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Abstract

We study the scattering theory for a class of non-relativistic quantum field theory models
describing a confined non-relativistic atom interacting with a massless relativistic bosonic
field. We construct invariant spaces Héﬁ which are defined in terms of propagation properties
for large times and which consist of states containing a finite number of bosons in the region
{Jz| > ct} for t — +oo. We show the existence of asymptotic fields and we prove that
the associated asymptotic CCR representations preserve the spaces HE and induce on these
spaces representations of Fock type. For these induced representations, we prove the property
of geometric asymptotic completeness, which gives a characterization of the vacuum states
in terms of propagation properties. Finally we show that a positive commutator estimate
imply the asymptotic completeness property, ie the fact that the vacuum states of the induced
representations coincide with the bound states of the Hamiltonian.

1 Introduction

In this section we describe the class of models that we will consider in this paper, discuss the
hypotheses and describe the main results.

1.1 Massless Nelson models

We will consider in this paper a quantum field theory model which describes a confined atom
interacting with a field of massless scalar bosons. This model is usually called the Nelson model
(see [Ne], [A], [Ar], [LMS]). It was originally introduced in [Ne| as a phenomenological model of
non-relativistic particles interacting with a quantized scalar field.

The atom is described with the Hilbert space

K := L*(IR3F dx),
where x = (x1,...,Xp), X; is the position of particle 7, and the Hamiltonian:
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where m; is the mass of particle 7, V;; is the interaction potential between particles ¢ and j and
W is an external confining potential.
We will assume

Vij is A — bounded with relative bound 0,
W e L3 (R*N), W(x) > colx|?* —¢1, co > 0, a > 0.

loc

(HO)

It follows from (H0) that K is symmetric and bounded below on C$°(IR3*""). We still denote by

K its Friedrichs extension. Moreover we have D((K + b)%) C HY(R*")n D(|x|*), which implies
that )
(1.1) |x|“(K 4 b)™ 2 is bounded.

Note also that (H0) implies that K has compact resolvent on L2(IR*”). The one-particle space
for bosons is

h:= L*(IR3,dk),
where the observable k is the boson momentum. An important role will be played by the
observable

T =1 acting on b.

@7
The observable x has the interpretation of the Newton- Wigner position. In fact the one-particle
space for relativistic massless scalar bosons can be written as L? (IR37 %) In this representation
the selfadjoint operator

INwW = iyk\%%yky—%

is called the Newton-Wigner position observable (see eg [Sch, Chap. 3c]). By the unitary map
h(k) — |k:|7%h(k) between L2(IR3, %) and L2(IR?,dk) the observable zxw is sent onto the
observable x. Hence x has the interpretation of the Newton-Wigner position.

The bosonic field is described with the Fock space I'(h) and the Hamiltonian dI'(|k]).

The non-interacting system is described with the Hilbert space

H:=K®I(h)

and the Hamiltonian
Hy:=K®lpy) + 1@ dI'(|k|)

We assume that the interaction is of the form

N
(1.2) V=Y o(9(x))),

J=1

for

005059) = = [ 0090 (1) + T () alk)

where f denotes the inverse Fourier transform of f and the functions v; satisfy

(10) /(1 IR oy (R)2dk < 00, 1< j < P.



The Hamiltonian describing the interacting system is now:
H:=Hy+V.

The assumption (10) implies, using Prop. A.1, that ¢(?;(x;)) is Hy—bounded with infinitesimal
bound and hence that H is selfadjoint and bounded below on D(Hjy).

Note that the interaction is translation invariant (although the full Hamiltonian H is not
because of the confining potential W). Note also that using the notation introduced in (2.1) we
can write:

V = ¢(v),
where v € B(KC, K ® b) is defined by
P .
(1.3) vi(X1,...,Xp) = Z eﬂk‘xjvj(k:)w(xl, ce XP).
j=1

1.2 Scattering theory for confined Nelson models

The mathematical framework of scattering theory for confined Nelson models, known as the LSZ
approach, is based on the asymptotic Weyl operators. These are defined as the limits:

WE(f) :=s- lim ™ W(f)e 4,

t—+o0

where f; = e (k) f and f belongs to a suitably chosen dense subspace bg of .

Once constructed they define two regular CCR representations called the asymptotic CCR
representations. The asymptotic fields ¢~ (f) are the hermitian fields associated to these repre-
sentations.

In very broad terms, the basic goal of scattering theory is to study the nature of these
representations and in particular to understand the nature of their Fock sub-representations (if
they exist).

To discuss the scattering theory of confined Nelson models more in details, we will first
generalize the discussion to include the massive case, ie consider a dispersion relation w(k) =
(k2 + mQ)% for m > 0, and introduce some terminology: a Nelson model satisfying (H0) and
(10) is called infrared convergent if assumption (13) below is satisfied, ie

Ja+we) Pk < 00, 1< < P,
and infrared divergent if (13) is not satisfied, ie
/(1 + w(k)?)|v;(k)|*dk = +oo, for some j.

Note that if m > 0, (10) implies (13), ie massive Nelson models are always IR convergent. Note
also that a massless model with an infrared cutoff (ie such that v;(k) = 0 for |k| < €) is clearly IR
convergent and is actually very similar to (and in some aspects simpler than) a massive Nelson
model.

In the physical case with an ultraviolet-cutoff interaction, we have v;(k) = w(k)
x(k) € C3°(IR3), so the massless Nelson model is IR divergent.
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Let us now discuss two basic results on confined Nelson models.

- It is known (see [DG2] in the massive case and [G] in the massless case) that IR convergent
Nelson models admit a ground state in Hilbert space, and (see [LMS]) that IR divergent Nelson
models do not admit a ground state in Hilbert space (an elementary proof of this fact can be
found in [DG4]). It is believed but not proved that IR divergent Nelson models do not have
bound states at all.

- The existence of asymptotic fields is known to hold both for IR convergent and IR divergent
Nelson models. A proof is given in Sect. 8 under the (very weak) assumption (I4). (It turns
out that the behavior of v;(k) for small £ does not play any role for the existence of asymptotic

fields). The natural vector space hg is then D(uf%).

Finally let us point out that the bound states of the Hamiltonian play a fundamental role
because it is easy to see that they are vacua for the asymptotic CCR representations.

IR convergent Nelson models

For IR convergent Nelson models, due to the existence of bound states, the asymptotic CCR
representations admit a non trivial sub-representation of Fock type (ie unitarily equivalent to a
direct sum of Fock representations).

One can then define isometric operators QF called the wave operators between a direct sum
of copies of Fock spaces and subspaces H* of H.

One can then ask the following two fundamental questions:

1) are the asymptotic CCR representations entirely of Fock type?

if this property holds the wave operators are unitary.

2) are the spaces K of vacua for the asymptotic CCR representations identical to the space
of bound states of the Hamiltonian?

this second property is called the asymptotic completeness property.

Properties 1) and 2) were first proved in [DG2] for massive Nelson models. Later they
were proved in [FGS] by similar methods for non confined massless Nelson models, with an
infrared cutoff on the interaction, for energies below the ionization energy of the atom. Let us
finally mention the paper by Spohn [Sp| where the author considers a quantized photon field
interacting with a confined electron in the dipole approximation. The confining potential is
supposed to be a small perturbation of a quadratic potential and hence the full Hamiltonian is a
small perturbation of a solvable, quadratic Hamiltonian. It is then possible to prove asymptotic
completeness directly using a Dyson expansion for the full evolution. Unfortunately the method
of [Sp] does not seem to extend to more general interactions.

IR divergent Nelson models

For IR divergent Nelson models, we expect that H has no bound states in Hilbert space, and
therefore that the asymptotic CCR representations contain no sub-representation of Fock type.

The basic framework for confined IR divergent Nelson models is studied in [DG4], using ideas
from [Fr2]. Note that in [Fr2] (see also [P]) the more complicated translation invariant model
was studied, where the Haag-Ruelle approach is used instead of the LSZ approach.

It turns out that any question concerning the scattering theory of an IR divergent Nelson
model can be reduced to a similar question for an IR convergent Nelson model.

In fact it is shown in [DG4] that there exist a IR convergent Nelson model Hyey,, called the
renormalized Hamiltonian, an element ¢ in the dual b of by such that g ¢ b, and unitary maps
U® on H such that:

WENUS = USWig, (fle™ 09, f € b,



where WL (f) are the asymptotic Weyl operators for Hyep.

The factor e 1m(f:9) correspond to a phase translation and, since g € b, indicates that the
asymptotic CCR representations for an IR divergent Nelson model should be coherent state
representations.

Moreover from the above formula, we see that any information on the asymptotic CCR rep-
resentations for Hye, immediately gives an information on the asymptotic CCR representations
for H.

For example from the fact that the representations Wt admit a Fock sub-representation,
we see that W* admit a coherent state sub-representation. Similarly if asymptotic completeness
holds for H,en, then the CCR representations for H are coherent state representations. Note
also that the Hamiltonian H,., is exactly the Hamiltonian considered by Arai [Ar], where the
Nelson model is considered in a non-Fock representation.

Finally let us mention that for IR divergent Nelson models, it is also possible to define the

modified wave operators and the scattering operator.

1.3 Results and methods

We now describe the results and methods of this paper. We start by briefly recalling how
asymptotic completeness was shown in [DG2] for the massive case.

The answer to question 1) is rather easy in the massive case, and relies on the fact that the
total number of particles is dominated by the energy.

Question 2) is more difficult, even in the massive case. In [DG2], this problem was solved
in two steps: first a direct geometric characterization of the asymptotic vacua, in terms of
their propagation properties for large times, is obtained: one shows that the asymptotic vacua
coincide with the states having no particles in {|z| > et} for large ¢ and € > 0 arbitrarily
small. This property is called in [DG2] the geometric asymptotic completeness. In a second step
this geometric characterization of the asymptotic vacua is combined with a Mourre estimate to
obtain the asymptotic completeness.

In this paper we give some partial answers to the second problem for IR convergent massless
Nelson models.

Since IR convergent massless Nelson models admit bound states in the Hilbert space, we
expect that properties 1) and 2) should also hold in this case.

There are two problems to extend the results of [DG2] to the massless case.

The first problem is that one needs a bound on the number of asymptotically free particles.
This problem shows up in connection with property 1) and property 2).

The second problem is the lack of smoothness of the dispersion relation |k| at k¥ = 0. Since
we cannot a priori exclude bosons of small momenta, propagation estimates with this dispersion
relation are not easy to obtain.

Let us now describe the new methods used in this paper do deal with these problems:

singularity of the dispersion relation:

to handle this difficulty we will use a trick due to Derezinski and Jaksic in [DJ]. The idea
is to add to the system a field of non-physical bosons with dispersion relation —|k|. Note that
there is an analogy with a method used by Jaksic and Pillet in [JP] for the study of return
to equilibrium for similar models at positive temperature, where particles of negative energy
appear as holes in the equilibrium distribution. The next step is to go to polar coordinates



r = |k| and to glue together the two Fock spaces of bosons of positive/negative energy. In
this way one obtains a Fock space over h® = L?(IR,do) ® L%(S?) with the (smooth) dispersion
relation o. This construction is described in details in Subsect. 3.3 and leads to the so called
expanded objects, like the expanded Hilbert space H® and Hamiltonian H*®.

All the analytical work will be done on expanded objects. Results on asymptotic observ-
ables or asymptotic fields for the expanded Hamiltonian H® can be converted to the original
Hamiltonian H using results shown in Subsects. 3.10 and 8.6.

Note however that a result for the expanded Hamiltonian, based on a one-particle observable
a on h®, converts to a result for the original Hamiltonian only if a commutes with the projection
Ii5>0y. This is not the case for the observable s = ié,%, which plays a key role in our paper.
Therefore a lot of technical work will be needed to overcome this difficulty in Sects. 10 and 11,
by replacing s by another observable commuting with 1¢,>0y.

bound on the number of particles:

To show that the asymptotic CCR representations are of Fock type is equivalent to show
that the asymptotic number operators (see Subsect. 8.2) have dense domains, which are then
equal to the range of the wave operators. Experience from time-dependent scattering theory
suggests that it is better to replace this algebraic description of the range of the wave operators
by a geometric description in terms of propagation properties for large, but finite times. This is
done in our paper in the following way:

we construct in Sect. 5 projections PST for 0 < ¢ < 1, commuting with H¢, whose range
HEE are the states in H® having only a finite number of particles in {|s| > ¢’|t|} for each ¢ < c’.
Converting these results to H, we obtain spaces Hf which are invariant under the evolution and
which contain the states having a finite number of particles in {|z| > ¢t} for each ¢ < ¢/. We
show in Thms. 12.3, 12.5 that the spaces HCi have the following properties:

1) HE are non trivial if the Hamiltonian has bound states;

2) the asymptotic CCR representations preserve H} and are of Fock type when restricted
to HZ. Recalling that the ranges of the wave operators QF are denoted by H* this property
means that HX ¢ H*.

3) on HE the geometric asymptotic completeness holds: the asymptotic vacua in HE are
exactly the states in HZ having no particles in {|z| > ¢/t} for all ¢ < ¢/, t — Fo0.

4) if a Mourre estimate holds on an energy interval A with the generator of dilations as conju-
gate operator, then a restricted version of asymptotic completeness holds on A: the asymptotic
vacua in HZ with energy in A coincide with the bound states of the Hamiltonian in A.

The proof of geometric asymptotic completeness is done by working with H€ and introducing
asymptotic partitions of unity and geometric inverse wave operators as in [DG2]. The simpler
approach to geometric asymptotic completeness used in [DG3] does not seem to be applicable
here, since it relied on the fact that in the massive case the wave operators are known to be
unitary.

Let us also note that all the observables used in [DG2] to show geometric asymptotic com-
pleteness are unbounded observables dominated only by the number operator. This was not
an issue in the massive case, since these observables are then bounded by the total energy.
In the massless case, this is no longer true and we have to use different observables to prove
corresponding propagation estimates.

There are two questions which remain open: first of all one would like to show that the
spaces HZE are equal to the whole Hilbert space . This would imply that the asymptotic CCR



representations are of Fock type and that the wave operators are unitary. We believe that it
should be easier to show that HZ = H than to show that H* = H since we have a geometric
description of HZF instead of the algebraic description of H* given by the asymptotic number
operators.

A more modest question would be to show that the spaces HZ for different 0 < ¢ < 1 are all
identical, which is very likely since the speed of propagation for massless bosons is equal to 1, so
no particles should be found in the intermediate regions {c1t < || < cot} for 0 < ¢ < co < 1.

The second remaining open problem is to show a Mourre estimate for the Hamiltonian H
outside of a discrete set of points. Up to now a Mourre estimate has been shown only for
sufficiently small coupling constant g and outside some intervals whose size depend on g (see
[Sk], [BFSS], [DJ]).

1.4 Hypotheses

Let us now state the various hypotheses that we will impose on the coupling functions v; in the
sequel. In the formulation of conditions (12) and (I5) one introduces polar coordinates ¢ = |k,
w= % (see (3.1)).

In Sect. 4, we will impose:

(1) /(1 IR 7I20) oy () [2dk < 00, 1< j < P, € > 0.

This condition will be needed to obtain sharp estimates on the growth of the total number of
particles along the evolution.
In Sect. 5, we will impose:

(I2) 6vj(6w) € HY(RT) @ L*(S?), 1 <j < P, u >0,

where the space Hj (IRT) is the closure of C§°(]0, +o0[) in the topology of H#(IR). This condition
will allow us to construct H—invariant spaces H_ containing a finite number of particles in the
region |z| > ct, for 0 < ¢ < 1.

In Subsect. 3.2, we impose:

(I3) /(1 + k| 72)|v;(k)[Pdk < 00, 1 < j < P.

Conditions (13) and (H0) for o > 0 imply that H admits a ground state in the Hilbert space
‘H. This fact has two important consequences: firstly the CCR representation given by the
asymptotic Weyl operators W (h) constructed in Sect. 8 admits a Fock sub-representation (see
Subsect. 8.2). Secondly the spaces H are non trivial (see Thm. 5.6).
In Sect. 8 we impose:
(I4) v; € H{!

loc

(R*), 1<j <P, >0.

This condition will allow us to construct the asymptotic fields.
In Subsect. 4.5 we impose:

1 IAVEN U .
(I5) (1 +|o]72)(1 — ﬁ)mavj(aw) e L2(RT)® L*(S?),1<j <P, up > 0.



This assumption will be needed to control the angular part of the observable |z| = —A%.

To illustrate the meaning of these various conditions, let us consider a rotationally invariant
coupling function v; of the form:
(1.4) vj(k) = [k|"x(k]),
where x € C§°(IR) is an ultraviolet cutoff. Then:

(10) is satisfied if p > —1.

(11) is satisfied if p > —1 + €.

(I2) is satisfied if p > p — 1. In fact it is easy to see that 6°*1x(6) € H{(IRT) if u < p+ 1.

(13) is satisfied if p > —3.

(14) and (I5) are satisfied for all values of p.

The main results of the paper, formulated in Sects. 8 and 12, hold under (H0), (10), (12),
(15) for o > 1, u > 1, po > 1. Hence we see that for a coupling function of the form (1.4), the
results of the paper hold for p > 0.

1.5 Plan of the paper

Let us now describe the plan of the paper. In Sect. 2 we define some notation and recall some
notions introduced in [DG2].

In Sect. 3 we describe the abstract framework in which we will work for most of the paper. In
this framework, the original Hilbert space and Hamiltonian are denoted by H and H respectively.
We introduce the so-called expanded objects, in particular the expanded Hilbert space H® and
the expanded Hamiltonian H€ which will play an important role. The one-particle space is now
L*(IR,do) ® L?(S?) and the one-particle kinetic energy for the expanded Hamiltonian is simply
the operator of multiplication by o.

A number of basic technical estimates are also proved in this section.

Sect. 4 is devoted to estimating the growth of the number observable along the evolution.
We show that if the interaction is of size O(|k|°) near k = 0, then the number of particles is
bounded by t° when ¢ — 400, where pg depends on ¢3. We also prove some estimates on the
growth of the ‘angular’ part of |x| along the evolution which will be useful in Sect. 11.

Most of the analytical work will be done on the expanded objects. In Sect. 5, we construct
the spaces HST described in Subsect. 1.3. In Sect. 6, we construct an asymptotic partition of
unity on H¢T. Using this partition of unity, we can split a state in H" into pieces having a
fixed number of particles in {|s| > ¢t} for ¢ < ¢/, where s is the operator canonically conjugate
to o.

In Sect. 7, we construct geometric inverse wave operators on HSt. The asymptotic fields
and the wave operators both for H and H® are constructed in Sect. 8 and their relationship is
studied. In Sect. 9 we prove the geometric asymptotic completeness on the spaces HE™ for He.

Sects. 10 and 11 are devoted to a reinterpretation of the spaces HET. Originally these spaces
are described in terms of the observable s. As explained in Subsect. 1.3, this description is not
convenient to obtain corresponding spaces for H, which is the reason why another description
with a different observable is given.

In Sect. 12 we prove the main results of this paper for the original Hamiltonian H. The
construction and properties of the spaces HS are obtained from the results of Sects. 5, 8, 9
and from functorial arguments, using the alternative description of HST in Sect. 11. Finally in
Sect. 13, we study the consequences of a Mourre estimate for H and show that it implies the
asymptotic completeness restricted to H7 .



Various technical results are collected in an Appendix.
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2 Notation

2.1 General notation

We collect some notation that will be used throughout the paper.
Function spaces

We will denote by Co (IR™) the space of continuous functions on IR" tending to 0 at infinity.
We set
SU(R") = {f € C=(R")||02 f(2)| < Ca, @ € N"}.

We denote by H*(IR™) the Sobolev space of order s € IR.
Hilbert spaces

If H is a Hilbert space, we denote by B(H), resp. U(H) the set of bounded, resp. unitary
operators on H. If H is a bounded below selfadjoint operator on H, we will denote by the letter
b a constant such that H + b > 1.

If H is a selfadjoint operator on H and IR 5 t — ®(t) € B(H) is an operator-valued function,
we denote by D®(t) the Heisenberg derivative:

D®(t) = 0,P(t) + [H,iP(t)].
For u € H, we set u; = e tHy,

Often the Hamiltonian H can be written as a sum H = Hg + V, where Hy is a ‘free’
Hamiltonian and V' an interaction term. In this case we denote by Dy the free Heisenberg
derivative associated to Hy:

Do®(t) = 0,®(t) + [Ho, 1®(t)].

If IR 5 ¢+ ®(t) is a map with values in linear operators on H and N is a positive selfadjoint
operator on ‘H we will say that

O(t) € O(N)t fora € RT, p € R

if D(N®) C D(®(t)) for t € IR and [|®(¢)(N + 1)7%|| € O(t*). The notation ®(t) € o(N*)tH
is defined similarly. If A, B are two selfadjoint operators, we denote by adsB the expression
adaB = [A, B]. Usually the commutator [A, B] is first defined as a quadratic form on D(A) N
D(B) and then extended as an operator on some domain. The precise meaning of ad 4B will
either be specified or clear from the context.

Finally we recall (see [ABG]) that if A is a selfadjoint operator and B € B(H), one says that
B € C(A) if the map

R > s — e*4Be 4 € B(H)



is C! for the strong topology. If H is a selfadjoint operator, one says that H € C'(A) if for
some z € C\o(H), (z — H)™t € C1(A). If H € C'(A) then the quadratic form [(z — H)™!,iA4]
extend from D(A) to a bounded quadratic form on H and

dieisA(z — H) e B = [Ai(z = H) '] = (= = H)7'[A,iH](= — H)™".
5 =
For 0 < € < 1, we say that H € C'*¢(A) if H € C'(A) and the map

R > s — e*4(z— H)™ ! idle 4 € B(H)

is C¢ for the norm topology.

2.2 Fock space notation

Fock spaces

Let h be a Hilbert space, which we will call the one-particle space. Let ®1h denote the
symmetric nth tensor power of . Let S, denote the orthogonal projection of ®™h onto ®Ih.
The Fock space over § is the direct sum

L(h) := P @
n=0

Q) will denote the vacuum vector — the vector 1 € C = ®@{h. The number operator N is defined
as

N‘®:b — .

The space of finite particle vectors, for which 1y, 4.)(N)u = 0 for some n € IN, will be denoted

by Tfin(h).
For h € h we denote by a*(h), a(h), the creation annihilation operators, by ¢(h) = —=(a*(h)+

1
V2
a(h)) the field operators and by W (h) = ¢(®) the Weyl operators (see eg [DG2, Sect.2]).
It is convenient to extend the definition of a*(v), a(v) in the following way:
suppose that K is a Hilbert space. If v € B(IC, K ® b), then we can define a*(v), a(v), ¢(v)
as unbounded operators on K ® I'(h) by:

a*(v) = V(1 @ 80 ) (00 gy ).

Ko@!h
(2.1) a(v) := (a*(v))",
$(v) = J5(a(v) + a*(v)).
They satisfy the estimates )
(2.2) la* () (N +1)7|| < o],

where ||v]| is the norm of v in B(KC, ® p).
If b is an operator on b, we define the operator

dl'(b) : T'(b) — I'(h),

1@ 2101®---®1.
Jj—1 n—j

dF(b)’®:h =

n

j=1

10



If h;,¢ = 1,2 are Hilbert spaces, ¢ : h1 — bhs is a bounded linear operator, one defines
I'(q) : T'(b1) — ['(b2)

F(q)}®nhl =q® - ®q.

If ¢, r are operators from by to ho one defines
dI'(g, ) : T'(b1) — T'(h2),

IR - RqRIrRVeR - Xq.

1 ————" —_——
Jj—=1 n—j

n
j:

dI'(q, 7“)‘®n o

Let us now introduce some notation related to Heisenberg derivatives. Let w be a selfadjoint
operator on h. We denote by dy the Heisenberg derivative associated to w:

0
dy = 5 + [w,i], acting on B(h).
Let Dy be the Heisenberg derivative associated to the Hamiltonian Hy = dI'(w)
function IR > t — b(t) € B(h), we have:

DodL(b(t)) = dT(dob(t)).

. Then for a

Operators Pi(f) and Q(f)
We now recall some objects introduced in [DG2] which will play an important role in the

sequel.
Let fo, foo be operators on h. Let f := (fo, foo). We define the operators Px(f) = Pi(fo, fx)

and Qx(f) = Qr(fo, foo) for k € IN by setting
Py(f): () — I'(h),

Pk(f)‘®nh:: Z f61®"'®fenv

#ilei=o0}=k

where ¢; = 0, 00 and

k
Qu(f) ==Y _Pi(f).
j=0

We will sometimes denote Py (f) by Pi(fo, foo) if f = (fo, foo)- For f = (fo, foo) and g = (g0, goo)
we define

2:1:1{'| Z} kf51®-..®fej—1 ®go®f€j+l®...®fen
il€;=00 =

AP0 g,

+ f61®"'®fej71®900®f5j+1®"'®f6m

#{ilei=oc0}=k—1

and

k
dQx(f,9) ==Y _dP;(f,g).
=0

11



Canonical map
Let §;, i = 1,2 be Hilbert spaces. Let p; be the projection of 1 @ hs onto b;, 1 = 1,2. We
define

U :T(h1 ®b2) — I'(h1) @ I'(h2),

by

U2 =09,
(2.3)
Ud(h) = (ab(pih) @ 1+ 1@ a*(poh) ) U, b € b1 @ .

Since the vectors a*(hy) - - - a*(hy,)S2 form a total family in I'(h; @ bh2), and since U preserves the
canonical commutation relations, U extends as a unitary operator from I'(h1@h2) to I'(h1 )@ (h2).

Operators I'(j) and dI'(j, k)

Let jo, joo € B(h). Set j = (jo,Joo). We identify j with the operator
J:h—hdh,
Jh = (joh, joch).

We have .
J i h@h —b,

and
373 = Jodo + Jaodoo-
By second quantization, we obtain the map
I'(j) : T(h) = T'(h & b).
Let U denote the canonical map between I'(h & p) and I'(h) ® I'(h) introduced above . We define

I(j): T(h) — T(h) @ T(h),
L(j) :== UL(j).

Another formula defining I'(j) is

(2.4) P (I a* (7)Q = I (a*(ohs) ® 1+ 1® a*(joohi)) 2 ® Q, by € .

