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Abstract

We study the spectral theory of massless Pauli-Fierz models using an extension of the
Mourre method. We prove the local finiteness of point spectrum and a limiting absorption
principle away from the eigenvalues for an arbitrary coupling constant. In addition we show
that the expectation value of the number operator is finite on all eigenvectors.

1 Introduction

We consider in this paper a class of QFT models describing a quantum system linearly coupled
with a massless scalar photon field. The models are described on a Hilbert space H = K @ I'(h),
where K is a separable Hilbert space describing the quantum system and G(h) is the bosonic
Fock space over h = L2(IRd, dk), describing a field of massless scalar bosons.

The Hamiltonian H is given by H = K ® I + Ix @ dI'(w) + g¢(v), where K is a bounded
below Hamiltonian on K describing the dynamics of the quantum system, w(k) = |k| is the boson
dispersion relation, v € B(KC, K ® h) is an operator valued form factor describing the coupling of
the small system with the boson field and g is a coupling constant.

The most important examples are the spin-boson model, describing a single spin coupled to
a boson field, and the Nelson model, describing a non-relativistic atom coupled to a boson field.

A lot of effort was devoted in recent years to the study of these models and their generalization
(for example the non-relativistic model of electrons minimally coupled to the Maxwell field), see
e.g. [Ar, AH1, AH2, BFS, BFSS, DG1, DG2, DJ, FGS1, FGS2, G1, G2, LMS, Sk, Sp|.
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One way to study the spectral properties of a Hamiltonian H is the Mourre commutator
method, which relies on the construction of a conjugate operator A such that the commutator
[H,iA] is locally positive

IA(H)[H,iA|IA(H) > cola(H), ¢ >0

on some energy interval A. The weaker estimate in which the preceding inequality is required
to hold modulo a compact operator is called a Mourre estimate. Typically one deduces from
a Mourre estimate the local finiteness of point spectrum and a limiting absorption principle
away from thresholds and eigenvalues of H, which implies the absence of singular continuous
spectrum.

Moreover one can deduce from a Mourre estimate propagation estimates on the unitary
group e for large times which are often a key ingredient in the study of the scattering theory
of H, for example in proofs of the asymptotic completeness.

In this paper we use the Mourre method to obtain results on the structure of the spectrum
for massless Pauli-Fierz Hamiltonians.

1.1 Outline of the paper

To put our work in perspective, it is helpful to make a quick review of the applications of the
Mourre method to various Hamiltonians arising in Quantum Mechanics, like the N—particle
Schrodinger Hamiltonian, or the Pauli-Fierz Hamiltonian and its generalizations.

Typically the Hamiltonian H can be written as the sum H = Hy + V of a ‘free’ part Hy
and an ‘interacting’ part V. Quite often a conjugate operator for H can be guessed by choosing
a conjugate operator A for Hy and then proving that it is also a conjugate operator for H.
However, except in simple situations, the proof that A is a conjugate operator for H does not
follow from a perturbation argument, but relies on the following ingredients:

e A geometric decomposition of the Hilbert space (corresponding for example to the various
cluster decompositions of the N-particle Hamiltonian).

e An induction step allowing to deduce a Mourre estimate for H from a Mourre estimate
for subsystems.

Note also that in these proofs, compact operators play the role of error terms, which can be
neglected by proving the Mourre estimate on a small enough energy interval.

For massive Pauli-Fierz models [DG1], and space-cutoff P(¢)2 models [DG2], the same strat-
egy can be applied, yielding a Mourre estimate for arbitrary coupling constant, away from the
eigenvalues and thresholds of H. The threshold set of H is 7(H) = opp(H) + mIN*, where m is
the boson mass. It corresponds to the energy levels where bosons can propagate away to infinity
with zero asymptotic velocity.

Quite a number of papers have been devoted recently to the proof of a Mourre estimate
for massless Pauli-Fierz models or some of their extensions, see e.g. [BFS|, [BFSS], [Sk], [DJ],
[FGS3]. However these papers did not follow the standard scheme outlined above. Instead the
Mourre estimate for H is typically deduced from a Mourre estimate for Hy (or a more sophisti-
cated free Hamiltonian approximating more closely H as in [BFSS], [DJ]) and by assuming that
the coupling constant g is small enough to control the commutator [V,i1A] with the interaction.



As a consequence, in [BFS] the Mourre estimate for H is shown only outside some g“-
neighborhoods of the eigenvalues of Hy, or in [BFSS] and [DJ] outside some g®-neighborhood
of the lowest eigenvalue of Hy, assuming in addition that the Fermi golden rule holds at all
eigenvalues of Hy embedded in the continuous spectrum. The only exception is [Sk], where the
coupling constant is small but the Mourre estimate holds on all the spectrum of H.

These results are not surprising, since one expects that a Mourre estimate should hold away
from the eigenvalues of H, which by a formal perturbation argument can exist only in g%-
neighborhoods of the eigenvalues of Hy. (Note that since massless bosons propagate with speed
1, massless Pauli-Fierz models should have no thresholds.)

In our paper we prove a Mourre estimate for massless Pauli-Fierz Hamiltonians H for ar-
bitrary coupling constant at all energies away from the eigenvalues of H, thereby obtaining
the correct non-perturbative result one naturally expects from considering the corresponding
massive case.

Let us now briefly discuss the ideas of our proof.

Instead of using just one conjugate operator, we consider a family A% of conjugate operators,
which are of the form A° = dI'(a’), where a’ is the generator of a semigroup of isometries on
h. More precisely a® is the symmetric operator associated to the vector field m5(r)8r, where
r = |k| and m? is a smooth function equal to 1 in r > 1, and equal to d(d) in 0 < r < §, where
d(0) — +oo when 6 — 0. To prove a Mourre estimate up to an energy level £ we have to choose
the parameter § sufficiently small. Therefore our conjugate operators are modifications of the
generator of radial translations, used in [DJ] and [Sk| (in [BFS] and [BFSS]| the generator of
dilations was used instead).

The method of proof is inspired by that in [DG1]|. The first step is as usual to perform a
geometric decomposition of the Hilbert space allowing to treat separately the bosons close to
the atom and the bosons close to infinity. This decomposition alone is no more sufficient to set
up an inductive proof of the Mourre estimate, because taking a boson near infinity does not
decrease the energy of the remaining system, since the rest mass of the boson vanishes. To set
up the induction proof, we separate again the bosons near infinity between bosons of momentum
less than § and bosons of momentum greater than J. If there exists at least a boson near infinity
of momentum greater than 4, then the energy of the remaining system is lower than the total
energy by an amount at least equal to d, which allows to start an inductive proof of the Mourre
estimate. If all the bosons near infinity have momentum less than §, then we use a different
argument: namely the commutator [Ho, iA‘;] is larger than d(¢), which suffices to get positivity
of [H,iA%], by controlling the error term [V,1A4°] in norm and choosing ¢ small enough.

Once a Mourre estimate is obtained, additional work is required to deduce from it conse-
quences like a limiting absorption principle or absence of eigenvalues. In our case the commutator
[H, A9 ] is a perturbation of the number operator, and hence is not bounded as a quadratic form
on the domain of H. In [GGM] an extension of the Mourre method, as developed in [Sk|, was
given. We rely here on this version of the Mourre method, which is formulated in terms of
Cy-semigroups in the spirit of [ABG]. Finally using an extension of the virial theorem, we can
show that the expectation value of the number operator N is finite on each eigenvector of H.

1.2 Plan of the paper

Let us now describe the plan of the paper.
In Section 2 we describe the class of abstract Pauli-Fierz models considered in this paper.



We describe the hypotheses and give the two main applications, namely the confined Nelson
model and the confined Nelson model after a dressing transformation. The results of the paper
are formulated in Subsection 2.5.

In Section 3, we recall the definition of various operators on Fock spaces and we prove some
estimates on creation/annihilation operators and on second quantized operators that will be
needed later. Most of the results here are standard, except for Props. 3.4, 3.7 and 3.9.

In Section 4, we study the smoothness of abstract Pauli-Fierz Hamiltonians under a second
quantized Cy-semigroup of isometries. We furthermore prove a HVZ-type theorem,

In Section 5 we recall some terminology and results of [GGM], where an extension of the
Mourre method is developed.

In Section 6, we introduce the conjugate operator A that will be used to prove a Mourre
estimate and we verify the abstract conditions given in Section 5, using the results of Section 4.

In Section 7, we prove the Mourre estimate for Pauli-Fierz Hamiltonians, using geometric
decompositions in position and momentum space. Finally the proofs of the results of Subsection
2.5 are given in Section 8.

2 Hypotheses and results

2.1 Massless Pauli-Fierz models

Let us first describe the class of Hamiltonians that we will consider in this paper. These Hamil-
tonians describe a quantum system, typically a non-relativistic atom, interacting with a field of
massless scalar bosons.

We refer the reader to Section 4 where abstract Pauli-Fierz models are studied in details.

The quantum system is described with a separable Hilbert space K and a bounded below
selfadjoint operator K. Without loss of generality we will assume that K is positive.

The one-particle space is h = L? (IRd, dk), where k is the boson momentum. The one-particle
kinetic energy is the operator of multiplication by

w(k) = |k|.
The boson field is described by the Hilbert space I'(h), and the interacting system by:
H:=K®TI(h).

The free Hamiltonian is
Hy=K®Ip@) + Ik ® dl'(w).

The interacting Hamiltonian is
H = HO + ¢(U)7

for a coupling function (also called form factor in the physics literature) v € B(D(K %), K®h).
Since K is separable, v can be identified with a strongly measurable function:

R? 5 k — v(k) € B(D(K?),K)

uniquely defined almost everywhere, such that

=

o)l =l sup /duv<k)(K+1)—%¢u,%dk < .
ek, [p)=1/R



We assume the following hypothesis:

(11) v E B(D(K%),IC ®bh), v extends as v € B(IC,D(K%)* ®h) and
: 1 1 1 1
lim;— 400 (||Illc ®w To(K +7)"2|guc ken + (K +7)72 Qw 2U||B(ICJC®h)) =0.

2.2 Additional hypotheses

We will now collect the additional hypotheses that we will impose on K and v to prove the
results of this paper. The first one concerns the system coupled to the boson field:

(HO) (K +i)~! is compact on K.

Physically this condition means that the small system is confined.
To formulate the hypotheses on the coupling function v, we fix a function d € C'*°(]0, +00|)
such that:

(2.1) d'(t) <0, |d'(t)] < Ct7ld(1), d(t) =1in {t > 1}, limd(t) = +o0.
Remark 2.1 Let y € C5°(IR), with x = 1 near 0. Then a function of the form
d(t) = x(0)t™ + 1= x(?)

for € > 0 satisfies (2.1). Moreover if d satisfies (2.1) then d* for a > 0 and In(d) + 1 satisfy also
(2.1).
Let us introduce polar coordinates on IR? using the unitary map:

T : L2(R%,dk) — L2(RY,dr) ® L2(S* 1) =: b,
22) { Tu(r,0) := r(d_l)/2u(r9).

Let also
0= (Ig @ T)v.

Then we will impose
2) { (1+7r2)rd(r)o € B(D(K?),K ®b) N B(K,D(K?)* @),
12
(1+7-2)d(r)d,5 € B(D(K?),K®b) N B, DK2)* @5),

and finally

(I3) 026 € B(D(K2),K ®h).

2.3 The massless Nelson model

The main example of a massless Pauli-Fierz model is the Nelson model (see [Ne], [Ca] , [A], [Ar]
and [LMS]). It was originally introduced in [Ne] as a phenomenological model of non-relativistic
particles interacting with a quantized scalar field.



The atom is described with the Hilbert space
K = L*(R*", dx),
where x = (x1,...,Xp), X; is the position of particle 7, and the Hamiltonian:
K = Z
where m; is the mass of particle ¢, V;; is the interaction potential between particles ¢ and j and

W is an external confining potential.
We will assume

1] ')—i-W(Xl,...,Xp),
1<J

(HO) Vij is A — bounded with relative bound 0,
We Lloc(IRgN)> W(X) > CO|X|2a —C1, Cg > 0, o > 0.

