (55,
I*(j®) sends also D(N") into D((Ng + Noo)™).
Next by Prop. 2.7 #) and condition (Is) we have

(6.10) (Ve I* (%) - I*(7®)V € (N +1)"On(R™®), n > deg(w)/2.
This and (6.9) show that as an operator identity on D(Hp) N D(N") we have
(6.11) H (37 — I (5F)H € (N 4 1)"On (R~ min(L9)y,

Using then (H3) and the fact that I*(j%) sends D(Hp) into D(HE*') and D(N") into D((No +
Noo)™), we obtain the following operator identity on D(HM) for M large enough:

T(2) = (2= B 7GR - () (e - 1)
= (== )7 (PG H — B (7)) (2~ )7,

uniformly for z € C\RN{|z| < R}.
Using then Lemma 6.1 i) (and its obvious extension for H®**), we obtain that for all ny € N
there exists ny € N such that

(6.12)  (No+ Noo)™T(2)(N + 1), (Ny+ N + 1)™2T(2)N™ € O(|Imz|~2) R~ It
Let us again pick x; € C3°(R) with x1x = x. We have:
(No + No)™ (x(H) I (%) = I (jR)x(H)) N™
= (No+ Noo)™xa (HE) (X(H) I (%) = T (%) (H) ) N7
+(No + Noo)™ (xa (HE4) T (%) = I (7%)x1 (H) ) x(H)N™
= 2 [ 02X(2)(No + Noo)™x1 (H®)T (2)N™dz A d %

+% f(C 02X1(2)(No + Noo)™T'(2)x(H)N™dz AN d Z.
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Using Lemma, 6.1 1), (6.12), the above operator is O(R~™(1)) as claimed. O

7 Spectral analysis of abstract QFT Hamiltonians

In this section we study the spectral theory of our abstract QFT Hamiltonians. The essential
spectrum is described in Subsect. 7.1. The Mourre estimate is proved in Subsect. 7.4. An
improved version with a smaller threshold set is proved in Subsect. 7.5.

7.1 HVZ theorem and existence of a ground state

Theorem 7.1 Let H be an abstract QFT Hamiltonian and let (x) be a weight operator for w.
Assume hypotheses (G1), (G5). Then
i) if Oess(w) C [Moo, +00[ then

Oess(H) C [inf o(H) + Mmoo, +00].
i) if Oess(w) = [Moo, +00[ then

Oess(H) = [inf 0 (H) 4+ Mmoo, +00].

Proof. Let us pick functions jo, joo € C*(R) with 0 < jg <1, jo € C§°(R), jo = 1 near 0 and
je+j2 =1. For R > 1, jf is defined as in Subsect. 6.2 and we set ¢/t = (j&*)2. From Subsect.
2.4 we know that

I(GHI (") =1,

We first prove i). Let x € C5°(] — oo, info(H) + meo|). Using Lemma 6.3 we get:
X(H) = x(H)I([G")I* (")
(7.1) = I(GF)X(H)I*(j7) + o(R")
= Lo 1) Mgy (Noo) X (H™) I (%) + o( RY),

for some M, using the fact that H is bounded below and w > m > 0. Using again Lemma 6.3,
we have:

1(5%) g0y (Noo ) x (H4) I (j7)
(7.2) = I(j") N0y (Noo) I* (77)x (H) + o(RO)
= T(¢")x(H) + o(R").

It remains to treat the other terms in (7.1). Because of the support of y and using again Lemma
6.3, we have:

I(5") gk (Noo ) X (H)T*(57)
= (™)1 (Noo) 1@ F(AT(w) < moo) X (H)I* ()

= I(7") 1y (Noo) T @ F (AT (w) < moo)I*(j7)x(H) + o(R),
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where F'(A < myo) is a cutoff function supported in | — oo, muo|.
From hypothesis (H3), it follows that Tjp_4o((IN)x(H) tends to 0 in norm when P — +oo.
Since I*(j%) is isometric, we obtain:

I(3) gy (Noo) 1 ® F(AT (w) < moo) I*(57)x(H)
= 1(") 1y (Noo) 1@ F(AT(w) < meo) (%) 1o, p)(N)X(H) + 0o(R?) + o(P?),

where the error term o(P?) is uniform in R. Next we use the following identity from [DG2,
Subsect. 2.13]:

. n! 1 ‘ . ‘
Ty (Noo) T () Uy (N) = =) i ®- iRt 0k,

n—k k

where I, is the natural isometry between ®"h and ®™ b @ Q" p.

We note next that if F' € C5°(R) is supported in | — 0o, meo[, F(w) is compact on b, so
F(w)jE tends to 0 in norm when R — oo since s-limg .o j& = 0. It follows from this remark
that for each k£ > 1 and n < P:

1(™) gy (Noo) 1@ F(AT(w) < m00) I* (57 Uy (N) = 0p(R),
and hence
(7.3) I (7 gy (Noo ) X (HZ) () = o(P°) + o(R”) + 0p(R°) = o(R"),

if we choose first P large enough and then R large enough. Collecting (7.1), (7.2) and (7.3) we
finally get that
X(H) =T(¢"™)x(H) + o(R).

We use now that for each R T'(¢*)(Ho + 1)7% is compact on I'(h), which follows easily from
(H1) and (G5) (see e.g. [DG2, Lemma 4.2]). We obtain that x(H) is compact as a norm limit
of compact operators. Therefore gess(H) C [info(H) 4+ moo, +00][.

Let us now prove ii). Note that it follows from i) that H admits a ground state. Let
A =info(H) + ¢ for € > moo. Since € € gess(w), there exists unit vectors hy,, € D(w) such that
lim, oo (w — €)hy, = 0 and w — lim,, o0 hyy, = 0. Let u € T'(h) a normalized ground state of H
and set

Up = a™ (hy)u.

Since uw € D(N) by (H3) u, is well defined. Moreover since w — lim h,, = 0, we obtain that
lim ||up| = 1 and w — limu,, = 0. Since v € D(H*), we know from (H3) that u, Hu € D(N*°)
and hence the following identity is valid:

Hoa* (hyp)u = a*(hy)Hou + a* (why)u = a*(hy)Hu — a*(hy)Vu + a*(why,)u,
which shows that u, = a*(hy)u € D(Hy). Clearly u, € D(N*), so u, € D(H) and
(H = Nun = (Ho+V — Ny
= a*(hp)(H — Nu + a*(whp)u + [V, a*(hy)]u
= a*((w—=e)hp)u+ [V,a*(hy)]u.

We can compute the Wick symbol of [V, a*(hy,)] using Prop. 2.6. Using the fact that h,, tends
weakly to 0 and Lemma 2.5 44) we obtain that [V, a*(hy)]u tends to 0 in norm. Similarly the
term a*((w — €)hy)u tends to 0 in norm. Therefore (u,,) is a Weyl sequence for A. O
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7.2 Virial theorem

Let H be an abstract QF T Hamiltonian. We fix a selfadjoint operator a on § such that hypothesis
(M1 i) holds and set

A :=dl(a).
On the interaction V' we impose hypothesis (M2).
Lemma 7.2 Assume (M1 i) and set w; = e"®we™ . Then:
i) e induces a strongly continuous group on D(w) and

sup ||we(w + 1)_1H < 00, sup ||lw(w: + 1)_1|| < 00.

[tI<1 [t|<1
i) sup [t 7H|(w —wp)| < oo, s-limtHw —wp) = —[w, ia]o.
0<|t|<1 t—0

Proof. The first statement of i) follows from |GG, Appendix|. This fact clearly implies the first
bound in ). The second follows from w(w; + 1)~! = e w;(w + 1)~ Lel®®. We deduce then from
i) that

(7.4) sup |jws(wy + 1)71|| < 0.
[t],]s]<1

Since w € C(a) we have:
t . .
(w+ D)= (w+1)"t = / e w + 1) Hw, ia]o(w + 1) "te 5%,
0

as a strong integral, and hence:
(Ww—w)= (we+1)((w+1) "= (w+1)™) (w+1)
= [ we + D) (ws + 1) e w, ia]oe % (ws + 1)~ (w + 1)ds.
Using (7.4) we obtain ). O
We set now
A:=dl(a), H, = clsAHe 54, Ho, = A e A, = oisAyeisA,

and introduce the quadratic forms [Hy,14], [V,i4], [H,1A] with domains D(Hy)ND(A), D(N"™)N
D(A) and D(H™) ND(A) for n > degw/2 and m large enough.

Proposition 7.3 Let H be an abstract QFT Hamiltonian such that (M1 i), (M2) hold. Then:
i) [Ho,1A] extends uniquely as a bounded operator from D(N) to H, denoted by [Hyp, iA]o,

i) [V,iA] extends uniquely as a bounded operator from D(NM) to H for M large enough,
denoted by [V,iA]o,

i) [H,iA] extends uniquely as a bounded operator from D(HT) to H for P large enough,
denoted by [H,iA]o and equal to [Hy,iA]o + [V,14]o,
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i) for v large enough (H +b)™" is in C'(A) and the following identity is valid as a bounded
operators identity from D(A) to H:

d
(7.5) AH+b) "=(H+b) "A+ ig(Hs + b)|_ST:0,
where
d r—1 _ 4
(7.6) g(HS +0),,Lo = > (H + )" ([Ho, iAo + [V, idJo) (H + b) 7~
=0

15 a bounded operator on H.

Proof. We have [Hy,i14] = dI'([w, ia]), which using hypothesis (M1 i) and Prop. 2.4 i) implies
that [Ho,iA](N + 1)~! is bounded. The fact that the extension is unique follows from the fact
that D(a) N D(w) is dense in b since w € C(a).