Let No = N® 1, Noo = 1® N acting on I'(h) ® I'(h). Then if we denote by I the natural
isometry between ®"h and ®" % h @ ®" b, then we have:

]l{ze}(Noo)f(j)](X)nh = Iy Gy J0 © - ® g ® oo © -+ @ s,

n—k k

Finally we set

L(5) = Ly (Noo )L (5).
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Let j = (Jo,Joo), k = (Ko, ko) be maps from b to h & h. We set

dl'(j, k) : T(h) — I'(h) @ I'(h),
dl'(j, k) :== UdT(4, k).

The operator dI'(1, k) = UdI'(k) will be denoted simply by dI'(k).
Scattering identification operator

Let
1:hdh—bh,

(ho, hoo) — ho =+ hoo.

An important role in scattering theory is played by the following identification operator (see
[HuSp1]): )
[:=T(i)U* = T(*)" : T(v) @ D(h) — D(b).

Note that since ||i|| = v/2, the operator I'(i) is unbounded.
Another formula defining I is:

p p
(2.5) I f{l a*(hi)Q® I a*(gi)Q = 1 a*(gi) f[l a*(hi)Q,  hi,gi €Y.

If h = L?(IR?, dk), then we can write still another formula for I:
1
(p!)?

We deduce from (2.5) that

(26) IU®¢: /w(klv"'7kp)a*(kl)"'a*(kp)Udk7 u € F(b)? Qb € ®§h

(2.7) I(N+1)7""2 1 restricted to I'(h) ® @Fh is bounded.

Let jO')jOO € B(h) such that 0 < jO < 170 < joo < 17 and j0+joo =1. Letj = (j07j00> th — bhdh,
as above. Clearly 0 < j*j < 1, hence [|j|| < 1, and therefore T'(j) is a bounded operator. We
have i5 = 1, hence

IT(j) =1

We also have o _
Iy ki (Neo)U'(4) = Qr(5),

(2.8)
Iy (Noo)I'(4) = Pr(3)

Use of sub- and superscripts

To help the reader with the notation, we briefly describe the use of various sub- and super-
scripts in the paper.

Asymptotic observables obtained by letting the time ¢ tend to +o0o0 will be denoted with the
superscript +. Observables depending on a constant ¢, which has the meaning of a speed of
propagation, will be denoted with the subscript c.

In addition to the original objects, eg Hilbert spaces, Hamiltonians, asymptotic observables,
wave operators, etc we will consider two other families of associated objects:

13



FEzpanded objects, which correspond to the addition of non-physical bosons of negative energy
to the system, and which will be denoted by adding a superscript e to the corresponding original
objects. Sometimes an object defined in the expanded framework has no counterpart in the
original framework, in which case we will omit the superscript e.

FEztended objects, which correspond to the addition of asymptotically free bosons, and which
will be denoted with a subscript ext, (with some exceptions).

3 Massless Pauli-Fierz Hamiltonians

We describe in this section an abstract framework introduced in [DG2] in which we will work
for most of the paper. We also define the expanded objects, which correspond to adding bosons
of negative energy to the system. Finally we prove various basic estimates which will be needed
in the sequel.

3.1 The abstract setup

We describe now the abstract framework in which we will work for most of the paper. The
models that we will introduce describe a small system (eg an atom or a spin ) interacting with
a scalar bosonic field. Using the terminology of [DG2]| we can call this class of models massless
Pauli-Fierz models.

The small system is described with a separable Hilbert space K and a bounded below self-
adjoint operator K on K. Without loss of generality we will assume that K is positive.

Let h := L?(IR", d5)®g, where g is some auxiliary separable Hilbert space, be the one-particle
boson space. The Hilbert space of the interacting system is

H:=KxT(h).

The one-particle energy is the operator ¢ of multiplication by & on b.
The free Hamiltonian describing the non interacting system is

HO =K® ]lp(b) + ]l;( & dF(&).

The interaction is described by an operator v € B(K,K ® h). Note that since K and g are
separable, we can consider v as a function

R" 36— v(5) € BK,K®g),

defined a.e & by setting
v(G)Y = (v)(5), ¥ € K,
and identifying K ® L?(IR*,ds) ® g with L2(IR*,d5; K ® g).
The Hamiltonian describing the interacting system is now

H = HO + ¢(’U),

acting on H, where ¢(v) is defined in (2.1).
We will assume that )
(I'0) (1+ 6 2)v e B(K,K® ),

14



which implies by Prop. A.1 that ¢(v) is Hp— bounded with infinitesimal bound and hence that
H is selfadjoint and bounded below on D(Hy).
In terms of the function v(&) (I’0) is equivalent to

+oo
/ (1+ 1571 [[0(3) 245 < co.
0
We will denote by N the number operator on ‘H
N =1 ® dF(]l).

We now explain how to cast the massless Nelson Hamiltonian into this framework. Let H
be a massless Nelson Hamiltonian as introduced in Subsect. 1.1.
On the one-particle space L?(IR?, dk) we introduce polar coordinates by the unitary map:

u: L*(R3,dk) — L*(RT,ds) ® g,
uw(&7w) = 6¢(&w)a

for g = L?(S?). We lift the unitary map u to a map lx ® I'(u) from K ® T'(L*(IR3,dk))
into £ ® I'(h) and the free Hamiltonian K ® 1+ 1 ® dI'(|k|) becomes K ® 1+ 1® dI'(¢). The
interaction ¢(v) becomes ¢(uv), which we will still denote by ¢(v). If we represent as in Subsect.
1.1v e B(K,K®h) by a function

(3.1)

R3 5 ks v(k) € B(K) ae. k,
then uv is represented by the function
v(6) = ov(ow), a.ead.
where v(6w) for fixed & is an element of B(C, KX®g). The Pauli-Fierz Hamiltonian (still denoted
by H) obtained in this way is said associated to the Nelson Hamiltonian H.

3.2 Existence of bound states

The existence of bound states of H in the Hilbert space H is an important property of the
Hamiltonian H. In particular it implies that the CCR representation given by the asymptotic
fields constructed in Sect. 8.1 admits a Fock sub-representation. In this subsection we recall a
result of [G] proving the existence of a ground state for H under appropriate condition on the
interaction v. For related results see [AH], [BFS],[Ar], [GLL],[LMS]. We introduce the following
conditions
(H'0) (K 41)~! is compact on K.
(I'3) (1 + 6 (K +1)"2 € B(K,K®H).

In terms of the function v(&) (13’) is equivalent to

+oo 1 . 1 -
|0 @) + 1) e o < oo

The following result is shown in [G, Thm. 1].

15



Theorem 3.1 Assume hypotheses (H’0), (I'0), (I'3). Then inf spec(H) is an eigenvalue of H.
In other words H admits a ground state in H.

The condition corresponding to (1’3) for the concrete Nelson Hamiltonian is (1%) introduced in
Subsect. 1.1. Hence we obtain:

Theorem 3.2 Assume hypotheses (HO) for o > 0, (10), (I3). Then infspec(H) is an eigen-
value of H. In other words H admits a ground state in H.

3.3 Expanded objects

We describe in this subsection the expanded objects, corresponding to the addition of non physical
bosons of negative energy. This idea appeared first in [DJ]. We use the notation in Subsect.
3.1. Let

H® =K aT(h) @T'(h),
H® := H ® Ipgy) — lcgre @ dT'(5),

acting on H®. As the sum of two commuting selfadjoint operators H® is selfadjoint on its natural
domain and essentially selfadjoint on D(H) @ D(dI'(5)).
We set
b° = L*(R,do) © g, H® := K @ T(h°),

and consider the unitary map

w:hodh— b,
. _J hi(o),0 >0,
hi @ hg — h with h(o) := { ho(—0), o < 0.
If
(3-2) U:T(hob) —T(h) @I(h)

is the canonical map defined in Subsect. 2.2, we set

W:He — KQT(h°) = He,

(3:3) W = I @ D(w)U .

We set also

v = Ix @w(v®0) € B(K,K @5°),
where v & 0 is an element of B(K, ® (h @ h)). In terms of operator-valued functions, we have
(3.4) v°(0) = v(0) 10y

Note also that
w(o ® —6)w" = o,

where ¢ is the operator of multiplication by o on h¢ = L*(IR,do) ® g.
Using the tensorial properties of U (see eg [DG2, Sect. 2.7]), we obtain:

WHW* =: H®,
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where
H® = K @ Ip(ye) + I @ dT(0) + ¢(0°).

On H¢, we denote by N© = I ® dI'(1) the number operator and by
Hj = K @ lpggey + I @ dT'(0)

the ‘free’ expanded Hamiltonian.

3.4 Conversion of asymptotic observables

In this subsection we explain how to deduce results for the scattering theory of H from corre-
sponding results for the scattering theory of H®.
We start by describing the canonical embedding of H into H®. Let

H— He=H®I(h)

I :
@ ur—u® s,

where Q € I'(p) is the vacuum vector. We have

1510 = 1y, IQ!E} = Iy ® |2)(Q],

IQefitH — efitHeIQ'
If we set
. h—p°
(3.5) I [
then

WIiq = I @ T'(y)

is an isometry from H into H® and
Wine HH — o HH W

Let us now describe how to convert various asymptotic observables. Let b € B(h¢), b = b* such
that

(3.6) Lio<0yblio>0y = 0
We set then

be = 115501011050}
Note that by can be identified with j%bj € B(h).

Lemma 3.3 Let b € B(h°), b = b" with 15« bl,>0y = 0. Then
IEWIT(b) = T(by ) IZW1,
i) T())WIq = WIaL(by)
[(by) = IZWIT (0)WIq.

i) W (AT (B))Wa = F(AT(by)), f € Coo(RR).
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Proof. Because of the hypothesis on b we have w™'bw = b @ b_. Hence

WIT(0)W = UT (w ™ bw)U 1
=UT(by @b ) UL =T(by) @T(b_).

This easily implies ).
By the same argument

LW e T OWIG = [SW (e YW,
— F(e—itb+) — e—itdF(b+).
This proves i) for f(\) = e *. By a density argument ii) holds for all f € Oy (IR).O

The following proposition describe how to deduce existence of asymptotic observables for H
from corresponding results for H®.

Proposition 3.4 Let IR > t — b, € B(h°), with by = bf, by > 0, sup,cr ||be]] < oo and
ﬂ{a§0}btﬂ{020} =0. Let b+t = ﬂ{gzg}btﬂ{gzo}
I) Assume that
s-1imyg 4 o0 €T (by)e H® =Tt exists,
[He,T°+] = 0.

Then , .
i) s-1imy 4 o0 €T (byy)e ™ =T emists,
i1) [H,TT] =0,
iii) Tt Wi = WIoI't, T'H = Wt Wi,
iv) [ZWTIret =T w1

II) Assume that
s-limy_ 4 oo €M (dT(by) + N) ~Le H® = ReT(\) ewists for A € C\IR™,
[H¢, R°t()\)] =0.

Then , .
i) s-limy_ oo €M (AT (byy) + N)"Le ™ =: RT(\) ewists for A € C\IR™,

it) RT(\) = IZWLReT (W)W,
iii) [H, R*(\)] = 0.

III) By Prop. A.7 the limits

Pt i=s-lim._ge 1 ReF(e71),
Pt i=slim.oe 'RT(e7h)

exist and are orthogonal projections. Then

i) PY = IEW 1P WG,
ii) P = WPT @ py W
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Proof. I) follows from Lemma 3.3 i) and the identity e W Io = WIge . 1I) follows from
exactly the same arguments, using Lemma 3.3 1) instead. III) i) follows directly from II) ).
To prove III) i) is equivalent to show that

WPHW = P @ Tpy).

We have:

WLPSHW = s-limeo 5 limy—yo0 €7 (1 + edD(bye) ® 1+ el @ dT(by)) " Le 7,

Pt ® Ipgy) = s-lime_o 8- limg— 4 oo eH° (1 4 edD(byy) @ M)~ le 1H",
Using that i

[y @ (N+1)~"e "] =0,
and
I ((11 +edl(byy) @ 1+ el @dl (b))t — (14 edl(byy) @ ]1)—1)11 ® (N +1)71 < Ce,
we obtain that
WIPW — P @ T ) I @ (N + 1)1 =0,

which proves III) 7). O

3.5 Properties of the expanded Hamiltonian

We use the notation of Subsects. 1.1, 3.3. The main problem encountered when working with
the Hamiltonian H*® is that it is not bounded below. As a consequence we cannot use energy
cutoffs x(H¢®) to control error terms in propagation estimates.

To overcome this difficulty we will use the fact that H® commutes with other observables.
For example H® commutes with the Hamiltonians

HS =K®@1+1®dl(o4)+ ¢(v°)

and
HS =1®dl'(o-),

for o = N4 5>0y0. Notethat H® = HS +H¢ and that HS is selfadjoint on D(K®@1+1®dl'(04)),
using (1’0). As a consequence H® commutes with the Hamiltonian

L:=H{ - H® = K @ lpgey + I @ dT([o]) + H(v°).

We deduce as in Subsect 3.1 from hypothesis (1’0) and (3.4) that L is selfadjoint and bounded
below on D(Ly), for
Lo=K® ]ll"(he) + ﬂ]c X dF(|U|)

It is easy to see that D(L) = D(H$) ND(H ), H® is essentially selfadjoint on D(L) and that
H® = Hj+ ¢(v°) on D(L).

In the sequel propagation estimates for H® will contain cutoffs x(L), which will be used to
control error terms.
For later use we collect below various basic properties of L.
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Lemma 3.5 Assume (I'0). Then

i) (z — L)~ € CY(N°®) for z € C\o(L),

ii) (z — L)"'N® = N®(z — L)™' +i(z — L) "'¢(iv®) (2 — L)Y, for z € C\o(L), as an identity
on D(N®),

iii) x(L) preserves D((N®)") forr € R", x € C°(IR) and (L +1)(N®)"x(L)(N® +1)"" is
bounded for r € RT.

Proof. We have ‘ ‘ .
Ly :=e*NLe N = [+ o(ev°).

. 1
Since ¢(e"v) is Li bounded, we have D(L,) = D(Lg) and
|Lo(Ls — 2)7Y| < ClImz| 7, 2z € K € C\IR,
uniformly for |s| < 1. Then

sH(z—Lg) ' —(z—L) ) =s(2— L) "(Ls = L)(z — L)}
= s (z = L)' p((e" — 1)v°) (2 — L)%,

Using Prop. A.1 in the Appendix, we see that
(Lo+1)"2¢(s ™ (e — 1)v°) (Lo +1)"2 — (Lo + 1)~ 26(iv°) (Lo + 1)~ 2 in norm,

and )
(z—Ls)™' — (2= L) M(Lo +1)2 — 0 in norm

when s — 0. Hence
sH(z— L)™' = (2= L)Y = (2 = L) '¢(iv°)(z — L)~ in norm

when s — 0. This proves i) and ii).
To prove i) we use the identity

(N°+1)(z— L) '(N°+ 1) =(z-L)—i(z— L) tp(iv®)(z — L)L (N + 1)L
By induction, using the fact that ad%¢(v°) = i~*¢(i*v°), we obtain that
(L +4)(N®+ 1)¥(z — L)"Y(N° +1)7F|| € O([Tmz|~%%), 2 € K € C\IR, k € IN.

Using then the functional calculus formula (see eg [HS], [DG1]):
(3.7) Y(4) = L/ 0:%(2) (2 — A)~ldz A dz,
21 J¢
where A is a selfadjoint operator and x € C3°(C) is an almost-analytic extension of x satisfying

>~<|R =X,
|0zx(2)] < Cp|Imz|™, n e N,

we obtain iii) for r € IN. Then we extend the result to » € IR" by interpolation. O
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Lemma 3.6 Assume (1'0). Let b = b(c) be a bounded real function supported in {|o| > €o},
€0 >0, and B =dI'(b). Then

i) (= L)~ € CY(B),

i) (z — L)™'B = B(z — L)' +i(z — L) 1¢(ibv®)(z — L)L, for z € C\o(L), as an identity
on D(B).

i) B¥(L +1)7% is bounded for k € IN.

Proof. i) and i) can be shown as in Lemma 3.5, introducing Ls = e*BLe™ 58 = Ly + ¢(ei*00°).

Since suppb C {|o| > €}, B(L +1i)~! is bounded, which proves i) for k = 1. To prove
i) for arbitrary k, we commute repeatedly factors of B through (L +1i)~!, using #i), until each
factor of B is followed by a factor of (L +1i)~!. Commutation of B with (L +1i)~! produces an
extra factor of (L +1)~p(ibv)(L+1)~". Moreover adf;¢(v°®) = i~*¢(i*bFv°) is Lo—bounded. The
details are left to the reader. O

The Hamiltonians HS$ have similar properties.

Lemma 3.7 Assume (I'0). Then

i) (z — HS)™t € CY(N®) for z € C\o(HS),

ii) (z — H$) IN® = N¢(z — HS) "t +i(z — H$) 1o (iv°) (2 — HS) 7L, for 2 € C\o(HS), as an
identity on D(N°),

iti) x(HS.) preserves D((N®)") forr € R, x € C°(R) and (HS +1)(N®)"x(HS)(N®+1)~"
is bounded for r € R™T.

A consequence of Lemma 3.7 is
(3.8) e H (L) preserves D((N®)"), for x € C°(R), r € R™T.

In fact we can write e H y(L) as e_itHixl(Hi)e_itHixg(HS)X(L), for some x1,x2 € C°(IR)
and apply Lemma 3.7 iii).
A consequence of Lemma 3.5 and (3.8) is

Proposition 3.8 Assume (1’0). Then

(3.9) IV +1)7e XL (N + 1) 77| < Cr(t)", x € CF(R), r € RY.

Proof. We will prove the proposition for r € IN by induction and then argue by interpolation.
Let uy € D(N),ug € D(L) and consider

f(t) = (uar, N°x(L)uay)
(note that f(¢) is finite by (3.8)). We have

f'(t) = i(H®ug, Nex(L)uiy)
= i(Hg’U,gt,NeX(L)ult

+i((v®)uar, Nx(L)

= —(uat, o) x(L)urs

By Prop. A.1, we obtain

i(ugr, N°Hx(L)u1y)
i(uge, N°HGx (L)u1t)

uyg) — i(u2e, NeO(v®)x(L)u1e)
).

/(O] < Clluz|lfuall,
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which proves (3.9) for r = 1.
Assume now that (3.9) holds for all " < r. Let u; € D((N®)"),us € D(L). Again we
differentiate

f#) = (uar, (N®)"x(L)uae),
and obtain
F1(t) = (uar, [$(v%), 3(N®) Juse).
The commutator [¢(v®),i(N®)"] can be written as a sum of terms of the form ¢(i%®)(N®)? for
0 <r—1. We write

(i) (V) x(L)
= o)L +1) 7N L + ) (N°) X1 (L) (N® + 1) (N° + 1) x(L),

for x1x = x. By Prop. A.1 and Lemma 3.5 iii), we obtain
/()] < Cllug||[[(N® + 1) x(D)unel] < O Hlua||[[(N® + 1) [,

by the induction hypothesis. This proves (3.9) for r. O

Finally we state a lemma analogous to Lemma 3.5 for the Hamiltonian H.

Lemma 3.9 Assume (I'0). Then

i) (z— H)™' € CY(N) for z € C\o(H),

i) (z — H)"'!N =N(z— H)"' +i(z — H)"'¢(iv)(z — H)™L, for 2 € C\o(H), as an identity
on D(N),

iii) x(H) preserves D(N") forr € RY, x € C*(IR) and (H+i)N"x(H)(N +1)"" is bounded
forr € RT.

The proof is completely similar to Lemma 3.5.

3.6 Bounds on field operators

Lemma 3.10 Assume (I’0) and let h; € D(&% + &7%), 1 <i<n. Then:

n

ITT ¢(h)(H +6)7"2| < Cu TTII(L + 32 + 572
1 1

Lemma 3.11 Assume (I’0) and let h; € D(|O"% + |0|7%), 1 <i<n. Then:

n

ITT o)L+ b)) < Cu T + 0|2 + o] 2)hal.
1 1

The proofs of Lemmas 3.10 and 3.11 being completely similar, we prove only Lemma 3.11.
Proof. Let first B > 1, A be two selfadjoint operators with D(Bz) C D(A). Then

+oo
(3.10) AB"% = 17! / sféA(S + B)lds,
0
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where the integral is norm convergent on D(B€) for any € > 0. As bounded operators on H¢,
we have:

(3.11) A(s+B) ' =(s+B)'A—(s+ B)"YA,B|(s+ B)™!

If we assume that [A, B] extends from a bounded quadratic form on D(B) to a bounded quadratic
form on D(B%), we deduce from (3.10), (3.11) that

+o0

(3.12) (4, B3] :—71'_1/ s~ (s + B)"V[4, B](s + B)"\ds
0

satisfies ) ) )

(3.13) I[A, B72]|| < C||B~=2[A, B]B" 2|

For B=L+b, A= ¢(h), h € D(|o|2), we have
[A, B] = —ig(i|o|h) + ilm(h, v°)ye
By Prop. A.1 and (1°0), we obtain
|B~3[4, B]B2|| < C|[{0)2h],
and hence using (3.13)

(3.14) 16 (R). (L +b)2]|| < Cl{o)zh].
Similarly we have

(3.15) ladginyadsin LIl < Cll(o)2 halll|(o)2 hall,
and

(3.16) adg(n,) - - - adgn) L = 0, for [ > 3.

We deduce easily from the identity (3.12) that
1 1
(3.17) ladg(ny) - - - adg(r,) (L + )72 || < CIT[[{0)2 b
Let us now prove the lemma. We consider more generally products of factors of

(ﬁ(hl), ad¢(h1) v add)(hl)R and R

for R = (L + b)_%. If a product P contains n factors of ¢(h;) (for different i) and p factors of
R, we define its degree d(P) to be equal to n and its weight w(P) to be equal to n — p. Note
that d(Plpg) = d(P1> + d(PQ), w(Png) = 'U}(Pl) + w(PQ)

We claim that a product P of zero weight is a bounded operator, which in particular implies
the lemma. The claim is clearly true in two cases: if the degree of P is zero and if each factor
of ¢(h;) in P is followed by a factor of R and the weight of P is zero. In this last case we say
that P is controlled.

Commuting ¢(h) with a factor R produces an extra term adgy) R of zero weight and com-
muting ¢(h) with a factor adg(p,) - - -adgk,) R also. Hence we can move around the factors of
@(h;) in a product P of zero weight until we get a controlled product of zero weight, producing
error terms of zero weight and strictly lower degrees. Iterating this procedure, we see that P is
a bounded operator. The fact that

HH¢ )(L+0) ”/2!<CnHH1+!0!2+\0\ )bl

follows then from (3.17) and Prop. A.1. O
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4 Number estimates

In this section we prove some bounds on the growth of the number observable along the evolution
which take into account the infrared behavior of the interaction. We consider abstract Pauli-
Fierz Hamiltonians as introduced in Subsect. 3.1. The estimates in Subsects. 4.1, 4.2 show that
if the interaction behaves for small k like |k|~10 for ¢y > 0, (see hypothesis (I'1) below and
the discussion in Subsect. 1.4), the total number of particles (both for H and H®) is bounded
by [t]° for all 6 > (1 + €)™

As explained in Subsect. 3.5, propagation estimates shown in Sects. 5, 6 will contain cutoffs
X(L). The estimates in Subsect. 4.2 will be used for H¢ to bound commutators between x(L)
and second-quantized observables based on the operator s = ig%.

In Subsects. 4.3, 4.4, we prove that for large times no particles are found with momentum
smaller than ¢t~° for § > € ! This fact will be used in Sect. 11 to reformulate geometric
asymptotic completeness for H® in terms of the observable |s|y introduced in Subsect. 10.2.

Finally Subsect. 4.5 contains rather easy estimates on the ‘angular part’ of |z|, needed for
the final description of geometric asymptotic completeness for H.

We introduce the following strengthened version of (1’0):

+oo
(1) [ o) o @)0(0) ey 06 < oo, €0 > 0.
0
Note that (I’1) implies that
(4.1) / (1+ |5"_1)HU*(O~')U(5’)||B(,C)(16' <Cr¥*o 0 <r<l1.
|5|<r

For the Nelson Hamiltonians, the condition (I1) in Subsect. 1.1 implies that the associated
Pauli-Fierz Hamiltonian satisfies (1'1).

4.1 Case of H

We consider first the Hamiltonian H introduced in Subsect. 3.1. In Prop. 4.3 below we show
that under hypothesis (1°’1) the number operator grows at most like ¢(1+e)”! along the evolution.
In the sequel we will use Prop. 4.2 which contains essentially the same information.

Let f € C§°(IR) be an even function with f(A\) =1 near 0, 0 < f <1, Af'(X) <0. Let

e := f(t7°5), N; := dT(r¢), for po = (1 +€o) L
Lemma 4.1 Let y € C°(R), F € S°(IR). Then

Ny

Ix(H), F(—5

mallIS O(t=0=#).

Proof. Using formula (3.7), we write

Ny

(), D) = o [ 022) e — )18, PO

t—é)](z —H)'dzndz.
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We have [H,F(%)] = [p(v), F(%)] To estimate this term, we use a commutator expansion

lemma (see eg [DG1, Lemma C.3.1]). We have adgvﬁ(v) = (=i ¢(irJv). This is an unbounded
operator, but the remainder terms in the commutator expansion can be estimated using

(@2) ore)(Ho+ )4 < 6 ([ +16DIn(@)llv @)@ swds ) < e,
by (4.1), and using the fact that Hy commutes with N;. We obtain that

(1.3) 6(0), FCY) (Hy + 1) € O(t* o),

t
This implies the lemma by the standard argument, using the properties of y. O

Proposition 4.2 Assume (I'0), (I'1) and let § > (1 + €)™ t. Then
i) for G € C§°(]0, +0]), x € C°(IR) we have:

too N . dt
| IGGH e S < Clul, w e D).

i) for F € C(R),0 < F <1, F(s) =1 near 0

Proof. We pick a function F(\) € C*®(IR), with supp F' C]0, +oo[, F'(\) = G?()) for G €
C§5°(]0,400[). For x € C§°(IR), we set

Note that by Lemma 3.9 e~y (H) preserves D(N). We compute the Heisenberg derivative of
®(t) as a quadratic form on D(N):

D®(t)
= —OxX(H)F'(5%)
(4.4)
+ 25X (H)F'(5)dT (di) x (H)
+X(H)[o(v),iF (5)]x(H),
for

dy = dory = pot”® L6 f! (tP°g) < 0.

To estimate [¢(v), 1F (¢

v |, we use the commutator expansion lemma as in the proof of Lemma
4.1. We obtain using (4.