It follows from (HO') that K is symmetric and bounded below on C$°(IR3*""). We still denote by
K its Friedrichs extension. Moreover we have D((K + b)%) c HY(R3*")ND(|x|*), which implies:

(2.3) x| (K + b)_% is bounded.

Note also that (HO’) implies that K has compact resolvent on L?(IR*"), so hypothesis (HO) in
Subsection 2.2 is satisfied.
The one-particle space for bosons is

h:= L*(IR?,dk),

and the bosonic field is described with the Fock space I'(h) and the Hamiltonian dI'(|k]).
We assume that the interaction is of the form

N
(2.4) V=Y o(p(x;))
j=1

for

B (p(x ¢_/ % @ 0% (k) + p(k)e™™ @ a(k)dk,

where j denotes the inverse Fourier transform of p € L?(IR3). The Hamiltonian describing the
interacting system is now:

H:=Hy+V.

Note that the interaction is translation invariant (although the full Hamiltonian H is not
because of the confining potential W). Note also that using the notation introduced in Subsection
4.1 we can write V = ¢(v), where v € B(K, K ® p) is defined by

P

(2.5) v(k)Y(x1,...,xp Z “RX (k) (xq, ..., XP).

Jj=1

If the function p satisfies:

@) [+ klptk) Pk < oo,



hypothesis (I1) in Subsection 2.2 is satisfied. Going to polar coordinates we have:
P
Z —irxi05(r,0), for p(r,0) = rp(ré).
7j=1

Using the identity 0,6 "5 = e7*9(9,5 — ix - 05) and (2.3) to control the powers of x we see
that if:

" ){ (14 7r72)r~1d(r)p € L2(RY, dr) ® L(S?),
2

(1+772)d(r)d,p € LAR*,dr) ® L2(S2?),
(I3') 92p € LA(R',dr) ® L2(S?),

and (I1’) are satisfied and « > 2, then hypotheses (I1), (I2) and (I3) of Subsection 2.2 are
satisfied.
Let us consider a particular choice of p of the form

(2.6) p(k) = |k[°x(|k]), B € R,

where x € C°(IR), x = 1 near 0 is an ultraviolet cutoff, and recall that the physical case
corresponds to 3 = —3. We see that if 3 > 1, conditions (I1"), (I2) and (I3') are satisfied for
a function d(r) equal to 7~ near 0 and 0 < € < 1. In the next subsection, we will show that we
can actually handle coupling functions p of the form (2.6) for all § > —%.

2.4 The massless Nelson model after a dressing transformation

Let us assume in addition to (I1") that:

1) [ k|2 lp()dk < oo,

and set:

(€75 — 1)p(k).

M=

vo(k) = Pp(k)lic, v1(k) = v(k) —vo(k) =
7j=1

Then it is easy to verify that:
Hy =GO He D) = Ky @ 1+ 10 dU(|k]) + ¢(v1) + B,

for:

K=K - PZ/ 2(1 — cos(k - x;))dk, By = —Re(vo,vo/w)h.

We see that H; is a Pauli-Fierz Hamiltonian similar to H with v replaced by v1, K by Ky + F.
It is clear that K satisfies (HO), since K — K is bounded. To control the interaction vy,
we use the bound:
om0 —1] < #(x),



for 7 := r(r)~1. This yields if 9; = I ® T;:
01| < Clpli(x),
(2.7) 0,01| < C|Oppl7(x) + C(x)]7],
0701 < C197pli(x) + C(x)|0-p] + C(x)|p].
It is easy to verify that if the hypotheses:

(I1") (1+r"Ype L2R",dr) ® L%(S?),

(1+7r72)d(r)p € L2(IRT, dr) ® L3(S?),

TN (4 b)) b5 € 2R, ar) @ 12(82),

(I13") #02p € L*(IRY,dr) ® L?(S?),

are fulfilled and « > 2, then condition (I4’) is satisfied and the renormalized Hamiltonian Hy
satisfies (I1), (I2) and (I3). For a coupling function of the form (2.6), these hypotheses hold
for a function d(r) equal to r~€ near 0 and 0 < e < 1, if § > —%.

2.5 Results

In this subsection we state the main results of this paper. The proofs will be given in Section 8.
The following notations are needed to formulate the limiting absorption principle. Let —aa—rg

be the Laplacian on L?(IR*,dr) with Dirichlet condition at 0, and b := (—g—;)%. We set
b:=1x ® T1bT, where T : h — b is defined in (2.2).

We begin with a preliminary result which describes the basic spectral properties of H. Propo-
sition 4.8 contains more general results.

Proposition 2.2 Assume hypotheses (HO) and (I1). Then H is selfadjoint and bounded below
on D(H) = D(Hy) and
o(H) = [info(H),+o0].

Properties of eigenvectors.

Theorem 2.3 Assume hypotheses (I1) and (I12). Let N = lx @ dI'(1) be the number operator
on H. Then if u is an eigenvector of H, u belongs to D(N%).

Theorem 2.4 Assume hypotheses (HO), (I1) and (I12). Then for each bounded interval I C IR
TrIVP(H) < oo, i.e. the point spectrum of H is locally finite ( counting multiplicity).

Limiting absorption principle.



Theorem 2.5 Assume hypotheses (HO), (I1) and (I2). Let I C IR\opp(H) be a compact
interval. Then for % < s <1 the limits:

(N +1)2(dT(b) + 1)"*R(\ +10)(dT(b) + 1)~5(N + 1)z
= limy, o+ (N +1)2(d0(b) + 1) (H — A F i)~ (dT(b) + 1)"*(N + 1)*

exist in norm uniformly in A € 1. Moreover, the maps:
I35 X\ (N +1)2(d0(b) + 1) R(A £i0)(dT'(b) + 1)~ (N + 1)% € B(H)
are Hélder continuous of order s — % for the norm topology of B(H).

Remarks 2.6 (1) Stronger forms of the limiting absorption principle can be obtained by ap-
plying Theorem 5.15 for the space G = D(B%), where B = K ® Iy + I ® dU((k* + 1)%) and
the conjugate operator A = A%, where A% is defined in Section 6 for the parameter § depending
on the energy interval I.

(2) A weaker but more explicit form of the limiting absorption principle can be obtained by
replacing in Theorem 2.5 the observable b by |z|, where = := iJj, is the boson position observable.

3 Operators on Fock spaces

In this section we first recall some standard definitions on Fock spaces. Then we prove some
bounds on second quantized and creation/annihilation operators which will be useful in the
sequel.

3.1 Notations

General notations

Let IR 5 t — ®(t) be a map with values in linear operators on a Hilbert space H and N is a
positive selfadjoint operator on H. For o, 3 € IR" and i € IR we will say that

®(t) = NO(t*)NP for o, e R*, p e R

if (N +1)"@®(t)(N +1)"? € B(H) for |t| > 1 and ||(N + 1)"*®()(N + 1)7%|| = O(t*).
We say that ®(t) = NYO(t") if ®(t) € N®O(t*)N°. The notations ®(t) = N%(t*)N? and
O(t) = o(NY)t* are defined similarly.

The symbol A®) in a statement means that the statement holds both for the linear operator
A and its adjoint A*.

Quadratic forms

We now fix some terminology related to quadratic forms on Hilbert spaces. All quadratic
forms considered in the sequel will be assumed to be symmetric and bounded below. If ¢ is a
quadratic form with domain D(q) on a Hilbert space h we will extend ¢ to the whole Hilbert
space by setting q(u) = 400 if u € D(q). If U € B(h), we denote by U*qU the quadratic form
q(Uu).



If ¢1,q2 are two quadratic forms, we write ¢1 < g2 if ¢1(u) < go(u) for all u € . Note that
with the above convention this implies that D(g2) C D(q1).

To a bounded below selfadjoint operator a we associate the quadratic form a(u) = (u, au)
with domain D(|a| %) If a1, as are two bounded below selfadjoint operators, we will write a1 < a
if the same relation holds for the associated quadratic forms.

3.2 Fock spaces

Let h be a Hilbert space, which we will call the one-particle space. Let I',,(h) := @Ih be the
symmetric nth tensor power of h. Let S,, be the orthogonal projection of ®" onto I'y,(h). The
Fock space over b is the direct Hilbert sum

I'(h) := P Tn(h).
n=0

Q will denote the vacuum vector (1,0...) € I'(). The number operator N is defined as

N ’ & =nl.

For h € h we denote by a*(h) and a(h) the creation and annihilation operators, by ¢(h) =
%(a*(h) + a(h)) the field operators and by W (h) = €?(") the Weyl operators (see e.g. [DG1,
Section 2]).

If g C b is a vector space, we denote by I'sy(g) C I'(h) the space ®f° ®F g where direct sums
and tensor products are taken in the algebraic sense. If g = h the space I'g,(h) will be the space
of finite particle vectors, for which 1y, | ,j(N)u = 0 for some n € IN.

Let now K be a Hilbert space describing a quantum system.

The Hilbert space describing the quantum system interacting with a field of bosons of one-
particle space b is:

H =K aT(p).

We shall identify the adjoint spaces K* = K, h* = h and H* = H with the help of the Riesz
isomorphism as usual. If not explicitly stated, the other Hilbert spaces that appear below are
not identified with their adjoints. The space K ® g, (h) will be denoted by Hgy.

Creation/annihilation operators

We now define creation/annihilation operators associated to operator valued symbols. We
recall that a densely defined operator A is closeable iff its adjoint A* is densely defined.
Let L1, Ly be Hilbert spaces and v € B(L1, L2 ® h), so that v* € B(L5 ® b, L}). Then the
creation operator
a*(v) : D(a*(v)) C L1 ®@T(h) — L2 @T(h)

and the annihilation operator
a(v) : D(a(v)) € L5 T(h) — LT @ '(h)

are defined as follows:

10



for n € IN we denote by a’(v) : L1 ® T',(h) — L2 @ Tp41(h) the operators defined by:
(3.1) @) =Vt 1(lg, ® Sup1) o (0@ I, (p)) -

Then we set:
agin (V) == Bploan (v),
as an operator from £; ® I'g,(h) into Lo ® Ty ().
Similarly for n € IN we denote by a,(v) : £5 @ I'yy1(h) — L] @ I',,(h) the operators defined
by:
(3.2) an(v) = Vn + 10" @ lp, (5),
and set:
afn (V) = O pan(v),

as an operator from £3 ® I'qpn(h) into L] @ I'ap(h). Clearly agn(v) C (af, (v))* hence af, (v) is
closeable. We will denote by a*(v) its closure and by a(v) the operator (a*(v))*, which coincides
with the closure of ag,(v).

dI'(a) operators

If b1, ho are Hilbert spaces and b is a closeable densely defined operator from b to ho, one
first defines the linear operator dI'g,(b) with domain I'g, (D(b)) by:

dlgn (b) : Tan(D(b)) — Tan(h2),

I - I1bl®---® 1.
—_——— —_——

Al (b)| &rom = 2

J—1 n—j

Since b is closeable, b* is densely defined. Moreover, it is easy to see that d['g,(b*) C dlg,(b)*
which implies that dT'g,(b) is closeable and we will denote by dI'(b) its closure.

For later use we extend the meaning of the operation dI" as follows. Let S € B(L1®b, L2®b)
(unbounded operators can be considered as well). For each n € IN define dT",,(S) € B(L1 ®

T,(h), L2 © Ty (h)) by
(3.3) A0 (8) =S Ik @™ o S@1p, o Ik @ 7",

(n)

where 7; is the unitary operator on ®"h determined by the condition:

M@ @by =hi @ @ @ hi 1 ® hip1 ® - @ by

Then we set
dI'(S) := @podl',(S).

This is a closed densely defined operator from £;®T'(h) into LoRT'(h). For example, if S = S°QT
with S° € B(L1,L2) and T' € B(h), then dI'(S) = S° @ dI'(T)).

I'(¢) operators

11



If ¢ : b1 — bo is a bounded linear operator, one defines

Tn(q) : Tan(h1) = T'(h2)

Fﬁl’l :q®...®q.

@] gy,
Again using that I'(¢*) C T'(q)*, we see that I'g,(q) is closeable, and we denote by I'(q) its
closure. Note that I'(g) is bounded iff ||g|| < 1.

