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Abstract

We construct interacting quantum fields in 141 space-time dimensions, represent-
ing char-ged or neutral scalar bosons at positive temperature and zero chemical
potential. Our work is based on prior work by Klein and Landau and Hgegh-Krohn.
Generalized path space methods are used to add a spatially cut-off interaction to
the free system, which is described in the Araki-Woods representation. It is shown
that the interacting KMS state is normal w.r.t. the Araki-Woods representation.
The observable algebra and the modular conjugation of the interacting system are
shown to be identical to the ones of the free system and the interacting Liouvillean
is described in terms of the free Liouvillean and the interaction.
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1 Introduction

Thermal quantum field theory is supposed to unify both quantum statistical
mechanics and elementary particle physics. The formulation of the general
framework should be wide enough to allow a QED description of ordinary
matter. It should also provide the necessary tools for the QCD description of
several experiments currently envisaged with the new Large Hadron Collider
(LHC) at CERN. While the general theory of thermal quantum fields has made
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substantial progress in recent years, the actual construction of interacting
models, which fit into the axiomatic setting, has not yet started (with the
exception of the very early contributions by Heegh-Krohn [H-K1] and Fréhlich
[Fr2]).

Let us briefly recall the formal description of charged scalar fields in physics.
Examples of scalar particle-antiparticle pairs are the mesons 7+, 7=, K, K,
or K° KO. (In the last case the ‘charge’ is strangeness). One starts with the
classical Lagrangian density

A
L= (8,9)(0"¢") — m*pp* — Z(@SO*)z-

Here ¢(t, x) is a complex scalar field over space—time. The Lagrangian density
L(t,z) is invariant under the global gauge transformations ¢ — e¢“p, a € IR.
By Noether’s theorem this invariance leads to a conserved current

jV:Z(@* V(p—(p&,(p*), I/:O,...,?),

and to a conserved charge

q= /d?’xjo(t,x).

The next step, according to the physics literature, is to setup real or imaginary
time perturbation theory.

The state of art of perturbative thermal field theory is covered in three re-
cent books by Kapusta [K], Le Bellac [L-B] and Umezawa [U]. The authors
concentrate on theoretical efforts to understand various hot quantum systems
(e.g., ultra-relativistic heavy-ion collisions or the phase transitions in the very
early universe) and various physical implications (e.g., spontaneous symmetry
breaking and restoration, deconfinement phase transition).

Constructive thermal field theory allows one to circumvent (at least in lower
space-time dimensions) the severe problems (see, e.g., Steinmann [St]) of ther-
mal perturbation theory, which can otherwise only be removed partially by
applying certain “resummation schemes”.

A class of models representing scalar neutral bosons with polynomial interac-
tions in 141 space-time dimensions was constructed by Hgegh-Krohn [H-K1|
more than twenty years ago. As he could show, thermal equilibrium states
for these models exist at all positive temperatures. For neutral particles, the
particle density (and the energy density) adjust themselves to the given tem-
perature; contrary to the non-relativistic case, a chemical potential adjusting



the particle density can not be introduced, since the mass is no longer a con-
served quantity. Shortly afterwards, several related results on the construction
and properties of self-interacting thermal fields in 141 space-time dimensions
were announced by Frohlich [Fr2].

Our goal in this and a subsequent paper [GeJ] was twofold: first we wanted to
fully understand the neutral scalar thermal field with polynomial interaction as
constructed by Hgegh-Krohn [H-K1], with the aim to study thermal scattering
theory, using the framework introduced by Bros and Buchholz in [BB1], [BB2].
Secondly we wanted to generalize this construction to charged fields. This
would allow us to study the system at different temperatures and chemical
potentials, i.e., different charge densities. A possibility to change the charge
density would put this model closer to non-relativistic models, where the mass
is a conserved quantity, giving rise to the existence of a chemical potential.

The construction of the full interacting thermal quantum field without cutoffs
in [GelJ] includes several of the original ideas of Hgegh-Krohn [H-K1], but
instead of starting from the interacting system in a box we start from the
Araki-Woods representation for the free system in infinite volume. Using a
general method developed by Klein and Landau [KL1] to treat spatially cutoff
perturbations of the free system in infinite volume, we can eliminate some
cumbersome limiting procedures due to the introduction of boxes, when we
remove the spatial cutoff.

The present paper is devoted to the construction of neutral and charged ther-
mal fields with spatially cutoff interactions in 141 space—time dimensions,
using the method of Klein and Landau [KL1]. Although the excellent paper
[KL1] is rather self contained, it did not include the discussion of examples.
Twenty years ago it might have been evident for the experts in the field how
to apply their method to thermal quantum fields, but we find it worthwhile
to present this application in some detail.

A difference between this paper and [KL1] is the use of generalized path spaces
as in [K], instead of stochastic processes. This compact formulation is conve-
nient for our applications. In addition we prove several new results concerning
the interacting KMS systems obtained by perturbations of path spaces.

1.1 Content of this paper

Our paper can be divided into several parts. The first part, presented in Section
2, discusses the description of neutral and charged scalar fields in terms of
operator algebras. Its application to Klein-Gordon fields is discussed in Section



8. As usual the starting point is a real symplectic space (X, o), which allows
the construction of the Weyl algebra 20(X, o). The next step is to introduce on
(X, 0) a Kéhler structure, i.e., a compatible Hermitian structure. For charged
scalar fields, the symplectic space (X, o) possesses also a canonical ‘charge’
complex structure j and a ‘charge’ sesquilinear form ¢, such that ¢ = Imgq. The
maps X 3 z — el for o € IR generate the gauge transformations. Given a
regular CCR representation, complex quantum fields are defined.

This leads to the notion of a charged Kdhler structure, corresponding to the
introduction of another complex structure i and of the charge operator q,
relating the two complex structures. Finally the notion of charge conjugation
is discussed in this abstract framework.

For Klein-Gordon fields, a conjugation inducing charge-time reflections is used
to distinguish an appropriate abelian sub-algebra of the Weyl algebra to which
the interaction terms considered later on will be affiliated.

Section 3 recalls the characterization of a thermal equilibrium state by the
KMS property. The GNS representation associated to a KMS state has a
number of interesting properties which are briefly recalled. For instance, the
GNS vector is cyclic and separating for the field algebra F (in our case the
weak closure of the Weyl algebra in the GNS representation), and therefore one
can always go over to the weak closure of the relevant operator algebras, and we
will do so in the sequel. Since a KMS state is invariant under time translations,
a Liouvillean implementing the time evolution is always available. As has been
shown by Araki, the KMS condition allows us to introduce Euclidean Green’s
functions. The notion of stochastically positive KMS systems due to Klein and
Landau is presented. This notion rests on the introduction of a distinguished
abelian subalgebra U of the field algebra F. In physics, this algebra is the
algebra generated by the time-zero fields. It is also shown that stochastically
positive KMS systems are invariant under a time reversal transformation.

In Section 4 we recall the notion of a quasi-free KMS system associated to a
positive selfadjoint operator acting on the one-particle space. The GNS repre-
sentation for a quasi-free KMS system has been analyzed by Araki and Woods.
We briefly recall this framework and its connection to the Fock representation
in a modern notation. It is shown that the field algebra F is generated by the
time-translates of the abelian algebra Y. The observable algebra, consisting
of elements of the field algebra which are invariant under gauge transforma-
tions, is introduced. In Subsection 4.5 it is shown that the KMS system for
the (quasi-)free charged thermal field is indeed stochastically positive, if the
chemical potential vanishes. However, if the chemical potential is non-zero,
then the charge distinguishes a time direction, and consequently, the system
is no longer invariant under time reversal. Thus it fails to be stochastically
positive too, as we show in Subsection 8.3.



Following Klein and Landau, a cyclicity property of the Araki-Woods repre-
sentation, which will imply the so-called Markov property for the free system
later on, is shown. The Markov property has the consequence that the physical
Hilbert space can naturally be considered as an L?-space.

Section 5 recalls the notion of a generalized path space, both for the O-tempera-
ture case and the case of positive temperature. We follow here [K], [KL1|. Al-
though the O-temperature case is not needed in this paper, it will be useful later
on in [GeJ]. A generalized path space consists of a probability space (Q, %, 1),
a distinguished o-algebra ¥, a one-parameter group ¢ — U(t) and a reflection
R. We recall the definition of OS-positivity and the Markov property for both
cases.

Section 6 is devoted to a discussion of the Osterwalder-Schrader reconstruc-
tion theorem in the framework of generalized path spaces. This reconstruction
theorem associates to a (-periodic, OS-positive path space a stochastically
positive S-KMS system.

In Section 7 we recall from [KL1] how to deal with of perturbations, which
are given in terms of Feynman-Kac-Nelson kernels. The main examples of
FKN kernels are those obtained from a selfadjoint operator V' on the physical
Hilbert space H, where V is affiliated to U.

We show that for a class of perturbations V' considered in [KL1], the perturbed
Hilbert space can be canonically identified with the free Hilbert space in such a
way that the interacting algebras §, ¢ and the modular conjugation J coincide
with the free ones. Moreover, we prove that the perturbed Liouvillean Ly is
equal to L +V — JV J, if L is the free Liouvillean. Here H denotes the closure
of a linear operator H.

Finally we show that the Markov property of a generalized path space is
preserved by the perturbations associated to FKN kernels.

In Section 8 we apply the framework of Sections 2 and 4 to charged and
neutral Klein-Gordon fields at positive temperature. The case of the neutral
Klein-Gordon field is well known and reviewed only for completeness. We give
more details on the charged Klein-Gordon field which provides an example
of a charge symmetric Kahler structure. We also compare our setup with the
one used in physics textbooks. Using the results of Section 4, we present the
quasi-free KMS system describing a free charged or neutral Klein-Gordon field
at positive temperature. Note that the conjugation used in the definition of
the abelian algebra U corresponds to time reversal in the neutral case and
to the composition of time-reversal and charge conjugation in the charged
case. We show that the KMS system for the charged Klein-Gordon field is
not stochastically positive, if the chemical potential is unequal to zero. The



physical reason is that the dynamics of charged particles is only invariant
under the combination of time reversal and charge conjugation. A non-zero
chemical potential introduces a disymmetry between particles of positive and
negative charge and hence breaks time reversal invariance, which itself is a
property shared by all stochastically positive KMS systems.

In Section 9 we consider Klein-Gordon fields at positive temperature with
spatially cutoff interactions in 1 + 1 space-time dimensions. In the neutral
case we will treat the P(¢), and the e*?, interactions (the later being also
known as the Hgegh-Krohn model). In the charged case we treat the (gauge
invariant) P(®@g)s interaction.

The UV divergences of the interactions are eliminated by Wick ordering, which
is discussed in some details in Subsections 9.1 and 9.2. As it turns out, the
leading order in the UV divergences is independent of the temperature. Thus
it is a matter of convenience whether one uses thermal Wick ordering or Wick
ordering w.r.t. the vacuum state.

The LP-properties of the interactions needed to apply the abstract results of
Section 7 are shown in Subsections 9.3, 9.4 and 9.5.

Finally, the main results of this paper, namely the construction and description
of a KMS system representing a Klein-Gordon field at positive temperature
with spatially cutoff interactions, is given in Subsection 9.6.

In a forthcoming paper we will consider the translation invariant P(¢)s model
at positive temperature. Following again ideas of Hgegh-Krohn [H-K1], Nelson
symmetry will be used to establish the existence of the model in the thermo-
dynamic limit.
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2 Real and complex quantum fields

In this section we present real and complex quantum fields in an abstract
framework. Usually in the physics literature complex quantum fields are de-
scribed in the case of Klein-Gordon fields. Although the results of this section
are probably known, we have not found them in the literature.



2.1 Notation

Let X be a real vector space. If X is equipped with a complex structure i, then
we will denote by (X, 1) the complex vector space X. If (X, 1) is equipped with
a hermitian form (., .), then we will denote by (X,i,(.,.)) the Hermitian
space X. If it is clear from the context which complex or Hermitian structure
is used, (X,i) or (X,i,(.,.)) will simply be denoted by X. As a rule the
complex structure of a Hermitian space X will be denoted by the letter i.
Sometimes another ‘charge’ complex structure appears; it will be denoted by
the letter j.

2.2 Real fields

We start by recalling the formalism of real quantum fields.

CCR Algebra

Let (X,0) be a real symplectic space. Let 20(X, o) be the (uniquely deter-
mined) C*-algebra generated by nonzero elements W (z), x € X, satisfying

W(l’l)W(l’g) = e_ig(m’m)/zW(l’l + ZL’Q),

W(X, o) is called the Weyl algebra associated to (X, o).

Regular representations

Let ‘H be a Hilbert space. We recall that a representation

m:W(X,0) 2 W(x) — Wy(x) € U(H)

is called a regular CCR representation if

t — Wy (tz) is strongly continuous for any = € X.



One can then define field operators

Or(2) = —ian(ta:)‘ zeX,

dt

t=0’

which satisfy in the sense of quadratic forms on D(¢,(z1)) N D(¢x(z2)) the
commutation relations

[0n(21), D (@2)] = 10(21, 22), 21, 72 € X. (2.1)

Kahler structures

Let (X,0) be a real symplectic space and i a complex structure on X. The
space (X,1,0) is called a Kdhler space if

o(izy, x9) = —o(x1,iz2) and o(x,ix) is positive definite.