)

3):
IXCH) [ (v), iF (3) ] (H)|

(4.5) < COlll¢(),iF(33))(Ho + 1)~

€ O(t=3=roc),
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Plugging (4.5) into (4.4), we obtain

D(1) <~ (HYAF)(Gx(H) + O~50)

We pick 6 > (14 ¢p)~! so that § + pgep > 1. By Prop. A.3 this proves i).
let us now prove 7). Let u = x(H)v, x € C§°(R), v € D(N). By Lemma 3.9 u; €
D(H)ND(N). We have

O (ue, Nyuy) = (ug, AT (di)ur) — (g, ¢(irev)uy)

< Col|(H + b2 ul?||(iro)(Ho + 1)~

< Cot ™% ||(H +b)zul?,
using (4.2) and the fact that d; < 0. Integrating from 1 to ¢ we obtain
(4.6) (ue: Newe) < Cot' || (H +b)2ul]” + Ca| (N + 1) 7u*
Hence for § > (14 €)%, F € C*(]0, +o0[), F bounded, we have:

N,
(ut7F<?5t>ut) < Cltié(ut, Ntut) € 0(1)

By a density argument this proves ). O

Let us state the following corollary of Prop. 4.2, which will not be used in the sequel:
Proposition 4.3 Assume (I'0), (I'1) and let § > (1+¢9)~L. Then for F € C*(IR),0 < F < 1,
F(s) =1 near0:

. N .
s- lim eltHF(t—(s)eﬂtH =1

t—+o0

Proof. As above we write for u € D(H) ND(N):
(ue, Nug) = (ug, Nywr) + (ue, (N — Ne)ug).

We have
(47) N — Nt = dF((l — Tt)) < tpO(H() + 1)

Since pg = 1 — ppeg, we deduce from (4.6) that
(4.8) (g, Nug) < Cot' =% || (H + b)2u® + C||(N + 1)2ulf?.

Then we argue as in the proof of Prop. 4.2 ). O
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4.2 Case of H®

The results of Subsect. 4.1 extend trivially to the case of the expanded Hamiltonian H®. We
set again
(4.9) re = f(tP0), Nf = d'(re).

We observe that if W is the unitary map introduced in Subsect 3.3 then, using the fact that r;
is even, we have

WHW = H® 1 - 1©dI(5),
WA LW = H@ 14+ 1@ dI'(5),

WANEW = N, @ 1+ 1® N,.

This allows to deduce directly the results of this subsection from those of Subsect. 4.1. The
details are left to the reader.
The analog of Lemma 4.1 is:

Lemma 4.4 Assume (1'0), (I'1). Let x,x1 € C§°(R), F € S°(IR). Then

X(H), FOha (D), (D), FCCH] € o(s-me),

Proposition 4.5 Assume (I'0), (I'1) and let § > (1 +€y)~t. Then
i) for G € C§°(]0,4+00]), x € C3°(IR) we have:

+oo Ne —j e dt e
| I T W2 < Clul, w e D).
it) for F € C°(IR),0 < F <1, F(s) =1 near 0

e INY
s- lim " (=t

—itH®
—)e =1
t—+o0 t5 )

The following lemma will be used in later sections to control the number operator along the
evolution.

Lemma 4.6 Let Ni be the operator introduced in (4.9). Let F € Cg°(IR). Then for § >
(1+e)":

(NE)“F(%)(L +0)"*€cO0(t*), 0< a<1.

Proof. By interpolation it suffices to consider the case a = 1. By Lemma A.2, we deduce from
(1 —r)? < t270|0|? that dT(1 — ry)? < 2P0(Lo + b)? < Ct2P0(L + b)?, since (L + b) "1 (Lo + b) is
bounded. Using that N® = Nf + dI'((1 — r¢)) this yields:

(L+b) L PSP FEE) (L +b)~!

(L+b) T F (G (NS E (G (L +b) 71+ (L + )T F (A0 = o) F () (L + )7

+0

IN

< Ct¥ 4+ C?ro. O
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4.3 Sharper estimates for H

In this subsection, we prove sharper estimates on the localization of bosons of small momenta.
We pick a cutoff function g € C*°(IR) with

- 1
g(s) =0, for |s| < 3,

(4.10) g(s) =1 for |s| > 1,
s.9'(s) > 0.

We set

(4.11) gt = g(t°R5),

for an exponent > 0 and a constant R > 1.
Lemma 4.7 Assume (I'0), (I’'1). Then for x € C§°(IR):

[x(H),T(g")] € Ot~*®).

Proof. We write
(H). D) = o= [ 0%(2)( — H) A D)= — H) e Ad

where X is an almost-analytic extension of x. On D(H), H = Hy + ¢(v), and [Hp,I'(¢")] = 0,

[6(v),T(g")] = ;§a*<<1 — g)(gh) — jimgf)a((l — '),
By Prop. A.1, we obtain:
(4.12) I(Ho + 1)~ 2 [6(v), T(¢")](Ho + 1) 2 < C||(1 - ¢')5 3],

and hence
Iz = H) M [H,T(g)](= = H) '] < C|(1 - g")5 Fv]|[Imz| 2, = € supp .

By (4.1) we have
(1 - g5 20| € O(R0t~%).

This implies the lemma. O
Proposition 4.8 Assume hypotheses (1'0), (I'1) and deg > 1. Then for x € Cg°(IR):
+o0o 1 GH
) [ IAr (" dog) Ex (e Pt < Cllull®, w € D(N),
1
i) s- lim ™D (ghe ™™ = T (g, R) emists,

t——+o0o

iii) [[ " (g, R), H] = 0.
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Proof. Let ®(t) = x(H)I'(¢')x(H). By Lemma 3.9 x(H)e " preserves D(N) and for u €
D(N) the function
R >t (u, P(t)uy)

is C! with derivative (ug, x(H)DI (¢%)x(H)u;), where the Heisenberg derivative DT'(g?) equals
DI'(¢') = dI(g",dog") + [¢(v), il (¢")]-

We have
dog' = ROt '5¢ (t°R5) > 0,

and hence dI'(g¢, dpg’) > 0. Next by (4.12), we have
X(H)[6(0),iT(g")Ix(H) € O(t~°).

Hence if deg > 1 we obtain i) by Prop. A.3 with D = D(N).
To prove i) we write for x € C§°(IR)

D (ghe N2 (H)u = ™\ (H)T(g")x (H)e " u + o(1),

by Lemma 4.7 and argue by density. i) follows similarly from Lemma 4.7. O

Theorem 4.9 Assume hypotheses (1'0), (I'1) and deg > 1. Then T (g,1) = 1, ie:

ety = D(g(t°6))e Hu + 0(1), u € H.

Thm. 4.9 means that for large times no particles are found with momentum smaller than ¢—°
for 0 > ¢, ! while Prop. 4.3 means that for large times the number of particles with momentum
smaller than ¢9 for § > (14 €)' is less than #°.

Proof. We claim first that

4. L + 1
(4.13) wo lim THg.R) =1

To prove (4.13) we will apply Prop. A.6. For u € D(N), we have:

Op(ug, X (H)T (g")x (H )uy)
(4.14) = (ug, x(H)dT'(g*,dog") x(H)uy)
+(ug, x(H)[p(v), 1T (g") | x (H )us)

The first term in the r.h.s of (4.14) is positive and by (4.12) the second term is bounded by
CR~0t=%0_ Clearly we have

— lim D(g(t°R5)) =1 .
w— lim (9(t°Ra)) ,teR

Applying then Prop. A.6 we obtain that if u = x(H)u,

li ' (g, R)u) = ||ul|%.
Rgfoo(u, (9, R)u) = [Ju|
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By density this implies (4.13).
Now we use the fact that for § > ¢’

g(t%5) > g(t* R&), for fixed R and t > Tk.
Hence if we denote by I'* (g, R) the observable in Prop. 4.8 with the exponent ¢, we have:
" (g,R) <T7(g,1) < 1.

Letting R — +o0o and using (4.13) we obtain that I'"(g,1) = 1. O

We now state a lemma which will be used to control the number operator along the evolution,
using the cutoffs I'(g").

Lemma 4.10
i) N°T(¢")x(H) € O(t**), 0 < a < 1, x € C°(R).
i) Let gt = g1(t°5) where g1 € C°(IR) is such that 0 € supp g1, g19 = g. Then

N°T(g")x(H)T(g})x(H) € O(t*), x € C;°(R).

Proof. Let us first prove i). Since D(H) = D(H,), it suffices to estimate N°T'(¢g*)(d['(5)+1) .
On the n—particle sector, we have:

n® [[9®a:) (> 16:] + 1)~ < O,

1 1

which proves ).
To prove ii) we write:

N2T(g")x(H)T(gf)x(H)
= o [0 (2)N?T(¢")(z — H)"'T(g})x(H)dz AdZ
= —3 Je0=X(2)NT(g")(z —

+NT(g")x(H)NT(g7)x(H),

using Lemma 3.9 ). The second term is O(t?®) by 4). Using the fact that D(H) = D(H,), we
write:

H)(w)(z — H)"'D(g})x(H)dz A d=

INT(g") (= — H) " ¢(iv)(z — H)~!|

IN

CIINT(g")(Ho + 1)~ ll¢(iv) (Ho + 1) I (Ho + 1)(z — H) ™|

Cto|Imz|~2,

A

for z € supp x. This proves 4i). O
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4.4 Sharper estimates for H*

Let g be as in (4.10) and set
g =g(t’0).

Then by exactly the same arguments as in Subsect. 4.3, replacing cutoffs in H by cutoffs in L,
we obtain:

Lemma 4.11 Assume (I'0), (I’'1). Then for x,x1 € C§°(IR):

[X(L),T(g")), X(H), T(g)]xa(L) € O*<).

Theorem 4.12 Assume hypotheses (1°0), (I'1) and deg > 1.

ety = T(g(t°0))e ™y + o(1), u € HC.

The proofs are analogous to Lemma 4.7 and Thm. 4.9 and left to the reader.
We now state a lemma analogous to Lemma 4.10 for the Hamiltonian H®.

Lemma 4.13 i)
(N9)°T(g")x(L) € O(**), 0 < a < 1, x € CF°(R).

i) Let gt = g1(t°0) where g1 € C°(IR) is such that 0 € supp g1, g19 = g. Then

(NI (g")X(L)T(g})x(L) € O(t*), x € C°(IR).

The proof is identical to the proof of Lemma 4.10, replacing cutoffs in H by cutoffs in L.

4.5 Some auxiliary estimates for H

In this subsection we consider a positive selfadjoint operator C' acting on b such that [C,&] =0
and we prove some estimates on the growth of C along the evolution. These estimates will be
used for the Nelson Hamiltonian in Sect. 12 for the observable C = }%W.

We assume

(I'5) (1+16]72)(C)*20(K +1)72, (14 [6]2)(C)*2(K + 1) 70 € B(K,K ®b), p2 > 0.
Note that (I’5) implies
o1 _1
(1 + 16 2)F(C > R)o(K +1)"2 | gpcicmn)

(4.15) (1 +[6]72)F(C > R)(K +1)730]l 5 xon)
< CoR7H2,
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The corresponding assumption for the Nelson Hamiltonian is (15) introduced in Subsect. 1.1.
In fact let P(w,d,) be the expression of —A,, in some local coordinates on S?. Then

A,

. ~ 1
—(e7'""“5v;(0w)) = e 'Y = P(w, 0, — dx.w)ov;(ow),
o2 / !

&2

where dx.w is the differential of the function w — x.w. Since dx.w € O(|x|), we obtain, using
(1.1) to control powers of x, that if (H0) holds for a > 0 and (I5) holds for us > 0 then (I'5)
holds for the associated Pauli-Fierz Hamiltonian with the exponent uy replaced by inf(a, p2).

Let F € C°(R), 0 < F <1, F(A\) =1 for [\| < 3, F(A) =0 for [A\| > 1. and AF’'(\) < 0.
We set for p, R > 0:

(4.16) o= B(L

R
Lemma 4.14 Assume (I1'0), (I'5). Then for x € C§°(IR):

[X(H),T(c)] € O@™"27).

Using almost-analytic extensions, we are reduced to estimate

(= — H)™",T(ee)] = (= — H)"'[H, T(c))(= — H) ™.

We have 1 ]

[H,T(ct)] = ﬁa*((l —c)v)l(ee) — ﬁl“(ct)a((l = ¢t)v).
Using (I’5) and Prop. A.1,we obtain
(4.17) [(H 4+ 5 [H, D()J(H +)~ | < Cot~7",

uniformly in R > 1. This implies that
|(z — H)"'H,T(c)](z — H)7Y|| < ColImz|?t77#2, 2z € K € C\IR,

which implies the lemma. O

Proposition 4.15 Assume (I'0), (I'5). Assume p in (4.16) is such that pus > 1 . Then
N L 2 2 00
) [ AL e, doce) Ex(H )t < Clul’, uw € DIV), x € CF(R),

i) s- lim e (¢;)e ™ = PT(R) euists,
t——+o0

iii) [PT(R), H] = 0.
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By the standard argument, we compute for u,v € D(N) the derivative of the function

t = (v, X (H)I () x (H )uy),

which equals

(ve, X (H)L (cr, doce) x (H )ur) + (ve, X (H)[p(v), 10 (er) [x (H )y )
By (4.17) the second term is integrable in norm if pus > 1. We have

C C
t _ /
doce = —rF () gt 2 0

hence dI'(ct,dfct) > 0. The estimate 4) follows then from Prop. A.3. The existence of the limit
ii) follows from 4), Prop. A.4 and Lemma 4.14. Property i) follows from Lemma 4.14. O

Theorem 4.16 Assume (1°0), (I'5). Assume p in (4.16) is such that pus > 1. Then P*(1) =

1, e:

e 1ty = F(F(tgp))e*itHu +o(1), u e H.
Proof. We first claim that
(4.18) w— lim PY(R) =1

R—o0

To prove (4.18) we apply Prop. A.6. We have for u € D(N), x € C5°(IR):

d
a(ut,x(H)F(ct)x(H)ut) > —Ct™P*2||ul|?, uniformly in R.

On the other hand I'(¢;) < 1 and
w— Rlim I(er) =1, vVt € R.

Hence (4.18) follows from Prop. A.6. Finally we use the fact that for p’ > p:

%) < F(t%), for fixed R and t > T'(R).

P

If we denote by I"(c), P'7(R) the same observables with the exponent p’, we obtain I'(¢;) <
I(¢;) < 1 and hence
PT(R)<PT(1) <1

Letting R — oo and using (4.18) we get that P'*(1) = 1. This proves the theorem. O
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5 Number of asymptotically free particles

In this section we consider the expanded Hamiltonian H® introduced in Subsect. 3.3. On
h® = L?>(IR,do) ® g, we denote by
.0

S =1—

0o
the observable conjugate to o, which we interpret as a position. The main result is Thm. 5.6
where we construct for 0 < ¢ < 1 H®—invariant subspaces HST describing states which contain
a finite number of particles in the region {s > ct}. Finally in Subsect. 5.3 we show the rather

trivial fact that no propagation takes place in the region {s < —ct} for 0 < c < 1.
Let us fix f € C*°(IR), such that

(5.1) 0<f<1,f >0, f=0fors<ag, f=1fors>a,

for ag < 1. We set
s—ct

(5.2) bet := f(T

where the constants 0 < ¢ <1, 0 < p < 1 will be fixed later.
We assume in this section the following hypothesis:

)7 BCt = dr(bct)7

(I'2) (K +1)720°(-), v°(-)(K + 1)"2 € HARY) @ B(K,K @ g),

where for p > 0 the space H}(IRT) is the closure of C§°(]0,+o00]) in the topology of HH(IR).
Note that (I’2) implies

_1 _
5 1F(Js| = R)v(K + 1) || kape) < CRTH,
IF(|s| > R)(K + 1) 20°||gccopey < CR™H, R > 1.

The corresponding condition for concrete Nelson Hamiltonians is (12), introduced in Subsect.
1.1. In fact we note that dze 7%“Gv;(6w) = e19%%(9; — ix.w)Gv;(6w). Using then (1.1) to
control powers of x we see that if (H0) holds for a > 0 and (12) holds for p > 0 then (1’2) holds
for the associated Pauli-Fierz Hamiltonian with the exponent p replaced by inf(a, u).

5.1 Technical preparations
Proposition 5.1 Assume (I'0) for g > 0, (I'2) for p > 1. Assume that 0 < ¢ < 1 or that
c=1and ay <0. Then for x € Cg°(IR):
N [T 1 -1 pdl 2 e
i) /1 14T (dobe )2 (Bet + A) ™ x(L)uel|” - < Cllull®, w € DIN®), A >0,

i) s- lim ey (L)(Bey + X)) Ix(L)e H° exists , YA € C\IR™.

t——+o0

Proof. Let us first fix A > 0 and set



For u € D(N®) the function RT 3t +— f(t) = (uy, ®(t)uy) is C1 with derivative
O f (t) = (ue, x(L)DP(¢)x (L)uy).
Note that by (3.8) e "y (L) preserves D(N°®). Since H® = H§ + ¢(v°®) on D(L), we have:
[H,i(Bet + )7 = [H 1(Boe +2) ']+ [6(0°),i(Ber +A)7']

on D(L). Since K @ I'gy(h®) ND(L) is dense in D(L) we can compute D(B.; + A\)~! on finite
vectors. We obtain

Do(Bet + At = —(Ber + M) M0 () (Bey + M) 7H,
for

s—ct. 1—c s—ct
]

¢t = dobet = f/(

Similarly
[6(v),i(Bet +A) 7 = (Ber + A) 7 ¢ (ibe v°) (Ber + A) 7

Since D(L) = D(Lo), (K + 1)2(L +1)~! is bounded, and we have:
1 (v®),i(Bee +A) 7L +1) 7
(5.4) < [(Bet + N7 (b 0°) (K +1)72) (Bey + A) 7Y
< ClbEt(K + 1)} < Ctn,

using Prop. A.1 and assumption (12).
Next we note that if 0 <c<lorc=1and a1 <0

c s—ct
a>—f

Z " ) for t > 1.

Applying then Prop. A.3 with D = D(N°®), we obtain
e 1 -1 o dt 2 e

(55) [ A0 (Bee + N Dl < Cllull, w e DIV, A > 0.
1

This proves 7).
For A € C\IR™, we have, as quadratic forms on D(L) N D(N°®):

DO(Bct + )\)71 = _(Bct + A)ildr(ct)(Bct + )\)71
5.6
>0 = —(Bey + 1)1 ()2 R()AT (¢;)2 (Bey + 1)1,

for R(t) = (Bet + 1)%(Bet + A) 72 € O(1). Moreover (5.4) is still valid for A € C\IR™. Applying
then (5.6), (5.4) and the estimate (5.5) for A = 1, we obtain i) by Prop. A.4. O

Th next three lemmas will be needed in the proof of Thm. 5.5 to get rid of the cutoffs x (L)
in the statements of Prop. 5.1. Note that commutators between functions of L and functions
of B. are bounded only by the number operator, since [|o|,is] = 1. Therefore we introduce
cutoffs in N¢ to control these error terms.
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Lemma 5.2 Let f; € C*°(IR) with |0S fi] < Cot™?*, a € IN. Then

[fe(s),|ol] € O@™P).

Proof. We have
[Lfe(s), o]l = P I[[fe(2”s), |ol]]]-

Note that g:(s) = fi(t"s) satisfies |0$¢:| < Co, a € IN.
It remains to check that [g:(s), |o|] is bounded, which follows by writing |o| as r1(o) 4+ r2(0),
where 71(0) is bounded and r2(c) € C®(IR), [0¢7r9(0)| < Co(1 + |o)t—lel O

Lemma 5.3 Assume (I'0) for eg > 0, (I'2) for > 0. Let Nf be defined in (4.9). Assume the
exponent p in (5.2) is such that p > & > (1 + €)™, Then for x,F € C§°(R), A € C\IR":

(L +D)[(Bee + N MENFCENE) € o).

Proof. We write

(L+1)[(Bee + X)X (L) F(3E)x (L)

e

= & JEE(L 1) (e~ L) (Boe + AL L)z — L) UF(RE )y (L)dz A dz.
By Lemma 3.5 (z — L)™' preserves D(N¢). On D(L) N D(N°®) we have:
[(Bot +X) 7 L = [(Bet +A)7H Lo] + [(Bet +2) 7 ¢(v°)].

By (5.4)
' [(Bet + M) 71 0(09)](2 — L)t € O(|[Tmz| "1 7H).

Next on D(L) N D(N®)
(5.7) [(Bet +X) 7" Lol = =(Bet + A) 7 L ([ber, o)) (Ber +2) 7
By Lemma 5.2, [bc¢, |o|] € O(t7") and hence
[(Bet +A) 71, Lol € O(NO)t 7.
By Lemma 3.5 we have
(5.8) (N®+1)(z— L) " (N° +1)7' € O(|Imz|7?), z € supp X,
and by Lemma 4.6 NeF(]:—;)X(L) € O(t°). Finally we obtain that for u € D(N®):
12+ = L) (Ber + )71 L)z = L) F X (L)l
< Ot |lmz| = + ¢ #[Imz| ") Jul, = € supp X

Using the properties of y this proves the lemma. O
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Proposition 5.4 Assume (I'0), (I'1) for eq > 0,(1’2) for > 0. Then for p > § > (1 +¢) 7!,
Ae C\IR™, x € C°(R):

(Bet + N FCENAE) = XD (Ber + ) FEEX(D) + o1,

Proof. We combine Lemma 5.3 and Lemma 4.4. O

5.2 Asymptotic projections

Theorem 5.5 Assume (1°0), (I'1) for eg > 0, (I'2) with p > 1 and pick p in (5.2) such that
p(1+¢€) > 1. Then:
i) for each A € C\IR™ the limit

s- lim e °(B.y + \)"le " = RST()\) exists.
t—-4o00

ii) [RET(N), L] = [RET(N), H] = 0.

i11) the limit

s- 11_I>I(l) e IR (71 =: P emists

and is an orthogonal projection.

i)

[He, PST] = [L, PgT] =0,

1 _itHe®
le ltHU,:

u= Pty & s-lime_gs-lim, 4o eltH® (eBct + 1) u.

The projections ]5§+ are constructed by a standard pseudo-resolvent argument. In fact it is
easy to see that the operators RST()\) form a pseudo-resolvent family, ie satisfy the resolvent
identity. From this family a selfadjoint operator N¢* (with a possibly non dense domain) can
be constructed. The operator N can be seen as the (formal) limit:
NEt = lim B e H",
t—-+o0

ie as the asymptotic number of particles in s > c¢t. The range of 15§+ is the closure of the domain
of N&t, ie the closure of the space of states where this number is finite. In the sequel, only the
range of Pf“‘ will play a role and we will not consider the associated selfadjoint operator NST.

Note also that the projections P¢* depend on the choice of the cutoff function f in (5.2).
We introduce projections independent on the choice of f in the next theorem.

Theorem 5.6 Assume (1°0), (I'1) for eg > 0, (I'2) with > 1 and pick p in (5.2) such that
p(1+¢€) > 1. Let for 0 <c < 1:

Pt = inf PSY, HST = RanPST.

c<c!

Then:
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i) PST is an orthogonal projection independent on the choice of the function f in (5.2).
ii) [H®, Pt = [L, PT] = 0,
iti) Q°F (Hpp(H) @ T(v°)) C HC™,
where the wave operator Q°T is defined in Subsect. 8.5.

The space HST can be understood as the space of states having a finite number of particles in
the region {s > ¢t} for all ¢ > c. By part i) of Thm. 5.6 we know that if H® has bound states,
in particular under the assumptions (H’0), (I'3), then HST is non trivial.

Proof. Let fi, f2 be two functions such that 0 < f; <1, f/ € C§°(IR), f/ > 0 and f; =0 for
s < —1, fi =1 for s > 1. Clearly there exists sg such that fi(s) < fa(s + ') for any s’ > sq.
This implies that if ¢y > co

s —cit
tP

) < fol 2 _CQt) t>T.

(5.9) il

Let us denote by B . the observable defined in (5.2) for f = f; and by R ()), ]519: the objects
constructed in Thm. 5.5 for f = f;. It follows from (5.9) that

(Bieyt +N) 71> (Bogyt + N Lor t >T, A >0

hence

Ry cl()‘) RS CQ()\)v A>0,
and ) )
(5.10) P > Pyl if e > co.

If we take fi = fo = f, we obtain that the family of projections ]5C9+ is increasing w.r.t. ¢, which
shows the existence of P¢T. Using again (5.10) we obtain that P does not depend on f.

ii) follow from Thm. 5.5. It remains to prove iii). We first note that Hpp(H®) C HET. In
fact this is a direct consequence of the fact that for € > 0 (eB.;+1)~! tends strongly to 1 when
t — +o00. Next we use the fact proved in Thm. 8.7 that the asymptotic Weyl operators Wt (h)
preserve the space HE'. These two observations imply 444). O

Proof of Thm. 5.5 Let us first prove i). By density it suffices to show the existence of

(5.11) lim ™™ (B, +A) ey

t——+00

for u = x(L)u, x € C§°(IR). Let us pick an exponent § with p > § > (14¢p)~!, which is possible
since p(1+ €y) > 1. By Prop. 4.5 i), we have for F' € C§°(IR), F = 1 near 0:

eitHe(BCt 4 )\)—le—itHeu

= (B 4+ N IF(8)e %y 4 o(1)

~+

= e (Boy + N)TLF(E ) A(L)e u + o(1)
= e (L)(Bey + A) " x(L )F(%)e_itHeu—Fo(l)

)"
= (L) (Ber + A) " Ix(L)e ™ u + o),
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where we used Prop. 4.5 and Prop. 5.4. Hence by Prop. 5.1 the limit (5.11) exists. The first
statement of i) follows by the arguments above. Let us now prove the second statement of ).
It suffices to show that . .

RET(\) = A REF(N)e 18" vt € R,
or equivalently

(5.12) s lim e ((Bey 4+ A) 7 = (Bep—y, + N) " He " = .

t——+o00o

We have
(Bet +A) ' = (Betty #A) = =(Bet + NN Bet — Betty)(Bett, + N1,

and
Bct - Bct—t1 - dr(bct - bc t—tl)-

Since ||bet — bei—t, || € O(t™P), this gives
(5.13) ((Ber+ N7 = (Bersy + V7)€ O(N®) 7.
Let u € H® with x(L)u = u for x € C$°(IR). We pick § with p > § > (1 + ¢) ™! and write

eitHe ((Bct + )\)_1 — (BC t—t; T A)_l)e_itHeu

= ¢ftH® ((Bct + A7t — (Bet—t, + )\)_I)F(%)X(L)e_it}[eu +o(1).

