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Abstract

We consider in this paper the scattering theory of infrared divergent massless Pauli-Fierz
Hamiltonians. We show that the CCR representations obtained from the asymptotic field
contain so-called coherent sectors describing an infinite number of asymptotically free bosons.
We formulate some conjectures leading to mathematically well defined notion of inclusive
and non-inclusive scattering cross-sections for Pauli-Fierz Hamiltonians. Finally we give a
general description of the scattering theory of QFT models in the presence of coherent sectors
for the asymptotic CCR representations.
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supported by the Komitet Badań Naukowych (the grants SPUB127 and 2 P03A 027 25). A part of
this work was done during his visit to Aarhus University supported by MaPhySto funded by the Danish
National Research Foundation.

1 Introduction

The main motivation for this paper is our desire to gain some rigorous understanding of the
infrared problem in quantum field theory, in particular in QED. This is not an easy task, since
we even do not know how to construct rigorously realistic models of QED.

Some authors tried to analyze the infrared problem in the axiomatic framework of local
quantum theory. Considerable progress in this direction has been achieved [FMS, Bu]. We will
not, however, discuss these results, often deep and interesting.

The infrared problem is not restricted, however, to local quantum theory. Some of its aspects
persist even in various simplified models derived from QED, which have ultraviolet cutoffs or
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treat a part of the system in a classical way. In our paper we consider a class of such models.
These models are quite far from the “true QED” or from the axioms of local quantum theory.
Yet, we will see that their infrared problem is quite nontrivial. Besides, unlike QED, these
models can be rigorously defined.

Infrared problem, both in “true QED” and in various simplified models appears mostly if
we try to compute scattering amplitudes. Thus it is primarily a symptom of a pathological
scattering theory.

QED is a theory of charged particles interacting with photons. Correspondingly, it has two
distinct kinds of the infrared problem: the first kind involves the dynamics of charged particles
and the second involves photons. In the following two subsections we would like to make some
comments about these two kinds of the infrared problem of QED, focusing mostly on various
simplified models.

1.1 Infrared problem for charged particles

Let us shortly discuss the first kind. Scattering of charged particles is made difficult by the
long-range nature of their interaction. To partly understand this phenomenon, let us fix the
Coulomb gauge in QED, drop photons and use the non-relativistic approximation. Then QED
becomes a theory of charged particles whose dynamics is described by the many body Schrödinger
Hamiltonian with Coulomb interactions. As is well known, the usual scattering theory breaks
down for such systems. Naive rules for computing scattering amplitudes in terms of Feynman
diagrams presuppose that we want to construct the usual wave and scattering operators, which
do not exist because Coulomb potentials are long-range. Therefore, we get meaningless divergent
expressions.

It is well understood how to cure this problem, at least in the context of many body
Schrödinger Hamiltonians. Two approaches are possible:

(1) One can compute only scattering cross-sections, staying away from ill-defined wave and
scattering operators. The standard way is to approximate Coulomb interaction by the
Yukawa interaction of mass m > 0, which is short range, compute the cross-sections and
take the m → 0 limit. This is the approach found in most textbooks on quantum mechanics.

(2) One can introduce modified wave and scattering operators. From the conceptual point of
view it is a more satisfactory approach—it gives deeper insight into the problem. The
mathematics of this approach is very interesting and nowadays well understood (see e.g.
[DG1]). On the other hand, it is more complicated computationally than the first approach
and uses non-canonical objects: the modified wave and scattering operators depend on the
choice of the so-called modifier.

Apart from the remarks above, in our paper we will not touch this aspect of the infrared
problem.

1.2 Infrared problem for photons

Let us now discuss the photonic aspect of the infrared problem. In our discussion we will consider
both the perturbative QED and various simplified models such as Pauli-Fierz Hamiltonians.
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If one tries to compute scattering cross-sections involving states with a finite number of
asymptotic photons, one often obtains infrared divergent integrals. After an appropriate renor-
malization, one obtains scattering cross-sections equal to zero. This is usually interpreted by
saying that “the vacuum escapes from the physical Hilbert space” and that “all states contain
an infinite number of soft photons”.

In the literature one can find 4 approaches to cure this problem in QED-like theories that
make possible computing physically meaningful cross-sections.

(1) One can restrict oneself to the so-called inclusive cross-sections, which take into account
all possible “soft photon states” below a certain energy ε > 0. The philosophy behind this
prescription is: do not attempt to compute or even ask about the existence of the wave
and scattering operators—try to compute scattering cross-sections relevant for realistic
experiments. This point of view is most common in standard textbooks [JR] and can be
traced back to [BN] (see also [YFS]).

(2) Naive rules for computing scattering amplitudes in terms of Feynman diagrams presup-
pose that the asymptotic fields form a Fock CCR representation. This assumption can
be wrong because of the infrared problem. To eliminate this difficulty, one can treat se-
riously non-Fock representations. One class of non-Fock representations is especially easy
to handle—the so-called coherent representations. One can define wave and scattering op-
erators between coherent sectors, and also asymptotic Hamiltonians. Scattering theory is
somewhat less intuitive than in the case of Fock representations, but it is naturally defined
and not much more difficult.

This approach can be traced back to Kibble [Ki]. We regard it as the most satisfactory
approach to the infrared problem. It provides an appropriate framework for the infrared
problem in the case of exactly solvable van Hove Hamiltonians [De]. In our paper we will
argue that this approach works also well in the case of Pauli-Fierz Hamiltonians, although
one cannot rule out the appearance of other types of CCR representations besides the
coherent ones.

In order for this approach to be meaningful, one needs to use a certain version of the
so-called LSZ approach, that means, one needs to construct the asymptotic fields. This
requires some, usually mild, assumptions on the interaction of the “short range” type. This
is the main weakness of this approach.

(3) One can keep the formal expression for the Hamiltonian and change the CCR representa-
tion. This amounts to a change of the underlying Hilbert space and of the Hamiltonian.
The new Hamiltonian is sometimes called the renormalized Hamiltonian. The main re-
quirement for the renormalized Hamiltonian is to have a ground state, which implies that
the representation of its asymptotic fields contains a Fock sector.

Shifting the asymptotic CCR representations can always be done in the case of exactly
solvable van Hove Hamiltonians. In the case of Pauli-Fierz Hamiltonians it seems possible
only under some special assumptions on the interaction, such as Assumption 2.D (the
possibility to split the interaction into a scalar part and a regular part).

One can criticize this approach in two separate points.
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First of all, as we mentioned above, we need special assumptions to make this approach
work. One can argue that Approach (2) is more general and does not need these assump-
tions.

Secondly, in general there is a large degree of arbitrariness in how to shift the Hamiltonian.
Therefore, the renormalized Hamiltonian is not a canonical object.

One can try to give a justification of this approach by using C∗-algebras—Approach (4).
The passage from the initial to a renormalized Hamiltonian would correspond to a change
of a representation of the given C∗-algebraic system.

If applicable, this approach is very useful. In recent literature it was applied in [Ar] and
[HHS]. It will be also an important tool in our paper.

(4) Sometimes one can describe a quantum system in terms of a dynamics on a C∗-algebra
[FNV, BR]. This algebra may have many inequivalent representations. In some of them
the dynamics may be generated by a Hamiltonian with a ground state, so that the infrared
problem disappears.

This approach can be used to justify Approach (3). One can say that the initial Hilbert
space is just one of many representations of the C∗-algebra and one needs to go to a different
representation, where the representation of asymptotic fields has a Fock sector.

It seems that this approach is inadequate for Pauli-Fierz systems unless one makes some
very special assumptions on the interaction. In general it is difficult (probably impossible)
to find a physically motivated C∗-algebra which is preserved by the dynamics.

In our paper we will discuss in detail Approach (2) to the infrared problem in the context
of Pauli-Fierz Hamiltonians. Approach (3) will play an important role, but it will be treated as
a tool in the study of Approach (2). We will also discuss Approach (1).

1.3 Scattering theory for Pauli-Fierz Hamiltonians

There exist a number of simplified models that can be used to test some of the photonic aspects
of QED. Probably the simplest are quadratic bosonic Hamiltonians with a linear perturbation.
In [Sch] such Hamiltonians are called van Hove Hamiltonians, and we will use this name. They
are exactly solvable and one can study their scattering theory in full detail [De]. A typical van
Hove Hamiltonian can be written in the form:∫ (

a∗(k) +
z(k)
ω(k)

)
ω(k)

(
a(k) +

z(k)
ω(k)

)
dk, (1.1)

where z(k) is some given function and ω(k) is the dispersion relation, e.g. ω(k) = |k|. Note that
if we consider QED with prescribed classical charges, then we obtain a van Hove Hamiltonian

In our paper we consider the so-called abstract Pauli-Fierz Hamiltonians. They can also be
used to understand interaction of photons with matter, but are more difficult and rich than the
van Hove Hamiltonians. They are not exactly solvable and their mathematical understanding is
far from complete. They are a caricature of QED with charged particles confined in an infinite
well.
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Consider the Hilbert space K⊗Γs(L2(Rd)), where the Hilbert space K describes the confined
charged particles and Γs(L2(Rd)) is a bosonic Fock space. Following the terminology of [DG2,
DJ, Ge1], an operator of the form

H := K ⊗ 1l + 1l⊗ ∫ ω(k)a∗(k)a(k)dk

+
∫

v(k)⊗ a∗(k)dk +
∫

v∗(k)⊗ a(k)dk

will be called a Pauli-Fierz Hamiltonian. For simplicity, in our paper charged particles are
described by an abstract Hamiltonian K and their confinement is expressed by the condition
that K has a compact resolvent.

Let us sketch the main ideas of scattering theory for Pauli-Fierz Hamiltonians. We follow
the formalism of [DG2, DG3], which can be traced back to much earlier work, such as [HK]. In
the introduction we will not aim at the mathematical precision, for instance we will freely use
the operator valued measures a(∗)(k) and we will not precise the type of the limits involved in
our statements. All the rigorous details will be provided in subsequent sections.

Under appropriate assumptions one can show the existence of the following limits:

a∗±(k) := lim
t→∞ eitHe−itω(k)a∗(k)e−itH , a±(k) := lim

t→∞ eitHeitω(k)a(k)e−itH .

We will call a∗±(k) and a±(k) the asymptotic creation/annihilation operators. (If we want to be
more precise, then we will say outgoing/incoming creation/annihilation operators). Note that
they form covariant CCR representations:

[a±(k1), a±(k2)] = 0, [a±∗(k1), a±∗(k2)] = 0, [a±(k1), a±∗(k2)] = δ(k1 − k2),

eitHa∗±(k)e−itH = eitω(k)a±∗(k), eitHa±(k)e−itH = e−itω(k)a±∗(k).

We define K±0 to be the space of Ψ ∈ H satisfying

a±(k)Ψ = 0, k ∈ Rd.

Elements of K±0 will be called asymptotic vacua. The Fock sectors of the asymptotic space are
defined as

H±
0 := K±0 ⊗ Γs(L2(Rd)).

The wave operators in the Fock sector are defined as linear maps Ω±0 : H±
0 →H satisfying

Ω±0 Ψ⊗ a∗(k1) · · · a∗(kn)Ω := a±∗(k1) · · · a±∗(kn)Ψ, Ψ ∈ K±0 ,

(Ω denotes the vacuum in the Fock space. The same letter decorated by the superscript + or −
denotes the appropriate wave operator). We also introduce the Hamiltonian of the asymptotic
vacua

K±
0 := H

∣∣∣
K±0

,

and the full asymptotic Hamiltonian:

H±
0 := K±

0 ⊗ 1l + 1l⊗
∫

ω(k)a∗(k)a(k)dk.

Now the following is true:
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(1) Ω±0 are isometric;

(2) Ω±0 1l⊗ a(k) = a±(k)Ω±0 ,
Ω±0 1l⊗ a∗(k) = a±∗(k)Ω±0 ;

(3) K±0 contains all eigenvectors of H;

(4) Ω±0 H±
0 = HΩ±0 .

One can formulate two desirable properties, called sometimes jointly the asymptotic com-
pleteness [DG2, DG3]:

• The operators Ω±0 are unitary, in other words, the asymptotic CCR representa-
tions are Fock.

• All asymptotic vacua are linear combinations of bound states of H.

For massive bosons, (e.g. if ω(k) =
√

k2 + m2 with m > 0), under quite weak assumptions
one can show that both above properties are true [HK, DG2, DG3]. If m = 0, little is known
about these two properties except for the case of van Hove Hamiltonians [De]. Typically, the
breakdown of the above properties is closely related to the infrared problem.

Note that the conventional scattering theory starts from a given pair of operators: the full
Hamiltonian H and the free Hamiltonian H0 and then proceeds to construct wave operators by
considering the limit (in appropriate sense) of eitHe−itH0 as t goes to ±∞. The formalism of
scattering theory that we described above differs substantially from the conventional one. Instead
of the “free Hamiltonian” we have the asymptotic Hamiltonians H±

0 . The Hamiltonians H±
0 are

simpler than the full Hamiltonian H: they have the form of a “free Pauli-Fierz Hamiltonian”.
Nevertheless, they are not given a priori—they are constructed from H.

If Ω±0 is not unitary, then the asymptotic fields have some non-Fock sectors. It may even
happen that there are no nonzero asymptotic vacua, so that there are no asymptotic Fock sectors
at all. This motivates us to give a description of scattering theory in the presence of non-Fock
sectors.

Among non-Fock sectors the most manageable ones are the so-called coherent sectors. Our
paper is to a large extent devoted to the description of scattering theory in their presence.

Let Rd 3 k 7→ g(k) be a complex function. We define K±g to be the space of Ψ ∈ H satisfying

a±(k)Ψ =
√

2g(k)Ψ, k ∈ Rd.

The elements of K±g will be called asymptotic g-coherent vectors. The asymptotic g-coherent
space is defined as

H±
g := K±g ⊗ Γs(L2(Rd)).

The g-coherent wave operator is the linear map Ω±g : Hg → H defined as

Ω±g Ψ⊗ a∗(k1) · · · a∗(kn)Ω := (a±∗(k1)−
√

2g(k1)) · · · (a±∗(kn)−
√

2g(kn))Ψ, Ψ ∈ K±0 .

We define the asymptotic Hamiltonian in the g-coherent sector as H±
g := Ω±∗g HΩ±g . The follow-

ing can be easily shown:

(1) Ω±g are isometric;
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(2) Ω±g 1l⊗ a(k) = (a±(k)−√2g(k))Ω±g ,
Ω±g 1l⊗ a∗(k) = (a±∗(k)−√2g(k))Ω±g ;

(3) Ω±g H±
g = HΩ±g .