Lemma 3.1 Let RT > t — w; € B(h) be a Co-semigroup of contractions, with generator a.
Then RT3t +— T(wy;) € B(I'(h)) is a Co-semigroup of contractions whose generator is dT'(a).

Proof. We first recall the following standard fact on Cy-semigroups, which is a generalization
of an essential selfadjointness criterion due to Nelson:

Let {W};} be a Cy-semigroup on a Banach space F', and let F; be the domain of the generator
of {W;}. Then if E C F} is a vector space invariant under {W;}, E is dense in F} if E is dense
in F.

In fact let Ry = s~ ! Jo Widt. Then R, € B(F, Fy) and s-lim,_,o Ry = 1 in F and Fy. Let E
be the closure of E in Fy. Since E is dense in F, and R, € B(F, F}), we obtain that R,F C E.
Then the statement follows from the fact that s-lims_,g Ry = 1 in F7.

Let us now prove the lemma. Clearly {W;} = {TI'(w;)} is a Cp-semigroup of isometries, and
dl'gn(a) C A, if A is the generator of {W,}.

To show that A = dI'(a), we apply the above result to F' = I'(h), {W;} = I'(wy), and
E = T'4,(D(a)), which is dense in H and invariant under {W;}, since D(a) is invariant under
{w}. O

dI'(q,r) operators

If ¢ € B(bh1,b2) with ||g|| < 1, r is a closeable densely defined operator from b; to ha one

defines
dln(g,7) : Tan(D(r)) — T(h2),

n
=2 R - QqIIrxeI®---Qq.
—_——— —_——

AT (0:1)] g gy = 2

Jj—=1 n—j

Again using that dl'g,(¢*,r*) C dTgn(g,7)*, we see that dI'gn(g,7) is closeable and we denote
by dI'(g,r) its closure. We note the following identity:

(3.4) [dL'(b),il'(¢)] = dI'(q, [b,iq]).

We note the following lemma, which is an extension of [DG1, Lemma 2.8] and is proved similarly.
Note that we use the convention explained above for quadratic forms and the right hand side of
(3.5) can take the value +o0.

Lemma 3.2 Assume that ||q|| <1 and that there exist closed densely defined operators r; on b;
such that |(he,rhy)| < ||rih]l||r2he]| for hi € D(r;). Then:

1 1
(3.5) |(u2,dT (g, m)ur)| < ||AT(rire) 2us||[|dAT(r3r2) 2 uall, u; € T'(b;).
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Canonical map

Let b;, ¢ = 1,2 be Hilbert spaces. Let p; be the projection of b & by onto b;, i = 1,2. We
define
U:T(b1 @bh2) — L(h1) @ (h2),

by

UQ =09,
(3.6)
Ua™)(h) = (a(*) (P1h) @ g,y + Ap,) @ a(*)(pzh)) U, h € b1 @ ba.

Since the vectors a*(hy) - - - a*(hy, )2 form a total family in I'(h; @ h2), and since U preserves the
canonical commutation relations, U extends as a unitary operator from I'(h;@bh2) to I'(h1 )R (h2).

Operators I'(j) and dI'(j, k)
Let jo, joo € B(h). Set 7 = (Jo, joo). We identify j with the operator
Jib—=haoh,
Jh = (]Oha]ooh)
We have ‘
J ihb@bh—h,
7" (hos heo) = Jgho + jcheo,
and
373 = 3oJo + Jaeoo-
By second quantization, we obtain the map
I'(j) : (b)) = T'(h & b).
Let U denote the canonical map between I'(h @ ) and I'(h) ® I'(h) introduced above . We define
L(j) : () — T(h) @ T(h),
L(j) = UT(5).
Another formula defining I'(j) is
(3.7) DI a* (h)Q = Iy (a* (ohi) © 1+ 1® a*(joohs)) Q@ Q, By € .
Let No = N® 1, Noo = 1® N acting on I'(h) ® I'(h). Then if we denote by I the natural
isometry between ®" b and @™ *h ® ®" b, we have:

o ! . . . .
ﬂ{k}(Noo)F(])‘Fn(h) = I/ i J0 © @ Jo® Joo ® @ Jos -
n—~k k

Finally we set 3 5
I (5) = Ly (Noo )1 (4).-
Let 7 = (Jo,Joo)s k = (ko, koo) be bounded operators from b to h & h. We set

dT'(j, k) : T'(9) — T(v) @ T(b),
dl'(4, k) := UdT (4, k).
The operator dI'(1, k) = UdI'(k) will be denoted simply by dI'(k).

13



3.3 Bounds on second quantized operators

In this subsection we prove some bounds allowing to dominate dI'(a) by dI'(b) for a,b two linear
operators on h. We start with an easy estimate whose proof is left to the reader.

Lemma 3.3 Let £ be a Hilbert space and let a,b € B(L ® b, L* ® b) be selfadjoint operators.
Then dI'(a) and dT'(b) are self-adjoint operators from L @ T'(h) into L* @ T'(h) and

(3.8) 0<a<b=0<dl'(a) <dI'(b).
Proposition 3.4 i) Let a be a closed, symmetric, densely defined operator on by. Then:
dl(a)*dl(a) < dL'(|a])?.
ii) Let a,b be two selfadjoint operators on b with b > 0 and a® < b%. Then:
dl'(a)? < dT'(b)2.
To prove Proposition 3.4 we will use the following lemma.
Lemma 3.5 i) Let a be a closed densely defined operator on . Then:
a*®a+a®a" <|a*| @ |al + |a| @ |a™].
If a is symmetric, we also have:
a"®a+a®a <2la| @ |al.

ii) Let a,b be two selfadjoint operators on b with a®> < b* and b > 0. Then:

a®a<b®b.
Proof. We recall the following well-known facts on the polar decomposition of a (see [Ka, Chap.
VL.7]):
(3.9) D(a) = D(lal) = {ulr*u € D(|a*])}, a =rla| = [a"|r,

where |a| = (a*a)%, la*| = (aa*)% and r is a partial isometry from Im|a| into Ima. For € > 0 we
have

late + lal) 7| = lirlal(e + laDTHI < 1, [i(e +la*) " all = (e + |a*) " a"|r]| < 1.

By complex interpolation we obtain that ||(e 4 |a*|)_%a(e + |a|)_% || <1 and taking adjoints that
(€ + |a])~2a* (e + |a*|)"2|| < 1. White:

a*®a= (e+]a\)%®(e+\a*])%
1 1 1 1 1 1
x ((e+lal)2a*(e + [a*[72) @ (e + [a*) "2ale + [a]) 72) x (e + |a*])% @ (€ + |al)=.

This yields:

2||(e + lal)? ® (e + |a*])2ul|[|(e + |a*])Z © (e + |a]) 2u]
(u, (e + la]) @ (e + |al) + (e + |al) ® (e + |a*| Ju).

2|Re(u, a* ® au)| <
<
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Letting ¢ — 0 we obtain i). If a is symmetric then aa* < a*a and hence |a*| < |a|, since the

. 1, )
function A — A2 is matrix monotone. Next

A" ®a+a®a* < |a¥|®lal+ |a] ® |a*|
= 1®al? x|a*| @ 1x 1@ a|? + a2 @ 1 x 1® |a*| x |a|2 ® 1
< 2la| ® |al.

To prove i), we note that |a|® < b* for 0 < s < 2 since a? < b? and b > 0. Then, using i) in
the first step:

a®a< \a|®|a\:]a\%®]l><]l®|a\x\a]%@)ll
< a2 @1x1@bx a2 @1=18b2 x |a|®1x 1® b2
< 10b xb@1x1®bt =b®b. O

Proof of Proposition 3.4. We first prove 7). Using the fact that the closure of the operator
dl'gn(a) is dI'(a) it suffices to prove the inequality as forms on I'g,(D(a)) = I'an(D(|al)). Let

;=1 - 1lkax1®---® 1,
S—— S——
Jj—1 n—j
acting on ®'h. Then it suffices to prove
(af+...+a) (a1 + ... +ay) < (Jaji + ...+ |a|s)?

as forms on ®7h. But

(@i +...+ay) a1+ ... +ay) = Zafai +Z2Rea;kai = Z\ailz +22Rea3a,~.
i

i<j i 1<j
We have |a;| = |a|; and 2Reafa; < 2|al;lal; by Lemma 3.5 i). This completes the proof of ).
The proof of ii) is similar, using Lemma 3.5 iz). O

3.4 Bounds on creation/annihilation operators

This subsection is devoted to some bounds on creation/annihilation operators with operator
valued symbols.

We fix an auxiliary Hilbert space £ and consider u,v € B(K,L* ® h). Then a(v) is a map
from LT (h) to K ®T'(h) and a*(u) is a map from K @ T'(h) to L* @ T'(h), so that they can be
composed. On the other hand v* € B(L®¥, K) so that uv* € B(L®by, L*®b). A straightforward
computation involving (3.1)—(3.3) gives

(3.10) a*(u)a(v)f = dl(uw™) f for all f € L@ Tqy(h).

One can simplify the computations by using the following preliminary argument. For fixed f both
members of (3.10) are bilinear strongly continuous functions of (u,v*). A simple approximation
procedure shows that it suffices to prove (3.10) in the particular case u = ¢ @ h',v = ¢" @ h”
for some ¢',q" € B(KC,£*) and h', " € b, which is easy.

We would like to have a similar identity for the operator a(v)a*(u). First we note that this
time we need u,v € B(L,K ® h) in order to be able to define a(v)a*(u) as an operator from
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L ®@TI'(ph) into L* @ I'(h). Observe then that v* € B(K ® b, L*) so that v*u is a well defined
element of B(L, L*). Moreover, we have two linear continuous maps u®@ I, : L& h - KRh R b
and v* @ 1y : K®h®@h — L* ®h. Thus we can define a new operator v@u € B(L ® b, L* ® b)
by the following relation

(3.11) vRu =" @ Lol ®oou® Ly,

where o is the unitary operator in h ® b defined by the condition o[h ® g] = g ® h. Clearly
[o@ull < [lull[[v]-

Note that v®u is uniquely characterized by the relation v&u[y) ® h] = (v*(h) @ 1y)[u(e)] for
all v € £ and h € h. Here v*(h) € B(K,L*) is given by ¢ +— v*(¢» ® h). Finally a new
straightforward computation involving (3.1)—(3.3) gives

(3.12) a(v)a*(u) = v*u ® dpg)y + AT (v&u) on L @ gy (b).

The computation can be simplified by the same argument as in the case of (3.10). Thus it
suffices to consider the particular case u = ¢ @ I/, v = ¢ ® h” for some ¢,¢" € B(L,K) and
h' 1" € p. Then v®u = (¢"*¢") @ (WK'"™*), where W'h'* : h+— h/(h” h), and the proof is trivial.

Lemma 3.6 Let u,v € B(L,K®y). If S1,52 € B(K, L) and Ty, T> € B(h) then
(3.13) (ST @T)) ov&uo (S @Ty) = [(Ix ® To)vS:] [(Ix @ Ty )uSs) .

Proof. This follows from Iy @ Tioocoly @1y =T5 @ lyoo o1y @ 1. O

We shall use the preceding formalism in order to prove some estimates involving the creation
and annihilation operators. The inequalities (3.15) and (3.18) below are proved in [DJ, Propo-
sition 4.1] in the case K = 0. The general case is treated in [G1, Appendix A] with conditions
on v slightly stronger than here. In particular, our constants are better (see the comment at the
end of this subsection).

Assume that £ C K continuously and densely and v € B(L,K ® h). We defined a*(v) as a
closed operator with dense domain D(a*(v)) C L ®I'(h) and with values in £ ® I'(h). But now
we have L @ I'(h) € K ® I'(h) continuously and densely, hence a*(v) can also be viewed as a
densely defined operator acting in H = K ® . If this operator is closeable we denote its closure
by the same symbol a*(v). Similarly for a(v) if v € B(K, L* ® h). We stress that the right hand
side in the inequalities (3.15) and (3.18) is allowed to have the value +oc.

