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Abstract
We develop in this paper the Mourre theory for an abstract class of fibered self-adjoint

operators which we call analytically fibered operators. We construct a conjugate operator
for which we prove that a Mourre estimate holds. Examples of analytically fibered operators
are given and finally perturbations of such operators are considered.

1 Introduction

This paper is devoted to the Mourre theory for an abstract class of self-adjoint operators, called
analytically fibered operators. The Mourre theory for a self-adjoint operator H0 acting on some
Hilbert spaceH is based on the construction of another self-adjoint operator A, called a conjugate
operator so that the following estimate holds:

1∆(H0)[H0, iA]1∆(H0) ≥ c01∆(H0) +K, (1.1)

where 1∆(H0) denotes the spectral projection on the interval ∆ ⊂ R for the operator H0, c0 is a
positive constant and K is a compact operator. The estimate (1.1) is called a Mourre estimate.
If one can take K = 0 in (1.1), then it is called a strict Mourre estimate.

The Mourre estimate has several important consequences for the spectral and scattering
theory of H0. The first ones are the discreteness of the point spectrum σpp(H0) in ∆, and
under some additional assumptions, the existence of a limiting absorption principle, i.e. the
existence of the limits limε→0(H0−λ± iε)−1, for λ ∈ ∆\σpp(H0) as a bounded operator between
suitable weighted spaces. The estimates leading to the limiting absorption principle are called
resolvent estimates. In turn the limiting absorption principle implies that the singular continuous
spectrum of H0 σsc(H0) is empty in ∆. Moreover there exists a natural class of perturbations V
for which one can deduce from (1.1) a Mourre estimate for H = H0 +V with the same conjugate
operator A.

However the most intuitive consequences of the Mourre estimate (1.1) are probably prop-
erties of the unitary group e−itH0 for large times t, which go under the name of propagation
estimates.They are based on the fact that [H0, iA] is the time derivative of t 7→ eitH0Ae−itH0 at
t = 0. An example of such a propagation estimate is

‖F (
A

t
< c0)e−itH01c

∆(H0)‖ → 0 when t→ ±∞,
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where 1c
∆(H0) is the spectral projection on the continuous spectral subspace of H0 in ∆. Such

propagation estimates allow to develop in a very natural way the scattering theory for pertur-
bations H = H0 + V of H0. For example there exists a natural class of perturbations V (that
one can call short-range perturbations) for which the local wave operators

s-lim
t→±∞

eitHe−itH01∆(H0) =: Ω±

can be shown to exist and to be asymptotically complete i.e.

1c
∆(H)H = Ω±H.

Finally using extensions of the Mourre method one can prove more detailed resolvent estimates
for H and H0 which lead to results on the scattering matrix S(λ) for the pair (H0, H).

Let us end this very brief overview of the Mourre method by some brief historical comments
and some bibliographical references, which do not intend to be complete. The Mourre method
was invented by Eric Mourre in [11] and subsequently developed and applied in [6], [10], [12], [13].
An essentially optimal version of the Mourre method was developed in [1], [3]. In particular the
book [1] contains a detailed exposition of the subject. Time-dependent propagation estimates
originate in the papers of Sigal and Soffer [16], [18], [17].

In this paper we will construct a conjugate operator and prove a strict Mourre estimate for
an abstract class of self-adjoint operators which we call analytically fibered operators. Let us
recall that an operator H0 on a Hilbert space H is called fibered (or also a direct integral) if the
following conditions hold (see as example [14]):

i) H can be written as L2(M,µ;H′) where H′ is a separable Hilbert space and (M,µ) a
σ-finite measure space.

ii) the operator H can be written as the direct integral

H0 =
∫ ⊕
M
H0(k)dµ(k), (1.2)

where the function M 3 k → H0(k) is measurable with values in the self-adjoint operators on
H′.

The set
Σ := {(λ, k) ∈ R×M, λ ∈ σ(H0(k))} ,

which will be defined further without ambiguity about null measure sets, plays an important
role. We shall call it the set of energy-momentum of H0.

Hamiltonians describing ‘free ’ systems , which admit generally a rich set of constants of
motion are often fibered.