Let us now check 4i). Through the identification of B2 () with iy (h) ® an(h), we get from
Prop. 2.6 that

[V, iA] = [Wick(w), iA] = Wick(w™®)
where w(!) = (dI'(a) ® 1 — 1® dI'(@)) w. By (M2) w") € B2 (h) which implies that [V, i AJ(N +
1)~™ is bounded for n > degw/2 using Lemma 2.5. The fact that the extension is unique is
obvious.

By the higher order estimates we have [H,iA] = [Ho,iA] + [V,i4] on D(A) N D(HM) for M
large enough, so [H,iA]o(H + b)~M is bounded, again by the higher order estimates. To prove
that the extension is unique we need to show that D(A) N D(HM) is dense in D(HM) for M
large enough. Let u = (H +b)"Mvy € D(HM) and u. = (H 4 b) "M (1 +ieA)" v. Clearly uc — u
in D(HM) when € — 0. Next u, belongs to D(H™) and to D(A) since (H + b)~M is in C1(A)
by 4v). This completes the proof of 4ii).

It remains to prove ). We start by proving some auxiliary properties of Hy. Since Hy s =
dI'(ws), we obtain using Lemma 7.2 i) and Prop. 2.4 ¢) that

(7.7) sup |[Ho(Hos + 1) < oo.
|s|]<1

The same arguments show also that D(Hy) = D(Hps) ie e*4 preserves D(Hp). Since e's4
preserves D(N™) we obtain from the higher order estimates that

(7.8) H, = Hy s+ Vi, on D(HT).

Let us fix n > degw/2. Conjugating the bounds in (H3) by e*4, we obtain that there exists
p € N such that
NQ"H(%’S < C(H, +b)?!, uniformly in |s| < 1.

Using also (7.7) we obtain
(7.9) N?"HZ < C(H, + b)*!, uniformly in |s| < 1.
Let us show that for r large enough:

(7.10) I(Hs +6)7" = (H+0)7" <Clsl, [|s| <1.
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Using (7.8), we can write for P large enough:

(Hs+b)"—(H+0b)"")(H+bF
(T11) = STITA(H, b (H — H)(H 4 b) T (H 45

S o (He +b) " (Hy — Hoo+ V = Vo) (H + b)Y (H + )",
Using that Hp s — Hy = dI'(ws — w), Lemma 7.2 i) and Prop. 2.4 i) we obtain that
(7.12) I(Ho,s — Ho)(N + 1)~ < Cls|, |s| <1.

If » > 2p then for 0 < j < r — 1 then either j+1 > por r —j > p. Using (7.9) and (7.12) we
deduce that

(7.13) I(Hs + )™ (Ho,s — Ho)(H + )71 < Cls|, [s] < 1.
Next from Prop. 2.6, we have:
V, = Wick(e'*we154),

Through the identification of B2 (§) with sn(h) @ Tan(h), the symbol eSAwe 54 ig identified
with e*4 @ e7*4w. From hypothesis (M2) and Prop. 2.5, we obtain that for M > deg(w)/2:

(7.14) (Vs =V)(N +1)" M| < Cs|, |s] < L.
By the same argument as above we obtain:
(7.15) I(Hs +0) (V= Vo) (H +b) 771 < Csl, s < 1.

Combining (7.11), (7.15) and (7.13), we obtain (7.10).
Next from (7.12) we obtain by considering first finite particle vectors that

s lim0 s (Hos — Ho)(N + 1) exists.

S—>

We note next that by hypothesis (M2) we know that s~!(e'*4we™154 —w) converges in B2_(T'(h))
when s — 0. Using then Lemma 2.5 4i), we obtain also that

s-lim s (Vy — V)(N 4 1)™" exists.

s—0

From (7.11) we obtain that for r > p and P large enough:

s-lims™ ((Hs +b)™" — (H+b)"") exists on D(H")

s—0

By (7.10) the strong limit exists on I'(h), which shows that (H + b)~" is in C1(A). O
Remark 7.4 The same proof as in Prop. 7.3 iv) shows that for r large enough and z; € C\R,

the operator [[i_,(zi — H) ™! is in C*(A). Using the functional calculus formula (2.2), it is easy
to deduce from this fact that x(H) is in C*(A) for all x € C3°(R).
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The following proposition is the main consequence of Prop. 7.3.

Proposition 7.5 Let H be an abstract QFT Hamiltonian such that (M1 i), (M2) hold. Then
the virial relation holds:

(7.16) ]I{A}(H)[H, IA]O]I{)\}(H) =0, AeR.

Proof. Let us fix r large enough such that (H +b)~" € C*(A) so that (H+b)"" : D(A) — D(A)
and [(H + b)™",1A] extends as a bounded operator on H denoted by [(H + b)™",iA]o. Moreover
from Prop. 7.3 iv) we have:

r—1
[(H+0)7",iAlo = =Y (H+b)""[H,iAlo(H + b))~
j=0

Let now uy,us € H such that Hu; = Au;. Since (H +b)™" € C'(A) and u; is an eigenvector of
(H + b)~", we have the virial relation:

0= (u1,[(H+b)"",iA]ous)
= = Yo, (H +b) " [H,iAlo(H + b) 7 up)
= - Zj;O(A +b) 7" Yuy, [H,iA]ousz)
= —r(A+b)"" " (uy, [H,iA]ous),

which proves the lemma. O

7.3 Mourre estimate for second quantized Hamiltonians

In this subsection we will apply the abstract results in Subsect. 2.1 to second quantized Hamil-
tonians.

Let w,a be two selfadjoint operators on h such that (H1), (M1) hold. Note that it follows
from Lemma 2.1 and the results recalled above it that (M1) imply also that

(7.17) Kq(w) is a closed countable set.
Clearly dI'(w) € C'(dl'(a)) and [dI'(w),id[(a)]p = dI'(Jw,ia)o). Since dT'(w) and dI'(|w,ia]o)
commute with IV, we can restrict them to each n—particle sector ®{'h. We denote by

dr(4) (1)
Par (w)

the corresponding restriction of pdrgf)) to the range of ]1[174_00[(]\7).

Finally we introduce the following natural notation for £ C R:

(7.18) ar(e U E+---4+E,dI'(E) = {0} udrV(g).
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Remark 7.6 As an ezample of use of this notation, note that if b is a selfadjoint operator on
h, then:
o(dI'(b)) = {0} UdI'(a(b)).

Note also that if E is a closed countable set included in [m, +oo[ for some m >0, dTM(E) is a
closed countable set.

Lemma 7.7 Let w,a be two selfadjoint operators on by such that (M1) holds. Then:

i) Par(w) =
i) o M) =0 = X € dr® (s, (w)).
Proof. We have [d['(w),idl'(a)] = dI'([w,ia]). Since dT'(w) € C*(dl'(a)) the virial relation is
satisfied. Denote by p,, the restriction of piggz)) to @'h. Applying Lemma 2.1 7v) we obtain

0, A=0,
pO()‘) _{ +00, )\7&0 )
(\) =  inf a cee 0% (M
pa(X) = iof _ (pAx) 4+ oL (An))

for n > 1. We note next that since w > m > 0, x(dI'(w)) 1}, 1o0((IV) = 0 if n is large enough,
where x € C°(R). Therefore only a finite number of n—particle sectors contribute to the

(a)

computation of pgg(w) near an energy level \. We can hence apply Lemma 2.1 #4) and obtain

that pgp.(¢) > 0.
Let us now prove the second statement of the lemma. Since p%(\) = +o0 if A € o(w), we

have p%(A) = 400 for A < 0. Therefore

n)\:f a)\ aAna

pulh) = inf (B0 ++ + )

for I,(A\) = {(A1, ..., An)| A1+ A=A, A; > 0}. The function p2 (A1) +- -+ p&(\,) is lower
semicontinuous on R"™, hence attains its minimum on the compact set I,(\). Therefore using
also that p% > 0, we see that p,(\) = 0iff X € ko(w) +- - -+ Ko(w) (n factors). Using Lemma 2.1
#i1) as above, we obtain that pgggﬁ)) (1)(>\) = 0 implies that A € dT(M) (k4 (w)), which proves #i). O

7.4 Mourre estimate for abstract QFT Hamiltonians

In this subsection we prove the Mourre estimate for abstract QFT Hamiltonians. Let H be an
abstract QFT Hamiltonian and a a selfadjoint operator on h such that (M1) holds. Let also (x)
be a weight operator for w.

Theorem 7.8 Let H be an abstract QFT Hamiltonian and a a selfadjoint operator on b such
that (M1) and (M2) hold. Let (x) be a weight operator for w such that conditions (G1), (G3),
(G5) hold. Set

7= opp(H) + dTW (k4 (w))

and A = dI'(a). Then:
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i) Let A € R\7. Then there exists ¢ > 0, co > 0 and a compact operator K such that
U et (H)[H, iAoy —e rpg (H) > colpp—e riq (H) + K.
i) for all \y < Ao such that (A1, \2] N7 =0 one has:
dimTy, 5, (H) < oo.

Consequently opp(H) can accumulate only at T, which is a closed countable set.
iti) Let X € R\(7 Uopp(H)). Then there exists € > 0 and co > 0 such that

]1[>\—5,>\+6](H)[H7 iA]O]l[A—E,X-&—e](H) > COH[A—E,)\-&-G}(H)'

Proof. We note first that [H,iA]y satisfies the virial relation by Prop. 7.5. Therefore we
will be able to apply the abstract results in Lemma 2.1 in our situation. Recall that H®™' =
H®1+1®dI'(w) and set

A = A1+ 1® A.

