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Abstract

We consider the Nelson model with variable coefficients and investigate the prob-
lem of existence of a ground state and the removal of the ultraviolet cutoff. Nelson
models with variable coefficients arise when one replaces in the usual Nelson model
the flat Minkowski metric by a static metric, allowing also the boson mass to depend
on position. A physical example is obtained by quantizing the Klein-Gordon equa-
tion on a static space-time coupled with a non-relativistic particle. We investigate
the existence of a ground state of the Hamiltonian in the presence of the infrared
problem, i.e. assuming that the boson mass tends to 0 at infinity. We also study
the removal of the ultraviolet cutoff, which allows to construct a model with a local
interaction.

1 Introduction
In this paper we consider a class of quantum field theory Hamiltonians that we call variable
coefficients Nelson models. These models are natural extensions of the usual Nelson model
to the case when the Minkowski metric is replaced by a general static metric and the boson
mass is position dependent. In this introduction we describe these models and summarize
the results of this paper.
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1.1 The Nelson model on Minkowski space-time

The Nelson model describes a scalar bosonic field linearly coupled to a quantum mechan-
ical particle. It is formally defined by the Hamiltonian

H =
1

2
p2 +W (q) +

1

2

∫
R3

π2(x) + (∇ϕ(x))2 +m2ϕ2(x)dx +

∫
R3

ϕ(x)ρ(x− q)dx,

where ρ denotes a cutoff function, p, q denote the position and momentum of the par-
ticle, W (q) is an external potential and ϕ(x), π(x) are the canonical field position and
momentum.

The Nelson model arises from the quantization of the following coupled Klein-Gordon
and Newton system:

(1.1)

{
(2 +m2)ϕ(t, x) = −ρ(x− qt),
q̈t = −∇qW (qt)−

∫
ϕ(t, x)∇xρ(x− qt)dx,

were 2 denotes the d’Alembertian on the Minkowski space-time R1+3. The cutoff function
ρ plays the role of an ultraviolet cutoff and amounts to replacing the quantum mechanical
point particle by a charge density.

To distinguish the Nelson model on Minkowski space-time from its generalizations
that will be described later in the introduction, we will call it the usual (or constant
coefficients) Nelson model.

The initial interest of the Nelson model [Ne] was that it is the simplest non trivial
QFT model for which the ultraviolet limit, (amounting to replace the cutoff function ρ by
the delta function δ), can be performed by relatively easy arguments. With the utraviolet
cutoff removed, the Nelson model becomes a local QFT model.

Even with an ultraviolet cutoff, the rigorous study of the Nelson model is of much
interest, and quite a lot of efforts were devoted to the rigorous analysis of several of its
aspects (see [AHH], [BFS], [BHLMS], [H], [LMS], [Sp]).

One of them, which will also be our main interest in this paper, is the question of the
existence of a ground state. Obviously the fact that H has a ground state is an important
physical property of the Nelson model. For example a consequence of the existence of a
ground state is that scattering states can quite easily be constructed. These states describe
the ground state of H with a finite number of additional asymptotically free bosons.

When H has no ground state one usually speaks of the infrared problem or infrared
divergence. The infrared problem arises when the emission probability of bosons becomes
infinite with increasing wave length. If the infrared problem occurs, the scattering theory
has to be modified: all scattering states contain an infinite number of low energy (soft)
bosons (see eg [DG3]).

For the usual Nelson model the answer to this question is well known: one assumes
a stability condition (see Subsect. 4.5), implying that states with energy close to the
bottom of the spectrum are localized in the particle position. Then if the bosons are
massive i.e. if m > 0 H has a ground state (see eg [G]). On the contrary if m = 0 and∫
ρ(x)dx 6= 0 then H has no ground state (see [DG3]).
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1.2 The Nelson model with variable coefficients

In this paper we will study generalizations of the usual Nelson model, obtained by re-
placing the free Laplacian −∆x by a general second order differential operator and the
constant mass term m by a function m(x). We set:

h := −
∑

1≤j,k≤d

c(x)−1∂ja
jk(x)∂kc(x)−1 +m2(x),

for a Riemannian metric ajkdxjdxk and two functions c(x), m(x) > 0, and consider the
generalization of (1.1):

(1.2)

{
∂2
t φ(t, x) + hφ(t, x) + ρ(x− qt) = 0,

q̈t = −∇xW (qt)−
∫

R3 φ(t, x)∇xρ(x− qt)|g|
1
2 d3x.

Quantizing the field equations (1.2), we obtain a Hamiltonian H acting on the Hilbert
space L2(R3)⊗Γs(L

2(R3)) (see Sect. 3), which we call a Nelson Hamiltonian with variable
coefficients. Formally H is defined by the following expression:

(1.3)

H = 1
2
p2 +W (q)

+ 1
2

∫
R3 π

2(x) +
∑

jk ∂jc(x)−1ϕ(x)ajk(x)∂kc(x)−1ϕ(x) +m2(x)ϕ2(x)dx

+
∫

R3 ϕ(x)ρ(x− q)dx.

The main example of a variable coefficients Nelson model is obtained by replacing in the
usual Nelson model the flat Minkowski metric on R1+3 by a static Lorentzian metric, and
by allowing also the mass m to be position dependent. Recall that a static metric on R1+3

is of the form
gµν(x)dxµdxν = −λ(x)dtdt+ λ(x)−1hαβ(x)dxαdxβ,

where x = (t, x) ∈ R1+3, λ(x) > 0 is a smooth function, and hα,β(x) is a Riemannian
metric on R3. We show in Subsect. 2.3 that the natural Lagrangian for a point particle
coupled to a scalar field on (R1+3, g) leads (after a change of field variables) to the system
(1.2).

1.3 The infrared problem

Assuming reasonable hypotheses on the matrix [ajk](x) and the functions c(x), m(x) it is
easy to see that the formal expression (1.3) can be rigorously defined as a bounded below
selfadjoint operator H.

The first question we address in this paper is the problem of existence of a ground
state for H. Variable coefficients Nelson models are examples of an abstract class of QFT
Hamiltonians called abstract Pauli-Fierz Hamiltonians (see eg [G], [BD] and Subsect. 4.1).
If ω is the one-particle energy, the constant m := inf σ(ω) can be called the (rest) mass
of the bosonic field, and abstract Pauli-Fierz Hamiltonians fall naturally into two classes:
massive models if m > 0 and massless if m = 0.
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For massive models, H typically has a ground state, if we assume either that the
quantum particle is confined or a stability condition (see Subsect. 4.5). In this paper we
concentrate on the massless case and hence our typical assumption will be that

lim
x→∞

m(x) = 0.

It follows that bosons of arbitrarily small energy may be present. The main result of this
paper is that the existence or non-existence of a ground state for H depends on the rate
of decay of the function m(x). In fact we show in Thm. 4.1 that if

m(x) ≥ a〈x〉−1, for some a > 0,

and if the quantum particle is confined, then H has a ground state. In a subsequent paper
[GHPS2], we will show that if

0 ≤ m(x) ≤ C〈x〉−1−ε, for some ε > 0,

then H has no ground state. Therefore Thm. 4.1 is sharp with respect to the decay rate
of the mass at infinity.

(If h = −∆ +λm2(x) for m(x) ∈ O(〈x〉−3/2) and the coupling constant λ is sufficiently
small the same result is shown in [GHPS1]).

1.4 Removal of the UV cutoff

As explained in Subsect. 1.1 the ultraviolet limit of the constant coefficients Nelson
model was rigorously constructed long ago by Nelson. We consider also the same question
for variable coefficients Nelson models. Denoting by Hκ the Nelson Hamiltonian H for
the cutoff function ρκ(x) = κ3ρ(κx), we construct a particle potental Eκ(q) such that
Hκ − Eκ(q) converge in strong resolvent sense to a bounded below selfadjoint operator
H∞ (see Thm. 5.5).

The removal of the UV cutoff involves as in the constant coefficients case a sequence
of unitary dressing operators Uκ. In contrary to the constant coefficients case, where
all computations can be conveniently done in momentum space (after conjugation by
Fourier transform), we have to use instead pseudodifferential calculus. Some of the rather
advanced facts on pseudodifferential calculus which we will need are recalled in Appendix
B.

1.5 Notation

We collect here some notation for the reader’s convenience.
If x ∈ Rd, we set 〈x〉 = (1 + x2)

1
2 .

The domain of a linear operator A on some Hilbert space H will be denoted by DomA,
and its spectrum by σ(A).
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If h is a Hilbert space, the bosonic Fock space over h denoted by Γs(h) is

Γs(h) :=
∞⊕
n=0

⊗ns h.

We denote by a∗(h), a(h) for h ∈ h the creation/annihilation operators acting on Γs(h).
The (Segal) field operators φ(h) are defined as φ(h) := 1√

2
(a∗(h) + a(h)).

If K is another Hilbert space and v ∈ B(K,K ⊗ h), then one defines the operators
a∗(v), a(v) as unbounded operators on K ⊗ Γs(h) by:

a∗(v)
∣∣∣
K⊗

Nn
s h

:=
√
n+ 1

(
1lK ⊗ Sn+1

)(
v ⊗ 1lNn

s h

)
,

a(v) :=
(
a∗(v)

)∗
,

φ(v) := 1√
2
(a(v) + a∗(v).

They satisfy the estimates

(1.4) ‖a](v)(N + 1)−
1
2‖ ≤ ‖v‖,

where ‖v‖ is the norm of v in B(K,K ⊗ h).
If b is a selfadjoint operator on h its second quantization dΓ(b) is defined as:

dΓ(b)
∣∣∣Nn

s h
:=

n∑
j=1

1l⊗ · · · ⊗ 1l︸ ︷︷ ︸
j−1

⊗b⊗ 1l⊗ · · · ⊗ 1l︸ ︷︷ ︸
n−j

.

2 The Nelson model on static space-times
In this section we discuss the Nelson model on static space-times, which is the main
example of Hamiltonians that will be studied in the rest of the paper. It is convenient to
start with the Lagrangian framework.

2.1 Klein-Gordon equation on static space-times

Let gµν(x) be a Lorentzian metric of signature (−,+,+,+) on R1+3. Set |g| = det[gµν ],
[gµν ] = [gµν ]

−1. Consider the Lagrangian

Lfree(φ)(x) =
1

2
∂µφ(x)gµν(x)∂νφ(x) +

1

2
m2(x)φ2(x),

for a function m : R4 → R+ and the associated action:

Sfield(φ) =

∫
R4

Lfree(φ)(x)|g|
1
2 (x)d4x,
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where φ : R4 → R. The Euler-Lagrange equations yield the Klein-Gordon equation:

2gφ+m2(x)φ = 0,

for
2g = −|g|−

1
2∂µ|g|

1
2 gµν∂ν .