We introduce in this paper a particular class of fibered operators, which is characterized by
three additional properties which can be summarized as:

i) the space M is a real-analytic manifold,
ii) the resolvent (H0(k) + i)−1 is analytic with respect to k and H0(k) has only discrete

spectrum for k ∈M ,
iii) the projection pR : Σ 3 (λ, k) 7→ λ ∈ R is a proper map.
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Examples of analytically fibered operators will be given at the end of Section 2. The main
example is Schrödinger operators with a periodic potential. Application of the results in this
paper to the scattering theory of perturbed periodic Schrödinger operators will be treated in a
subsequent publication.

Let us now give the plan of our paper.
In Section 2 we define analytically fibered operators and give some examples. In Section 3

a conjugate operator A is constructed for an analytically fibered operator H0. We also recall
standard results about the perturbations H = H0 + V of analytically fibered operators which
follows from the strict Mourre estimate for H0.

2 Analytically fibered operators

In this section we define analytically fibered operators and give some examples.

2.1 Definition

Let H′ be a separable Hilbert space and (M,µ) a σ-finite measure space. We denote by H the
Hilbert space ∫ ⊕

M
H′dµ = L2(M,µ;H′).

We recall that a function
M 3 k → H0(k)

with values in the self-adjoint operators (not necessarily bounded ) on H′ is measurable if the
functions

M 3 k → (ψ, (H0(k) + i)−1ψ)

are measurable for all ψ ∈ H′. We define then the operator

H0 =
∫ ⊕
M
H0(k)dµ(k) (2.1)

acting on H by

D(H0) :=
{
ψ ∈ H, ψ(k) ∈ D(H0(k)) a.e.,

∫
M
‖H0(k)ψ(k)‖2 dµ(k) <∞

}
,

(H0ψ) (k) := H0(k)ψ(k), for ψ ∈ D(H0).

Operators of the form (2.1) are called fibered operators. The operators H0(k) are the fibers of
H0. In this paper the space M will be called the momentum space. Since we want to use some
analyticity property of H0(k), we next specify the analytic structure in which it makes sense.

Definition 2.1. Let M be a real analytic manifold and H′ a separable Hilbert space.

a) If M is a real analytic manifold, the real analytic vector bundle pM : F → M with fiber H′
is called a real analytic Hilbert bundle on M if its structure group is the group of unitary
operators on H′.
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b) With the previous bundle is naturally associated the real analytic vector bundle with fiber
L(H′) and structure group the group of conjugations by unitary operators on H′. This
bundle will be denoted by L(H′).

c) The spaces of real analytic sections of these bundles will be respectively denoted by Cω(M ;F)
and Cω(M ;L(F)). The spaces of C∞ and compactly supported C∞ sections will denoted
similarly with the symbols C∞ and C∞comp instead of Cω.

When µ is a measure on M , the space L2(M,µ;F) of µ-square-integrable sections of F is
naturally identified with H. We can now introduce the exact definition of analytically fibered
operators . for which we will be able to construct conjugate operators.

Definition 2.2. Assume that M is a real analytic manifold and that the measure µ is given
by a positive (> 0) C∞ 1−density. The operator (2.1) will be said analytically fibered if there
exists a real analytic Hilbert bundle pM : F →M with fiber H′ so that

i) the resolvent (H0(k) + i)−1 defines an element of Cω(M ;L(F));

ii) for all k ∈M , the self-adjoint operator H0(k) has purely discrete spectrum;

iii) the projection pR : Σ 3 (λ, k)→ λ is proper.

The energy-momentum set,

Σ := {(λ, k) ∈ R×M, λ ∈ σ(H0(k))} ,

is here well defined because H0(k) depends continuously on k ∈M in the resolvent sense.
Let us now give some examples of analytically fibered operators where the fiber bundle F is

the trivial bundle M ×H′.

2.2 Matrix valued differential operators with constant coefficients

Let H0 be the differential operator P (D) on Rn where P (ξ) = (aij(ξ)) ∈Mp(C) is a self-adjoint
matrix with polynomial coefficients. We have the following lemma:

Lemma 2.3. Assume that there exists a function Rn 3 ξ → f(ξ) ∈ R so that lim
|ξ|→+∞

f(ξ) = +∞,

and
|P (ξ)| ≥ f(ξ)1p. (2.2)

Then the operator H = P (D) is analytically fibered.