(4) There exists a decomposition

H±
g = K±

g ⊗ 1l + 1l⊗
∫ (

a∗(k) +
√

2g(k)
)

ω(k)
(
a(k) +

√
2g(k)

)
dk (1.2)

(5) If g1 and g2 differ by a square integrable function, then the ranges of Ω±g1
and Ω±g2

coincide.

Note that the second term on the right of (1.2) is a van Hove Hamiltonian. If g is not square
integrable then the asymptotic CCR representations on the range of Ω±g are non-Fock and the
asymptotic Hamiltonians do not have a ground state—nevertheless, we have well defined wave
operators that can be used to compute scattering cross-sections.

We are not aware of a full description of the above formalism in the literature, although some
of its elements may belong to the so-called folklore. In particular, the fact that the asymptotic
Hamiltonians have the form given in the equation (1.2) is quite interesting and not obvious.

1.4 Renormalized Hamiltonian and dressing operator

The main new “analytical” result of the paper is the proof of the existence of a nontrivial
non-Fock coherent sector for asymptotic fields in a certain nontrivial class of Pauli-Fierz Hamil-
tonians. The most important additional assumption that we need to get this result is the pos-
sibility to split the interaction into two parts: an infrared divergent scalar part and an infrared
convergent matrix part.

Using this assumption we can define the renormalized Hamiltonian Hren. On the formal
level the so-called renormalized Hamiltonian is unitarily equivalent to the initial Hamiltonian
H:

Hren = 1l⊗W (−ig)Hren 1l⊗W (ig), (1.3)

where W (ig) is formally a Weyl operator. Strictly speaking, however, W (ig) is not well defined,
since g is not square integrable. Still, Hren turns out to be a correctly defined Pauli-Fierz
operator. Moreover, with an appropriate choice of g, Hren has a mild infrared singularity, so
that one can apply the results of [Ge1], which imply that Hren possesses a ground state.

Under appropriate assumptions, one can show that for both H and Hren one can define
asymptotic fields. Besides, one can define the so-called dressing operators U±. The dressing
operators are some kind of unitary intertwiners between the objects related to Hren and H. They
do not intertwine, however, in the usual meaning of this word: it is not true that HU± = U±Hren.
The action of U± gives some sort of a translation in phase space by g. In particular, U± map
coherent sectors of the asymptotic fields of Hren onto the coherent asymptotic sectors of H
shifting them by g. In particular, they map the Fock sector of the asymptotic CCR representation
for Hren onto the g-coherent sector of the CCR representation for H, which is non-Fock. But we
know that Hren has a ground state. Hence it has nontrivial Fock asymptotic sectors. Therefore,
H has nontrivial g-coherent asymptotic sectors.
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According to Approach (3) described above one could discard H in favor of Hren, and treat
Hren as the physical Hamiltonian. After this replacement, the asymptotic fields have Fock
sectors, where the infrared problem is avoided. We, however, prefer the (more canonical and
general) Approach (2), which treats H as the basic physical Hamiltonian and Hren as a technical
tool used to prove certain properties of scattering for H.

1.5 Comparison with literature

It is difficult to compare our results with the literature, since a large part of it is non-rigorous
and a variety of models are studied.

Perhaps one of the oldest examples of “infrared renormalization” can be found in a paper
of Pauli and Fierz [PF] devoted to non-relativistic QED. In that paper one can find what
is nowadays often called “the Pauli-Fierz transformation”, which can be used to make the
Hamiltonian of non-relativistic QED less singular.

Blanchard considered scattering for the Hamiltonian of QED in the dipole approximation
perturbed by a short range potential [Bl]. He showed that it is possible to construct wave
operators if one replaces the original Hamiltonian by an appropriately renormalized one. Note
that Blanchard’s Hamiltonian is different from ours. In particular, in his case one can define
usual wave operators and the formalism of asymptotic fields is not necessary, unlike in the case
of our Hamiltonian.

Faddeev and Kulish made an interesting attempt to define wave and scattering operators for
the full QED, taking into account both the long-range nature of the interaction between charged
particles and the emergence of non-Fock representations of photons [KF]. Their work was not
completely rigorous.

The infrared problem for the so-called Nelson model in the one-electron sector was studied by
Fröhlich in [F], and more recently by Pizzo [Pi]. In these papers one can find an operator essen-
tially equivalent to our dressing operators U±. Fröhlich and Pizzo consider translation invariant
models, which introduces additional complications in their analysis. A complete construction
of dressed one electron states is not achieved in [F], (some parts of the construction relied on
physically reasonable but conjectural assumptions). A complete construction was recently given
by Pizzo [Pi].

Examples of the infrared renormalization, similar to the one in (1.3), can be found in [Ar,
HHS].

Our paper can be considered to be a sequel to a number of papers devoted to scattering
in quantum field theory [HK, DG2, DG3, Ge2, FGS]. All of these paper, except for [Ge2], are
devoted to massive fields, which are not subject to the infrared problem,

When comparing the literature on models related to ours one should make a distinction
between translation invariant models, such as those considered in [KF, F, Pi, FGS], and the
models where the perturbation is localized and thus the translation invariance is broken, such
as [HK, DG2, DG3, Ge2] and this paper. Translation invariant models are more difficult and
rigorous results about them are scarce. The fact that we restrict ourselves to a confined system
without translation invariance enables us to give a more transparent and thorough analysis of
the scattering theory in presence of the infrared divergences.
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1.6 Organization of the paper

Our paper can be divided into two parts. The first consists of Section 2, where we describe the
main results of our paper. We introduce a certain class of abstract Pauli-Fierz Hamiltonians.
We recall and partly extend basic results on the existence of asymptotic fields [DG2], [Ge2] and
on the existence and non-existence of ground states [Ge1]. The asymptotic fields may have non-
Fock sectors. We concentrate our attention on the so-called coherent sectors. We show how to
define wave operators, scattering operators and asymptotic Hamiltonians for coherent sectors.
We demonstrate that they are not much more difficult than the usual Fock sectors, and thus
we explain how one can overcome the conceptual problems caused by the infrared problem. We
show the existence of non-Fock sectors for a class of Pauli-Fierz Hamiltonians, that includes a
certain class of Nelson Hamiltonians.

We end Section 2 with a discussion of inclusive cross-sections in our model. Let us stress that,
in principle, by using our formalism one can describe predictions for experiments that measure
“soft components of the system” and one does not need to restrict oneself to inclusive cross-
sections. One can argue, however, that in realistic experiments the soft background should be
irrelevant and measurable quantities should depend only on the “hard components”. We discuss
how to define such inclusive cross-sections and state some physically motivated conjectures about
them.

The remaining part of our paper is somewhat more mathematical. It contains a systematic
exposition of various elements of mathematical formalism used in Section 2. Some of them are
presented in a more general context and proved in bigger generality. Let us stress that Sections
3, 4, 5, 6, 7 and the Appendix can be read independently of Section 2.

In Section 3 we study general CCR representations. A particular attention is devoted to
the so-called coherent representations. These representations are obtained by translating the
Fock representation by an antilinear functional. If the functional is not continuous, then this
representation is not unitarily equivalent to the Fock representation.

In Section 4 we study the so-called covariant CCR representations. They are CCR represen-
tations equipped with a dynamics, which is implemented both on the level of the full space and
of the 1-particle space. We show how to describe covariant representations in a coherent sector.
It turns out that in every coherent sector the dynamics has a certain natural decomposition,
one part of which is given by a quadratic Hamiltonian perturbed by a linear one (a van Hove
Hamiltonian). In our opinion this is quite an interesting and hitherto unknown fact.

Covariant CCR representations arise naturally in scattering theory of certain quantum sys-
tems. Based on the ideas of the LSZ formalism, such representations were constructed and
studied e.g. in [HK], and more recently in [DG2], [DG3] and [Ge2]. In Section 5 we study such
representations in an abstract context. One of them describes the observables in the distant
past—the incoming representation W−(·), the other describes the observables in the distant
future—the outgoing representation W+(·). Collectively, they are called asymptotic represen-
tations. We show in particular that eigenvectors of the Hamiltonian are always vacua of both
asymptotic representations and thus give rise to nontrivial Fock sectors.

Note that the material of Sections 3, 4 and 5 is rather basic and mostly belongs to the
folklore (although our presentation has some points which are new). Section 6 is more special:
here we introduce the so-called dressing operator between two CCR representations.
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In Section 7 we introduce a relatively general class of Pauli-Fierz Hamiltonians. For these
Hamiltonians, under some relatively mild assumptions on the interaction, asymptotic CCR
representations exist and one can apply the formalism developed in the previous sections. One
can also introduce the renormalized Hamiltonian and the dressing operators.

2 Overview of main results and some open problems

In this section we describe most of main results of our paper in a somewhat simplified form.
We also discuss some aspects of the physical content of our mathematical constructions. We
formulate some open mathematical problems inspired by physical considerations.

Let us make some remarks about our notation. If A is an operator, then DomA, RanA and
spA denote its domain, range and spectrum. If A is self-adjoint and Θ a Borel subset of R, then
1lΘ(A) denotes the spectral projection of A onto Θ. We also write 〈x〉 for (1 + x2)1/2.

2.1 Pauli-Fierz Hamiltonians

Suppose that K is a separable Hilbert space representing the degrees of freedom of the atomic
system. Let K be a positive operator on K—the Hamiltonian of the atomic system. We will
sometimes use

Assumption 2.A
(K + i)−1 is compact on K.

The physical interpretation of this assumption is that the small system is confined.
Let h = L2(Rd,dk) be the 1−particle Hilbert space in the momentum representation and let

Γs(h) be the bosonic Fock space over h, representing the field degrees of freedom. Ω will stand
for the vacuum in Γs(h). We will denote by k the momentum operator of multiplication by k
on L2(Rd,dk). Let

ω := |k|
be the dispersion relation. For f ∈ h the operators of creation and annihilation of f are denoted
by ∫

f(k)a∗(k)dk,

∫
f(k)a(k)dk.

The Hamiltonian describing the field is equal to

dΓ(ω) =
∫

ω(k)a∗(k)a(k)dk.

(See e.g. [BR, vol. II] or [DG2, DG3] for basic concepts related to the second quantization).

Assumption 2.B The interaction between the atom and the boson field is described with a
coupling function v

Rd 3 k 7→ v(k),
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such that for a.e. k ∈ Rd, v(k) is a bounded operator from Dom(K1/2 into K. We will assume:

for a.e. k ∈ Rd, v(k)(K + 1)−
1
2 ∈ B(K),

∀Ψ1,Ψ2 ∈ K, k 7→ (Ψ2, v(k)(K + 1)−
1
2 Ψ1) is measurable,

lim sup
R→∞

∫
(1 + ω(k)−1)‖v(k)(K + R)−

1
2 ‖2dk < 1/2.

Note that the functions k 7→ ‖v(k)(K + R)−
1
2‖ is measurable (see for example [Ge2, Ap-

pendix]), and hence the last condition in Assumption 2.B has a meaning.
We set

H0 = K⊗1l + 1l⊗
∫

ω(k)a∗(k)a(k)dk,

H = H0 +
∫

v(k) ⊗ a∗(k)dk +
∫

v∗(k)⊗ a(k)dk.

H0 is called the free Pauli-Fierz Hamiltonian and H the full Pauli-Fierz Hamiltonian.
One can easily show that

Theorem 2.1 Under Assumptions 2.A and 2.B, the operator H is self-adjoint and bounded
from below with the form domain Dom(H1/2

0 ).

2.2 The confined massless Nelson model

In this subsection we describe one of the main examples of Pauli-Fierz Hamiltonians. It is a
model describing a confined atom interacting with a field of scalar bosons. A similar model
(without the ultraviolet cut-off) was studied in a well known paper by Nelson [Ne]. Hence, in
a part of the mathematical literature it is called the Nelson model (see [A], [Ar], [LMS]). To
be more precise, the model that we will consider can be called the confined massless ultraviolet
cut-off Nelson model.

We will prove that a large class of such models satisfies all the assumptions of this section.
Thus Lemma 2.2 means that all the results presented in in Sections 2 and 7 apply to this class.
In particular, their asymptotic CCR representations contain a non-Fock coherent sector.

The atom is described with the Hilbert space

K := L2(R3P ,dx),

where x = (x1, . . . , xP ), xi is the position of particle i, and the Hamiltonian:

K :=
P∑

i=1

−1
2mi

∆i +
∑
i<j

Vij(xi − xj) + W (x1, . . . , xP ),

where mi is the mass of particle i, Vij is the interaction potential between particles i and j and
W is an external confining potential.
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We will assume

(H0)
Vij is ∆− bounded with relative bound 0,

W ∈ L2
loc(R

3P ), W (x) ≥ c0|x|2α − c1, c0 > 0, α > 0.

It follows from (H0) that K is symmetric and bounded below on C∞
0 (R3P ). We still denote by

K its Friedrichs extension. Moreover we have Dom((K + b)
1
2 ) ⊂ H1(R3P ) ∩ Dom(|x|α), which

implies that
|x|α(K + b)−

1
2 is bounded. (2.1)

Note also that (H0) implies that K has compact resolvent on L2(R3P ).
The one-particle space for bosons is

h := L2(R3,dk),

where the observable k is the boson momentum. and the one-particle energy is ω(k) = |k|.
The interaction is given by the operator R3 3 k 7→ v(k) ∈ B(K), where v(k) is a multiplication

operator on L2(R3P ,dx) equal to

v(k, x) =
1√
2

P∑
j=1

χ(|k|)
|k| 12

e−ik·xj

where χ ∈ C∞
0 (R) is a real, even function such that χ ≡ 1 near 0. The function χ plays the role

of an ultraviolet cutoff.

Lemma 2.2 If hypothesis (H0) holds for α > 1, the confined Nelson model satisfies assumptions
2.A, 2.B and 2.C, 2.D, 2.E, 2.F below, where in Assumptions 2.D and 2.F we set

z(k) =
P√
2

χ(|k|)
|k| 12

, vren(k, x) =
1√
2

P∑
j=1

χ(|k|)
|k| 12

(e−ik·xj − 1).