Usually one has
1

2
m2(x) =

1

2
(m2 + θR(x)),

where m ≥ 0 is the mass and R(x) is the scalar curvature of the metric gµν , (assuming of
course that the function on the right is positive). In particular if m = 0 and θ = 1

6
one

obtains the so-called conformal wave equation.
We set x = (t, x) ∈ R1+3. The metric gµν is static if:

gµν(x)dxµdxν = −λ(x)dtdt+ λ(x)−1hαβ(x)dxαdxβ,

where λ(x) > 0 is a smooth function and hαβ is a Riemannian metric on R3. We assume
also that m2(x) = m2(x) is independent on t.

Setting φ(t, x) = λ|h|−1/4φ̃(t, x), we obtain that φ̃(t, x) satisfies the equation:

∂2
t φ̃− λ|h|−1/4∂α|h|

1
2hαβ∂β|h|−1/4λφ̃+m2λφ̃ = 0.

We note that |h|−1/4∂α|h|
1
2hαβ∂β|h|−1/4 is (formally) self-adjoint on L2(R3, dx) and is the

Laplace-Beltrami operator ∆hassociated to the Riemannian metric hαβ (after the usual
density change u 7→ |h|1/4u to work on the Hilbert space L2(R3, dx)).

2.2 Klein-Gordon field coupled to a non-relativistic particle

We now couple the Klein-Gordon field to a non-relativistic particle. We fix a massM > 0,
a charge density ρ : R3 → R+ with q =

∫
R3 ρ(y)d3y 6= 0 and a real potential W : R3 → R.

The action for the coupled system is

S = Spart + Sfield + Sint,

for
Spart =

∫
R
M
2
|ẋ(t)|2 −W (x(t))dt,

Sint =
∫

R4 φ(t, x)ρ(x− x(t))|g| 12 (x)d4x.

The Euler-Lagrange equations are:{
2gφ(t, x) +m2(t, x)φ(t, x) + ρ(x− x(t)) = 0,

M ẍ(t) = −∇xW (x(t))−
∫

R3 φ(t, x)∇xρ(x− x(t))|g| 12 d3x.

Doing the same change of field variables as in Subsect. 2.1 and deleting the tildes, we
obtain the system:

(2.1)

{
∂2
t φ− λ∆hλφ+m2λφ+ ρ(x− x(t)) = 0,

M ẍ(t) = −∇W (x(t))−
∫

R3 φ(t, x)∇ρ(x− x(t))d3x.
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2.3 The Nelson model on a static space-time

If the metric is static, the equations (2.1) are clearly Hamiltonian equations for the classical
Hamiltonian H = Hpart +Hfield +Hint, where:

Hpart(x, ξ) =
1

2M
ξ2 +W (x),

Hfield(ϕ, π)

= 1
2

∫
R3 π

2(x)− ϕ(x)λ(x)∆hλ(x)ϕ(x) +m2(x)λ(x)ϕ2(x)dx,

Hint(x, ξ, ϕ, π) =

∫
R3

ρ(y − x)ϕ(y)dy.

The classical phase space is as usual R3 × R3 × L2
R(R3) × L2

R(R3), with the symplectic
form

(x, ξ, ϕ, π)ω(x′, ξ′, ϕ′, π′) = x · ξ′ − x′ · ξ +

∫
R3

ϕ(x)π′(x)− π(x)ϕ′(x)dx.

The usual quantization scheme leads to the Hilbert space:

L2(R3, dy)⊗ Γs(L
2(R3, dx)),

where Γs(h) is the bosonic Fock space over the one-particle space h, and to the quantum
Hamiltonian:

H = (−1

2
∆y +W (y))⊗ 1l + 1l⊗ dΓ(ω) +

1√
2

(
a∗(ω−

1
2ρ(· − y) + a(ω−

1
2ρ(· − y)

)
,

where
ω = (−λ∆hλ+m2λ)

1
2 ,

dΓ(ω) is the usual second quantization of ω and a∗(f), a(f) are the creation/annihilation
operators on Γs(L

2(R3, dx)).

3 The Nelson Hamiltonian with variable coefficients
In this section we define the Nelson model with variable coefficients that will be studied in
the rest of the paper. We will deviate slightly from the notation in Sect. 2 by denoting by
x ∈ R3 (resp. X ∈ R3) the boson (resp. electron) position. As usual we set Dx = i−1∇x,
DX = i−1∇X .

3.1 Electron Hamiltonian

We define the electron Hamiltonian as:

K := K0 +W (X),
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where
K0 =

∑
1≤j,k≤3

DXjA
jk(X)DXk ,

acting on K := L2(R3, dX), where:

(E1) C01l ≤ [Ajk(X)] ≤ C11l, C0 > 0.

We assume that W (X) is a real potential such that K0 + W is essentially selfadjoint
and bounded below. We denote by K the closure of K0 + W . Later we will assume the
following confinment condition :

(E2) W (X) ≥ C0〈X〉2δ − C1, for some δ > 0.

Physically this condition means that the electron is confined. As is well known (see eg
[GLL]) for the question of existence of a ground state , this condition can be replaced
by a stability condition, meaning that states near the bottom of the spectrum of the
Hamiltonian are confined in the electronic variables by energy conservation.

We will discuss the extension of our results when one assume the stability condition
in Subsect. 4.5.

3.2 Field Hamiltonian

Let:
h0 := −

∑
1≤j,k≤d c(x)−1∂ja

jk(x)∂kc(x)−1,

h := h0 +m2(x),

with ajk, c, m are real functions and:

(B1)

C01l ≤ [ajk(x)] ≤ C11l, C0 ≤ c(x) ≤ C1, C0 > 0,

∂αxa
jk(x) ∈ O(〈x〉−1), |α| ≤ 1, ∂αx c(x) ∈ O(1), |α| ≤ 2,

∂αxm(x) ∈ O(1), |α| ≤ 1.

Clearly h is selfadjoint on H2(R3) and h ≥ 0. The one-particle space and one-particle
energy are:

h := L2(R3, dx), ω := h
1
2 .

The constant:
inf σ(ω) =: m ≥ 0,

can be viewed as the mass of the scalar bosons.
The following lemma is easy;

Lemma 3.1 (1) One has Kerω = {0},
(2) Assume in addition to (B1) that limx→∞m(x) = 0. Then inf σ(ω) = 0.
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Proof. It follows from (B1) that

(u|hu) ≤ C1(c−1u| −∆c−1u) + (c−1u|c−1m2u), u ∈ H2(R3).

Therefore if hu = 0 u is constant. It follows also from (B1) that c(x)−1 preserves H2(R3).
Therefore by the variational principle

m2 = inf σ(h) ≤ C1 inf σ(−∆ + c−2(x)m2(x)) = 0.

This proves (2). 2

The Nelson Hamiltonian defined below will be called massive (resp. massless) if m > 0
(resp. m = 0.) The field Hamiltonian is

dΓ(ω),

acting on the bosonic Fock space Γs(h).

3.3 Nelson Hamiltonian

Let ρ ∈ S(R3), with ρ ≥ 0, q =
∫

R3 ρ(y)dy 6= 0. We set:

ρX(x) = ρ(x−X)

and define the UV cutoff fields as:

(3.1) ϕρ(X) := φ(ω−
1
2ρX),

where for f ∈ h, φ(f) is the Segal field operator:

φ(f) :=
1√
2

(a∗(f) + a(f)) .

Note that setting
ϕ(X) := φ(ω−

1
2 δX),

one has ϕρ(X) =
∫
ϕ(X − Y )ρ(Y )dY .

Remark 3.2 One can think of another definition of UV cutoff fields, namely:

ϕ̃χ(X) := φ(ω−
1
2χ(ω)δX),

for χ ∈ S(R), χ(0) = 1. In the constant coefficients case where h = −∆ both definitions
are equivalent. In the variable coefficients case the natural definition (3.1) is much more
convenient.
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The Nelson Hamiltonian is:

(3.2) H := K ⊗ 1l + 1l⊗ dΓ(ω) + ϕρ(X),

acting on
H = K ⊗ Γs(h).

Set also:
H0 := K ⊗ 1l + 1l⊗ dΓ(ω),

which is selfadjoint on its natural domain. The following lemma is standard.

Lemma 3.3 Assume hypotheses (E1), (B1). Then H is selfadjoint and bounded below
on D(H0).

Proof. it suffices to apply results on abstract Pauli-Fierz Hamiltonians (see eg [GGM,
Sect.4]). H is an abstract Pauli-Fierz Hamiltonian with coupling operator v ∈ B(K,K⊗h)
equal to:

L2(R3, dX) 3 u 7→ ω−
1
2ρ(x−X)u(X) ∈ L2(R3, dX)⊗ L2(R3, dx)

Applying [GGM, Corr. 4.4], it suffices to check that ω−
1
2v ∈ B(K,K ⊗ h). Now

‖ω−
1
2v‖B(K,K⊗h) = ( sup

X∈R3

‖ω−1ρX‖2)
1
2

Using that h ≥ CD2
x and the Kato-Heinz inequality, we obtain that ω−2 ≤ C|Dx|−2, hence

it suffices to check that the map

L2(R3, dX) 3 u 7→ |Dx|−1ρ(x−X)u(X) ∈ L2(R3, dX)⊗ L2(R3, dx)

is bounded, which is well known. 2

4 Existence of a ground state
In this section we will prove our main result about the existence of a ground state for
variable coefficients Nelson Hamiltonians. This result will be deduced from an abstract
existence result extending the one in [BD], whose proof is outlined in Subsects. 4.1, 4.2
and 4.3.

Theorem 4.1 Assume hypotheses (E1), (B1). Assume in addition that:

m(x) ≥ a〈x〉−1, for some a > 0,

and (E2) for some δ > 3
2
. Then inf σ(H) is an eigenvalue.

Remark 4.2 The condition δ > 3
2
in Thm. 4.1 comes from the operator bound ω−3 ≤

C〈x〉3+ε, ∀ ε > 0 proved in Thm. A.8.
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Remark 4.3 From Lemma 3.1 we know that inf σ(ω) = 0 if limx→∞m(x) = 0. Therefore
the Nelson Hamiltonian can be massless using the terminology of Subsect. 3.2.