The elementary proof is left to the reader.
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2.3 Neutral two-particle systems in a magnetic field

Our second example concerns the Hamiltonian describing a neutral system of two interacting
particles in a constant magnetic field, in two space dimensions.

This Hamiltonian is of the form

H0 =
2∑
i=1

1
2mi

(Dyi − qiJyi)2 + V (y1 − y2), acting on L2(R4),

where mi, qi, i = 1, 2 are the masses and charges of the particles, V the interaction potential and

J :=
1
2

(
0 b
−b 0

)
,

where b is the intensity of the magnetic field. We assume that the potential V satisfies:
(V1) V is a multiplication operator on L2(R2) ∆−bounded with relative bound 0,
(V2) ‖F ( |x|R ≥ 1)V (−∆ + 1)−1‖ = o(1), when R→∞.

Using Kato’s inequality (see [8, lemma 3.1]), we deduce easily from (V1) thatH0 isH00−bounded
with relative bound 0, for

H00 :=
2∑
i=1

1
2mi

(Dyi − qiJyi)2.

The operator H0 is hence self-adjoint with domain the magnetic Sobolev space

D(H0) = D(H00) = {u ∈ L2(R4)|H00u ∈ L2(R4)}.

The operator H0 commute with the pseudomomentum of the center of mass, defined by:

K := (Dy1 + q1Jy1) + (Dy2 + q2Jy2),

and if q1 + q2 = 0, the two components of K commute. Using the arguments of [8], we construct
a unitary transformation :

U : L2(R4)→ L2(R2
k × R2),

so that

UKU∗ = (k1, k2), UH0U
∗ =

∫ ⊕
R2
k

H0(k)dk,

The operator H0(k) acting on L2(R2) is given by

H0(k) :=
1

2M
(k − 2qJy)2 +

1
2m

(
Dy − q

m1 −m2

M
Jy

)2

+ V (y),

with M = m1 +m2,m = m1m2M
−1 and q = q1 = −q2. We denote

H00(k) :=
1

2M
(k − 2qJy)2 +

1
2m

(Dy − q
m1 −m2

M
Jy)2.

We have the following lemma.
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Lemma 2.4. Let Σ be the energy-momentum set of H0 and we denote by τ0 the set

τ0 := {
2∑
1

|q|
mi
b(ni +

1
2

), ni ∈ N}.

Under the hypotheses (V1) and (V2) we have the following properties:

i) The function
R2 3 k → (H0(k) + i)−1 ∈ L(L2(R2))

is analytic with values in the compact operators on L2(R2).

ii) The projection pR : Σ\p−1
R (τ0)→ R\τ0 is proper.

The set τ0 represents additional thresholds associated with the free channel where the two
particles are far from each other. (The construction of a conjugate operator allows to prove the
asymptotic completeness for three particle systems in two space dimensions in the case where
there exists a neutral cluster of two particles [7].)
Proof : Hypothesis (V1) ensures that V is H00(k)−bounded with relative bound 0, and hence
that

D(H0(k)) = D(H00(k)) = {u ∈ L2(R2)|‖D2u‖2 + ‖y2u‖2 <∞}.
The resolvent (H0(k)+i)−1 is hence compact and clearly analytic with respect to k. It remains to
check that the projection pR : Σ→ R\τ0 is proper. Denote by T (k) the unitary transformation,
which quantizes the symplectic transformation:

y → y + (2q)−1J−1k,

η → η − m1−m2
2M k.

We have
T (k)H00(k)T ∗(k) = H00(0),

T (k)H0(k)T (k)∗ = H00(0) + V (y + (2q)−1J−1k).
(2.3)

We deduce first from (2.3) that σ(H00(k)) is independent of k. On the other hand the direct
integral ∫ ⊕

R2

H00(k)dk

is unitarily equivalent to H00. So we have

σ(H00(k)) = τ0. (2.4)

On the other hand hypotheses (V1), (V2) imply:

lim
k→∞

V (·+ (2q)−1J−1k)(H00(0) + i)−1 = 0,

and hence
lim
k→∞

‖(H0(k) + i)−1 − (H00(k) + i)−1‖ = 0. (2.5)

Combining (2.4) and (2.5), we obtain ii).
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2.4 Periodic Schrödinger operators

Our third example concerns the periodic Schrödinger operators. We consider the Hamiltonian

H0 =
1
2
D2 + VΓ(x), we L2(Rn),

where VΓ is a real potential, Γ−periodic for a lattice Γ in Rn:

VΓ(x+ γ) = VΓ(x), γ ∈ Γ.