Proof. We already know that Assumption 2.A is true.
We have |v(k, x)| ≤ C|k|−1/2. Therefore,

‖v(k)‖ ∈ L2(R3, (1 + |k|−1)dk),

and hence Assumptions 2.B and 2.E are satisfied.
We will now show that Assumption 2.C holds with g := C∞

0 (R3\{0}). Let h ∈ g. Define

mj,t(x) :=
∫

h(k)eit|k|v(k, xj)dk + cc

=
∫

ei(t|k|−xj ·k) h(k)χ(k)

|k|1/2 dk + cc.

(The symbol cc denotes the complex conjugate). We can write

mj,t(x)(1 + K)−1/2 = mj,t(x)1l[0, t
2
](|x|)(1 + K)−1/2

+mj,t(x)1l] t
2
,∞[(|x|)〈x〉−α〈x〉α(1 + K)−1/2.

(2.2)

12



Since by (2.1) |x|α(K + 1)−
1
2 is bounded, the second term is O(t−α), hence integrable.

To deal with the first term, note that the function h(k)χ(|k|)
|k| 12

is in C∞
0 (R3\{0}). Because of

the cutoff function, the phase t|k|−k ·xj is smooth without stationary points on |x| < t/2. Using
the non-stationary phase method, we obtain that the second term of (2.2) is O(t−∞). Hence for
α > 1, Assumption 2.C is satisfied.

Consider now Assumption 2.D. We note that

|e−ik·xj − 1| ≤ |k| |xj|. (2.3)

Hence
‖vren(k)〈x〉−1‖ ≤ C|k|1/2,

which implies ‖vren(k)(1 + K)−1/2‖ ∈ L2(R3, |k|−2dk). This proves Assumption 2.D.
Finally, we prove Assumption 2.F. We set

mj,t(xj) :=
∫

g(k)eit|k|vren(k, xj)dk + cc

= P
√

2
∫ χ(|k|)2

k2

(
cos(t|k| − xj · k)− cos t|k|)dk.

We go to spherical coordinates (r, θ, φ), r ∈ R+, θ ∈ [0, π], φ ∈ [0, 2π], and get:

mj,t(xj) := P
√

2
∫∞
0

∫ π
0

∫ 2π
0 χ(r)2

(
cos(tr − |xj | cos θr)− cos tr

)
drd cos θdφ

= P
√

22π
∫∞
0 χ(r)2

( sin(tr+|xj |r)−sin(tr−|xj |r)
|xj |r − 2 cos tr

)
dr

= P
√

22π
∫∞
−∞ χ(r)2 cos tr

( sin(|xj ||r|)
|xj ||r| − 1

)
dr

= O(t−n〈xj〉n).

for any n ∈ N, where in the last step we integrated by parts. By interpolation we actually can
replace n with any positive real α. Thus we see that

mj,t(xj)(1 + K)−1/2

= mj,t(xj)〈x〉−α〈x〉α(1 + K)−1/2 = O(t−α),

which ends the proof of Assumption 2.F. 2

2.3 Asymptotic fields

For h ∈ h we define the field and the Weyl operators

φ(h) :=
1√
2

∫ (
h(k)a∗(k) + h(k)a(k)

)
dk, W (f) := eiφ(h).

Let

h1 :=
{

h ∈ h |
∫

(1 + ω(k)−1)|h(k)|2dk < ∞
}

= Dom(ω−1/2),

with the norm ‖h‖h1 := ‖(1 + ω−1)1/2h‖h.
The following assumption can be called the short range condition.
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Assumption 2.C There exists a dense subspace g ⊂ h1 ∩Dom(ω1/2) such that for h ∈ g,∫ ∞

0

∥∥∥∥∫ (eitω(k)h(k)v(k) + v∗(k)e−itω(k)h(k)
)
(1+K)−1/2dk

∥∥∥∥
B(K)

dt < ∞.

Theorem 2.3 Suppose that assumptions 2.B and 2.C hold. Then:

(1) For all h ∈ h1, there exist

W±(h) := s− lim
t→±∞ eitH1lK⊗W (e−itωh)e−itH . (2.4)

(2)
W±(h1)W±(h2) = e−

i
2
Im(h1|h2)W±(h1 + h2), h1, h2 ∈ h1,

R 3 t 7→ W±(th) is strongly continuous, h ∈ h1;

in other words,
h1 3 h 7→ W±(h) (2.5)

are regular CCR representations (see Section 3).

(3)
eitHW±(h)e−itH = W±(eitωh), h ∈ h1,

in other words, (W±, ω,H) are covariant CCR representations (see Section 4).

(4) If HΨ = EΨ, then
(Ψ|W±(h)Ψ) = e−‖h‖

2/4‖Ψ‖2, (2.6)

in other words, eigenvectors of H are vacua for (2.5) (see Section 3) and Theorem 5.2).

The above theorem is a simplified version of Theorem 7.4 proved later in our paper.
It is convenient to introduce the following notation. Hp(H) will denote the closure of the

span of eigenvectors of H. The set of vacua for (2.5), i.e. the set of Φ ∈ H satisfying (2.6) is
denoted by K±0 . Note that K±0 is a closed subspace of H. By Theorem 2.3 (4), K±0 contains
Hp(H).

The closure of the span of vectors W (h)Φ with h ∈ h1, Φ ∈ K±0 will be denoted by H±
[0]. It

is the largest subspace of H on which (2.5) is equivalent to the Fock representation.
Let us state the following conjecture:

Conjecture 2.4 Suppose Assumptions 2.A, 2.B and 2.C hold. Assume also∫ ‖v(k)‖2
k2

dk < ∞. (2.7)

Then

(1) H±
[0] = H, in other words, the asymptotic representations are multiples of the Fock repre-

sentation.
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(2) K±0 = Hp(H), in other words, all the asymptotic vacua are linear combinations of eigen-
states of H.

There are two situations when we can prove the above conjecture.
If dimK = 1, then the Hamiltonian H is the exactly solvable van Hove Hamiltonian and the

conjecture follows by explicit computations, see e.g. [De].
If v(k) = 0 in a neighborhood of zero, then the problem reduces to the case with a positive

mass. Conjecture 2.4 (1) follows then from the arguments due to Hoegh-Krohn [HK] described
in [DG2], see also a different proof in [DG3]. Conjecture 2.4 (2) follows then from [DG2], see
also a somewhat simpler proof given in [DG3].

Note that the power |k|−2 in (2.7) is natural, since it is suggested by the exactly solvable case.
However, we do not know how to prove our conjecture even under much stronger assumptions,
e.g. if for any N ∫ ‖v(k)‖2

kN
dk < ∞.

2.4 Existence and nonexistence of a ground state

The following assumption will be very important in the sequel:

Assumption 2.D v(k) can be split as

v(k) = z(k)1lK + vren(k), where

z(k) ∈ C, vren(k) ∈ B(Dom(K
1
2 ),K),∫

(1 + ω(k)−1)|z(k)|2dk < ∞,∫
ω(k)−2‖vren(k)(K + 1)−1/2‖2dk < ∞.

In order to use the results of [Ge1] we will also need the following (probably unnecessary)
assumption, which is stronger than Assumption 2.B:

Assumption 2.E

for a.e. k ∈ Rd, v(k)(K + 1)−
1
2 , (K + 1)−

1
2 v(k) ∈ B(K),

∀Ψ1,Ψ2 ∈ K, k 7→ (Ψ2, (K + 1)−
1
2 v(k)Ψ1) and k 7→ (Ψ2, v(k)(K + 1)−

1
2 Ψ1) are measurable,

lim
R→∞

∫
(1 + ω(k)−1)

(‖v(k)(K + R)−
1
2‖2 + ‖(K + R)−

1
2 v(k)‖2)dk = 0.

Theorem 2.5 Assume Hypotheses 2.D and 2.E. Then:

(1) if Assumption 2.A holds and
∫

ω(k)−2|z(k)|2dk < ∞, then inf sp(H) is an eigenvalue.

(2) if inf sp(H) is an eigenvalue, then
∫

ω(k)−2|z(k)|2dk < ∞.
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In particular under Assumption 2.A, the existence of a ground state is equivalent to the condition∫
ω(k)−2|z(k)|2dk < ∞.

Proof. Part (1) has been shown in [Ge1, Thm. 1]. Let us prove part (2) by contradiction.
Assume that ∫

ω(k)−2|z(k)|2dk = ∞,

and let Ψ0 ∈ H be a ground state of H. The following pull-through formula is valid (see e.g.
[Ge1, Sect. III.4]):

(H + ω(k)− z)−1a(k)Ψ

= a(k)(H − z)−1Ψ + (H + ω(k)− z)−1v(k)(H − z)−1Ψ, Ψ ∈ H,
(2.8)

as an identity on L2
loc(Rd\{0},dk;H). Applying this identity to Ψ0, we obtain

a(k)Ψ0 = (E −H − ω(k))−1v(k)Ψ0,

as an identity on L2
loc(R

d\{0},dk;H). Hence

a(k)Ψ0 =
z(k)
ω(k)

Ψ0 + (E −H − ω(k))−1vren(k)Ψ0.

Let
r(k) := a(k)Ψ0 − z(k)

ω(k)
Ψ0 = (E −H − ω(k))−1vren(k)Ψ0.

We have
‖r(k)‖ ≤ c

1
ω(k)

‖vren(k)(K + 1)−
1
2‖.

Hence, by the last condition of Assumption 2.D, r ∈ L2(Rd,dk;H). Since z
ω 6∈ h, applying

Lemma 2.6 below we obtain Ψ0 = 0, which is a contradiction. 2

Lemma 2.6 Let Ψ ∈ Γs(L2(Rd)) such that∫
‖(a(k) − g(k))Ψ‖2dk < ∞, (2.9)

where k 7→ g(k) ∈ C is measurable and∫
|g(k)|2dk = ∞.

Then Ψ = 0.

Proof. We write
Ψ = (Ψ0,Ψ1, · · · ,Ψn, · · · )

where Ψn ∈ ⊗n
s h. From (2.9) we obtain since g 6∈ L2(Rd) and Ψn ∈ ⊗nL2(Rd)

(n + 1)
1
2 Ψn+1(k, k1, . . . , kn)− g(k)Ψn(k1, . . . , kn) ∈ ⊗n+1L2(Rd),

which implies that Ψn = 0. Hence Ψ = 0. 2
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2.5 Existence of non-Fock sectors for asymptotic fields

Set
g(k) :=

√
2ω−1(k)z(k). (2.10)

Let us introduce the following assumption:

Assumption 2.F∫ ∞

0

∥∥∥∥∫ (eitω(k)g(k)vren(k) + v∗ren(k)e−itω(k)g(k)
)
(1+K)−1/2dk

∥∥∥∥dt < ∞.

Theorem 2.7 Assume Hypotheses 2.A,2.C, 2.D, 2.E and 2.F. Then there exists a nonzero
vector Φ ∈ H such that

(Φ|W±(h)Φ) = ‖Φ‖2eiRe(h|g)e−‖h‖
2/4. (2.11)

In particular, if g 6∈ L2, then the CCR representations (2.5) have non-Fock coherent sectors.

Let us introduce the following notation. The set of vectors Φ satisfying (2.11) will be denoted
by K±g . Such vectors will be called g-coherent vectors for (2.5) (see Section 3). They form a
closed subspace of H.

The closure of the span of vectors W (h)Φ with h ∈ h1, Φ ∈ K±g , will be denoted by H±
[g]. It is

the largest subspace of H on which (2.5) is equivalent to the so-called g-coherent representation.

Conjecture 2.8 Under the hypotheses of Theorem 2.7, H[g] = H, in other words, the represen-
tation of asymptotic fields is equivalent to a multiple of the g-coherent representation.

Note that given the methods of the proof of Theorem 2.7, Conjecture 2.8 essentially follows
from Conjecture 2.4 (1).

2.6 Renormalized Hamiltonian

In this and the next subsection we will describe the main ideas of the proof of Theorem 2.7.
One of them is the use of the so-called renormalized Hamiltonian. It is defined as

Hren := Kren ⊗ 1l + 1l⊗ dΓ(ω) +
∫

(vren(k)a∗(k) + v∗ren(k)a(k))dk,

where
Kren := K − ∫ ( |z(k)|2

ω(k) + z(k)vren(k)
ω(k) + v∗ren(k)z(k)

ω(k)

)
dk.

Note that Assumptions 2.A, 2.D, 2.E for H imply Assumptions 2.A, 2.D and 2.E for Hren

with zren = 0. Therefore, by the result of [Ge1] quoted in Theorem 2.5 (1), Hren has a ground
state.

Suppose Assumptions 2.C and 2.F hold as well. Then, by Theorem 7.5, we can define
asymptotic fields for Hren

W±
ren(h) := s− lim

t→±∞ eitHren1l⊗W (e−itωh)e−itHren .

Clearly, W±
ren satisfy the obvious analog of Theorem 2.3. The ground state of Hren is a vacuum

for the renormalized asymptotic fields.
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Remark 2.9 Note that if g ∈ h, then

H = W (ig)HrenW (−ig). (2.12)

If g 6∈ h, then W (±ig) is not well defined. Still, we can use (2.12) on a formal level. To make it
rigorous we can proceed in a variety of ways. We can choose a sequence of approximations of g

gσ := g1l[σ,∞[(ω), 0 < σ < 1.

Then it is easy to show that

(i + Hren)−1 = s− lim
σ↘0

(
i + W (igσ)HW (igσ)

)−1
.

2.7 Dressing operators

Clearly, Im(g|e−itωg) is well defined and (1 − e−itω)g ∈ h. Therefore the following definition
makes sense:

U(t) := e
i
2
Im(g|e−itωg)eitHW (i(1− e−itω)g)e−itHren .

Theorem 2.10 Under Assumptions 2.B, 2.D and 2.F, there exists U± := s− limt→±∞ U(t).
s− limt→±∞ U(t)∗ also exists and equals U±∗.

The above theorem will be proved under more general conditions later as Theorem 7.5.
The operators U± will be called the dressing operators. They have the following properties:

Theorem 2.11 Suppose Assumptions 2.B, 2.C, 2.D and 2.F are true. Then, for h ∈ h1, we
have

W±(h)U± = U±W±
ren(h)eiRe(h,g),

eitHU±e−itHren = U±W±
ren(i(1− eitω)g)e−

i
2
Im(g|e−itωg)

= W±(i(1− eitω)g)U±e
i
2
Im(g|e−itωg).

Therefore, U± maps K±0,ren onto K±g .

The above properties of dressing operators are proved in Section 6.

2.8 Wave operators

We define the g-coherent asymptotic space as

H±
g := K±g ⊗ Γs(h).