Remark 4.4 In a subsequent paper [GHPS2] we will show that if

0 ≤ m(x) ≤ C〈x〉−1−ε, for some ε > 0,

then H has no ground state. Therefore the result of Thm. 4.1 is sharp with respect to the
decay rate of the mass at infinity.

4.1 Abstract Pauli-Fierz Hamiltonians

In [BD], Bruneau and Dereziński study the spectral theory of abstract Pauli-Fierz Hamil-
tonians of the form

H = K ⊗ 1l + 1l⊗ dΓ(ω) + φ(v),

acting on the Hilbert space H = K ⊗ Γs(h), where K is the Hilbert space for the small
system and h the one-particle space for the bosonic field. The Hamiltonian H is called
massive (resp. massless) if inf σ(ω) > 0 (resp. inf σ(ω) = 0). Among other results they
prove the existence of a ground state for H if v is infrared regular.

Although most of their hypotheses are natural and essentially optimal, we cannot
directly apply their abstract results to our situation. In fact they assume (see [BD,
Assumption E]) that the one-particle space h equals L2(Rd, dk) and the one-particle energy
ω is the multiplication operator by a function ω(k) which is positive, with ∇ω bounded,
and limk→∞ ω(k) = +∞. This assumption on the one-particle energy is only needed
to prove an HVZ theorem for massive (or massless with an infrared cutoff) Pauli-Fierz
Hamiltonians.

In our case this assumption could be deduced (modulo unitary equivalence) from the
spectral theory of h. For example it would suffices to know that h is unitarily equivalent
to −∆. This last property would follow from the absence of eigenvalues for h and from
the scattering theory for the pair (h,−∆) and require additional decay properties of the
[aij](x), m(x) and of some of their derivatives.

We will replace it by more geometric assumptions on ω (see hypothesis (4.4) below),
similar to those introduce in [GP], where abstract bosonic QFT Hamiltonians were con-
sidered. Since we do not aim for generality, our hypotheses on the coupling operator v
are stronger than necessary, but lead to simpler proofs. Also most of the proofs will be
only sketched.

Let h,K two Hilbert spaces and set H = K ⊗ Γs(h).
We fix selfadjoint operators K ≥ 0 on K and ω ≥ 0 on h. We set

inf σ(ω) =: m ≥ 0.

If m = 0 one has to assume additionally that Kerω = {0} (see Remark 4.5 for some
explanation of this fact).
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Remark 4.5 It X is a real Hilbert space and ω is a selfadjoint operator on X , the condi-
tion Kerω = {0} is well known to be necessary to have a stable quantization of the abstract
Klein-Gordon equation ∂2

t φ(t) + ω2φ(t) = 0 where φ(t) : R→ X .
If Kerω 6= {0} the phase space Y = X ⊕ X for the Klein-Gordon equation splits into

the symplectic direct sum Yreg ⊕ Ysing, for Yreg = Kerω⊥ ⊕Kerω⊥, Ysing = Kerω ⊕Kerω,
both symplectic spaces being invariant under the symplectic evolution associated to the
Klein-Gordon equation. On Yreg one can perform the stable quantization. On Ysing,if for
example Kerω is d−dimensional, the quantization leads to the Hamiltonian −∆ on L2(Rd).
Clearly any perturbation of the form φ(f) for 1l{0}(ω)f 6= 0 will make the Hamiltonian
unbounded from below.

So we will always assume that

(4.1) ω ≥ 0, Kerω = {0}.

Let H0 = K ⊗ 1l + 1l⊗ dΓ(ω). We fix also a coupling operator v such that:

(4.2) v ∈ B(K,K ⊗ h).

The quadratic form φ(v) = a(v) + a∗(v) is well defined for example on K ⊗DomN
1
2 . We

will also assume that:

(4.3) ω−
1
2v(K + 1)−

1
2 is compact.

Proposition 4.6 ([BD] Thm. 2.2) Assume (4.1), (4.3). Then H = H0 + φ(v) is well
defined as a form sum and yields a bounded below selfadjoint operator with Dom|H| 12 =

Dom|H0|
1
2 .

The operator H defined as above is called an abstract Pauli-Fierz Hamiltonian.

4.2 Existence of a ground state for cutoff Hamiltonians

We introduce as in [BD] the infrared-cutoff objects

vσ = F (ω ≥ σ)v, Hσ = K ⊗ 1l + 1l⊗ dΓ(ω) + φ(vσ), σ > 0,

where F (λ ≥ σ) denotes as usual a function of the form χ(σ−1λ), where χ ∈ C∞(R),
χ(λ) ≡ 0 for λ ≤ 1, χ(λ) ≡ 1 for λ ≥ 2.

An important step to prove that H has a ground state is to prove that Hσ has a
ground state. The usual trick is to consider

H̃σ = K ⊗ 1l + 1l⊗ dΓ(ωσ) + φ(vσ),

where:
ωσ := F (ω ≤ σ)σ + (1− F (ω ≤ σ))ω = ω + (σ − ω)F (ω ≤ σ).
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Note that since ωσ ≥ σ > 0, H̃σ is a massive Pauli-Fierz Hamiltonian. Moreover it is
well known (see eg [G], [BD]) Hσ has a ground state iff H̃σ does. The fact that H̃σ has a
ground state follows from an estimate on its essential spectrum (HVZ theorem). In [BD]
this is shown using the condition that h = L2(Rd, dk) and ω = ω(k). Here we will replace
this condition by the following more abstract condition, formulated using an additional
selfadjoint operator 〈x〉 on h. Similar abstract conditions were introduced in [GP].

We will assume that there exists an selfadjoint operator 〈x〉 ≥ 1 on h such that the
following conditions hold for all σ > 0:

(4.4)

(i) (z − 〈x〉)−1 : Domωσ → Domωσ, ∀ z ∈ C\R,
(ii) [〈x〉, ωσ] defined as a quadratic form on Dom〈x〉 ∩Domω is bounded,

(iii) 〈x〉−ε(ωσ + 1)−ε is compact on h for some 0 < ε < 1
2
.

The operator 〈x〉, called a gauge, is used to localize particles in h.
We assume also as in [BD]:

(4.5) (K + 1)−
1
2 is compact.

This assumption means that the small system is confined.

Proposition 4.7 Assume (4.1), (4.2), (4.3), (4.4),(4.5) . Then

σess(H̃σ) ⊂ [inf σ(H̃σ) + σ,+∞[.

It follows that H̃σ (and hence Hσ) has a ground state for all σ > 0.

Proof. By (4.3), φ(vσ) is form bounded with respect to H0 (and to K ⊗ 1l + 1l⊗ dΓ(ωσ))
with the infinitesimal bound, hence Hσ, H̃σ are well defined as bounded below selfadjoint
Hamiltonians.

We can follow the proof of [DG2, Thm. 4.1] or [GP, Thm. 7.1] for its abstract version.
For ease of notation we denote simply H̃σ by H, ωσ by ω and vσ by v. The key estimate
is the fact that for χ ∈ C∞0 (R) one has

(4.6) χ(Hext)I∗(jR)− I∗(jR)χ(H) ∈ o(1), when R→∞.

(The extended operator Hext and identification operator I(jR) are defined for example in
[GP, Sect.2.4]). The two main ingredients of the proof of (4.6) are the estimates:

(4.7) [F (
〈x〉
R

), ωσ] ∈ O(R−1), F ∈ C∞0 (R),

and

(4.8) ω
− 1

2
σ F (

〈x〉
R
≥ 1)vσ(K + 1)−

1
2 ∈ o(R0).

Now (4.8) follows from the fact that vσ(K + 1)−
1
2 is compact (note that ω−

1
2

σ is bounded
since ωσ ≥ σ), and (4.7) follows from Lemma 4.8. The estimate (4.6) can then be proved
exactly as in [GP, Lemma 6.3]. Note that here we prove only the ⊂ part of the HVZ
theorem, which is sufficient for our purposes. The details are left to the reader. 2
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Lemma 4.8 Assume conditions (i), (ii) of (4.4). Then for all F ∈ C∞0 (R) one has:

F (〈x〉) : Domωσ → Domωσ,

[F ( 〈x〉
R

), ωσ] ∈ O(R−1).

Proof. The proof of the lemma is easy, using almost analytic extensions, as for example
in [GP]. The details are left to the interested reader. 2

4.3 Existence of a ground state for massless models

Let us introduce the following hypothesis on the coupling operator ([BD, Hyp. F]):

(4.9) ω−1v(K + 1)−
1
2 is compact.

Theorem 4.9 Assume (4.1), (4.2), (4.3), (4.4), (4.5) and (4.9). Then H has a ground
state.

Proof. we can follow the proof in [BD, Sect. 4]. The existence of ground state for Hσ

([BD, Prop. 4.5]) is shown in Prop. 4.7. The arguments in [BD, Sects 4.2, 4.3] based
on the pullthrough and double pullthrough formulas are abstract and valid for any one
particle operator ω. The only place where the fact that h = L2(Rd, dk) and ω = ω(k)
appears is in [BD, Prop. 4.7] where the operator |x| = |i∇k| enters. In our situation it
suffices to replace it by our gauge operator 〈x〉. The rest of the proof is unchanged. 2

4.4 Proof of Thm. 4.1

We now complete the proof of Thm. 4.1, by verifying the hypotheses of Thm. 4.9. We
recall that h = L2(Rddx), ω = h

1
2 and we will take 〈x〉 = (1 + x2)

1
2 .

Proof of Thm. 4.1.
We saw in the proof of Lemma 3.3 that v, ω−

1
2v are bounded, hence in particular (4.2)

is satisfied. By hypothesis (E2), (K + 1)−
1
2 is compact, which implies that conditions

(4.3) and (4.5) are satisfied.
We now check condition (4.4). Note that ωσ = f(h) where f ∈ C∞(R) with f(λ) = λ

1
2

for λ ≥ 2. Clearly Domωσ = H1(Rd) which is preserved by (z − 〈x〉)−1, so (i) of (4.4) is
satisfied. Condition (iii) is also obviously satisfied. It remains to check condition (ii). To
this end we write ωσ = f(h) = (h+ 1)g(h) where g ∈ C∞(R) satisfies

g(n)(λ) ∈ O(〈λ〉−
1
2
−n), n ∈ N,

and hence

(4.10) [〈x〉, ωσ] = [〈x〉, h]g(h) + (h+ 1)[〈x〉, g(h)].