We assume that VΓ satisfies the following hypothesis:
(V) VΓ is ∆−bounded with relative bound strictly smaller than 1.

The operator H0 is hence self-adjoint with domain H2(Rn). We recall now the Floquet-Bloch
reduction for periodic operators. We refer to [19] for proofs. We associate with Γ the torus
Tn = Rn/Γ, the fundamental domain

F := {x =
n∑
j=1

xjγj , 0 ≤ xj < 1},

where {γj}n1 is a basis of Γ, and the dual lattice

Γ∗ := {γ∗ ∈ Rn|〈γ, γ∗〉 ∈ 2πZ, ∀γ ∈ Γ}.

Similarly we define the fundamental domain F ∗ and the torus Tn∗. Finally we denote by µΓ

(resp. µΓ∗) the volume of the fundamental domain F (resp.F ∗). With this notations, the
Floquet-Bloch transform associated with Γ is defined by:

Uu(k, x) := µ
− 1

2
Γ∗

∑
γ∈Γ

e−i〈k,γ〉u(x+ γ), (2.6)

for u ∈ S(Rn) as example. We have:

(Uu)(k + γ∗, x) = (Uu)(k, x), for γ∗ ∈ Γ∗,

and U extends as a unitary operator

U : L2(Rn, dx)→ L2
(
Tn∗, dk;H′

)
,

for H′ = L2(F, dx), whose inverse is given by

U−1v(x+ γ) = µ
− 1

2
Γ

∫
Tn∗

ei〈k,γ〉v(k, x)dk, x ∈ F.

The operator UH0U
−1 is equal to

UH0U
−1 =

∫ ⊕
Tn∗

H0(k)dk, (2.7)

with
H0(k) = 1

2D
2 + VΓ(x),

D(H0(k)) = {u = v
∣∣∣
F
, v ∈ H2

loc(Rn)|v(x+ γ) = ei〈k,γ〉v(x), ∀γ ∈ Γ}.

The energy-momentum set Σ is traditionally called the Bloch variety and the fibers Σλ =
Σ ∩ p−1

R ({λ}) Fermi surfaces.
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Lemma 2.5. Under hypothesis (V), the operator UH0U
−1 is analytically fibered.

Proof : The bijection F ∗ 3 ξ → ξ (mod Γ∗) ∈ Tn∗ restricted to the interior of the fundamental
domain Ḟ ∗ is a real analytic diffeomorphism. Let us identify Ḟ ∗ and its image. For k ∈ Ḟ ∗, we
consider the unitary operator T (k) on L2(F ) defined by T (k)v(x) = e−i〈k,x〉v(x). We have then

T (k)H0(k)T (k)−1 =: H̃0(k), (2.8)

with
H̃0(k) = 1

2(D + k)2 + VΓ(x),
D(H̃0(k)) = {u = v

∣∣∣
F
, v ∈ H2

loc(Rn)|v(x+ γ) = v(x),∀γ ∈ Γ}.

If we identify the opposite faces of F we can consider H̃0(k) as 1
2(D + k)2 + VΓ(x) naturally

defined on L2(Tn). The resolvent (H̃0(k) + i)−1 is compact and clearly analytic with respect to
k ∈ Ḟ ∗. The same property holds for (H0(k) + i)−1. this property extends to all k ∈ Tn∗ by
taking several charts of the form ξ0 + Ḟ ∗.

3 Mourre estimate for analytically fibered operators

In this section, we construct a family of conjugate operators associated with analytically fibered
operator H0.

Theorem 3.1. There exists a discrete set τ determined by H0 so that for any interval I ⊂⊂ R\τ
there exists an operator AI essentially self-adjoint on D(AI) = C∞comp (M ;F) satisfying the
following properties:

i) For all χ ∈ C∞comp(I), there exists a constant cχ > 0 so that

χ(H0) [H0, iAI ]χ(H0) ≥ cχχ(H0)2.

ii) The multi-commutators adkAI (H0) are bounded for all k ∈ N.

iii) The operator AI is a first order differential operator in k of which the coefficients belong to
C∞(M ;L(H′)) and there exists χ ∈ C∞comp(R \ τ) so that A = χ(H0)A = Aχ(H0).