By Prop. 7.3 [H,iA]o considered as an operator on H with domain D(HM) is equal to Hy + Vi,
where H; = dI'([w,ia]o), Vi = [V,i4]o. Note that by (M2) V; is a Wick polynomial with a
symbol in B2 (h), and by (G3), [(z), [w,ia]] is bounded on h. Therefore using Lemma 3.3 v) we
see that the analog of (6.11) holds for [H,1A4]y. We obtain:

(i) [H,1Alo = [H™ iAo I* (%) + (N + 1)"On(R?),
for some n. We recall (7.2):
(7.19) X(H) =T (q")x(H) + TG H") A, oo (Noo) I*(57) + o(RY),

for ¢" = (jg")*.

Using then Lemma 6.3 and the higher order estimates (which hold also for H®* with the
obvious modifications), we obtain that:
(7.20)

X(H)[H,iAlox(H) = T(¢")x(H)[H,iAJox(H)

HI(GT)X(H[H TAX o) (H) 1 oo (Noo) I* (57) + o(R).
We will now prove by induction on n € N the following statement:
i) ph(N) >0, for A €] — oo,inf o(H) + nm,
H { i) TA(H)N] — oo, inf o(H) + nm[C opp(H) + dT (ke (w)).

Statement H(0) is clearly true since ps(\) = +oo for A < inf o(H).

Let us assume that H(n-1) holds. Let us denote by p®*t () the restriction of pf[e:t to the
range of 1y 4oo[(Noo). This function is well defined since H** and [H®*,iA*"]y commute with
Neo.

Let A €] — oo,inf o(H) + nm]. Using Lemma 2.1 iv) and the fact that w > m we obtain:

M) = inf A0+ pA 0
g ) (/\1,>\21)I€1[(n>()\) (pH( 1) PH, ( 2)),
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where
I™MO) = {(AL, )| M+ X =\, info(H) <\ <info(H)+ (n—1)m, 0< Xy <—info(H)},

and the function pflo(l) is defined in Subsect. 7.3. Note that by H(n-1) i) and Lemma 7.7 i) the

two functions pf-(A\1) and pgo(l)(/\g) are positive for (A, A2) € I (). We deduce first from this
fact that:

(7.21) p=t W (X) > 0 for A €] — oo, inf o(H) + nml.

Moreover using that the lower semicontinuous function p (A1) + pgo(l)()\g) attains its minimum
on the compact set I ()\) € R?, we obtain that

(7.22) . AQ)
A= A1 + A2, where (A, \2) € I™(N), pd (A1) = ppy ' (A2) = 0.

0
From H(n-1) ii) and Lemma 2.1 i) we get that
pir (M) =0, A €] —oo,info(H) + (n—1)m[= A\ € opp(H) + dT'(kq(w)).
From Lemma 7.7 1) we know that
PV (A2) =0 = Ay € dTO (ko (w)).
Using (7.22) we get that
(7.23) pPtM(A) =0, \e]—oo,info(H)+nm[= e app(H)+dTV (ke (w)).

The operators I'(¢®)x(H) and hence I'(¢®)x(H)[H,iA]ox(H) are compact on H. Choosing
hence R large enough in (7.20) we obtain using (7.19) and the fact that I(j%)I*(5%) = 1 that

(7.24) A = pt (), A €] — oo, info(H) +nm|.

By Lemma 2.1 i) this implies first that pf > 0 on | — oo,inf o(H) 4+ nm/[, i.e. H(n) i) holds.
Using then (7.23) we obtain that

Fa(A) =0, Ae]—oo,info(H)+nm[= X € opp(H) +dlW (ka(w)),

which proves H(n) ii). Since H(n) holds for any n we obtain statement 7) of the theorem. The
fact that dimlpy, »,)(H) < oo if [A1,Xo] N7 =  follows from the abstract results recalled in
Subsect. 2.1. We saw in (7.17) that kq(w) is a closed countable set. Using also Remark 7.6,
this implies by induction on n that 7N] — oo, inf o(H) + nm| is a closed countable set for any n.
Finally statement 4ii) follows from Lemma 2.1. This completes the proof of the theorem. O
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7.5 Improved Mourre estimate

Thm. 7.8 can be rephrased as:
TA(H) C opp(H) + dF(l)(na(w)),

which is sufficient for our purposes. Nevertheless a little attention shows that one should expect
a better result, namely:
TA(H) C opp(H) + dr(l)(Ta(w))’

i.e. eigenvalues of w away from 7,(w) should not contribute to the set of thresholds of H. In this

subsection we prove this result if there exists a comparison operator ws such that hypothesis

(C) holds.
We fix a function ¢ € C*°(R) such that

(7.25) 0<q¢<1, g=0near 0, g=1 near 1.

Lemma 7.9 Assume (H1), (G1), (G3), (M1) for w and w and (C). Set Hy = dI'(w), Hx =
dl'(weo). Let q as in (7.25) and x € C§°(R). Then:

(7.26) (x*(Ho) = x*(Hso))T(¢") € o(R?),

X (Ho)[Ho, iAJox (Ho)T'(¢™)

(7.27) = X(Hoo)[Hoo,iAlox(Hoo)T(¢") 4 o(R?),

Assume additionally (G5). Then

(7.28) o=
Proof. We will first prove the following estimates:
(7.29) [X(He), (g™, (x(Ho) — x(Hoo)) T(g") € o(R),

7.30) (He, +1) 7Y [Ho — Hoo,1A]ol'(¢"*)(H,, + 1)~ € o(R?)
7.30

(Hey +1)7H[Hoo, 14]0, T(¢™)](He, +1)7" € o(R?),
for €,€1,€e9 € {0,00}. If we use the identities

[dL(b;),T(¢™)] = dT(¢", [bi, ¢"]), dT(by — b2)T'(¢") = dT'(¢", (b1 — b2)q™),

for by = w, by = Ws, Lemma 3.4, Lemma 3.3 (i) and the bounds in Prop. 2.4, it is easy to see
that uniformly in z € C\RN {|z| < R}:

[(z = He)"1,T(¢")] € O(R™)[Imz|~2,
(z = He,) " (Ho — Hoo)T(¢") (2 — He,) ™! € o(RO)[Imz| 2.

Using the functional calculus formula (2.2) this implies (7.29). The proof of (7.30) is similar
using Lemma 3.4 and Lemma 3.3 (v). The proof of (7.27) is now easy: we move the operator
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I'(¢®) to the left, changing Hy into H,, along the way, and then move I'(¢?) back to the right.
All errors terms are o(RC), by (7.29), (7.30). (7.26) follows from (7.29). If we restrict (7.26),
(7.27) to the one-particle sector we obtain that

(X* (W) = x*(weo))q™ € o(RY),

R

X(w)[w, iaJox (w)g™ = x(Woo) [Woo, ia]ox (W) g™ + o R?).

Using (G5) and the fact that (1—¢) € C§°(R) we see that y(H,)(1—q)f is compact for e = 0, co.
Writing 1 = (1 — ¢) + ¢, we easily obtain (7.28). O

Theorem 7.10 Let H be an abstract QFT Hamiltonian satisfying the hypotheses of Thm. 7.8.
Let woo be a comparison Hamiltonian on b such that (C1) holds. Then the conclusions of Thm.
7.8 hold for

7= opp(H) + dTW (1,(w)).

Proof. We use the notation in the proof of Thm. 7.8. We pick a function ¢; satisfying (7.25)
such that q1jc0 = joo, SO that
(3% = 1@ (g I* (7).

Therefore in (7.20) we can insert 1® I'(¢f) to the left of I*(j7). If we set
HZ = H®1+1® Hy,
then using the obvious extension of Lemma 7.9 to H** and HZ*, we obtain instead of (7.20):
X(H)[H,iAJox(H)
(7.31) = T(q"™)x(H)[H,iAlox(H)
HI(G)X(HE)HE 1A o x (HSE) U1, 4 00f (Noo) I (77) + o( ).

Therefore in the later steps of the proof we can replace w by weo. By assumption kq(weo) =
Ta(Weo) and by Lemma 7.9 74(weo) = 7o(w). This completes the proof of the theorem. O

8 Scattering theory for abstract QFT Hamiltonians

In this section we consider the scattering theory for our abstract QFT Hamiltonians. This theory
is formulated in terms of asymptotic Weyl operators, (see Thm. 8.1) which form regular CCR
representations over h.(w). Using the fact that the theory is massive, it is rather easy to show
that this representation is of Fock type (see Thm. 8.5). The basic question of scattering theory,
namely the asymptotic completeness of wave operators, amounts then to prove that the space of
vacua for the two asymptotic CCR representations coincide with the space of bound states for
H. This will be shown in Thm. 10.6, using the propagation estimates of Sect. 9.