It is easy to show that there exists a unique linear operator Ω±g : H±
g →H such that

Ω±g Φ⊗W (h)Ω = e−iRe(h|g)W±(h)Φ, Φ ∈ K±g , h ∈ h1.
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The operator Ω±g is isometric and its range equals H±
[g]. It will be called the g-coherent wave

operator. (Note that Ω, without any superscripts, still denotes the vacuum in a Fock space).
The g-coherent asymptotic Hamiltonian is defined as

H±
g := Ω±∗g HΩ±g .

Clearly, H±
g is a self-adjoint operator on H±

g satisfying

Ω±g H±
g = HΩ±g .

What is a little less obvious is the following decomposition of H±
g , proved in Theorem 4.5:

H±
g = K±

g ⊗ 1l + 1l⊗
∫ (

a∗(k) +
z(k)
ω(k)

)
ω(k)

(
a(k) +

z(k)
ω(k)

)
dk (2.13)

Thus, in particular, the asymptotic Hamiltonians H±
g do not have ground states.

Note that the subspaces H±
[g] are invariant with respect to W±(h) and H. They depend only

on the equivalence class [g] of g in h∗1/h, where h∗1 denotes the space of all antilinear functionals
on h1 (see Theorem 3.7 (1)).

If one introduces
H±

[g] = H
∣∣∣
H±

[g]

= Ω±g H±
g Ω±∗g ,

then again H±
[g] depends only on [g].

If Conjecture 2.8 is true then H = H±
[g] and H = H±

[g].

2.9 Scattering operator

We can define the scattering operator for the g − g channel as

Sgg := Ω+∗
g Ω−g .

It is unitary iff H−
[g] = H+

[g].
Suppose that we prepare a state in a distant past inside the incoming g-coherent sector. We

can describe it by a density matrix (a positive operator of trace 1) ρ on H−
g .

Suppose that we make a measurement in a distant future in the outgoing g-coherent sector.
We can describe it by an observable (a self-adjoint operator) A on H+

g .
The expectation value of the experiment is given by the trace

TrSggρS∗ggA. (2.14)

Note that there is no infrared problem in the formula above. In principle, one has a well defined
procedure to compute the expectation value of an experiment involving any initial state and any
final observable—there is no need to restrict oneself to “inclusive cross-sections”.

The infrared problem manifests itself in the non-canonical choice of the functional g. In fact,
g is not determined by the Hamiltonian H itself. One can argue that in a realistic experiment
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all the quantities depending on the choice of g are unmeasurable (or at least are much more
difficult to measure). This is quite similar to long-range scattering for Schrödinger operators,
where the modified scattering operator depends on a non-canonical modifier and one usually
assumes that measurable quantities are independent of its choice. In the remaining part of this
section we will analyze scattering of infrared singular Pauli-Fierz Hamiltonians and point out
quantities that are likely to be physically relevant.

Let us note a certain discrepancy between mathematics and physics of the problem. In
the construction of wave and scattering operators the past is treated in the same way as the
future. Thus mathematics of scattering theory is in some sense symmetric with respect to
time reversal. This is not the case for the formula (2.14), which gives physical interpretation
of the scattering operator: the past is represented by a density matrix whereas the future by
an arbitrary selfadjoint operator. This asymmetry between past and future will be even more
pronounced in the next subsections, where we discuss inclusive cross-sections. It will be clear
which observables should be considered in the future, it will be less clear which initial states
should be taken into account.

2.10 Soft and hard photons

Let ε ≥ 0. Define
h≤ε := Ran1l[0,ε](ω), h>ε := Ran1l]ε,∞[(ω),

so that h = h≤ε ⊕ h>ε. Clearly, we can make the identification

H±
g ' H±

g,≤ε ⊗ Γs(h>ε), (2.15)

where H±
g,≤ε := K±g ⊗ Γs(h≤ε).

Let us make an additional assumption

1l]ε,+∞[(ω)g = 0. (2.16)

Since g is given in terms of z by the equality (2.10), this is equivalent to 1l]ε,+∞[(ω)z = 0, which
we can always assume. By this assumption, the asymptotic Hamiltonian can be written as

H±
g = K±

g ⊗ 1l + 1l⊗ ∫
ω<ε

(
a∗(k) + z(k)

ω(k)

)
ω(k)

(
a(k) + z(k)

ω(k)

)
dk

+1l⊗ ∫
ω≥ε

ω(k)a∗(k)a(k)dk.

Therefore, with respect to the decomposition (2.15), the asymptotic Hamiltonians can be written
as

H±
g = H±

g,≤ε ⊗ 1l + 1l⊗ dΓ(ω>ε),

where ω>ε = ω1l]ε,∞[(ω).
One can ask whether the decomposition into soft and hard components is sensitive to the

choice of g. Introduce the soft Hamiltonian

H±
[g],≤ε := Ω±g H±

g,≤ε⊗1l Ω±∗g ,
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and the hard Hamiltonian
H±

[g],>ε := Ω±g 1l⊗dΓ(ω>ε) Ω±∗g .

We have
H±

[g] = H±
[g],≤ε + H±

[g],>ε (2.17)

and the Hamiltonians in (2.17) depend only on [g].
A similar question can be asked concerning the observables. On the level of asymptotic

spaces we have clearly
B(H±

g ) ' B(H±
g,≤ε)⊗B(H±

g,>ε). (2.18)

Denote the range of the homomorphism

B(H±
g ) 3 A 7→ Ω±g AΩ±∗g ∈ B(H)

by A[g]. A[g] depends only on [g] and is equal to B(H±
[g]). Inside A[g] we can distinguish the

“algebra of soft observables”

A±[g],≤ε := Ω±g B(H±
g,≤ε)⊗1l Ω±∗g , (2.19)

and the “algebra of hard observables”

A±[g],>ε := Ω±g 1l⊗B(H±
g,>ε) Ω±∗g . (2.20)

(2.19) and (2.20) depend only on [g]. The hard observables are even more independent of g.
The automorphism

B(Γs(h>ε)) 3 A>ε 7→ Ω±g 1l⊗A>ε Ω±∗g ∈ A±[g],>ε

depends only on [g] if we assume (2.16).

2.11 Inclusive cross-sections

To simplify the discussion, we will assume in what follows that

H = H+
[g] = H−

[g]. (2.21)

In what follows we will drop the subscripts g wherever possible, thus we will write Ω±, H±, H±,
H±
≤ε, etc. instead of Ω±g , H±

g , H±
g , H±

g,≤ε, etc.
Set E := inf H. Clearly,

E = inf H− = inf H+ = inf H−
≤γ = inf H+

≤γ

for any γ > 0.
Note that by the assumption (2.21), the wave operators Ω± are unitary from H± to H and

the scattering operator S = Ω+∗Ω− is unitary from H− to H+.
Suppose now that the experimentalist can only control the components of the system above

the threshold ε. In particular, since the functional g depends on the soft components, the
quantities that depend on g are not measurable.
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The quantum description of an experiment has two aspects: preparation of the incoming
state and measurement of the outgoing observable. It is easy to say which observables can in
principle be measured by the experimentalist. They are the observables in the hard algebra A+

>ε,
that means the observables of the form Ω+ 1l⊗A>ε Ω+∗, where A>ε ∈ B(Γs(h>ε)).

It is more difficult to say which incoming states the experimentalist can prepare. Recall that
H− = H−

≤ε ⊗H−
>ε. Thus we can introduce the partial trace wrt H−

≤ε, denoted

l1(H−) 3 ρ 7→ Tr−≤ε ρ ∈ l1(H−
>ε),

where l1(H) denotes the space of trace class operators on a Hilbert space H. In particular, if ρ
is a density matrix on H−, then Tr−≤ε ρ is a density matrix on H−

>ε.
We assume that the initial state of the system is described by a density matrix ρ on H−.

We also suppose that the experimentalist does not have full information about ρ and is able to
control only Tr−≤ερ. More precisely, for a given density matrix ρ>ε on H−

>ε, while preparing his
experiment, he can make sure that

Tr−≤ε ρ = ρ>ε. (2.22)

Of course, there are many density matrices ρ satisfying (2.22). The choice of ρ should be
determined by physics. Let us suppose that the experiment is conducted at a low temperature,
so that everything tends to have the lowest possible energy.

Suppose for a moment that the infrared problem is absent in the sense that the Hamiltonian
H, hence also H± and H±

≤ε, has a non-degenerate ground state. Then it is natural to assume
that the incoming density matrix equals

1lE(H−
≤ε)⊗ ρ>ε.

(recall that inf sp(H−
≤ε) = E, and hence 1lE(H−

≤ε) denotes the spectral projection onto the
ground state of H−

≤ε). Thus one can argue that if the experimentalist prepared the hard part
of the incoming state as ρ>ε and measures the observable A, then the expectation value of the
measurement (which we will somewhat imprecisely call the cross-section) will be

Tr S 1lE(H−
≤ε)⊗ρ>ε S∗ A. (2.23)

If we have an infra-red problem—if H has no ground state at all or even if its ground state
is degenerate—then it is not clear which ρ satisfying (2.22) should be taken. We can argue that
ρ should satisfy

1l[E,E+δ](H
−
≤ε)⊗1l ρ = ρ

for some small δ > 0. Of course this does not fix the choice of ρ either.
Motivated by these considerations, if δ > 0, ρ>ε is a density matrix on H−

>ε and A is
observable on H+, we define

Crossδ(ρ>ε, A) :=
{
TrρS∗AS : ρ is a density matrix on H−,

1l[E,E+δ](H
−
≤ε)⊗ 1l ρ = ρ,Tr−≤ε ρ = ρ>ε

}
.
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This is the set of all possible cross-sections compatible with the pair (ρ>ε, A) under the assump-
tion that the soft part of the initial state has the excess energy below δ. Clearly, Crossδ(ρ>ε, A)
is a family of nonempty intervals in [−‖A‖, ‖A‖] decreasing as δ ↘ 0.

It would be interesting to investigate whether a large class of Pauli-Fierz Hamiltonians has
the following property:

Property P.a The Pauli-Fierz Hamiltonian H has the property of the continuity of cross-
sections at the bottom of spectrum iff for any ρ>ε and A,⋂

0<δ<ε

Crossδ(ρ>ε, A)cl (2.24)

is a single point. (The superscript cl denotes the closure of a set).

If Property P.a holds, then the number given by (2.24) can be viewed as the cross-section
for the experiment described by ρ>ε and A. Note that if H has a non-degenerate ground state,
then (2.24) contains the number (2.23).

Clearly (2.24) depends on the choice of g within its equivalence class, hence one can argue
that in such a case it does not correspond to a physical experiment. If one assumes that the
observable is of the form A = 1l⊗A>ε with A>ε an observable on Γs(h>ε), then

Crossδ(ρ>ε, 1l⊗A>ε) (2.25)

does not depend on the choice of g satisfying (2.16), using the covariance properties shown in
Subsection 7.5. (2.25) is the set of possible inclusive cross-sections compatible with the pair
(ρ>ε, A>ε). One can introduce a property weaker than (P.a):

Property P.b The Pauli-Fierz Hamiltonian H has the property of the continuity of inclusive
cross-sections at the bottom of spectrum iff for any ρ>ε and A>ε,⋂

0<δ<ε

Crossδ(ρ>ε, 1l⊗A>ε)cl

is a single point.

If Property P.a is true then the theory based on the Pauli-Fierz Hamiltonian H has quite a
strong predictive power. The experimentalist does not have to worry about preparing precisely
the soft part of the initial state; it is enough if its soft part is sufficiently low energetic. Then
he can measure all observables he likes, even those involving soft modes. The theory will give
well defined cross-sections for his experiments.

If the experimentalist measures only hard components of the final state, then it is sufficient
that Property P.b holds to have well defined cross-sections for all experiments.

Note that the stronger Property P.a is true in the case of the exactly solvable van Hove
Hamiltonian, where the scattering operator is equal to identity.
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2.12 Insensitivity to soft background

One could argue, however, that Properties P.a and P.b are too modest and do not correspond to
realistic physical situations. It may be unjustified to expect that the soft modes of the radiation
will dissipate their energy while the experimentalist prepares the experiment. Nevertheless, one
can hope that soft modes should not influence the outcome of measurement too much provided
that their energy is reasonably bounded. This intuition leads to yet another conjecture.

In order to state it, we introduce a new definition. Let δ > 0 and 0 < γ ≤ ε. Suppose that
the experimentalist can control the incoming states up to the modes of energy γ. He can make
sure that there are no photons of energy in [γ, ε]—the system is in the lowest possible energetic
state for the modes of energy in this energy range. This means that

Tr−≤γ ρ = |W (−ig[γ,ε])Ω)(W (−ig[γ,ε])Ω| ⊗ ρ>ε. (2.26)

Here
g[γ,ε] = 1l[γ,ε](ω)g,

and |W (−ig[γ,ε])Ω)(W (−ig[γ,ε])Ω| denotes the orthogonal projection onto the coherent vector
W (−ig[γ,ε])Ω.

Suppose also that the experimentalist can guarantee that the soft modes have the excess of
the energy below δ > 0, which however does not have to be very small. This means that

1l[E,E+δ](H
−
≤γ)⊗1l ρ = ρ.

Note that by (2.26) this is equivalent to

1l[E,E+δ](H
−
≤ε)⊗1l ρ = ρ.

Cross-sections compatible with this information are given by the set

Crossδ,γ(ρ>ε, A) :=
{
TrρS∗AS : ρ is a density matrix on H−,

1l[E,E+δ](H
−
≤γ)⊗1l ρ = ρ,Tr−≤γ ρ = |W (−ig[γ,ε])Ω)(W (−ig[γ,ε])Ω|⊗ρ>ε

}
.

Clearly Crossδ,γ(ρ>ε, A) decrease if δ or γ decrease. Moreover if δ < γ, then

Crossδ,γ(ρ>ε, A) = Crossδ(ρ>ε, A).

If A>ε is as above, then
Crossδ,γ(ρ>ε, 1l⊗A>ε) (2.27)

does not depend on the choice of g satisfying the condition (2.16).
Let [0, ε] 3 γ 7→ δ(γ) be a function with values in positive real numbers. One could expect

that a large class of Pauli-Fierz Hamiltonians satisfy the following property for δ(γ) such that
limγ→0

δ(γ)
γ = +∞:

Property P.c A Pauli-Fierz Hamiltonian H has the property of δ-insensitivity of inclusive
cross-sections to soft background iff the following is true. Let ρ>ε and A>ε be as above.
Then ⋂

0<γ<ε

Crossδ(γ),γ(ρ>ε, 1l⊗A>ε)cl

is a single point.
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Note that the van Hove Hamiltonians have Property P.c with δ(γ) = ∞—soft modes and
hard modes are completely decoupled.