Combining (5.13) and Lemma 4.6 we obtain (5.12). This completes the proof of ii).
Statements 4ii) and iv) follow from Prop. A.7 in the Appendix. O

5.3 Soft propagation estimates

In this subsection we show rather easy propagation estimates. More precisely we show that for
any state in H® there is no propagation in the region {s < —ct} for 0 < ¢ < 1.
We fix a cutoff function f; € C*°(IR) such that for some oy < a3 < 0:

0 S fl S 17 Suppfl C] - oo,ag],
(5.14)
fi=1lin]—oo,a4], fi(s) <0,

andset for0< p<1,0<c<1:
s+ct
tP

Proposition 5.7 Assume (I'0), (I'1) for g > 0, (I'2) for p > 1 and pick p in (5.15) such that
p(1+€y) > 1. Then:

(515) bLt = fl( ), Bl,t = dF(bLt).

i) R (€) i= s-limy_, 100 H° (1 + €By 4) " te " exists,
it) [R{ (€), H] = [R{ (¢), L] =0,

iii) s-lime_o R{ (¢) = 1.
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Prop. 5.7 means that any state has a finite number of particles in the region {s < —ct}.
Proof. we first prove the existence of

(5.16) s- lim ™ x(L)(1 + By ) Ix(L)e H".

t—-4o00
Arguing exactly as in the proof of Prop. 5.1, we obtain for A € C\IR™:
MIID(Byy + A IX(L) = —X(L)(Bry + )"l (er0)(Bry + A x(L)
~X(L) (Bt + A) 1 (ib110°) (Bre + A) "' x(L),

for

cip = dobiy = fi(5FE) (A5 — p3ES)

< —cf{(EE) L, for t > 1.

Moreover by Prop. A.1:

(L) (Bre + 2~ ¢(ib1,10%) (B + N) "X (L)|| < Cllb v (K +1) 72| < Ct 7+,

by (I’2). Arguing as in Subsect. 5.1 we obtain the existence of the limit (5.16). As in the proof
of Thm. 5.5, using an analog of Prop. 5.4 we obtain then the existence of R] (€). Property ii)
can be shown as in Thm. 5.5.

Let us now prove iii). By Prop. A.7 we obtain the existence of s-lim, .o R; (€), and it suffices
to show that
(5.17) w — lim Rf (e) = 1.

By density it suffices to consider states u € H® such that u = x(L)u for some x € C§°(IR). We
will apply Prop. A.6 to ®(t) = x(L)(1 + eB1+) tx(L). We have:

X(L)D(1+ €Byiy) 'x(L)
= —ex(D)(1+ eBy) " dT(er) (1 + eBy) ()
—ex(L)(1 + €B1) ' (ib1,1v°) (1 + eB1e) " x(L).
Using the fact that
(14 €eBy) (1 + Bl,t)_%H < Ce~2, uniformly in ¢,
and Prop. A.1, we obtain
(5.18) flex(L)(1 + By ) p(ibyw") (1 + By X(D)] < ClbEw(K + 1)} < O,
uniformly in e. Since ¢;; < 0, we obtain
(5.19) X(L)D(1 4 €By ) 'x(L) > —Ct™*, uniformly in .
Clearly w — lime_o(1 + €B1¢)™' = L for t > 0 and 0 < Ri"(e) < 1. Applying Prop. A.6 we

obtain (5.17). O
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Let now fo € C*°(IR) be a cutoff function such that:

fo=1lins<a, fo=0ins > ag,

(5.20)
fi<o.
Here the constants oy < a9 are such that 0 < a1 < as.
We set: ;
—s—c
5.21 to—
( ) fR fO( Rtr )7

for R>1and 0 < p <1 asin (5.2). The following two lemmas are analogous to Lemmas 6.1
and 6.2 for k£ = 0 and their proofs are similar.

Lemma 5.8 Assume (I'0), (I'1) for g > 0, (I'2) for p > 0. Assume the constants p,d are
chosen so that p > § > (14 €)™, u > §/2. Then for x1, x2, F € C°(IR):

e

LU (DIFCE () € o))

Lemma 5.9 Assume (I'0), (I'1) for ¢ > 0, (I'2) for n > 0. Assume the constants p,0 are
chosen so that p > & > (1 + €)™, p > 6/2. Then for x1,x2, F € C(IR):

€ €

rFCHew) = a@rRECH () +of1).

The following lemma is analogous to Prop. 6.3.

Lemma 5.10 Assume (1°0), (I'2) for > 1. Let By, defined in (5.15). Then for x € C§°(IR),
A>0, R>1 large enough:

(5.22) 5 ligl S N(L)T(fR) (Bry + N) " Ix(L)e % exists.
Proof. As in the proof of Prop. 6.3 we compute

FR)(Bre+A)"x(L)
(5.23) = X(L)DI(fR)(Bre+A) " x(L)
+X(L)T(fR)D(Bt + A)~'x(L).

D (L)I'(

By the proof of Prop. 5.7, we have:
(5.24) | (v, X(L)T(fR)D(Brs + A) "' x(L)u)| < Cf| R (t)ul[[| Rx (t)v]],

uniformly in R, where R;(t) is integrable along the evolution. Let us now consider the first term
in (5.23). We have:

(6(°), iT(f4)] = \;iF(fE)a((l ) — ——a (1= )T,

EH
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By (5.20)
supp (1 — fk) C {s < —ct — ay Rt"},

and
bt =1in {s < —ct + ayt’}.

Since g > 0 by =1 on supp (1 — f§) for t > 0, R > Ry. Applying then Prop. A.1, we obtain:
I[é(v), T(fR)(Bre +A) " 'x(L)]

_1
Cll(L = fRIve (K + 1)~ 2]

< CtH,

(5.25)

IN

uniformly in R > Ry, by (I’2). Finally

dofh = f5(F) (T + mioer (s + )
> 5l I,

uniformly in R > Ry. From (5.25), (5.26), (5.24) we obtain:

(5.26)

(5.27) | (v, DX(L)T(fR) (B +A) !<ZIIR Jullll Bi(t)vll,

uniformly in R > Ry, where R;(t) are integrable along the evolution. This implies that the limit
(5.22) exists. O

The following proposition is an improvement on Prop. 5.7. It means that asymptotically
there are no particles in {s < —ct}.

Proposition 5.11 Assume (1'0), (I'1) for g > 0, (I'2) for p > 1 and pick p such that p(1 +

€0) > 1. Then:
. rre —s—ct
s- lim e T(fo( —

t——+00 tP

))e A 1.

Proof. We denote by f}% o the operator in (5.21) to emphasize the dependence on the exponent
p. Using Lemma 5.9, Prop. 5.4, Prop. 4.5 and a density argument as in the proof of Thm. 5.5
i), we deduce from Lemma 5.10 the existence of

(5.28) s- lim e T(fh )(eBry+ M) ~'e M Ve > 0.
t——4o00 ’ ’
By Prop. 5.7 and a density argument, we obtain the existence of

o HS pt o \G—itH® . et
s- tl}inooe L(fRr,)e =:I'p

and the fact that the limit (5.28) equals F+ R+( ).
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Next we apply Prop. A.5 to obtain:

(5.29) w— lim FE,pr(e) = R} (e).

R—+o00

In fact the integrability uniformly in R (condition (A.2)) follows from (5.27) and

— lim I(fL )=
w— lim (frRp) =1, Vt>0

since f}%’p =1lin {s > —ct—ajRt’} and a; > 0. Applying Prop. A.5 we obtain (5.29). Applying
then Prop. 5.7 i) we obtain

) — lim T5 =1.
(5.30) W g Ry

Let now p; with pi1(1 +¢€p) > 1 and p > p;. We claim that
(5.31) fi, = fhy fort>Tg.

In fact supp ff ,, C {s > —ct —agRtP'} and f{ , = 1 in {s > —ct — a1t’}, so f{ , = 1 on
supp ﬁ%,pl for t > Tg, since 0 < a1 < ag and p > p;. By (5.31) ngl < Ffp < 1, and hence
I, =1 by (5.30).0

6 Asymptotic partition of unity

In this section we construct in Thm. 6.4 an asymptotic partition of unity on the spaces H'
constructed in Sect. 5. This partition of unity allows to cut a state in HE" into pieces having a
definite number of particles in the region {s > ct}. The partition of unity is constructed using
the operators Py(f) for a pair of cutoff functions (fo(s), foo(s)) defined in Subsect. 2.2. For
technical reasons we will also need to consider in Subsect. 6.2 a particular family of cutoffs
(fo(s), foo,e(s)) and to prove a weak convergence result when € — 0.

6.1 Asymptotic cutoffs

Let us fix two functions fy, foo € C°(IR) with 0 < f. <1, € = 0,00 and
fo=1lins<ai, fo =0in s > a9,

(6.1) fo=0ins < aq, foo =1in s> ag,
fi <0, flo>0.

Here the constants a3 < ag are such that oy < a1 < as where the constant ag is fixed in Sect.

5. We set f = (anfoo)a ft = (f(gvféo) for
s—ct
(62) f: = fe( 1

for constants 0 <c<land 0 < p < 1.
We consider in this section the localization operators Py (f), Qk(f) defined in Subsect. 2.2.
We recall (see [DG2, Lemma 2.9])

[1P(HI <1, 1Qe(NI < Tif fo+ foo < 1.

);
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Using then the definition of Py (f), Qx(f) we notice that

_ =k
(63) 1P < a7, lRu(ll <
if
(6.4) fotafe <1, a>0.

Indeed it suffices consider the new cutoffs f = (fo, afs) and use that Py(f) = o %Py (f).
In this section we will always assume that (fo, foo) satisfy (6.4).
We recall the following identities ([DG2, Lemma 2.11]):

Do Py (f*) = dPp(f*, dof"),
(6.5) [¢(v),iPk(f")]
= J5(a" (1= )P = @ (Fa0) Pa (FY) = Pu(f1)al(1 = f§)0) + Pica(f)alfhv) ).

The next two lemmas, analogous to Lemma 5.3 and Prop. 5.4, are needed to get rid of the
cutoffs x(L) in the statement of Prop. 6.3.

Lemma 6.1 Assume (I'0), (I'1) for ¢ > 0 ,(I'2) for p > 0. Assume the constants p,d are
chosen so that p >0 > (1 +¢)~ Y, p > 6/2. Then for x1,x2, F € C°(IR):

(S]

P (IR CE () € o).

Proof. By the argument above we may assume that fo + foo < 1. We have
i [0

o | B (- L) ML, Pe(f9)(z — L) 'dz A dz.

(6.6) [Pe(f%)xa(L)] =
On D(N°®) ND(L) we have:

L, Pe(f)] = dPe(f", [lo], S DI + [6(v°), Pe(f1)].

By Lemma 5.2 we have
(6.7) [lo], f&] € O(t™"),e = 0, 00.

Applying then [DG2, Lemma 2.11 |, we get
dPs(f", llo], f1) € O(N®)t~".
Using then (6.5) and (1’2), we obtain
(6.8) (K +1)72[p(v°), Pe( S (N® +1) 73] € O(t ™).
1

By Lemma 3.5 for o = 1 and a interpolation argument for a = 5 we obtain

1
[(N®+1)%(z =L)"Y (N°+1)7?|| < Cllmz| 2, a = 2’ 1,z € Be C\R.
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Recall also from Lemma 4.6 that (Ne)aF(%)XQ(L) € O(t°*). This yields

Iz = )7L, Pe(f] (= = LD F(G)xa(D)|
< Ot 4 = #F9/2) Imz| =3,
Using (6.6) we obtain the lemma. O
The following lemma follows from Lemmas 4.4 and 6.1.
Lemma 6.2 Assume (I'0), (I'1) for ¢ > 0, (I'2) for p > 0. Assume the constants p,d are
chosen so that p >0 > (1 + €)™, p > 6/2. Then for x1,x2, F € C(IR):

PO (L) = (LA IECE (L) +of1).

We recall that the observable B.; was defined in (5.2). For f = (fo, fx),9 € B(h°) we define
the operator Ry(f,g) as

n
(6.9) Relf Qogye =2 D fa® @[5, @90 [, ® @ [o.
j=1#{ilei=o0}=k
If fo+ afso <1, we see as in [DG2, Lemma 2.11] that
_ 1 1
(v, Ri(f, 9)w)] < @™ Fllgllsgoe) (V) Zul| | (N©)20].
Proposition 6.3 Assume (1'0), (I'2) for u > 1. Assume 0 <c <1 orc=1 and as < 0. For
X € C*(IR), A > 0:
. +oo t ot L _1 2 2 e
i) /1 [Be(f7519e))? (Bet + A)72x(L)ue||"dE < Cljul]”, w € DN®), e = 0, 00,

if gt = doft. . .
ii)s- lm e y(L)Py(f)(Bet + N) " Ix(L)e M H" exists.

t—+00

Proof. Let
Dy (t) = X(L)(Bet +A) ' Pe(f1)x(L), A > 0.

Note that [Py(f!), Be¢] = 0. For u € D(N®) N D(L) the function t — (ug, @x(t)uy) is C1 with
derivative (u¢, D®g(t)u;) and

D& (t) = x(L)D(Bet + A) " Pu(fH)x(L)
+X(L) (Bey + N 7L (dPe(f1, do ') + [6(0°), iP( 4] ) x(L).

We observe that b.; defined in (5.2) is equal to 1 on supp (1 — f¢) and on supp fL . Using the
fact that B.; commutes with Py (f!), we obtain

IX(L)(Be e + A)~Ho(v®), iPk(f1)Ix(L)]

< O (Bt + N a* (1 — (K +1)7200)|| + Ofl(Ber + A la((1 — fE) (K +1)"70°)|

(6.10)

+C(|(Bot + N a* (flo (B +1)7200) | + [[[|(Bet + A) " a( f (K +1)"70°)]).
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Applying Prop. A.1, we obtain
IX(L)(Bet + X) " [(v°), 1P (f9)]x(L)]|
Cll(1 = F(K +1)720%| + C|| flo (K + 1)~ 70°||

< ot

(6.11)

IN

by (1'2).
On the other hand we have on the n—particle sector:

de(fv g) = E}Ll Zﬁ{i|6¢=oo}=k f€1 @ fej—l ® go @ fej'*‘l ®- fe"
2= Lfile—oo)=h-1 S @ @ fe; i @G @ fe, @@ fe,
= Ri(f,90) + Rp—1(f, goo)-

Finally as in the proof of Prop. 5.1:
D(Bct =+ )‘)_1 = _(Bct + )‘)_ldr(ct)(Bct + )‘)_1 + [(ﬁ(ve)’ i(Bct + )‘)_1]7

and by (5.4)
(6.12) IX(L)[@(v°),i(Ber +X) | € O ™).
Note also that
(Bet + N) 71T () Pi(f4) (Bey + M) 7!
(6.13) ) )
= (Bet +A) 71T (cr) 2 Pe(f1)dT (er)2 (Ber + A) 7

since Py (f!) commutes with B.; and dI'(c;). Using (6.12), (6.13) and Prop. 5.1, we see that the
first term on the r.h.s. of (6.10) is integrable along the evolution.

Let us now consider the second term. Assume first that fo + foo = 1. Then dof§ = —do fL,
and hence
(6.14) dPy(f',dof") = Re(f', 95) — Re—1(f", 90),

where we set R_1(f,g) = 0. Next

s—ct, (1—c s—ct
gb = doft = 15 )

P

If0<c<lorc=1andas <0 wehave gf <0 for t > 1. By (6.11), Prop. 5.1 and Prop. A.3,
we obtain

+o0
| IR 1gbD* (Ber + ) Ex(LyulPdt < Cllul®, w e DV°).

Using then (6.14) we obtain by induction on k:
+oo 1 1
(6.15) /1 IRk (f*, 1961)% (Bet + X) "2 x(L)uel|*dt < Cllul]?, u € D(N®).

Let us now assume that fy + afs < 1. Introducing the cutoffs f = (fo, @ foo), We may assume
that fo + foo < 1. Since fo < (1 — foo), foo <1 — fo, we have:
Ri(f'1g6l) < Ri(l", |ggl) for 1 = (f5,1 = £0),

(6.16)
Rk(ft7 |géo|) < Rk(lta ’géo‘) for I* = (1 - fécﬂféo)
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If we set I = (f, 1 — f) then g§ = dol}, and if we set I = (1 — f%, fL) then g} = —dol§.
Hence i) follows from (6.16) and the estimates (6.15) for the two choices of I* above.
Property ii) follows from i) and Prop. A.4. O

Theorem 6.4 Assume (1°0), (I'1) for eg > 0, (I'2) for > 1 and pick p in (5.2) such that
p(1+e€) >1. Fix0<c<1landc<c <1. Let us denote f = (f§, fL.) defined in (6.2) by f!
to indicate the dependence on the constant c. Then
i) the limit ‘ .
Pl (fo, foo) =5 tlifrnoo e P (fL)e " egists on HET,

i) [P (fo, ), H®] = 0,
iii) [P1.(fo, foo), L] = 0,

) if fo+ foo =1 then
+o00

8= ijk(fmfoo) =1 on H2+'
0

For k = 0 the asymptotic cutoffs P}, (f) take a simpler form. In fact we have Py(fo, fo) = I'(fo)-
We denote Poio(fo, fxo) by T (fo) and we have

(6.17) TSF(fo) = 5 ligrn M (fhg)e H on HET, for 0 <c < ¢ < 1.

— 400
Proof. Let us first prove 7). By the definition of HS™ it suffices to prove the theorem on Ramf’;,r
for ¢ < ¢’. Changing notation we may replace ¢’ by ¢. By Thm. 5.5 we may restrict ourselves

to vectors u € RanP; such that v = y(L)u, x € Cg°(IR). Moreover for each u € RanP; and
€1 > 0 there exists € > 0 such that

(6.18) e H y — (eBoy + 1) Le H y 4 e 1 (1),

with [|r¢|]| < e;. We pick now § > 0 such that p > 0, u > /2 and §(1 + ¢) > 1, which is
possible since p(1 +€p) > 1,1 > 1, and consider the observable Nf constructed in Subsect. 4.2.
If F e C°(IR), F =1 near 0 we have:

Pu(fH)e = Po(f1)F (5% (L)e ™ u+ o(1)
(6.19) = X(L)Pe(fOX(L)F (5 e u+ o(1)
= X(L)Pu(f)x(L)e M u + o(1),

where we used successively Prop. 4.5, Lemma 4.4, Lemma 6.2 and Prop. 4.5 again. Next we
write using (6.18):

(€Bey + )\)_le_itHeu + X(L)Pk(ft)e_itHer6 +o(1)
LYPu(f1)(eBet + N x(L)e %y + (L) Pp(fHe " + o(1).
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Hence to prove i) it suffices to prove the existence of

s- lim eitHex(L)Pk(ft)(eBct + 1)71X(L)e*itHeu7

t——+o0

which is shown in Prop. 6.3.

it1) follows from the same arguments as in (6.19). In fact using Lemma 6.2 we obtain that
if x(L)u = u then x1(L)P; (f)u = P (f)x1(L)u, which proves iii).

To prove i), it suffices to prove that

P (NeT T = PE(f), Vi € R,

or equivalently

(620) S- tl}inoo eitHe (Pk(ft) - Pk(ft_tl))e_itHe —0.

Using [DG2, Lemma 2.11], we have:

P = P == | " AP BT
Since 9, f* € O(t™*), we obtain
(6.21) (Pe(f') = Pr(f171)) € O(N®)t=*
For u € HST with u = x(L)u, x € C°(IR), we have:
Pi(f1) = Pr(f1=1))e "y
Pe(f%) = Pu(f= ) F(5E)X(L)e ™ u + o(1),

by Prop. 4.5. Using then (6.21) and Lemma 4.6, we obtain

(
=

(P(f') = PP ) FCDX(E) € 070),

which proves (6.20) since p > 4.
Let us now prove iv). We claim that if f = (fo, foo), fo+ foo <1 and b =1 on supp f then

1
m—+ A

(6.22) ||ZPI<: b)+ 1)1 <

In fact on the n—particle sector we have:
o Pe(£)(@L() + 1)~
Sm<tfilcimoo)<n feo @+ @ fe, (i bi +A) 7!
< (m+X)7!

Assume now that fo+ foo = 1. Since > ¢" P,:r (f) <1, to prove iv) it suffices by density to show
that

m—1
- P;(f))€R§+(e_1)u =0, Ve > 0,
0

Jim(
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where RS (M) is defined in Thm. 5.5. Now
(1= S5 ()RS (e V|
= limy_ oo [ 3500 Pr(f8)(eBey + 1)~ te ity |
< (em+1)7Hul,

by (6.22). This proves iv). O

6.2 Weak limits

We will consider now for technical purposes a specific choice of the cutoffs fy, foo. We set

exp~ (o0 0207t lay, a],
g(t) :=

07 t g]ala a2[7

eXp_(t—Oq—6)_1(C¥2—t)_17 t 6]041 + €, 042[7
ge(t) =

07 t g]al + 6,042[,
for 0 <e< %(ag —aq). Clearly g < g. Let

“+o0o +oo
C= / g(t)dt, C, = / ge(t)dt,

and note that lim._oC. = C.
We set

(6.23) fuols) = C / g()ds', faocls) = C1 / gu(s')ds'.
Since g, < g, we have

¢

C
foo,e S Efom féo,e S Hfooa

and
foo(s) =1 for s > ag, fo(s) =0 for s < ay,

fooe(s) =1for s > ag, foo(s) =0fors <o +e
101
Note also that by [DG1, Lemma A.4.1], f&, f&. € C*°(IR). Next we set
(6.24) Joi=1- fe,

1
and again by [DG1, Lemma A.4.1] fi € C*°(IR). The following lemma summarizes the proper-
ties of fo, fooe-

Lemma 6.5

Z)f0+foo:1>
i1) Joe > 0, Ve > 0 fo + afoo,e < 1,
1 1

iii) Ve > 0, Ja > 0 f + afd . < 1.

49



Proof. i) is obvious. i) follows from the fact that Cefoo e < C foo.
Since fo <1 and foo, =0 in {s < a; + €}, we have:

1 1
Va >0, fi(s) +afde(s) <1lin {s <aq +¢€}.

So it suffices to verify that
1
1—f5(s)

inf —5——+>0,
s>aq+te f0207€(8)
or equivalently
1
_£3())2
RS HO)
s>aq+e foo,e(s)

If s > a1 +¢€, foo(s) > 7 > 0 hence

> 0.

N

> (1= f2(5)? > (1— (1—r)%) >0,

a

Proposition 6.6 Assume (1'0), (I'1) for eg > 0, (I'2) for up > 1 and pick p in (6.2) such that
p(1+¢€) >1. Then for0<c<c <1

Pii(fos foo) = w=lim Pl (fo, fooc) on M.

Proof. As in the proof of Thm. 6.4 it suffices to prove the proposition on Ranpf,Jr. Changing
notation, we may replace ¢’ by c¢. By density it suffices to prove that

wlim x (L) P (fo, foo. ) REVX(L) = X(D) Pk (fos foo) RE(MX(L),

for x € C§°(IR), A > 0. Let us omit the index ¢ to simplify notation. We will apply Prop. A.5.
To do this we need to estimate uniformly in € the Heisenberg derivative of

D (t) = X(L)Pr(fo fo,e) (Bt + ) 'x(L).
By (6.12) and (6.13) we have:
|(u2, X(L) Pi(f§ fao,)D(Bet +A) " x(L)u1)]
< CH|Pe(fs foo, Ol llluz]]

P Fo NI (e)2 (Bey + A) ™ x(L)us||[[AT(¢) (Be + A) ™ x(L)u -

By Lemma 6.5 ii) we have ||Py(f§, i .)|l < % uniformly in e.
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Let us now consider the terms coming from D Py (f§, f, ). By (6.11):

IX(L)(Bet + A)7Ho(v°), iPe(f§, fao ) IX (D)

< Ol = K +1)7200 | + CllfL (K +1) 750
< O = K +1)720 | + Ol (K +1) 7200
< Ot uniformly in 0 < € < §(az — a1),

since foo,e < Co foo-
Finally

DoPi(f5, fhoc) = Rie((f5, foo.0): dofi) + Rie—1((f6: fhoc)s dofloc)-

Since

foo,e S COfom féo,g S COfc,x;v
uniformly for 0 < € < %(az — o), we have:

[Re((f& flo0)s dofi)IZ < CY Ri((f2, £L), o fi))7,
R 1 (& floo)s doflo )17 < Co*Ricr ((f, £L), o fL1)2.

This yields
|(u2, X(L)(Bet + A) " DoPe(f§, fao )X (L)ua)|
< C(’)“(I!Rl(t)X(L)U1IIHRl(t)X(L)UQII + HRz(t)x(L)MH||R2(t)x(L)qu),

for ) )
Ri(t) = (Bet + \) "2 R ((f§, %), 1do f5]) 2,

Ro(t) = (Bet + A) "2 Ri_1((fL, £L), [dofL])2.

By (1’2), Prop. 5.1 and Prop. 6.3, hypothesis (A.2) of Prop. A.5 is satisfied. Hypothesis (A.1)
is clearly satisfied since

1
| P (fE, éo’e)H < a~", uniformly in 0 < € < 5(042 — 1),

by Lemma 6.5 7). Finally
w—lim Py(fo, foo,e) = Pilfo, fo), V¢ 20,
and hence hypothesis (A.3) of Prop. A.5 is satisfied. Applying Prop. A.5 we obtain the
proposition. O
7 Geometric inverse wave operators

This section is devoted to the construction of geometric inverse wave operators on the spaces
HSt. This is an essential step in the proof of geometric asymptotic completeness on HEt. The
key technical result in this section is Lemma 7.3. Sect. 6.
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7.1 Extended objects

We first define so called extended objects which provide a convenient framework for scattering
theory (see [DG2, Sect. 3.4]). Let

ext =H'® F(h )
Hey = H® @ Tpyey + Ipe @ d'(0), acting on Hy

ext’

Lext := L ® Tp(gey + e @ dI'(|o|), acting on Hg

ext*

We set
NG =N°®1, N :=1® N°, Ng, =Ny + NS.