In all this section we only consider objects with superscript 4, corresponding to t — +oc0. The
corresponding objects with superscript — corresponding to ¢ — —oo have the same properties.
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8.1 Asymptotic fields

For h € h we set hy := e ™h. Recall that h.(w) C b is the continuous spectral subspace for w
and that by hypothesis (iS) there exists a subspace hy dense in h.(w) such that for all h € by
there exists € > 0 such that

z —itw _
Vﬂ[o,e](<|t|>)e WhleOo®™),  u>1

Theorem 8.1 Let H be an abstract QFT Hamiltonian such that hypotheses (Is) for s > 1 and
(S) hold. Then: i) For all h € be(w) the strong limits

(8.1) WT(h) :=s- lim MW (hy)e 1

t—+00

exist. They are called the asymptotic Weyl operators. The asymptotic Weyl operators can be
also defined using the norm limait:

(8.2) WH(R)(H +b)7" = Tim eV (h)(H +b) e,
for n large enough.

i1) The map
(8.3) be(w) 3 h— WT(h)

s strongly continuous and for n large enough, the map
(8.4) h 3 he(w) — WH(h)(H+b)™"

18 norm continuous.
ii1) The operators W (h) satisfy the Weyl commutation relations:

W)W (g) = e 2B+ (h 4 g).
i) The Hamiltonian preserves the asymptotic Weyl operators:

(8.5) MW T (h)e T = WT(h_y).

Proof. The proof is almost identical to the proof of [DG1, Thm. 10.1], therefore we will only
sketch it. We have: . _
W (hy) = e tHopy (p)eltHo,

which implies that, as a quadratic form on D(Hy), one has
(8.6) W (hy) = —[Ho,iW (hy)].

Using (8.6) and the fact that for n large enough D(H™) C D(Hp) ND(V), we have, as quadratic
forms on D(H™): . ' ' .
8teltHW(ht>e_ltH _ eltH [‘/’ iW(ht)]e_ltH.
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Integrating this relation we have as a quadratic form identity on D(H")

. . t gl 4!
(8.7) YW (hy)e T — W (h) = / T HV, AW (hy )] H AL
0
We claim that for h € by (see hypothesis (S)), and p > degw/2:
(8.8) IV, W (h)](N +1)77|| € L1(d?).

In fact writing w as Ep+q<deg(w) wp,q, where wy, 4 is of order (p, ¢) and using Prop. 2.6, we obtain
that -

[Wick(w,), W ()] = W () Wick(1tp (1))
where w), 4(t) is the sum of the symbols in the r.h.s. of (2.7) for (s,7) # (p,q). Using (Is) and
(S) we obtain writing 1 = 11[076](%) + ]l]e,+oo[(%>) that

lwp,q (1)l B2(s) € LH(d2),

which proves (8.8) using Lemma 2.5.

Using then the higher order estimates, we obtain that the identity (8.7) makes sense as an
identity between bounded operators from D(H") to H for n large enough. It also proves that
the norm limit (8.2) exists for h € ho. The rest of the proof is identical to [DG1, Thm. 10.1]. It
relies on the bound

H ( 1tHW( ) —itH _eitHW(gt)e—itH) (H+b)_n||
(W (R) = W(g)) (N + 1)~ HI(N + 1)(H +b)~"||
Clih = gll(IR I +1lgll* + 1)

IN

IN

O
Theorem 8.2 i) For any h € h.(w):

d
¢"(h) = —igw+(3h)|5:o

defines a self-adjoint operator, called the asymptotic field, such that
WH(h) = el®" ("),

i) The operators ¢ (h) satisfy in the sense of quadratic forms on D(¢t(h1)) N D(¢pT (ha)) the
canonical commutation relations

(8.9) (67 (h2), ¢ (h1)] = ilm(ha|hn).
iii) . .
1tH¢+( ) —itH _ ¢+( _)
w) For p € N, there exists n € N such that for h; € ho(w),1 <1i <p, D(H") Cc DI o™ (hi)),

[ 6+ (h) (H+D)7" = s lm_ e 11 6(hi e (H +1)7",

i=1 t——+o00 i=1
and the map
be(w)? > (h, ... hy) — f[l ¢+ (hi)(H +1)™" € B(H)

18 norm continuous.
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Proof. The proof is very similar to [DG1, Thm. 10.2] so we will only sketch it. Properties
i) and ) are standard consequences of the fact that the asymptotic Weyl operators define a
regular CCR representation (see e.g. [DG1, Sect. 2|). Property i) follows from Thm. 8.1 iw). It
remains to prove ). For fixed p we pick n € N such that N?/2(H + b)~" is bounded. It follows
that

(8.10) sup || AT p(h; o) (H + b) e || < oo.
teR

Let us first establish the existence of the strong limit

(8.11) s, lim AT b (hi ) (H 4 b) e ™ =: R(hy,...,h,), for h; € b.

If m is large enough such that H = Hy + V on D(H™), then as quadratic form on D(H™) we
have:
DI ¢(hi ) (H +b) ™" = [V,ill{¢(h; )] (H + b) ™"

where the Heisenberg derivative D is defined in Subsect. 2.5. Next:
(VT ¢(hi )} (H + )~ ZHJ YO (i) [V, () [T 4 1 (i) (H +0) ™

as an operator identity on D(H™). The term [V,i¢(h)] is by Prop. 2.6 a sum of Wick monomials
with kernels of the form wy, 4|h:) or (hewp, 4.

Arguing as in the proof of Thm. 8.1 we see from hypotheses (S) and (Is) for s > 1 that for
h € ho

(8.12) I[V-ig(ha)](H +b) 7" € LH(d1).
This proves the existence of the limit (8.11) for w € D(H™), h; € ho. The fact that the map
(8.13) 673 (ha, ... hy) = T 6(hy) (H +b) ™" € B(H)

is norm continuous implies the existence of the limit for v € D(H™) and h; € bhe(w). The
estimate (8.10) shows the existence of (8.11) for all u € H.
We prove now iv). We recall that

(8.14) |5|§f}ﬁ£||gc H (W)(N + 1)_1H < 00,
and
(8.15) ll_r% ||2hlfc H( —ig(h ))(N + 1)*1H =0.

We fix P € N and M large enough so that NPT (H +b)~M is bounded and prove iv) by induction
onl<p<P.

We have to show that D(HM) C D(II}¢* (h;)) and that R(hy, ..., h,) = O{¢T (k) (H+b)~M
This amounts to show that

R(h1,...,hy) =s- iiir[l)(is)_l(WJr(shl) — MIEeT (hy)(H + )™M
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Note that by the induction assumption D(HM) C D(IT5¢* (h;)) and

(8.16) 56" (h)(H +b)"M =5 lim X 1h¢(h; e " (H +b)~M,

t——+00
Using (8.16) and the fact that e W (hy;)e " is uniformly bounded in ¢, we have:
(i) (W (sha) — TG (he)(H + b))
=5 1ir+n et (i) "L (W (shy ) — DI (his)e H (H + b) =M.

So to prove i), it suffices to check that

(8.17) s- lim s- lim eitHR(s7 t)e_itH =0,

s—0 t—oo

for

R(s,t) = (W(Shlst)_

% 0() ) I3 (hs ) (H + D).

Using (8.14) and the higher order estimates, we see that R(s,t) is uniformly bounded for |s| <
1,t € R, and using then (8.15) we see that lim,_osup,cp | R(s,t)u| = 0, for u € D(HM). This
shows (8.17). The norm continuity result in iv) follows from the norm continuity of the map
(8.13). O

Finally the following theorem follows from Thm. 8.2 as in [DG1, Subsect. 10.1].

Theorem 8.3 i) For any h € h.(w), the asymptotic creation and annihilation operators defined
on D(a**(h)) := D(¢*(h)) N D(¢™ (ih)) by

at™(h) := % (97 (h) —ip*(ih)),
a*(h) 1= 5 (67 () + 16 ih).

are closed.
i) The operators a™® satisfy in the sense of quadratic forms on D(a*# (h1)) N D(at# (hy)) the
canonical commutation relations

[a*(h1),a™(h2)] = (ha|h2)1,
[a*(h2),a™ (M1)] = [a**(h2),a™(h1)] = 0.
iii)

(8.18) e g (h)e M = o (h_y).

w) For p € N, there exists n € N such that for h; € bo(w),1 < i < p, D((H+1)") C D(IT{a™*(h;))
and . .
Pa™(h)(H +b)" =5 tlgglo TR (hy ) (H + b) " "e 1,
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8.2 Asymptotic spaces and wave operators

In this subsection we recall the construction of asymptotic vacuum spaces and wave operators
taken from |[DG1, Subsect. 10.2] and adapted to our setup.
We define the asymptotic vacuum space:

Kt :={ueH|at(h)u=0, h e h(w)}
The asymptotic space is defined as
H" = K" @ T (he(w))-
The proof of the following proposition is completely analogous to [DG1, Prop. 10.4].

Proposition 8.4 i) KT is a closed H—invariant space.
i) Kt is included in the domain of Tl}a**(h;) for h; € he(w).
i)

Hpp(H) C KT

The asymptotic Hamiltonian is defined by

Ht =K @1+ 1®dl(w), for Kt :=H ot

We also define
Qt HY - H,

(8.19)
QT @ a*(hy) - a*(hp)Q = a™(hy) - a**(hp)y,  ha,... hy € he(w), €K+

The map Q% is called the wave operator. The following theorem is analogous to [DG1, Thm.
10.5]

Theorem 8.5 QF is a unitary map from H* to H such that:
atf (W) = Qtl®al(h), k€ bh(w),
HQT=QtHT.

Proof. By general properties of regular CCR representations, (see [DG1, Prop. 4.2]) the
operator Q7 is well defined and isometric. To prove that it is unitary, it suffices to show that
the CCR representation he(w) > h — W (h) admits a densely defined number operator (see e.g.
[DG1, Subsect. 4.2]).