3 Canonical commutation relations

Here begins the second part of this paper, consisting of Sections 3-7 and Appendix, which is
more mathematical than the previous section. In this part we develop systematically various
elements of mathematical formalism useful in the study of infrared problem. In particular we
prove most of the statements described in Section 2.

Let us stress that this and the following sections can be read independently of Section 2 and
of the introduction.

In this section we collect basic constructions and facts concerning CCR representations [BR],
[BSZ], [DG3], concentrating especially on the so-called coherent representations. The notation
that we develop here will be used throughout the paper. Note in particular that in the applica-
tions that will start with Section 5, the superscript π will be replaced by the superscript − or
+ corresponding to the incoming or outgoing representation.

3.1 CCR Representations

Let g be a complex vector space with a scalar product (·|·) antilinear wrt the first argument.
Let H be a Hilbert space. Let U(H) denote the set of unitary operators on H. Recall that

g 3 h 7→ W π(h) ∈ U(H) (3.1)

is a CCR representation over g in H if

W π(h1)W π(h2) = e−
i
2
Im(h1|h2)W π(h1 + h2), h1, h2 ∈ g.

We say that a vector Ψ ∈ H is regular if

R 3 t 7→ W π(th)Ψ, h ∈ g

is continuous. Let Hπ
reg be the set of regular vectors—the regular sector of (3.1). It is easy to

see that Hπ
reg is a closed subspace of H invariant under (3.1). We say that (3.1) is regular if

H = Hπ
reg. The field operator associated to the representation π and h ∈ g is the self-adjoint

operator defined as follows: Ψ ∈ Dom(φπ(h)) iff there exists

φπ(h)Ψ =
d
idt

W π(th)Ψ
∣∣∣
t=0

.

Clearly, Dom(φπ(h)) is contained and dense in Hπ
reg. The creation and annihilation operators

associated to the representation π are defined as

aπ(h) :=
1√
2
(φπ(h) + iφπ(ih)), aπ∗(h) :=

1√
2
(φπ(h)− iφπ(ih)).

For further reference let us note the identities

W π(ig)aπ∗(h)W π(−ig) = aπ∗(h) +
1√
2
(g|h), W π(ig)aπ(h)W π(−ig) = aπ(h) +

1√
2
(h|g).
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3.2 The Fock representation

Let h be a Hilbert space. Γs(h) will denote the symmetric Fock space over h. Ω will denote the
corresponding vacuum vector and N the number operator.

If h ∈ h, then a∗(h) denotes the corresponding creation operator, that is the operator defined
on finite particle vectors Φ as

a∗(h)Φ := h⊗s

√
N + 1Φ.

The same symbol a∗(h) denotes the closure of this operator. The annihilation operator is defined
as a(h) := a∗(h)∗ and the field and Weyl operators are

φ(h) :=
1√
2
(a∗(h) + a(h)), W (h) := eiφ(h).

It is well known that
h 3 h 7→ W (h) ∈ U(Γs(h)), (3.2)

is a regular CCR representation. It is called the Fock representation. (See [BR], [BSZ]).
If f ∈ h, then W (−if)Ω is called the coherent vector centered at f . Note that it satisfies

√
2 a(h)W (−if)Ω = (h|f)W (−if)Ω.

This property characterizes coherent vectors, as is seen from Theorem 3.1.
In the remaining part of this section, g will be a dense subspace of h and f will be an

antilinear functional on g. The action of f on h ∈ g will be denoted by (h|f), as in the scalar
product.

The following theorem is well known, for the proof see eg. [De].

Theorem 3.1 Let Ψ ∈ Γs(h). Suppose that for any h ∈ g we have

Ψ ∈ Dom(a(h)),
√

2a(h)Ψ = (h|f)Ψ.

Then the following is true:

(1) If f ∈ h, then Ψ is proportional to W (−if)Ω.

(2) If f 6∈ h, then Ψ = 0.

3.3 Coherent representations

Note that
g 3 h 7→ W f (h) := W (h)eiRe(f |h) ∈ U(Γs(h)) (3.3)

is a regular CCR representation in Γs(h). We will call (3.3) the f -coherent representation.
The corresponding field, creation and annihilation operators will be denoted φf (h), af∗(h),

af (h). Clearly,
φf (h) = φ(h) + Re(h|f),

af∗(h) = a∗(h) + 1√
2
(f |h),

af (h) = a(h) + 1√
2
(h|f).

(3.4)
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Note that the vacuum satisfies for h ∈ g:
√

2 af (h)Ω = (h|f)Ω.

Theorem 3.2 (1) If f ∈ h, then W f (h) = W (if)W (h)W (−if), h ∈ g.

(2) If f 6∈ h, then there is no operator U such that

W f (h) = UW (h)U∗, h ∈ g. (3.5)

Proof. (1) is immediate. To prove (2), suppose that U satisfies (3.5). Then af (h) = Ua(h)U∗.
Using a(h)Ω = 0 and the last identity of (3.4) we see that

√
2 a(h)U∗Ω = (h|f)U∗Ω,

which means that U∗Ω satisfies the assumptions of Theorem 3.1. But U∗Ω 6= 0. Hence f ∈ h.
2

3.4 Coherent sectors

In this and the following subsection we consider an arbitrary CCR representation

g 3 h 7→ W π(h) ∈ U(H). (3.6)

We are going to describe how to extract f -coherent sub-representations of (3.6).
A vector Ψ ∈ H is called an f -coherent vector for (3.6) if for any h ∈ g we have

Ψ ∈ Dom(aπ(h)),
√

2aπ(h)Ψ = (h|f)Ψ.

Let Kπ
f be the set of f -coherent vectors for (3.6). Elements of Kπ

0 will be called vacua for (3.6).

Theorem 3.3 (1) Kπ
f is a closed linear subspace.

(2) Ψ ∈ Kπ
f iff

(Ψ|W π(h)Ψ) = ‖Ψ‖2e− 1
4
‖h‖2+iRe(f |h).

(3) All vectors in Kπ
f are analytic for φπ(h), h ∈ g.

(4) If Ψ1,Ψ2 ∈ Kπ
f , then

(Ψ1|W π(h)Ψ2) = (Ψ1|Ψ2)e−
1
4
‖h‖2+iRe(f |h).

Proof. (1) is obvious, since aπ(h) are closed operators.
Let us prove (2) ⇐. Let Ψ ∈ H and ‖Ψ‖ = 1. Taking the first two terms of the Taylor

expansion of
t 7→ (Ψ|W π(th)Ψ) = ‖Ψ‖2e− 1

4
t2‖h‖2+itRe(f |h),
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we obtain
(Ψ|φπ(h)Ψ) = Re(f |h), (Ψ|φπ(h)2Ψ) =

1
2
‖h‖2 + (Re(f |h))2.

Similarly,

(Ψ|φπ(ih)Ψ) = −Im(f |h), (Ψ|φπ(ih)2Ψ) =
1
2
‖h‖2 + (Im(f |h))2.

Clearly,
[φπ(h), φπ(ih)] = i‖h‖2.

Therefore,

‖(√2 aπ(h)− (h|f))Ψ‖2 = ‖(φπ(h) + iφπ(ih) − (h|f))Ψ‖2

=
(
Ψ|(φπ(h)2 + φ(ih)2 + i[φπ(h), φπ(ih)]

−2φπ(h)Re(f |h)− 2φπ(ih)Im(f |h) + |(f |h)|2)Ψ) = 0.

To prove (2) ⇒, note that Dom(aπ(h)) = Dom(φπ(h)) ∩ Dom(φπ(ih)). Hence if Ψ ∈
Dom(aπ(h)), then the function

R 3 t 7→ F (t) := (Ψ|W π(th)Ψ)

is C1. Now
d
dtF (t) = i√

2
(aπ(h)Ψ|W π(th)Ψ) + i√

2
(Ψ|W π(th)aπ(h)Ψ) − t

2‖h‖2F (t)

= (iRe(f |h)− t
2‖h‖2)F (t).

This implies that F (t) = ‖Ψ‖2e− 1
4
t2‖h‖2+itRe(f |h).

(3) follows immediately from (2).
(4) follows from (2) by polarization 2.

Set
Hπ

[f ] := Spancl{W π(h)Ψ : Ψ ∈ Kπ
f , h ∈ g},

where SpanclA denotes the closure of the span of the set A ⊂ H. Let P π
[f ] be the orthogonal

projection onto Hπ
[f ]. We will call Hπ

[f ] the f -coherent sector of (3.6). Set

Hπ
f := Kπ

f ⊗ Γs(h).

Hπ
[0] will be called the Fock sector of π. If Hπ

[f ] = H (resp. Hπ
[0] = H) we will say that the

representation W π is of f−coherent type (resp. of Fock type).

Theorem 3.4 (1) Hπ
[f ] is an invariant subspace of (3.6) contained in Hπ

reg.

(2) There exists a unique operator Ωπ
f : Hπ

f →Hπ
[f ] satisfying

Ωπ
f Ψ⊗W (h)Ω = e−iRe(h|f)W π(h)Ψ, Ψ ∈ Kπ

f , h ∈ g.

The operator Ωπ
f is unitary.
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(3)
Ωπ

f 1l⊗W (g) = e−iRe(g|f)W π(g)Ωπ
f , g ∈ g. (3.7)

Proof. (1) is obvious.
Let us prove (2). Let Ψ1,Ψ2 ∈ Kπ

f , h1, h2 ∈ g. Then, by Theorem 3.3 (4),

(e−iRe(h1|f)W π(h1)Ψ1|e−iRe(h2|f)W π(h2)Ψ2) = (Ψ1|Ψ2)e
i
2
Im(h1|h2)− 1

4
‖h1−h2‖2

= (Ψ1|Ψ2)(W (h1)Ω|W (h2)Ω)

Hence for αj ∈ C, Ψj ∈ Kπ
f , hj ∈ g.∥∥∥∑

j

αje−iRe(hj |f)W π(hj)Ψj

∥∥2 =
∥∥∥∑

j

αjΨj⊗W (hj)Ω
∥∥2

.

Therefore, Ωπ
f is well defined and isometric. It is obvious that its range equals Hπ

[f ].
To show (3), we note:

Ωπ
f 1l⊗W (g) Ψ⊗W (h)Ω

= e−
i
2
Im(g|h)Ωπ

f Ψ⊗W (g + h)Ω

= e−
i
2
Im(g|h)e−iRe(g+h|f)W π(g + h)Ψ

= e−iRe(g+h|f)W π(g)W π(h)Ψ

= e−iRe(g|f)W π(g) Ωπ
f Ψ⊗W (h)Ω. 2

3.5 Comparison of coherent sectors

For h ∈ h we set
W π

f (h) := Ωπ
f 1l⊗W (h)Ωπ∗

f .

Theorem 3.5 (1) The map
h 3 h 7→ W π

f (h) ∈ U(Hπ
[f ])

is a regular CCR representation

(2)
Ωπ

f Ψ⊗W (h)Ω = W π
f (h)Ψ, Ψ ∈ Kπ

f , h ∈ h.

(3) For h ∈ g we have
W π

f (h) = e−iRe(f |h)P π
[f ]W

π(h),

φπ
f (h) = P π

[f ](φ
π(h)− Re(f |h)),

aπ∗
f (h) = P π

[f ]

(
aπ∗(h)− 1√

2
(h|f)

)
,

aπ
f (h) = P π

[f ]

(
aπ(h)− 1√

2
(f |h)

)
.
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(1) and (2) are immediate.
If we multiply (3.7) from the right by Ωπ∗

f , use P π
[f ] = Ωπ

f Ωπ∗
f and the fact that P π

[f ] commutes
with W π(h), we obtain the first identity of (3). The other follow immediately. 2

Remark 3.6 Let us make a comment on the purpose of introducing the operators W π
f (h). As

we see from Theorem 3.5 (3), for various applications, as long as h ∈ g we could use W π(h)
instead of W π

f (h). The advantage of the operators W π
f (h), however, lies in the fact that they are

defined for any h ∈ h.
Note also that W π

f (h) is a different object from the f -coherent representation W f (h) intro-
duced earlier.

Theorem 3.7 Let f, g be antilinear functionals on g.

(1) Assume that g ∈ h. Then

(i) Kπ
g+f = W π

f (−ig)Kπ
f .

(ii) Hπ
[f ] = Hπ

[f+g] and P π
[f ] = P π

[f+g]. Consequently the f−coherent sector Hπ
[f ] depends

only on the class [f ] of f in g∗/h.

(iii) Set W π
coh,f (−ig) := W π

f (−ig)
∣∣∣
Kπ

f

. Then W π
coh,f (−ig) is a unitary map from Kπ

f to

Kπ
f+g.

(iv) We have W π
coh,f (−ig) = W π

f+g(−ig)
∣∣∣
Kπ

f

and W π
coh,f+g(ig) = W π

coh,f (−ig)∗.

(v) Ωπ
f = Ωπ

f+g W π
coh,f (−ig)⊗W (ig) .

(2) If g 6∈ h, then Hπ
[f ] ⊥ Hπ

[f+g].

Proof. Let us first prove (1.i). W π
f is a CCR representation, hence for h ∈ g

aπ
f (h)W π

f (−ig) = W π
f (−ig)(aπ

f (h) + 1√
2
(h|g)).

Therefore,
aπ(h)W π

f (−ig) = W π
f (−ig)(aπ(h) + 1√

2
(h|g)).

This implies W π
f (−ig)Kπ

f ⊂ Kπ
f+g. An analogous reasoning shows the converse inclusion.

(1.ii) and (1.iii) follow immediately from (1.i).
To prove (1.iv) note that W π

f (−ig) = W π
f+g(−ig), which follows from Re(g|ig) = 0.

Let us prove (1.v). Let Ψ ∈ Kπ
f and h ∈ g.

Ωπ
f+g W π

coh,f (−ig)⊗W (ig) Ψ⊗W (h)Ω

= W π
f+g(ig)Ωπ

f+g W π
f (−ig)Ψ⊗W (h)Ω

= W π
f+g(ig)W π

f+g(h)W π
f (−ig)Ψ

= W π
f+g(ig)W π

f+g(h)W π
f+g(−ig)Ψ

= W π
f (h)Ψ

= Ωπ
f Ψ⊗W (h)Ω.
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Let us prove (2). Let us first show that

0 6= Φ ∈ Kπ
f+g ∩Hπ

[f ] ⇒ g ∈ h. (3.8)

In fact, for h ∈ g we have

1l⊗a(h)Ωπ∗
f Φ = Ωπ∗

f

(
aπ(h)− 1√

2
(h|f)

)
Φ =

1√
2
(h|g)Ωπ∗

f Φ.

