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1 1. Introduction

In the scattering theory for Schrédinger operators one considers the free Hamiltonian
Loy . 2
Hy = §D acting on L*(X),

where X = R", and the full Hamiltonian

1
H= §D2 +V(x),
where V' is a real potential tending in some weak sense to zero when z tends to co. As is
well known, potentials V' fall naturally into two classes: the short-range potentials where
roughly speaking
V(o) < )™, p>1, (1.1)

and the long-range potentials, where:
02V (z)| < C{z) ™71l 1> >0, |a| =0,1,2. (1.2)
For short-range potentials the wave operators

QF =s— lim 7o (1.3)

t—do0

exist and are complete

RanQE = H,(H),

where H.(H) denotes the continuous spectral subspace of the operator H. For long-range
potentials, the limits (1.3) typically do not exist and the definition of wave operators has
to be modified.

Several different constructions of wave operators in the long-range case can be found in
the literature. Probably the most popular approach is the so-called momentum approach.
It consists in replacing the free dynamics e~#0 by a modified free dynamics of the form
e D) where R x X' 3 (,€) — S(t,€) is an exact or approximate solution of the
Hamilton-Jacobi equation (see [Ho|, [DG]).

1

9S(t,€) = 5€ +V(VeS(t,€)). (L.4)
In [HG|, the existence of the modified wave operators
OF =s— . liin eitH g=iS(tD) (1.5)

and their completeness
RanQ$ = H.(H)



is shown under condition (1.2) using the stationary approach. In [DG] the same result is
shown under slightly weaker conditions by the time-dependent approach.

Another approach to constructing modified wave operatrors, is that of Isozaki-Kitada
[IK], [DG].

This paper is devoted to yet another approach, which we call the “position approach”
and is due to Yafaev [Yafl].

In order to describe Yafaev’s construction let us start with the short-range case. Let
us recall that

(z—y)?

e oy (z) = 6”"/4(27””_”/2/eZ 2 u(y)dy. (1.6)

Let F be the Fourier transformation:
Fu(z) = (2m) /2 /e’ix'x/u(az’)dx'.

It follows directly from (1.6) that if we set

z T

. L2
Uy, (t)u(z) := ™4 2% Fuy <t) :

then
e oy = Ug, (t)u + o(t°), (1.7)

in L? norm when ¢ tends to co. Let now V(z) be a short range potential satisfying
(1.1). It follows then from (1.7) that the wave operators in the short range case have an
alternative definition A

OF = s— lim Uy, (1).

t—o00

To handle long-range potentials, Yafaev proposed in [Yafl] to replace the phase func-
tion Wo(t,z) = z—j by a solution U(t, z) of the eikonal equation

00t 2) = ;(vxw, D)2+ V(). (1.8)

This is analogous to the replacement of the function %th by a solution S(t,&) of the
Hamilton-Jacobi equation (1.4) in the momentum approach to the long-range scattering.
[Yafl], [Yaf2] contain the proof of the existence of the limits

Qf = s— Jim e Uy (1), (1.9)

where .
)

under rather strong conditions on V(x). In our paper we would like to give a direct proof
of the completeness of the operators .

Ug(t)u(z) := ei”"/‘lt’"ﬂew(t’x)}"u(



The proof of existence and completeness of wave operators in the time-dependent
approach can be split in two independent steps.

In the first step one proves some rough propagation estimates which pinpoint the
difference between bound states and scattering states. The Mourre estimate [Mo] or the
RAGE theorem are two examples of tools used in this first step (see for example [E1],
[E2], [SS], [Gr], [DG]). In this step there is no essential difference between the short-range
and the long-range case and the choice of a wave operator does not play a role.

In the second step, one has to prove some sharper propagation estimates for scattering
states which are of a semiclassical nature. The technical details of the second step depend
crucially on which construction of wave operators we use. If we use the momentum
approach (1.5), then the pseudodifferential calculus enters in an essential way, for example
to estimate quantities like [V (z),4S(¢, D)]. Under minimal regularity hypotheses on the
potentials this involves some rather delicate symbol classes (see [HO] for the stationary
approach and [DG] for the time-dependent approach).