If (X,i,0) is a Kéhler space, then (X,i, (., .)) is a Hermitian space for
(.]71, LUQ) = O'(J}l, l.TQ) + iO'(LUl, ZL’Q).

The typical example of a Kéhler space is a Hermitian space (X, i, (., .)) with
its natural complex structure and symplectic form o = Im(., .).

Creation and annihilation operators

If 7 is a regular CCR representation of the Weyl algebra 20(X, o), and (X, o) is
equipped with a Kahler structure, then the creation and annihilation operators
are defined as follows:

* - L ) —ig,(ix)), a :L":L x) +io, (i
ay(z) == \/§(¢ﬂ() Px(iz)), ax(z) \/§(¢“( ) +idx(ix)).

Clearly,

1 %
Pr(x) = ﬁ(aﬂ(az) + ax(2)), r € X.

The operators a’(x) and a,(x) with domain D(¢.(x)) N D(¢.(ix)) are closed
and satisfy canonical commutation relations in the sense of quadratic forms:

ax (1), ay (22)] = (21, 22)1, [ax(22), ax(21)] = [} (22), a"(21)] = 0.



2.3 Complezx fields

Let (X,]) be a complex vector space. Let us assume that X is equipped with a
sesquilinear, symmetric non-degenerate form q. If a € L(X), we say that a is
isometric (resp. symmetric, skew-symmetric) if [a,j] = 0 and q(ax;,azy) =

q(z1,72) (vesp. q(azy,r2) = q(x1,ax2), q(azry, z2) = —q(x1,arz)). Clearly
(X, Imq) is a real symplectic space. The quadratic form q is called the charge
quadratic form.

Gauge transformations

The maps X > z — el®z € X for a € R are called gauge transformations.
They are symplectic on (X, Imq) and isometric on (X, q). We have

q(x1, z2) = Imq(zy, jrs) + ilmg(xy, z2). (2.2)

Complex fields

Let now 7 be a regular CCR representation of 20(X, Imq) on a Hilbert space
H and let ¢, (x) be the associated field.

Using the complex structure j, we can define the complex fields

90;(56) = 12 (¢7r(x> - i¢7r<jx))a

Sl

Sl

pr(x) = Z5(dn(x) +idn(jz)),
with domains D(¢.(x)) N D(p,(jx)). The maps X o x — i(z) (resp. x —
¢x(x)) are j-linear (resp. j-antilinear).

Lemma 2.1 The operators o (x) are closed. In the sense of quadratic forms
on D(¢r(x)) N D(¢p,(jx)) they satisfy the commutation relations

[or (1), 5 (22)] = q(21, 22) 1, [P (1), Pr(T2)] = [07 (1), 9" (22)] = 0.

Proof. The commutation relations are easily deduced from (2.1). Let u €
D(¢pr(x)) N D(¢x(jz)). To prove that ¢f (z) is closed, we write

2]l pn(@)ull* = llon(@)ull® + | ox(o)ull® — (@, jo)|lull*.



This easily implies that ¢, (z) is closed. The case of ¢*(x) is treated similarly.
]

2.4 Charge operator

Definition 2.2 Let (X,j,q) be as in Subsection 2.3 and i another complex
structure on X. Then (X,],1,q) is called a charged Kahler space if [i,j] = 0
and (X,1,1mq) is a Kdhler space.

Let (X,],1,q) be a charged Kéhler space. Then i is antisymmetric for g, i.e.,
q(z1,iz9) = —q(iz1, x2), and j is antisymmetric for (., .).

We can introduce the charge operator:

q:= —ij.

Note that [q,i] = [q,j] = 0, ¢> = 1 and that q is symmetric and isometric both
for gand (., .). Since i = jq we have e!® = ¢/%4 and the gauge transformations
r — e, a € IR, form a unitary group on (X,i,(.,.)) with infinitesimal
generator q.

The typical example of a charged Kéhler space is a Hermitian space (X1, (., .))
with a distinguished symmetric operator q such that q> = 1. Let us denote
by X* := Ker(q F 1) the spaces of positive (resp. negative) charge and
by z* the orthogonal projection of x € X onto X*. If we set q(z1,z) =
(xf,23) — (x5, 27), then (X, iq,1,q) is a charged Kahler space. Note that X
or X~ may be equal to {0}.

Using the fact that q is symmetric for (., .) and g, we see that the spaces X+
are orthogonal both for (., .) and q. If we set 2% = 1(z £ qx), then the map

U: X —- XtTeX-
T — T ®x

S

is unitary from (X,i,(.,.)) to (X",i,(.,.)) @ (X7,i,(.,.)) and isometric
from (Xa.]aq) to (X+7i>('7 )) 52 (X_a_ia_('a ))

If 7:20(X,Imq) — U(H) is a regular CCR representation on a Hilbert space
‘H, then we can introduce, just as in Subsection 2.2, creation and annihilation
operators

1 o 1 L
T500(0) ~300(), ax(2) = =(60(0) + 60),

10



with domains D(¢.(x)) N D(¢px(iz)). The maps X 3 = +— a(x) (resp. a (7))
are i-linear (resp. i-antilinear). If z = 2™ + 2™, with 2% € X, then

0r(@) = an(a*) +ai(e7) and pi(x) = ai(e") + an().

Note that this is consistent with fact that the maps X 3 z — ¢ (z) (resp. x —
©r(x)) are j-linear (resp. j-antilinear).

2.5 Charge conjugation

Let (X,j,1,q) be a charged Kéhler space. Assume that there exists some ¢ €
L(X) such that

2 =1, ci =ic, cq = —qc, (z1,cry) = (cw1,29), 11,79 € X. (2.3)

Le., ¢ is a symmetric involution for (., .), which anticommutes with the
charge operator q. An operator ¢ satisfying (2.3) is called a charge conju-
gation. Charge conjugations exist in charge-symmetric quantum field theories.
A charged Kéhler space (X, ], 1, g, c) equipped with a charge conjugation ¢ will
be called a charge-symmetric Kdhler space.

It follows from (2.3) that q(xq,czy) = —q(czy,x2), ie., ¢ is antisymmetric
for q. Since cq = —qc, we see that ¢ is a unitary map from (X~i,(.,.)) to
(X*,1,(.,.)).

3 Stochastically positive KMS systems

In this section we recall the notion of a stochastically positive KMS system
due to Klein and Landau [KL1]. We prove that stochastically positive KMS
systems are invariant under time-reversal.

3.1 KMS systems

Let § be a C*-algebra and {7 };cr a group of *-automorphisms of §. Let w
be a (1,3)-KMS state on §, i.e., a state such that for each A, B € § there
exists a function F4 p(z) holomorphic in the strip {z € C | 0 < Imz < §} and
continuous on its closure such that

Fup(t) =w(An(B)), Fap(t+if) =w(n(B)A), t € R.

11



A triple (§, 7,w) such that w is a (7, 3)-KMS state is called a G-KMS system.

Let us now recall some standard facts about KMS systems. By the GNS con-
struction, one associates to (§,7,w) a Hilbert space H,, a representation 7,
of § on H,,, a unit vector €2, cyclic for 7, and a strongly continuous unitary
group {e L}, cr such that

w(A) = (o, T (A, Tu(1i(A)) = e, (A)e ™ L, = 0.

The KMS condition implies that €, is separating for the von Neumann algebra
7o(§)", e, AQ, =0= A =0 for A € 7,(F)". Consequently, the image of
$ under 7, is isomorphic to §; it will therefore not be distinguished from §.
Moreover, we will identify an element A of § with its image 7, (A).

The selfadjoint operator L is called the Liouvillean associated to the KMS
system (&, 7,w). It is the unique selfadjoint operator whose associated unitary

group generates the dynamics 7 and such that LQ, = 0 (see e.g. [DJP, Prop.
2.14]).

Proposition 3.1 Let §; C § be the set of A € § such that 7:t — 7,(A) is C*
for the strong topology on B(H,). Then §1Q, C D(L) is a core for L.

Proof. Note first that A € §; iff A is of class C*(L) (see [ABG, Def. 6.2.2]).
Clearly §; is dense in § for the strong operator topology. In fact, if A € §, then
the strong integral A, = €' [5 7:(A)dt belongs to §; and converges strongly
to A when € — 0.

Since €, is cyclic for §, this implies that §€),, is dense in H,,,. Moreover, since

LQ,, = 0, we have e'LF,Q, = §1Q, and F,Q, C D(L). Thus Nelson’s theorem
implies that §;{2, is a core for L.

Euclidean Green’s functions

Let

It =A{(z,.. ., z0) € C" | Imz; < Imzjyq, Imz, — Imz; < 3} (3.4)

It follows from a result of Araki [Arl,?] that, for A,..., A, € §, the Green’s
function

n

Gty ot Ar, o An) = w([ ] 7 (A))

1

12



extends to an holomorphic function in 3", continuous on I3*. In particular,
one can uniquely define the Fuclidean Green’s functions

PG(S1, .y S ALy  Ap) = G(is1, - 21805 Al . Ay)

for all (sq,...,s,) such that s; < --- <, and s, — s; < . The correct way
to view such an n-tuple (sq,...,s,) is as an n-tuple of points on the circle of
length 3, ordered counter-clockwise.

3.2 Stochastically positive KMS systems

In [KL1] Klein and Landau introduced a class of KMS systems which they
called stochastically positive KMS systems. To a stochastically positive KMS
system one can associate a (unique up to equivalence) generalized path space
(Q,%,%0,U(t), R, i) (see Section 5) which has some special properties, the
most important being the [-periodicity in ¢ and the Osterwalder-Schrader
(O8)-positivity.

Conversely Klein and Landau have shown in [KL1] that to a generalized path
space satisfying the properties in Definition 5.1 one can associate a (unique up
to unitary equivalence) stochastically positive KMS system. This is an example
of a reconstruction theorem; similar results are well-known in Euclidean QFT.
A reconstruction theorem allowing to go from Euclidean Green’s functions to

a KMS system has recently been proved in a general context by Birke and
Frohlich in [BF].

The advantage of the Klein and Landau formalism is that it is relatively easy
to perturb the stochastic process associated to a KMS system, using functional
integral methods.

Definition 3.2 Let (F,7,w) be a KMS system and 84 C § an abelian *-
subalgebra. The KMS system (§,4, 7,w) is called stochastically positive if

(i) the C*-algebra generated by Uier (L) is equal to §;

(ii) the Fuclidean Green’s functions *G(sy, ..., sn; A1, ..., Ay) are pos-
itwe for all Ay,...,A, € Ut = {A € U | A > 0} and for all
(S1,.--,8n) such that s; < -+ <s, and s, — s1 < 3.

It is often more convenient to consider instead of the C*-algebras § and U their
weak closures in the GNS representation, which we denote by § and . We
denote by 7 the group {7;};er of *-automorphisms of F defined by 7;(A) :=
el AeL. The state w extends to § by setting W(A) 1= (D, 7,(A4)Q,,). The
following fact has been shown in [KL1, Prop. 3.4].

13



Proposition 3.3 Let (F,4, 7,w) be a stochastically positive KMS system.
Then (3,4, 7,@) is also a stochastically positive KMS system (in the W*-
sense). Le.,

(i) the W*-algebra generated by Uwer (XN is equal to §;

(ii) the Euclidean Green’s functions ®G(s1, ..., Sn; A1,..., A,) are pos-
itive for all Ay,..., A, € 9" and for all n-tuples (s1,...,s,) such
that s1 < --- < s, and s, — s1 < [3.

Now we show that stochastically positive KMS systems are invariant under
time reversal, a fact that is well known for O-temperature field theories (see
for example [Sil]).

Proposition 3.4 Let (§,4,7,w) be a stochastically positive KMS system.
Then there exists an anti-unitary involution T on H,, such that

() TIT'=3F, TAT™' = A* for Ac 4;
(ii) T, =, TT(A) =7_,(A)T for A€F, t €R.

From the properties of T" we see that 1" implements the time reversal trans-
formation.

Proof. Let A, A; € Y. The map z — w(A;7(A2))=i- is holomorphic in
{0 < Rez < f}. By stochastic positivity it is real on {Imz = 0} if A; = A.
The Schwarz’s reflection principle implies

W(Ath(AQ)) = W(Ath(AQ))‘t:ig fOI' AZ € il, AZ = A;k

[t=iz

For z = —it this yields

w(A11(A2)) = w(A174(Ag)) = w(T_1(A2)Ay) for A; el A; = A7.(3.5)

By C-linearity this identity extends to all A; € . We can now define the
antilinear operator

T:) el A0, - Y e AN, (3.6)

j=1 j=1

14



For u =7, %" A;Q,, identity (3.5) implies

lull® = (Zj=y €" A, 35, e P ArQ,)
= > k(Qo, A;ei(tk_tf)LAka) = 2k W( AT 1, (Ar))
= Yn (T -t (AR)AD) = 354 (Q, Apele =)L AQ,)
= Zjﬁk(e—itkLA;Qw,e—ithA;Qw) = || Tu|*

Thus T is a well defined antilinear operator. Moreover, using property (i) of
Definition 3.2 and the fact that €2, is cyclic for §, we conclude that T has a
dense domain and a dense range. Hence 1" extends uniquely to an anti-unitary
operator. Clearly 7' is an involution. The other properties of T follow directly
from (3.6). O

4 Quasi-free KMS states

In this section we recall some well-known facts about quasi-free KMS states
and describe a class of quasi-free KMS states which generate stochastically
positive KMS systems (see [KL2], [GOJ).