The interpretation of the tensor product HS,, is as follows: I'(h°) contains the asymptotically
free bosons while H® contains the atom and the bosons staying close to it.
We define also the extended Heisenberg derivatives (see [DG2, Sect. 3.4]):

dof(t) =G f(t)+ (o ®a)if(t) —if(t)o,
f(t) € B(h°,5° ©b°),

DoF(t) = ZF(t)+ (dl(0) ® 1+ 1® d[(0))iF (t) — iF(t)dT (o),
F(t) € BI'(h°),I'(6°) @ I'(h%)),

DB(t) = ZB(t)+ H*4B(t) —iB(t)H°,
B(t) € B(H®, H™).

Note that with the notation in Subsect. 2.2 we have
Dodl'(f) = d'(do f)-

In this section, we will use the operators I'(j), T'x(j) defined in Subsect. 2.2 for the following
choice of j. We pick cutoff functions jj, j satisfying (6.1) and (6.4). We set j' = (5§, j%,) for

. ., 8—ct
(7.1) je = je(—5—

" ),0<c<1,0<p<1,e=0,00.

7.2 Technical estimates
Lemma 7.1 Assume (I'0), (I'1) for eg > 0, (I'2) for u >0 and let p > 6 > (14+¢€9) 7L, p > 6/2.
Then for x1,x2 € Cg°(IR):

Ne
o

(1 (Lext) Dk (") = T (B)) (S5 )xa(L) € o(1).

Proof. considering j = (jo, @joo) and noting that T4 (5%) = a *T'1(j?), we may assume that
Jo + joo < 1 and hence j§ + j2, < 1. Since I'y(j) = Ly (NS)I(5') and NS, commutes with
Leys, it suffices to prove the lemma for T'(j?). We write

(1 (Zex)T () = TG (E)) F(F) (L)

= £ - o) Teal (1) ~ TGO — D)7 PO xa(D)dz A dz
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On D(L) we have:
L= K& g + Ix ® dT(|o]) + 6(u°),

and on D(Lext)
Lext =K & ]lr(he) & ﬂp(be) + ]1}C & dF(\a]) & ]lp(he) + ¢(Ue) & ﬂp(be) + ]1}C & ﬂp(be) & dF(‘O’D

By [DG2, Lemma 2.14]:

) $(v°) @ Mpgye)L(57) = T(5")p(v°)
= (@ (= 5% © Tnge) — Trge@a” (G50 — T(0a((1 - 55)v%)),

where the twisted tensor product @ is defined as follows: let T : K ® I'(°) @ T'(h¢) — ['(h°) ®
K @ I'(h°) be the unitary operator defined by

T ®@up ®@uz = uy @Y @ us.
Then if B is an operator on K ® I'(h°), we set
]ll"(he)®B = T_l]ll"(he) ® BT.

By [DG2, Lemma 2.16]:
LT (") = TG Lo = AL (5, K),

for k' = (k§, kL), k! = [|o], j¢]. By Lemma 5.2, k! € O(t~?) and by [DG2, Lemma 2.16] we have:
(7.3) (LGT(5') = T(j")Lo) € O(N®)t™".

Using then (7.2), Prop. A.1 and hypothesis (1’2), we have:

| (Lext 57 (B(0%) @ Tne () = LGS )N +1)72

(7.4) Cll(1 = G (K +1)730%|| + Ol (K + 1) 720

IN

< Ct .
Now using (5.8) and Lemma 4.6 we obtain
_ -y .y 1/ NE
(2 = Lext)  (LextI'(j%) = T(5*) L) (2 — L)' F(FF)x2(L)
< C(t9P 4+ t=#+9/2)|Imz|~*, z € supp X1.

This implies the lemma. O

Lemma 7.2 Assume (I'0), (I'1) for eg > 0, (I'2) for 1 >0 and p > 6 > (1 +€)~ L, u > 6/2.
Then for x1,x2 € Cg°(IR):

B PG (E)va(E) = x1 (L) TGO F G el L) € o)
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Proof. we combine Lemma 7.1 and Lemma 4.4. O

In the following lemma we use the operators Ry(f,g) introduced in (6.9).

Lemma 7.3 Assume jo + ajoo < 1. Let rt = dojt, e = 0,00. Then for u € H®, v € HS

ext

(0. Dol < (s RelGs Irblyu) + (s, By (s I D)

x (a5 (v, Ro(3", I7§]) @ Tiryeyv) + (v, Tcaripe) @ Ria (55 [ o) ) 2

NI

Proof. To lighten notation we will suppress the exponent ¢ in j¢, 7t. On the n—particle sector,
we have (see Subsect. 2.2):

Fk(]):Ik< )]0@'“@]0@]00@'“@]00,

n
n—Fk k
SO
<= k ) ) )
Dork( n i= 1j0® ®Tv0®®]0®]oo®®]oo
n Z n7k+1.70®"'®]0®]oo®"'®rgo®"'®joo.
Let

n
( )Zum@ R @ ® joolt), u € QLHC,
=1

1

where r; =rgifi <n—k, r =1y if ¢ > n — k. We claim that

(7.5) R = (u,dPy(j,7)u).
In fact
R = iI(:E)
- dz ;13:07
for

I(z) = ( n ) (u, Jo (@) ® - jo(@) ® Joo (¥) ® -+~ & Joo @) W),
n—k k

and je(x) = je + r.. Since u € ®TH° this equals Py (j(z)) (this identity does not hold if w is not

symmetric w.r.t. permutations). Hence (7.5) follows from [DG2, Lemma 2.11].

We now write
Ijo® - 1 ®- - joo as A Bi A,

for
A 1 A

BZ:Ik]l@SlgHT@]l

i
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Note that ||B;|| < 1. We have

(v, DLk (j)u)|
- ( k )2 | >0 (v, A;BiAju)|

1
k)%,
n ) i1 | Asv ||| Azl

k : :
<<n> o lA?)? (25 [Aw]?) .

By the identity (7.5) we have:

IN
//

IN

( . ) S Al
(. APy (. Iryu)

= (u, Bg(J; rol)u) + (u, Ri—1(J, oo Ju),

where Ry (f,g) is defined in (6.9). On the other hand

S [[Aw]?
= (0TI 0@ @ ® @ o @ oo @+ @ joat)
O g1 J0® + ® 0 ® oo © - @ [rac] ® - @ o)
< a (v, Ro(G, Irol) ® Tgeyev) + (0, Dgn rge @ Ri1(js [roc])0),

using the fact that jo, < !, This proves the lemma for v € K@ @" b and v € L@ Q" ¥ e ®
®§ he. To prove the lemma for arbitrary u € H®,v € H®* we set

I, = Ty (N), T = Ly (N

and note that
Dol (j)IL, = & DIy ().
The estimate for arbitrary u, v follows from the estimate for II,u, [I®*y and the Cauchy-Schwarz

inequality. O

7.3 Number of asymptotically free particles

In this subsection we extend the results in Sect. 5 to Hg,,. We set

B =Bt ® Ir(gey + Npe @ Bet, acting on Hey,

where B.; is defined in Sect. 5. By exactly the same arguments as in Sect. 5, we obtain
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Proposition 7.4 Assume (1°0), (I'2) for p > 1. Assume that 0 < ¢ < 1 or that ¢ = 1 and
a1 < 0. Then for x € Cg°(IR):

JrOO 3 e d
/1 [(dl(dobe) @ Mpgpey + Tpge @ dD(dob,))? (B + A)_lx(Lext)e_ltHeXtuHQ < Cllulf?,

forw € D(NSy), A > 0.

Theorem 7.5 Assume (1'0), (I'1) for ¢ > 0, (I'2) for u > 1 and pick p in (5.2) such that
p(1+€y) > 1. Then:
i) for each A € C\IR™ the limit

s- lim eltHex (Bt 1 \)"le e = RY () emists.

t—+Foo ext

1) [Reext(A), Lext] = [Rd et (N, Héa] = 0.
i11) the limit

s- 111%6 'R (1) =: P, exists

€e—
and is an orthogonal projection.

i)

e + + _
[Hex‘m Pc ext] [Lext; Pc ext] - 0,
u= Pl u < s-lim_gs-limg_, o eHext (BE 4 \)Tle oy = .

Theorem 7.6 Assume (1°0), (I'1) for eg > 0, (I'2) for > 1 and pick p in (5.2) such that
p(l+¢e) >1. Let for0 <c<1:

P 1nf P+

cext *— c’ext’

HEE == RanP,

cext*

Then:
i) P, Cext is an orthogonal projection independent on the choice of the function f in (5.2).

) [Hext7 Pc ext] [Lextv Pc ext] 0.
iii) HEL, = HET @ T(he).

Proof. parts i) and ii) can be shown exactly as in Thm. 5.6. To prove i) we have to show
that for 0 < ¢ <1
P-‘r

cext T

= pce+ ® IlF(bC)7

which means

(7.6) s-lim e “'RY,

cext( 71) =5 lg% 671R§+(671) ® ]lF(he)'
We note that
1((BE +1) 7 = (eBev + 1)1 & T ) T © (N +1) 71 < Ce

Since 1 ® N¢ commutes with HE ., we obtain

ext?

(e REEa(eh) = € REF(€71) @ Doy ) Toge © (N + 1)1 < Ce.

This proves (7.6) by a density argument. O
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7.4 Geometric inverse wave operators

Theorem 7.7 Assume (1°0), (I'1) for eg > 0, (I'2) for . > 1 and pick p in (5.2) such that
p(l14+e€)>1. FizO<c<1landc<c <1. Let j' = (j§,jt,) be constructed as in (7.1) with
the constant ¢’. Then:

i) the limit

W) ==s- tléinoo etHealy (19)e ™ H° exists on HET;

i) for x € C3°(IR)

X(Lext)W, (7) = Wi (3)x(L);
i) for x € C3°(IR)

XHE) W (7) = Wi () x(H®);
i) let fo as in (6.1) with fojo = jo. Then

Wi (5) =T (fo) @ Tpgey Wi (5);
v) for all " > ¢, A\ > 0 we have:
Rl MW () = Wi ()R (V);

. + . .
vi) Wi (JYHET C HE o
vii) the limit
: it H® - sk —itHE : e+
s tl}inoo e Tr(g") e "Hext exists on He byt

and equals Wi (j)*.

Proof. Let us first prove i). Note first that since 52 + a?j2, < 1 we have ||T4(j%)|| < o and
hence T'y(5*) is uniformly bounded in .

By the definition of HE* it suffices to show the existence of the limit on RanP§+. Changing
notation we may replace ¢’ by ¢. By Thm. 5.5 we may restrict ourselves to vectors u € Ramp(jr
such that v = x(L)u, x € C§°(IR). Arguing as in the proof of Thm. 6.4, it suffices to show the
existence of

tlifrnoo eitngtf\k(]-t)efitHeRng()\)u7

for A > 0. We pick now ¢ > 0 such that p > 6, p > §/2 and 6(1 + ¢) > 1, and consider the
observable Nf constructed in Subsect. 4.2. If F' € C§°(IR), F' = 1 near 0 we have by Prop. 4.5:

Ny

T REF (= e ML) RS (W = F(SDE e M R (\u+o(1),

Using again Lemmas 7.2, 4.4 and Prop. 4.5 we have:

eltH o fk (]-t)e—itHe R§+()\)U
- = Max(Lexe)Tr(7Y) F(5E)x (L)e RS (M)u + o(1)
= Sy (Lext) Tk (51)e R (A\)u + o(1)

= ey (Lext )T (5')(Bet + A) "I (L)e My + o(1),
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where in the last step we used the definition of RST()).
For u; € D(L) ND(N®), ug € D(Lext) N D(NS) the function

ext
R 5t — (e exiug, x(Lext ) Th(GY) (Bet + A) I (L)e 1 uy)
is C! with derivative:

(e e x(Lext)uz, DTy (") (Bet + A) ™ x(L)e M uy)

+ (e et x(Lext )u2, De (5D (Bey + A)~tx(L)e M uy)

Let us first estimate I2(t). As in Prop. 5.1 we have:
D(Bet + A)7IX(L) = —(Bey + A)71dT(e) (Bey + A)~Ix(L) + Ot H).

From the expression of I'(j?) in Subsect. 2.2 and the fact that j* commutes with b; and ¢; we
see that

Du(3") (Bet +A) 71l (ee) (Bet +A)
= (B +N) 7N (dT(er) © 1+ 1@ dT(c,)) 2Tk (j)dT(cr) 2 (Boy + A) .
Hence
L] < ITRGHINIET(e) @ T+ 1@ d0(e))Z (B + X)X (Lext e Hostug |
(7.8) x||AT(ct)2 (Bey + A) e tH |
+CH|lua || Juz]l-
Let us now estimate I;(t). We have:
DT’ (j")
= Dol(j") +ig(v°) @ Wk (") — iTk(5")B(v°)
=: Dolk(j") + Ci(t).
We use the identity (7.2) and the fact that
Dr(G) (Bee + M)~ = (B + )7 Tw(5"),
to obtain
X (Lext)CL(E) (Bet + M) x(L)| < Clla*((1 = ) (K +1)72) @ WB + )7
Hlla* (vt (K +1)72) @ UBE + )|

+Clla((1 — jE)ve (K +1)72)(Ber + ).
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Since by (6.1) and (5.1) ber = 1 on supp (1 — j§) and on supp j’_, we obtain by Prop. A.1 that
IX(Lext)C1(t)(Bet + A) ™' x(L)]|

N e _1 4 e _1
C(II(1 = g5 (K + )72 + [li5v° (K + 1))

< CtH,

IN

(7.9)

by (I’2). Next we apply Lemma 7.3 and the fact that
Dol (5)(Bet +A) 7! = (B + A) " 2Dl () (Bt + A) "2

to obtain

| (w2, X (Lext) Dol () (Be e + A) ™' x(L)uy)]

NI

< (Od@yun, Re(5, I ) (Bes + N~ (L)wr) + ((L)un, Rt (5% ) (Bee + A~ x(Dyun))

x (@5 (x( Lext)ua, Ro(5*, |r§l) @ WBE + )~ 1x(Lext )

1

+(X(Lext iz, 1® Ry (51, Ire ) (BE + )7 x(LextJu2) )
(7.10)
for 7t = dojl.

We note that by exactly the same proof, estimates similar to those of Prop. 6.3 with
Rk(ft7 |g£|) replaced by either Rk(fta ’gé‘) ®@Tor1® Rk(fta |Q£D, B+ by Bg)lf,t and L by Lext
hold for the evolution e~ Hext,

Combining (7.8), (7.9), (7.10) and Props. 5.1, 6.3, 7.4 we obtain the existence of the limit
in i), by Prop. A4.

Property 1) follows from Lemma 7.2, arguing as in (7.7).

To prove i) it suffices as in the proof of Thm. 6.4 i) to show that

s- lim eHexe (T (58) — Tp(5571))e " = 0, Vt; € R,

t——+o0

By [DG2, Lemma 2.16]:

. . t
Fui) = el ™) = = [ afuli', 8" ")ar,
and since j§ + ajt, < 1, we have by [DG2, Lemma 2.16]:
|40 (5", A" )N+ 1)7H| < Cllag" || < Ct .

Next we argue as in the proof of Thm. 6.4 using that

(& Ne
I(N®+ DF(—5)x(L)]| € Ot").
iv) follows from the fact that
T(fo) ® ITx(5") = Tk(3"), if fojo = Jo.
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v) follows from the fact that if B, is the observable defined in (5.2) for any constant 0 < ¢ <1
we have:

Du(3) (Ber + )71 = (B + N7 Tk(5).

Property vi) follows from v) and Thm. 7.6. Finally the existence of the limit vii) follows from
exactly the same arguments as those used to prove 7). O

Finally we prove a result similar to Prop. 6.6.

Proposition 7.8 Assume the hypotheses of Thm. 7.7. Let j = (fo, foo), Je = (fo, foo,e), where
fo, foos foo,e are defined in (6.23), (6.24). Then

Wit (j) = w = lim Wi (o).

Proof. We apply again Prop. A.5. By density it suffices to show that for A > 0, x € C5°(IR):
X(Lext) Wi ()X (L) RET(A) = w = lim x(Lext) Wy (Ge)x (L) RET ().
To check hypothesis (A.2) of Prop. A.5 we have to consider the Heisenberg derivative of
O (t) = X(Lext)Tr (G0 (Bet + A) ' x(L).
The estimates (7.8), (7.9), (7.10) and the fact that
Jo + Woo,e <1, Jooe < Choos jfx}’E < Cj, uniformly in e
show that hypothesis (A.2) is satisfied. Similarly (A.1) holds since ||T'(j})| < a~*. Finally
w— l%fk(ji) =T%(j"), vt € R.

Applying Prop. A.5 we obtain the proposition. O

8 Asymptotic fields and wave operators

This section is devoted to asymptotic fields and wave operators for H and H®. The case of H is
treated in Subsects. 8.1, 8.2, while the case of H€ is treated in Subsects. 8.4, 8.5, by arguments
similar to those used in the massive case (see [DG2]). The conversion of scattering objects from
H® to H is described in Subsect. 8.6. Finally in Subsect. 8.7 it is shown that the asymptotic
Weyl operators Wt (f) preserve the spaces HST and define on them representations of Fock

type.

8.1 Asymptotic fields for H

In this section we show the existence of asymptotic Weyl operators and asymptotic fields for
the Nelson Hamiltonian introduced in Subsect. 1.1. Similar results can be shown under corre-
sponding hypotheses for abstract Pauli-Fierz models introduced in Subsect. 3.1 (see the remark
at the beginning of Subsect. 8.4).
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We recall that the one-particle space is h = L*(IR3, dk). We set
he = e HFp hep,

and )
ho := {h € b[|k["2h € b}

equipped with the graph topology. In this section, we assume condition (1) introduced in
Subsect. 1.4. Introducing the operator v € B(IC, K ®¥) defined in (1.3) we see that if (H0) holds
for a > 0, then (1j) implies:

Ve > 0, 3C such that
(8.1) IF (2] > RYF(e < k] < ) (K + 1)~ Follisgecan) < CR- M@,
IF(jz| > R)F(e < |k| < € Yu(K + 1) 3| ppe cap) < CR™ ),

In fact this follows from the fact that Ox(e™**v;(k)) = e #*(d), — ix)v;(k), if we use (1.1) to
control the powers of x appearing when differentiating e_ik'xvj(k).

Theorem 8.1 Assume (HO) for o > 1, (10), (14) for u1x > 1. Then
i) for h € by the asymptotic Weyl operator

(8.2) WT(h) :=s- lim ™ W (hy)e ™ exists.

t—-4o0

i) the map
bo > h— W (h) € U(H)

is strongly continuous for the topology of bg.
iii) WH(R)W*(g) = e B WH(f + g).
i) TWH(h)e ™ = Wt (h_y).

Proof. We have ‘ .
(8.3) W (hs) = e tHopy (B)eltHo,

which implies that as a quadratic form on D(Hj) one has:
W (ht) = [=Ho,iW (ht)].
Since on D(Hy) H = Hp + ¢(v), we have as quadratic forms on D(H) = D(Hy):
B W (hy)e M = &H [(v), iW (hy)]e—iH
i W (hy)Im(hy, v)e

Integrating this relation we obtain, first as a quadratic form identity on D(H), and then by a
simple argument as an operator identity on H:

. . t . .
W (hy)e ™ (H +1)7t = W(h)(H +1i)7! = i/ eSHW (hy)Im(hs, v) (H +1) " te 5H uds.
0
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For h € C§°(IR3\{0}), we obtain by stationary phase arguments and (8.1):
lmn(he, 0) (H +1) 7| < Ol (e, o(K +1)72)]| + Cll(he, (K +1)720)]| < O,

The existence of the limit (8.2) follows for h € C§°(IR*\{0}).
Next we use the identity:

W (hy) — W(hs) = W(hy)(1 — e~ 2™m(hh2)y 4 g=smbnh2) 7 () (1 — W (hy — ha)).
Using that
11— e~ smha)| < Clim(hy, ho)| < Cllhy — hal| /T2 [hall2,
(M= W(h1 = h2))ull < |p(h1 — h2)ul,
we obtain that for ||h1]|, [|he|| < R,
(8.4) [(W (h1) = W (h))(H +1)~"[| < Crl[h1 — hally,-

Since C§°(IR3\{0}) is dense in bo, we deduce from (8.4) the existence of the limit

s- lim ™ W (h)e ™y (H), for x € C°(R), h € ho.

t—+o00

By density this proves the existence of the limit (8.2) for all h € by. Statement i) follows directly
from (8.4). Statements iii) and iv) are immediate. O

Theorem 8.2 Assume (H0) for a > 1, (10), (14) for u1x > 1. Then:

i) there exists for h € bg a selfadjoint operator ¢+ (h) called the asymptotic field such that
W (sh) =e¢" M) s e R.

ii) For h € by, D(H + b)2 C D(¢+(h)) and:

¢ (R)(H +b)72 = s-limy_ 00 e p(hy) (H + b) "2 itH
|6+ (R)(H + )72l < CII(1+ [k ~2)A].
For h; € ho N D(|k[2), 1 <i<n, n>2, D((H +b)"?) c D¢+ (hi)) and
Iy ¢ (he) (H + b) ™2 = s-limy o0 HTI ¢ (hy ) (H + b) /27 1HH
T+ (hi) (H + )~/ < CIIf || (1 + [K|Z + || 2)ha].

iii) The operators ¢+ (h) satisfy in the sense of quadratic forms on D(¢T (h1)) ND(¢pT (he)) the
canonical commutation relations

(07 (ha), ¢ (h1)] = ilm(hy|hy).
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Note that the estimates on the domain of II?" ;¢ (h;) described in i) are better for n = 1 than
for arbitrary n > 2.

Proof. i) and i) follow by general arguments from the fact that hy > h — WT(h) is a
regular CCR representation (see eg [DG3, Sect. 2.2]).

We will prove ii) for arbitrary n and explain then the modifications for the case n = 1. We
first prove the existence of the norm limit

(8.5) Jim AT G (i) (H + b) ™27 — RY(hy, ... hy),

for h; € ho N D(\kﬁ) We deduce from the identity (8.3) that the Heisenberg derivative of
17 ¢(hig)(H + b)~"™/? defined as a quadratic form on D(H) equals

[6(v), i1} (hy )] (H + b)~"/2.

Since [¢(v),i¢p(hit)] = Im(h;+,v) is bounded and using Lemma 3.10, (8.1) and stationary phase
arguments as in the proof of Thm. 8.1 we obtain the existence of the limit (8.5) for h; €
C§°(IR*\{0}). A density argument and the norm continuity of

(A1, ha) € (bo N D(|K|2))" > I (hy) (H + b) "2

shown in Lemma 3.10 proves the existence of the limit (8.5) for arbitrary h; € ho N D(W%) It
follows then again from Lemma 3.10 that

(8.6) IR (b, o) | < Call2 | (14 K[ + [k|72)hsl].

Let us now complete the proof of i) by induction on n. The proof of ii) for n = 1 needed to

start the induction argument will be given later. Let h; € ho N D(W%), 1 <i <n. We have to
show that

(8.7) D((H +b)"?) ¢ D(II}¢™ (hy)),
and then that
(8.8) 7ot () (H +b) ™2 = RY (b, ..., hy).

To prove (8.7) we have to show that for u € H:

SuIIF){ s~ L (W (shy) — DTG (hy)(H + b)*”/QuH < 00.
se

By the induction assumption, D(H + b)"/? C T3¢+ (h;) and

(8.9) 36" (hi)(H +0)™"u = Tim 56 (hi) (H + )72 .

Using (8.9) and the fact that e W (hy  )e ™ is uniformly bounded in ¢, we get:
s~ W (shy) = MIEGT (he) (H +b)~"*u

(8.10) | |
= limy oo s~ € (W (shie) — DIEG(hig) (H +b) "/ 2e Hu,
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Hence
Is7H (W (sha) — W3¢+ (ki) (H + b) "/ 2u

< supepg |s7H (W (shae) — DIEG(hie) (H + b) ™"/ eyl
< supger [[@(hee) I3 (i) (H + 0) 7"/ |l||u]

1 _1
< CIR[|(L+ (k|2 4 [k]72)hil[[[ull,

by Lemma 3.10. This proves (8.7). To prove (8.8), it suffices to show that for v € D, D a dense
subspace of H:

lim (is) ™ (v, (W (shy) — DIG¢T (he)(H + b)"%u) = (v, R (ha,. .., hn)u).

s—0

By (8.10) we have:
(is) " (v, (W (sh1) — IES™ (hi) (H +b)~"/?u)
= limt_>+oo(is)_l(eitH(W(shl,t) — ]l)e_itHv,eitHHch)(hi,t)(H 4 b)—n/Qu)'
Since |s~1(e!*} — 1) —iA| < Co|s||\|?, we have using Lemma 3.10:
(i) ™1 (W (sha) = 1) = 6(h1,)) (H + )" < Cls], uniformly in .
Hence for v € D(H), we have:
lim—o(is) (v, (W (shy) — DI3o* (h) (H + b))
— limgg limy oo (i8) (€4 (W (sh1 ) — D)e™ v, e H I3 (hy ) (H + b)~"/u)
= limy— oo (e p(hy)e oy, e T3¢ (hy ) (H + b) ™"/ ?u)
= limy_ oo (v, T p(hiy) (H + b))
= (v, RT(h1,..., hp)u),
as claimed. The fact that
X056 (hs) (H +0)™"/ || < CulIf (1 + K[ + [k =)

follows then from (8.6).

Let us now prove i) in the case n = 1. The existence of the limit (8.5) for n =1 and hy € bg
follows from the same arguments using Prop A.1 instead of Lemma 3.10. The proof of the fact
that R (hy)(H + b)_f ¢t (h1)(H +b)~ 2 is also similar to the general case, using Prop. A.1
instead of Lemma 3.10. O

The following theorem follows directly from Thm. 8.2 and from general properties of regular
CCR representations (see eg [DG3, Sect. 3.3]).

Theorem 8.3 Assume (HO) for o > 1, (10), (14) for 1 > 1. Then
i) For any h € b, the asymptotic creation and annihilation operators defined on

D(a**(h)) := D(¢" (h)) N D(¢* (ih))

64



a**(h) = J5 (67 (h) —i¢™(ih)),
at(h) = o5 (67 (h) +i¢* (ih)),

are closed.
ii) The operators a** satisfy, in the sense of forms on D(a™(h1)) N D(at(hy)), the canonical

commutation relations
[a™ (h1),a™*(h2)] = (ha]h2)1,
[a* (h2),a*(h1)] = [a¥*(h2),a™*(h1)] = 0.

iii) . .
(8.11) et (h)e ™t = gt (h_y).

iv) For h € b, D(H +b)2 C D(a**(h)) and:
a*(h)(H + b)fé = s-limy_, oo P al (hy) (H + b)*%e—itHj
la¥(h)(H + )72 < C[[(1+ k|~ 2)Al.
For h; € 5o ND(k|7), 1 <i <n, n>2, D((H +b)"/?) c DA}a*(h;)) and
0™ (i) (H 4+ b) "% = s-limy_oo €T af (b ) (H + b) " 2e 1t

TPt (hy) (H + b)~/2|| < CoIIP || (1 + [k|Z + [k~ 2 )hg]|.