Let n" be the quadratic form associated to the CCR representation W, Let us show that
D(nt) is dense in H. We fix n € N such that

at(R)(H +b)™™ =5 lim eHa(h)e ™™ (H +b)™, hebh(w).

t—+00
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For each finite dimensional space f C he(w) set:

dimf

n;r(u) = Z la™ (hq)ull?,

i=1
for {h;} an orthonormal base of f. We have for u € D(H"):
dim

f .
n?‘(u) = lim lla(hi)e ity
t=too =1

= tggloo(e*itHu|dF(Pf,t)e*itHu),
if P+ is the orthogonal projection on e *§. But dI'(P;;) < N, so
i () < sup [N 2o ul* < CI|(H +b)"ul®
for some p, by the higher order estimates. Therefore
D(H?) € D(n"),

which for p large enough, which implies that D(n™) is densely defined. O

8.3 Extended wave operator

In Subsect. 2.4 we introduced the scattering Hilbert space H5 C Ht,

preserved by H™'. We see that H" is a subspace of H***** and

H+ — Hext
[t

We define the extended wave operator Q=4+ : D(Q™HT) — H by:
D(Q™HT) = D(H™) & g (he(w)),

and

Clearly H5¢3tt g

QT @a*(hy) - a*(hy)Q = a* T (hy)---a* " (hy)y, ¥ € D(H®), h; € bhe(w).

Note that Qb+ . Hscatt _, 1 is unbounded and:

Q+ — Qext,+
e

Considering Q7 as a partial isometry equal to 0 on H5" & H™T, we can rewrite this identity as:

(8.20) QF = Q™ 1y,

where 1+ denotes the projection onto H™ inside the space H3°t,

Moreover using Thm. 8.3 7v), we obtain as in [DG1, Thm. 10.7| the following alternative

expression for Q4T
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Theorem 8.6 i) Let u € D(Q™Y1). Then the limit

. H 3 ext
lim e e tH™y,
t——+00

exists and equals Q™ Ty,
i) Let x € C§°(R). Then Rany(H®') C D(Q™T), In(H®™Y) and Q™% x(H™) are bounded
operators and

(8.21) s- lim eitHIe_itHeth(HeXt) = QeXt’+X(HeXt).

t——+o0

9 Propagation estimates

In this section we consider an abstract QFT Hamiltonian H and fix a weight operator (z). We
will prove various propagation estimates for H. The proof of the phase-space estimates will be
more involved than in [DG1]|, [DG2]. In fact the operator playing the role of the acceleration
[w,i[w,i(z)]] vanishes in the situation considered in these papers.

9.1 Maximal velocity estimates

The following proposition shows that bosons cannot propagate in the region (x) > vmaxt where

Umax ‘= H [wv 1<‘T>] H

Proposition 9.1 Assume hypotheses (G1), (Is) for s > 1. Let x € C§°(R). Then for R" > R >
Umax, One has:
& x
/ ar <]1[R’Rq(‘t|
1

Proof. The proof is almost identical to [DG1, Prop. 11.2] so we will only sketch it. We fix
G € CF°(Jvmax, +00) with G > T g and set F(s) = f:oo G?(t)dt. We use the propagation
observable ®(t) = X(H)dF(F(@))x(H) We use that

1
3 i, 2d¢
) e 5 < clul®

doF () =162 ([w, iz)] — )G(H2) + O(t~2)

<L o)

by Lemma 3.3. The term x(H)[V, 1dI’(F(@))]X(H) is O(t™*) in norm by hypothesis (Is), Lemma
2.5 and the higher order estimates. O

9.2 Phase space propagation estimates

Set
v = |w, i(x)],
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and recall from hypothesis (G2) that
[wa 121] = '72 +roi-e

_1
where v € S_ (21), r_1_¢ € S(_O%_E for some € > 0.

We will show that for free bosons the instantaneous velocity v and the average velocity {z)

T
converge to each other when t — +o0.

Proposition 9.2 Assume (G1), (G2) and (Is) for s > 1 and let x € CP(R) and 0 < ¢ < ¢;.
Then

+o0 x x T % .
0 [ 1ar (5 = ot (DA ) e uliar < clul,
.. o0 xT % —it d
i) [0 (Vg (E0) atme a2 < clul?

Proof. We follow the proof of [DG1, Prop. 11.3], [DG2, Prop. 6.2] with some modifications due
to our abstract setting.

It clearly suffices to prove Prop. 9.2 for ¢; > vmax + 1, which we will assume in what follows.
We fix a function F' € C*®°(R), with F, F' > 0, F(s) = 0 for s < ¢y/2, F(s), F'(s) > d; > 0 for
s € [eo, c1]. We set

Ro(s) = /0 TP (n)dr,

so that Ro(s) = 0 for s < ¢o/2, Ry(s),Ro”(s) > da > 0 for s € [co,c1]. Finally we fix another
function G € C*°(R) with G(s) =1 for s < ¢; + 1, G(s) =0 for s > ¢1 + 2, and set:

R(s) :== G(s)Ro(s).
The function R belongs to C§°(R) and satisfies:
(9'1) R(S) =01in [0, 00/2]7 R/(S) > d3]1[c0,01](3) + X1(8)7 R”(s) > d3]1[co,cl](3) + X2<3>7

for x1,x2 € C5°(JUmax, +00[) and d3 > 0. We set

b(t) := R(@) — % <R'(<::>)(<::> — )+ h.c.> ,

which satisfies b(t) € O(1) and use the propagation observable
®(t) = x(H)dL(b(t))x(H).

Using Lemma 3.3 we obtain that:

Lz (@) 1), (2) 1 o (@) (2) -
(9:2) 9pb(t) = n <R (T)tT —5 B (T)U — vk (t)t> +0(t?),
and
wib(n] =} (B (Gv = 3R (G - jorr ()5
(9.3)
+5 (R (), o] +he.) + 0@2)
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Adding (9.2) and (9.3) we obtain:
dob(t) = 1(<t> )R”((atc))((? —v)+ 5 (R/(<t>)[ ,10] +h.c.> +0(t7?).

By hypothesis (G2), we have:
[w, ] ="+ 11—,
_1
forye S, (21), r_1_¢ € S(_O;_e. Since 0 ¢ supp R/, we know by Lemma 2.3 that
R’(<It>)7“_1_6 e Ot 179).
_1
Using that v € S, (21), we get by Lemma 3.3 vii) that:

% (R/(@)’YQ + h-C-) = vR’(@)v + O3/,

Finally this gives:

()

G o

dob(t):% (5 —v) FyR(5F ;

1+ 0@,

for some €1 > 0.
We note that R’ and R” are positive, except for the error terms due to x1,x2 in (9.1).
To handle these terms we pick x3 € C§°(Jumax, +00[) such that x3x; = x4, ¢ = 1,2. Then

[@ — v,X3(<f—>)] € O(t™1) and [’y,xg(@)] € O(t=3/*) by Lemma 3.3 i) and vii). This yields:
=L —0xe(P)(F -0 = (P - (P —oxs(F) +06)
(&

< 93y vy o),

i (D)y = s ()yxs (i) + 032+

< DA + o,

_1
using that v € 5'(0)2 and Lemma 2.3. Using again (9.1), we finally get:

(9.4) dob(t) > %(@ - v)]l[co,cﬂ(@)(@ —v)+ 017]1[00,61}(@)7

for some Cq, €1 > 0.
To handle the commutator [V,idI'(b(t))] we note that using Lemma 3.3 iv) and the fact that
0 ¢ supp R, we have
x x _
b(8) = T ()01 (21 1 0172)
for some € > 0. Using also hypothesis (Is) for s > 1, this implies that if V' = Wick(w) then
||dT(b(t))wl| € L*(dt). Using the higher order estimates this implies that

IX(H)[V,idT (b(6))x(H)]|| € L*(dt).
The rest of the proof is as in [DG1, Prop. 11.3]. O
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9.3 Improved phase space propagation estimates

In this subsection we will prove improved propagation estimates. We will use the following lemma
which is an analog of |[DG2, Lemma 6.4] in our abstract setting. Its proof will be given in the
Appendix.

Lemma 9.3 Assume (H1), (G1), (G2) and set v = [w,i(x)] which is a bounded operator on b.

Let ¢ = (<ti> —v)24+t79,6 >0 and set eg = inf(5,1 —6/2). If J € C(R) then:

) 1%t e o),

i) [c%,J(<‘?)} e O(t~1+9/2),

If J € Cg°(R\{0}) then for 6 small enough:
iti)
where €; > 0 and M(t) € O(1).

If J,J1 € CP(R) and J; =1 on supp J, then:

i) \J()(<j> — o)+ hel < C’J1(<:§>)C§J1(<:§>) L O(t).

If J, Jv, Jo € C§°(R) with Jo =1 on supp J and supp Ji, then:
v = 0EDE e ey <o 0 ) o)

Proposition 9.4 Assume (G1), (G2), (Is) for s > 1. Let J € C§°(Jco, c1]) for 0 < cp < ¢1 and
x € Cg°(R). Then:

oo x x 1 :
[ 1ar S o) e e 2§ < ol
1

Proof. We fix J; € C§°(Jco, c1[) with J; =1 on supp J and set

b(t) = J1(<?)C§J1(<xt>), for c = ((atc> — U)2 +t70,

and ¢ > 0 will be chosen small enough later. We will use the propagation observable
®(t) = x(H)dL(b(t))x(H)-
Note that by Lemma 9.3 ¢) and the higher order estimates b(t), ®(¢) € O(1). We first note that
X(H)[V,idD(b(t))]x(H) € O(t™),
using hypothesis (Is) and Lemma 9.3 7). Next
DodI'(b(t)) = dI'(dob(t)),
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()

o) = (a0 () L) 4 e+ () doch ().