Since ∇ajk(x), ∇c(x), ∇m(x) are bounded and Domh = H2(Rd) we see that

(4.11) [〈x〉, h](h+ 1)−
1
2 , [[〈x〉, h], h](h+ 1)−1 are bounded.

14



In particular the first term in the r.h.s. of (4.10) is bounded. To estimate the second
term, we use an almost analytic extension of g satisfying:

(4.12)
g̃|R = g, |∂g̃

∂z
(z)| ≤ CN〈z〉−3/2−N |Imz|N , N ∈ N,

suppg̃ ⊂ {z ∈ C||Imz| ≤ c(1 + |Rez|)},

(see eg [DG1, Prop. C.2.2]), and write

g(h) =
i

2π

∫
C

∂g̃

∂z̄
(z)(z − h)−1dz ∧ dz̄.

We perform a commutator expansion to obtain that:

[〈x〉, g(h)] = g′(h)[〈x〉, h] +R2,

for
R2 =

i

2π

∫
C

∂g̃

∂z̄
(z)(z − h)−2[[〈x〉, h]h](z − h)−1dz ∧ dz̄.

Since |g′(λ)| ≤ C〈λ〉−3/2, (h+ 1)g′(h)[〈x〉, h] is bounded. To estimate the term (h+ 1)R2,
we use again (4.11) and the bound

‖(h+ 1)α(z − h)−1‖ ≤ C〈z〉α|Imz|−1, α =
1

2
, 1.

We obtain that

‖(h+ 1)R2‖ ≤ C‖[[〈x〉, h]h](h+ 1)−1‖
∫

C
|∂g̃
∂z̄

(z)|〈z〉2|Imz|−3dzdz̄.

This integral is convergent using the estimate (4.12). This completes the proof of (4.4).
It remains to check condition (4.9), i.e. the fact that the interaction is infrared regular.

This is the only place where the lower bound onm(x) enters. By Thm. A.8 we obtain that
ω−3/2〈x〉−3/2−ε is bounded for all ε > 0. By condition (E2), we obtain that 〈X〉3/2+ε(K +

1)−
1
2 is bounded for all ε > 0 small enough.
Therefore to check (4.9) it suffices to prove that the map

L2(R3, dX) 3 u 7→ 〈x〉3/2+ερ(x−X)〈X〉−3/2−εu(X) ∈ L2(R3, dX)⊗ L2(R3, dx)

is bounded, which is immediate since ρ ∈ S(R3). This completes the proof of Thm. 4.1.
2

4.5 Existence of a ground state for non confined Hamiltonians

In this subsection we state the results on existence of a ground state if the electronic
potential is not confining. As explained in the beginning of this section, one has to
assume a stability condition, meaning that states near the bottom of the spectrum of H
are confined in electronic variables from energy conservation arguments.
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Definition 4.10 Let H be a Nelson Hamiltonian satisfying (E1), (B1). We assume for
simplicity that the electronic potential W (X) is bounded. Set for R ≥ 1:

DR = {u ∈ DomH |1l{|X|≤R}u = 0}.

The ionization threshold of H is

Σ(H) := lim
R→+∞

inf
u∈DR, ‖u‖=1

(u|Hu).

The following theorem can easily be obtained by adapting the arguments in this section.

Theorem 4.11 Assume hypotheses (E1), (B1), W ∈ L∞(R3) and m(x) ≥ a〈x〉−1 for
some a > 0. Then if the following stability condition is satisfied:

Σ(H) > inf σ(H),

H has a ground state.

Sketch of proof. Assuming the stability condition one can prove using Agmon-type
estimates as in [Gr] (see [P] for the case of the Nelson model) that if χ ∈ C∞0 (]−∞,Σ(H)[
then eβ|X|χ(Hσ) is bounded uniformly in 0 < σ ≤ σ0 for σ0 small enough. From this fact
one deduces by the usual argument that Hσ has a ground state ψσ and that

(4.13) sup
σ>0
‖〈X〉Nψσ‖ <∞.

One can then follow the proof in [P, Thm. 1.2]. The key infrared regularity property
replacing (4.9) is now

sup
σ>0
‖ω−1vψσ‖H⊗h <∞.

This estimate follows as in the proof of (4.9) from Thm. A.8 and the bound (4.13). The
details are left to the reader. 2

5 Removal of the UV cutoff
Let us denote by H(ρ) the Nelson Hamiltonian defined in (3.2) to emphasize its de-
pendence on the charge density ρ. In [Ne] Nelson considered the limit of H(ρ) for
ω = (−∆ + m2)

1
2 when ρ tends to the Dirac mass δ, leading to a interacting Hamil-

tonian with a local interaction. In this section we study the same problem for the Nelson
model with variable coefficients.

In [Ne], the one-particle operator ω is diagonalized using the Fourier transform. In our
case we will use instead the pseudodifferential calculus. We denote by S0(R3) the space:

S0(R3) = {f ∈ C∞(R3) | |∂αx f(x)| ≤ Cα, α ∈ N3}.
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We will assume in addition to hypotheses (E1), (B1) that:

(N) Ajk(X), ajk(x), c(x),m2(x) ∈ S0(R3).

It is easy to see that h can be rewritten as:

h =
∑
jk

Djc
−2(x)ajk(x)Dj + v(x),

where v ∈ S0(R3), and that c−2(x)ajk(x) ∈ S0(R3). Changing notation, we will henceforth
assume that

h =
∑
jk

Dja
jk(x)Dj + v(x),

where [ajk](x) satisfies (B1) and ajk, v ∈ S0(R3).

5.1 Preparations

We refer the reader to Appendix B for the notation and for some background on pseu-
dodifferential calculus. It will be useful later to consider ω = h

1
2 as a pseudodifferential

operator. Note first that
h = hw(x,Dx),

for
h(x, ξ) =

∑
1≤j,k≤3

ξja
jk(x)ξk + c(x).

The symbol h(x, ξ) belongs to S(〈ξ〉2, g), for the standard metric g = dx2 + 〈ξ〉−2dξ2, and
is elliptic in this class. By Lemma B.1 and Thm. B.3, we know that if f ∈ Sp(R), then
the operator f(h) belongs to Ψw(〈ξ〉2p, g).

If the model is massive, then picking a function f ∈ S 1
2 (R) equal to λ

1
2 in {λ ≥ m/2},

we see that ω = f(h) ∈ Ψw(〈ξ〉, g).
If the model is massless, we fix σ > 0 (σ = 1 will do) and pick f ∈ C∞(R) such that:

f(λ) =

{
λ

1
2 if |λ| ≥ 4σ2,

σ if |λ| ≤ σ2.

We set:
ωσ := f(h).

Again by Thm. B.3 we know that ωσ belongs to Ψw(〈ξ〉, g). For simplicity in the massive
case we set ωσ := ω.

Consider now the operator:

T := K0 ⊗ 1l + 1l⊗ ωσ,

acting on L2(R3, dX) ⊗ L2(R3, dx). Clearly T is selfadjoint on its natural domain and
T ≥ σ.
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Lemma 5.1 Set

M(Ξ, ξ) := 〈Ξ〉2 + 〈ξ〉, G = dX2 + dx2 + 〈Ξ〉−2dΞ2 + 〈ξ〉−2dξ2.

Then T−1 belongs to Ψw(M−1, G).

Proof. By Lemma B.2, the metric G and weight M satisfy all the conditions in Subsect.
B.1. Clearly T ∈ Ψw(M,G). We pick a function f ∈ S−1(R) such that f(λ) = λ−1 in
{λ ≥ σ/2}. By Thm. B.3 T−1 = f(T ) ∈ Ψw(M−1, G). 2

Let us fix another cutoff function F (λ ≥ σ) ∈ C∞(R) with

F (λ ≥ σ) =

{
1 for |λ| ≥ 4σ,
0 for |λ| ≤ 2σ,

and set:
F (λ ≤ σ) := 1− F (λ ≥ σ).

Lemma 5.2 Set

β(X, x) = βX(x) := −T−1F (ω ≥ σ)ω−
1
2ρX = −T−1F (ω ≥ σ)ω

− 1
2

σ ρX .

Then
(1) β ∈ C∞(R6).

(2) Let 0 ≤ α < 1. Then ωαβX ∈ L2(R3, dx) and there exists s > 3/2 such that

‖ωαβX‖L2(R3,dx) ≤ C‖ρ‖H−s(R3),

uniformly in X.

(3) Let α > 0. Then ω−α∇XβX ∈ L2(R3, dx) and there exists s > 3/2 such that

‖ω−α∇XβX‖L2(R3,dx) ≤ C‖ρ‖H−s(R3),

uniformly in X.

(4) one has:
ω−

1
2ρX + (K0 ⊗ 1l + 1l⊗ ω)βX = ω−

1
2F (ω ≤ σ)ρX .

Proof. The function ρX(x) is clearly C∞ in (X, x), so (1) follows from the fact that T−1

and ω−
1
2

σ F (ω ≥ σ) are pseudodifferential operators.
We claim that there exists a symbol bX(x, ξ) = b(X, x, ξ) such that

(5.1)
b(X, x, ξ) ∈ S(〈ξ〉−5/2, dX2 + dx2 + 〈ξ〉−2dξ2),

βX = b
(1,0)
X (x,Dx)ρX .
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Let us prove our claim. Applying Lemma 5.1 and (B.10), we know that T−1 ∈
Ψ(1,0)(M−1, G). Setting w(X, x) = T−1ρX , this yields:

(5.2)

w(X, x) = (2π)−3
∫

ei(X·Ξ+x·ξ)B(X, x,Ξ, ξ)δ(ξ + Ξ)ρ̂(ξ)dξdΞ

= (2π)−3
∫

ei(x−X)·ξB(X, x,−ξ, ξ)ρ̂(ξ)dξ

= b
(1,0)
X (x,Dx)ρX

for

(5.3) bX(x, ξ) = B(X, x,−ξ, ξ),

where B(X, x,Ξ, ξ)inS(M−1, G) is the (1, 0 symbol of T−1 . This implies that:

bX ∈ S(〈ξ〉−2, dX2 + dx2 + 〈ξ〉−2dξ2).

Applying once again Thm. B.3, we know that F (ω ≥ σ)ω
− 1

2
σ ∈ Ψ(1,0)(〈ξ〉− 1

2 , g). By the
composition property (B.11), we obtain our claim.

Statement (2) follows then from (5.1), if we note that ωαF (ω ≥ σ)ω
− 1

2
σ ∈ Ψ(1,0)(〈ξ〉α− 1

2 , g)
and use the mapping property of pseudodifferential operators between Sobolev spaces re-
called in (B.13). Statement (3) is proved similarly, using that

∇XbX(x,Dx)ρX = ∂XbX(x,Dx)ρX − bX(x,Dx)∇xρX .