4.1 Quasi-free KMS states

Let Xo be a pre-Hilbert space, X the completion of Xy. Then (X, o) is a real
symplectic space for o = Im( ., . ), and we denote by 20(Xj) the Weyl algebra
W(X,,0). Let a > 0 be a selfadjoint operator on X such that X, C D(a"2)
it

and ¢ preserves X,. Given a > 0 the canonical choice for X, is D(a"3).

For 8 > 0 one defines a state wg on W(X,) by the functional

wg(W(z)) := e a@(2007) ey (4.7)

where p := (e’ — 1)71. Since 1 + 2p = }jgiﬁj and a > 0 the form domain of
1+ 2p is equal to D(a"2) D Xo.

The state wg is a (7°, §)-KMS state for the dynamics 7°:¢ +— 7 defined by
Ttoi W(XQ) — QU(X())
Wi(z) — W(e™z).
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The state wg is quasi-free (see [BR]) and the KMS system (20(Xy), 7°, wp)
defined above is called the quasi-free KMS system associated to a.

The standard example is the following one: let h > 0 be a selfadjoint operator
representing the one particle energy. Assume that there exists a selfadjoint
operator ¢ on X representing the one particle charge such that ¢*> = 1, [h, q] =
0. Then we can associate a group of gauge transformations {ou}icpo,2x[,

ap W(Xo) —  W(Xo)
W(x) — W(ex),

to the charge operator q. Let p© € IR such that h — ug > A > 0. Thus the
range for the value of the chemical potential yx, which we consider, excludes
Bose-Einstein condensation. It follows that a := h — ug > 0 and hence X, =
D(a~2) = X. Therefore the unique quasi-free KMS state on 20(X) at inverse
temperature 5 and chemical potential p is the state wg defined by (4.7).

4.2 Araki-Woods representation

Let us consider a quasi-free KMS system associated to a selfadjoint operator a
as in Subsection 4.1. Let X be the conjugate Hilbert space to X. Elements
of X will be denoted by Z. Equivalently, we denote by X > z — T € X the
identity operator, which is antilinear. If a is a linear operator on X, we denote
by @ the linear operator on X defined by a = := az. If b is a Hilbert space,
then

+00
I'(h) = P =xh
n=0

denotes the bosonic Fock space over b.

We set:
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where Wg(.) denotes the Fock space Weyl operator on T'(X @& X) and Q €
['(X @ X) denotes the Fock vacuum.

The following facts are well known:

(i) The map W(z) +— W, 1x(x) € U(H,) defines a regular CCR repre-
sentations;

(11) [Ww,l(x>7 Ww,r(y>] =0 for z,y € Xo;

(ili) (Qu, Woi(2)Qy) = w(W(z)) for z € Xy;

(iv) Let L :=dIl'(a® —a) act on H,. Then

e_itLQw _ Qwa eitLWwJ(x)e_itL — Ww71(eital'), T c XO;

(v) The vector € is cyclic for the representations W,/ (.).

In particular, the Araki-Woods representation is the GNS representation for
the KMS system (20(X,0),7°, w) and L is the associated Liouvillean.

We will only consider the left Araki-Woods representation, thus will forget
the subscript 1 and write W, (z) := W, 1(x), x € X. The creation-annihilation
operators associated to W, (.) are

a(z) = ai((1+ p)3z @ 0) + ap(0 & 537),
au(x) = ap((1+ p)2z & 0) + aj(0 & p27).

4.3 Field algebras

We recall that a conjugation on a Hilbert space X is an anti-unitary involution
on X. Let us assume that X is equipped with a conjugation x. To k we
associate the real vector space X, := {z € X | ke = x}. Let w be the quasi-
free state associated to a selfadjoint operator a, as defined in Subsection 4.1,
and let H,, be the Araki-Woods space introduced in Subsection 4.2.

We will denote by W C B(H,,) the field algebra, i.e., the von Neumann algebra
generated by the {W,(x) | x € X} and by W, C B(H,,) the von Neumann
algebra generated by {W,(z) |z € X, }. Since the symplectic form o vanishes
on X,, the algebra W, is abelian.

Lemma 4.1 Assume that a = h — uq, where h and q are selfadjoint operators
such that [h,q] =0, ¢> =1, h > m > 0 and |pu| < m. Let k be a conjugation
on X such that [h, k] = 0. Then W is the von Neumann algebra generated by
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{e*lAe7 ™ |t € R, A € W,}.

Proof. Clearly {e™Ae™ | t € R, A € W,} C W, so it suffices to prove
the converse inclusion. Using the CCR, the facts that (1 + p)% and ,0% are
bounded, and the fact that the map

X®X232, 0Ty — Wp(r, ®72) € B(H.)

is continuous for the strong topology, it suffices to verify that

E = Vectp{e"™ g t € R, z € X,} is dense in X. (4.8)

Clearly E contains X,, and by differentiating with respect to t, we see that £
contains also {i(h—pqg)x | x € X, ND(h)}. We now claim that for each x € X
there exists 7 € X, and xo € X, ND(h) such that

x=x +i(h — pqg)zs.
This will imply (4.8). In fact, the IR-linear map 7 = 1gh™' (1 — %) has norm
less than |u|m™ < 1, so for z € X we can find y € X such that y —ry = z. If

21 = 5(y+ ky) and 25 = 1(ih)~!(y — Ky), then both are elements of X, since
[h, k] = 0. Now

) i _
x1 +i(h — pg)rs =y — §,uqh Yy —ky) =y —ry = a0,

4.4 Observable algebras

The gauge transformations «; on 20(Xy, o) can be unitarily implemented in
the Araki-Woods representation:

a(W,(z)) = eitQWw(a:)e_itQ,

where @) :=dI'(¢ ® —7).
We denote by A the observable algebra

A={AcW|@Ac™ = A tc0,2n]}
and by A, the abelian observable algebra A, := AN W..
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Lemma 4.2 Assume that h > m > 0 and |pu| < m. Let k be a conjugation
on X such that [h, k] = 0. Then A is the von Neumann algebra generated by
{elAe7 M |t e R, A € A}

Proof. Clearly el Ae ™ € A, if A € A,, since [L,Q] = 0. Conversely, let
A € A. By Lemma 4.1 there exists a net {4;};cr in the algebra generated
by {elAe7 ™ t € R, A € A,} such that A = s-lim A;. For R € B(H,),
let R := (27)7! [§" '@ Re "2dt be the average of R with respect to the
gauge group. Then by dominated convergence s-lim A? = A* = A. Since
[L,Q] = 0, we have (e'f Re™L)av = ¢!l RVe=itL  which implies the lemma O.

Lemma 4.3 We have AQ), = {u € H, | Qu = 0}.

Proof. Since @2, = 0 we have AQ,, C Ker@. Let now u € Ker@. If {A; €
Whier is a net such that lim A4;€, = u, then

27 27
17 17 |
w=— / ey df = lim — / G1Q 4,010 dt = lim A,
2 2 J n—oo

which proves the lemma since A € A O.

4.5 Stochastic positivity

In this subsection we give a criterion for the stochastic positivity of a quasi-free
KMS system.

The following lemma is due to Klein and Landau [KL2].

Lemma 4.4 Let a > 0 be a selfadjoint operator on a Hilbert space X. Let
IR > s —r(s) € B(X) be the B-periodic operator-valued function defined by

—sa (s—P)a
T(S):%, 0§S<ﬁ

Then, for x; € X and s; € IR, one has

> (wi,r(s; — s;)zy) > 0.

1,5

Proof. Using the spectral decomposition of a, we can assume that z; € C
and a > 0 is a positive real number. Hence it is sufficient to verify that r(s)
is a distribution of positive type. But this follows from Bochner’s theorem
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and the fact that the Fourier transform of r is Y, cz (. — 27/n), where

_ 2a
Tn = a2+(2mn/B3)>2 > 00.

Theorem 4.5 Let X be a Hilbert space equipped with a conjugation k and
a > m > 0 a selfadjoint operator on X such that [a,k] = 0. Let X,, C X be
the real vector space associated to k.

Let (W, T°,w) be the quasi-free KMS system associated to a and let W, C W
be the abelian von Neumann algebra generated by {W,(x) | € X, }. Then the
KMS system (W, W,,T° w) is stochastically positive.

Proof. We start by computing the Euclidean Green’s functions. Using the
CCR we get, for z; € X and 1 < j <n,

n

f{wm-): [ o dreaw(y o).

1<i<j<n 1

We denote by

G(tl,...,tn;W(.ﬁCl),.. y H 1ta

J=1

the Green’s functions for the Weyl operators W(z;), 1 < j < n. Now

G(tl, e ,tn; W(ZL’l), N W(fn))

— I e—iIrrl(:nZ~,ei<tJ'7t’i)aL j (E" e'tJa:vJ, (14+2p) E" e”tJagvJ
1<i<j<n
=17 o1 (@i (14+2p)x:) I1 e—%R(tj—ti)(%xj)’
1<i<j<n

where

R(t)(z,y) = (z, (1 — e ) Ley) + (y,e 72 (1 — e 72) " Ley),

For z,y € X the function ¢t — R(t)(x,y) has an holomorphic extension to 0 <
Imz <  such that the function (¢1,...,t,) — G(t1,...,t; W(x1),..., W(z,))
is holomorphic in the set I3* defined in (3.4) and continuous on I3* with
holomorphic extension

(C1yee iy Cn) — ﬁe—i(xi,(wzp)xz—) H e—%R(gj_gi)(xi,xj).
1

1<i<j<n
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Hence the euclidean Green’s functions

sty s W), Wiay) = [[e 300 [T e Cloomslenm),
1

1<i<j<n

where

Cls),y) = %(x’ (1—e™™)Te™y) + %(y, (1 — e Pa)y~lels=Rag),

Using the fact that ka = ax we get

1 (x e 5 4 ols—Pa

= y), for x,y € Xi.

Thus, for z; € X, and 1 < j <n,

PG5ty s W), W) = [ e 2CUs—sib@ie), (4.9)

1<i,j<n

We will now prove the stochastic positivity. We will use the Araki-Woods rep-
resentation described in Subsection 4.2. The operators of the form
F(pu(x1),. .. ¢pu(xy)) for z; € X, and F € CP(IR") (resp. F € C§(R")
and ' > 0) are strongly dense in W, (resp. in WI). We have to show that if
(81,.-.,8,)1s an-tuple such that s; <--- < s, and s,,—s; < 3, and A; € Wi,
then

EG(Sl,,Sr“Al,,An) 20 (410)

By [KL1, Thm. 2.2] and a density argument it suffices to prove (4.10) for A;
of the form given above.

Letnowm € N,m > 1, k; € Nwith k; > 1forl1 <i<nand X7 k;=m,l; :=

Yi<iiikj. For t = (ti,...,t,) € R™, z1,...,2,, € X,, and F; € CF(R")
with F; > 0 we set t; = (t;,,...,t,,,) € IR* and take

Ai = E(¢w($li)> BRI ¢W(xli+1))
= @) [ Eyty, -t )W) tay) dty, . dt,,
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Now set f;(t;) = ZZ“ t;x;. It follows that

EG(Sl,...,Sn;Al,...,An)

= (2m)" [T A B (6)G(is1, - o 15 W(A)), -, W (fal(t)).

We recall that by (4.9)

PG(s1, .-y Sy W(fi(th)), ..., W(fu(tn)))

= [li<ij<n e 3C(si=siD(fi(t).fi(t) —. ¢=Qt1,mrstm)

where Q(ty, . .., t,) is a quadratic form. Applying Lemma 4.4, we see that @ is
a positive quadratic form, and hence the inverse Fourier transform F~*(e~@(+))
is a positive function. This implies that

EG(s1, - 8n3 Ar, . Ay) = (FL @@ F,) « F e 9)(0)
is positive as the value at 0 of the convolution of two positive functions O.
4.6 Markov property

In this subsection we show a result which implies that the generalized path
space associated to the quasi-free KMS system (W, W,,7°,w) considered in
Subsection 4.1 has the Markov property (see Subsection 6.5).

Lemma 4.6 Let X be a Hilbert space equipped with a conjugation k and a >
m > 0 a selfadjoint operator on X such that [a,k] = 0. Let X,, C X be the
real vector space associated to k.