But RanΩπ
f = Hπ

[f ], hence Ωπ∗
f Φ 6= 0. By Theorem 3.1, this implies g ∈ h.

Now suppose that Hπ
[f ] is not perpendicular to Hπ

[f+g]. Then there exist vectors Ψ1 ∈ Kπ
f ,

Ψ2 ∈ Kπ
f+g, h1, h2 ∈ g such that

(W π(h1)Ψ1|W π(h2)Ψ2) 6= 0. (3.9)

Set Φ := P π
[f ]Ψ2. Clearly, Φ ∈ Hπ

[f ]. Note that P π
[f ] commutes with aπ(h). Hence Φ ∈ Kπ

f+g.
Clearly, (W π(−h2)W π(h1)Ψ1|Φ) equals the left hand side of (3.9), hence is nonzero. Therefore,
Φ 6= 0. By (3.8), this implies g ∈ h. 2

4 Covariant CCR representations

4.1 Definition of a covariant CCR representation

In this section we describe properties of a CCR representation equipped with a dynamics.
Let h and H be Hilbert spaces. Let g be a dense subspace of h. Let

g 3 h 7→ W π(h) ∈ U(H) (4.1)

be a CCR representation. Let ω be a self-adjoint operator on h and H a self-adjoint operator on
H. We say that the triple (W π, ω,H) is a covariant CCR representation iff g is invariant w.r.t.
eitω and

eitHW π(h)e−itH = W π(eitωh), t ∈ R, h ∈ g.

4.2 Operators dΓ(·)
Let dΓ(ω) be defined in the usual way as a self-adjoint operator on Γs(h). Recall that W (h)
denote the Weyl operators on Γs(h). It is well known that

eitdΓ(ω)W (h)e−itdΓ(ω) = W (eitωh).

Therefore, the triple (W,ω,dΓ(ω)) is a covariant CCR representation (by W we mean the Fock
representation over h recalled in Subsection 3.2).

For further reference let us note the following identities, where we set z = 1√
2
ωg:

W (ig)dΓ(ω)W (−ig) = dΓ(ω) + a∗(z) + a(z) + (z|ω−1z),

[W (g),dΓ(ω)] = −ia∗(z)W (g) + iW (g)a(z).
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4.3 Van Hove Hamiltonians

Let hn for n ∈ N be the scale of Hilbert spaces associated with the operator ω−1. This means
that for n ≥ 0, hn = Dom(ω−n/2), h−n is the space of continuous antilinear functionals on hn.
(An alternative notation for h−n is (|ω|−n/2 + 1)h).

Let f ∈ h−1. Set

z :=
1√
2
ωf ∈ (ω1/2 + ω)h.

It is easy to see that

R 3 t 7→ e
i
2
Im(f |eitωf)W

(
i(1− eitω)f

)
Γ(eitω) ∈ U(Γs(h)). (4.2)

is a strongly continuous unitary group. Therefore there exists a unique self-adjoint operator
dΓf (ω), that we will call the Van Hove Hamiltonian, such that (4.2) equals eitdΓf (ω). Formally,
the van Hove Hamiltonian is given by the following expression:

dΓf(ω) := dΓ(ω) + a∗(z) + a(z) + (z|ω−1z).

(In [De] it is called a van Hove Hamiltonian of the second kind).
Note that the infimum of the spectrum of dΓf (ω) equals 0 and

eitdΓf (ω)W (h)e−itdΓf (ω) = exp
(
iRe(f |(eitω − 1)h)

)
W (eitωh).

If f ∈ h, then dΓf (ω) = W (if)dΓ(ω)W (−if).

Theorem 4.1 (1) If f, g ∈ h−1, then the following identities holds:

eitdΓf+g(ω) = e
i
2
Im(g|eitωg)+iIm(f |(eitω−1)g)W (i(1− eitω)g)eitdΓf (ω).

(2) If moreover g ∈ h, then:

dΓf+g(ω) = W (ig)dΓf (ω)W (−ig)

Note that if we consider the f -coherent representation

h1 3 h 7→ W f(h) := W (h)eiRe(f |h), (4.3)

then it satisfies
eitdΓf (ω)W f (h)e−itdΓf (ω) = W f (eitωh).

Thus, the triple (W f , ω,dΓf (ω)
)

is a covariant CCR representation.
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4.4 Hamiltonian in the Fock sector

In the remaining part of this section we consider a covariant representation
(
W π, ω,H

)
, as at

the beginning of this section. The following facts are immediate [DG3]:

Theorem 4.2 (1) The space of vacua Kπ
0 is eitH invariant.

(2) The Fock sector Hπ
[0] is eitH invariant.

On Hπ
0 = Kπ

0 ⊗ Γs(h) we define the operator

Hπ
0 := Ωπ∗

0 HΩπ
0 .

Theorem 4.3 We have
Hπ

0 := Kπ
0 ⊗ 1l + 1l⊗ dΓ(ω),

where Kπ
0 := H

∣∣∣
Kπ

0

. Moreover,

HΩπ
0 = Ωπ

0Hπ.

4.5 Hamiltonian in a coherent sector

One can generalize the constructions described in the previous subsection to the case of coherent
sectors.

Theorem 4.4 (1) Let g be a dense subspace of h and let f be an antilinear functional on g.
Then eitHKπ

f = Kπ
eitωf

.

(2) If in addition f ∈ h−2, then Hπ
[f ] is eitH-invariant.

Proof. (1) Let Ψ ∈ Kπ
f . Then

(eitHΨ|W (h)eitHΨ) = (Ψ|W (e−itωh)Ψ)

= ‖Ψ‖2e− 1
4
‖h‖2+iRe(f |e−itωh)

= ‖Ψ‖2e− 1
4
‖h‖2+iRe(eitωf |h).

(2) Since f ∈ h−2, we have (eitω − 1)f ∈ h. Hence by Theorem 3.7, Hπ
[f ] = Hπ

[eitωf ]
. Thus it

suffices to apply (1). 2

Set
Hπ

f := Ωπ∗
f HΩπ

f .

Theorem 4.5 Suppose that g = h1 and f ∈ h−1.

(1) There exists a unique operator Kπ
f on Kπ

f such that

Hπ
f := Kπ

f ⊗ 1l + 1l⊗ dΓf (ω),
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(2) Ωπ
fHπ

f = HΩπ
f .

Proof. Let h ∈ h1. We first check that

eitHπ
f 1l⊗W (h) e−itHπ

f

= Ωπ∗
f eitH W π(h)e−iRe(f |h) e−itHΩπ

f

= Ωπ∗
f W π(eitωh)e−iRe(f |h)Ωπ

f

= 1l⊗W (eitωh)e−iRe(f |h)+iRe(f |eitωh)

= 1l⊗ eitdΓf (ω)W (h)e−itdΓf (ω).

Since linear combinations of W (h), h ∈ h1, are weakly dense in B(Γs(h)), for B ∈ B(Γs(h)) we
have

eitHπ
f 1l⊗B e−itHπ

f = eit1l⊗dΓf (ω) 1l⊗B e−it1l⊗dΓf (ω).

By Lemma A.2, this implies that Hπ
f − 1l⊗dΓf (ω) is of the form Kπ

f⊗1l for some self-adjoint
operator Kπ

f on Kπ
f . 2

4.6 Comparison of coherent sectors of a covariant representation

In this subsection we assume that g = h1 and f ∈ h−1.

Theorem 4.6 Let g ∈ h. Then

Hπ
g+f = W π

coh,f (−ig)⊗W (ig)Hπ
f W π∗

coh,f (−ig)⊗W ∗(ig).

Kπ
g+f = W π

coh,f (−ig)Kπ
f W π∗

coh,f (−ig).

Proof. This follows immediately from Theorem 3.7. 2

Other natural objects that can be introduced in the context of coherent sectors are the
following self-adjoint operators:

Kπ
[f ] := Ωπ

f Kπ
f⊗1l Ωπ∗

f ,

dΓπ
[f ](ω) := Ωπ

f 1l⊗dΓf (ω) Ωπ∗
f .

Clearly, they give a natural decomposition of the operator H on the sector Hπ
[f ]:

HP π
[f ] = Kπ

[f ] + dΓπ
[f ](ω). (4.4)

The decomposition (4.4) depends only on the class [f ] of f in g∗/h.

Theorem 4.7 If g ∈ h, then Kπ
[f+g] = Kπ

[f ] and dΓπ
[f+g](ω) = dΓπ

[f ](ω).

Theorem 4.7 follows from Theorem 3.7 (iii) and Theorem 4.1 (2).
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5 Asymptotic CCR representations

5.1 Construction of asymptotic CCR representations

Suppose that ω is a self-adjoint operator with an absolutely continuous spectrum on a Hilbert
space h. Let K be an additional Hilbert space and H a self-adjoint operator on H := K⊗Γs(h).
Let g be a subspace of h invariant w.r.t. eitω.

Throughout this section we make the following assumption:

Assumption 5.A For any h ∈ g, there exists

s− lim
t→±∞ eitH1l⊗W (e−itωh)e−itH =: W±(h).

It is easy to see that the above assumption implies the following theorem:

Theorem 5.1 (1) We have

W±(h1)W±(h2) = e−
i
2
Im(h1|h2)W±(h1 + h2), h1, h2 ∈ g.

In other words,
g 3 h 7→ W±(h) ∈ U(K ⊗ Γs(h)), (5.1)

are CCR representations.

(2)
eitHW±(h)e−itH = W±(eitωh), h ∈ g.

In other words, (W±, ω,H) are covariant CCR representations .

We will call (5.1) the asymptotic CCR representations. Let φ±(h), a±(h), a±∗(h), etc, denote
the field, annihilation, creation operators, etc. associated with the representations (5.1). All
these objects will be called “asymptotic” (or, if there will be a need for a greater precision,
“outgoing/incoming”).

5.2 Wave and scattering operators

For any antilinear functional f on g we can define the space of asymptotic f -coherent vectors
K±f , the asymptotic spaces H±

f , the asymptotic Hamiltonian in the f -coherent sector H±
f , etc.

The intertwining operators Ω±f will be called the f -coherent wave operators.
In the physical interpretation of these concepts an important role is played by the so-called

scattering operators:
Sg,f := Ω+∗

g Ω−f .

Note that they satisfy
Sg,fH−

f = H+
g Sg,f .

Suppose that we prepare a state in the f -coherent sector. It is natural to describe it by a
density matrix ρ, which is a positive trace 1 operator on H−

f .
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Suppose that we measure an observable within the sector g. We can describe it by a self-
adjoint operator A ∈ B(H+

g ). Then according to the standard rules of quantum mechanics, the
expectation value of the measurement is given by

TrSg,fρS∗g,fA.

5.3 Fock sector of asymptotic representations

Theorem 5.2 Eigenvectors of H are contained in the Fock sector K±0 .

Proof. We will show first the following property of Weyl operators on the Fock space:

w− lim
t→∞W (eitωh) = exp(− 1

4
‖h‖2). (5.2)

Let Ψ1,Ψ2 be vectors with a finite number of particles. Then, by the absolute continuity of ω,
a(eitωh)nΨi → 0 when t →∞. Hence

(Ψ1|W (eitωh)Ψ2) = exp(− 1
4
‖h‖2)(e− i√

2
a(eitωh)Ψ1|e

i√
2
a(eitωh)Ψ2) → exp(− 1

4
‖h‖2)(Ψ1|Ψ2).

Since W (eitωh) is uniformly bounded, this proves (5.2).
Assume that HΨ = λΨ. Then

(Ψ|W±(h)Ψ) = lim
t→±∞(Ψ|eitH1l⊗W (e−itωh)e−itHΨ)

= lim
t→±∞(Ψ|1l⊗W (e−itωh)Ψ) = ‖Ψ‖2 exp(−1

4‖h‖2). 2

6 Dressing operators

6.1 Dressing operator for a pair of CCR representations

Suppose that h, H are Hilbert spaces and g is a dense subspace of h. Consider two CCR
representations

g 3 h 7→ W π(h) ∈ U(H), (6.1)

g 3 h 7→ W π
ren(h) ∈ U(H). (6.2)

For the representation (6.1) we use the notation described in the previous three sections. All the
objects constructed from (6.2) will have an additional subscript ren (for “renormalized”). For
instance, φπ

ren, aπ
ren and aπ∗

ren will denote the field, annihilation and creation operators for (6.2).
Let g be an antilinear functional on g. We say that Uπ ∈ U(H) is a g-dressing operator

between (6.2) and (6.1) if for h ∈ g, we have

W π(h)Uπ = UπW π
ren(h)eiRe(h|g).

Theorem 6.1 (1) If h ∈ g, then

φπ(h)Uπ = Uπ(φπ
ren(h) + Re(g|h)),

aπ∗(h)Uπ = Uπ(aπ∗
ren(h) + 1√

2
(g|h)),

aπ(h)Uπ = Uπ(aπ
ren(h) + 1√

2
(h|g)).
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(2) Let f be an antilinear functional on g. Then Kπ
g+f = UπKπ

ren,f .

(3) Set Uπ
coh,f := Uπ

∣∣∣
Kπ

ren,f

. Then Uπ
coh,f is a unitary operator from Kπ

ren,f to Kπ
f+g.

(4) Hπ
[g+f ] = UπHπ

ren,[f ].

(5) Ωπ
g+f = UπΩπ

ren,f Uπ∗
coh,f⊗1l

Proof. (1) is immediate.
Consider Ψ ∈ Kπ

ren,f . Then

(UπΨ|W π(h)UπΨ) = eiRe(h|g)(Ψ|W π
ren(h)Ψ) = e−

1
4
‖h‖2+iRe(h|f+g)‖Ψ‖2.