8.2 Asymptotic vacuum spaces and wave operators for H

In this subsection, we recall the construction of the asymptotic vacuum spaces and of the wave
operators, see eg [HK1], [DG2, Sect. 5.3], [DG3, Sect. 10.2]. We define the asymptotic vacuum

space
Kt :={ueH|at(h)u=0, heho}.
The asymptotic space is defined as
HE = KT @T(h).

ext

Proposition 8.4 i) K is a closed H—invariant space.
i) KKt is included in the domain of T{a™¥(h;), for h; € ho.

iii) Hpp(H) C KT

65



Proof. i) and i) follow by the general properties of CCR representations (see eg [DG3, Sect.
4]). The fact that KT is H—invariant follows from (8.11). To prove i) we verify that for
u € D(H), Hu = \u, h € b, a(hy)e ™y = e ®a(hy)u € o(1). O

The asymptotic Hamiltonian is defined by

H" := KT @1+ 1®dl(|k|), acting on HJ,

ext
for
K*=H| .
K+
We also define the wave operator
QF . KT @ Tgn(ho) — H,
(8.12)
QtYp ®@a*(hy)---a*(hy)Q :=at(hy)---a™(hp)Y, hi,...,hy Eby, Y EKT.
It follows from general properties of CCR representations that Q7 is isometric (see eg [DG3,
Prop. 4.2]). Hence we can uniquely extend 7 as an isometric map

QT HE, —H
such that
ati (Rt = Q*1®d*(h), h € b,
HQT =QtHT.
We set
HT := RanQ™.

Finally we give another description of H™ using the notion of asymptotic number operator (see
eg [DG3, Sect. 4.2]) which we now recall. We first recall some facts about quadratic forms. We
will assume that a positive quadratic form is defined on the whole space H and takes values in
[0,00]. The domain of a positive quadratic form b is then defined as

D(b) :=={u € H| b(u) < oo}.
The sum of closed forms is a closed form, and the supremum of a family of closed forms is a
closed form.

For each finite dimensional space f C bg, one defines
dimf

i (u) =Y [la* (ha)ul,
i=1

where {h;} is an orthonormal basis of f. (If u & D(a™(hs)) for some i, then nj (u) = 00). The

quadratic form n; does not depend on the choice of the basis {h;} of f. The quadratic form n*
is defined by
n'*(u) :=sup; n; (u), u € H.
We can associate to n™ a selfadjoint operator (with an a priori non dense domain) denoted by
N7 called the asymptotic number operator.
Then as shown in [DG3, Sect. 4.2]:
H' = RanQ)t = D(NT).

One can associate a number operator N, to any regular CCR representation h 3 h +— Wy (h) €
U(H) on a Hilbert space H (see eg [DG3, Sect. 4.2]). The regular CCR representation is of Fock
type if N, has a dense domain.
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8.3 Extended wave operators for H
Let us first define extended objects similar to those introduced in Sect. 6 for H®. We set:
Hext = HRTI(h), Hexy := H® 1+ 1®dI(|k|), acting on Hext.
Note that HJ; C Hext- By Thm. 8.3 we can define the extended wave operator Q7 as follows:
Qe 1 ¥ @ Ma” (hi) Q2 = 17" (hy)eb,

for ¢ € D((H 4 b)™?), h; € D(|k]_% + \k|%), 1 <4 < n. The extended wave operator is then an
unbounded operator from Heyt into H with domain

n

D) = @ D((H + ") & @Dk + kf3).

n=0 S
By (8.11) we have QF e tlext = o= H#H O “and
+ _ Ot
Qext\?‘ﬁ’ =

ext

By Thm. 8.3, we can rewrite as in [DG2, Sect. 5.6]:

+ S B itH 7 —itHex
Qext¢®u_tlg_nooe Ie “¢®U,

for o € D((H + b)V?), u € ®2’D(“€‘_% + ]k‘\%), and I the scattering identification operator
defined in Subsect. 2.2. . )
In particular if ¢ € KT, u € QPD(|k|™2 + |k|2) then

QMY @u= lim e e Hexty) @y,
t——+o00

8.4 Asymptotic fields for H*

We now collect results similar to those of Subsect. 8.1 for the expanded Hamiltonian H¢ defined
in Subsect. 3.3. If we restrict ourselves to expanded Hamiltonians H® obtained from a massless
Nelson Hamiltonian H, then all these results are obtained from the results in Subsect. 8.1 in
the following way:

first the results for H, H immediately give corresponding results for He, He, since H® acts
as the free Hamiltonian —dI'(|k|) on the second component of H°. Then we use functorial
properties of the unitary map W defined in (3.3) to obtain results for H®, H¢.

Remark

All the results in this section are also valid for general massless Pauli-Fierz Hamiltonians,
In this case it is more convenient to follow the inverse path, i.e., to start with the expanded
Hamiltonian H® and then to go back to H. In this case we can for example assume that

(I'4) v(o)(K + 1)72, (K +1)"20°(0) € HI".(R\{0}, B(K,K ® g)), 1 > 0.

loc
Note that (I’4) implies:
Ve > 0, 3C such that

(8.13) IF(|s| > R)F(e < |o] < e )(K +1)720]|gc xope) < CRM,

1 _
IF(s| > R)F(e < o] < e v(K + 1) 2|5 cap) < CRTM.
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The proofs of Subsects. 8.1, 8.2, 8.3 extend under conditions (1°0), (I’4) for p1 > 1, if we replace
where appropriate cutoffs in H by cutoffs in L. In this way we extend the results of Subsects.
8.4, 8.5 to the case of general expanded Hamiltonians. Using then functorial properties of W we
can extend the results of Subsects. 8.1, 8.2, 8.3 to abstract massless Pauli-Fierz Hamiltonians
satisfying (1°0) and (I’4) for pq > 1. The details are left to the interested reader.
We set
hy :=e h, hepe,

and )
bo := {h € b°|[o["2h € b°}.

equipped with the graph topology. For h € h°, we set
hy = 1155010

and note that hy € o if h € bg.
By the arguments outlined above, we obtain directly the following results:

Theorem 8.5 Assume (I’0) and (I’}) for 1 > 1. Then:
i) for h € b§ the asymptotic Weyl operators

s- lim e W (hy)e H" = Wt (h) exists.

t——+4o00
i) the map
b > h — W (h) € U(H®)

is strongly continuous for the topology of hg.

iii) WeJr(h)WeJr(g) — efiIm(h,g)WeJr(f 4 g)‘

i) M Wet(h)e I = Wet(h_y).

Let ¢°t(h),a**(h) be the asymptotic fields and creation -annihilation operators obtained
from Wet(h). Then

Wet(h) = WWH(hs) @ W(h_))W™,
¢t (h) = W(¢* (hs) @ 1+ 1® ¢(h- )W,
a**(h) = W(a** (hi) @ 1+ 1@ af (h- )W~

Let us note the following consequence of Thm. 8.5
(8.14) LWt (R)e = wet (e°ln), h e b,

In fact this follows from Thm. 8.1 iv) and the fact that W™'LW = H @ ) + Iy ® dU(Jk])).
Another result which follow from the proof of Thm. 8.2, using Lemma 3.11 instead of Lemma
3.10 is:
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Theorem 8.6 For h € b, D(L +b)2 C D(¢°+(h)) and:
6 (h)(L +b) "% = s limy oo €77 G () (L + b) 21",
65+ (R) (L +b) "% < C[(1+ |o]2)Al].
For h; € 5$ND(|o|2), 1 <i<n, n>2 DL+ b)"M?2) C DIF¢et(hi)) and
7, 6%t (hi) (L 4 b) ™2 = s-limy 4 o €PH T p(hyg) (L + b) /27 1#H"

1 _1
TP () (L +0)~"2|| < Callf||(1 + |o]2 + o] 72) Al

8.5 Asymptotic spaces and wave operators for H°¢

As in Subsect 8.2 we define
K = {u € H®a*" (h)u =0, Vh € b5},
which is a closed H®— and L—invariant vector space. We define the wave operator

Q°F : KT @ Tan(h8) — HC,
(8.15)
QY @ a*(hy) - a*(hy)Q i= a*F (hy) - a*F (hp)h,  hy,... h, € B, o € K°F,

which uniquely extends as an isometry

Qo Kot @ T(6°) = M, — He

ext

We set:
HET := RanQ°T.

e+

We also define the unbounded extended wave operator C0;

from Hg,; into H® with domain
D) = B DL +)"?) @ R D(|o| "% + |o]2),
n=0 S
by

Oty @u= lim e Je7 o) @ u
t—-+4o00

ext

for ¢ € D((L +)"/?), u € @I D(|o] % +|o]2).
In particular if ¢ € KT, u € @~ D(\U\_% + ‘U‘%) then

Oty @u= lim ™" Je ey @ u.
t—+oo
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8.6 Conversion of scattering objects

In this subsection we describe how to relate scattering objects for H to scattering objects for
H¢, using the canonical embedding Wlq introduced in Subsect. 3.4. The results below follow
easily from the definition of W and Iq in Sect. 3 and the formulas in Thm. 8.5. We have

(8.16) WIQW+(h)U = We+(jh)WIQU, h € by, u € H,

where j : h — h© is the isometry defined in (3.5).
Similarly for v € K+, h; € bo, 1 <i < n:

Oa*t (hy)y = IEW ™ HIa*t (jhi) Wb,

Also:

(8.17) ue KT & Wigu € K.

This implies that

(8.18) QF = W™ x Q°F x WIq @ I'(§),

where we consider WIg ® I'(j) as a map:
WIa®T(5): KT @T(h) — K @ T(h°).

Finally let N°* be the asymptotic number operator associated to the representation h§ > h —
Wet(h), which is defined as in Subsect. 8.2. Then

N =W(NT @ Iy + Iy @ N)W ™,

and hence:
(8.19) D(Net) =W(D(N*) @ T'(h°)).

8.7 Properties of the spaces HS"

In this subsection we describe properties of the spaces HST connected with the asymptotic fields.
Note that hypothesis (1°2) implies (1’4).

Theorem 8.7 Assume (1°0), (I'1) for eg >0, (I'2) for p > 1 and p(1+¢€y) > 1. Let 0 <c < 1.
Then
0) O (Hpp(H) @ T(5°)) € HE™ € HH,

i) Wt (h) : HET — HET for h € b,
iii) b > h— Wt (h) € U(HET)
is a reqgular CCR representation of Fock type.

Proof. We will use the notation of Sect. 5. Let us first prove i). To prove the first inclusion it
suffices by density to show that if v € D(H®) with H°u = Au, u = x(L)u for x € C5°(IR) and
hi € b5 N D(|o|2) for 1 < i < n we have v = IT7;a***+ (h;)u € He+. This will follow from the
fact that

(8.20) s-lim e RS (e Hv =, for ¢’ > c.

e—0
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As usual to simplify notation we denote ¢’ by c¢. By Thm. 8.6, we have:

e 'R (e Vo= lim & (eBey + 1) I a* (hiy) x(L)e P,

t——+o0

and hence

lim |lv — e 'RET (e Mol < lim sup ||(eBey + 1) teBe 1 ya* (his)x(L)ul.
e—0 e—0 teR+

Since

|(eBet + 1) LeBey|| < 1,
1Ty (R X(L)I| < CaTTZy (14 o] 72 + |o|2)
by Lemma 3.11, it suffices by density to show that

lim sup ||(eBe; + 1)~ LeB. A0 a* (hig)x(L)ul| = 0,
0 e+

for uw € D(N®). This follows from the fact that
1Be Iy a* (i) (N© + 1) 72| < Cully ||,
IV + DFx (L) (N + 1) < oo,

by Prop. 3.8. This proves (8.20) and hence the first inclusion in 7).

To prove the second inclusion, it suffices to show that HET C D(Net) = H®T, where N°t
is the asymptotic number operator associated to the representation h§ > h — Wt (h). By a
density argument, it suffices to show that if u € H® with x(L)u = u, x € C§°(IR) and A > 0

then RST(\)u € D((NeJ“)%). We have for u € H®, x(L)u = u and h € bj:
R (Nu = a” (h)x(L)RZF (Mu
= limy_ oo €™ a(hy)x(L)e " RET (N)u
= limy_ oo €™ a(hy)x(L)(Bey + \)"le %y,
using Thm. 8.6 and the fact that a(h;)x(L) is uniformly bounded in ¢, by Prop. A.1. Then
limg oo @7 a(hy)x (L) (Bet + N\)"le 1ty
= Jimy—yoo @ a(hy) Y (L) (Bey + N) T F (58 )x(L)e
= limypoe () (Ber + X)L F ()X (L)e M,

by Prop. 4.5 and Lemma 5.3.
Let now f C b be a finite dimensional space, hi,...,h, an orthonormal basis of f. Let
h{ € C°(IR\{0}) ® g such that hf — h; in D(h§) when € — 0. Since by Thm. 8.6

6 5 h— a®t(h)(L +b)"2 € B(H®)

is norm continuous, we have:

(8.21) Z @ (ha)x(L)ul|? = hmz la® (h)x(L)ull?, u € HE.
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Next we observe that by stationary phase estimates, we have for h € C§°(IR\{0}) ® g:

1
(8.22) (1 —=0b2,)ht € O(t™).
Let now

p
PE= Y I B | = e Pt
=1

By (8.22) we have:
1
I = be) PE[l < Cengt™, Vg € N,

and hence ) ) ) ) )
Py = bgtptebgt + bgtpte(l - bgt) + (1 - bgt)Pf
1 1
(8.23) < bEPEbE + Cengt ™™
< ”P(ﬂ‘bct + Ce,not_no'
Hence we obtain
P

(8.24) > a*(hi)a(h,) = AT(Pf) < || PS||AT (be ) + Ceng Nt ™, Vng € IN.

i=1

We now write for v € H®, x(L)u = w:
S et (R REF(Nul®
. € _ N¢ _itHe
i poo S (k) (Ber + N~ FCE ) (L)e )

1
Er € 5 _ N¢ s e
limep oo | B || BE(Bet + X)X (L) F (G e ul?

IN

—_— _ l _ e s e
T 400 Cemot ™ [(N®)3 (Bt + A~ X(L) P ) (L)e 2.

We have ) .
[(N®)2 (Bet + X)X (L) F(FF)x(D)]|

< Of(N®)2x(L)(N + 1)~ 3 |[[|(N° + 1)

N

F(Z)x(@L)]|
< COtJ/Z’

by Lemma 3.5 i77) and Lemma 4.6. On the other hand:

Ny

1 P B
I1BZi(Ber +2) " x(L)F (75 )e ™l < A7 ulf*.

This yields

P
(8.25) > laT (R REF (Nl < CUIPSI+ 2 [ul,
i=1
uniformly in €, p. Note that since h{ — h; in h® and hq, ..., h, is an orthonormal family, we have

| Ps|| — 1 when € — 0.
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Using (8.21) and letting e — 0 in (8.25), we get:
p
> la () RE (Null* < O+ A7H]ul?,
i=1

uniformly in p. By the definition of D(N®*) recalled in Subsect. 8.2 (see also [DG3, Sect. 4.2]),
this implies that RSt (\)u € D((NeJ“)%) for any A > 0 and completes the proof of ).
Let us now prove ii). We have to show that for uw € HST, h € h§ and ¢ < ¢/ < 1:

lim (1 — e RS (e 1))WeT (h)u = 0.

e—0

Since 1 — e 'R (e71) is uniformly bounded in € it suffices to show by density that for A > 0:

(8.26) lim(1— e 'RET (e 1))WeH (R) RS (M)u = 0.

e—0
We set ¢’ = ¢ to shorten notation and we have:
(1 — e 'REF (e )Wt (R)RSH (N)u
= limy oo (1 — (eBey + 1) 7)) (Bey + A)7le .

From the identity
. . 1
e M AT (b)) = dL(b) + ¢(ibh) — 5Re(bh, h)

for h € §°, b € B(h®), we obtain:
(1= (eBey + 1))l (Bey +A) 7!
= e(eBey+ )71 (Bey + (ibe he) — FRe(behi, b)) (Ber + )7L
By Prop. A.1 this yields
(1= (eBer + 1)) (Bey + 1)~
< OBl + b bl + ).

Since ||bet|| < 1, ||| = ||R]|, we obtain (8.26).
Finally property i) follows from i), 4) and Thm. 8.5. O

We end this section with another similar result.

Proposition 8.8 Assume (I'0), (I'1) for e > 0, (I'2) for pw > 1 and p(1 + €) > 1. Let
0<c<cd <1. Let fo be a cutoff function as in (6.1). Then

Ranl'¢"(fo) € K°F.
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Proof. By a density argument using the fact that K® is closed, it suffices to show that if
u € H, x(L)u =wu for x € C(RR)

(8.27) (L +1)" e (ML (fo)u = 0, Vh € b5
Since by Thm. 8.6 the map
555 b " () (L +1)") € B(HE)

is norm continuous, it suffices to prove (8.27) for h € C§°(IR\{0}) ® g. Let us again set ¢’ = ¢
to simplify the notation. We have by Thm. 8.6, Prop. 4.5 and the fact that (L + i) ta(h¢) is
uniformly bounded:

(L+1)~ e (MTEH (fo)u
= limy_ o0 (L +1) " La(h)T(fEF (Tt X(L)e itHy

= im0 (L + 1) a(fih)T(f§) F (iat) (L)e ",

where f} = G <t f1 a cutoff function as fo with f1fo = fo.
By stationary phase estimates, since 0 < ¢ < 1 || f{h][se € O(t=>°) for h € CP(R\{0}) @ g
and hence

la(fir)T(FFGE)X(L)]]
< R (N + 12T FD)x(L)]|
< RN + 1) PN (L) € O@),

by Lemma 4.6. Hence (8.27) holds for all h € C§°(IR\{0}) ® g, which completes the proof. O

9 Geometric asymptotic completeness for H°

In this section we prove the geometric asymptotic completeness for H®. This property is a
geometric characterization of the space K¢ = KT N HET. The space K¢t is the space of
vacuum states in ‘HST. We show in Thm. 9.5 that those states are localized in the region
{|s| < 't} for any ¢ < ¢'.

We assume in this section hypotheses (1’0), (I'1) for g > 0, (I’2) for pu > 1. We pick the
constant 0 < p < 1 such that p(1 +¢) > 1.

9.1 Technical preparations
Lemma 9.1 Let jo, joo, b € B(6°), Jo,Joo = 0, jo + @joo < 1 for o > 0. Then for uy,us € H®:
|(u2, Pr(jo, Joo + b)ur) — (uz2, Py(jo, joo)u1)]

< iy o HIAT (b)) P un || AT ([B])/ s .
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Proof. We have on ®'h°:
Pi(j0s oo +b) — Pi(jo: Joo)
= Yr D 1<t yjr<n 2t{iles=oc)=h—r Jar @ @ b BJej ® Qb @+ ® Je,

J1 Jr
_ k ) T .
- ZT‘ZI Zlg]1,,jr§7’l M]lv"'?]’l‘z“}lv"v]’!"

for

M,....5r = Zﬁ{ﬂfz'ZOO}:k—r Jo @ ® 1[ ®j€j+1 R ® 1[ Q- ® Jer,

J dr
Tjjp =10 @ b O1®---® b ®.l..®]1.
i1 ir
Note that
©-1) S T = (dT])"
1<j1,0 0507 <n

Since jo, joo = 0, jo + @joo < 1, we obtain by replacing jo by ajo that

1M, || < @"F.

17-~'7j7'

For u,us € ®h®, we obtain:
| (uz2, Pr(jo, oo + b)u1) — (u2, Pr(jo, joo)u1)

k — 1 1
< r=1 21<g1, < @ ol Tjy,..i 2ua || Thy.,... 5 |2 w2
1

< Evlle (Zlgjl,...,jrgn ok (uy, |le,---7j7o‘ul))§ (Zlgjl,...,jrgn ok (ug, |j_.'j17---7jr‘u2))
= o Far(fp) P | [dr (b)) us,
by (9.1). O
We pick for 0 < € < 1 a cutoff function F. € C§°([e,e1]) with 0 < F. < 1 and set
be := Fc(0).

Lemma 9.2 The operator
(L+1)"*211 @ T(b)

is bounded on H® @ @ ¢ for k € IN.
Proof. We first claim that if B is an open set included in IR\{0} x S2, p € IN then

(9.2) / la(or,w1) - a0y, wp)ul?doy - - - dopdw - - - dw, < Cpl|(L 4 b)P?u||?, u € HE.
Bp

In fact we write
§° = L*(B, dodw) @ L*(B¢,dodw) =: % @ b5
Let U be the canonical map from I'(§°) into I'(%) ® T'(h%"). Then:

Ua(o,w) = (a(o,w) @ I)U, for (o,w) € B,
(9.3)
Udr (1) = N° @ 1U.
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This yields:
[ I a(o, w;)ul|*doy - - ~dopdwy - - - dwy

= [ IMFa(0;,w;) @ WWu|*doy - - - dopdwy - - - dwy
= (N¢ - (N*—p+1)®1WWu,Uu)
< Cp(N*+1)P @ 10w, Uu)

= Gll(dT(1p) + WP/ ?ull?,

by (9.3). Using then Lemma 3.6 i), we obtain (9.2).
Next for u,v € H®, 1) € @Fp°, we have:

|(u, (L +1)"*2I1 @ T(b)v @ )|
= %|f¢(0’1,W1,...,O'k,u)k)H,IL-Clee(O'i)
k12

—k/2q, U) Hedgl -+~ dogpdwy - - - duwy|

X (a(al,wl) <alog,w) (L —1)
< Crellvligryellullrel[vllre,

by (9.2) for B =Je, e 1[xS? and Cauchy-Schwarz inequality. O

9.2 Geometric asymptotic completeness

1
Proposition 9.3 Let 0 < c < ¢/ < 1. Let jo, joo satisfying (6.1) and (6.4) with j% € C*°(RR)
and let jb, 5t be as in (7.1) for the constant ¢’. Then

. itHe . 4L 4 N1\ —itHe N .
w— lim e Py, () 2be(%) 2)e ™" = P (o, jaobei)

exists on HET and equals Q°T1 @ L(b) W, (4).

Proof. By the definition of HST it suffices to show the existence of the limit on RanP§+.
Changing notation we may replace ¢’ by c. We first claim that for x; € C§°(IR):

(94) x1(L)QFLRT(b)W () =s- lim MH N (LI @ T(b)T1 (51 e on RanPet.
First since by Lemma 9.2 x1(L)I1® I'(b) is bounded, it suffices to prove (9.4) for u € RanPe*

with u = x(L)u for x € C°(IR).
We note first that by Thm. 7.7 4):

Wi (G)u = Wi (x(L)u = X(Lext) Wy (5)u.
Moreover by Thm. 7.7 iv) and Prop. 8.8
I® F(be)WJ(j)u € KT @T(h°) = D(Q).

Also
1@ T(b) Wit (j)u = X(Lext)1 @ T(b )W, (§)u

€ D((L +1)¥/2) @ @ D(|o| 77 + |o|7) C D(QL).
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Hence for x; € C3°(IR):
X1 (L)L D(be) Wy (5)u
= xu(D)Q™F L@ L(be) W, (j)u
= limy o0 €7 X1 (D) T @ T(be)e ™ W ().

Since by Lemma 9.2 x1(L)I1® I'(be) is bounded, we can apply the chain rule and obtain (9.4).
Next we note that
ne F(be)rk(jt) = Pk(jé, bejéo)v

which implies
(9.5) (L) P, beslo)|l < €, uniformly in ¢.

Note also that since b, < 1, we have
1 1
Jo + (i) 2beljoe)? < o + e <1,

and hence ) .
(9.6) 1Pk (765 (75) 2 be (%) 2) | < C, uniformly in ¢.

By (9.4), (9.5), (9.6) and a density argument, it suffices to prove the proposition to show that
for u,v € D((N°®)*>):

(07)  lim (e 0, X (L) (PL(j§, beibe) — Pl (7%) 2be(i) ) )x(L)e ™™ u) = 0.

t—+oo
We have b.jl, = (jéo)%be(jgo)% +rt, for
rt = [be, (74)21%) 2, € O").
Let by be a cutoff function similar to b, such that b; . = 1 on supp b.. By p.d.o. calculus:
(rt*rt)P = oy (r * t)pbzfg + 7“ 1“]'“; eOt™™), pe IN.

Let us fix £k > 1 and set:
reo(t) := sup [|[rb]|'/? € O(t™).
1<p<k

We have:
(T*tT‘t)p < C?pt*QPPbipE + ng(t)]l) p< k.

Since the function A — A7 is matrix monotone, this gives
PP < (OO 4 2 (1)
(9.8) < C’i”t_p”b11076 + 7o (t)P1

< (Ct7Pbre +reo(H)T)P, p < k.

Let f(t) be the expression on the Lh.s. of (9.7). By Lemma 9.1, we have:

E

(9-9) Z EAr () Lye o lAr () 2 (L)e T H .
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Using then (9.8) we deduce from Lemma A.2 that:
(9.10) dr([r'])P < (Ct7PAT (br,e) + reo(t)N)P, p < k.
Using now (9.10), we obtain for r < k:

lAT ()72 x (L)e ™ ul|?

IN

(X(L)e H u, (Ct=PAT (b ¢) + oo ()N) X (L)e 1 w)
< S CITIPrag (8 I|AT (b V(D) ||| (NO) I x (L) u] .

By Lemma 3.6 dT'(by)?x(L) is bounded. By Prop. 3.8 and the fact that u € D((N®)>) we
know that ||(N®)"~Ix(L)e #y|| < Ct"~7. Hence

Jim[[dr ()AL ) = o,
which proves (9.7). O

Theorem 9.4 Let 0 <c <c < 1. Let fy, foo be defined in (6.23), (6.24). Let j = (fo, foo), j*
be as in (7.1) for the constant ¢’. Then:

QW () = () on HEY.