Let W(X),7°,w) be the quasi-free KMS system associated to a and let W, C
W be the abelian von Neumann algebra generated by {W,(x) | x € X,.}. Let
(Hw, L, Q) be the Araki-Woods objects defined in Subsection 4.2. Then the

space {Ae‘gLBQ, A, B € W,} is dense in H,,.
Proof. The function

eitLWw(y)Qw — Ww,z(eitay)ﬁw
= Wr((1+ p)2ey @ (p)ze )

1 . 1 =
sk 5 it =3 o—ttaz; _1
_ elaF((Hp)zel 2y®(p)2e “*y)e g(y,(1+2p)y)Qw
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is analytic in {0 < Imz < £} and continuous on {0 < Imz < £}, and

BLI2W, () = o (4 2o/ 2y6(5)267%/29) o (.42 )

- Ww,r (y)Qw

Hence, for A = W,,,(x) and B = W,,,(y), one has

Ae_gLBQ
) ) ) (4.11)
= Woi(@)Wer(y)2 = We((1 + p)2x @ pT)Wr(pzy @ (14 p)2 7)S2

Let M be the von Neumann algebra generated by {W,,(x), W,,.(y) | =,y €
X..}. By (4. 11) the von Neumann algebra generated by {Wp((1+ p)2z+p2y®
p:T + (1+79)27) | 2,y € X,.} is equal to M. Since [a, k] = 0, the operator

1
P2

l\.’)l»—l

(1+p)

. XX —-XapX
p2  (1+p)

(NI

sends X, ® X, into itself. It is invertible with inverse

wol=
=

(I+p)2 —p
—pr (1+p)

Thus M is equal to the von Neumann algebra generated by {Wg(z®7), z,y €
X, }. It is well known that if h is a Hilbert space and c is a conjugation on
h, then the vacuum vector € is cyclic in the Fock space I'(h) for the algebra
generated by {Wg(h)|ch = h} (see e.g. [DG, Sect. 5.2] and references therein).
We apply this result to h = X & X, ¢ = k @ & and obtain the lemma. O

5 Generalized path spaces

In [KL1] a canonical isomorphism is constructed between a stochastically
positive 3-KMS system (W, W,,7°,w) and a [-periodic stochastic process
(Q, %, pu, X;) indexed by the circle S of length 3, with values in the com-
pact Hausdorff space K = Sp (W), the spectrum of Wi,.

We recall that a stochastic process (Q, %, i, X;) indexed by an interval I C IR
with values in a topological space K consists of
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(i) a probability space (@, %, u);
(i) a family {X;}c; of measurable functions X;: Q — K.

Typically it is required that the map I € t — X, is continuous in measure.

The stochastic process (@, X, 1, X;) associated to a stochastically positive (-
KMS system in [KL1] satisfies four important properties: stationarity, sym-
metry, B-periodicity and Osterwalder-Schrader positivity (see [KL1, Sect. 4]).

It turns out that the only really important feature of such a stochastic process
is the underlying generalized path space, which consists of the sub o-algebra
Yo generated by the functions F'(Xy) for F' € C(K), the automorphism group
U(t) of L*(Q, X, u) generated by the time translations U(t): F'(X3,, ..., X3,) —
F( X4ty .-y X4, 11) for F € C(K™) and the automorphism R of L*(Q, 3, i)
generated by R: F/(Xy,, ..., Xy,) — F(X_4,..., X4,).

In particular the detailed knowledge of the random variables X; and of the
topological space K is not necessary.

(Note that time translations on the path space will correspond to imaginary
time translations on the physical Hilbert space).

The analog of the constructions of [KL1] for 5 = oo done by Klein in [K] is for-
mulated in terms of generalized path spaces. Using this essentially equivalent
formulation turns out to be more convenient in applications. We now proceed
to a more precise description of this structure, taken from [KL1] and [K].

If =;, for ¢ in an index set I, is a family of subsets of a set (), we denote by
Vicr =i the o-algebra generated by U;c; U;, where U; € Z; and J are countable
subsets of 1.

Definition 5.1 A generalized path space (Q, 3, Xo, U(t), R, u) consists of

(i)  a probability space (Q, 3, i),

(ii) a distinguished sub o-algebra Xo;

(i) a one-parameter group R > t — U(t) of measure preserving *-
automorphisms of L=(Q, 3, ), which is strongly continuous in mea-
sure;

(iv) a measure preserving *-automorphism R of L*(Q, 3, u) such that
RU(t) =U(—t)R, R? =1, REy = EyR, where Ey is the conditional
expectation w.r.t. the o-algebra 3.

Moreover one requires that
(v) £ =Vier U(t)Zo.

It follows from (iii) and (iv) that U(t) extends to a strongly continuous group
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of isometries of LP(Q, %, i), and R extends to an isometry of LP(Q, 3, i), for
1<p<oo.

We say that the path space (Q,, %o, U(t), R, 1) is p-periodic for 5 > 0 if
U(B) = 1. On a -periodic path space we can consider the one-parameter
group U(t) as indexed by the circle S = [—3/2, 5/2].

For I C IR we denote by E; the conditional expectation with respect to the
o-algebra X 1= V,c; U(t)%.

Definition 5.2 (0-temperature case): A path space (Q,%, X0, U(t), R, p) is
OS-positive if Ej oo/RE 400 > 0 as an operator on L*(Q, %, u).

(Positive temperature case:) A (B-periodic path space (Q, %, %0, U(t), R, i) is
OS-positive if Ejgg/9RE)g3/9) = 0 as an operator on L*(Q,%, ).

In order to simplify the notation we set Ey = Eyoy, X4 = 4o L+ =
Elo oofs X = Xj_oo0) and E_ = Ej_ ). If the path space (Q, X, X, U (), R, p
is (3-periodic, we set X = Y9 5/2), Ey = Ejg g2, Y- = Xj_g/2,0 and E_ =
El-p/20)-

Definition 5.3 A path space (Q,%, 30, U(t), R, 1) is a Markov path space if
it has the

(i) reflection property: REy = Ey (resp. RE(o 52y = Eo,8/2});
(ii) Markov property: B, E_ = E,EyE_ (resp. E,E_ = E Ey3/5E_).

]t fOllowS that E+RE+ - E_E+ - E+E_ - EO (Tesp. E+RE+ - E_E+ -
EyE-= Eopy2)) -

A Markov path space is OS-positive because Ey (resp. Eyo/2}) is positive as
an orthonormal projection. An OS-positive path space satisfies the reflection
property (see [K, Prop. 1.6]).

Let (F,U,T,w) be a stochastically positive 5-KMS system. Let K := Sp(i)
be the spectrum of the abelian C*-algebra U/, which equipped with the weak
topology is a compact Hausdorff space. Let @) := K[=7/28/2] be equipped with
the product topology and let 3 be the Baire o-algebra on Q).

Theorem 5.4 [KL1]. Let (F,U, T,w) be a stochastically positive 3-KMS sys-
tem. Then there exists a Baire probability measure p on @, a sub o-algebra
Yo C X, a measure preserving group U(t) of *-automorphisms of L>=(Q, %, i)
and a measure preserving automorphism R of L>®(Q,%,u) such that
(Q,%,%0,U(t), R, i) is an OS-positive B-periodic generalized path space.

A more precise relationship between the G-KMS system and the generalized
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path space will be given in Theorem 6.7.

6 Reconstruction theorems

In this section we recall reconstruction theorems of Klein [K| and Klein and
Landau [KL1] which associate a stochastically positive S-KMS system to an
OS-positive generalized path space (Q, %, X, U(t), R, ).

To simplify notation, we allow the parameter [ to take values in ]0, +oc]. The

case [ = +oo corresponds to the O-temperature case. If § < oo, then the
OS-positive path spaces will be assumed to be (-periodic.

6.1 Physical Hilbert space

Set Hos := L*(Q, X, 1) and

(F,G) = / R(F)Gdu, F,G € Hos.
Q

By OS-positivity
0 < (F,F) < [[Fl,
If we set N := KerE, RE,, then (-,-) is a positive definite sesquilinear form
on Hos/N.
The physical Hilbert space, denoted by Hpnys (or simply by H) is
H := completion of Hps/N for (-, -).

If we denote by V: Hps — Hos/N the canonical projection, then V extends
uniquely to a contraction with dense range: Hps — H. In fact

(VELVF) = (F.F) < | Fl%,-

In the physical Hilbert space H we find a distinguished vector:

Q:=V(1).
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6.2 Selfadjoint operator

The O-temperature case

Proposition 6.1 [K, Thm. 1.7]. Let (Q, %, %, U(t), R, 1) be an OS-positive
generalized path space. Fort > 0 the time evolution U(t) maps N — N . Hence
the linear operator

P(t): Hos/N 3 V(F) — V(U)F) € Hos/N

1s well defined fort > 0.

The family {P(t)}i>0 uniquely extends to a strongly continuous selfadjoint
semigroup of contractions {e"*},50 on H, where H is a positive selfadjoint
operator such that HS2 = 0.

The positive temperature case

We first recall the definition of a local symmetric semigroup ([KL3], [Frl]):

Definition 6.2 Let H be a Hilbert space and T > 0. A local symmetric semi-
group (P(t), Dy, T) is a family {P(t), Di}icor of linear operators P(t) and
vector subspaces Dy of H such that
(i) Do=H,D;DD;if0<t<s<T and D = Upcy<rD; is dense in
H;
(ii) P(t):Dy — H is a symmetric linear operator with P(0) = 1,
P(s)Dy C Di—s for 0 < s <t < T and P(t)P(s) = P(t+ s)
on Dyys fort,s,t+s € [0,T].
(i) ¢+ P(t) is weakly continuous, i.e., for u € Dy and 0 < t < s the
map t — (u, P(t)u) is continuous.

The following theorem was shown in [KL3| and [Fr1].

Theorem 6.3 Let (P(t), Dy, T) be a local symmetric semigroup on H. Then
there exists a unique selfadjoint operator L on 'H such that

(i) Dy C D(e™tF), ethtL = P(t) for0 <t <T;

(ii) Do := Uoct<rr Uocs<t P(5)Dy is a core for L for 0 <T" <T.

Proposition 6.4 [KL1, Lemma 8.3]. Let (Q, X, X0, U(t), R, 1) be a B-periodic
OS-positive path space. Set My == L*(Q, X0,8/2—4, 1) for 0 <t < 3/2. Then
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i) Us):MNN = M NN for0<s<t<3/2. If D; :==V(M,),

then the linear operator

P(S)Z Dt — Dt—37
V(F) — VY({U(s)F)

1s well defined;
(ii) (P(t), Dy, 3/2) is a local symmetric semigroup.

By Theorem 6.3 there exists a unique selfadjoint operator L such that P(t);p, =
e L. Moreover L) = 0.

6.3 Algebras of operators

Abelian C*-algebra U

Let f € L>®(Q, X, u). Since 3y C 3,4, f acts as a multiplication operator on
Hos, which we will still denoted by f.

Proposition 6.5 [KL1, Lemma 2.2|. For f € L>®(Q, X, i) the multiplication
operator [ preserves N'. Hence

fY(F) = V(fF)
defines a unique element of B(H) with || f|| = ||f|ls. Let U C B(H) be defined
by
Then U is a von Neumann algebra isomorphic to L*(Q, g, ) and Q is a
separating vector for U.

We will denote by U™ the set of positive elements in U.

Full algebra 7 and automorphism group

Definition 6.6 Let F C B(H) denote the von Neumann algebra generated by
{elt Ae U | A e U,t € R} for B = 0o (resp. {elAe™ | A € U,t € R}
for B < 00). We denote by {7, }1er the strongly continuous group of automor-
phisms of F defined by 7,(B) = " Be " for B € F, t € R and 3 =
(resp. :(B) = &' Be™ ™ for Be F,t € R and f < ).
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6.4 [-KMS system associated to a 3-periodic path space

In case < oo one can associate to a [-periodic OS positive path space a
stochastically positive S-KMS system (see [KL1]). (The analog object in case
B = oo is called a positive semigroup structure [K]). Let, for n € IN and § > 0,

Jit=A{(tr, ... ta) ER" [ t; 20, t1 + -+ +1t, < 3/2}.

Theorem 6.7 [KL1]. Let L be the selfadjoint operator associated to the local
symmetric semigroup (P(t), Dy, /2). It follows that

(i) QeD(L) and L = 0;
(i) if n € IN, (tg,...,t,) € Jg+ and Aq,...,A, € U, then
A (T, e7 452 A)Q € D(e L), The vector span of these vectors

n—1
1s dense in H;

(iil) of fi,. oy fu € L°(Q, X0, 1) and 0 < 51 < -+ < 5, < (3/2, then

n

VITUG)I) = e A([[e @ ),
2

1

where fj 1s defined in Proposition 6.5.
(iv) ifn €N, (t1,...,t,) € Jg+ and Ay, ..., A,, B,...,B, € UT, then

1 1
(An(TT e 9" 4)Q, Bu(I] e " B))Q) > 0;

n—1 n—1

(v) [l PPLAQ| = | A*Q| for all A € U.

Theorem 6.8 [KL1|. Let wg be the state on F defined by wq(B) = (2, BQ).
Then (F,U,T,wq) is a stochastically positive 3-KMS system.

Finally let J be the modular conjugation associated to the KMS system
(F, T, wq).

Proposition 6.9 [KL1|. The modular conjugation J is the unique extension

of
JV(F) = V(RgsF), (6.12)

where

Rpy = U(B/4)RU(=p/4) = RU(=5/2) = U(B/2)R
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is the reflection at t = /4 in Hos.
6.5 Markov property for B-periodic path spaces

We recall a characterization of the Markov property for a (-periodic path
space in terms of the associated stochastically positive -KMS system due to
Klein and Landau [KL1].

Theorem 6.10 A [-periodic OS-positive path space (Q, %, X0, U(t), R, ) sat-
isfies the Markov property iff the vectors Ae~3LBO for A, B € U are dense in
‘H. In this case

H = L*(Q, Zi0,5/2), 11)-

Proof. The first statement of the theorem is shown in [KL1, Thm. 11.2].
The second statement is obvious: it follows from the Markov property that
Epp/2RE /2 = Ejop/2y is a projection, hence Hog/N is canonically iden-
tified with E{O,,B/2}HOS = L2(Q, 2{0’5/2}, u).