Proposition 3.7 Let K and w be positive self-adjoint operators on K and § respectively.

i) Let v € B(D(K2),K ®Wb). Forr >0 let

(3.14)  Ca(rv) = (e W 2)o(K +7) 72 = lim | (I © (w +€) " 2)u(K +7) 2]
Then for all f € D(a*(v)) one has:

(3.15) la*@)fIP < (£.0"0 @ oy f) + Car0)(f, (K +7) @ AL (w)).
Moreover, if we set Co(r,v) = |[v(K + )" 2|2, then

(3.16)  [la*(w)fI* < Colr,0)(f, (K + 1) @ Iy f) + Cr(r,0)(f, (K +7) @ dD(w) f).
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ii) Let v € B(K,D(K2)* @ b) and for r > 0 let:

(317)  Coro) = (K +7)72 @0 2P = lm (K +7)72 @ (@ +e) )|
Then for all f € D(a(v)) one has:

(3.18) la() £II? < Calr,v)(f. (K +7) ® dL(w)f).

Proof. We will set £ = D(K%) Let us first prove (3.15). It suffices to prove (3.15) for
f € L®Tgy(h). Indeed, the projection fy of any f € D(a*(v)) onto ®N_ K @ I',,(h) belongs
again to D(a*(v)), one has fy — f in the graph topology of D(a*(v)), and the right hand side
of (3.15) with f replaced by fy is an increasing function of N; moreover, one can regularize, if
needed, fy with the help of K to get an element of £ ® I'gy(h). We shall further simplify the
problem, although this is not strictly necessary. First, it suffices to prove (3.15) (f being fixed
in £ ® Cgu(h)) with w replaced by w + &; we let ¢ — 0 at the end of the proof. Then, we can
replace w by inf(w, M) with M > 0 real and let M — oo at the end of the proof. We thus see
that it suffices to assume that w is a bounded self-adjoint operator with w > ¢ > 0. Finally, to
simplify notations, we can include r in K. Thus it suffices to prove

3.19 a(v)a"(v) < v v @ g + ]l;c®w_% vK~32 ’K @ dI'(w
()

as forms on £ ® Iy(h). The identity (3.12) gives a(v)a*(v) = v*v ® lp) 4+ dT'(v&v). Then, by
using Lemma 3.6 with u = v, §1 =5, = K~% and T =Ty = w_%, we get

v = K2 ®w%[K 2®w 2v®vK 2®w_%]K%®w%
%[]l;c@)w 20K~ ] []1;C®w_%vK_%]K
< ik ®@w™ 0K~ 2H2K®w.

D=
Nl=

Quw

Now using (3.8) we get
dL(véw) < |1k ® w 2ok 2 |2d0(K ® w).

This is the last term in (3.19) because dI'(K @ w) = K @ dI'(w) as maps LR I'(h) — L* @ I'(p).
Thus (3.15) is proved and (3.16) is an immediate consequence of the bound
" 1o 1 oo 11 S A | _l2
v'o=K2K 200K 2K2 < ||[K 200K 2||K = ||[vK 2||*K.

To prove (3.18) we use (3.10), (3.8) and the fact that:

1

vv* = K3 ®w% (K_% ®w_%vv*K_% ®w‘§)K
K2 ®w 20|2K @ w. O

=
=

Qw

IN

Remark 3.8 w3 is naturally realized as a sglfadpmt not densely defined in general, operator
in b, and so are the tensor products lx ® w™2 and (K + )~ 2 ®@w % in H. From (an abstract
version of) Fatou Lemma it follows that the condition C}(r,v) < oo is equivalent to vD(K %) C

D(1x ® w_%) while Cs(r,v) < oo means vk C D(ILD(K%)* ®w‘%).
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The next proposition is also a slightly improved version of a result from [G1, Appendix A].

Proposition 3.9 Let £ be a Hilbert space such that L C IC continuously and densely and let
veB(L,K®Y). If w>0 is a self-adjoint operator on b and f € D(a*(v)) then:

(3.20) (£, a" @) < l(Ix © w0 2)v ® Iy 1 ® AT (w)3 £

where ) )
(I ® w™2)v @ Ipgy) f]| := 1511101 (I @ (w + )" 2)v @ Ipg,) fl

and the value +00 is allowed.

Proof. It is easily seen, as in the proof of Proposition 3.7, that it suffices to assume that
f € L ®Tga(h) and that w is a bounded self-adjoint operator with w > ¢ > 0. A further
simplification of the problem is obtained as follows. Let 0 < a < b < oo such that the spectrum
of w is included in the interval |a,b] and let E be the spectral measure of w, so that w =
Sap) AE(dA). Set I¥ =la+ (k- 1)(b—a)/n,a+ k(b —a)/n] for 1 < k <n € IN and let
wn =1 1(a+ k(b —a)/n)E(IF). Then w, is a self-adjoint operator with finite spectrum and
lwn — w|| < 1/n. Hence if (3.20) holds with w replaced by wy,, then after letting n — oo we get
it for w. Thus, it suffices to prove (3.20) for operators w having the following property: there
is an orthonormal basis {e;} of h and there is a family {\;} of strictly positive numbers which
takes only a finite number of distinct values, such that we; = A\;e; for all .

It is easy to see that for each i there is a unique operator v; € B(L,K) such that v(h) =
Y vi(h) ®e; for h € L. Then a*(v) =s —Y_;v; ® a*(e;) as operators with domain £ ® I'g,(h)
and

(F.a*@)f) = S (v @ a*(e) f) = SO I ® afei) f, A

K3 K3

[N

v; @ Ipy) f).

Hence by the Cauchy-Schwarz inequality we get:
1 _1
|(f,a*()N)? < D IN I @ aleq) I D 1A 20i @ Irgy) fII.

The first factor on the right hand side is equal to

D (f Ik @ Nia*(eg)aled) f) = (f, Ix @ AT (w) f).

)

The second factor can be written as

1 1
Y i@ Ipgy) f@w ze|® = [[(Ix © w™2)v @ Ipgy £
This finishes the proof of the proposition. O

Corollary ?.10 Let K and w be positive self-adjoint operators on K and b respectively and let
v e BMDK?2),K®h). Forr >0 let Ci(r,v) be defined by (3.14). Then for all f € D(a*(v))
one has ) )

(3.21) (f,a* () )] < Co(r,v)[[(K + )2 @ Tpg) fl[[1x @ dT'(w)2 f]].
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3.5 Additional remarks on the spaces B(£,K ® ) and B(K, L* ® )

We first give an alternative description of the spaces B(L1, L2 ® h) in the important particular
case where h = L?(IRY, dk) and Ly, Lo are separable Hilbert spaces. Let L2 (IR% B(L1,Ls)) be
the space of (equivalence classes of) strongly measurable maps v(-) : R¢ — B(Ly, £3) such that
the map k — ||v(k)w||? is integrable for all ¢ € £y, and let us equip it with the norm

2

(322 o)) = [ sp [ Hv(/f)wu%k]

YpeLrlp]=1

We get a Banach space such that the natural map L2 (R% B(L1, Ls)) — B(L1, L2 @ L*(IRY))
is bijective and isometric. Note that Lo ® L?(IRY) = L?(IR% L3). Observe that the sub-
space L2(R% B(L1,L2)) defined by the condition [ga [|[v(k)|?dk < oo is a strict subspace of
L2 (IR% B(Ly, Ly)) if £1 and Ly are infinite dimensional. For example, L2 (IR%; B(L1, Ls)) is
stable by Fourier transformation, but L?(IR%; B(L1, £2)) is not. Also, if £; = Lo = K is infinite
dimensional and if v(-) satisfies (3.22), the function k +— v(k)* does not satisfy it in general. We
shall further discuss this question below in a context of interest for us.

We now discuss certain peculiarities of the space B(L, ® ) when K, £ and b are infinite
dimensional Hilbert spaces. We will assume that § is equipped with an isometric conjugation
h +— h. This allows us to use the canonical identification of X ® § with the space Ba(b,K) of
Hilbert-Schmidt operators hh — K, obtained by identifying 1 ® h with the map f +— (h, f)v.
Thus
(3.23) B(L,K®b) =B(L,B2(h,K)) C B(L,Bo(h,K)) C B(L,B(h,K))

where B (h, K) is the space of compact operators h — K. Thus if v € B(L, ® ) then for each
1 € L we have a linear map v(¢)) : h — K and this map is Hilbert-Schmidt.
In Subsection 4.2, we will need to consider the operator v' € B(KC, B(h, £L*)) defined by

oI (p)(h) == v* (Y @ h), p € K, h €.

Note that since v* € B(K ® b, £*), vT belongs indeed to B(IC, B(h, L*)).

Assume now additionally that £ C K densely and that v € B(K,L* ® ). Then v* €
B(L ® b, K) so the operator v belongs also to B(L, B(h,K)). Thus v' belongs to the last space
in (3.23) and in fact it does not, in general, belong to the other ones, as the following example
shows. Choose ¢ € K and J € B(K,h) and set v(u) = ¢ ® J(u) for u € K. Then v € B(K,K®H)
and a straightforward computation gives vf (1)) = (p,9)J* € B(b,K) for ¢ € K.

To summarize, if v € B(K,L* ® h) then we have a well defined element v' € B(L, B(h,K))
and, according to (3.23), we can impose as further restrictions v € B(L, Boo(h,K)) or vt €
B(L,K ®b). The intermediate assumption v’ € B(L, B (h, £)) means that for each ¢ € £ the
map h — v*(1) ® h) is a compact operator h — K, while the strongest condition v € B(£, K ®b)
means that this is a Hilbert-Schmidt operator.

Let us now restate the main conditions on v from Proposition 3.7 in the case h = L*(IR?, dk)
assuming that w is the operator of multiplication by a positive measurable function w(-) on R¢
and that IC is separable. Then the operator v from part i) of the proposition is identified with
a strongly measurable map v(-) : R¢ — B(D(K%), K) and

, dk

Ci(r,v) =¢€£sll|1|g”:1/w (k) (K + )" 29| S0
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The operator v from part i) of the proposition is identified with a strongly measurable map
v(-) : R — B(K, D(K2)*) and

1 dk

o) = _swp [ ) R

veLy|y)=1/R w(k)

We now describe vf in the case when h = L%(IR¢, dk) (equipped with the usual conjugation)
and K, £ are separable. Assume v € B(K,£* @ b) and let v(-) : RY — B(K,L*) be the map
defining it. Then k& — v(k)* € B(L,K) is weakly measurable and hence strongly measurable
since £, KC are separable, and we clearly have v*(¢¥ ® h) = [v(k)*yh(k)dk for ¢ € L and h € b
(the integral exists in the weak sense). Hence v'() = v(-)*4 but this function does not belong
to L?(IR%; K) in general, being only weakly of class L2, i.e. we only have [ |(v(k)*,u)[2dk < oo
for each u € K. Thus we see that vf € B(£,K ® ) if and only if v(-)*¢ € L2(IR%K) for all
Y € L, ie. if and only if v(-)* € L2 (R% B(L,K)).

4 Abstract Pauli-Fierz Hamiltonians

In this section we consider a class of Hamiltonians H called Pauli-Fierz Hamiltonians describing a
quantum system interacting with a boson field. This class of Hamiltonians has been introduced
and studied in various degrees of generality in [DG1, DJ, G1]. Pauli-Fierz Hamiltonians are
defined in Subsection 4.1. In Subsection 4.3 we study the smoothness of Pauli-Fierz Hamiltonians
with respect to some semigroups of isometries. The results of this subsection will be used later
to check the conditions (M1), (M3), (M4) and (M5) introduced in Subsection 5.3.

4.1 Abstract Pauli-Fierz Hamiltonians

We describe now an abstract framework introduced in [DG1] which describes a small system
interacting with a bosonic field.

The small system is described by a Hilbert space K and a bounded below selfadjoint operator
K on K. Without loss of generality we will assume that K is positive.

The bosonic field is described with a one-particle space h and the one-particle energy by a
positive self-adjoint operator w on b.

The Hilbert space of the interacting system is H = K ® I'(), introduced in Subsection 3.2.

The free Hamiltonian is

(4.1) Hy := K @ Ip) + Ix ® dT'(w) acting on H.