This proves (2), which implies (4) and (3).
To show (5), we compute for h ∈ g, Ψ ∈ Kren,f ,

UπΩπ
ren,f Uπ∗

coh,f⊗1l Ψ⊗W (h)Ω = UπΩπ
ren,f Uπ∗Ψ⊗W (h)Ω

= e−iRe(h|f)UπW π
ren(h)Uπ∗Ψ = e−iRe(h|f+g)W π(h)Ψ = Ωπ

f+g Ψ⊗W π(h)Ω. 2

6.2 Dressing operators for a pair of covariant representations

Suppose that H and Hren are self-adjoint operators on H and ω is a self-adjoint operator on
h. We assume that g = h1. Consider two covariant CCR representations (W π, ω,H) and
(W π

ren, ω,Hren). Recall that this means that the representations of CCR (6.1) and (6.2) satisfy

eitHW π(h)e−itH = W π(eitωh). (6.3)

eitHrenW π
ren(h)e−itHren = W π

ren(e
itωh). (6.4)

Let g ∈ h−2 and let Uπ ∈ U(H) be a g-dressing operator between (6.1) and (6.2). We say that
it is a covariant g-dressing operator between the covariant representations (6.3) and (6.4) if

eitHUπe−itHren = UπW π
ren(i(1− eitω)g)e−

i
2
Im(g|e−itωg)

= W π(i(1− eitω)g)Uπe
i
2
Im(g|e−itωg), t ∈ R.

Theorem 6.2 Suppose that g = h1 and f, g ∈ h−1. Then

Kπ
g+f = Uπ

coh,fKπ
ren,fUπ∗

coh,f .

Proof. Recall that

Ωπ∗
ren,fHrenΩπ

ren,f = Hπ
ren,f = Kπ

ren,f ⊗ 1l + 1l⊗ dΓf(ω),

Ωπ∗
g+fHΩπ

g+f = Hπ
g+f = Kπ

g+f ⊗ 1l + 1l⊗ dΓg+f(ω).
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Hence
eitUπ∗

coh,f Kπ
g+fUπ

coh,f ⊗ eitdΓg+f (ω)

= Uπ∗
coh,f⊗1l eitHπ

g+f Uπ
coh,f⊗1l

= Uπ∗
coh,f⊗1l Ωπ∗

g+feitHΩπ
g+f Uπ

coh,f⊗1l

= Ωπ∗
ren,fUπ∗eitHUπΩπ

ren,f

= e−
i
2
Im(g|e−itωg)Ωπ∗

ren,fW π
ren(i(1− eitω)g)eitHrenΩπ

ren,f

= e−
i
2
Im(g|e−itωg)+iRe(f |i(1−eitω)g) 1l⊗W (i(1− eitω)g) eitHπ

ren,f

= eitKπ
ren,f ⊗ e

i
2
Im(g|eitωg)+iIm(f |(eitω−1)g)W (i(1− eitω)g)eitdΓf (ω)

= eitKπ
ren,f ⊗ eitdΓg+f (ω). 2

6.3 Coherent asymptotic renormalization

Let g ∈ h−1. Suppose that Hren is a self-adjoint operator on H. Set

U(t) = e
i
2
Im(g|e−itωg)eitHW (i(1− e−itω)g)e−itHren

= eitHe−it1l⊗dΓg(ω)eit1l⊗dΓ(ω)e−itHren .
(6.5)

Clearly, Im(g|e−itωg) is well defined and (1 − e−itω)g ∈ h, therefore U(t) is well defined.
Moreover, in (6.5) we used the identity from Theorem 4.1.

Suppose the following assumption holds:

Assumption 6.A s− limt→±∞ U(t) and s− limt→±∞ U∗(t) exist.

Under Assumption 6.A we set U± := s− limt→±∞ U(t). Clearly, s− limt→±∞ U∗(t) = U±∗.

Theorem 6.3 Suppose Assumption 5.A holds for the Hamiltonian H and the space g = h1.
Suppose also that Assumption 6.A is satisfied. Then the following is true:

(1) Assumption 5.A holds for the operator Hren with g = h1, that means, for any h ∈ h1, there
exists

s− lim
t→±∞ eitHren1l⊗W (e−itωh)e−itHren =: W±

ren(h).

(2)
W±

ren(h1)W±
ren(h2) = e−

i
2
Im(h1|h2)W±

ren(h1 + h2), h1, h2 ∈ h1,

eitHrenW±
ren(h)e−itHren = W±

ren(e
itωh), h ∈ h1.

In other words, the triples (W±
ren, ω,Hren) are covariant CCR representations .
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(3) For h ∈ h1, we have

W±(h)U± = U±W±
ren(h)eiRe(h,g),

eitHU±e−itHren = U±W±
ren(i(1− eitω)g)e−

i
2
Im(g|e−itωg)

= W±(i(1− eitω)g)U±e
i
2
Im(g|e−itωg).

Therefore, U± are covariant g-dressing operators between the covariant CCR representa-
tions (W±

ren, ω,Hren) and (W±, ω,H).

Proof. We have

eitHren1l⊗W (e−itωh)e−itHren

= eiRe((1−e−itω)g|e−itωh)eitHren 1l⊗W (−i(1− e−itω)g)W (e−itωh)W (i(1− e−itω)g) e−itHren

= eiRe((1−e−itω)g|e−itωh)U(t)∗eitH1l⊗W (e−itωh)e−itHU(t)

→ e−iRe(g|h)U±∗W±(h)U±,

where we used limt→∞(g|e−itωh) = 0, which follows from the Riemann-Lebesgue lemma. This
proves (1), (2) and the first identity of (3).

Let us now prove the second identity of (3). We compute:

eitHU(s)e−itHren

= e
i
2
Im(g|e−isωg)ei(t+s)HW (i(1− e−isω)g)e−i(s+t)Hren

= e
i
2
Im(g|e−isωg)e

i
2
Im((e−i(s+t)ω−e−isω)g|(1−e−i(s+t)ω)g)

×ei(s+t)HW (i(e−i(s+t)ω − e−isω)g)W (i(1 − e−i(s+t)ω)g)e−i(s+t)Hren

= e
i
2
Im(g|e−itωg)eiIm(g|e−isω(1−e−itω)g)ei(s+t)HW (i(e−i(s+t)ω − e−isω)g)e−i(s+t)H

×e
i
2
Im(g|e−i(s+t)ωg)ei(s+t)HW (i(1− e−i(s+t)ω)g)e−i(s+t)Hren

→ e
i
2
Im(g|e−itωg)W±(i(1− eitω)g)U±,

where we used the Riemann-Lebesgue lemma to show that lim
s→∞ Im(g|e−isω(1− e−itω)g) = 0. 2

7 Pauli-Fierz Hamiltonians

In this section we apply the abstract formalism developed in Sections 3-5 to a class of Pauli-
Fierz Hamiltonians. We will formulate a set of assumptions that will guarantee a satisfactory
scattering theory and the existence of a dressing operator.
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7.1 Coupling Fock space

Let h, K be Hilbert spaces. Let h1 and K1 be dense subspaces of h and K. Let
◦⊗ denote the

algebraic tensor product. Let

(K1

◦⊗h1)× h1 3 (Ψ1,Ψ2) 7→ (Ψ1|vΨ2) ∈ C

be a sesquilinear form.
Let

◦
Γs(h1) denote the algebraic Fock space over the vector space h1. We define the annihila-

tion form and creation forms Wick(v∗) and Wick(v) as the forms on K⊗Γs(h) with the domain

K1

◦⊗◦
Γs(h1) ⊂ K ⊗ Γs(h) as follows: if h1, h2 ∈ h1 and Ψ1,Ψ2 ∈ K1, then

(Ψ2⊗h⊗m
2 |Wick(v)Ψ1⊗h⊗n

1 ) =

{ √
m(Ψ2 ⊗ h2|vh1)(h2|h1)n, m = n + 1

0, m 6= n + 1;

(Ψ2⊗h⊗m
2 |Wick(v∗)Ψ1⊗h⊗n

1 ) =
{ √

n(Ψ2|v∗Ψ1⊗h1)(h2|h1)m m = n− 1,
0 m 6= n− 1

Note that if v is bounded, then Wick(v) and Wick(v∗) extend to closed operators adjoint to
one another. We will write Wick(v1 + v∗2) for Wick(v1) + Wick(v∗2).

For a vector z ∈ h the operators |z) ∈ B(C, h) and its adjoint (z| ∈ B(h, C) are defined in
the in the usual way:

C 3 λ 7→ |z)λ := λz ∈ h, h 3 h 7→ (z|h := (z|h) ∈ C.

Note that the usual creation and annihilation operators correspond to the case K = C: if z ∈ h,
then

Wick(|z)) = a∗(z), Wick((z|) = a(z).

For further reference let us note the identities

W (ig)Wick(v)W (−ig) = Wick(v) + 1√
2
1l⊗(g|v,

W (ig)Wick(v∗)W (−ig) = Wick(v∗) + 1√
2
v∗1l⊗|g).

(7.1)

(In the above identities we dropped the factors ⊗1lΓs(h)).
Let us note the following inequalities:

Lemma 7.1 For Ψ ∈ Γs(h), R > 0 and a positive operator ω on h we have

‖Wick(v∗)Ψ‖2 ≤ (Ψ|1l⊗dΓ(ω)Ψ)‖v∗ 1l⊗ω−1 v‖; (7.2)

|(Ψ|Wick(v∗)Ψ)| ≤ ‖1l⊗ ω−
1
2 v(K + R)−

1
2 ‖B(K,K⊗h)‖(K + R)

1
2 ⊗ 1lΨ‖‖1l ⊗ dΓ(ω)

1
2 Ψ‖. (7.3)
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Proof. The proof of the first inequality can be found e.g in [DJ] and [GGM]. The second
inequality is proved e.g in [GGM, Corollary 3.10]). For the reader’s convenience we will show
how the first inequality implies the second.

Set ṽ := v(K + R)−1/2. Now

|(Ψ|Wick(v∗)Ψ)| = |((R + K)1/2⊗1l Ψ | Wick(ṽ∗)Ψ
)|

≤ ‖(R + K)1/2⊗1l Ψ‖‖Wick(ṽ∗)Ψ‖
≤ ‖(R + K)1/2⊗1l Ψ‖‖1⊗ω−1/2 ṽ‖‖1l ⊗ dΓ(ω)1/2Ψ‖.

2

7.2 Pauli-Fierz Hamiltonians

Consider a positive operator K on K and a positive operator ω on h. The operator

H0 := K ⊗ 1l + 1l⊗ dΓ(ω), acting on K ⊗ Γs(h)

will be called a free Pauli-Fierz Hamiltonian.
The following assumption is weaker than Assumption 2.B:

Assumption 7.A v is a form on K1⊗h1 ×K1 such that lim sup
R→∞

‖ω−1/2v(K + R)−1/2‖ < 1/2.

From the inequality (7.3) one deduces the following theorem:

Theorem 7.2 Under Assumption 7.A, the quadratic form

Wick(v + v∗)

is form bounded wrt H0 with the bound less than 1. Therefore, by the KLMN theorem, we can
define the Pauli-Fierz Hamiltonian as the self-adjoint operator

H := H0 + Wick(v + v∗),

with the same form domain as H0.

7.3 Asymptotic CCR representations for Pauli-Fierz Hamiltonians

As before, let hn be the scale of Hilbert spaces associated with ω−1.
The following assumption can be called the short range condition and is the equivalent of

Assumption 2.C:

Assumption 7.B There exists a subspace g ⊂ h1 ∩ Dom(ω1/2) dense in h1 in the topology of
h1 such that for h ∈ g and almost all t ∈ R, the operator

B(t) :=
(
1lK⊗(e−itωh| v + hc

)
(1+K)−1/2 (7.4)

is bounded and ∫ ∞

0
‖B(t)‖dt < ∞.
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Remark 7.3 Note that in (7.4) 1lK⊗(e−itωh| v denotes an operator in B(K) and hc stands for
its hermitian conjugate, that is the operator v∗ 1lK⊗|e−itωh).

Theorem 7.4 Suppose Assumptions 7.A and 7.B hold. Then

(1) For all h ∈ h1 there exist

W±(h) := s− lim
t→±∞ eitH1l⊗W (e−itωh)e−itH . (7.5)

(2) The map
h1 3 h 7→ W±(h) (7.6)

is strongly continuous.

Consequently (W±, ω,H) are two regular covariant CCR representations.

(3) For all h ∈ h1

W±(h)(i + H)−1/2 = lim
t→±∞ eitH1l⊗W (e−itωh)(i + H)−1/2e−itH . (7.7)

(4) The map
h1 3 h 7→ W±(h)(i + H)−1/2 (7.8)

is norm continuous.

(5) for all h ∈ h1, Dom(H + c)
1
2 ⊂ Dom(φ±(h)) and

φ±(h)(H + c)−
1
2 = s− lim

t→±∞ eitHφ(e−itωh)eitH(H + c)−
1
2 .

(6) for any ε > 0 the CCR representations W± are of Fock type when restricted to 1l[ε,+∞[(ω)h.

Proof. For shortness, we drop 1lK⊗ in the formulas below. We have

W (e−itωh) = e−itH0W (h)eitH0 ,

which implies that t 7→ (1 + H0)−1W (e−itωh)(1 + H0)−1 is C1 and

∂t(1 + H0)−1W (e−itωh)(1 + H0)−1

= −(1 + H0)−1[H0, iW (e−itωh)](1 + H0)−1

= − 1√
2
(1 + H0)−1

(
a∗(e−itωh)W (e−itωh)−W (e−itωh)a(e−itωh)

)
(1 + H0)−1.

(7.9)

Using the fact that eitωh ∈ Dom(ω−1/2) we see that (1 + H0)−1/2a∗(e−itωh) is bounded. There-
fore, from (7.9) and Lemma A.1 we can actually conclude that

t 7→ (1 + H0)−1/2W (e−itωh)(1 + H0)−1/2
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is C1 and

∂t(1 + H0)−1/2W (e−itωh)(1 + H0)−1/2

= − 1√
2
(1 + H0)−1/2

(
a∗(e−itωh)W (e−itωh)−W (e−itωh)a(e−itωh)

)
(1 + H0)−1/2.

(7.10)

But (1 + H0)−1/2(c + H)1/2 is bounded, so t 7→ (c + H)−1/2W (e−itωh)(c + H)−1/2 is C1 and we
can replace (1 + H0)−1/2 with (c + H)−1/2 in (7.10).