Finally (4) follows from the fact that (ω − ωσ)F (ω ≥ σ) = 0. 2

5.2 Dressing transformation

Let ρ be a charge density as above. We set for κ� 1:

ρκ(x) := κ3ρ(κx), ρκX(x) = ρκ(x−X),

so that

(5.4) lim
κ→∞

ρκX = qδX in H−s(R3), ∀ s > 3/2.

This implies

(5.5) ‖ρκX‖H−s(R3) ≤ C, uniformly in X, κ, for all s > 3/2.

We set
Hκ = H(ρκ),

and as in [Ne]:
Uκ := eiφ(iβκX),

which is a unitary operator on H. (Recall that βκX is defined in Lemma 5.2).
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Proposition 5.3 Set

aκj (X) = 1√
2
a(∇Xjβ

κ
X),

Rκ = 2
∑

j,k∇XjAjk(X)aκk(X)− aκ∗j (X)Ajk(X)∇Xk

+
∑

j,k 2aκ∗j (X)Ajk(X)aκk(X)− aκ∗j (X)Ajk(X)aκ∗k (X)− aκj (X)Ajk(X)aκk(X),

V κ(X) = −(ρκX |ω−1F (ω ≥ σ)T−1ρκX) + 1
2
(T−1ρκX |F 2(ω ≥ σ)T−1ρκX)

+1
2

∑
jk Ajk(X)(∇XjT

−1ρκX |ω−1F 2(ω ≥ σ)∇XkT
−1ρκX).

Then
UκHκUκ∗ = K + dΓ(ω) + φ(ω−

1
2F (ω ≤ σ)ρκX)

+Rκ + V κ(X).

Proof. We recall some well-known identities:

(5.6) Uκ(dΓ(ω) +φ(ω−
1
2ρκ,X))Uκ∗ = dΓ(ω) +φ(ωβκX +ω−

1
2ρκX) + Re(

ω

2
βκX +ω−

1
2ρκX |βκX).

Note that the scalar product in the rhs is real valued, since ρκX , βκX and ω are real vectors
and operators. Using once more that βκX is real, we see that the operators φ(iβκX) for
different X commute, which yields:

UκDXjU
κ∗ = DXj − φ(i∇Xjβ

κ
X),

and hence:

UκKUκ∗ =
∑
j,k

(
DXj − φ(i∇Xjβ

κ
X)
)
Ajk(X) (DXk − φ(i∇Xkβ

κ
X)) +W (X).

We expand the squares in the r.h.s. using the definition of aκj (X) in the proposition. After
rearranging the various terms, we obtain:

UκKUκ∗ = K + φ(K0β
κ
X)

+2
∑

j,k∇XjAjk(X)aκk(X)− aκ∗j (X)Ajk(X)∇Xk

+
∑

j,k 2aκ∗j(X)Ajk(X)aκk(X)− aκ∗j (X)Ajk(X)aκ∗k (X)− aκj (X)Ajk(X)aκk(X)

+1
2

∑
jk Ajk(X)(∇Xjβ

κ
X |∇Xkβ

κ
X).

This yields:

UκHκUκ∗ = K + dΓ(ω)

+2
∑

j,k∇XjAjk(X)aκk(X)− aκ∗j (X)Ajk(X)∇Xk

+
∑

j,k 2aκ∗j (X)Ajk(X)aκk(X)− aκ∗j (X)Ajk(X)aκ∗k (X)− aκj (X)Ajk(X)aκk(X)

+φ(ω−
1
2ρκX + (K0 + ω)βκX)

+(ω−
1
2ρκX + 1

2
ωβκX |βκX) + 1

2

∑
jk Ajk(X)(∇Xjβ

κ
X |∇Xkβ

κ
X).

The sum of the second and third lines equals Rκ. By Lemma 5.2, the fourth line equals
φ(ω−

1
2F (ω ≤ σ)ρX). The fifth line equals V κ(X), using the definition of βX . 2
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5.3 Removal of the ultraviolet cutoff

Set
h0(x, ξ) =

∑
1≤j,k≤3

ξjajk(x)ξk, K(X, ξ) =
∑

1≤j,k≤3

ξjAjk(X)ξk.

and:

(5.7) Eκ(X) := −1

2
(2π)−3

∫
(h0(X, ξ) + 1)−

1
2K(X, ξ)(K(X, ξ) + 1)−2|ρ̂|2(ξκ−1)dξ.

Lemma 5.4 Then there exists a bounded continuous potential Vren such that:

lim
κ→+∞

V κ(X)− Eκ(X) = Vren(X),

in L∞(R3).

Theorem 5.5 Assume hypotheses (E1), (B1), (N). Then the family of selfadjoint oper-
ators

Hκ − Eκ(X)

converges in strong resolvent sense to a bounded below selfadjoint operator H∞.

Proof. By Prop. 5.6 below, Uκ(Hκ − Eκ(X))Uκ∗ converges in norm resolvent sense to
Ĥ∞. Moreover by Lemma 5.2 (2), βκX converges in B(K,K ⊗ h) when κ→∞, hence Uκ

converges strongly to some unitary operator U∞. It follows that Hκ converges in strong
resolvent sense to

H∞ = U∞∗Ĥ∞U∞. 2

Proof of Lemma 5.4. For simplicity we will assume that the model is massive
(m > 0), which allows to remove the cutoffs F (ω ≥ σ) in the various formulas. The
massless case can be treated similarly. Recall that:

(5.8)
T−1ρκX = bX(x,Dx)ρ

κ
X ,

∂XT
−1ρκX = ∂XbX(x,Dx)ρ

κ
X − bX(x,Dx)∂xρ

κ
X ,

where bX(x, ξ) is defined in (5.3). Plugging the second identity in (5.8) into the formula
giving Vκ(X) we get:

V κ(X) = V κ
1 (X) + V κ

2 (X),

for

V κ
1 (X) = 1

2
‖bX(x,Dx)ρ

κ
X‖2 + 1

2

∑
jk Ajk(X)(∂XjbX(x,Dx)ρ

κ
X |ω−1∂XkbX(x,Dx)ρ

κ
X)

−
∑

jk Ajk(X)(∂XjbX(x,Dx)ρ
κ
X |ω−1bX(x,Dx)∂xkρ

κ
X),

V κ
2 (X) = −(ρκX |ω−1bX(x,Dx)ρ

κ
X) + 1

2

∑
jk Ajk(X)(bX(x,Dx)∂xjρ

κ
X |ω−1bX(x,Dx)∂xkρ

κ
X).
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We will use that:

(5.9)
ρκX → qδX in Hs(R3), ∀s < −3

2
,

∂xρ
κ
X → q∂xδX in Hs(R3), ∀s < −5

2
, uniformly in X ∈ R3,

where we recall that q =
∫

R3 ρ(y)dy. Using that bX(x, ξ) ∈ S(〈ξ〉−2, g) and the mapping
properties of pseudodifferential operators between Sobolev spaces, we obtain that

lim
κ→∞

V κ
1 (X) =: V ∞1 (X) exists uniformly for X ∈ R3,

and V ∞1 (X) is a bounded continuous function, whose exact expression is obtained by
replacing ρκX by qδX in the formula giving V κ

1 (X).
We now consider the potential V κ

2 (X), which will be seen to be logarithmically diver-
gent when κ → ∞. To extract its divergent part, we use symbolic calculus. We will use
only the (1, 0) quantization and omit the corresponding superscript. We first use Prop.
B.4 for the metric G defined in Lemma 5.1. Note that the ‘Planck constant’ for the metric
G is

λ(X, x,Ξ, ξ) = min(〈Ξ〉, 〈ξ〉).

Applying Prop. B.4, we obtain that the symbol bX(x, ξ) in (5.2) equals:

(5.10)
bX(x, ξ) = (K(X, ξ) + (h0(x, ξ) + 1)

1
2 )−1 + S(〈ξ〉−3, g)

= (K(X, ξ) + 1)−1 + S(〈ξ〉−3, g).

The same argument for the metric g shows that ω−1 = d(x,Dx) for:

(5.11) d(x, ξ) = (h0(x, ξ) + 1)−
1
2 + S(〈ξ〉−2, g).

Combining (5.10) and (5.11) we get that:

(5.12)
ω−1bX(x,Dx) = cX(x,Dx) + rX(x,Dx),

b∗X(x,Dx)ω
−1bX(x,Dx) = dX(x,Dx) + sX(x,Dx),

where:

(5.13)

cX(x, ξ) = (h0(x, ξ) + 1)−
1
2 (K(X, ξ) + 1)−1,

dX(x, ξ) = (h0(x, ξ) + 1)−
1
2 (K(X, ξ) + 1)−2,

rX(x, ξ) ∈ S(〈ξ〉−4, g), sX(x, ξ) ∈ S(〈ξ〉−6, g), uniformly in X ∈ R3.

Setting

Ṽ κ
2 (X) = −(ρκX |cX(x,Dx)ρ

κ
X) +

1

2

∑
jk

Ajk(X)(∂xjρ
κ
X |dX(x,Dx)∂xkρ

κ
X),
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we see using again (5.9) that

(5.14) lim
κ→∞

V κ
2 (X)− Ṽ κ

2 (X) = V ∞2 (X) exists uniformly for X ∈ R3

and is a bounded continuous function. The potential Ṽ κ
2 (X) can be explicitely evaluated.

In fact:

(5.15)

(ρκX |cX(x,Dx)ρ
κ
X)

= (2π)−3
∫

ei(x−X)·ξcX(x, ξ)ρκX(x)ρ̂(κ−1ξ)dxdξ

= (2π)−3
∫

ei(x−X)·ξcX(X, ξ))ρκX(x)ρ̂(κ−1ξ)dxdξ +O(κ−1) log(κ)

= (2π)−3
∫
cX(X, ξ)|ρ̂|2(κ−1ξ)dξ +O(κ−1) log(κ).

Similarly

(5.16)

(∂xjρ
κ
X |dX(x,Dx)∂xkρ

κ
X)

= (2π)−3
∫

ei(x−X)·ξ∂jρ
κ
X(x)dX(x, ξ)iξkρ̂(κ−1ξ)dxdξ

= (2π)−3
∫

ei(x−X)·ξρκX(x)dX(x, ξ)ξjξkρ̂(κ−1ξ)dxdξ

−(2π)−3
∫

ei(x−X)·ξρκX(x)∂jdX(x, ξ)iξkρ̂(κ−1ξ)dxdξ.