The interaction term of the Hamiltonian is the field operator ¢(v) associated to a coupling
function v € B(D(K%), K ®b). We recall that

1 *
(4.2) p(v) = ﬁ(a (v) +a(v)).

Under the stated condition on v one can not, in general, realize ¢(v) as a densely defined operator
on H. However, one can realize it as a symmetric densely defined form by setting

(4.3) (f,¢(v)f) == V2Re(f.a*(v)[), [ € D(a*(v)).

We first state two direct consequences of Proposition 3.7 and Corollary 3.10.
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Proposition 4.1 i) Assume that v € B(D(K%),IC ®b). Set
Cu(ryv) = |[(Ix ® w™2)o(K +7)73?,

defined as in (3.14). Then:
£6(v) < V201(r,v)(Ho + 7).

i1) Assume that v € B(D(K%),IC ®b) and that v extends as v € B(IC,D(K%)* ®Bh). Set:
Co(r,v) = [lo(K +7) 72|, Calr,v) = [[((K +7)7% @ w20,
defined as in (3.17). Then:
lp(v)ul® < Colr,v)(u, (Ho +r)u) + %(01(7“,@) + Ca(r,0)) || (Ho +7)ul|*.
Proof. We apply Proposition 3.7 and Corollary 3.10 and use the inequalities:
(K+7)@Ipg) < Ho+r, Ix®@dl'(w) < Ho+r, (K+7)@dl(w) < (Ho+7)%/2. O

The following essentially optimal condition under which the form ¢(v) is small with respect
to Hp has been isolated in [G1]. It follows immediately from Proposition 4.1.

Corollary 4.2 Assume that
(Ial) v e B(D(K%),IC ®h) and lim,_ 4o C1(r,v) = 0.
Then the form ¢(v) is Ho—form bounded with relative bound zero.

Definition 4.3 Let K,w and v be such that (Ial) holds. Then the self-adjoint operator H =
Hy + ¢(v), the sum being interpreted in form sense, is the Pauli-Fierz Hamiltonian associated
to (K,w,v).

A Pauli-Fierz Hamiltonian is bounded from below and its form domain is explicitly known:
1
(4.4) D(|H|?) = D(HE) = D(K?) © T(h) N K @ D(dl(w)?).

Applying Proposition 4.1 we obtain conditions under which ¢(v) is a densely defined sym-
metric operator on H, small with respect to Hy in operator sense.

Corollary 4.4 Assume that:

(Ta2) { © € B(D(K%),IC ®b), v extends as v € B(IC,D(K%)* ®b),
and lim,_ 4 (C1(r,v) + Ca(r,v)) = 0.

Then ¢(v) is a symmetric operator on D(Hy) and is Ho—bounded with relative bound 0. In

particular:
(4.5) D(H)=D(Hy) =D(K)T'(h) N K@ D(dl'(w)).

Proof. From Proposition 4.1 i) we get
l¢() FII* < Co(r,v)(f, (Ho + 1) f) + (C1(r,v) + Ca(r,0))(f. (Ho + )2 f) /2.

We have Cy(r,v) < Co(1,v) if r > 1 and Hy < vHZ + 1/(4v) for all v > 0. Thus, by taking
r sufficiently large, for each ¢ > 0 we find a real number c(¢) such that ¢(v)? < eHZ + c(e) as
forms on D(Hy) N Hgy. Finally, use the fact that D(Hy) N Hgy, is a core for Hy. O
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4.2 Essential spectrum of abstract Pauli-Fierz Hamiltonians

Our next purpose is to get a description of the essential spectrum of H under general conditions.
For this we need two technical lemmas. The first one contains an alternative description of the
condition (Ial) (condition (Ia2) can be expressed similarly).

Lemma 4.5 Let v € B(D(K%),IC ®@b). Then lim,_ 4 Ci(r,v) = 0 if and only if

(4.6) lim (I @ w™2)o(K + 1) 2 T o0 (K[| = 0.
Proof. In this proof we abbreviate 1, = 1, ((K) and w™2 = Ix ® w™3. We recall that all

%
computations have to be done with w3 replaced by (w + 6)_% and then one has to take sup

over ¢ in the final expressions. We have
lw™2o(K + 1) 21, = |w 20(K + 1) Lo'w 2| < o 202(K +r) ow 2|

hence (4.6) follows from lim,_, 4, C1(r,v) = 0. Reciprocally, if r, s > 1 then

1
(K+7r)t =K+ +(K+r)11, < Sj: (K+1)'+(K+1 1,
S T
hence
Hw_%v(K—FT)_%\P = Hw_%v(K—FT)_lfu*w—%H
1
< T 4+ 1) o+ e B (K + 1) 73,2

S+r

from which the needed result follows easily. O

The next result concerns the so called “pull-through formula”. For f € § we shall still
denote by a™)(f) the operator Tx ® a(f) acting on H. If v € B(D(K%),IC ® b) then v* €
B(K ® b,D(K%)*) and for f € h we denote v*(f) € B(IC,D(K%)*) the operator defined by
v (i =0 @ f) for p € K. We write f € D(w_%) if sup.~¢ [[(w + 6)_%f|| < 0.

Lemma 4.6 Assume that condition (Ial) is fulfilled and let ¢ be a number such that H+c > 1.
If f e D(w_%) then a™)(f) is a bounded operator D(|H|%) — H and there is a constant C
depending only on H such that

(4.7) 1™ (fyull < ClI(L+w™2) FIIIH + ¢)2ul.

If f € Dw)N D(w_%) and z € C\ o(H) then the closure [a*(f),(H — 2)71]° of the form
[a*(f),(H — 2)7Y] is a bounded operator and we have

@8) (.= = (=7 (0 f) + () @) (=27

Proof. Note that the operator a*)(f) is just a*) (w), where w € B(K,K ® ) acts as w(¢)) =
1
p}

¥ ® f. Then (4.7) follows from (3.16) and (3.18) for K = 0, r = 1, using that D(|H|%) =D(Hy).
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Thus, if f € D(w_%) the operator a*(f) extends to a continuous operator D(|H|%) — H and
H— D(|H|%)* (use the adjoint of the continuous operator a(f) : D(|H|%) — H). Now it is easy
to show that the form [a*(f), (H — 2)~!] extends to a bounded operator on H and

(4.9) [a*(f), (H = 2)71° = (H = )7 [H,a"(/))(H — 2)~"

where [H,a*(f)] is a well defined continuous operator D(H) — D(H)*.
On the other hand, if f € D(w) then a*(f) maps D(K%) ® Pgn(D(w)) into itself and a
straightforward computation gives the following pull-through formula (see [G1]):

1
(4.10) Ha'(f) —a™(f)H = a*(wf) + ﬁv*(f) @ Tp(y),

as forms on D(K %) ® I'an(D(w)). However, this does not prove yet the relation (4.8) because
we do not have sufficient information on the domain of H if only condition (Ial) is fulfilled. In
order to avoid this technical difficulty we proceed as follows.

Let f € D(w) N D(w_%). Assume for a moment that (4.5) is satisfied. Then the subspace
D(K) @ I'ay(D(w)) is dense in D(H) hence (4.10) remains valid in the sense of forms on D(H).
Combining with (4.9) we see that (4.8) is true if (4.5) is satisfied.

We reduce the general case to this one by an approximation procedure. Let v be a strictly
positive number and v, = v(1+vK)~! € B(K,K®b). We have C;(r,v,) < 7‘_1\|(Il;c®w_%)vy||2
for i = 1,2, so v, satisfies condition (Ia2) and one can apply Corollary 4.4 to the operator
HY = Hy + ¢(v,). By the preceding remark, t}}e relation (4.8) holds if H,v are replaced by

HY,v, and z ¢ o(H"). In particular, if u € D(H{) then:
(alf)u, (H” = 2)" ) = (HY = 2) " u,a*(fu) = (H” = 2)" u,a*(Wf)(HY —2)" )
1 v >\ — * v -

+ ﬁ((H = 2) ", vl (f) @ pgyy (HY — 2) " ).

We have v(f) = (1 + vK) 'o*(f) — v*(f) strongly as operators K — D(K%)* when v — 0.
1
From (4.4) we get D(Hy) C D(K%) ® I'(p). Thus, if we show that (H” — 2)~! — (H — 2)~!
1

strongly in B(H,D(H3)) when v — 0, then by taking the limit as v — 0 in the preceding

formula we obtain (4.8) and the proof of the lemma will be finished.
We shall prove a stronger assertion, namely

(4.11) lim R"(z) = R(z) in norm in B(D(H; )*,D(HO%))

v—0

if 2 ¢ o(H). Here RV(2) = (H” — 2)~! and R(z) = (H — 2z)~! and below we also make the
convention H” = H and R"(z) = R(z) if v = 0. It suffices in fact to prove this for one point z
with Imzy # 0. Indeed, then we use

R’(2) = R(20)(1 — (2 — 2)R"(20)) ™" for |z — 2| small,
RY(z) = R"(20) + (2 — 20)R"(20)* + (2 — 20)*R" (20) R (2) R” (20).

If (4.11) holds for z = 2y then the first relation above and a connexity argument allows us
to prove norm convergence in B(H) for all z ¢ o(H) and then the second relation gives norm
1

1 1
convergence in B(D(Hy )*, D(Hy)).
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Proposition 4.1 gives
+p(v,) < V2C1(r,v,)(Hy + 1) < V20 (r,v)(Hg + 7).

We choose r conveniently and find a number b such that £¢(v,) < %Hg + b for all v. It follows
easily that one can choose a number a such that H” + a > Hy + 1 for all v. We shall take

1
29 = —a. The operator H” has D(H{ ) as form domain so H” 4+ a extends to an isomorphism

1 1 1 1
D(H3) — D(Hg)*. Also H— H” = ¢(v — v,) holds in B(D(H ), D(Hg)*). Thus, if we set
RY = (H" +a) ' and R = (H + a)~!, we have:

Let S = (Hy + 1)% We get
IS(R” — R)S|| < ISR”S|I[|S™ ¢(v — v, )STH[ISRS|| < [[S™ p(v — v,) 57!

where we used R, < (Hy + 1)_1 = 572 hence 0 < SRS < 1. Now observe that we have
1S7Lp(v — v,)S7L| < 6, if £op(v — v,) < 0,(Hp + 1). From Proposition 4.1 we get 6, <
V2C1(1,v — v,) hence the proof of the lemma is finished if we show that

(4.12) Ci(l,v—v,) = ||(Ixg ® w_%)(v —u) (K + 1)_%H2 — 0 when v — 0.
We shall use the notations introduced in the proof of Lemma 4.5. For r > 0 we have
Jw™2 (0 = 0,) (K + 1)72 | = o~ 3ovK (1 4+ vE) (K +1) 72|

o™ 20(K + 1) 2 0K (1 + vK) 7Y + lw™20(K + 1) 2 L,vK(1 + vK)~Y|
o™ 0(K + 1)~ 3 |or(l + vr)~! + [l 3 o(K + 1) 31,].

Thus ) ) . .

limsup [|[w™2(v —v) (K + 1) 2| < |lw 20(K +1)" 21,

v—0

and now (4.12) follows from Lemma 4.5. O

Remark 4.7 We mention the following consequence of (4.7): if {fn} is a sequence in D(w_%)
such that Hw_%an < const and f, — 0 weakly in b, and if u € D(|H|%), then ||a(fn)ul — 0.

1

Indeed, let 1y = Tjg (N) and I = 1 — 1. Since D(]H]%) = D(Hg) is stable under 1 and 1
commutes with Hy, we have

_1 L
la(fa)ull < lla(fa) Txull + lla(fa) Bl < lalfa)Dxull + (1 +w™2) foll 15 (HG + L)ul.
The last term tends to zero when k — oo uniformly in n and clearly ||a(f,)1xul| — 0 for each k.

In the next proposition we describe the essential spectrum of abstract Pauli-Fierz Hamilto-
nians.