Proof. By the same argument as in Prop. 9.3, we set ¢/ = ¢ and reduce ourselves to prove the
theorem on RanP*. We first note that

k
W (/)RanPS € KT @ Q) h° € D(Q°T),

by Prop. 8.8 and Thm. 7.7 ). By Prop. 6.6
P]:_(]) =Ww-= E%P]:—(f()a foo,e):

and by Prop. 7.8
Wi () = w = Hm Wi (fo, focce):

Hence it suffices to prove that for any ey > 0:

(9.11) QWi (fo, fooreo) = Pr (fo, fooreo)-

We note the following identity, similar to those in [DG2, Lemma 2.14], valid for ro, 7o, b € B(H°),
0<7104+are<1,0<b<1,r=(rg,rew):

(9.12) L(r)*1e () gpy (N o)D) = Pe(r2, 700b7s0).

Let us fix the constant ¢y. We will apply (9.12) to ro = fo , Too = foo 0, 0 = b, Where be is
defined in Lemma 9.2. Note that by Lemma 6.5 there exists o > 0 such that fo +afoo 0 < 1,80
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we can apply this identity. By Thm. 7.7 ¢) and vii), (9.12) and the chain rule of wave operators,
we get:

Wi ()18 DOIWE (1) = B (fos Fcobef )
By Prop. 9.3, we obtain:
W (1) 1@ T (be) Wl (r) = Q1@ T(b) W (fo, fooreo)-
Now since W,! (r), Q2" are bounded operators:
s-lime—o W' (r)* 1@ (bW, (r) = Wy (r) W' (r) = P (fo, fooro)
s-lime—o QT L@ T(be) Wi (fo, fooe) = QXTWi (fo, fooeo)-
Hence (9.11) holds and this completes the proof of the theorem. O

The following theorem is the so called geometric asymptotic completeness. It provides a
geometric characterization of the asymptotic vacuum states.

Theorem 9.5 Assume (I'0), (I'1) for ¢ > 0, (I'2) for u > 1 and let p(1 + €) > 1. Let
0<c<cd <1. Let f1 € C®(R) be a cutoff function such that 0 < f1 <1, f1=11in{s < a1},
fi=0in{s>as} and fi = fl(sz,f/t).

Then TSF(f1) defined in (6.17) is equal to the orthogonal projection on K&t := K+t NHET.
Proof. By Prop. 8.8 we know that Ranl'%"(f1) C K°F and since '’ (f1) clearly preserves HET,
we have Ranl'S (f1) C K¢+

Let us prove the converse inclusion. By Thm. 8.7, h§ > h — Wt (h) € U(HET) is a

regular CCR representation of Fock type. Hence the restriction Q¢t of the wave operator Q°*
to K¢t @ T'(p°):

QKT @T(h°) — HET
is unitary. Let now j = (fo, foo) as in Thm. 9.4 for a constant ¢’ with ¢ < ¢” < ¢’. Let
W*(5) = R Wy (4)-

Since |[W,F(j)|| < 1 and RanW,"(j) € H® ® ®¥ h°, we have ||[IW+(j)| < 1. Next we note that
by Thm. 7.6 i) and Thm. 7.7 vi) we have

WH(HS CH @ T(H%).
Moreover by Thm. 7.7 iv) and the fact that f{fi = f¢ for t large enough, we have:
(9.13) W) =T (fr) @ W ().
By Prop. 8.8 this implies that

WT(HT C KT @T(h°).
Finally by Thm. 9.4 and Thm. 6.4 v)

QSFWT(j) =1 on HET,
which means that
W (5) = (@)~

By (9.13) this implies that I'S"(f1) = 1 on K¢F, and hence that TS (f1) is the orthogonal
projection on K&+,
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10 1—particle space estimates

This section is devoted to some estimates on the one-particle space L2(IR37 dk). They will be
used in Sects. 11 and 12 to construct the spaces analogous to HS' for the Nelson Hamiltonian.
The need for these estimates can be understood as follows:

The space HS' is constructed using the observable s = i9, acting on h® = L?(IR,do) ® g.
This observable has the drawback that it does not commute with the projection I+ (o) and
hence does not satisfy the condition (3.6) in Subsect. 3.4. In Subsect. 10.2 we introduce the
observable |s|yp which is the square root of the Laplacian —88722 with Dirichlet condition at 0 and
satisfies (3.6).

We estimate the difference between some functions of s and |s|g. It will allow us in Sect. 11 to
reinterpret the space HS' using the observable |s|p. In this way a space H can be constructed
on ‘H using the abstract arguments in Subsect. 3.4.

In Sect. 12 we describe the space HJ replacing the observable |s|y by the more physical
position observable |z|. We note that |z| is the square root of the Laplacian —Aj acting on
L?*(IR3,dk). Going to polar coordinates we see that |z| is the square root of —88722 - % acting
on L?(IR*,dé)® L?(S?) with a Dirichlet condition at 0. Again we need to estimate the difference
between functions of |z| and functions of |s|g. This is done in Subsect. 10.1, by introducing
cutoffs in the angular part —%5’ of the Laplacian. The use of these cutoffs in Sect. 12 will be

justified using the results of Subsect. 4.5.

10.1 Case of j

We use the notation of Subsect. 1.1. We will consider the observable
1
|z| = (—Ag)2.

Note that —Aj, with domain H?(IR?) is also the Friedrichs extension of —Ay on C§°(IR*\{0}),
since H} (IR*\{0}) = H'(IR?). Let

u: L2(IR?,dk) — L*(IR*,d&) @ L?(S?)
up(0,w) = 5¢(ow)
be the unitary map introduced in Subsect. 3.1. We have
uC5e(RP\{0}) = C5°(10, +oo[) ® C*(5?)
and on C§°(]0, +o00[) ® C*°(S?) we have:

0% A,

(AT = e~ Se

where A, is the Laplacian on S?. By the above remark this means that u(—Ag)u=! is the
Friedrichs extension of _88722 — 2% on C°(]0, +o0]) ® C®(S?).

&2
Let now s2 be the Friedrichs extension of —68722 on C§°(]0, +-00[) ® C>(S?), ie
2
2 = 0 D(s3) = HA(]0, +00]) ® L*(5%) N H?(]0, +00[) ® L*(S?).

952’
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Then we set: )
(10.1) ap = (s3)2, a:=ulzju!

We note that for u € D(ag) = H}(]0, +o00[) @ L?(S?), we have:
+oo 9 B
Jaoul = [ 155 ulds,
hence for z € C\IR

(10.2) |2 (a0 + 2)7H) = llao(an £ ) < 1.

By duality we also have

0
10. +2)7 ' | <1
(103) I(ao % 2)7 | <

Let now f € C*(IR) with
(10.4) fA)=1for A>1, f=0for A < —1.
Wesetfor0<c<1,0<p<1:

bo = f(995%) + f(Z27),

b= f(45) + F(5F)-

We also set for 9, p; > 0:
g:=F(724 <1)F(t°%s > 1)

P15

g1 :=F(75%

(10.5) <2)F(t% > 1),

tP15 2
so that g1g = g.
Lemma 10.1 Assume p > §. Then

i) (1 —g1)(bos +p+ R)™t € O(t=°), for up € C\IR™, uniformly for R >0,

i) (by — bos)g € O(tP*~* logt).

Proof. As a preparation for the proof of Lemma 10.1, we first show:

Lemma 10.2 We have:
10.6 1—g1)(z2 —ad)'g € O(Jlmz| V72N, N e IN, z € C\RR.
0

(10.7)  a2(1 — g1)(z%2 = a?)"tg € OtV Imz| NV 72(2)) + Ot F2Imz| V1), N e IN.

Proof. We have:
(2 —ag) g = g(z* — ag) "' + (2% — ag) " '[ag, 9] (z* — ad) ",

[a3, 9] = —g' 2% — 24, for ¢ = D59,
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and hence
(10.8) (1—g1)(z* —ap) g = (1 - g1)(z* — a§) " '[ag, g](z* — ap) .

We observe that [|02g|| € O(t°®).
Moreover if g is another cutoff similar to g with gag = g, g2g1 = g2, we have [a, g] = g2[ad, 9]
and

(1—g)(z* —ap)~'g = (1 — g1)(2* — a§) " [ag, ga] (+* — a3) " [a5, 9] (= — a) "

If we iterate N times the identity (10.8), we can write (1 — g1)(2% — a3)"'g as a finite sum of
terms of the form
(10.9) (1= g1)(z* = ag) 'L Ry (2* — ag) ™,

Using the form of [a2, g] given above and the estimates (10.2), (10.3), we see that we have
[(ap  2) " R;|| < C°, or ||R;(ag £ 2)7 | < CF°.
We can rewrite (10.9) as
(10.10) (1= g1)(z — ao) ™ (T} (= + a0) " Ry(= — a0) ™) (= + a) ™.
We have
(2 4 a0) ' Rj(z — ap) || < O[Tmz|~1#,

which proves (10.6).
To prove (10.7), we write:

ag(l—g1)(2* —a§) g

= (1—g1)a§(z*> —a3) g — [ag, 1](z* — a§) " 'g

= 2(1-g1)(z* = ad)"'g — [a§, 1] (2* — a§)~'g.
Now [ad, g1] = —2¢105 — g/. Using the expression analogous to (10.10) with 1 — g; replaced by
[a, g1], and (10.2), we obtain
(a2, 1](z* — a2)"tg € Ot N2 Imz| V1) VN € IN.

Using also (10.6) we obtain (10.7). O
Proof of Lemma 10.1.
Let us first prove ¢). The function

A—ct —A—ct

fe: A= f( " )+ f( "

)

is equal to 1 for |A| > cot and satisfies |05 fi| < Cat™"*, o € IN. This implies that the function

xt(A) =(fiA) +p+R) " —(1+p+R)

satisfies
supp x¢ C {|A| < cot},
(10.11)
0¥ xt(A)] < Cot™"*, a € IN, uniformly in R > 0.
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Using the construction in [DG1, Prop. C.2.1], we can find an almost-analytic extension x; of x;
such that

supp Xt C {z € C||Rez| < ¢ot, |Imz| < ¢pt”},
(10.12)
105%¢(2)| < On|Imz|Nt=(N+D N € IN, uniformly in R > 0.
We observe that if x € C§°(IR) is an even function and A a selfadjoint operator, we have:
X(A) = & [0:x(2)(z — A)~lde A dz
(10.13) = L [0X()E((z—A) T+ (e +A)N)dendz
= i [0:x(2)2(2% — A)~tdz A dz,

using the identity (z — A)™! + (2 + A)71 = 22(2% — A%2)~L. Applying this identity to the even
function x;, we have:

(1—g1)(boy +p+R)™*
= (1 —g1)xt(ao)g
= %fagxt( )2(1 — g1)(2% — ad)"tgdz A dz.

i) follows then from (10.6) and (10.12), since p > .
Let us now prove ;). We denote again by x:(A) the function fi(A) — 1 which is even and
satisfies (10.11). We have by (10.13)

(by —bo)g = (fi(a) — fi(ao))g
— L [0u(2)2(22 — a?) Y (a? — a3) (22 — a?)"lgdz A dz.

Next we write ) ) )
(2% —a®)"'(a® — ag)(2* — ad) g

(
= (2*—a®)" (e’ —af)(1 - g1)(+* —af) "'y
+(2% = a?)7H(a® — ad)gn (2* — af) g
= Li(z) + Ix(2).

and estimate separately the two terms. We have:

()l = [I(z* = a*)"}(a® — a§)(1 — g1)(2* — ag) g
12 = a®)"ta? ([ (1 = g1)(2* — ag) g
+H(z% = a®)Hllag(1 — g1)(2* — ag) g

< On[Imz|NT2N8 4 Oy Imz |V ()N + Oy |Tmz| VT3¢V +2)5

IN

(10.14)

using (10.6), (10.7) and the fact that |la?(2? — )7 < 1, [|(2% — @®)7!|| < [Imz|~2. This yields

(10.15) I / 055:(2) 211 (2)dz A dZ|| € O(t),
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using (10.12) and the fact that p > ¢. Let us now estimate I(2).
We have
I(a* = ag)g1|| < C17.

2

A sharp estimate for (22 — a?)~! where a is any selfadjoint operator is

(22 — a®)7Y| < Cinf(|Imz| ! [Rez| ™!, [Tmz|~2).

Let us now estimate

| [ 0su(=)21a(2)dz A .

Recall that dzx; is supported in {z € C||Rez| < ¢ot, |[Imz| < ¢otP}. We cut the integral in three

parts:
Ri= || firesj<1 O=Xe(2)212(2)dz A dZ||

< f\Rez|g1 0z%:(2)|(z) Imz| ~4tP1dz A dz
< f‘ReZ|§1,\Imz|§cot1’<Z>tp1_5pdz N dz
< Cthr—3e;

Ry = || JiRes|> e |tme,[Res|>1 02Xt (2) 212(2)dz A dZ]|
< JiRes/zen sl Reslz1 105X (2) [ (2) [Rez| ~2[Imz| 2871 dz A dz
< JReslzer[tmel, Rz >1 () [Rez| 271 79Pdz A dz
< Ctrr=2logt;

R3 = || J|Res|<e|tma|,[Rez|>1 02Xt (2)212(2)dz A dZ]|
< fiResj<er fims| 102X (2) () Imz| 471 dz A dz
< JiResl<erftme) fimz|<eore 87 Pd2 A dZ
< Ctr?r,

This yields
I / 0s51(2)2I(2)dz A dZ|| < CH7 2P log t.

Using (10.15) this proves ii). O

10.2 Case of K°

In this subsection, we prove similar results on the Hilbert space h® = L?(IR,do) @ g. We recall
that on §° we defined the observable s = i%, so that |s| = (—8‘%)%. We define the observable
|slo by i
st = —% with Dirichlet condition at 0,
ie D(s§) = H*(R\{0}) N Hj(R\{0}),
1
|slo = (s3)7.
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Let again f € C*°(IR) with f(\) = 1for > 1, f =0 for A < —1. We set for 0 < ¢ < 1,
0<p<l:

bo = F(R) + P,
b= fO50) + F (=59,

and for § > 0:
g=F(tlo| > 1), g1 = F(tlo] > ),
so that g1g = g. The following lemma is analogous to Lemma 10.1.
Lemma 10.3 Assume p > 6. Then:
i) (1—g1)(bt +pu+ R)"Lg € O@t=), for u € C\IR™, uniformly for R > 0,
i) (bt — bot)g € O(t™).

Proof. Let us first prove 4i). We apply the identity (10.13) to the even (t—dependent) function

A—ct —A—ct

W) = FCS )+

) -1,

and obtain
by — bot = xt(Is]) — xt(|slo)

= & [ 20(2)z (22— )7t = (22— s3) 1) dz A dz,

where x; is an almost-analytic extension of x satisfying (10.12). We recall the identity (see
[AGHH, Thm. 3.1.2)):

(22— s2)7L = (22— s2)7 = 2172|¢Z><¢fzy for Tmz > 0,
where ¢, (o) = ¢#ll. We have:

6-]| < Cltmz|~2, [lgés || < C[lmz|~2e~t "Mmel,

This gives
(10.16) (22 =)™ = (2 = s8) ") gll < Climz|te™ "1 Tz 2 0.
We deduce from (10.16) and (10.12) that
[1(b = o)yl
< ON Jaupp |2|[Imz|N -1t —p(N+1) =t Mmzlq, A 4z

< COn fsupp)zt |Z|t(6_p)NdZ ANdz € O(t—oo)’

since p > ¢. This proves ).
To prove i), we write

(1—g)(be+p+R)"g=—1—g1)(br +p+R) b, gl(be + p+R)~".

By p.d.o. calculus, [by, g] = go[bt, g], where go = F(#°|o| > 3), and [b;, g] € O(t°~*). Iterating
this argument we obtain ). O

85



11 Reinterpretation of the spaces HS"

In this section we describe the spaces HET using the observable |s| introduced in Subsect. 10.2.
It will allow us in Sect. 12 to construct corresponding spaces H for the original Hamiltonian
H.

11.1 Preliminary results

In this subsection we show that the spaces HS' can also be defined with a cutoff function in s
which is even. This easy result uses the fact shown in Subsect. 5.3 that there is no propagation
in the region {s < —ct}.

Let f € C*(IR) satisfying (5.1) for 0 < ap < 3. We set for 0 < p < 1:

s—ct —s —ct
)+ H(—

(The reader should compare (11.1) with (5.2)).

(111) bct = f( ), Bct = dF(th)

Theorem 11.1 Assume (1'0), (I'1) for e >0, (I'2) for > 1 and pick p in (11.1) such that
p(1+e€p) > 1. Then:
i) for each A € C\IR™ the limit

s- tligrnoo (B y + N te I = RF(\) euists.

i) [RE (V). L] = [RE (V) HY] = 0.

i) s- 111%6—1Rj(e—1) =: P+,

€—>
where the orthogonal projection ]50eJr is defined in Thm. 5.5.

It follows from Thms. 11.1 and 5.6 that u € HE if and only if there exists ¢’ > ¢ such that

lim lim e#°(eBy, + 1) te %y = .

e—0t—+o0

Proof. We set fi(s) = f(—s) and note that f; satisfies (5.14). Let

by = f(S;pCt)7 By = dl(by ),
b_y = f1(55L), B_y:=dl(b_y),

so that Bey = By + B_;. By Thm. 5.5 and Prop. 5.7 we know that for all A\, \' € C\IR™ the
limit . .
s- lim (N — B, )Y\ — B_;) e " exists.
tHJrOO b k]

Note that the functions IR 3 (s, s') — (A—s)"H(V =)~ for A\, N € C\IR are total in Cy (IR?).
Hence for all x € Cu(IR?), the limit

. 1 e —1 € .
s—tll+mooe‘tH X(Byt, B_y)e tH" exists.
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We claim that . _ R
(11.2) s- lim s- . lir+n e (eBy 4+ eB_y + 1) le " = pot
— 400

e—0

where Pﬁ* is defined in Thm. 5.5. By density using Prop. 5.7 iii), it suffices to show that

(11.3)  s-lims- Jim e ((eByy+ B+ )7 = (Byy+ 1) e R (e) =0,

e—0 t—4o00

for any €y > 0, where Ry (o) is defined in Prop. 5.7. Now

((ByateB_ i+ 1)1 = (Byy+ 1)) (B + 1)~
= —e(e(Byg+B-y) + 1) By + 1) 7' B_ y(eoB-y + 1)~
= O(eey!) uniformly in .
This proves (11.3) and hence (11.2). Statements i) and %) follow from Thm. 5.5 and Prop. 5.7.
Statement 4ii) follows from (11.2).0
11.2 Reinterpretation of the space H"

We now want to replace the observable b.; by an observable b;g; which commutes with the
projections Ny ,>0y. Let [s|o be the observable defined in Subsect. 10.2. We set

|slo —ct

D)+ K

Proposition 11.2 Assume (1'0), (I'1) for eg > 0, (I'2) for u > 1 and pick p in (11.1) such
that peg > 1. Then for each A € C\IR™ the limit

—|slo —ct
)

cht:f( 7

s Beot = dr(bCOt)-

. H e _ — e
S_tll+mooeltH (BCO,t+)\) 1e itH'

exists and equals . .
s- lim e (B.y + \) e " = RET(N).

t——+o0

The following consequence of Thms. 11.1 and 5.6 gives the final description of the space HET:

Theorem 11.3 Assume (1'0), (I'1) for e >0, (I'2) for p > 1 and pick p in (11.1) such that
peo > 1. Then v € HET if and only if there exists ¢ > ¢ such that

. . i e _ 3 e
lim lim e (eBy g, + 1) e H ) = .
e—0t—+o0

Proof of Prop. 11.2. We drop the subscript ¢ to simplify the notation. We will use the
notation in Subsect. 10.2. Recall that we have set:

1
g=F(tlo] 2 1), g1 = F(t’|o] > 3),
for 6 > 0. We fix § < p with deg > 1 so that the results of Subsect. 4.4 apply.
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By a density argument, using Thm. 4.12 and Lemma 4.11, it suffices to prove that for
x € C5°(IR):

(11.4) (3 +d0())™ = (A +d(bg 1) ™) T (gX (LT (9)x (L) € o(1),

We first claim that
(11.5) (1= D(g1))(A + dT (b))~ T(g) € O(N)E™,

In fact on the n—particle sector:
n

1-T(g)=> 19 @10 (1-g1;)®g1j41 @ @ gin,
j=1

” 12— Dg))(A + dL(b) T (g)]

< nsuppsg [I(L— 1) (b + A+ B)~gl| € O(N)~.
by Lemma 10.3 7). Now we write:
(O +dr (o)~ = (A +d() )T ()
= (A+dD(bgy)) 1D (by — bo¢)(X + dT(b)) "' T'(g)
= A+ d0 (o) 0 (b~ b )T (g1) (A + AT (0) ' T(9)
04 dT(bo 1) (be = by ) (1= T{g1)) A+ dT(b)) 7' (o)
= L+ I
By Lemma 10.3 ii), we have:
(11.6) dT(by — bo¢)T(g1) € O(N®)t~°°,

and hence
[T (L) (g1)x (L) < CE[[(N® + 1)I(g)x(L)]| € O(™),

by Lemma 4.13 ).
Similarly by (11.5), we have:

(1L.7) A+ dD(bos)) " dT(be — bo) (1 = T(1)) (A + dT(by)) "' T(g) € O((N®)*)t™,
and hence if g is such that ggo = g, g1g2 = g2, we have:

[H2x (L)T(g0)x (L) = (12T (g2)x (L)T (g1)x (L) ]
< Ct|[(N°)*T(g2)x (L)L (g)x(L)]| < Ct=,

by Lemma 4.13 ii). This proves (11.4) and completes the proof of the proposition. O
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11.3 Reinterpretation of I'"(f;)

Let fo be a cutoff function as in (6.1) with 0 < g < a3 < ae. We recall that the observable
et (fo) was defined in (6.17).

Proposition 11.4 Assume (1'0), (I'1) for ¢g > 0, (I'2) for u > 1 and pick p in (11.1) such
that peg > 1. Then for 0 <c <c < 1:

et _ . it He [slo — <t _ine et

LS (fo) = s- tl}glooe T(fo( " ))e on Hg".

Proof. Let us replace ¢’ by ¢ to simplify notation. By Prop. 5.11 we have:

Fg-i—(fo) =g tEHIOO eitHeF(Ct)e_itHe,

for y ;
s—¢ —s—c
Gt = fo( 10 )fo( 10 )
bt jslo — ct. , —lslo— ct
Slop — C —|S|o — C
cor = o) fo(FEL=,
and note that y
slg— ¢
cot:fo(’ ’Otp ) for t > 1,

since |s|g > 0. As in the proof of Prop. 11.2, we set g = F(t%|o| > 1) for § < p with deg > 1 so
that the results of Subsect. 4.4 apply. The function
A—ct

A—ct —

xt(A) = fol m ) fo( m )
is an even function of A, satisfying (10.11). As in the proof of Lemma 10.3 ii), we have
(11.8) (ct —cot)g € O(t™°),
As in the proof of Prop. 11.2, it suffices to show that for x € C§°(IR):
(11.9) (T(e) = Tlcoe))T(g)x(L) € o(1).
We claim that if a,b, g € B(h°) with 0 < a,b,g < 1 then
(11.10) I(T(b) = T(a))T(g)(N® + 1)~ < (b —a)g].-

To prove (11.10), we write on the n—particle sector

F(b)_r(a):Zbl®"‘®bi71®(bi_ai)®ai+1®"‘®an-
i=1

Using then (11.8) and (11.10) we get:
(P(et) = T(eor))T(g) € O(N®)E.

Next:
[(T(et) = T(co))T(g)x (L)
= [I(T(ct) = T(coe))T(9)T (g1)x (L)l
< [[(T(ee) = Tleoe))T(9) (N + 1) HIH(N® + )T (g1)x(L)]| € O(t=),
by Lemma 4.13 7). This proves (11.9) and completes the proof of the proposition. O
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12 Scattering theory for H

This section contains the main results of this paper. We first construct for 0 < ¢ < 1 spaces
HI containing a finite number of particles in the region {|z| > ¢t} for any ¢ < ¢. We show
then that the asymptotic Weyl operators W+ (h) induce on H{ a regular CCR representation of
Fock type. Finally we prove the geometric asymptotic completeness property, which states that
the vacuum states of this induced representation contain no particles in the region {|z| > ¢'t},
for any ¢ < ¢’.

We start with an easy technical lemma.

Lemma 12.1 Hypotheses (12) for uw > 0, (I5) for us > 0 imply hypothesis (1) for p1 =
inf (4, 242).

From Lemma 12.1 we see that if (12), (I5) are satisfied for p > 1, uo > 1 then (14) is satisfied
for p; > 1.

Proof. Let ¢ > 0 and set v;. = x(e < |k| < e ')v;. We drop the index j to simplify
notation. Going to polar coordinates as in Sect. 10, we have by (12):

(12.1) (=02 + D" 250, (6w) € L*(IRY,d5) ® L*(5?),
and by (I5)
(12.2) (—A‘” +1)"26v (6w) € L*(RT,d5) ® L*(S?).

52
Since ve has support in & included in ]0, 4+o00[, (12.2) is equivalent to

(12.3) (=A, +1)"26v.(6w) € L*(RT,d5) @ L*(S?).
Clearly (12.1) and (12.3) imply that

(12.4) (=02 — A, + 1)"/%50.(6w) € L*(RT, d5) ® L*(S?),
for py = inf(u, 2p2). Again because of the support of v, (12.4) implies that
A,

52

(12.5) (92 —

(e

+ 1)“1/26"05(5'(.&)) c LQ(IR+,d6—) ®L2(52)

This can be shown by a direct computation for z; € IN and then extended to p; € IRT by
interpolation. Going back to the original coordinates we see that (12.5) implies (14) for p;. O

12.1 Number of asymptotically free particles
Let f € C*(IR) a cutoff function such that
(12.6) 0<f<1,f >0, f=0fors<ag, f=1fors>a,

for 0 < ag < a7. We set
(12.7) bet := f(

for constants 0 <c < 1,0 < p < 1.

|z| — ct
tP

)7 Bct = dF(bct)7
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Proposition 12.2 Assume (HO) for o > 1, (10), (11) for ey > 1, (12) for p > 1, (15) for us > 1
and choose p in (12.7) such that pey > 1, pus > 1. Then

i) s lim (B 4+ N)te T = RE())
exists for A € C\IR™. )
i) [ (N), H] = 0.
iii) P :=s-lim e 'RY(e71) exists

and is an orthogonal projection.