By Lemma 9.3 4i) we know that choosing § small enough:

(52 (doe?) gy 42

o

,_.

= BN + 4 n MO Ay + o),

for some €; > 0 and M (t) € O(1). By Lemma 9.3 7v) we get then that

NS

~J1 (42 (dgez ) 1 (12)

JED L ) yne| - Oy, — cr1a

2 AN t

=lQ

for some €; > 0. Next by Lemma 3.3:

apn (2 = - L ) s o),

t N
which by Lemma 9.3 v) gives for Jy € C§°(Jco, c1[) and J2 =1 on supp Ji:

<d0J1(<x>)> 2 Ji( <aT)) +h.c. > —f(“? — U)JQQ(@)(@? — )+ Ot 1)

t t

for some €; > 0. Collecting the various estimates, we obtain finally

—Do(t) > fx(H)dF(’J((?)(<3§> —v) + h.c.|)x(H) — CRy(t) — CRy(t) + Ot~ ),
where
Ra(t) = x(ar (R, o) = Lamart® -2y

are integrable along the evolution by Prop. 9.2. We can then complete the proof as in [DG2,
Prop. 6.3]. O

9.4 Minimal velocity estimate

In this subsection we prove the minimal velocity estimate. It says that for states with energy
away from thresholds and eigenvalues of H, at least one boson should escape to infinity. We
recall that as in Subsect. 7.4, A = dI'(a).

Lemma 9.5 Let H be an abstract QFT Hamiltonian. Assume (G4). Let k € N, m = 1,2 and
X € C3°(R). Then there ezists C such that for any € > 0 and q € C§°([—2¢,2¢]) with 0 < ¢ <1
one has: gm

IINk D(¢")x(H)|| < Ce™
<$>)

where ¢* = q(*3).
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Proof. Applying Prop. 2.4 i) we get

(9.5) (dl'(a))*™ < N2 1D (a®™).
Next
(9.6) I'(¢")dT(a®*™T(¢") = dT'((¢")?, ¢'a®™q") < dT(¢'a®™q"),

by Prop. 2.4 iv). We write using (G4):
¢'a®qt = GHx) "a¥™ (z) MG < CH(GYH?, m=1,2,
for Gt = G(@) and G(s) = s™q(s). Using that |G(s)| < Ce™ we obtain that
(9.7) ¢a®qt < CE™P™ m=1,2.
From (9.7) and (9.5), (9.6) we obtain
(9.8) [(¢")N?*dT(a)*"T(¢') < C2m2m N2R+2m,
This implies the Lemma using the higher order estimates. O
Proposition 9.6 Let H be an abstract QFT Hamiltonian. Assume hypotheses (Gi), for 1 < i <

5, (M1), (M2), (Is) for s > 1. Let x € C5°(R) be supported in R\(7 U opp(H)). Then there
exists € > 0 such that:

[ o (2 e

Proof. Let us first prove the proposition for x supported near an energy level A € R\tUop,(H).
By Thm. 7.8, we can find x € C§°(R) equal to 1 near A such that for some c¢o > 0:
(9.9) X(H)[H,iAlox(H) > cox*(H).

Let € > 0 be a parameter which will be fixed later. Let ¢ € C3°(]s| < 2¢€),0<¢ <1, ¢ =1 near
{|s| < ¢} and let ¢ = q(‘)).
We use the propagation observable

2
dt
< < Clu)?

B(t) = \(H)T(¢) 2T (¢ ) (H).

t
We fix cutoff functions ¢ € C§°(R), x € C§°(R) such that
suppq C [~de, de], 0< G <1, dg=¢q, Xx = Xx-
By Lemma 9.5 for m = 1 the observable ®(t) is uniformly bounded. We have:
D®(t) = x(H)dT(¢",dog") 4T (¢")x(H) + h.c.
+x(H)[V,il(¢)]4 T (¢")x(H) + h.c.
(9.10) +t X (H)T(¢") [H AT (¢")x (H)
—t~Ix(H)(¢") £ T (¢")x(H)
=: R1(t) + Rao(t) + R3(t) + Ra(t).
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We have used the fact, shown in the proof of Lemma 6.2, that I'(¢') preserves D(Hyp) and D(N™)
to expand the commutator [H,i®(¢)] in (9.10).
Let us first estimate Ra(t). By Prop. 2.7 and hypothesis (Is)

[V,il(¢")] € (N +1)"On(t™%), s > 1,
for some n. Therefore by the higher order estimates and Lemma 9.5 for m = 1:
(9.11) Ry(t) € O(t™%), s > 1.

We estimate now R;(t). By Lemma 3.3 i):

dod' =57 (5 0§ ne ) ot = gt

t ot t
where r* € O(t72). By the higher order estimates ||x(H)dI'(¢',r")|| € O(t2), which using
Lemma 9.5 for m = 1 yields

IX(H)D (', ) ST X () € 072,

Then we set

1

By = X(H)AT(¢',¢')(N +1)7%, Bj = (N + )F 20 (H),
and use the inequality
012 x(H)dT'(¢", ¢") 4T (¢")x(H) + h.c. = B1Bj + By B
—B1B] — B2 B;j.

We can write:

—ByB; = —x(H)X(H)I(¢"T(¢") % (N + DI(§)T(¢))X(H)x (H)
(9.13) = X(H)T(g")X(H)T(§") % (N + DT (") X (H)T(¢")x(H) + O(t™1)

> —Cix(H)T?(¢")x(H) +O(t™).

In the first step we use that [Y(H),T'(¢")] € O(t!) by Lemma 6.2 and that ’?—;(N—&— (¢ x(H) €
O(1) by Lemma 9.5 for m = 2. In the second step we use the following estimate analogous to
(9.8):

RUNT@) 2 (N + DP@)R(H) < Cre
Next we use Prop. 2.4 iv) to obtain:
BiBr = x(H)dI'(¢",g")*(N +1)"'x(H)
< X(EAT((gP)x(H).

By Prop. 9.2, we obtain

+oo dt
(9.14) / | B1 <f”Hu||2 < COflull®.
1

47



To handle Rs(t), we write using Lemma 6.2:
Ry(t) =t'T(¢")x(H)[H,iAlx(H)T(¢") + O(t?)
(9.15) > Cot~'T(¢")x*(H)T(¢") — Ct 2
> Cot ' x(H)I*(¢")x(H) — Ct™2,

It remains to estimate R4(t). We write using Lemma 9.5:

Ry(t) = —t""X(H)I(¢") 4T (¢")x(H)
(9-16) = —t~'X(H)L(¢")X(H)T(@") T (") X(H)T (¢ )x(H) + Ot )
> —eCot™'x(H)T(q")*x(H) + O(t™2).

Collecting (9.13), (9.15) and (9.16), we obtain
—t71B}(t)Ba(t) + R3(t) + Ra(t)

(9.17) ) | )
> (—€*C1 + Co — €Ca)t "X (H)T(¢")*x(H) + O(t7?).

We pick now e small enough so that Coy = —e>Cy + Cp — eCy > 0. Using (9.11), (9.14) and (9.17)
we conclude that

D(1) > ()T X (H) ~ R() ~ OF %, 5> 1

where R(t) is integrable along the evolution. We finish the proof as in [DG1, Prop. 11.5]. O

10 Asymptotic Completeness

In this section we prove the asymptotic completeness of wave operators. The first step is the
geometric asymptotic completeness, identifying the asymptotic vacua with the subspace of states
living at large times ¢ in (z) < et for arbitrarily small € > 0. In the second step, using the
minimal velocity estimate, one shows that these states have to be bound states of H.

10.1 Existence of asymptotic localizations

Theorem 10.1 Let H be an abstract QFT Hamiltonian. Assume hypotheses (G1), (G2), (Is)

for s > 1. Let ¢ € C°(R), 0 < q <1, ¢ =1 on a neighborhood of zero. Set q' = q(@) Then
there ezists

(10.1) s lim T (ghe ™ = T (g).

We have

(10.2) I'*(qq) =T ()T (),

(10.3) 0<TH(q) <TH(9 <1, f0<qg<g<1,
(10.4) [H,T"(q)] = 0.
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The proof is completely similar to the proof of [DG1, Thm. 12.1], using Prop. 9.4. An analogous
result is true for the free Hamiltonian Hy.

Proposition 10.2 Assume hypotheses (H1), (G1), (G2). Let g € C®(R), 0 < ¢ <1, ¢g=1
near oo. Then there exists

(10.5) s- lim 0T (¢")e o = T} (q).

t—o0

Moreover if additionally ¢ = 0 near 0 then:

(10.6) Thee(@) = T ()T (Le(w)),

where 1.(w) is the projection on the continuous spectral subspace of w.

Proof. By density it suffices to the existence of the limit (10.5) on gy (h).
Using the identity (see e.g. [DG1, Lemma 3.4|):

d
EF(”) = dD(r, 1),

we obtain for a,b € B(h):

1
I(a) = T(b) = / d(ta+ (1 — )b, a — b)dt.
0
It follows then from Prop.2.4 that
B(h) 3 a—T(a)(N+1)"t € B(T(h))

is norm continuous. This implies that it suffices to prove the existence of the limit for ¢ € C*°(R)
0 < ¢ <1landgq=1near oo, ¢ = Cstnear 0. In particular ¢ € C§°(R\{0}). We can then repeat
the proof of |[DG1, Thm. 12.1], noting that the only place where ¢ = 1 near 0 is needed is to
control the commutator [V,il'(¢%)] which is absent in our case. This proves (10.5). Restricting
(10.5) to the one-particle sector we obtain the existence of

(10.7) ¢ =5 lim e™gle i,

t——+o0

By Lemma 3.3 1), we see that [y(w),¢"] = 0 for each x € C§°(R) hence ¢™ commutes with w.
If ¢ = 0 near 0 then clearly

Ipp(w)gT = ¢ Ipp(w) = 0, and hence ¢* = ¢l (w) = Le(w)g™.