The second term in the rhs has a finite limit when κ → ∞. By the same argument as
above, we have:

(5.17)

(2π)−3
∫

ei(x−X)·ξρκX(x)dX(x, ξ)ξjξkρ̂(κ−1ξ)dxdξ

= (2π)−3
∫

ei(x−X)·ξρκX(x)dX(X, ξ)ξjξkρ̂(κ−1ξ)dxdξ +O(κ−1 log(κ))

= (2π)−3
∫
dX(X, ξ)ξjξk|ρ̂|2(κ−1ξ)dξ +O(κ−1 log(κ)).

Using the definition of cX(x, ξ) and dX(x, ξ) in (5.13), we get that

−cX(X, ξ) + 1
2

∑
jk Ajk(X)ξjξkdX(X, ξ)

= −1
2
(h0(X, ξ) + 1)−

1
2K(X, ξ)(K(X, ξ) + 1)−2.

Using the definition of Eκ(X) and (5.15), (5.16) and (5.17) it follows that

lim
κ→∞

Ṽ κ
2 (X)− Eκ(X) exists uniformly for X ∈ R3.

This completes the proof of the lemma. 2

Proposition 5.6 Let
Ĥκ = UκHκUκ∗ − Eκ(X).

Then there exists a bounded below selfadjoint operator Ĥ∞ such that
(1) Ĥκ converges to Ĥ∞ in norm resolvent sense;
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(2) D(|Ĥ∞| 12 ) = D(H
1
2
0 ).

Proof. The proof is analogous to the one in [Ne], using Thm. B.6 so we will only sketch
it. The important point is the convergence of Rκ as quadratic form on D(|H0|

1
2 ) when

κ→∞. The various terms in Rκ are estimated with the help of Lemma B.5, applied to
the coupling operator: vκ = ∇Xjβ

κ
X . From Lemma 5.2 (3), we obtain that ω−α∇Xjβ

κ
X

converges in B(K,K ⊗ h) when κ → ∞. The only remaining point to consider is the
fact that powers of the number operator N appear in Lemma B.5. This is sufficient in
the massive case since H0 dominates N . In the massless case, we use the fact that βκX =
F (ω ≥ σ/2)βκX . Therefore if we apply Lemma B.5, we can replace N by dΓ(1l[σ/2,+∞[(ω)),
which is dominated by H0. The rest of the proof is standard. 2

A Lower bounds for second order differential operators
In this section we prove various lower bounds for second order differential operators.
These bounds are the key ingredient in the proof of the existence of a ground state for
the Nelson model.

A.1 Second order differential operators

Let us introduce the class of second order differential operators that will be studied in
this section. Let:

h0 =
∑

1≤j,k≤d c(x)−1Dja
jk(x)Dkc(x)−1,

h = h0 + v(x),

with ajk, c, v real functions and:

(A.1)
C01l ≤ [ajk(x)] ≤ C11l, C0 ≤ c(x) ≤ C1, C0 > 0,

∂αxa
jk(x) ∈ O(〈x〉−1), |α| ≤ 1, ∂αx c(x) ∈ O(1), |α| ≤ 2,

(A.2) v ∈ L∞(Rd), v ≥ 0.

Clearly h0 and h are selfadjoint and positive with domain H2(Rd). We will always assume
that d ≥ 3.

A.2 Upper bounds on heat kernels

If K is a bounded operator on L2(Rd, c2dx) we will denote by K(x, y) ∈ D′(R2d) its
distribution kernel. In this subsection we will prove the following theorem. We set:

ψα(t, x) :=

(
〈x〉2

〈x〉2 + t

)α
, α > 0.
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Theorem A.1 Assume in addition to (A.1), (A.2) that:

v(x) ≥ a〈x〉−2, a > 0,

then there exists C, c, α > 0 such that:

(A.3) e−th(x, y) ≤ Cψα(t, x)ψα(t, y)ect∆(x, y), ∀ t > 0, x, y ∈ Rd.

If c(x) ≡ 1 or if h0 is the Laplace-Beltrami operator for a Riemannian metric on Rd, then
Thm. A.1 is due to Zhang [Zh].

Remark A.2 Conjugating by the unitary

U :
L2(Rd, dx)→ L2(Rd, c2(x)dx),

u 7→ c(x)−1u,

we obtain
h̃0 := Uh0U

−1 = c(x)−2
∑

1≤j,k≤dDja
jk(x)Dk,

h̃ := UhU−1 = h̃0 + v(x),

which are selfadjoint with domain H2(Rd). Let e−th̃(x, y) for t > 0 the integral kernel of
e−th̃ i.e. such that

e−th̃u(x) =

∫
Rd

e−th(x, y)u(y)c2(y)dy, t > 0.

Then since e−th(x, y) = c(x)e−th̃(x, y)c(y), it suffices to prove Thm. A.1 for e−th̃.

By the above remark, we will consider the operator h̃0 (resp. h̃) and denote it again by
h0 (resp. h). We note that they are associated with the closed quadratic forms:

Q0(f) =

∫
Rd

∑
j,k

∂jfa
jk∂kf dx,Q(f) = Q0(f) +

∫
Rd
|f |2c2v dx,

with domain H1(Rd).
Let us consider the semigroup {e−th}t≥0 generated by h. Since DomQ0 = H1(Rd), we

can apply [D, Thms. 1.3.2, 1.3.3] to obtain that e−th is posivity preserving and extends
as a semigroup of contractions on Lp(Rd, c2dx) for 1 ≤ d ≤ ∞, strongly continuous on
Lp(Rd, c2dx) if p <∞. In other words {e−th}t≥0 is a Markov symmetric semigroup.

We first recall two results, taken from [PE] and [D].

Lemma A.3 Assume (A.1), (A.2). Then there exist c, C > 0 such that:

0 ≤ e−th(x, y) ≤ Cect∆(x, y), ∀ 0 < t, x, y ∈ Rd.
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Proof. Since v(x) ≥ 0 it follows from the Trotter-Kato formula that

0 ≤ e−th(x, y) ≤ e−th0(x, y), a.e. x, y.

The stated upper bound on e−th0(x, y) is shown in [PE, Thm. 3.4]. 2

The following lemma is an extension of [D, Lemma 2.1.2] where the case c(x) ≡ 1 is
considered.

Lemma A.4 Assume (A.1), (A.2). Then:
(1) e−th is ultracontractive, i.e. e−th is bounded from L2 to L∞ for all t > 0, and

ct := ‖e−th‖L2→L∞ = sup
f∈L2

‖e−thf‖∞
‖f‖2

≤ ct−d/4

with some constant c > 0.

(2) e−th is bounded from L1 to L∞ for all t > 0 and

‖e−th‖L1→L∞ ≤ c2
t/2.

(3) The kernel e−th(x, y) satisfies:

0 ≤ e−th(x, y) ≤ c2
t/2.

Proof. From Lemma A.3 we obtain that

‖e−thf‖∞ ≤ C‖ect∆|f |‖∞ ≤ C ′t−d/4‖f‖2,

using the explicit form of the heat kernel of the Laplacian. This proves (1).
Taking adjoints we see that e−th is also bounded from L1 to L2 with ‖e−th‖L1→L2 ≤ ct.

It follows that
‖e−th‖L1→L∞ ≤ ‖e−th/2‖L2→L∞‖e−th/2‖L1→L2 ≤ c2

t/2,

which proves (2). Statement (3) is shown in [D, Lemma 2.1.2]. 2

We will deduce Thm. A.1 from the following result.

Theorem A.5 Assume the hypotheses of Thm. A.1. Then there exists C, α > 0 such
that:

e−th(x, y) ≤ Ct−d/2ψα(t, x)ψα(t, y).

Proof of Theorem A.1:
Combining Lemma A.3 with Thm. A.5 we get:

e−th(x, y) =
(
e−th(x, y)

)ε (
e−th(x, y)

)1−ε

≤ Ct−εd/2e−ε(x−y)2/2tt−(1−ε)d/2ψα(t, x)1−εψα(t, y)1−ε

≤ C ′t−d/2e−c(x−y)2/2tψβ(t, x)ψβ(t, y),

for β = (1− ε)α. This completes the proof of Thm. A.1. 2

It remains to prove Theorem A.5. To this end, we employ the following abstract result.
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Lemma A.6 ([MS, Theorem B]) Let (M,dµ) be a locally compact measurable space with
σ-finite measure µ and let A be a non-negative self-adjoint operator on L2(M,dµ) such
that

(i) e−tA1 := (e−tA|L1∩L2)clos
L1→L1, t ≥ 0 is a C0-semigroup of bounded operators, i.e.,

‖e−tA1‖L1→L1 ≤ c1, t ≥ 0.

(ii) e−tA is bounded from L1 to L∞ with:

‖e−tA1‖L1→L∞ ≤ c2t
−j, t > 0,

for some j > 1.

Assume moreover that there exists a family of weights ψ(s, x) (s > 0) such that:

(B1) ψ(s, x), ψ(s, x)−1 ∈ L2
loc(M \N, dµ) for all s > 0, where N is a closed null set.

(B2) There is a constant c̃ independent of s such that, for all t ≤ s,

‖ψ(s, ·)e−tAψ(s, ·)−1f‖1 ≤ c̃‖f‖1, f ∈ Ds,

where Ds := ψ(s, ·)L∞c (M \N, dµ)

(B3) There exists 0 < ε < 1 and constants ĉi > 0, i = 1, 2 such that for any s > 0 there
exists a measurable set Ωs ⊂M with

(a) |ψ(s, x)|−ε ≤ ĉ1 for all x ∈M \ Ωs,

(b) |ψ(s, x)|−ε ∈ Lq(Ωs) and ‖|ψ(s, ·)|−ε‖Lq(Ωs) ≤ ĉ2s
j/q with q = 2/(1− ε) and j > 1 is

the exponent in condition (ii).

Then there is a constant C such that

|e−tA(x, y)| ≤ Ct−j|ψ(t, x)ψ(t, y)|, ∀ t > 0, a.e. x, y ∈M.

To verify condition (B2) of Lemma A.6, we will use the following lemma.