Now, t 7→ (c + H)−1eitHW (e−itωh)e−itH(c + H)−1 is C1 and we have

∂t(c + H)−1eitHW (e−itωh)e−itH(c + H)−1

= (c + H)−1eitH i[H,W (e−itωh)]e−itH(c + H)−1

+eitH
(
∂t(c + H)−1W (e−itωh)(c + H)−1

)
e−itH

= eitH(c + H)−1i[Wick(v + v∗),W (e−itωh)](c + H)−1e−itH

= 1√
2
(c + H)−1eitHW (e−itωh)

(
(e−itωh|v − v∗|e−itωh)

)
e−itH(c + H)−1,

where, in the last step we used the identities (7.1). Eventually, using again Lemma A.1, we can
write

∂teitHW (e−itωh)e−itH(c + H)−1/2

= 1√
2
eitHW (e−itωh)

(
(e−itωh|v − v∗|e−itωh)

)
e−itH(c + H)−1/2.

(7.11)

The norm of (7.11) can be estimated by

c
∥∥∥((e−itωh|v − v∗|e−itωh)

)
(1+K)−1/2

∥∥∥ .

By Assumption 7.B, if h ∈ g, this is integrable. Therefore, by the Cook method there exists

lim
t→±∞ eitHW (e−itωh)(i + H)−1/2e−itH . (7.12)

If h ∈ h1, then we will find a sequence (hn) in g such that hn → h in the norm of h1. Clearly,
‖hn‖h1 is uniformly bounded. Now, using Lemma A.1 and estimate (7.3) we get

sup
t
‖eitHW (e−itωh)e−itH(c + H)−1/2 − eitHW (e−itωhn)e−itH(c + H)−1/2‖

≤ sup
t

c‖(W (e−itωh)−W (e−itωhn))(1 + dΓ(ω))−1/2‖
≤ c1(‖h − hn‖+ ‖φ(h − hn)(1 + dΓ(ω))−1/2‖
≤ c2

(‖h− hn‖+ ‖ω−1/2(h− hn)‖) .

This proves the existence of the norm limit (7.12) for an arbitrary h ∈ h1, and also shows

lim
n→∞W±(hn)(c + H)−1/2 = W±(h)(c + H)−1/2.
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This proves (3) and (4). Now (1) and (2) follow by a simple density argument. The proof of (5)
can be done as in eg [Ge2, Thm. 8.2]. It remains to prove (6). We will use the notion of the
number quadratic form associated to a regular CCR representation (see eg [DG3, Sect. 4.2]).
Let us fix ε > 0 and let f be a finite dimensional subspace in hε := 1l[ε,+∞[(ω)h. Let n±f be the
quadratic form equal to:

n±f (u, u) =
n∑

i=1

‖a±(fi)u‖2, with domain
n⋂

i=1

Dom(a±(fi)).

where (f1, . . . , fn) is an orthonormal basis of f. It is easy to see that n±f does not depend on the
choice of the o.n.b. of f. One can then define the number quadratic forms n± as:

n± := sup
f⊂hε, dimf<∞

n±f .

Then (see e.g. [DG3, Thm. 4.3]) the CCR representations W± are of Fock type iff n± are
densely defined. We claim that there exist a constant C, independent of f ⊂ hε such that:

n±f (u, u) ≤ C(u, (H + c)u), u ∈ Dom((H + c)
1
2 ), (7.13)

which implies that Dom((H + c)
1
2 ) ⊂ Dom(n±) and hence completes the proof of (6). In fact

using (5), we obtain for u ∈ Dom((H + c)
1
2 ):

n±f (u, u) = lim
t→±∞(e−itHu,dΓ(eitωπfe−itω)e−itHu), (7.14)

where πf is the orthogonal projection on f. Next we have eitωπfe−itω ≤ 1l[ε,+∞[(ω) ≤ ε−1ω, and
hence dΓ(eitωπfe−itω) ≤ ε−1dΓ(ω) ≤ C(H + c), uniformly w.r.t. f. By (7.14) this implies (7.13)
and completes the proof of the theorem. 2

7.4 Renormalized Pauli-Fierz Hamiltonian

The following assumption is weaker than Assumption 2.D:

Assumption 7.C We assume that

v = |z)⊗ 1lK + vren,

z ∈ h, vren ∈ B(Dom(K
1
2 ),K ⊗ h),

(z|(1 + ω−1)z) < ∞,

‖ω−1vren(1+K)−1/2‖ < ∞.

Set
g :=

√
2ω−1z.

Note that g ∈ ω−1/2h.
The assumption below is the equivalent of Assumption 2.F:
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Assumption 7.D For almost all t ∈ R, the operator

C(t) :=
(
1lK⊗(e−itωg| vren + hc

)
(1+K)−1/2

is bounded and ∫ ∞

0
‖C(t)‖dt < ∞.

Introduce the renormalized Hamiltonian

Hren := Kren ⊗ 1l + 1l⊗ dΓ(ω) + Wick(vren + v∗ren),

where
vren := v − 1lK ⊗ |z),

Kren := K + (z|ω−1z)− 1l⊗(ω−1z| v − v∗ 1l⊗|ω−1z)

= K − (z|ω−1z)− 1l⊗(ω−1z |vren − v∗ren1l⊗ |ω−1z).

Note that if g ∈ h, then
H = W (ig)HrenW (−ig).

As in (6.5), set
U(t) = e

i
2
Im(g|e−itωg)eitHW (i(1− e−itω)g)e−itHren .

Theorem 7.5 (1) Suppose Assumptions 7.A, 7.C and 7.D hold. Then there exist

U± := s− lim
t→±∞U(t).

Moreover,
U±∗ = s− lim

t→±∞U∗(t).

(2) Suppose in addition Assumption 7.B. Then there exist the limits

s− lim
t→±∞ eitHren1l⊗W (e−itωh)e−itHren =: W±

ren(h).

Moreover, U± are covariant g-dressing operators between the representations (W±
ren, ω,Hren)

and (W±, ω,H) and satisfy all the properties described in Section 6.

Proof. We have

d
dte

itHe−it1l⊗dΓg(ω)

= ieitH (Wick(v + v∗) + K ⊗ 1l− 1l⊗ a∗(z)− 1l⊗ a(z) − (z|ωz)) e−it1l⊗dΓg(ω)

= ieitH
(
Wick(vren + v∗ren) + Kren ⊗ 1l + (ω−1z|vren + v∗ren|ω−1z)

)
e−it1l⊗dΓg(ω)

and
d
dte

it1l⊗dΓ(ω)e−itHren = −ieit1l⊗dΓ(ω) (Kren ⊗ 1l + Wick(vren + v∗ren)) e−itHren .
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Hence,

d
dtU(t) =

(
d
dte

itHe−it1l⊗dΓg(ω)
)
eit1l⊗dΓ(ω)e−itHren + eitHe−it1l⊗dΓg(ω) d

dte
it1l⊗dΓ(ω)e−itHren

= ie
i
2
Im(g|e−itωg)eitH

(
Wick(vren + v∗ren) + (ω−1z|vren + v∗ren|ω−1z)

−W (i(1− e−itω)g)Wick(vren + v∗ren)W (−i(1− e−itω)g)
)
W (i(1− e−itω)g)e−itHren

= ie
i
2
Im(g|e−itωg)eitH

(
(e−itωg|vren + v∗ren|e−itωg)

)
W (i(1− e−itω)g)e−itHren .

Therefore ∫∞
0 ‖ d

dtU(t)(i + Hren)−1/2‖dt < ∞.

This means that Assumption 6.A holds and we can apply the results of Section 6. 2

7.5 Covariance of renormalized objects

The renormalization depends on the splitting of v given in Assumption 7.C into a singular scalar
part and the regular part. This splitting is to some extent arbitrary. In this subsection we study
how various “renormalized” objects depend on this splitting.

We will replace g by g̃ = g + h, for h ∈ h and denote with tildes the new objects obtained
with the function g̃.

Theorem 7.6 Suppose Assumptions 7.A, 7.B, 7.C and 7.D hold. Let f ∈ h−1. Then

(1) H̃ren = W (−ih)HrenW
∗(ih).

(2) W̃±
ren(h1) = W (−ih)W±

ren(h1)W ∗(ih), h1 ∈ h1.

(3) K̃±ren,f = W (−ih)K±ren,f .

(4) H̃±
ren,[f ] = W (−ih)H±

ren,[f ].

(5) H̃±
ren,f = W (−ih)H±

ren,f .

(6) K̃±
ren,f = W (−ih)K±

ren,fW (ih).

(7) H̃±
ren,f = W (−ih)⊗1lH±

ren,f W (ih)⊗1l.

(8) If in addition h ∈ h1, then there exists Ũ± and Ũ± = W±(−ih)U± 1l⊗W (ih).

Proof. Direct computation proves (1). To prove (2) we compute for h1 ∈ h1

W̃±
ren(h1)

= s− limt→±∞ W (−ih)eitHrenW (ih)W (e−iωth1)W (−ih)e−itHrenW (ih)

= s− limt→±∞ eiRe(h|e−itωh1)W (−ih)eitHrenW (e−iωth1)e−itHrenW (ih)

= W (−ih)W±
ren(h1)W (ih),
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since (h|e−itωh1) → 0 when t → ±∞ by the Riemann-Lebesgue lemma.
(1) and (2) directly imply all the statements but (8), which we prove below:

U∗(t)Ũ (t)W (−ih)

= eitHrene−itdΓ(ω)eitdΓg(ω)e−itdΓg̃(ω)eitdΓ(ω)W (−ih)e−itHren

= e−
i
2
Im(h|eitωh)−iIm(g|(eitω−1)h)eitHrene−itdΓ(ω)W (−i(1− eitω)h)eitdΓ(ω)W (−ih)e−itHren

= e−
i
2
Im(h|eitωh)−iIm(g|(eitω−1)h)eitHrenW (i(1− e−itω)h)W (−ih)e−itHren

= e−iIm(g̃|eitωh)+iIm(g|h)eitHrenW (−ie−itωh)e−itHren

→
strongly

eiIm(g|h)W±
ren(−ih),

where we used the Riemann-Lebesgue lemma, and the fact that h ∈ h1, g̃ ∈ h−1 to show that
limt→∞(g̃|eitωh) = 0. Therefore

Ũ± = eiIm(g|h)U±W±
ren(−ih)W (ih) = W±(−ih)U±W (ih). 2

A Appendix

In the appendix we prove a number of technical lemmas needed in Section 7.

A.1 Differentiability of operator valued functions

Lemma A.1 Consider a function

]− ε, ε[3 t 7→ C(t) ∈ B(H). (A.1)

Suppose that for some dense subspaces B, D and Φ ∈ B, Ψ ∈ D the derivative

d
dt

(Φ|C(t)Ψ) (A.2)

exists. Suppose that ] − ε, ε[3 t 7→ C ′(t) ∈ B(H) is a continuous function and (A.2) equals
(Φ|C ′(t)Ψ). Then (A.1) is norm differentiable and its derivative equals C ′(t), that means

lim
s→0

C(t + s)− C(t)
s

= C ′(t). (A.3)

Proof. It suffices to prove (A.3) for t = 0. For Φ ∈ B and Ψ ∈ D,(
Φ|(s−1(C(s)− C(0)− C ′(0)

)
Ψ
)

= s−1
∫ s
0 (Φ|(C ′(s1)− C ′(0)

)
Ψ
)
ds1.

Hence (
Φ|(s−1(C(s)− C(0)− C ′(0)

)
Ψ
)

≤ sup{‖C ′(s1)− C ′(0)‖ : |s1| < |s|}‖Φ‖‖Ψ‖.
Thus

‖s−1
(
C(s)− C(0)

) −C ′(0)‖ ≤ sup{‖C ′(s1)−C ′(0)‖ : |s1| < s} → 0. 2
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A.2 1-parameter groups of ∗-automorphisms

Let
R 3 t 7→ αt (A.4)

be a group ∗-automorphisms of the ∗-algebra B(H). We say that it is pointwise weakly contin-
uous, if

t 7→ (Φ|αt(A)Ψ), A ∈ B(H), Φ,Ψ ∈ H,

is continuous. It is well known that if (A.4) is a pointwise weakly continuous group of ∗-
automorphisms of the ∗-algebra B(H), then there exists a self-adjoint operator H, unique up to
an additive constant, such that αt(A) = eitHAe−itH , see [BR, vol. I, Ex. 3.2.14 and 3.2.35].

Lemma A.2 Suppose that αt and H are as above. Assume that H = H1⊗H2 and there exists
a self-adjoint operator H2 on H2 such that for any A2 ∈ B(H2) we have

αt(1l⊗A2) = 1l⊗ eitH2A2e−itH2 .

Then there exists a unique self-adjoint operator H1 on H1 such that

H = H1⊗1l + 1l⊗H2.

Proof. For A1 ∈ B(H1), αt(A1⊗1l) commutes with the operators of the form 1l⊗A2, A2 ∈
B(H2). Hence αt(A1⊗1l) is of the form B1⊗1l with B1 ∈ B(H1). Therefore,

αt
1(A1)⊗ 1l := αt(A1⊗1l)

defines a pointwise weakly continuous group of ∗-automorphisms of the ∗-algebra B(H1). There-
fore, there exists a self-adjoint operator H̃1 on H1 such that

αt
1(A1) = eitH̃1A1e−itH̃1 .

Set
H̃ = H̃1⊗1l + 1l⊗H2.

Clearly,
eitHA1⊗A2e−itH = eitH̃A1⊗A2e−itH̃ .

By the weak density,
eitHAe−itH = eitH̃Ae−itH̃ ,

for all A ∈ B(H). Hence c := H̃ −H is a constant. We set H1 := H̃1 − c. 2
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A.3 Continuity of Weyl operators

Proposition A.3 For h1, h2 ∈ h,

‖(W (h1)−W (h2))Ψ‖ ≤ 2 sin
(‖h1 − h2‖(‖h1‖+ ‖h2‖)

)‖Ψ‖+ 2‖ sin φ(h1−h2)
2 Ψ‖.

Proof. We have

W (h1)−W (h2) = W (h1)(1l − e−
i
2
Im(h1|h2))

+e−
i
2
Im(h1|h2)W (h1)(1l −W (h2 − h1)).

We note also that
Im(h1|h2) =

1
2
Im ((h1|h2 − h1) + (h1 − h2|h2)) .

Hence
|Im(h1|h2)| ≤ 1

2
(‖h1‖+ ‖h2‖)‖h1 − h2‖.

Moreover
|eis − 1| = 2

∣∣∣sin s

2

∣∣∣ .
2
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[FGS] Fröhlich, J, Griesemer, M., Schlein, B.: Asymptotic completeness for Compton scattering,
preprint 2003.

[FNV] Fannes, M., Nachtergaele, B., Verbeure, A.: The equilibrium states of the spin-boson
model, Commun. Math. Phys. 114,(1988), 537-552.
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