We note now that
F;ee(q) = F(q+)7
which implies (10.6). O
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10.2 The projection P;".

Theorem 10.3 Let H be an abstract QFT Hamiltonian. Assume hypotheses (G1), (G2), (Is)
for s > 1. Let {qg,} € C§°(R) be a decreasing sequence of functions such that 0 < ¢, < 1,
gn == 1 on a neighborhood of 0 and NS supp ¢, = {0}. Then

(10.8) Py i=s- lim T (gy) exists.

n—oo

POJr is an orthogonal projection independent on the choice of the sequence {q,}. Moreover:
[H,Py]=0.
Moreover if (S) holds:

(10.9) RanP, C KT.

The range of POJr can be interpreted as the space of states asymptotically containing no bosons
away from the origin.

Proof. The proof is analogous to [DG1, Thm. 12.3|. We will only detail (10.9). Let n € N such
that D(H™) C D(a™(h)) for all h € he(w). We will show that for u € RanP;:

(H+b)"a"(h)u=0, h¢b(w).

Since h +— (H +b)""a™(h) is norm continuous by Thm. 8.2, we can assume that h € ho. By (S)
and the fact that u € RanP;” we can choose ¢ € C§°(R) with 0 < ¢ < 1 such that:

u= lim U (¢)e Hu, ¢'hy e o(1).
t—+oo

Then: ) _
(H +b)"at(h)u = limy_ 100 e (H + b)"a(hy)T(¢")e Hy

= limy_ o €™ (H + )" (¢")a(qthy)e 1ty
using that (N + 1)"ta(q’hy) € o(1) and the higher order estimates. O

10.3 Geometric inverse wave operators

Let jo € CS°(R), joo € C°(R), 0 < Jo, joos jo + 7% < 1, jo = 1 near 0 (and hence jo = 0 near
0). Set j := (Jos Joo)s §' = (46, Jbo)-
As in Subsect. 2.4, we introduce the operator I(j') : H™' — H.

Theorem 10.4 Assume (G1), (G2), (Is) for s > 1. Then:
i) The following limits exist:

(10.10) s lim e (jtye tH

t——+o0
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(10.11) s- lim e (jt)e 0™

t——+o0

If we denote (10.10) by W (j), then (10.11) equals W (5)* and |WT(j)| < 1.
i) For any bounded Borel function F' one has

WH(G)F(H) = F(H*)W™(j).

wi) Let qo, g0 € C™(R), Vo, Voo € C°(R), 0 < g0, goo < 1, go =1 near 0 and goo = 1 near
0. Set j:= (jOajoo) = (QOjOaQOojoo)' Then

w) Assume additionally that jo + joo = 1. Then RanW™(j) C H**™ and if x € C°(R):

QP (HS YW () = x(H).

Note that statement iv) of Thm. 10.4 makes sense since RanW™(j) C H and y(H™)

preserves H3¢att,

Proof. Statements i), i1), i) are proved exactly as in [DG1, Thm. 12.4], we detail only iv).
We pick g € C°(R) with goo = 1 near 0o, goo = 0 near 0 and ¢oojoo = Joo- Applying iii)

for go = 1, we obtain by i) that 1® '}, (gec)W T (j) = WT(j). Applying then (10.6) we get

that 1@ I'(Le(w))WT(j) = WH(j) i.e. RanW™(j) C H3**. The rest of the proof of ) is as in
[DG1, Thm. 12.4]. O

10.4 Geometric asymptotic completeness

In this subsection we will show that
RanPOJr =K.

We call this property geometric asymptotic completeness. It will be convenient to work in the
scattering space H*' and to treat QF as a partial isometry QF : H5" — H  as explained in
Subsect. 8.3.

Theorem 10.5 Assume (G1), (G2), (S), (Is) for s > 1. Let j, = (jon,Joon) Satisfy the
conditions of Subsect. 10.3. Additionally, assume that jon + joon = 1 and that for any e > 0,
there exists m such that, for n > m, supp jo, C [—€,€]. Then

O =w— lim W (j,).

n—oo

Besides
K* = RanFy .

Proof. The proof is analogous to [DG1, Thm. 12.5]. Since it is in important step, we will give
some details. If ¢ € C§°(R) is such that ¢ = 1 in a neighborhood of 0, 0 < ¢ < 1 then for
sufficiently big n we have gjo,, = jon. Therefore, for sufficiently big n by Thm. 10.4 i)

(T (q) ® YW (jin) — WT(jn) = 0.
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Hence

(10.12) w — lim (PO+ © W (j,) — W*(jn)) —0.

n—oo

Let x € C§°(R). We have
QP x(H) = QP QT (HY) W ()
=w — limy, 0 QT QU (HEH W (4,)

(

(
= w — limy, oo QT*QET N (HEY P @ TW T (j,) (3
— w — limy, 0o P © I (H™)W(j,) (
— w — lim,, o0 By © TW(ji,) x (H) (
= w — limp—oo W (jin)x(H) (

We use Thm. 10.4 in step (1), (10.12) in step (3), RanP;" C KT in step (4), Thm. 10.4 i) in
step (5) and (10.12) again in step (6). Clearly this implies that:

QO =w— lim W (j,).

n—oo

Therefore by (10.12)
RanQ™ C RanPy" @ I'(h) C KT @ I'(h).

But by construction
RanQ ™ = KT @ I'(h).

Hence KT @ I'(h) = RanP,” @ I'(h), and therefore KT = RanP,y . O

10.5 Asymptotic completeness

In this subsection, we will prove asymptotic completeness.

Theorem 10.6 Assume hypotheses (Hi), 1 < i <3, (Gi), 1 <i <5, (Mi)i=1,2, (Is) for
s> 1 and (S). Then:
Kt =Hpp(H).

Proof. By Proposition 8.4 and geometric asymptotic completeness we already know that
Hpp(H) C KT = RanP;".

It remains to prove that Py” < 1,,(H). Let x € C§°(R\(7Uopp(H))). We deduce from Prop. 9.6
in Subsect. 9.4 that there exists € > 0 such that for ¢ € C5°([—¢, €]) with ¢(z) =1 for |z| < €/2
we have

e ¢ —itr, 24t 2
: IT (@ )X (H)e ™ ull”— < cllull”.
Since ||T(¢")x(H)e ™ || — |T*(¢)x(H)u|, we have I't(¢)x(H) = 0. This implies that
P(;‘— S ]lTUcrpp(H)'

Since 7 is a closed countable set and op,,(H) can accumulate only at 7, we see that Iy,(H) =
1;Uo,, (H). This completes the proof of the theorem. O

52



A Appendix

A.1 Proof of Lemma 3.3

To prove i) we restrict the quadratic form [F(%),w] to S. Using (2.2), we get

PR el = gip fe0:F ()= = )M, wl(z — )Mz A d7,
)

(-1 = wrle0FE) - F

where the right hand sides are operators on S. Since ad%z>w € S?o)’ we see that the last term

belongs to R_QS?O). Using the bound %(z - %))_1 = O(|Imz|~1) for z € supp F, we see that

the last term belongs also to Rfls’(_o;. This proves 7) for k = 0.

0)

0)
it) follows from i) for k = 0 since S is a core for w. i) and i) are proved similarly. v) is

proved as i), replacing w by [w,ia]o and using only the first line of (A.1). To prove vi) we restrict

again the quadratic form [F(%), w?] to S and get:

Replacing w by [w, (x)] and using that ad%x> [w, (x)] € S(( we get also i) for k = 1.

P, 0
(A.2) = e [L0:F(2) (2 — S (2), 0] (2 — )1z A d
= 3 Je0:F () = T @), ww + [w, [(@),w]) (2 = )Mz A d7,

where the right hand sides are operators on S. Note that [w, [(x),w]] is bounded by (G2). We
use next that w(z — %)‘%}‘1 € O(|Imz)|~2 uniformly in R > 1 to obtain vi).
To prove wii), we pick another function F; € C§°(R\{0}) such that F1F = F and note that

8 = FC ) b4 ), e (D),
Applying again (2.2), we get

[F(@)’b] - 2;3 /COZF(Z)(Z - @]g)_l[@%b](z - ?)_ldz Adz,

and the analogous formula for [Fl(%), b]. We use then that [(x),b] € S’(B’)Ha and Lemma 2.3,
moving powers of (z) through the resolvents either to the left or to the right to obtain wvii). O

A.2 Proof of Lemma 3.4.
We use the identity:

to get:
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since w > m > 0. Hence

The second statement of the lemma is obvious. O

A.3 Proof of Lemma 9.3.

Since by (G1) [v, (x)] extends from S as a bounded operator on h and S is a core for (x), we get

that v preserves D((z)). Since @ — v is selfadjoint on D((z)) we get

D(e) = DY —)?) = fw e D] (2~ vu € D((a))} = D).

so c is selfadjoint on D((x)?). Since v € S?O) we get by Lemma 2.3 that J(L?)CJU%)) € 0(1)

which proves i).