Let us first recall the following well-known consequences of Theorem 3.1 (see [11], [13]).

Corollary 3.2. a) σpp(H0) ⊂ τ .

b) For all ∆ ⊂ I ⊂⊂ R\τ , one has

sup
λ∈∆,ε>0

∥∥∥(1 + |AI |)−s (H0 − λ± iε)−1 (1 + |AI |)−s
∥∥∥ <∞, s >

1
2
.

and the singular continuous spectrum of H0, σsc(H0), is empty.
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Before giving the proof of Theorem 3.1, we state the results for some natural class of per-
turbed Hamiltonians H = H0 +V . We will simply recall some well known results in the Mourre
theory (see [11], [13]) and refer the reader to the book [1] for a complete exposition of the Mourre
method. In particular a sharper version of Theorem 3.3 is given in [1, Prop. 7.5.6].

Theorem 3.3. Let AI be a conjugate operator for H0 associated with an arbitrary compact
interval I ⊂ R \ τ . Let V be a symmetric operator on H so that:

i) V (H0 + i)−1 is compact,

ii) (H0 + i)−1[V, iAI ](H0 + i)−1 is compact,

iii)
∫ 1

0 ‖(H0 + i)−1
(
eitAI [V, iAI ]e−itAI − [V, iAI ]

)
(H0 + i)−1‖dtt <∞.

Then the following results hold:

i) There exists a constant c > 0 and a compact operator K so that if χ ∈ C∞comp(I)

χ(H)[H, iAI ]χ(H) ≥ cχ2(H) +K.

Consequently σpp(H) is of finite multiplicity in R\τ and has no accumulation points in
R\τ .

ii) For each λ ∈ I\σpp(H), there exists ε > 0 and c > 0 so that

1[λ−ε,λ+ε](H)[H, iAI ]1[λ−ε,λ+ε](H) ≥ c1[λ−ε,λ+ε](H).

iii) The limiting absorption principle holds on I\σpp(H):

lim
ε→±0

(1 + |AI |)−s(H − λ+ iε)−1(1 + |AI |)−s exists and is bounded for all s >
1
2
.

Consequently the singular continuous spectrum of H is empty.

iv) If the operator (1+ |AI |)sV (1+ |AI |)s is bounded for some s > 1
2 , then for any open interval

∆ ⊂ I, the wave operators

s-lim
t→±∞

eitHe−itH01∆(H0) =: Ω±∆

exist and are asymptotically complete,

1c
∆(H)H = Ω±∆H.

The proof of Theorem 3.1 relies on two elementary lemmas and a classical result from the
theory of analytic singularities.
Notation : For I a Borel set in R, we denote by πI(k) the spectral projection 1I(H0(k)) on I.

Lemma 3.4. a) For all (λ0, k0) ∈ R×M , there exists neighborhoods I0 ⊂ R of λ and V0 ⊂M
of k so that πI0(k0) = π{λ0}(k0) and πI0(k) ∈ L(H′) is real analytic with respect to k ∈ V0.
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b) The function mul : R ×M → N defined by mul(λ, k) := dimπ{λ}(k)H′, is upper semicon-
tinuous. It reaches its maximum NK when we restrict λ to a compact set K ⊂ R.

Proof : a) The only non trivial case is when λ0 ∈ σ(H0(k0)). Let I0 be an open interval so
that I0 ∩ σ(H0(k0)) = I0 ∩ σ(H0(k0)) = {λ0}. For k close to k0, we have

πI0(k) =
∮

Γ0

(z −H0(k))−1 dz

where the contour Γ0 is chosen sufficiently close to I0. The projection πI0(k) is clearly analytic
with respect to k for k close to k0.
b) If mul(λ0, k0) < n ∈ N, we choose a neighborhood I0 × V0 as in the proof of a) and by
continuity we obtain

mul(λ, k) ≤ dimπI0(k)H′ = dimπI0(k0)H′ = mul(λ0, k0) < n,

for all (λ, k) ∈ I0 × V0. So the function mul is upper semicontinuous. Finally for all compact
set K ⊂ R we have

sup
λ∈K
k∈M

mul(λ, k) = sup
(λ,k)∈Σ∩p−1

R (K)

mul(λ, k).