Theorem 6.11 Let W, W,,7° wg) be the quasi-free KMS system associ-
ated to a selfadjoint operator a > 0 and a conjugation k with [a,k] = 0.
Then the OS-positive generalized path space (Q,%, %0, U(t), R, 1) associated
to (W(X), W(X),7° wg) satisfies the Markov property.

Proof. Stochastic positivity of the quasi-free KMS system (W, W, 7°, wp)
was shown in Theorem 4.5. The Markov property follows from Lemma 4.6
and Theorem 6.10 0.

7 Perturbations of generalized path spaces

In this section we recall some results concerning perturbations of OS-positive
path spaces.

7.1 FKN kernels
Let (@, X, 3, U(t), R, 1) be an OS-positive path space.
Definition 7.1 A Feynman-Kac-Nelson (FKN) kernel is a family {Fj.s} of

real measurable functions on (Q, %, 1) such that, for 0 <b—a < 3,
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(i)  Flay >0 p-a.e.;

(ii)  Flop € LNQ, 2, 1) and Fjqy) is continuous in L' (Q, X, p) as a func-
tion of b;

(iii) Flop)Fiog = Flag fora<b<c, c—a < j3;

(iV) U(S)F[a’b} = F[a—i—s,b—i—s] f07“ seIR;

(V) RF[a’b] = F[—b,—a}-

The main examples of FKN kernels are those associated to a selfadjoint op-
erator V' affiliated to Y. In [KL1] and [K] perturbations associated to more
general FKN kernels are considered. However, the present case is sufficient for
our applications.

Let V be a selfadjoint operator affiliated to Y. Since by Proposition 6.5 the
algebra U is isomorphic to L>®(Q), 3o, 1), we can uniquely associate to V' a real
function on @), measurable with respect to ¥y, which we will still denote by

V.

Proposition 7.2 Let (Q,3, %0, U(t), R, u) be a [-periodic OS-positive path
space and let V be a selfadjoint operator affiliated toU such thatV € LY(Q, X0, 1),
and eV € LY(Q, X0, p) for some T > 0 if B = o0 or e PV € LY(Q, X, ) if
0 < oo. Then

b
(i) the family of functions Fiap) == e~ Jov@var for0 < b—a <inf(T, 3)/2
18 a FKN kernel;
(ii) Flos € L*(Q, X4, 1) for 0 < s < inf(T,5)/2 and the map s —
Flo,q is continuous in L*(Q, X595, 1t)-

Proof. All properties required in Definition 7.1 except from property (ii)
follow directly from the definition of U(t) and the properties of the path space
(Q,%,%0,U(t), R, ). Let us now verify (ii). Writing V' = V, — V_, where
V. is the positive/negative part of V, we have Fi, 3 < exp([) U(t)V_d¢t), and
hence F| [%75} <exp(2 [ 2u (t)V_dt). Since p is a probability measure, we have
V_, ePV= e LYQ, X0, ). We recall the following bound from [KL4, Thm. 6.2
(1)]:

b
le™ VOV gy < o™V [lin@ug, 1 < p < 00 (7.13)

This yields

B/2 " d a
1FS gllor@mm < le? o UOV=4)1 L 5y < eV (i@ < o0

Hence Fl 4 € L*(Q, Xp,5/9, i) for 0 < s < inf(T, 8)/2. The continuity w.r.t.
to s follows from the dominated convergence theorem. This completes the
proof of (ii).

31



The proof of property (ii) from Definition 7.1 for 0 < a follows from (ii) and
the fact that L2(Q, %, u) C LY(Q, X, ). The case b < 0 is reduced to the case
a > 0 using property (v). Finally the case a < 0 < b follows from the identity
Flay) = Flao Floy O

7.2 Selfadjoint operator associated to a FKN kernel

In this subsection we recall a result of Klein and Landau [KL1], allowing us
to construct a selfadjoint operator starting from a FKN kernel associated to a
selfadjoint operator V', which is affiliated to U. To keep the exposition compact,
we will use the convention for the parameter § explained at the beginning of
Section 6.

Let (Q,%,%,U(t), R, 1) be an OS positive path space and V' a selfadjoint
operator affiliated to U such that V € LY(Q,%, u) and e”TV € LY(Q, X, )
for some T" > 0. Let Fj,; be the associated FKN kernel.

Let, for 0 <t < T'/2, M; be the linear span Uy<<r/2—+ Flo.s L (Q, Xjo,7/2-14, 1t)-
Set

Uy(s): My — L2(Q72+,M)

0<s<t.
v = FogU(s)y, -

Lemma 7.3

(i) Fory € M, the map

[0,4] 55— Uv(s)¥ € L*(Q, X4, )

is continuous on [0, t].

(i) Uy(s): MiNN =N for0<s<t<T)2.

Proof. Using the definition of M, and the properties of the FKN kernel F,
it suffices to show that for ¢ € L>®(Q, Y 1/2—4, t) the map s — Uy (s)y is
continuous at s = ', 0 < s’ <t <T/2. For 0 < s,s <t <T/2 we have

Uy (") — Uy (s)¢ = Fo(U(s" )1 — U(s)Y) + (Fjo,s — Fio,s)U(s)1).
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Hence

1Uv(s")y — Uy (s)9]3
< Jo Fg U () = U(s)pPdp+ fo(Flo.q — Flos)?IU (s)¥*dp
< Jiweye-vewi@sa Fo| U)W = Us)yPdu

+ Jusyo—visysi@<a oUW = U(s)y[?du

+|| Flo,s1 — Flo,s 1311011 %-

The last term on the r.h.s. tends to 0 if s — s’ as a consequence of Proposition
7.2. The second term on the r.h.s. is less than €?|| F] ¢||3. To estimate the first
t}elrm, we write the function f := F[%),s'} as flyrq)<my + flq ) > It follows
that

Jquw-vspi@sa FIUE) = U(s)ePdu

< AM|IY1Z, [ Lgusyw—uvswi@>adi + 4 f Ly pgsan 1P

Since f € LY(Q, X, i), the second term tends to 0 as M — oo. Since U(t) is
strongly continuous in measure, the first term tends to 0 as s — s'. Picking
first ¢ < 1, then M > 1 and finally |s — s'| < 1 we obtain (i).

Let us now prove (ii). Let 0 < s < ¢t < T'/2. Note that Uy (s) sends M
into L2(Q, %, u). Let us fix ¢ € M;. First we consider the case s < t. For
0<r<sands-+r <t we have

(Uv(3)1, Uy (s)¥) = Jo FloU ()P RFo0U(s)ddpu
= Jo FisnU(s — r)ﬂU(—r)RF[O,S]U(s)w du
= Jo Flors—nU(s = ")V RFys4nU(s + r)¢ dp
= Jo Fo,s—nU(s — T)@RF[O,S_H}U(S + ) du
= (Uv(s =7r)¢,Uv(s +r)¢).

Since (., .) is positive, the Cauchy-Schwartz inequality implies

(Uv(s)¥, Uv(s)¥)
< (Uv(s =7r)¢,Uv(s —r)y)

D=
D=

(Uv(s+ 7)Y, Uy(s +1)p)>.
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Thus, by induction,

(Uv(s)v, Uy (s))
< Uy (s — nr )@ || TI} =g (Uv (s — (5 — 1)), Uv (s — (j — L)r)e)?.

=

If we pick 0 < r < s, s = nr, such that s +r < ¢, then (¢»,v) = 0 implies
(U(s)y,U(s)y) = 0. Finally, (ii) for s = t follows from (ii) for s < ¢ and (i) O.

Theorem 7.4 Let 0 <t <T/2, Dy =V(M;) and 0 < s <t. Then

Py(s): D — H
V() = V(FoqaU(s)Y)

is a well defined linear operator, and (Dy, Py (t),T/2) is a local symmetric
semigroup on 'H. We denote by Hy the associated selfadjoint operator.

Proof. The fact that Py(s) is well defined follows from Lemma 7.3 (ii).
Property (ii) of Definition 6.2 follows from the properties of the FKN ker-
nel Fj, ;. Monotonicity of the family {D;} w.r.t. inclusions is immediate.
That D = Upci<rD; is dense in ‘H follows from the fact that D contains
V(L™(Q, >4, p)). Finally property (iii) follows from the continuity property
stated in Lemma 7.3 0.

Theorem 7.5 [KL1, Thm. 16.4]. Let V be a selfadjoint operator affiliated
to U such that V € LYQ, %o, p) and e~V € LYQ, %o, p) for some T > 0.
Assume in addition that either V. € L*T¢(Q, %, ) for € > 0 or that V €
L*(Q, %0, 1) and V' > 0. Let, for 3 = oo, H (resp. L for 3 < oo) denote the
selfadjoint generator of the unperturbed semi-group t — P(t). Then H +V
(resp. L +V ) is essentially selfadjoint and the operator Hy (for both cases)
constructed in Theorem 7.4 is equal to H+V (resp. L+V ).

7.8 Perturbations in the positive temperature case

The following theorem is shown in [KL1]:

Theorem 7.6 [KL1]. Let (Q,%,%0,U(t), R, i) be a [-periodic OS-positive
path space, V' a selfadjoint operator on 'H affiliated to U, which satisfies the
hypotheses of Proposition 7.2. Let F' = {Fl,y} be the associated (3-periodic
FKN kernel. Then the path space (Q, %, Xq, U(t), R, py), where

duter — Fl_pg/2,5/21dp
Hy =
Jo Fl-s2.8/2d1
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s a [B-periodic OS-positive path space.

By the reconstruction theorem recalled in Section 6.5, one can associate to
the perturbed path space (@, 3, 3o, U(t), R, uy) a physical Hilbert space Hy,
a distinguished vector )y, an abelian von Neumann algebra Uy, a selfadjoint
operator Ly and a von Neumann algebra Fy .. If wy and 7 are the state and
W*-dynamics associated to 2y and Ly, then (Fy, Uy, 7v,wy) is a stochasti-
cally positive 5-KMS system.

Our next aim is to construct canonical identifications between the perturbed
objects and perturbations of the original objects associated to the path space

(Qa Za ZO) U(t)7 R7 :u)
Identification of the physical Hilbert spaces

We first show that there is a canonical unitary operator between Hy and H.
Proposition 7.7 Assume that V, e PV € LY(Q, X, 1). Set

I L¥(Q, Sy, w) /Ny — Hos/N

Vv (w) . V(Flo,5/2%) .
(fQ Fi_s/2,0/2d1)

Then I is a well defined isometry from Hosy /Ny into Hos/N with dense
range and domain. Hence I uniquely extends to a unitary map I: Hy — H.

Proof. Note that uy is absolutely continuous w.r.t. u. Thus L*(Q, %, py) =
L°(Q, % 1) 1) € L¥(Q, %, i)Wy, then Jo REYdjuy = fo dpRFip 50 F oyt =
0. Hence Fjo /9% € N. Consequently I is well defined. I is clearly isometric

since

Jo RYpdpy  [o RFos/2% Flograbdp

Vo, Vi) = = = (IVy, IVy)).
Vv Wil Jo Fi-s/2.8/21d1 Jo Fi-s/2.,5/21dn Vv, i)

Iis densely defined since L>°(Q, X4, i) is dense in Hpg,v. Since Vy is a con-
traction, L>®(Q, X4, u)/Ny is dense in Hopgs v /Ny and hence in Hy . Finally,
we note that Ran/ contains V(Fo,8/9L>(Q, X4, ). Since Fjg /9 > 0 a.e.,
Fio,3/29L°(Q, %, 1t) is dense in Hpg and hence its image under V is dense in
H O.

Identification of the abelian algebra
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Proposition 7.8 For f € L>*(Q, X, 1) one has

Ify = fIp, ¢ € Hy,

and, consequently, Uy =Uul.

Proof. This follows immediately from the definitions of f in Proposition 6.5
and [ in Proposition 7.7 O.

Identification of the C*-dynamics

Applying Theorem 7.4 we obtain a selfadjoint operator Hy from the FKN
kernel associated to V. It will be called the pseudo-Liouvillean generated by
V.

Proposition 7.9 One has

(i) IQy = [e0Hv/2Q|~te PHv/2Q);

(i) for0<s;<---<s,<f/2and Ay,..., A, €U
Te=1bv A (TT5 elsi1=5)Ev A)Qy,

B e—sleAl(H;e(Sj71*Sj)HVAj)e(Sn*ﬁ/%Hvﬂ ]
= TR ’

(iii) forty,...,t, € R, Ay,..., A, €U and p € Hy

j(H eithVAje_ithV)'l?Z) — (H eithvAje—ithv)[Aw;
1 1

(iv) IJy = JI.

Note that in (ii) and (iii) we identify & with L>(Q, X, i).
Identification of the observable algebras

We recall that the observable algebra and the dynamics associated to the
perturbed path space (@, X, 3, U(t), R, ) are the von Neumann algebra
Fv generated by {elvAe v | A € Uy, t € IR} and the automorphism
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group Ty:t — 1y (1), t € R, where
v (t)(B) = "™ Be "V B € Fy.
Proposition 7.10

(i) Iry(t)(B)I ™ =& HVIBIte v for B € Fy andt € R;
(i) Assume that either V. € L**9(Q,Xo, ) for € > 0 or that V €
L2(Q, %0, 1) and V > 0. It follows that IFyI~" = F.