Proposition 4.8 Assume that v satisfies hypothesis (Ial) and that
(413) B3 f— (K+1) W@ @ w4+ 1) f) € K is compact for each 1 € D(K%)

Let m > 0 and assume [m,+oo[C o(w). Then [inf o(H) 4+ m, +00[ C 0ess(H).
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Remark 4.9 Let us first note that using the notation in Subsection 3.5, the map in (4.13) is
equal to (K + 1)"'oT(¢))(1 + w)~!. Let us describe two situations in which condition (4.13)

in Proposition 4.8 is satisfied for v € B(D(K%),/C ®b). First if we assume that (K 4+ 1)7! is
compact, then (K + 1)l () € B(b,D(K%)) and hence is compact for each 1) € K.

Let us now assume that v € B(K, D(K 2 )*®b). From the discussion in Subsection 3.5, we see
that if v € B(D(K%), K ®b) then vf(z)) is Hilbert-Schmidt and hence compact for v € D(K%)
In particular if h = L2(IR%, dk) and v is associated to the map v() € L,%)(]Rd;B(D(K%),IC)),
then vf € B(D(K?%),K ® b) iff v(-)* € L2 (R B(D(K?2),K)).

More generally if w is the operator of multiplication by a positive measurable function w(k)
and if (1+w(-)) " (K +1)""*(-) € L2 (R%; B(D(K%), K)) then the operator (K + 1)~ 1o (y)(1+
w)~1 is compact for ¢y € D(K %) This condition is satisfied in particular if

12 -1
L DT (0 wlR) k< .

Proof of Proposition 4.8. We shall use the following fact: let H be an arbitrary selfadjoint
operator on a Hilbert space H. Let p € IR and assume that there is a sequence of vectors u, € ‘H
such that ||u,| — 1 and ||(H +1i)"Y(H — p)uy|| — 0. Then p € o(H).

Let E = info(H) and A > m. In the rest of the proof we shall construct a sequence {u,}
as above for yp = E + X. Thus [inf o(H) + m,+o00[C o(H), which implies the assertion of the
proposition. It follows easily from (4.4) and from the fact that N commutes with Hy that the
space £ = D(K) @ I'gp(D(w)) is a form core for Hy hence for H (we recall that all tensor
products in the definition of £ are algebraic). Thus, for any € > 0 there is u. € £ such that
|luc|| = 1 and ||(H + c)_%(H — E)u.|| < e, where ¢ is a fixed number such that H + ¢ > Hy + 1.
Then for each integer n > 2/X let us choose f,, € b such that || fu|| = 1, Ipn_1/na1/m) (@) fn = fn
fn — 0 weakly in b. Then [[w™2 fo|| < /2/X and |[(w — A)fa|| < 1/n. The vectors u, will be of
the form a*(f,)u. for some conveniently chosen e.

From (4.10) we get

(4.14) (H — E — Na*(fp)ue = a* (fn)(H — E)ue + a*((w — A) fn)ue + %v*(fn) ® Lp(n) -

We apply (H 4 ¢)~! to (4.14) and estimate each term on the right hand side as follows. For the
first term we use (4.8) and obtain:
(H+ o) a"(fa)(H = Bjue = (H+c) " a"(wfu)(H + )" (H = E)uc
(4.15) 4 %(H L&) (0 (fa) @ Ty (H + )" (H — E)u.
+ a*(fu)(H + )" (H ~ E)ue.

In the sequel C1,Cs, ..., are constants independent of n and e. We have ||(1 + w_%)wan <y
hence from (4.7) we get

|(H +¢) " a* (@) (H + )™ (H — E)uc|| < Col|(H + €)% (H = E)uc|| < Coe.

The same argument gives ||a*(f,,)(H + ¢) "' (H — E)u.|| < Cse. Finally the second term on the
right hand side of (4.15) is bounded by

1(Ho +1)72 (0" (fn) @ Tpgy)) (H + ¢) " (H — E)uc|
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which in turn is smaller than ||Jv(K + 1)_% II(H +c¢)~Y(H — E)u.|| < C4e. Thus we have:
(4.16) [(H + ¢) a*(fn)(H — E)uc|| < Cse.
Using (4.7) again we get:
1 1
(4.17) la*((w = A) fr)uell < Cl(1+w™2)(w = X)) [I(H + ¢)2uel| < Co/n.

From (4.14), (4.16) and (4.17) we obtain
_ . C 1 1
(4.18) [I(H + )" (H — B = Na*(fa)ue|| < Cse + 76 +SlIH ) 0 (f) © Ipggyue .

We now show that the laslt term above converges to zero when n — oo.lSince ue € & it suffices
to prove that [[(H + ¢)72(v*(fn) ® lp)) (¥ @ g)|| — 0 if v € D(K?) and g € T'(h). But

(K+1)® Ipy) < Ho+1 < H + ¢, hence it suffices to show that [|(K + 1)_%0*(1& ® fa)ll — 0.
We use Lemma 4.5 and the notations from its proof:

1y _1 ¥ _loo
I+ D720 @@ f)ll < I+ D720 (@ @ fu)ll + (K + )72 10% (0 @ fo)
< HDAE + D)@ @+ )7 @ D)
+ K + )7 L (I w0 2) [0 © (2 )]l
We have ||w%fn\| < Cg and (w+1)f, — 0 weakly. From Lemma 4.5 the second term in the right
hand side above tends to 0 when r — oo uniformly in n and since by hypothesis the operator
f— (K+ 1) ® (w+ 1)1 f) is compact, the first term in the right hand side tends to 0
when n — oco. Picking first » > 1 and then n > 1, we see that the last term in (4.18) converges

to zero as n — oo.
To conclude, we have

limsup |[|[(H + ¢) " (H — E — N)a*(fy)ue|| < Cse.

n—oo

On the other hand, using that
la* (fa)uel® = [l Fall*luell® + la(fn)uell?,
Remark 4.7, and the facts that Hw_%an < V/2/X and f,, — 0 weakly in b, we have:
Tim [la*(fu)uel = 1.
An easy argument finishes the proof. O

4.3 Smoothness of abstract Pauli-Fierz Hamiltonians

Let H be a Pauli-Fierz Hamiltonian as in Subsection 4.1. We assume that hypothesis (Ial)
from Corollary 4.2 holds.

Let RY > t — w; € B(h) be a Cop-semigroup of isometries with generator a. We set
Wy := 1 @ T'(wy), which defines a Cy-semigroup of isometries of H whose generator we denote
by A. Recall that A = lx ® dI'(a), see Lemma 3.1.
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We fix another selfadjoint operator b > 0 on h and set:

N

We will give sufficient conditions which ensure that G is b-stable under {W;} and {W;*} and that
H € C'(A;G,G*) and give an expression for [H,iA4]°. We refer to Subsection 5.2 for notation.

Throughout this subsection, if v € B(D(K %), K ®B8) is a coupling function, we denote simply
by av the operator (Ix ® a)v.

Proposition 4.10 Let w,b, K and v be as above. Then: i) If

(4.19) wybwy < Cub, ( resp. wibw] < Cwb) with sup Cp < oo,
0<t<1

then

(4.20) G is b-stable under {Wy}( resp. {W;'}).

ii) Assume (4.19) and
(421)  w < Ob, |(uz, (ww; — wiw)ur)| < CtbZur|||[bTus, u; € D(b?), 0 <t < 1.

Then Hy € C*(A;G,G*) and
[Hy,iA]° = 1 ® dT([w, ia]°).

i11) Assume (4.19) and
(4.22) v e B(D(K?),K ®D(a))), av € B(D(K?),K @ D(b™2)).

Then ¢(v) € CY(A;G,G*) and
[6(v),14]° = —¢(iav).
i) Assume (4.19), (4.21) and (4.22). Then H € C*(A;G,G*) and

[H,iA]° = 1 ®@ dT'([w, ia]®) — ¢(iav).

Remarks 4.11 (1) Condition (4.19) implies that ’D(b%) is b-stable under {w;} (resp. {wj})
and is equivalent to it if b > ¢ > 0.

(2) Condition (4.21) implies that w € Cl(a;D(b%),D(b%)*) and is equivalent to it if b > ¢ > 0.
Therefore [w,ia]® is well defined as an element of B(D(b%), D(b%)*)

Corollary 4.12 Let w, K and v be as above and let a be a selfadjoint operator on h, A = dI'(a).
Assume that

(4.23) +(e e — ) < Olt|w, 0 < |t] < 1,
and
(4.24) v e B(D(K?),K ©D(a))), av € B(D((K)?),K © D(w7)).

Then G := ’D(\H\%) is b-stable under {4 Yyer and H is of class C'(A;G,G*) and hence of class
CY(A). Moreover:
[H,iA]° = 1x @ dI'([w, ia]°) — ¢(iav).
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Proof. We apply Proposition 4.10 for b = w. Hypothesis (4.23) implies (4.19) and hence that
D(w%) is b-stable under {e®®}. We see then that it also implies (4.21). Thus we get that H is

of class C1(4;G,G*). The fact that H is of class C1(A) follows then from [ABG, Lemma 7.5.3].
O

Proof of Proposition 4.10. Note first that iv) follows from i) and i), since by (4.22)
and Corollary 4.2 we have H = Hp + ¢(v) as an operator sum in B(G,G").

Let us first prove 7). Since W; does not act on K we can without loss of generality assume
that £ = C and K = 0. We observe that I's,,(D(b)) is a form core for dI'(b). Using Lemma 3.3
and the fact that wjw; = 1, we get:

(Wi, dT (b)Wiu) = (u, dT(wibw)u) < Cy(u, d(b)u), u € Ty (D(D)).

By density this yields:
Wil (b)W, < CdI'(b),

which implies that W; : G — G. Moreover
IWeulg = (Wew, dDB)Weu) + (u,w) < (Co + 1)((u, dD(B)u) + (u,w)) = (Co + 1)][ul3,

which proves that G is b-stable under {W,}.
To prove the corresponding statement for W}, we estimate for u € 'z, (D(b)):

(Wi, dT' () Wiu) = (u, Widl' (D)W u) = (u, dT' (waw; , wibwy )u) < Cy(u, dL(b)u),

using that wyw; < 1, wbw; < Cyb. Then we argue similarly.
Let us now prove ii). As above we may assume that = C and K = 0. For uj,us €
Can(D(b)) we have by (3.4):

|(us, (HoW; — WiHo)u1)| = |(ua, dT(we, wwy — wyw)u)| < C|AT () 2w |[||dT ()2 us]|,

using Lemma 3.2. By density this extends to ui,us € G and shows that Hy € C1(A;G,G*). By
Remark 4.11 we know that w € C*(a; D(b%),D(b%)*) which yields:

(4.25) s- lim ¢ (ww; — ww) = [w,ia]® in B(D(b%),D(b%)*).

t—0t

Hence we have
(4.26) +[w,ia)® < Cb.

Again by Remark 4.11, D(b%) is b-stable under {w;} and hence s-lim; o+ w; = 1in D(b%) which
implies that for uy,us € 'y (D(D)):

li%1+(u2,df(wt,wwt — ww)uy) = (ug, dl([w,ia]®)uy),
t—

and hence
[H,iA]° = dT'(jw,ia]®).

It remains to prove iii). To prove that ¢(v) € C1(A;G,G*) we will apply Proposition 5.10. Note
that using Corollary 4.2 and the fact that w < Cb, we see that ¢(v) € B(G,G*). We consider
the quadratic form on D(Af.) x D(Ag) C G* x G:

(u2,2[@(v),iA]1ur) = (u2,ip(v)Agur)g+ + (1Ag-ua, p(v)u1)gs.
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By Proposition 5.10, we know that:
(u2,2[0(v). i 1ur) = lim ¢7" (uz, (S(0)Ws = Wi (v) Jur)g-.
We will show that for u; € D(Ag), uz € D(Ag-):

(4.27) lim ¢~ (ug, ((b(v)Wt - Wté(v))ul)g* = (ug, —¢(iav)uy)g.

t—0t

Note that since av € B(D(K%), K® D(b_%)), the right hand side of (4.27) is by Corollary 3.10
a bounded quadratic form on G* x G. Hence (4.27) implies that ¢(v) € C'(A4;G,G*) and that
[¢(v),14]" = —¢(iav).
It remains to prove (4.27). By [DG1, Lemma 2.7]:

Wi (v) = ¢(wv)We,
and hence:
(4.28) d(v)Wy — Wio(v) = d(v — wev) Wy
Set b1 = b+ 1, By = K ® g,y + Ix ® dT'(b1). We note that by satisfies (4.19) and hence
1 1
by i) D(B{) is b-stable under {W;}. In particular {W;} is uniformly bounded on D(B7) for
0 <t < 1. Next since v € B(D(K%), K ® D(a)), we obtain that

— < <t<I1.
I =l g et ey < €0 0TS

and hence applying Corollary 3.10, we obtain that t‘lqﬁ(v — wyv) is uniformly bounded as a
quadratic form on D(Blé ).