Since the projection pR

∣∣∣
Σ

is proper, the set Σ∩p−1
R (K) is compact. mul is upper semicontinuous

and bounded above and hence reaches its maximum on Σ ∩ p−1
R (K).

Lemma 3.5. The sets Σi = {(λ, k) ∈ R×M, mul(λ, k) = i}, i ∈ N, are semi-analytic sets. of
R×M .

We recall that a subset S of a real analytic manifold M is semi-analytic if for every x0 ∈M
there exists a neighborhood U in M of x0 so that S ∩ U = {x ∈ U |fi(x) > 0, i = 1, · · · , N},
where the functions fi are analytic on U .
Proof : Let i ∈ N and (λ0, k0) ∈ R ×M . Let us check that Σi is given in a neighborhood of
(λ0, k0) by a system of analytic inequalities. Let i0 = mul(λ0, k0). Since the function mul is
u.s.c. it suffices to consider the case i0 ≥ i. We introduce again the neighborhood I0 × V0 of
Lemma 3.4 a), with V0 small enough so that

‖πI0(k)− πI0(k0)‖L(H′) ≤
1
2
, ∀k ∈ V0.

The operator 1 + πI0(k) (πI0(k)− πI0(k0)) is invertible with a real analytic inverse for k ∈ V0.
We denote by Πk the image of πI0(k) and Θ(k) = πI0(k)

∣∣∣
Πk0

. We have

[1 + πI0(k) (πI0 − πI0(k0))]−1 πI0(k0)Θ(k)u = u − [. . .]−1 (1− πI0(k0)2
)
u = u, ∀u ∈ Πk0 ,

with dim Πk = dim Πk0 . So Θ(k) defines an isomorphism from Πk0 to Πk for all k ∈ V0, so that
Θ(k) and Θ(k)−1 are real analytic with respect to k ∈ V0. For (λ, k) ∈ I0 × V0 belongs to Σi
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if and only if λ is an eigenvalue of multiplicity i of H(k)
∣∣∣
Πk

or equivalently an eigenvalue of

multiplicity i of
Θ(k)−1H(k)Θ(k) : Πk0 → Πk0 .

The determinant
δ(λ, k) = det

[
λ−Θ(k)−1H(k)Θ(k)

]
is real analytic in (λ, k) ∈ I0 × V0 and Σi ∩ (I0 × V0) is given by the equations

δ(λ, k) = . . . = ∂i−2
λ δ(λ, k) = 0, (3.1)

∂i−1
λ δ(λ, k) = 0 and ∂iλδ(λ, k) 6= 0. (3.2)

We now recall some definitions of the theory of analytic singularities. We refer to [2], [4],[9] for

more details.

Definition 3.6. A stratification of an analytic manifold N is a partition S = (Si)i∈I of N
satisfying the following conditions:

i) for all i ∈ I, Si is a connected analytic submanifold of N ,
ii) the family (Si)i∈I is locally finite,
iii) if Si ∩ Sj 6= ∅ then Sj ⊂ Si.

We say that a stratification S of N is compatible with a locally finite family (Cj)j∈J of
semi-analytic subsets of N if for all i ∈ I, j ∈ J either Si ∩ Cj = ∅, or Si ⊂ Cj .

Definition 3.7. Let N,M be two real analytic manifolds and f : M → N a real analytic map.
A stratification of f is a pair (S, T ) where S is a stratification of M and T a stratification of
N such that for all strata Si of S, f(Si) ∈ T and rang(f|Si) = dimf(Si).

The following result is classical (see as example [4]). A complete proof which requires the
introduction of the class of subanalytic sets (stable by proper projection) may be found in [9].

Theorem 3.8. Let M ′ and N ′ be two real analytic manifolds and f : M ′ → N ′ a real analytic
map. Assume that there exists an open set Ω of M ′ so that f

∣∣∣
Ω

is proper. If C and D are two

locally finite families of semi-analytic subsets of M ′ and N ′, then there exists a stratification
(S, T ) of f

∣∣∣
Ω

with S and T compatible with C and D.