Lemma A.7 ([MS, Criterion 2]) Let e−tA be a C0-semigroup on L2(M,dµ). Denote by
〈·, ·〉 the scalar product on L2(M, dµ). Then:

‖e−tAf‖L∞ ≤ ‖f‖L∞ , f ∈ L2 ∩ L∞, t > 0,

if and only if:

(A.4) Re〈f − f∧, Af〉 ≥ 0, f ∈ D(A),

where f∧ = (|f | ∧ 1)sgnf with sgnf(x) := f(x)/|f |(x) if |f |(x) 6= 0 and sgnf(x) = 0 if
f(x) = 0.
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Proof of Thm. A.5: We will prove that there exists α > 0 such that the hypotheses
of Lemma A.6 are satisfied for (M, dµ) = (Rd, c2(x) dx), A = h and ψ(s, x) = ψα(s, x).
For ease of notation we will often denote ψα simply by ψ.

From the discussion before Lemma A.4, we know that e−th extends as a C0−semigroup
of contractions of L1(Rd, c2dx), which implies that hypothesis (i) holds with c1 = 1.
Hypothesis (ii) with j = d/2 follows from (2) of Lemma A.4. Note that d/2 > 1 since
d ≥ 3.

We now check that conditions (B) are satisfied by ψα provided we choose α = α0a
1
2

for some constant α0. Since ψ, ψ−1 are bounded, condition (B1) is satisfied for all α > 0.
Set Ωs := {x ∈ Rd | 〈x〉2 ≤ s}. Then

ψ(x)−ε =

[
〈x〉2 + s

〈x〉2

]αε
≤ 2αε, ∀ x 6∈ Ωs,

which proves the bound (a) of (B3) for all α > 0. Take now 0 < ε < d
d+4α

so that we see
that d − 2αεq > 0 for q = 2/(1 − ε). If 0 ≤ s < 1 Ωs = ∅ and (b) of (B3) is satisfied. If
s ≥ 1 we have:

‖ψ−ε‖qLq(Ωs) =

∫
Ωs

[
〈x〉2 + s

〈x〉2

]αεq
c2(x)dx

≤ C2
1(2s)αεq

∫
{|x|≤

√
s}
|x|−2αεqdx

= Csαεq
∫ √s

0

rd−2αεq−1dr = C ′sd/2.

Hence (b) is satisfied for j = d/2.
It remains to check (B2). To avoid confusion, we denote by 〈g, f〉 the scalar product

in L2(Rd, c2(x)dx) and by (g|f) the usual scalar product in L2(Rd, dx).
Since ψ, ψ−1 are C∞ and bounded with all derivatives, we see that {ψe−thψ−1}t≥0 is

a C0−semigroup on L2(Rd, c2dx), with generator

hψ := ψhψ−1, Domhψ = H2(Rd).

We claim that there exists α > 0 such that

(A.5) ‖e−thψ‖L1→L1 ≤ C, uniformly for 0 ≤ t ≤ s.

By duality, (A.5) will follow from (A.6):

(A.6) ‖e−th∗ψ‖L∞→L∞ ≤ C, uniformly for 0 ≤ t ≤ s.

To prove (A.6), we will apply Lemma A.7. To avoid confusion, ∂jf(x) will denote a partial
derivative of the function f , while ∇jf(x) denote the product of the operator ∇j and
the operator of multiplication by the function f .
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Setting bi = ψ−1∂iψ, we have:

h∗ψ = ψ−1hψ

= −c(x)−2
∑

j,k∇ja
jk(x)∇k −

∑
j,k c

−2(x)bj(x)ajk(x)∇k − c−2(x)∇ja
jk(x)bk(x)

+v(x)− c−2(x)
∑

j,k bj(x)ajk(x)bk(x)

= −c(x)−2
∑

j,k∇ja
jk(x)∇k − 2c(x)−2

∑
j,k bj(x)ajk(x)∇k + w(x),

where:

w(x) = v(x)−c(x)−2
∑
j,k

bj(x)ajk(x)bk(x)−c(x)−2
∑
j,k

ajk(x)∂jbk(x)−c(x)−2
∑
j,k

(∂ja
jk)(x)bk(x).

Clearly Domh∗ψ = H2(Rd). To simplify notation, we set A(x) = [ajk(x)], F (x) =
(b1(x), . . . , bd(x)). The identity above becomes:

(A.7)
h∗ψ = −c−2∇xA∇x − c−2FA∇x − c−2∇xAF + v − c−2FAF,

= −c−2∇xA∇x − 2c−2FA∇x + w.

We note that bj(x) = αsxj〈x〉−2(〈x〉2 + s)−1, which implies that:

|bj(x)| ≤ Cα〈x〉−1, |∇xbj(x)| ≤ Cα〈x〉−2, for some C > 0.

Since v(x) ≥ a〈x〉−2, this implies using also (A.1) that:

(A.8) v(x)− c(x)−2FAF (x) ≥ 0, w(x) ≥ 0,

for α > 0 small enough.
This implies that

(A.9) Re〈f, h∗ψf〉 = −(∇xf |A∇xf) + (f |(c2v − FAF )f) ≥ 0, for f ∈ H1(Rd).

It follows that h∗ψ is maximal accretive, hence e−th
∗
ψ is a C0−semigroup of contractions by

the Hille-Yosida theorem.
To check condition (A.4) in Lemma A.7 we follow [MS], with some easy modifications.

We write
f − fΛ = sgnfχ, χ := 1l{|f |≥1}(|f | − 1),

and note that if f ∈ Domh∗ψ ⊂ H1(Rd) then |f |, sgnf, χ ∈ H1(Rd) with

(A.10) ∇sgnf =
∇f
|f |
− f ∇f
|f |2

, ∇χ = 1l{|f |≥1}∇|f |, ∇|f | =
1

2|f |
(f∇f + f∇f).

We have:

〈f − fΛ, h
∗
ψf〉 = (∇(f − fΛ)|A∇f)− 2(F (f − fΛ)|A∇f) + ((f − fΛ)|c2wf)

=: C1(f) + C2(f) + C3(f).
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Using (A.10), we have:

C1(f) = (∇(f − fΛ)|A∇f)

= (∇f | χ|f |A∇f)− (∇|f ||f χ
|f |2A∇f) + (∇χ| f|f |A∇f)

=: B1(f) +B2(f) +B3(f).

Clearly B1(f) is real valued. Next:

(A.11) ReB2(f) = −1

2
(∇|f || χ

|f |2
A(f∇f + f∇f)) = −(∇|f || χ

|f |
A∇|f |),

using (A.10). Similarly:

(A.12) ReB3(f) =
1

2
(∇χ| 1

|f |
A(f∇f + f∇f)) = (∇χ|A∇χ),

using again (A.10). We estimate now ReC2(f). We have:

(A.13) ReC2(f) = −2Re(F (f − fΛ)|A∇f) =
1

2
(χ| F
|f |
A(f∇f + f∇f)) = −2(Fχ|A∇χ).

We estimate now ReC3(f). We have:

(A.14) ReC3(f) = Re(f − fΛ|c2wf) = Re(χ|c2w|f |) = (χ|c2w|f |) = (χ|c2wχ) + (χ|c2w).

Collecting (A.11) to (A.13), we obtain that:

(A.15)

Re〈f − fΛ, h
∗
ψf〉 = (∇f | χ|f |A∇f)− (∇|f || χ|f |A∇|f |)

+(∇χ|A∇χ)− 2(Fχ|A∇χ) + (χ|c2wχ).

+(χ|c2w).

We use now the pointwise identity:

∇fA∇f −∇|f |A∇|f |

= ∇fA∇f − 1
4|f |2 (f∇f + f∇|f |)A(f∇f + f∇|f |)

= 1
4|f |2 (2|f |2∇fA∇f − f 2∇fA∇f − f 2∇fA∇f)

= 1
|f |2 (Ref∇Imf − Imf∇Ref)A(Ref∇Imf − Imf∇Ref) ≥ 0.

Hence the first line in the rhs of (A.15) is positive. Concerning the third line, we recall
that (A.8) implies that w ≥ 0 if α = α0a. Since χ ≥ 0 the third line is also positive.
Therefore:

Re〈f − fΛ, h
∗
ψf〉 ≥ (∇χ|A∇χ)− 2(Fχ|A∇χ) + (χ|c2wχ)

= 〈χ, h∗ψχ〉 = Re〈χ, h∗ψχ〉,

using (A.7) and the fact that χ is real. Using (A.9) we obtain condition (A.4). This
completes the proof of Thm. A.5. 2
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A.3 Lower bounds for differential operators

We now deduce lower bounds for powers of h from the heat kernel bounds in Subsect.
A.2.

Theorem A.8 Assume hypotheses (A.1), (A.2) and

v(x) ≥ a〈x〉−2, a > 0.

Then
h−β ≤ C〈x〉2β+ε,∀ 0 ≤ β ≤ d/2, ε > 0.

We start by an easy consequence of Sobolev inequality.

Lemma A.9 On L2(Rd) the following inequality holds:

(−∆)−γ ≤ C〈x〉2δ, ∀ 0 ≤ γ < d/2, δ > γ.

Proof. We have

(f |(−∆)−γf) = C

∫ ∫
f(x)f(y)

|x− y|d−2γ
dxdy, ∀ 0 < γ < n/2.

By the Sobolev inequality ([RS2, Equ. IX.19]):∫ ∫
f(x)f(y)

|x− y|d−2γ
dxdy ≤ C‖f‖2

r,

for r = 2d/(d+ 2γ). We write then f = 〈x〉−α〈x〉αf and use Hölder inequality to get:

‖f‖r ≤ ‖〈x〉−α‖p‖〈x〉αf‖q, p−1 + q−1 = r−1.

We choose q = 2, p = d/γ. The function 〈x〉−α belongs to Ld/γ if α > γ. This implies the
lemma. 2

Proof of Thm. A.8.
We first recall the formula:

(A.16) λ−1−ν =
1

Γ(ν + 1)

∫ +∞

0

e−tλtνdt, ν > −1.