Set Dy 1= D(K?) ® Tgn(D(a; D(b
have t~1(v — wv) — —iav in B(D(K
we obtain that

))) and Dy := D(K2) @ Tgn(D(a*; D(b2))). By (4.22), we
), K ®1b) strongly when ¢ — 0%. By a direct computation,

NI =

tlil(])[1+ t_l(u2, d(v — ww)Wiup) = —(ug, p(iav)uy), uy,ug € Dj.

1
Since D; is dense in D(B{), we obtain that

lim ¢! (us, (qb(v)Wt — Wtqb(v))m) = —(u2, ¢(iav)uy), u1,uz € D(Blé)'

t—0t

This shows that
£ (s, ((0)Ws = Wig(v) Jur)ge = (B + 1) ug, (@(0)Ws — Wig(v) Jun)

converges to
—((B + 1) tug, ¢p(iav)uy) = —(ug, ¢p(iav)uy ) g

1
when t — 0% if uy, (B + 1) tug € D(By{). In particular this holds if u; € Dy, us € Ds.

We note that by Lemma 3.1, Dy is dense in D(Ag), and Ds is dense in D(Af;) and hence in
D(Ag.). Then (4.27) follows by a density argument. O
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5 The Mourre method

In this section, we fix some terminology and recall the main results from [GGM]. We refer the
reader to [GGM] for more details and proofs.

5.1 The C'(A) class

In this subsection we recall the definition of the C'(A) class introduced in [GGM], where A is a
closed and densely defined operator. This definition is an extension of the standard C'*(A) class
for A selfadjoint (see [ABG]).

In all this subsection A will be a closed densely defined operator on a Hilbert space H.

We start by considering the C'(A) class of bounded operators. If S € B(H) we denote by
[A, S] the sesquilinear form on D(A*) x D(A) defined by:

(u, [A, S]v) := (A"u, Sv) — (S*u, Av), u € D(A"), v € D(A).

Definition 5.1 An operator S € B(H) is of class C1(A) if the sesquilinear form [A,S] is con-
tinuous for the topology of H x H. If this is the case, we denote by [A, S]° the unique bounded
operator on H associated to the quadratic form [A,S] (note that D(A*) x D(A) is dense in
H x H). We denote by C'(A) the linear space

CYHA) :={S € B(H)|S is of class C*(A)}.

It is then possible to extend the C1(A) property to an unbounded operator S, by considering
the resolvent (S — z)~ 1.

Definition 5.2 If S is a closed and densely defined operator on H, then the A-regular resolvent
set of S is the set p(S, A) of z € C\o(S) such that R(z) := (S — 2)~! is of class C'(A).

Definition 5.3 Let S be a closed and densely defined operator. We say that S is of class C1(A)
if there is a sequence of complex numbers z, € p(S, A) with |z,| — oo such that ||(z, — S)7| <
Clz,|7t for some constant C. If S is of class C*(A) and p(S, A) = C\o(S) then we say that S
is of full class C1(A).

Remark 5.4 If follows from [GGM] that if A is selfadjoint and S is of class C'(A) then S is of
full class C*(A).

The C'(A) property has some consequences expressed in terms of the commutator [S, AJ:

Definition 5.5 Let A, S be two closed and densely defined linear operators on H. We define
[A, S] as the sesquilinear form with domain [D(A*) N D(S*)] x [D(A) ND(S)] given by:

(u,[A, S]v) := (A", Sv) — (S™u, Av).

Proposition 5.6 Let S be an operator of class C1(A). Then D(A) N'D(S) and D(A*) ND(S*)
are cores for S and S* respectively and the form [A,S] has a unique extension to a continuous
sesquilinear form [A,S]° on D(S*) x D(S). One has:

(5.1) (A, R(2)]° = —R(2)[A, S°R(2), = € p(S, A)

where on the right hand side of (5.1) we consider [A, S]° as a bounded operator D(S) — D(S*)*.
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5.2 Smoothness with respect to Cy-semigroups
The C'(A) class can be further studied if A is the generator of a Cy-semigroup.

Definition 5.7 A map R" >t — W, € B(H) is a Cy-semigroup if:
7’) WO = ]17 WtWS = Wt+87 t,S > 07
ii) w—lim, o+ Wy = 1.

We define the generator A of {WW;} by the rule

D(A):={ueH| tli%1+(it)_1(Wtu —u) =: Au exists}.
Thus we formally have W; = €4, which is not the usual convention but is natural in our context.
The map IR™ > ¢t — W} € B(H) is weakly continuous, hence defines a Cyp-semigroup. It is
easy to see that the generator of W} is —A*.
Let now G, H be two Hilbert spaces with G C ‘H continuously and densely. We identify the
adjoint space H* with H by using the Riesz isomorphism. Then by taking adjoints we get a
scale of Hilbert spaces G C ‘H C G*.

Definition 5.8 Let G,H be as above and let {W,} be a Cy-semigroup on H. in H. We say that
G is b-stable (boundedly stable) under {W;}, or that {W;} b-preserves G, if WG C G for all
t >0 and supg_,1 ||[Wiullg < oo for each u € G.

It is easy to see that {W,;} extends to a Cy-semigroup in G* iff G is b-stable under {W;}. If G is

b-stable under {W;}, then {W,} induces a Cyp-semigroup on G, whose generator we denote by Ag.

The domain of Ag will be denoted by D(Ag) or D(A;G). Similarly if G is b-stable under {IW;*},

{W;} induces a Cp-semigroup on G* and we will use the notation Ag-, D(Ag+) = D(A4;G").
We recall the following definition and result from [GGM]:

Definition 5.9 Let {W;},{Wa:+} be two Cy-semigroups on Hilbert spaces Hi, Ho with gener-
ators A1, Ay. We say that S € B(Hy, Hs) is of class C1(Ay, Ay) if:

W28 — SWaillgry 1) < O 0 <t < 1

Proposition 5.10 S is of class C'(Ay, As) if and only if the sesquilinear form o[S, Al; on
D(A%) x D(A;1) defined by (ug,2[S, Aliu1) = (S*ug, Ajui) — (Ajug, Sui) is bounded for the
topology of Ha x Hy. If we denote by o[S, A]) € B(H1,Hsa) the associated operator we have:

(5.2) o[, Al = s- lirgl+(it)_1(SW1,t — WauS).

t—
Remark 5.11 It follows from Proposition 5.10 that if Hi = Ho = H and Wy = Wa; = Wy,
then Cl(Al,Ag) = Cl(A)

This relationship between the classes C1(A;, A3) and C'(A) can be extended to arbitrary closed
densely defined operators:

Proposition 5.12 Let S be a closed densely defined regular operator. Then S is of class C1(A)
if and only if for each u € D(S*),v € D(S) there is ¢ < oo such that |(S*u, Wyv)—(u, Wy Sv)| < ct
if 0 <t < 1. If this is the case, then lim;_,g+ t~[(S*u, Wyv) — (u, W;:Sv)] = (u, [S,14]°v).
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5.3 Hypotheses

We recall the abstract set of hypotheses under which a limiting absorption principle is shown in
[GGM]. We consider three operators H, H' and A such that H is self-adjoint, H' is symmetric
closed and densely defined, and A is closed and densely defined. Note that one of the conditions
below says that H' is a realization of the formal commutator [H,1A]. We set D := D(H)ND(H’)
equipped with the intersection topology.

The first two assumptions concern the operators H and H':

(M1) H is of full class C*(H'), D is a core of H', and D(H) N D(H"*) = D.

(M2) A bounded open set J C IR is given and there are numbers a,b > 0 such that the inequality
H > (aIlJ(H) - b]lJ(H)J') (H) holds in the sense of forms on D, where 1;(H)* =1 — 1;(H).

We choose a number ¢ > 0 such that H + ¢(H) > (H) as forms on D. Such a number
exists because of hypothesis (M2) (e.g. let ¢ = b+ 1). It follows that the operator H' + ¢(H) is
symmetric and bounded below on D and hence has a Friedrichs extension G satisfying G > (H).
We set )

G := D(G?2), equipped with the graph norm.

Note that G can be identified with the completion of D for the norm ||u|lg = /(u, (H + c¢(H))u).
We shall denote by || - ||g« the norm dual to || - ||g. Thus for v € H

_1
[vllgs = sup{[(u,v)| [ v € D, [lullg <1} = |G™2v].

The completion of (H,|| - |
a scale of spaces
(5.3) DCGCHCG CD

g+) is canonically identified with the adjoint space G*. Thus we get

with dense and continuous embeddings.
For later use we recall a lemma (see [GGM]) which can be used to verify condition (M1) in
more concrete situations.

Lemma 5.13 Let H, M be two selfadjoint operators such that H € C*(M) and D(H) ND(M)
is a core for M. Let R be a symmetric operator with D(R) D D(H) and let us denote by H’
the closure of the operator M + R defined on D(S) N D(M). Then H is of full class C*(H'),
D(H)ND(H') is a core for H and D(H)ND(H') =D(H)ND(H'x) = D(H) ND(M).

The last three assumptions concern the operators H, H' and A:
(M3) A is the generator of a Cy-semigroup {Wi}ti>o in H.
(M4) For all u € D we have: lim; g+ 1 [(u, Wy Hu) — (Hu, Wyu)] = (u, H'u).
(M5) There is H” € B(G,G*) such that lim; o+ 1 [(u, W, H'u) — (H'u, Wyu)] = (u, H"u),u € D.
Remark 5.14 Using the results recalled in Subsection 5.2 we see that if G is b-stable under

{W;} and {W;} then the conditions (M4) and (M5) follow from: H € C(A;G,G*) with
[H,iA]° = H' and H' € C*(A;G,G*) with [H',iA]° = H".
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5.4 Limiting absorption principle

The limiting absorption principle in [GGM] has its most convenient formulation if W; are isome-
tries and G is b-stable under {W;}. Then {W,} extends to a Cp-semigroup on G*. whose
generator is denoted by Ag«. We set for 0 < s < 1:

) Goei= (G

We emphasize that the absolute value |Ag+| is defined relatively to the Hilbert space structure
of the space G*. The space G_; can be defined directly in terms of the generator AE of the
Cy-semigroup induced by {W;} on G, and both spaces G and G_; can be obtained by complex
interpolation.

In the sequel we set R(z) = (H — 2)~! and

JE={\xipgheJ, u>0}, JE={\Liu\e Ju>0}.

Theorem 5.15 Assume that hypotheses (M1)—(M5) hold and that Wy are isometries and
G is b-stable under {W;}. Then if z € J and Imz # 0, R(z) induces a bounded operator
R(z): G — G for all 1 < s < 1. Moreover, the limits R(A£10) := lim,,_. 4o R(A+ip) ezist in
the norm topology of B(G%,G_s) locally uniformly in A € J, and the maps J 5 X\ — R(A £1i0) €

B(G%,G_s) are locally Hélder continuous of order s — %

We refer the reader to [GGM] for more general versions of the limiting absorption principle
formulated in terms of optimal Besov spaces.

5.5 The virial theorem

We now recall a version of the virial theorem, proved in [GGM]. To formulate it we first introduce
some notation. We will use the convention for quadratic forms recalled in Subsection 3.1.

We recall the following easy fact, which can be checked using the concept of gauges on
topological vector spaces (see e.g. [ABG, Proposition 2.1.1]):

Let H1,Ho be two Hilbert spaces with Hy C H; continuously. Then if () is a symmetric
bounded below quadratic form on Hi, @ is closed (resp. closeable) on Hs if @ is closed (resp.
closeable) on H;. Moreover if @ is closeable on Hj, then the domain of the closure of @ on H,

is D(Q) N Ha.