We will apply this general result with M ′ = R×M , N ′ = R, f = pR, C = (Σi)i∈N and D = (R).
We easily construct Ω as assumed in the theorem by covering p−1

R (K)∩Σ, for K compact interval

of R, by a finite number of open balls. The stratification of pR

∣∣∣
Ω

is then given by two locally

finite families of strata S = (Sα)α and T = (Tβ)β satisfying :

∀α,∃β, pR(Sα) = Tβ and rank(f
∣∣∣
Sα

) = dimTβ.

We define then the set of thresholds of Theorem 3.1 as follows:
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Definition 3.9. The set of thresholds τ is defined by

τ = ∪
dimTβ=0

Tβ.

The local finiteness of the stratification implies that τ is a discrete subset of R.

Proof of Theorem 3.1 : The proof will be divided in two steps. In the first step we construct
the operator AI by a local procedure. Note that, for small enough open sets V ⊂ M , the
space C∞comp(V ;F) can be identified with C∞comp(V ;H′). In the second step we check that AI is
essentially self-adjoint on D(AI) = C∞comp(M ;F). Let us first recall the identity

χ(H0) =
∫ ⊕
M
χ(H0(k))dµ(k),

where due to the fact that H0(k) has purely discrete spectrum:

χ(H0(k)) =
∑

λ, (λ,k)∈Σ

χ(H0(k))π{λ}(k).

a) Let us pick χI ∈ C∞comp(R\τ), χI ≡ 1 on I. Let V = pM (Σ ∩ p−1
R (I)). Note that since the

projection pR is proper, V is relatively compact.
For k0 ∈ V, λ0 ∈ σ(H0(k0)) ∩ I, there exists j ∈ {1, . . . NI} and a stratum Sα ∈ S so that

(λ0, k0) ∈ Sα ⊂ Σj . We put ourselves in a neighborhood I0 × V0 of (λ0, k0) as in Lemma
3.4. By the implicit function theorem applied to (3.2) Σj ∩ (I0 × V0) is included in an analytic

submanifold of R ×M of the form W0 =
{
λ = λ̃(k), k ∈ V0

}
. Decreasing V0, we can choose

coordinates k = (k′, k′′) so that

Sα ∩ (I0 × V0) =
{(
λ̃(k′, 0), k′, 0

)
, (k′, 0) ∈ V0

}
.

Note that by the definition of Σj and of Sα, λ̃(k′, 0) is an eigenvalue of H0(k′, 0) but this
property is not necessarily true for k′′ 6= 0. Consider the symmetric operator Aλ0,k0 , defined on
L2(V0, µ;H′) with domain C∞comp (V0;H′) by

Aλ0,k0 = πI0(k) ◦
[

1
2
∂k′ λ̃(k)Dk′ + h. c.

]
◦ πI0(k). (3.3)

The commutator [H0(k), iAλ0,k0 ] (defined as a form on C∞comp (V0;H′) ∩D(H0)) is equal to

πI0(k)∂k′ λ̃(k).∂k′
[
H0(k)πI0(k)

]
πI0(k) =: B(k). (3.4)

B(k) extends to a bounded self-adjoint operator on L2(V0, µ;H′). We note first the identity
H0(k′, 0)πI0(k′, 0) = λ̃(k′, 0)πI0(k′, 0). Moreover, differentiating with respect to k the identity
π2
I0

(k) = πI0(k), we obtain that

πI0(k)∂kπI0(k)πI0(k) = 0,
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which gives
B(k0) = πI0(k0)|∂k′ λ̃(k0)|2πI0(k0).

By the Definition 3.9 of the set τ there exists a constant c0 > 0 so that |∂k′ λ̃(k0)|2 > c0. This
gives

B(k0) ≥ c0πI0(k0). (3.5)

Since the spectrum of H0(k) is discrete, there exists a finite number of λi ∈ I so that λi ∈
σ(H0(k0)). Let

Ak0 :=
∑

λi∈σ(H0(k0))

Aλi,k0 ,

where Aλi,k0 is defined as above. We deduce then from (3.5) that for χ1 ∈ C∞comp(I), χ1 ≡ 1 on
suppχ, we have:

χ1(H0(k0))[H0(k), iAk]|k=k0χ1(H0(k0)) ≥ c1χ
2
1(H0(k0)). (3.6)