In the estimates below, various quantities like (f |h−δf) appear. To avoid domain ques-
tions, it suffices to replace h by h + m, m > 0, obtaining estimates uniform in m and
letting m→ 0 at the end of the proof. We will hence prove the bounds

(A.17) (f |(h+m)−βf) ≤ C(f |〈x〉2β+εf), ∀ f ∈ C∞0 (Rd),

uniformly in m > 0. Moreover we note that it suffices to prove (A.17) for f ≥ 0. In fact
it follows from (A.16) that (h+m)−β has a positive kernel. Therefore

(f |(h+m)−βf) ≤ (|f ||(h+m)β|f |) ≤ C(|f ||〈x〉2β+ε|f |) = C(f |〈x〉2β+εf),
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and (A.17) extends to all f ∈ C∞0 (Rd).
We will use the bound (A.3) in Thm. A.1, noting that if (A.3) holds for some α0 > 0

it holds also for all 0 < α ≤ α0. We use the inequality(
〈x〉2

〈x〉2 + t

)(
〈y〉2

〈y〉2 + t

)
≤ 〈y〉

2

t
,

and get for f ∈ C∞0 (Rd), f ≥ 0:

h−βf(x) = c
∫ +∞

0
tβ−1e−thf(x)dt

≤ C
∫ +∞

0
tβ−α−1(ect∆〈x〉2α)f(x)dt

= C ′(−∆)β−α〈x〉2α)f(x),

as long as β > α, using again (A.16). Integrating this pointwise inequality, we get that

(f |h−2βf) ≤ C(f |〈x〉2α(−∆)−2(β−α)〈x〉2αf).

We can apply Lemma A.9 as long as 2(β − α) < d/2, and obtain

(f |h−2βf) ≤ C(f |〈x〉4β+εf), ∀ ε > 0,

if α < β < α + d/4. Since α can be taken arbitrarily close to 0, this completes the proof
of the theorem. 2

B Background on pseudodifferential calculus
In this section we recall various standard results on pseudodifferential calculus that will
be needed in the sequel. It is convenient to use the language of the Weyl-Hörmander
calculus.

B.1 Symbol classes

We start by recalling the definition of symbol classes and weights. Let g be a Riemannian
metric on Rd, i.e. a map:

g : Rd 3 X 7→ gX ,

with values in positive definite quadratic forms on Rd. If M : Rd →]0,+∞[ is a strictly
positive function called a weight, one denotes by S(M, g) the symbol class of functions in
C∞(Rd) such that:

|
k∏
i=1

(vi · ∇X)a(X)| ≤ CkM(X)
k∏
i=1

|gX(vi)|
1
2 ,

uniformly for X ∈ Rd, v1, . . . , vk ∈ Rd and k ∈ N. The best constants Ck are seminorms
on S(M, g).
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Usually d = 2n and one sets Rd 3 X = (x, ξ) ∈ Rn × Rn. If

(B.1) gX = dx2 + 〈ξ〉−2dξ2

and M(X) = 〈ξ〉m, the symbol class S(M, g) is the usual symbol class

Sm1,0 = {a : |∂αx∂
β
ξ a(x, ξ)| ≤ Cα,β〈ξ〉m−|β|, α, β ∈ Nn}.

For simplicity we will also denote by Sp(R), p ∈ R, the space

(B.2) Sp(R) = {f : |f (k)(λ)| ≤ Ck〈λ〉p−k, k ∈ N},

ie Sp(R) = S(〈λ〉p, 〈λ〉−2dλ2).
If one equips R2n with the usual symplectic form σ, one can consider the dual metric

gσX . Diagonalising gX in (linear) symplectic coordinates on R2n, one can write:

gX(dx, dξ) =
n∑
i=1

dx2
i

a2
i (X)

+
dξ2

i

α2
i (X)

,

and

gσX(dx, dξ) =
n∑
i=1

α2
i (X)dx2

i + a2
i (X)dξ2

i .

One introduces also the two functions λ(X), Λ(X) which are the best functions such that

λ(X)2gX ≤ gσX ≤ Λ(X)2gX ,

equal to:
λ(X) = min

i
ai(X)αi(X), Λ(X) = max

i
ai(X)αi(X).

The function λ(X) plays the role of the Planck constant.
One says that g is a Hörmander metric, if the following conditions are satisfied:

(1) uncertainty principle: λ(X) ≥ 1;

(2) slowness: there exists C > 0 such that

(B.3) gY (X − Y ) ≤ C−1 ⇒ (gY (·)/gX(·))±1 ≤ C;

(3) temperateness: there exist C > 0, N ∈ N such that:

(B.4) (gY (·)/gX(·))±1 ≤ C (1 + gσY (Y −X))N .

One says that a weight M is admissible for g if there exist C > 0, N ∈ N such that:

(B.5) (M(Y )/M(X))±1 ≤
{
C, for gY (X − Y ) ≤ C−1,
C(1 + gσY (X − Y ))N , for X, Y ∈ R2n.
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The metric g is geodesically temperate if g is temperate and if there exist C > 0 and
N ∈ N such that:

(B.6) (gY (·)/gX(·))±1 ≤ C(1 + dσ(X, Y ))N ,

where dσ is the geodesic distance for the metric gσ.
The metric g is strongly slow if there exists C > 0 such that:

(B.7) gσY (X − Y ) ≤ C−1Λ(Y )2 ⇒ (gY (·)/gX(·))±1 ≤ C.

Lemma B.1 The metric dx2 + 〈ξ〉−2dξ2 and weight 〈ξ〉α for α ∈ R satisfy all the above
conditions.

Proof. Most conditions are immediate, except the last two. To check (B.6), we note
that dσ(X, Y ) ≤ |ξ − η|, from which (B.6) follows. (B.7) follows from the fact that
Λ(X) = 〈ξ〉.2

Lemma B.2 Assume that (gi,Mi), i = 1, 2 are two metrics and weights on R2ni satisfying
all the above conditions. Then (g,M) on R2n satisfy all the above conditions for n =
n1 + n2 and:

gX(dx) = gX1(dx1) + gX2(dx2), M(X) = M1(X1) +M2(X2).

B.2 Pseudodifferential calculus

To a symbol a ∈ S ′(R2n), one can associate the operator defined by:

(B.8) aw(x,D)u(x) = (2π)−n
∫

ei(x−y)·ξa(
x+ y

2
, ξ)u(y)dydξ,

called the Weyl quantization of a, which is well defined as a bounded operator from S(Rn)
into S ′(Rn). Let (g,M) be a metric and weight satisfying (B.3), (B.4), (B.5). We set:

Ψw(M, g) = {aw : a ∈ S(M, g)}.

If a ∈ S(M, g) then Opw(a) sends S(Rn) into itself. Moreover as quadratic forms on
S(Rn):

(aw)∗ = aw.

One often uses also the the (1, 0) quantization defined by:

(B.9) a1,0(x,D)u(x) = (2π)−n
∫

ei(x−y)·ξa(x, ξ)u(y)dydξ.

One has with obvious notations:

(B.10) Ψw(M, g) = Ψ(1,0)(M, g),
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Moreover

(B.11) Ψ#(M1, g)×Ψ#(M2, g) ⊂ Ψ#(M1M2, g),

where # = w or (1, 0) and if a ∈ S(M, g)

(B.12) aw(x,Dx) = b(1,0)(x,Dx), where a− b ∈ S(Mλ−1, g).

Let now g be the standard metric defined in (B.1) and Hs(Rd) be the Sobolev space
of order s ∈ R. Then

(B.13) Ψ#(〈ξ〉p, g) ⊂ B(Hs(Rd), Hs−p(Rd)),

and the norm of a# in B(Hs(Rd), Hs−p(Rd)) is controlled by a finite number of seminorms
of a in S(〈ξ〉p, g).

B.3 Functional calculus for pseudodifferential operators

Assume that the weight M satisfies:

(B.14) M(X) ≤ C(1 + λ(X))N , C > 0, N ∈ N.

A symbol a ∈ S(M, g) is elliptic if

(B.15) 1 + |a(X)| ≥ C−1M(X).

The following theorem is shown in [Bo, Corr. 4.5 ]:

Theorem B.3 Assume that (M, g) satisfy all the conditions in Subsect. B.1. Assume
moreover that M ≥ 1, a ∈ S(M, g) is real and elliptic, and aw is essentially selfadjoint
on S(Rn). Then if f ∈ Sp(R), the operator f(aw) belongs to Ψw(Mp, g).

The following result can easily be obtained.

Proposition B.4 Assume the hypotheses of Thm. B.3. Then

f(aw)− f(a)w ∈ Ψw(Mpλ−1, g),

where the function λ(X) is defined in Subsect. B.1.

Note that the same result holds for the (1, 0) quantization, thanks to (B.12).
Proof. one first proves the result for f(λ) = (λ − z)−1, z ∈ C\R, which amounts
to construct a so-called parametrix for aw − z. From symbolic calculus it follows that
if bz(x, ξ) = (a(x, ξ) − z)−1, then bw

z (aw − z) − 1l ∈ Ψw(λ−1, g). To extend the result
to arbitrary functions one expresses f(aw) in terms of (aw − z)−1 using the well known
functional calculus formula based on an almost analytic extension of f (see eg [DG1, Prop.
C.2.2]). 2
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B.4 Various estimates

The following lemma is proved in [A, Lemma 3.3].

Lemma B.5 For s ∈ [0, 1] , and vi ∈ B(K,K ⊗ h), i = 1, 2 we have

1) ‖(N + 1)−
s
2 a(v1) (H0 + 1)−

1−s
2 ‖ ≤ ‖ω s−1

2 v1‖B(K,K⊗h),

2) ‖(H0 + 1)−
s
2 a∗(v1) (N + 1)−

1−s
2 ‖ ≤ ‖ω− s2 v1‖B(K,K⊗h),

3) ‖(N + 1)−s a(v1) a(v2) (H0 + 1)−1+s‖ ≤ ‖ω− 1−s
2 v1‖B(K,K⊗h) ‖ω−

1−s
2 v2‖B(K,K⊗h),

4) ‖(H0 + 1)−s a∗(v1)a∗(v2)(N + 1)−1+s‖ ≤ ‖ω− s2 v1‖B(K,K⊗h) ‖ω−
s
2 v2‖B(K,K⊗h).

The following theorem follows from the KLMN theorem and [RS1, Thm. VIII.25].

Theorem B.6 Let H0 be a positive selfadjoint operator on a Hilbert space H. Let for
κ <∞, Bκ be quadratic forms on D(H

1
2
0 ) such that

|Bκ(ψ, ψ)| ≤ a ||H
1
2
0 ψ||2 + b ||ψ||2,

where a < 1 uniformly in κ and Bκ → B∞ on D(H
1
2
0 ).

Then
(1) there exists a selfadjoint operators Hκ with D(Hκ) ⊂ D(H

1
2
0 ) and

(Hκψ, ψ) = Bκ(ψ, ψ) + (H
1
2
0 ψ,H

1
2
0 ψ), ψ ∈ D(Hκ) for κ ≤ ∞.

(2) the resolvent (z −Hκ)
−1 converges in norm to (z −H∞)−1.

(3) eitHκ converges strongly to eitH∞ when κ→ +∞.
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