Let now take Hy = H, Hy = D(H) and Q(u) = (u, H'uw) + ¢(u, (H)u), with domain D. We
saw in Subsection 5.3 that @ is closeable on D with closure (u, Gu) with domain G. By the above
remark, the quadratic form (u, H'u) on D(H) with domain DND(H) is closeable on D(H). We
denote its closure by (u, Hu), which has domain G N D(H).

The following result is shown in [GGM].

Proposition 5.16 Assume that there is a sequence of selfadjoint operators A, such that for
each n the operator H is of class C1(A,) and [H,iA,]° is a symmetric form on D(H) and such
that

lim (v, [H,i4,]°v) = (v, Hv),

n—oo

for all v € D(H), where in the l.h.s. we mean the limit in IRU +o0. Then if u is an eigenvector
of H, we have u € G and (u, Hu) = 0.
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6 The conjugate operator

In this section we define the conjugate operator A which we will use to prove the Mourre estimate
in Section 7 and we verify some of the abstract hypotheses introduced in Subsection 5.3.

6.1 Construction of some vector fields

Let d(t) € C*°(]0,4o0[) be a function as in Subsection 2.2, i.e. such that:

(6.1) d(t) <0, |d(t)] < Ct~ld(t), d(t) =1in {t > 1}, limd(t) = +o0.
Fix x € C°(R), x =1in [t} < 3, x=01in [¢| > 1. For 0 < § < £, we set:

$(0) = x5O+ (1= x) ()7 ).

For 0 < ¢ < %, n € IN, we define as in [Sk] a regularized version of s°:

00 = (A + 0 (1= 0.

Note that s € C*([0, +o0]), |028% (t)| < C(a,n,d), a € IN. To the functions s%, s, we associate
the vector fields on IR%:

(k) = 2 (|k)k, 8(k) := S (|k)k, k e RE

6.2 The semigroup on the one-particle space

We now construct a Cp-semigroup of isometries associated to the vector field 5°.
To the vector fields 5° and 5 we associate the operators:

GJZ—%(?'Dk—FDk'?),
1
2

ay, = —5(5 - Dp + Dy, - 53),

acting on s = C§°(IR%\{0}). The operators a’ are essentially selfadjoint on s, and we will still
denote by al their closures. It is easy to verify that D(ad) = {h € b|k - Vih € p}.

The operator a’ is symmetric on s but has no selfadjoint extension. To describe its closure
it is convenient to introduce polar coordinates as in Subsection 2.2. The unitary map 1" defined
in (2.2) sends C$°(IRN\{0}) into C§*(IRH\{0}) ® C=(S41). We have:

Ta®T™' =i(m%(r)d, + 5(m?)(r)) =: @,
TalTH =i(m(r)0, + $(md) (r)) =: &,

n’

on Cg°(RT\{0}) ® C°°(S9~1) where:

m®(r) = rs°(r) = x(5)d(8) + (1 = x)(§)d(r),
(6.2)



Let us note the following easy properties of m?:
(6.3) 1 <ml(r) <mé(r) < C(6), |0°m’(r)] < C(a,d), a € IN.

We extend the function m? to IR by setting d(—r) := d(r) for r > 0 and consider the vector field
m‘;(r)% as a vector field on IR. Let IR > 7 +— ¢4(r) the associated flow.
For u € h = L*(IR*,dr) @ L*(S%1), t > 0 we set:

(6.4) @u(r,0) = g (Do ()6, (r)| Fu(91(r), 0).
Note that since m®(r) > 0, ¢(r) > 0 if 7,£ > 0 and hence:

RY >t 0!

is a Cp-semigroup of isometries of . Its generator @° is:
(65 B =i () o+ 2 (), D) = HY(RY) @ 12(5°),
where H{(IRT) is the closure of C§°(]0, +o0o]) in H(IR). The adjoint semigroup is:
(6.6) " u(r, 6) = s (r)|67(r) | 2u(9u(r). 6). £ 2 0,
with generator

@ = —i(m?(r) o+ (), D) = H'(BF) @ LS.

We now define the corresponding objects on b by setting:
w) =T YWl T, wd* = T~ w;°T.
The closure of a® on s is the infinitesimal generator of {w)} which will be still denoted by a°.
Hence we have:
a’ =T7'aT, a® = T7'a’*T.
6.3 Auxiliary results

We start with an elementary lemma.

Lemma 6.1 Let —25 be the Laplacian on L?(IR™,dr) with Dirichlet condition at 0. Then
82
~(5*
I<—C(8

( )8r2
Proof. By an easy computation we have:

1 1

d&*dé — —8T(m6)28r _ §m6m6 I/ Z(mé 1)2.

Now m? < C(68) by (6.3) and m®’ has compact support (depending on d) since d(r) = 1 inr > 1.
Applying then Poincaré’s inequality we obtain the lemma. O

We now prove some consequences of the hypotheses on the interaction which will be useful
later.

35



Lemma 6.2 Assume hypotheses (I1) and (12). Then:
i) veBMDK?),K®D(a)), v e B(D(K?),K ® D(w3)) NBK,D(K?)* ® D(w™7))
i) v e B(D(K?),K® D(a’)), alv € B(D(Kz “2)),V0<d<inel

iii) (d(iaSv) — ¢(iadv)), as quadratic forms on D(|H|?) when n — occ.

w) ||(H + b)_%é(a‘;v)(H +b)” 3 | < C, uniformly in 0 <5< 3.

Assume in addition hypothesis (I13). Then:
v) a®v € B(D(K%), K ® D(a’)).

Proof. We first investigate some bounds and convergence properties of the functions m® and
mS. We have:

(mP(r)) = 6" (5)d(8) — 51K (5)d(r) + (1 — ) () (1),
() + (1= X)) + X5 s,

We first observe that since » < § on supp x:

(6.7)

n

(68) m' () < dr), 11— (L) < L), 157K )] <67 K G < ),

uniformly in 0 < § < % This yields:

Q

(6.9) mﬁ@)éﬂﬁﬁ)édﬁ%\Wﬂ@ﬁﬁé-;ﬂﬂ-
Next:
(6.10) mp(r) = m’(r), (m(r)) — (m’(r))" a.e. when n — oo,

using (6.2) and (6.7).

Let us now prove 7). We set 0 = (Ix @ T)v, w = 0(K + 1)_%. It suffices then to prove that
w € B(K,K ® HY(R') ® L2(S41)) and that a®w € B(K,K ® D(r~%)). That a®(K + 1)"20
belongs to B(K, K ® D(r_%)) can be proved similarly by considering the operator (K + 1 )_%17

Since (1 + r_%)d(r) is bounded below, hypothesis (I2) implies that w,d,w € B(K,K ® b),
ie.we B(K, K@ H'(IRT)® L?(S%1)). By Sobolev’s embedding theorem, this implies that for
1,9 € K, (Yo, wihr)x € CO(IRT)® L?(S971), and hence for 7 > 0 the expression (¢, wihy )k (1)
is well defined as an element of L2(S9~1). It suffices to show that (¢, ws)xc(0) = 0 for all
V1,12 € K to prove that w € B(IC,K ® H3(RT) ® L?(S971)). If there exists ¢y, such that
(Y2, wP2)c(0) # 0, then ||(Y2, wp1)(r)[lL2(ga-1) = ¢ > 0 for 0 < r < 1. But this contradicts
hypothesis (I2) which implies that (1 + T_%)T_ld(T)(¢2, wip)xc(r) € L2(RY) @ L2(S471).

Since mo(r) < d(r), |(m°(r))'| < C(§), it follows then from hypothesis (I2) that a’w €
B(K,K @ D(w™?))

Let us now prove ). Going to polar coordinates this is equivalent to

(6.11) we BK,K®D(@)), adw e B(K,K @ D(r2)).
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Note that @ is the closure of i(mS(r)d, + 3(mS(r)') on C§°(IRT\{0}) ® C>(S%~1). Using the
fact that m? (r) vanishes at 0, it is easy to show that D(a’) = {u € pla’u € h}. Now

Sw = imd (r)dw + %mi(r)’w.

Since (1+T_%)d(r)8rw € B(K,K®b) we obtain using (6.9) that (1+7’_%)mg(r)&,w € B(K,K®b).
Similarly since (1 +r_%)r_1d(r)w € B(K,K®h) we obtain that (1 +r_%)mi(r)’w € B(K,K®h),
which proves (6.11) and completes the proof of ii).

Let us now prove #4). We recall the bound from Proposition 4.1 3):
(6.12) I(H + )" 26(h)(H +b)"2| < Cllle @ w™ 2h(K +1) 73]

for h € B(D(K%), K®#). Using (6.9), (6.10) and the dominated convergence theorem, we obtain
that:

(1+ 7 2)ml (rd,w — (147~ 2)md(r)d,w,

(L7 2) (b () w = (L 57 2)(m (1)

in L2(R%; B(K)) when n — oco. Using (6.12) this proves ii).
Let us now prove iv). We have by (6.8):
(1 + 7~ 2)m? (r)dw]| < |1+~ 2)d(r)dpw]| < C,
uniformly in 0 < § < 1. Similarly by (6.9):
|0+ 2)m ()] < [+ 72 d(r)ul] < C,
uniformly in 0 < § < % This yields:
|0 ® wZa’u(K +1) 73] < C,

uniformly in 0 < § < 1, which using (6.12) completes the proof of v).
To prove v), we have to show that a®w € B(K, K @ HJ(IRT) ® L?(591)). We have:
O, aw = %(m‘s(r))/@rw + o (m® ()" imd (r)ofw.

Using (6.3) and hypothesis (I3), we obtain that d,a%w € B(K,K ®p), ie. a®w € B(K,K ®
H'(IRT) ® L?(S%1)). As in the proof of i), it follows that for ¥, vy € K, (1o, a%wiby)xc(r) is
well defined as an element of L?(S91), and it remains to prove that (¢)q, @wi1)xc(0) = 0. As
in the proof of i), if (1o, a%wiy)ic(0) # 0 we have (2, @wi)c(r)|| > ¢ > 0 for 0 < r < 1.
Using the fact that (m®)’ vanishes near 0 in conjunction with (6.5) and (6.3), we see that this
implies that |[(¢2,0rwin)ic(r)]] > ¢ > 0 for 0 < r < 1. But this contradicts the fact that
(1 +7"2)d(r)0,w € B(K,K ®§). O
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6.4 The semigroup on Fock space
We now extend the Cp-semigroup w? to H by second quantization, as in Subsection 4.3. We set:
WP =l @T(w)), WP =Ix @ T (wf").

Clearly W} is a Cp-semigroup of isometries on H. We denote by A° its generator. Similarly we
set for n € IN:
(6.13) A% = T ® dT(ad),

ital )

which is the generator of the unitary group Ix ® I'(e

6.5 Estimates of first commutators

We set
M? =T @ dD(m’(k)), MJ = g ® dT(mb),
and:
R(S = _qb(iaév), R6 = —QS(](I%'U)

n

As in Subsection 2.1 we consider a Pauli-Fierz Hamiltonian H = K ® Ip,) + I @ dL(|k]) + é(v)
acting on H.

Proposition 6.3 Assume (I1) and (I2). Then H € C*(A%) and:
[H,i42]° = M? + R®.
Proof. We apply Corollary 4.12, checking conditions (4.23) and (4.24). Let ¢y, ; : R? — R? be
the flow associated to the vector field 5. Note that 57 satisfies:
(6.14) |5, (k)| < C(n, 8)|k], 055 (K)| < Cla,n,6), o] > 1.
We have:

wy = e eitin = w(Pn,t(k)).

Using (6.14) we obtain:

t
(6:15) 60a(k) =k < C [ 10,
which implies that:

t
(6.16) B ()] < [kl +C [ 0n.o(R)lds.

By Gronwall’s lemma we deduce from (6.16) that
|Pne(k)| < ClE], 0 < [t] <1,
which by (6.15) gives:
|ne(k) — k| < Clt|[k], 0 < [t] <1