The maps k → [H0(k), iAk0 ] and k → χ1(H0(k)) are continuous in the norm topology. So for
V0 small enough, we have:

χ1(H0(k))[H0(k), iAk]χ1(H0(k)) ≥ c1χ
2
1(H0(k))− c1/2, k ∈ V0. (3.7)

Composing (3.7) to the left and right by χ(H0(k)), we obtain

χ(H0(k))[H0(k), iAk]χ(H0(k)) ≥ c1/2χ2(H0(k)), k ∈ V0. (3.8)

We now cover V by a finite number of open sets Vi 3 ki, similar to V0 3 k0 and take a partition
of unity

∑
0≤i<N χ

2
i (k) ≡ 1 on V , with χi ∈ C∞comp(Vi) and 0 ≤ χi ≤ 1. Let

AI = AI(k,Dk) :=
∑

0≤i<N
χi(k)Akiχi(k). (3.9)

We deduce from (3.8) that for some c2 > 0:

χ(H0)[H0, iAI ]χ(H0) ≥ c2χ
2(H0),

which proves i). Property ii) is easy to check.
It remains to check that AI is essentially self-adjoint on D(AI) = C∞comp (M ;F). We may

assume that the covering ∪0≤i′<N Vi′ is contained in an open set with C∞ boundary ΩI ⊂⊂
M . Since the density µ is positive, we can find a metric g > 0 on ΩI such that dµ(k) =
|det g|

1
2 (k)|dk|, in some coordinate system. We note ∆g the Laplace-Beltrami operator on ΩI

and we choose χ ∈ C∞comp(ΩI) so that χ ≡ 1 on ∪0≤i′<N suppχi′ . The Lemma 3.10 below, states
that the operator N = (1− χ∆gχ), with domain D(N ) = C∞comp (M ;F), is essentially self-
adjoint. Moreover, it follows from (3.3) that AI is a differential operator of order 1 in k ∈ M .
We have then for all ϕ ∈ D(AI) = D(N )

‖AIϕ‖H ≤ C ‖Nϕ‖H (3.10)

and |(AIϕ,Nϕ)H − (Nϕ,AIϕ)H| ≤ C ′
∥∥∥N 1/2

ϕ
∥∥∥2

H
. (3.11)

By Nelson’s commutator theorem [14], AI is essentially self-adjoint on C∞comp (M ;F).
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Lemma 3.10. The operator N = 1− χ∆gχ defined on L2(M,µ;F) with D(N ) = C∞comp(M ;F)
is essentially self-adjoint.

Proof : a) The operator N is symmetric and strictly positive. It suffices to check that
ker(N ∗) = 0. The domain of N ∗ is the set u ∈ L2(M,µ;F) so that the distribution (1−χ∆gχ)u
belongs to L2(M,µ;F). The F valued distribution are 0-densities which are defined locally as
elements of S ′(Rn;H′) for which the Fourier transform is well defined (see [21] for details about
vector valued distributions). The function χ vanishes to infinite order on ∂ΩI . We can find a
sequence of functions Φn ∈ C∞comp(ΩI) so that 0 ≤ Φn ≤ 1, Φn → 1 a.e. and ‖(∇gΦn)χ‖L∞ → 0
when n → ∞. We follow now the method in [20], [22]. If u ∈ ker(N ∗), then u satisfies in
distribution sense

χ(−∆g)χu = −u (3.12)

and the elliptic regularity theorem implies that Φnu ∈ C∞comp(ΩI) for all n ∈ N. We deduce that

−
(
Φ2
nu, u

)
=
(
Φ2
nu,−χ(−∆g)χu

)
=
(
Φ2
nχu, (−∆g)χu

)
=
(
Φ2
n∇g(χu),∇g(χu)

)
+ 2 (∇gΦnχu,Φn∇g(χu)) .

Hence for all n ∈ N we have:

‖Φn∇g(χu)‖2L2(M,µ;F) ≤ 2 ‖(∇gΦn)χ‖L∞ ‖u‖L2(M,µ;F) ‖Φn∇g(χu)‖L2(M,µ;F) .

Letting n tend to ∞, we obtain that ‖∇g(χu)‖L2,µ;F) = 0, i.e. χu = 0 and using (3.12) u = 0.
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