Proof. (i) follows from Proposition 7.9 (iii). To prove (ii) we recall from The-
orem 7.5 that, under the assumptions of the proposition, L + V is essentially
selfadjoint on D(L) N D(V) and Hy = L + V. Hence, by Trotter’s formula,

eltHV — g lim (eltL/neltV/n)n.

n—oo

Thus

eltHvAe—ltHv —w— IH_P (eltL/neltV/n)nA(e—ltV/ne—ltL/n)n‘
n—-+o0o

Sincee®V € U C F, A € F implies that e*V Ae™*V € F. Moreover, e'** Ae~*L ¢
F by definition. So eV Ae~ v ¢ F_if A € U, and hence

[FyI™' C F.
According to Tomita’s theorem (see, e.g., [BR]) F' = JFJ and F{, = Jy Fy Jy.
Thus using Proposition 7.9(iv):

IR Y =1F I =1 Fo It = JIF I C JFT=F.

Taking commutants we obtain

F=F'cF I =1FI"

Hence F = [ F,/I7'0.
The results in this section are summarized in the following theorem.

Theorem 7.11 Let (F,U,T,w) be a stochastically positive B-KMS system.
Let 'H, <), L be the associated GNS Hilbert spaces, GNS vector and Liouvillean.
Let V' be a selfadjoint operator on 'H, affiliated to U, such that

V, e PV e LNQ, Yo, 1) and  either V€ L*Y(Q, %, ), € > 0,
or Ve LXQ, %, 1) and V > 0.
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Then

(i) L+ V is essentially selfadjoint on D(L) N D(V);

(i) Qe D(e 1), where Hy =L+ V;

(iii) (F,U,1v,wv) is a stochastically positive (-KMS system for
Tua(A) = etV A HHY oy (A) = [lem 2TV Q|| ~2(e~THV (), Ae~THV (D),
AeF.

Perturbed Liouvillean

In the next theorem, we identify the Liouvillean for the perturbed system.

Theorem 7.12 Assume that V is a selfadjoint operator affiliated to U such
that

Ve LNQ, S0, 1) (7.14)

and

V€ LP(Q, T, ), ¢ 2V € LUQ, o, p1) for pt + ¢ =1 2<p, g< o0
orV e L*(Q, X0, 1) and V > 0.

Let Ly be the Liouvillean associated to the 3-KMS system (F,Ty,wy). Then
Hy—JV J is essentially selfadjoint on D(Hy)ND(JV'J) and Ly = Hy — JV J.

Lemma 7.13 For A € U one has JAQy = |le"2HvQ~le=3Hv A*Q.

Proof. Let us set ¢ = ||e_§HVQ||_1. Then AQy = cV(AFj /). Moreover,
JAQy = cV(U(B/2)A*Fo,g/9), since Fig g/o) is invariant under Rg/4. Since A*
belongs to the space Mg/, = L>(Q, o, 1) defined in Section 7.2, V(A*) =

AQ e D(e_%HV) and
ce 71V A*Q = V(U (B/2) A" Fogj2) = JAQy O,

Lemma 7.14 Let f be a real function in L*(Q, X0, 1) such that fi1Fp g9
L*(Q,Xp,5/9, it). Then Qy and Q are vectors in D(fl) The wvector f1Q) is in

D(e” 7H V) and satisfies J f1Qy = |le” 2HVQ|| Lo~ 2HVf1

'(7.15)

Proof. Since f; € L*(Q, X0, it), we have Q € D(f1). Now f1Fp g/9 € L*(Q, Xj0,5/2], 1),

thus Qy € D(f1). Let f, = fills,j<n}. By dominated convergence f, Fjo g/9 —
J1Flo,/2) in LX(Q, Yi0,8/2), 1), 1€,

HQv =V(fiFop/) = lim V(f.Flog2) = lm [0y
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Applying Lemma 7.13 to A = f,, we obtain, for u € D(e‘gH"),

(e_%HVu7 le) = limn—wo(e_gHvua an)

. _B8
= lim,, oo (u, e 2

Hv £ Q) = limy, oo (u, J £, Q) = (u, J f100).

This shows that f1Q € D(e‘gHV) and e‘gH"fl(Z = JfiQy O

Lemma 7.15 Assume that V is a selfadjoint operator, affiliated to U, which
satisfies (7.15). Then

Qy € D(Hy)ND(V) and (Hy — JVJ)Qy = (Hy — JV)Qy = 0.
Proof. We first verify that V' satisfies the hypotheses of Lemma 7.14, i.e.,
that
- [PPuwvar 2
Ve Jo € L*(Q,X0,5/2, 1)- (7.16)
Let 2 < p,q < oo be as in (7.15). If p = 2, then V > 0 a.e., thus (7.16) is

clearly satisfied. If ¢ < oo, then, applying Holder’s inequality, it suffices to
prove that

B8/
Ve LMQ.E, ) and ek VOV € Q.5 ).

Applying (7.13) we find

B8/2

le™ho ¥

B
llq

(t)thHLq(Q,E,#) < ||e_2 < 00.

Let u € D(e~5v) N D(Hy) N D(Hye 2Hv) and set ¢ := ||e"2H#vQ~!. Then

(Hyu, Qy) = c(e_gH"Hvu, Q) = c(e_gH"u, HyQ) = c(e_gHVu, VQ),

since Q € D(V)ND(L) and HyQ = LY+ VQ = VQ. Applying Lemma 7.14
to f1 =V we obtain

c(e_gHVu, VQ) = c(u,e_gH"VQ) = (u, JVQy).

This implies, together with JQy = Qy, that Qp € D(Hy) and HyQy =
JVQ, = JVJQy O
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Proof of Theorem 7.12. Let F; be the set of A € F such that t — 7y,(A) is
C! for the strong topology and let A € F;. Since Hy implements the dynamics
vy, we see that A € C'(Hy). By [ABG], this implies that A:D(Hy) —
D(Hy). Since Qy € D(Hy), the vector AQy € D(Hy). Since JV J is affiliated
to F’', Lemma 7.15 implies

Ly AQy, = 1_1%7'\/715(14)9\/ [t=0 = Hy AQy — AHy )y
= HyAQy — AJVJIQy = Hy AQy — JVJAQ,,.

This yields Lyu = Hyu — JV Ju for v € F1€)y. By Proposition 3.1, we know
that F1Qy is a core for Ly. This implies that Ly is the closure of Hy — JV J
on F1Qy and hence also the closure of Hy — JVJ on D(Hy) N D(JVJ) O.

7.4 Markov property for perturbed of path spaces

In this subsection we show that the Markov property of a path space is pre-
served by the perturbations described in Subsection 7.1.

Proposition 7.16 Let (Q,%, X0, U(t), R, 1) be a generalized path space sat-
isfying the Mar-kov property and let {Fop} be a FKN kernel. Then the path
space (Q, 3, %0, U(t), R, ur) satisfies the Markov property.

Proof. Let (Q,%, 1) be a probability space, F' € LY(Q,%, u) with F > 0
p-a.e. and set dup = ([ Fdp) " tFdpu.

If B C ¥ is a o-algebra and f is Y-measurable, then we denote by Eg(f),
(resp. E5(f)) the conditional expectation of f w.r.t. B for the measure p
(resp. pp). Then (see [Lo, Sect. 2.4])

Es(fg) = Es(f)g, E5(fg) = E5(f)g p-a.c. if g is B-measurable (7.17)

and

EE(f) = %”‘;(FF’, J;) p-a.e. (7.18)

To simplify the notation, let us set Ey = Eyq) if 3 = +oo and Ey = Eqo/2)
if < oo. Set F, = Fo5/2 and F_ = Fi_g/2,0), 80 that /' = F_F. Set
EY = B}y and EY) = BY) ) Finally set By = Efy) if 8 = +00 and
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Let now f be Y¥-measurable. Then

po BAF) BAFFJ) B(FJ)
ED=TF “BER) - B(E)

using (7.18), (7.17) and the fact that F is ¥y g/9-measurable. Next

EF.f) _ E.F.f) _E.(F.f)
E(F)  EE(F)  By(F)

by the Markov property for (Q, ¥, i) and the fact that F_ is ¥|_ /9 oj-measurable.
Since Ey(F-) is ¥[_g/2,0-measurable, we have, by (7.18) and (7.17),

gy - E-FEED) B (FFE(F.0) _ B (FE,(F )
T Ey(F_)E_(F) Eo(F_)E_(F_F}) Eo(FL)E_(Fy)

since F_ is X|_g/ 0-measurable.

Now

E(FE(F])  Bo(F))
Eo(F)E_(Fy) — Eo(Fy)Eo(F-)’

by the Markov property for (Q, ¥, i) and the fact that F; is X9 3/9-measurable.
Finally

Eo(F)Ey(F\) = EvE_(F_)Ey(Fy) = By (F_Eo(F,))
= B (FLE_(F})) = E+E_(F_F}) = Eo(F).

This yields EXEY(f) = E{ (f) p-a.e. and completes the proof O.

8 Free Klein-Gordon fields at positive temperature

In this section we recall some results about the complex Klein-Gordon field
and show that it provides an example of a charge symmetric Kahler structure.

The classical Klein-Gordon equation describing a charged particle of mass m
is

2D — 92D +m?® =0, (t,z) € R,
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where ®: IR — C is a complex valued function. For later use we recall the
discrete symmetries of the Klein-Gordon equation, namely the parity p, time
reversal 0 and charge conjugation c:

p®(t,z) := ®(t, —x), OB(t,x) = ®(—t,2) and cP(t,z) = (¢, z).
In particular, real solutions of the Klein-Gordon equation without external

field describe neutral scalar particles. In the sequel only time-reversal and
charge conjugation will play a role.

8.1 The complex Klein-Gordon field

Let us now describe the abstract Klein-Gordon equation that we will consider
in the sequel.

Abstract Klein-Gordon equation

Let b be a Hilbert space. We denote by i the complex structure on h and
by (., ‘)b the scalar product on . We assume that b is equipped with a

conjugation denoted by ® — ®.
Let

e>m>0 (8.19)

be a real selfadjoint operator on b, i.e., such that e® = €®.

For 0 < s < 1 we denote by b, the Hilbert space D(e®) with complex structure
i and scalar product v,u — (v, €*u)y and by h_, the completion of (h,1i) for
the norm (v, € %*v)y. The space h_, can be identified with the anti-dual of b
using the sesquilinear form (v, u) = (v, u), for v € h_g and u € b;.

We consider the abstract Klein-Gordon equation

(KG) (97®)(t) + € @(t) =0,

where ®(t) is a function of ¢ € IR with values in h. This (complex) KG equation
describes a classical field of scalar charged particles.
The complex structure on § yields a complex structure on the space of solutions

of (KG), associated to the U(1) gauge group. Following the convention of
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Subsection 2.1 this ‘charge’ complex structure will be denoted by j. It is defined
by

(j®)(t) := i®(t) for ® a solution of (KG) and ¢ € R.

The following quantity does not depend on t:

q(¥, @) == i(¥(2), (0:2)(t)), — i((W)(2), D(1))y-

Hence it defines a symmetric sesquilinear form on the space of solutions of
(KG). The following transformations preserve the solutions of (KG):

— gauge transformations ®(t) — e “®(t) = (e3*®)(t), a € [0, 27];
— time-reversal 0: ®(t) — ®(—t);

— charge conjugation c: ®(t) — D(t).
Energy space

It is convenient to identify a solution of (KG) with its Cauchy data at ¢t = 0,

f=(2(0), (0:2)(0)) € h x b.

To do so one introduces the energy space &€ := by ® b equipped with the norm

(f, e = (fr. € f1)o + (f2, f2)n,

where we set f = (f1, f2). Note that the complex structure j becomes i @i on
E. Setting f; = ((t), (0;P)(t)) one can rewrite the Klein-Gordon equation as
the first order system:

J(atf)t:Lft for L = ( 0 1) .
—ie? 0

It is convenient to diagonalize L using the unitary map

Upy: &€ — hdh
f — U:(Ul,UQ),
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It follows that

e 0
0 —e

Up LU =

In particular, L is selfadjoint on £ with domain U~!(fh; x h;) and the evolution
IR >t — e is a strongly continuous unitary group. Therefore the space of
solutions of (KG) can be identified with £. On £ the symmetric form ¢ is

q(g, f) = i(g1, f2)b — (g, fl)b-

Charged Kahler space structure

On £ we put the ‘energy’ complex structure i := jlf'

Proposition 8.1 The space (£,j,1,q) is a charged Kdhler space.
Proof. Clearly [i,j] = 0. We have to prove that

(9, f) == Imgq(g,if) + ilmq(g, f)

is a positive definite symmetric sesquilinear form on (€,1). If Upf = (uq, uz)
and Uyg = (v1,v9), then

q(g, f) = —(va, 6_1U2)h + (v1, 6_1U1)h7

q(g,if) = —(va, —ie tug)y + (v1, i€ ug)y = i(vy, € tug)p + i(v2, € Tug)p,

and consequently

(g, f) = (v1,€ "ur)p + (va, € Tug)y. (8.20)
O
Definition 8.2 We denote by (£4,1, (., .)) the completion of (E,1) for the

scalar product (., .).
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Proposition 8.3 The space &, is equal to the space f)% &) h_% equipped with
the complex structure

and the scalar product (g, f) = Re(g1, ef1)y + Re(ga, € fa)y + i(Re(g1, f2)y —
Re(QZafl)b)'

Standard form of the complex Klein-Gordon field

It is convenient to introduce the map

Ug(f1 f2) = J5(€3 fr + i€ fo, 2T 4172 Fy) = (ur, o).