Let us now prove ). We first consider the commutator [c, J (<%>)] for J € C§°(R). We have

e, 7 = (F =0l JER] + [0, JEDI (R =)
)

= (2 ) (D)o, (@) + T () o, ()] (L - v)

+ (2 M)+ M) (2 - ),

where M(t) € t*QSE)O) N t*15(_(]§ by Lemma 3.3 7). This implies that the last two terms in the

r.h.s. are O(t~2). Using then that [v, J’(@)] € O(t™Y) and [[v, (x)], @] € O(t™!) since v € 5?3),
we see that

(2 — o) () o, ()] = T ()M () + Ot ),

I~

T (5[, (@) (2 —v) = J(E) M (t) + Ot ),
where M;(t) € O(1). This shows that:

(A.3) [c, J(<f>)] = 1J’(<x>)0(1) +O0(t™2).

We will use the following identities valid for A > 0:

1 +oo 1 1 +oo 1
(A.4) ATz = co/ s72(\+s)tds, A2 = co/ 572NN+ 5) " lds,
0 0
and
3 +oo 1
(A.5) A2 = 200/ 572 (\ + s)"2ds,
0
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which follows by differentiating the first identity of (A.4) w.r.t. A. A related obvious bound is:

(A.6) ‘A+ws—

From (A.4) we obtain that

N

(t0 + 5)"ds = O(t™2)%), n > 1.

+o0
(A.7) 2 = C[)/ s*%c(c + 5)"1ds, as a strong integral on D(c).
0
Therefore

1 x oo x z
hah=a [k (et = e e st 1)

We use the bounds
(A.8) le(c+ )7 <1, flle+s) M < (0 +5)7",
and (A.3) to obtain

(x

% 442 1 +a38_
liet, 72y < ot /0

t

NI

(t70 4+ 5)"lds = O(t~1+%/?),

by (A.4), which proves ).
To prove iii) we first compute

2
(A.9) doc = _t(<j€:> —v)? - <[w,iv}(<f> — )+ h.c.> — ot
We first rewrite the second term in the r.h.s. in a convenient way:
by (G2), we have

—1—e

1
. 2 -5
[w,iv] =" +7r_1-¢, 7E Se,(21)7 r1_¢€ S(o)

Since v € S?o)’ we get first that:

T - —€ —1—e¢
(A.10) (2Wﬂw4%eoqum+q£.
We claim also that

(x) R —3/2+42¢
(A.11) [, - v] € O(t )8(0)2 + S(O) .

1
3Te

Clearly [v, (z)] € Sy - Tohandle [7,v] we use the Lie identity and write:

(A12) 1,0 =~ o, ()] = [ [{2),21] + (@), o, 7] € S+
which proves (A.11). By Lemma 2.3 7), we get that

{x)

W=l b S =y €S+ St
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and hence using that 0 < e < %:

[w,iv](<:§> —v)+he. = 27(<xt> —v)y + Ra(t),

where Ra(t) € 0(75_1)5(7051 + S(B;fq, for some €; > 0. We set now:

2c (z)

Ro(t) = - Ri(t) = —(6—2)t°"", Ry(t) = *QV(T — )7,

and rewrite (A.9) as
3
d()C = Z Rz (t)
=0
Using (A.7), we obtain as a strong integral on D(c):

doc2 = ¢ Jo e 573 (doc(c+s)~! —c(c+s)"'doc(c+5)7") ds

- éﬂ) S s72 (Ri) e+ 9) 7 = cle+ ) Ri(t) (e +5)7") ds
= 3 I;(t).
i=0

Using (A.4) we obtain

t
It remains to handle the terms J(@)INS)J(@) for i = 2,3. We write them as:

TEDL®I(R) = o J§= s 2T () Rit)(c+ 5)7 T (5)ds

—co [ s3I () e(c + ) Ri(t) (e + 8) 7 T(12)ds.

We will need to use the fact that O ¢ suppJ. To do this we claim that if J, J; € C5°(R) with
J1 =1 near supp J then:

(A.13) J(@)(c + )71 - Jl)(@) cOt 2t +5) )+ 0172t ° +5)7%),
(A.14) J(@)(;(c +8) 71— Jl)(@) cOt 2t +5) ) +002(t7° +5)72).

t

)(
)
= T e+ ) T(EDOE ) e+ 5) 7+ T2 (e 4 5) O 2) (¢ + 5) !
Je+s) T O)e+ )70 ) e+ )7 + TP (e + )02 (e +5) 7!
)(

c+ 5)_10(15_1)(0 + s)_lO(t_l)(c + s)_l + J(@g—))(c + S)_lO(t_Q)(c + s)_l.
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We obtain (A.13) using the bound ||(c + s)7'|| < (7% 4+ 5)~'. (A.14) follows from (A.13) using
that c(c+s) ' =1—s(c+s)~L
We hence fix a cutoff J; € C§°(R\{0}) such that J; =1 on supp J and set

&) = n(Emon D,

and denote by I;(t) the analogs of I;(t) for R;(t) replaced by R;(t).
We claim that:

(A.15) J(<"’“"t>) (Il-(t) — I}(t)) J(<‘:>) e O(t™2+%/2) =23

To prove (A.15), we note that I;(¢) is obtained from I;(t) by inserting J1(<ti>) to the left and
right of R;(t) under the integral sign. The error terms under the integral sign coming from this
insertion are estimated using (A.13), (A.14) and the fact that R;(t) € O(1) for i = 2,3, since
1
—3

v € S(o) . The integrals of these error terms are estimated using (A.6), which by a painful but

straightforward computation gives (A.15).
By Lemma 2.3 i), we know that Ra(t) € O(¢t~171) for some ¢ > 0 small enough, hence
using the bounds (A.8) and (A.6), we obtain that for 6 > 0 small enough

I5(t) and hence J(<f>)]2(t)¢](<::>) cOo(t™1792), e >0.

To treat I3(t), we use that

st = (2 e, for = v (),
We claim that
(A.16) [y, ¢] € O(t=3/2+9),
Let us prove this claim. We write:
(z)

() ()

[y, ¢] = (T — )%, ral vl + [, el U](T — ),
and
s (@] = b @ (), el = ol () a1 (2,01
Now
A @), b @) ) e opie,

1
This follows from the fact that [y, (x)] € Sy 0 ¢ supp Ji and Lemma 2.3 i). Similarly we

saw in (A.12) that [y,0] € S(_(g/2+26, which implies that:
(<f> - v)[%v]Jl(@), [’y,v]lfl(@?)(<Z[;> —v) € O B/2 1),

o7



Finally using Lemma 3.3 1) we write:

u1<<f>7v>} = 1J{<<f>>[<m>,v] + M(t), M(t) € O(t™*)S[p) NO(t)S .

_1
Since 7 € 5, and [(z),v] € S?o)v we get that
) (z)

oDy, D), (2 ) € 0h),
and since M (t) € O(t*Q)S?O) N O(t*1)5@§:
o), (v 06,
Collecting the various estimates we obtain (A.16).
From the estimate of [y, c] we obtain:
(A.17) e (c+ )71 € O30 +5)7%),
(A.18) [y, clc+s)" 1 € O30 4+ 5)71).

We now write:

I(t) =« 0+°°s*%v:<@—vm<c+s>—lds

—co [P s 3c(c+s)7! (% v)y(c+ s)"tds
We first move =y, to the right in the two integrals using (A.17) and the fact that
oz x x
()= 5 (2, 2y coq),

_1
since v € 5’(0)2. We obtain errors terms of size O(t3/2+¢+t59/2) ysing (A.6). We then move 7} to
the left in the second integral using (A.18) and the fact that

(2

—0)(c+8) 7Y < Jlez(c+ )7 < 972,

We obtain error terms of size O(t
get:

—3/2+e40) ysing again (A.6). Hence for § > 0 small enough, we

= Cofo 'y;‘s_% <t> v)(c+ s) lyds
—Cofo Vs~ 2e (c+s)” 1(<tﬂ—v)(c+s)_lvtds
+O(t~ 1)
(z)

for some €; > 0. The integrals can be computed exactly since *;* — v commutes with ¢ and are

(@

- v)c_% for some constant C and hence O(1). This yields:

= TP M () +0677)

= J(EM @I () + o),

t t

equal to Cy

Kl
—
Py
2
N—
ol
—~
~
N
<
~—~
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t

for M(t) € O(1). Using also (A.15), the same equality holds for J(@)Ig(t)J(@). Finally we
x)

use that 7J(< ) e O(t™ 2) by Lemma 2.3 i) and [y, J(@)] € O(t=3/71), to get:

7 yaneya (= (a2 o)
Hence
1 105 = a2y, 1 019,
which completes the proof of ).
Let us now prove ). Set
By = J(<$t>)(<‘:> —v)+he., By= J1(<£§>)C§J1(<f>).

By Lemma 3.3 we have:

B = AT = o) 2D -0+ 06

= CJ¥¥
= Ch()er (e n () + o)
= OB} +0(t),

where we used i) in the last step. Applying then Heinz theorem we obtain that
|Bo| < C(B} + t_eo)% < CB; + Ct=0/2,

which proves iv).
To prove v) we set

By = J(<”t”>)(<‘”3t> - U)céjl(@;)) +he.
Using #) and Lemma 3.3, we get:

B2 = £ (( 0l (h)eh +he) + O(1H2)

= (C%(%) — ) 2 S A ()eE + h.c.) + Ot 1+0/2)

IN

Ce+ O(t=179/2)

< (% w2+ O(t),

(=)

- v)c_% is bounded with norm O(1). Since By = J2(< >)B2J2<<x>) we get

since (

8, < O 029 o) = o ) 1 op

t
by Lemma 3.3. O
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