Theorem 12.3 Assume (HO) for o > 1, (10), (I1) for eo > 1, (12) for p > 1, (I5) for pa > 1
and choose p in (12.7) such that peg > 1, pug > 1. Let

P := inf P}, H := RanP;",

c
c<c!

Then
i) Pt is an orthogonal projection independent on the choice of the function f in (12.7).
ii) [H, PF] = 0.

iii) u € HY < Wiqu € HET,
where HEY is defined in Thm. 5.6.
i) QF (pru{) ® r(r;)) c HY cHY,
where the space HT is defined in Subsect. 8.2.
v) WH(h) : HE — HE for h € by.
vi) ho > h— WT(h) € U(HT)
is a reqgular CCR representation of Fock type.

Proof of Prop. 12.2. We will use the notation and results in Sect. 11, Sect. 10 and Subsect.
3.4. Note also that to consider a Nelson Hamiltonian as an abstract Pauli-Fierz Hamiltonian
one has to introduce polar coordinates using the unitary transformation u defined in Subsect.
3.1. To lighten notation, we will omit this transformation and its extension I'(u) to Fock spaces
in the computations below. For example the observable |z| will be identified with the observable
a = ulzju~! considered in Subsect. 10.1.

By Prop. 11.2:

(12.8) s- lim €™ (B.os 4+ A)7te T = REH(N), A e C\IR™.

t——+o0

Note that because of the Dirichlet condition at 0 in the definition of s3 (see Subsect. 10.1) we
have:
Lo>03bc0tlfo<oy = 0.
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Hence b, o+ satisfies property (3.6) in Subsect. 3.4. Moreover
be +¢ = Lio>010c 0t {o>0

— () + (),

where qq is defined in (10.1). Note also that since |z| > 0

a—ct —a —ct
5+ 1

bct:f( )7

where a is defined in (10.1).
We deduce then from Prop. 3.4 that

s- lim eitH(dT(bc+,t) + ) te i = RZB()\)

t—+o00
exists for A € C\IR™ and )
[H, Riy(V)] =0
We claim now that . . '
(12.9) RH(\) = s . liin ™ (Bep + \)te

which will prove i) and ii). Property i) follows then from Prop. A.7.
Let us now prove (12.9). Let g, g1 € B(h) be defined in (10.5) for exponents p1,d such that
pip2 > 1, eg > 1. Using Thms. 4.9 and 4.16 for C = =5, we have:

&2

(12.10) e My =T (g)e ™y + o(1), u € H.

By a density argument and using Lemmas 4.7 and 4.14, (12.9) will follow from the fact that

(1211)  ((@0(ber) + A= (@B ) + 2T ET (g0 (H) € o(1),
for x € C§°(IR). Let us prove (12.11) following the proof of (11.4).

First
(12.12) (1= T(g1)) (T (bey) +3)"1T(g) € O(N)t

using Lemma 10.1 i) and the same argument as in the proof of (11.5). Next we write:

(A0 (Be 4 o) + )7L = (dT(ber) + )71 )T(g)
= (dT(bese) + )T (b — be s ) (AT (Ber) +2)'T(g)
= (dP(bs ) + AT (b — be s )T (g1) (AT (ber) + 2)~'T(g)
+(dP(Be 44) + A) 7' (ber — be 4 o) (1= T(g1))(dT(ber) +A) 7 T(9)
= I+ L.

By Lemma 10.1 4i):
dl(bet — be 4 ¢)T(g1) € O(N)tP1 P log t,

and hence
I x (H)T (g1)x(H)|| < Ct" =P log t|[NT(g)x (H)|-
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Applying then Lemma 4.10, we obtain:
I (H)T (g1)x(H)|| € O~ logt).

Similarly by (12.12), we have:
I, € O(N*)t=°,

and hence if g9 is another operator analogous to g such that ggo = g, g1g2 = g1, then:
[ X (H)T (g1)x (H)|
Ct=®||N?T(g2)x(H)T(g1)x(H)|

< Ct™°,

IN

by the same argument as in the proof of Lemma 4.10 4i).
Since p is such that peg > 1, pue > 1, we can pick exponents p1,d in the definition of g with
deg > 1, prug > 1 and p > 6, p > p1. Hence (12.9) holds and the proof is complete. O

Proof of Thm. 12.3. Applying first Prop. 3.4 and using (12.8), (12.9) we obtain that

P = ;W PSt W,
Pt = WP} @ IpyW,

where PSt is defined in Thm. 5.6, and hence:
P =W 1P Wig,
P&t = WPF @ IpyWwL.

Clearly this implies ¢), 1), 17). We note next that

(12.13) u € Hpp(H) © Wigu € Hpp(H®),

u€H" =D(NT) & Wiqu € H*T = D(Net),
by (8.19) and
uw € QO (Hyp(H) @ T(0) ) & Wiou € Q°F (Hyp (H®) @ T (1)),

by (8.18) and (12.13). This proves the two inclusions in 7v), using the corresponding inclusions
in Thm. 8.7. Finally v) follows from (8.16) and the corresponding statement in Thm. 8.7. O

12.2 Operators '} (fo)
Let fo € C*°(IR) such that
(12.14) 0<fo<1 fo<0, fo=1fors <o, fo=0fors=>ay,

for 0 < ap < a1 < . Let

|z| — ct

, acting on h = L2(IR3, dk),
tP

(1215) fOct = fo(

for constants 0 <c < 1,0< p < 1.
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Theorem 12.4 Assume (HO) for a > 1, (10), (I1) for e > 1, (12) for up > 1, (I5) for us > 1
and choose p in (12.15) such that pey > 1, puo > 1. Then for 0 < c < c < 1:

i) s—tligl T (fo o p)e M = T (fo) exists on HY,
it) 03 (fo), H] =0,
iii) WIoT'5 (fo) = TS (fo) W,

Proof. We use the notation in Sects. 10, 11 and in the proof of Prop. 12.2. By Prop. 11.4

we know that:
‘8‘0 —c't

_itHe®
” e T on HET.

et (fo) = s, lim e D(fo
Since by Thm. 12.3:
u € HY < Wilqu € HET,
we deduce from Prop. 3.4 and the fact that |s|o satisfies (3.6) that:

/
. — 't
s- lim <—:"tHF(fO(u

—itH _. p+ fa +
Jm ” ))e " =T o(fo) exists on H

and: N
[FC/,O(f0)7 H] - 0,
WIQF:C,O(fO) =TS (fo)WIa.
To prove the theorem, it remains to prove that

|x| — 't

" Ne H on HE.

(12.16) Tl o(fo) =s Jim T (fo

Using (12.10 ) and a density argument, (12.16) will follow from

ag — 't x| —c't
(1217 (™)~ e ) e gy € o)
for x € C§°(IR). Let us replace ¢’ by c to simplify notation. We claim that
|x| — ct ap — ct _
(12.18) (o o)~ o= ))g € Ot~ logt).

In fact set f(s) =1 — fo(s). The function f satisfies condition (10.4) in Sect. 10. Then

s—ct —s—ct s—ct

PSS+ S =1

Applying Lemma 10.1 i) we obtain (12.18). Using (12.18) and (11.10), we obtain:

) for s > 0,t > 1.

ap — ct |x| — ct

)) = (ol

(T (fof D)T(g)(N + 1)~ € O~ log ).
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By Lemma 4.10, we obtain:

(T (fo(2575)) = T(fo(E)) )T (g)x (H))|
< Ot~ logt[|(N +1)0(g1)x(H)

< Ctm =20t 0gt,

if g1 is as g with g19 = g. As in the proof of Prop. 12.2, we can choose p;,§ such that
p1 —2p+ 6 < 0. This proves (12.17) and completes the proof of the theorem. O

12.3 Geometric asymptotic completeness

Theorem 12.5 Assume (HO) for a > 1, (10), (I1) for g > 1, (12) for p > 1, (15) for ps > 1.
Let 0 < p < 1 such that peg > 1, pus > 1 and 0 < ¢ < ¢/ < 1. Let fy be a cutoff function

satisfying (12.14). Then the operator F;C(fo) s equal to the orthogonal projection on the space
K= K NHE

Proof. By Thm. 12.3 4ii) and identity (8.17) we have:
u €K & Wigu € K&
By Thm. 12.4:
Ui (fo) = WIS (fo)Wia.

The theorem follows then from the corresponding result in Thm. 9.5. O

13 The Mourre estimate and its consequences

In this section we study the consequences of a Mourre estimate for the Hamiltonian H for the
spaces HS. We show that if a Mourre estimate holds on an energy interval A with the generator
of dilations as conjugate operator, then the space Ia(H)KT of asymptotic vacua in HZE with
energy in A coincide with the space of bound states of H in A.

Let a := —3(k.Dy + Dy.k) acting on h = L?(IR®,dk) be the generator of dilations on the
one-particle space. Let A = lx ® d['(a). We introduce the following hypothesis on the coupling
functions v; defined in Subsect. 1.1:

J@ A+ |k[7H)lla] v, (k) [k < oo,

(T6) | k22, (k) 2k < o0, 1< j < P,O< e < 1.

Lemma 13.1 Assume (10), (HO) for « > 1 and (I6) for ¢ > 0. Then H € C'*¢(A) for
¢ =inf(a—1,¢).

Proof. Let v € B(K,K ® h) be defined in (1.3). We first claim that under hypothesis (16) we
have:

(14 [k[72)|la] e (x) "' ~%0|| € B(K,K ).

It suffices to prove the claim for ¢ = 0,1 and then argue by interpolation. The proof of the claim
for e = 0,1 is easy if we note the identity

a(e—ik.Xj U]) — e—ik.xj (a —+ kXJ)Uja
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and use the factor of (x) to control the powers of x; appearing when computing a’v for i = 1, 2.
We deduce from our claim that under hypothesis (H0) for o > 1 and (16) for € > 1, we have:

(13.1) (1+ k| "2)(K +b)"2a*™v € B(K,K @), ¢ =inf(a—1,e).
Another easy observation is that for v, = €*%v we have:
(13.2) (1 + [k 2)vs ]| scsn) < C, uniformly in |s| < 1.

We first claim that the map

[N

R>s— e*(z— H) e 4(Hy+b)2 € B(H)
is C'! for the norm topology. In fact let
H(s) := " He 4 = e ™" Hy 4 ¢(e"*™).
We have D(H (s)) = D(Hyp) and ||(H(s) +1)~!(Hy +1)|| < C uniformly for |s| < 1. We compute
s7H((z = H(s)) ™t = (= = H) V) (Ho + b)2

= sz — H(s))"'(H(s) — H)(z — H)"'(Ho +b)

=

NI

= s e ®*—1)(z— H(s)) 'Ho(z — H)"'(Hy +b)
+(z — H(s)) (s~ (e — Mv) (2 — H) " (Ho +b)?
= s7(e™ = 1)(z — H(s))"*Ho(z — H)"}(Ho + b)?
(2 — H(s))"N(Ho + b)2 (Hy + b) "2 (K + b)2
(K +b)"2¢(s~ (el — 1)v)(z — H)"L(Hy + b)=.

Using (13.1) and Prop. A.1, we obtain that

ol

lim s~ (2 = H(s)) ™ = (z = H)™")(Ho+b)2 = (2 = H)™'(=Ho + ¢(iav)) (= — H) ™ (Hy + b)2.

S—

in norm, which proves in particular that H € C'(A). It remains to prove that the map
R 5 s — ez — H)"Y(—Hy + ¢(iav))(z — H)"te ¥4 € B(H)

is C¢ for the norm topology. We write:

eisA(Z o H)_IHO(Z o H)—le—isA

[N

= e (z— H) le A(Hy + )

1

x (Ho + b)~2eiA Hye 54 (Hy + b) "2

l\.’)

X (Hp + b)%eiSA(z — H)leisA,
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The first and third terms in the product are C'* in norm. The second term is equal to e~ Ho(Ho+
b)~! and hence is also C! in norm. This shows that

R 55— ez — H) 'Hy(z — H) te ¥4

is C'! in norm. We consider next:

(2 — H) 1¢(iav)(z — H) le71s4

N

= eBA(z — H)le BA(Hy + b)
x(Ho + b) "2 ¢(e*%iav) (Hy + b) "2
x(Ho + b)2elsA(z — H) le~isA,
Again the first and third terms in the product are C' in norm. The second term we write as
(Ho +b) "2 (K + b)2¢(e**(K + b)~2iav)(Hy + b) 2.

Using (13.1) and Prop. A.1 we see that the second term is C¢ in norm. This completes the
proof of the lemma. O

Lemma 13.2 Let f;(z) € C®(R?) with [0 f;(x)| < Cat =Pl Then:
i) for F'€ C®°(IR) with OYF € O((\)™1), we have:

M), F(E) € Ot
ii) if supp fr C {|z| < ct}, |fi] <1 then:

F(ft)él‘(ft) < cdD'(K)) + Nt

Proof. Let us first prove i). We set F(A) = (A +1)F_1(\), with 0¢F_1(\) € O((\)~17?). We
have:
(13.3) 00, P = 00, 217 G + (B iG]

Now [[(f), 2] = dT'(f, [f¢, 4]) € O(N)t~*, using [DG2, Lemma 2.8].
Let us estimate the second term in (13.3). Let F_; € C*(C) be an almost-analytic extension
of F_; satisfying (see eg [DG1, Prop. C.2.2]):

OE_L(2)| < On(2) 2 N|Imz[N, N € N,
supp F_; C {z|[Imz| < C(Rez)}.

We have:
(4 + D), Foa(9)]

= & J 0P (2)(4 +D)(z — D)D), Az — 4) Az Adz
€ O(N)t=7,
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using the properties of F_; and the fact that N commutes with A and I'(f;). This completes
the proof of ).
Let us now prove 4i). We have:

T(f)4T(f1)
— ID(f)dT(2.D,)T(fy) + ST(f)d0(D,. 2)0(f)
— ID(f2)dr(%.D,) + d(D, £)T(f2) + O(N)~>.
Hence on the n—particle sector we have:
F(ft)él“(ft) = % Z a;b; + bja; + O(N)t_p,
i=1

for T
a; = H?:lftZ(xj)%v bl = Dxl

Note the following identity:
(13.4) (ab+ ba)? = 4ba®b + 2([a, b], ab] + [a, b]*.

This yields
(aibi + biai)2 < 4bia?bi + O(t72p)

< 422+ O(t),

using the properties of f;. Using the fact that the function A — AZ is matrix monotone (see
[BR, Sect. 2.2.2]), we obtain:

1
:|:§<aibi + biai) < C’b2’ + O(t_p).
Summing over ¢, we get:
A
LT(fi)ST(f) < edD(K]) + CNT ™7,

which proves ii). O

The following theorem is the main result of this section. It means that if a Mourre estimate
holds on an energy interval A, then on the range of Ia(H) the space of asymptotic vacua in
HT coincide with the space of bound states for ¢ small enough.

Theorem 13.3 Assume (HO) for o > 1, (10), (I1) for eo > 1, (12) for p > 1, (I5) for pg > 1
and (16) for e > 0. Let 0 < p < 1 such that peg > 1, pug >1 and 0 <c < <1. Let A C IR be
an open interval such that the following Mourre estimate holds on A:

1 (H)[H,GAIAH) > eola(H) + R,
where co > 0 and R € B(H) is compact. Then for 0 < ¢ < ¢(A, cp) we have:

IA(H)KE = 1a(H)Hpp(H).
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Proof. To prove the theorem, it suffices to prove that for ¢ small enough
(13.5) IA(H)Heons(H) N KT = {0},

where Heont (H ) is the continuous spectral subspace of H. In fact (13.5) implies that 1a (H)K C
1A (H)Hpp(H). The fact that Hpp(H) C KF is shown in Prop. 8.4.

We first recall that it follows from the fact that H € C'(A) and that H satisfies a Mourre
estimate on A that:

i) opp(H) is locally finite in A,

ii) YA € A\opp(H), Ve > 0, there exists ¢ > 0 such that

(13.6) W5 aro) (H)[H A\ 546/ (H) > (co — €) T a6 (H).

Let now fo € C*°(IR) satisfying (12.14) and let A € A\opp(H). We will show that for 6 and
¢ small enough, we have:

(13.7) ITE (o) Apn—s a0 (DI < 1.

Note that by Thm. 12.5 F:U(fg)]l[)\,(;,)\w](ﬂ) is equal to the orthogonal projection on the space
Ipy—sa16)(H)KF, for 0 < ¢ < ¢’. Hence (13.7) implies that for ¢ small enough

Ip_sare) (H)KT = {0},

which implies (13.5).
Let us now prove (13.7). We deduce first from (13.6) and the fact that H € C't¢'(A) for
some € > 0 that for any € > 0 we have:

i Al
(13.8) e Mg ap)(H)u = F(3)e s _sage) (H)u + 0(1),

where F' € C*(IR), 0 < F < 1, is supported in {\ > ¢p — 2¢} and equal to 1 in {A > ¢y — €}.

This abstract result is due to [SS2]. A proof under the hypotheses above can be found in [GN].
Let now u € D(N%) and x € C§°(J]A — 9, A+ 6[). We recall that it follows from (4.8) and the

fact that yx(H) preserves D(N %) that

(13.9) (N + 1)2x (H)e Hu| < CtO+O 7 |(N + 1)3ul).

We have using (13.8), (13.9), Lemma 13.2 4) and the fact that p > (14 €)'

(e u, X(H)T(foct)*x(H)e " u)
= (’”H XUH)T (foe ) F()x(H)e " u) + o(1)
= (e ™y, x(H)T(foe ) (T (foe )x(H)e ) + O(t#)||(N + 1) 2 x(H)e a2 + o(1)
= (7 "u, x(H)T(foct) F ()T (foet)x(H)e " u) + o(1).

Next we have:

(e u, x(H)T(foct)*x(H)e " u)

(e u, x(H)T(foet) F(T (foce)x(H)e " u) + o(1)
(e u, x(H)T(foet) gtz D (foe o) x (H)e ™ u) + o(1)
(

(co—e)t
T, S (H)AT(JK])x (H)e 7 u) + o(1),

AN

)
I'(

IN

e
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using Lemma 13.2 7)) and the fact that supp foc: C {|z| < (c+ €1)t} for all e; > 0, t > T'(e1).
Next we have:
X(H)AT([k[)x(H) < e1(A)x*(H).

Picking c such that cc1(A) < ¢p, we obtain for €, €; small enough:
(7, X (H)T(foe ) x(H)e ") < (u, x*(H)u) + o(1).

This yields
1
TS (fo)x(H)ul| < [|x(H)ull, w € D(N?)

and hence proves (13.7) by density. This completes the proof of the theorem. O

A Appendix
A.1 Operator bounds
The following proposition is shown in [DJ, Prop. 4.1].

Proposition A.1 Let v € B(K,K ® §°), w be a selfadjoint operator on §°. Assume that w > 0
and that w is invertible on the range of v. Then:

la(v)ul? < [lv*w™ vl|(u, dT (w)u),
la* ()ull® < (u, vivu) + [[v'w™ ol (u, dT (w)u),

16" (v)ull* < (u, v*vu) + 2|v*w ™ vl (u, dT(w)u),
for u € D(AT(w)?).

Lemma A.2 Let a,b be two selfadjoint operators on b such that 0 < aP < bP for each 0 < p < k,
p,k € IN. Then
(AT (a))*® < (AT (b))".

We first note that if a;,b; € B(H;), i = 1,2 with 0 < a; < b; then a1 ® as < by ® be. Next on the
n—particle sector, we have:

d]._‘((l)k = Zi1+"~+in:k ail R R ain
< Zil-i-"'-‘rin:k bil Q- ® bZ"
=dr'(p)*.

and completes the proof of the lemma. O
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A.2 Propagation estimates and existence of limits

In this subsection we formulate two generalizations of standard arguments due to Sigal-Soffer
[SS1]. Their proofs are analogous to the standard ones.

Proposition A.3 Let H be a Hilbert space, D C 'H a dense subspace, H a selfadjoint operator
on H and
Rt 5t &(t) € B(H)

a function with sup;> [|®(t)|| < co. Assume that for u € D the function:

) = (ug, ®(t)uy) € CYR) if uy = ey,

and

d * - *

/) = (ue, B () R(t)u) — > (g, Ry (t) Ri(t)uy)

=1

where oo

/ 1R (t)ug||2dt < Cllul|?, we D, 1<i<n.

1

Then

400
/ IR(t)ue|2dt < Clull?, u € D.
1

Proposition A.4 Let H;,D;, H; i = 1,2 be as in Prop. A.3. Let
Rt >t ®(t) € B(H1, Ha)
a function with sup,> ||®(t)| < co. Assume that for u; € D; the function

F(t) = (uze, @(t)ury) € CH(R)

and .

df(t)

— 5| S 2 1Bag (Wuzllll Bry (Bl

i=1
where
+oo
/1 1By j (t)uiel*dt < Cllui|?, u; € Dyji =1,2, 1 < j <n.

Then

s- lim 20 (t)e 1 egists,
t—+oo
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A.3 Existence of limits of asymptotic observables

In this subsection we give two different methods to show the existence of weak or strong limits
of asymptotic observables.

Proposition A.5 Let H;,D;, H; i = 1,2 be as in Prop. A.3. Let for e € [0,1]:

R™ >t~ O (t) € B(H1,H2)

such that:
(A1) supgep+ [ @e(t)]| < 00, Ve >0, SUPeel0,1] [@(0)]| < oo;

fe(t) = (vi, @c(t)uy) € CHRY) for u € Dy, v € Dy;
(A2) (L] < S [ R (Dualll| Re (t)ee| wniformly in e € [0,1]

with [F || Ry j(t)w]?dt < Cllul?, w € Dy, i = 1,2, 1 < j < n;

w — lim._,q (I)E(t) = q)o(t), Vit > 1,
(A.3)
resp.  s-lime o @ () = Po(t), Vi > 1.
Then: . _
i) s lim e (t)e ! = &F exists Ve € [0, 1]
t——+4o0
w — lime_o ®F = @7,

resp.  s-lime_o®F = @,

Proof. i) follows from Prop. A.4. It follows from (A.1), (A.2) that ®} is uniformly bounded
in €. Hence to prove i) it suffices by density to show that

lin%(v, ®Fu) — (v,®fu) =0, v € Da,u € Dy,
€E—>

respectively that:

lim  sup |(v,®fu) — (v,®Fu)| =0, u € Dy.
EHOU€D27” ||<1

We have:
(Ua q)j_u) - (U7 q)(J)ru)

= (vp, ®(T)ur) — (vp, Po(T)ur)

5750 (0, De(t)ug)dt — [0 (v, Do (t)uy)dt.

The sum of the last two terms is less than
1 1
25 (S (| R (£)ue || 2dE) 2 (7757 || Ra, (£)ve|[*dt) 2
< OXI (% R (Bu )2 o]

uniformly in € by (A.2). For 7' > 1 this is less than «||v|| for fixed u € Dy, uniformly in €. Then
i1) follows from the fact that for fixed T' ®.(7T") converges weakly (resp. strongly) to ®o(7") when
e— 0.0
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Proposition A.6 Let H,D, H be as in Prop. A.3. Let for e €]0,1]
RT >t ®(t) € B(H) selfadjoint,

such that for fized € ®(t) satisfies the hypotheses of Prop. A.} with H; = H, D; = D and
H;, =H,i=1,2. It follows that

dF =5 lim o (t)e  exists Ve > 0.
€ t—+o0

Assume that
0<of <1

%(utaq)e(t)ut) = _||R(t)ut||27 € 6]07 1[> u € Da
where {7 | R(t)ug||?dt < C|lul|?, v € D;

W — lime_o ®c(t) = 1, V¢t > 1.

Then
w— lim & = 1.
e—0

Proof. Since ®} is uniformly bounded, it suffices by density to show that

lin%(u,quu) = (u,u), u € D.

€E—

We have: oo d
(u, @Fu) = (ur, ®e(T)ur) + [7°° § (e, Pe(t)ur)dt

> (ur, ®(T)ur) — [ | R(t)ue|*dt.

For o > 0 we first choose T" > 1 such that the second term is less than « then ¢y such that
for € < €o the first term is greater than (u,u) — a. We obtain lim,_o(u, ®Fu) > |lu|®. Since
(u, ®Fu) < |lu||? this proves the proposition. O

A.4 Existence of some projections

In this subsection we show the existence of some projections, using pseudo-resolvent arguments.

Proposition A.7 Let H, H be as in Prop. A.3 and let R" 3t — By, where By is a selfadjoint
operator on H, By > 0. Assume that VA € C\IR:

RY(\) =s- lim ™™ (B; + \)"te ™ exists.

t——+o00

Then:
i) for x € Cso(IR) the limit

xt =5 tii_rgloo ey (B e M exists.

i) if x € Co(R), 0 < x < 1, x decreasing, x = 1 near 0 and xn(\) = x(n~'\) then

s- lim x,}' = P exists
n—-+o00
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and is an orthogonal projection independent on the choice of x.

iii) Pt =s- lin% s- lim e (eBy + 1) le 1,
€E—>

t—+00

Proof. i): the functions s — (s+A)~! for A € C\IR are total in C,(IR) by the Stone Weierstrass
theorem. Hence the limit x* exists for all y € Co(IR).

ii): clearly we have [x;}, x;"] =0 Vn,m and y,} < X:zr—kl < 1. Hence PT = w — lim,— 400 X}
exists.

For m > ngn with ng large enough, we have x;'x;i = x;'. Letting m — 400, we obtain
X.F Pt = x;". Letting then n — 400 we obtain P*? = Pt ie P is a projection. We also have
Xm@n) < Xo < Xn, for m(n) < n, m(n) — +oo when n — +oo. Hence X;;(n) < xtH? < it
Letting n — 400, we get P* =w — lim,, 1 X;72.

Then we compute

lim [[(P* = xull® = lim (u, (% = P)u) =0,
n—-+0o00 n——+00
which shows that PT = s-lim,, .10 X;/. To prove that PT is independent on the choice of ¥,
we note that if x1, x2 are two such functions, we have X1 ) < x2,n for m(n) — +oo when
n — +oo. This yields X1+,m(n) < X;,n and proves the statement by letting n — +oc.

To prove i) it suffices to show that if x € Co(IR), 0 < x < 1, x decreasing on IR* and
x(0) = 1 then s-lim, 100 x;7 = PT. For such y and fixed ¢y > 0, we can find a function y;
satisfying the conditions of i) such that ||x — x1|/cc < €9- Then the statement follows from the
fact that s-limy, o0 X7, = P, by ii). O
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