Using (8.20) we obtain that U, extends to a unitary map

qu (Sq,i ('7 )) - (f),l) ® (f),l)

Let us describe the various objects after conjugation by U,. We will denote
by the same letter an object acting on &, and its conjugation by U, acting on

Hhah.

— symmetric form: after conjugation by U, the symmetric form ¢(g, f)
becomes

q((v1,v2), (w1, u2)) = (v1,u1) — (ug, va).

‘charge’ complex structure: after conjugation by U, the complex
structure j becomes

45



— Hamiltonian: the infinitesimal generator of IR > t + e on

(g1, (., .)) is the Hamiltonian, denoted by h. After conjugation
by Uy,

In particular h is positive.

— Gauge transformations: the infinitesimal generator of [0, 27| 5> «a —
e on (&1, (., .)) is the charge operator q. After conjugation by
Uy,

10
0-1

We have q = —ij. Hence q is a charge operator in the sense of
Subsection 2.4.

— Time reversal: we have 0(f1, f2) = (fy, —f,), and after conjugation
by Uy,

G(ul, UQ) = (ﬂl,ﬂg).

— charge conjugation: we have c(fy, f) = (fy, f5), and after conjuga-
tion by Uy,

c(uy, ug) = (ug,uy).

We see that (&£, ].1, ¢, ¢) is a charge-symmetric Kéhler space.

From now on we will set X := b @ b with elements z = (z*,27) and equip X
with the complex structures
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with the symmetric form and the scalar product

Q(y,l’) = (y+,$+) - (S(Z_,y_) and (y,.T) = (y+,.1’+) + (y_,:c_),

the Hamiltonian and the charge operator

e 0 T 0
h= and q = ;
0 € 0 —1

and the time-reversal and the charge conjugation

O(zt,27) = (zF, 27 ) and c(z™,27) = (x,27).

From the discussion above we obtain the following theorem.

Theorem 8.4 The map Uq: (Eq,j,1,¢,¢) — (X,],1,q,¢) is unitary between
(Epdy (., 2)) and (X1, (., .)), and isometric between (Ey,j,q) and (X,j,q). It
satisfies

Uanq_1 =a fora=h, q, t, c.

For later use we set x := fc and X, := {x € X|kx =z} = {(xT,T"), 2T € bh}.
Note that in terms of solutions of (KG) we have k®(t,z) = ®(—t,x) and an
element of X, corresponds to a solution of (KG) with Cauchy data (u,0),
where u € b 1.

We see that x is a conjugation on (X,i,(.,.)) and hence Im(., .) vanishes
on X,. Since [k, j] = 0, the vector space X,; is a complex vector space for the
complex structure j.

For comparison with the physicls literature, let us consider the case h =
L*(RY,dz) and € = (—A, + m?)z. Then h_. is the Sobolev space H~2(IR%).

In the physics literature one defines for u € C§°(IR?) the time-zero field ¢y, (u)
to be the Hermitian field associated with the solution of (KG) with Cauchy
data (5-e'u,0).

After the unitary transformation Uy, (3¢ 'u,0) becomes the element

1 1 1
\/5—2(6_5'&, E_iﬂ) - L2(]P\,d) () L2(]R,d),
m
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ie.,

1 1 1
6y(1) = —o—o(e hu.H)

In the physics litterature one also considers the complex time-zero field p,(u)
defined as ¢, (u) + ip,(iu), ie.,

1 1 1

op(u) = gw(ﬁu? € 27T).

8.2 The real Klein-Gordon field

We now quickly discuss the real Klein-Gordon field.

Abstract real Klein-Gordon equation

Let hr be a real Hilbert space. Let ¢ > m > 0 be a selfadjoint operator on
hr. We consider the Klein-Gordon equation:

OID(t) + €d(t) = 0,

where @ is a function of ¢t € IR with values in hr. The real Klein-Gordon
equation describes a classical field of scalar neutral particles.

Let us denote by h := Chr the complexification of hr with its canonical
scalar product (-, -)y. The space b is equipped with the canonical conjugation
ho>P— 6, P eh.

On the space of real solutions of the Klein-Gordon equation, the charge con-
jugation ¢ acts as identity and the time-reversal 6 takes the form 6: ®(t) —
O (—t). We will still denote by e the complexification of € acting on . We can
now apply the results of Subsection 8.1 to the Hilbert space b.

The real energy space is &g = £ N hr X hr. The image of &g under the
transformation U is

UEr =: Sg = {(Ul,UQ) eha b|UQ = u_l}

Note that e preserves £r. More general, if F': IR — C is a bounded measur-
able function such that F'(\) = F(—\) then F(L) preserves £r. Therefore i
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preserves Er and hence defines a complex structure on Eg. The space (Er, i, q)
is a Kahler space.

Definition 8.5 We denote by (Eym,i, (., .)) the closure of (€w,1i) for the
scalar product (., .).

Proposition 8.6 The space E,r is equal to f)%,IR D b_%,IR equipped with the
complex structure

and the scalar product (g, f) = (g1, €f1)n + (92, € f2)p +1((91, f2)5 — (92, f1)p)-

Standard form of the real Klein-Gordon field

We set
UIRZ SIR —

1 b 1
f — (65f1 —|—i€_§f2>.

Then Upr extends to a unitary map between (Eqr,i,(.,.)) and bh. Let us
describe the various objects after conjugation by Ug:

- Hamiltonian: The infinitesimal generator of IR 2 t +— e on

(Eqms1, (-, ) is the Hamiltonian denoted by h. After conjugation
by U,

h=e.
In particular, h is positive.

- Time reversal: We have 0(f1, fo) = (f1, —f2). After conjugation by
Ur, one finds Ou; = u;.

From the discussion above we obtain the following theorem.

Theorem 8.7 There exist a map Ur between (Ew,i,q,0) and (h,j,q,0)
which is unitary between (Eqr,1, (., .)) and (h,], (., .)), and satisfies

UqJRaU;]h =a fora=h, t.

For later use we set x := 6 and b, :={h € b | h=h}.
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8.8 Free Klein-Gordon fields at positive temperature

We can now apply the results of Section 4 to the real and complex Klein-
Gordon fields.

In the complex case we set X =h @ h, h=e¢de, =16 —1 and introduce
for |p| < m the state wg,, on 2W(X) defined by the functional

wg (W (x)) := e_%(x’(lﬁp)x), x € X,

where p = (e’ — 1)7! and a = h — uq. As recalled in Section 4, wg,, is a
(1, 8)-KMS state for the dynamics (W (x)) = W (e'*x), which is invariant
under the gauge transformations oy (W (z)) = W (e"z). For u = 0 the state
wg,, Will be denoted by wg.

In the real case we set X =, h = € and consider the state on 20(X) defined
by the functional

w(W (z)) := e 1@1H+200) 4 ¢ X

where p = (e77 — 1)L It is a (7, 8)-KMS state for the dynamics 7(W (z)) =
W (e'z).

In both cases we denote by F and U the algebras defined in Subsection 4.3;
note that U is defined w.r.t. the appropriate conjugation x.

Applying Theorem 4.5 we obtain that the KMS system (F, U, 7,wp) is stochas-
tically positive both for real and complex Klein-Gordon fields. Moreover, by
Lemma 4.6 and Theorem 6.10, the stochastic process associated to (F,U, T, wgs)
satisfies the Markov property.

In the next lemma we show that for p # 0, the KMS system (F,U, T,wgs,,) is
not stochastically positive. The same is true, if we restrict the KMS state wg,,
to gauge invariant observables (see Subsection 4.4).

The physical reason for this fact is that a system of charged particles is only
invariant under the combination of time reversal and charge conjugation. A
nonzero chemical potential introduces a disymmetry between particles of pos-
itive and negative charge and hences breaks time reversal invariance, which is
a necessary property shared by all stochastically positive KMS systems, as we
have seen in Proposition 3.4.

Lemma 8.8 For p # 0 the KMS systems (F,U,T,wg,)and (A, Ax, T,wz,,)
are not stochastically positive.
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Proof. Using the results of Subsection 2.4 we have:

() = au(@™) + al(x7), ¢ (r) = al(z") + au(z™),

which, by an easy computation using the results recalled in Subsection 4.2,
implies

oL (@) pu(@) Qs = ap(1+ p)2at @ pra)ap((1+ p)2a~ @ p7aT )y,

H((2™, (L4 p)a™) + (27, p™)) Qg0

Set H=dI'(h® —h) and @ = dI'(q® —q), so that L = H — u@). Then

e 0l (1) 0w ()2, = e L () 00 (2) s,
= ap((1+ p)2e™"at @ prea)ap((1+ p)2e™ M2~ @ p2e™zT )y,
+((@7, (L +p)z7) + (27, pa™)) Q4.

Thus, for z,y € X,

(")) so(x)w(a:)@m
=<<1 +9) :

=
Q@
= EB
I
<

Let us now restrict ourselves to x,y € Xy, i.e., z = (u,7), y = (v,7), u,v € bh.
We obtain 2t = u, 2~ =7, y© = v and y~ = 7. If we set pT = (eﬁ(ew 1)L
then

(" (W), 70" (@) P(2))26.0) 1mis
= (v, (e (L+p*) +e*p7)u) x (u, (e7*(1 + p7) +e*p*)v)
+(u, (L+ p* + p7)u)(v, (14 p* + p7)v)).

This quantity is not real if s # 0 and g # 0. Since ¢’ (z)p,(x) is a positive
operator affiliated to A, this shows that the KMS systems (F,U, T,wgs,,) and
(A, A., T,wg,) are not stochastically positive 0.
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9 Scalar quantum fields at positive temperature with spatially cut-
off interactions

In this section we present the main results of this paper, namely the construc-
tion of scalar quantum fields at positive temperature in one space dimension
with spatially cutoff interactions. For the real scalar quantum field the two
kinds of interactions that we will consider are the spatially cutoff P(¢)s and
ey models (the later one is known as the Hgegh-Krohn model). The first
model is specified by the formal interaction [ g(x)P(¢(z))dx, where P()\) is
a real polynomial, which is bounded from below. The second model is speci-
fied by [ g(x)e**™dx for |a| < v/27. In both cases g is a positive function in
LY(R) N L*(R).

For the complex scalar field we will consider the spatially cutoff P(¢*p)s
interaction, specified by the formal interaction term [ g(x)P(¢*(x)p(x))dx.

9.1 Some preparations

In this subsection we prove some auxiliary results, which we will need to prove

some properties of the interaction terms later on. We first recall a result of
Klein and Landau [KL1].

Lemma 9.1 Let (F,U,T,w) be a stochastically positive KMS system and let
Hy be the closure of USY. Let Uy := U, . Then 2 is a cyclic and separating
vector for Uy, and Uy and U are isomorphic as C*-algebras.

Lemma 9.2 Let (F,U, T,w) be the stochastically positive KMS system intro-
duced in Section 4.5. Let X, be the vector space X equipped with the scalar
product (x,x), = (z, (1 4+ 2p)z) and set
i X, — XX
¢ — (14 p)iz @ prrT.

Then
(i) T(j) is an isometry from I'(X,) into T'(X & X) such that

L(5)e*™ = W, (2)T(j), = € X;

(i) Hy=T(I(X,) = L*(Q, X0, 1)
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Proof. The map x — &z is C-linear from X to X, hence j is C-linear. From
the results recalled in Subsection 4.2 and the functional properties of I'(j) we
obtain that I'(j)e*™ = Wg(j2)'(j). Now Wg(jz) = W, (z) for x € X, and
this proves (i).

Let us now prove (ii). The fact that H; is isomorphic to L?(Q, X, i) follows
from the definition of &/ in Subsection 6.3. To prove the second equality, we
note that x extends to a conjugation on X, since [x, p] = 0. By a well-known
result on Fock spaces, which we already recalled in the proof of Lemma 4.6,
the vacuum vector Q € I'(X,) is cyclic for {W(x) | x € X, kx = z}.

Let now u € I'(X,). Because of the result recalled above we find

N
u= Jirlgoun, Uy = zl:)\jW(:Bj)Q, x; € X,, KTj = Tj.

It follows that

n—oo

N
L(j)u= lim vy, v, = > N\W,(z;)Q.
1

Since v, € U we have I'(j)u € H; and hence I'(j)I'(X,) C H;. Let us now
prove the converse inclusion: let v € 'H; with

N
v = Ji_)nolovn, Up = zljkij(:cj)Q, zj € X, kr; = ).

Then
N
v, = I'(j)u, for u, = Z AW (z5)82
1

Since I'(j) is isometric, v, — u € I'(X,) and v = I'(j)u. This shows that
H, C F(])F(Xp) .

9.2 Wick ordering

We recall some well known facts concerning the Wick ordering of Gaussian
random variables. Let (@, Xo, i) be a probability space, F' a real vector space
equipped with a positive quadratic form f — c(f, f), called a covariance. Let
F > f— ¢(f) be a R-linear map from F' to the space of real measurable
functions on Q).
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The Wick ordering : ¢(f)™ : with respect to the covariance c is defined using
a generating series:

e0) . = f: (Z—T (O(f) = eaqs(f)e_%c(f’f). (9.21)
5 n!
Thus
. n., & n' n—2m 1 m
)= gD (el ) (9.22)

If now ¢y, ¢y are two covariances on F', then

2

- e¢(f) :02::e°‘¢(f) ol e~ G (2—e)(f.f) (9.23)

This implies the following Wick reordering identities (see e.g. [GJ]):
[n/2]

¢(f)n ‘e T Z

m=0

n!

B (e — ) (1) (924)

ml(n — 2m!)
9.8 The spatially cutoff P(¢)s interaction

We recall from Section 8.2 that the real Klein-Gordon field in one space di-
mension is described by the Weyl algebra 20(h), where h = L*(IR, dk). Let
X € C°(IR) be a real cutoff function with [ x(x)dx = 1. For x € R and
A € [1, 400 an ultraviolet cutoff parameter, we define f « € h by

k

Lo (el

fA,x(k) = W

We set

OA(x) 1= V20, (fax) = a(fax) + au(fax), x € R

Note that fax € by, so ¢p(x) is affiliated to U; i.e., pa(x) can be considered
as a measurable function on (Q, X, p1).

In order to define the spatially cut-off P(¢)s interaction we fix a real polyno-
mial of degree 2n, which is bounded from below, namely

2n
P(X\) =" a;N with ag, >0, (9.25)

J=0
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and a real function g € L (IR, dz) N L*(IR, dz) with g > 0.

where : ;o denotes the Wick ordering with respect to the covariance at tem-
perature 0 given by co(f, f) = %(f, e

For technical reasons we will also need to consider similar UV cutoff interac-
tions with the Wick ordering done with respect to the covariance at inverse

temperature 3 given by cs(f, f) = 3(f. f)p = 3(f. (1 +2p)f), f € h. We set

Vas = [ 909 P(6(x)):5 dx,

where ::3 denotes Wick ordering with respect to cg. Note that Vi and V) g are
affiliated to U. We first collect some properties of these auxiliary interactions.

Lemma 9.3 The family {Va g} is Cauchy in all spaces LP(Q, Xq, 1) for 1 <
p < 0o and converges when A — oo to a function Vi € LP(Q,%o, 1), 1 <p <
0o, which satisfies e='Vs € LY(Q, X, u) for all t > 0. We set

Vi =: /g(X) :P(p(x)) 5 dx.

Proof. We use the identification of L?*(Q, %o, n) with I'(h,) presented in
Lemma 9.2. Then Wick ordering with respect to cs coincides with Wick order-
ing with respect to the Fock vacuum on I'(f,). By exactly the same arguments
as those used in the O-temperature case (see e.g. [S-H.K] or [DG, Sect. 6] for
a recent survey) we obtain that, for 0 < p < 2n, the cuttoff interaction Vj g
is a linear combination of Wick monomials of the form

o p * *
3 /wp,A(kl, s e B a (k) - (k) a( =g ) - al—ky)dky - - - dky,
r=0 T



Recalling that 1+ 2p = }fZ:Zz we see that

L e—Be(ki)
2
wpa € &', = L*(IR7, e

dky ..., dky).

The sequence {w,, A } is Cauchy in this space. Consequently w, A — w, o when
A — 00, where

D=

Wpoolkr, - ) = g(i k) f[eu@-)— .

We can now apply these Wick monomials to the Fock vacuum and conclude
that V g€ converges to a vector V32 in I'(h,), or equivalently that V) 3 con-
verges to Vs in L*(Q, Xo, p). Since V49 is a finite particle vector, it follows
from a standard argument (see e.g. [Si2, Thm. 1.22] or [DG, Lemma 5.12])
that Vi3 — Vi € LP(Q, Xy, ) for all 1 < p < 0.

We will now prove that e="# € L1(Q, X¢, ). We argue as in the O-temperature

case: we first verify that ||w, s —wp oo|| < CA™ for some ¢y > 0 and therefore

1Vas = VallL2(@ 50, < CA. Applying again [DG, Lemma 5.12] we find
Vas = Vallr@som < Clp = 1)"A™, p>1. (9.26)

Using the Wick ordering identities (9.22) we obtain as identities between func-
tions on K (see, e.g., [DG, Lemma 6.6)):

 P(6a(x)) 152 —C(lloa Q" + 1),

Now [|¢a(x)2]| = Clle™'%(5)lls, < C(In(A))%. This yields

VA”g Z —C IH(A)n (927)

Applying now [Si2, Lemma V.5] we deduce from (9.26) and (9.27) that e %" €
LYQ, %0, p) for all t > 0 O.

Proposition 9.4 The family {Vi} is Cauchy in all spaces LP(Q, 3, i) for
1 < p < oo and converges when A — oo to a function V € LP(Q, X0, i),
1 < p < oo, which satisfies e € LY(Q, X, 1) for all t > 0. We set

V= /g(x)  P((x)) 20 dx.

o6



Proof. With the help of the Wick reordering identity (9.24) we find, for
f € by,

P(¢u(f)):0 = X350 a '%(f)”:o
= E Z[J/2 jml ] le) ¢(f)] am ( %(CO - Cg)(f, f))m
For f = fA,x
A = (Cﬁ - Co)(fo,fo) = (on,Pon)

= [e PR (E)dk = roo + O(A™),

where 7o, = [ e P®)dL.

On the other hand,

[ 16u(fa) it € Olles(ae fan)l7) € On(A).
Q

Therefore

P(pa(x)):0=: P(64(x)):5 +O(In(A)** A=) uniformly for x € supp g,

where
2n [J/2 4
.] |—2m 1 m
a;—————N"""(=ry)".
=2 2 G

We see that P()\) — P()) is of degree less than 2n — 1. Applying Lemma 9.3
to P this yields

Algrgo/g 0 dx = hm /g oa(x)):p dx = /g(x) - P(6(x)) 5 dx,

which completes the proof of the proposition 0.
9.4 The spatially cutoff e*®, interaction

As in Subsection 9.3 we set, for |a| < v/2m,

Vi = /g(x) 12929 dx
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Note that, as above, Vi and V, 5 are affiliated to U.

Lemma 9.5 For |a| < /27 the family {Vy g} is Cauchy in L*(Q, X0, 1) and
converges when A — oo to a positive function Vi € L*(Q, X, p). We set

Vs = /g a¢(X)

Proof. The proof is completely similar to the O-temperature case where p = 0
(see e.g. [Si2], [H-K2]). For completeness we will give an outline. Note first
that by (9.21) :e*®2@) 5 is a positive function on @Q, hence the same holds for
Vag as g > 0. We now show that Vi 5 converges in L*(Q, Xo, i), and we will
identify VA,/g with VAﬂQ. We have

a n " . 1
T (N)V] :—/X:"X:de— .
@ NWVas = 75 [ 909 :63() (M)ng kI W(3) pTeE
Hence
1y (N)Vasll? = 2(5)" [19(ST ko) P TITIR (5 P25 dky . dk,
< Ly [ 1g(s ( kP TT 2220 . dk, = e,
Next we find
€ = n' 27r /g y)Kp(x —y)"dxdy
for
1 [ gL+ 2p(k)
K :—/ e = T 20U g
We claim now that
e2r K50l ¢ LHR) + L (IR) for |a| < V2r. (9.28)
This implies that
> e < [ g0)gly)et I dxdy < oo, (9.29)
n=0
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If we set

_ 1 ikxi
Ko(x) = 5/e R

then because of the rapid decay of p(k) when |k| — oo, we have Ky — Kz €
L>*(IR), and (see [H-K2, equ. (2.4)]) Ko(x) € O(1) in |x| > 1, Ko(x) =
—In(x) + O(1) in |x| < 1. This implies (9.28).

Now by the arguments in the proof of Lemma 9.3, we see that

lim 1y (N)V 5 = i—? / 9(x) :6(x)": Qdx.

A—oo

Since 1y (N)Vag — V,, in L?(Q, X, p) for each n and sup, || Ly (N)Vagl? <
€, With 3" €, < 0o, we see that V 5 converges to some element V' € L?(Q, 3o, 1),
which is a.e. positive as a limit of positive functions O.

Proposition 9.6 For |a] < /27, the family {Vp} is Cauchy in L*(Q, X0, 11)
and converges to a positive function V € L*(Q, X, ). We set

V= /g(:c) 12909 dx.

Proof. By the Wick reordering identity (9.23) we have

2
o
DO = PN pez’,

02
Hence Vi = e 2"V, g, which implies, using Lemma 9.5, that V) converges
a2
in L*(Q, X0, i) to the positive function ez "=V}, 0.

9.5 The spatially cutoff P(¢p*p)s interaction

We consider now the complex Klein-Gordon field in one space dimension which
is described by the Weyl algebra 20(X) for X = h @ b, h = L*(IR,dk). We
recall that the Gibbs state at inverse temperature [ is given by w(W(z)) =
e1(@(14202) where p= (™ — 1)L and h = e D e.

We set

SOA(X) = Sow(fA,x SP fA,x)a SOT\(X) = QOZ;(fA,X D fA,X), X € R.
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Note that fj is invariant under the conjugation h — h. This implies that
oa(z) is affiliated to U, since fax @& fax € X,. Moreover, pj(x)pa(x) =
%((bi(fA,x D fA,X) + (bi(ifA,x D _ifA,X))'

For P a real polynomial of degree 2n, which is bounded from below, and g a
positive function in L'(IR) N L*(IR), we set

Va = [ 960 : PR (x)pa ()0

where ::o denotes Wick ordering with respect to the O-temperature covariance

Co(ll',l’) = %(l’,l’), and

Vas = [ 9(2) s Peh()ealx)) 5 dix

where : :3 denotes Wick ordering with respect to the covariance at inverse
temperature § specified by cg(z, 2) = (z, (1+2p)z). The following two results
can be shown by exactly the same methods as in Subsection 9.3.

Lemma 9.7 The family {V g} is Cauchy in all LP(Q, X, i) spaces and con-
verges, when A — oo, to a function Vg € LP(Q,%, 1), 1 < p < oo, which
satisfies e='Ve € LY(Q, X, 1) for allt > 0. We set

Vs = [ 960 : P& (9)0(x)) 15 dx.

Proposition 9.8 The family {Vp} is Cauchy in all spaces LP(Q, %o, ) and
converges, when A — oo, to a function V € LP(Q, %0, 1), 1 < p < oo, which
satisfies eV € LY(Q, Yo, p) for all t > 0. We set

V= [ g(x) : P(e" ()p(x) 0 dx.

9.6 Scalar quantum fields at positive temperature with spatially cutoff inter-
actions

To construct the space-cutoff P(¢), and e, models at positive tempera-
ture, we apply the general results of Subsection 7.3. Note that by Subsec-
tions 9.3 and 9.4, the interactions terms V = [g(x) : P(¢(x)) ;o dx and
V = [g(x) :e2?®)  dx for |a| < v/27 satisfy all the hypotheses of Subsection
7.3. Consequently we obtain the following theorem:

Theorem 9.9 Let (W, W,,7° w) be the quasi-free 3-KMS system describing
the free neutral Klein-Gordon field in one space dimension at temperature 371,
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described in Subsection 8.5. Let H, L, ) be the associated GNS objects described
in Subsection 4.2. Let V' be the selfadjoint operator on 'H affiliated to W, equal
either to [ g(x) : P(¢(x)) 0 dx or to [ g(x) : e®®® o dx. Then the following
statements hold true:

(i) L +V is essentially selfadjoint and ) € D(e‘gHV), where Hy :=
L+V.

(ii) Let 7 (t) be the W*-dynamics generated by Hy and wy be the vec-
tor state induced by Qy = ||e_§HVQ||_1e_§HVQ. Then Ty is a group
of *-automorphisms of W, continuous for the strong operator topol-
ogy such that (W, W, Tv,wy) is a stochastically positive 3-KMS
system.

(iii) The generalized path space associated to (W, Wi, Ty, wy) satisfies
the Markov property.

(iv) Let Ly, Jy be the perturbed Liouvillean and modular conjugation
associated to (W, W, 7v,wy). Then Jy = J and Ly = Hy — JV J.

Finally we state the corresponding result for the charged Klein-Gordon field:

Theorem 9.10 Let (W, W,.,7°,w) be the quasi-free B-KMS system describ-
ing the free charged Klein-Gordon field in one space dimension at temperature
B~Y and zero chemical potential, described in Subsection 8.3. Let H,L,Q) be
the associated GNS objects described in Subsection 4.2. Let V' be the selfadjoint
operator on 'H affiliated to W, equal to

J9(x) : P(@(x)p(x)):0 dx. Then the following statements hold true:

(i) L +V is essentially selfadjoint and ) € D(e_gH"), where Hy :=
L+V.

(i) Let 7y (t) be the W*-dynamics generated by Hy and wy be the vec-
tor state induced by Oy = ||e=7Hv Q|| ~le=2HVQ. Then 1y is a group
of *-automorphisms of W, continuous for the strong operator topol-
ogy such that (W, Wy, Tv,wy) is a stochastically positive 3-KMS
system.

(iii) The generalized path space associated to (W, Wy, Tv,wy) satisfies
the Markov property.

(iv) Let Ly, Jy be the perturbed Liouvillean and modular conjugation
associated to (W, Wy, 1v,wy). Then Jy = J and Ly = Hy — JV J.
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