In the Isozaki-Kitada approach one has to estimate some Fourier integral operators.

The main advantage of the position approach (1.9) is that we can make use of the fact
that the Schrodinger operator is a partial differential operator and we do not use neither
Fourier integral nor pseudodifferential calculus. Our goal in this paper is to show that
the position approach can be used to prove the asymptotic completeness for long-range
potentials, under the same conditions as the one used in [DG, Chapter 4], using rather
elementary differential calculus.

In the short-range case wave operators are uniquely defined by (1.3). In the long-range
case modified wave operators are no longer unique. A quantity, which is uniquely defined,
is the asymptotic velocity

Pt =s—C, — lim etHZeitH
t—+too t
=5—Cy — lim e De 1 1°(H),
t—do00

where s—C,, — lim denotes the so called “strong C, limit” (see [DG] and Theorem 5.1).
One expects that modified wave operators QF have the following properties:

OEOE — 1C<H) OO+ — 1,

?

(1.10)
OfD = PEQ*,  OFH,= HO*.
Note that if two operators QF, Q3 satisfy (1.10), then
Q7 = % a(D)

for some o € L°°(X) such that |a| = 1. So in some sense, the non-uniqueness of Q¥ is
quite weak (in particular, it does not influence the value of scattering cross-sections).

It is shown in [DG] that under the assumption (1.2) the operators QF satisfy (1.10).
In this paper we will give an independent proof of (1.10) for the operators Qi .



To a function S(t,€) satisfying the Hamilton-Jacobi equation (1.4) we can naturally
associate a solution W(¢,x) of the eikonal equation (1.8) by setting

U(t, ) = vee((z, §) = S(,€)),

where vc means the critical value. It is tempting to conjecture that for such a pair of
functions S(¢,&) and V(t,z) we have

05 = O, (1.11)
It is not difficult to show that (1.11) is true for potential satisfying
00V (2)] < Cola) ™1 1> 5> 0. |al > 0. (1.12)

However, both Q% and QF can be constructed under the condition (1.2), which is much
weaker than (1.12). We conjecture, that (1.11) is true under condition (1.2), although we
have not been able to prove it.

In our proof we follow the general philosophy of [DG]. First we consider time-decaying
potentials, which roughly satisfy

02V (t,x)| < C{t) ™ Ja] =0,1,2, p>0.

We prove that for such potentials position-type modified wave operators exist and are
complete (unitary). This is the subject of Sections 2 and 3. In Sections 4 and 5 we apply
those results to time-independent potentials.

2 II. Eikonal equation I
This section is devoted to the construction of solutions of the eikonal equation for long-
range time-dependent potentials.
Proposition 2.1 Let V(t,x) be a time-dependent potential such that
+o0 1
| @E oV lledt < o, Ja] = 1,2, (2.1)
0

Then for sufficiently big Ty there exists a real function V(t,x) such that:

_OU(t ) ;(Vx‘ll(t,x))Q V() TEX, t> T, (2.2)



satisfying:

92 (W(t,x) — ) € o(t' o) N (12l L1(dt), |a| = 1,2. (2.3)

Proof. In [DG, Sect. 1.7] we constructed a function S(¢,&) that solves of the following
Hamilton-Jacobi equation:

{ 9,5(t,6) = 32+ V(t,VeS(4,€)), v e Xt > T, 2.4
S(T,€) =0,
and satisfies the estimates

o8 (S(t,g) - ;t{Q) € o(t), o] = 1,2. (2.5)

We will define the function U (¢, x) by:

U(t, x) = veg((x, ) — S(t,€)), (2.6)

where vc means the critical value. In fact if the critical point equation:

r=VeS(t,§), (2.7)
has a unique solution £ = £(¢, x) for ¢ large enough, then W(¢, x) solves the eikonal equation
(2.21)J.et us prove that (2.7) has a unique solution for ¢ > T}. If we set

r(t, &) ==t (VS(t,&) —t€), (2.8)
we can rewrite (2.7) as

4+t =7, (2.9)

where using (2.5), we have:
r(t,€) € o(t®),  Ver(t,&) € o(t°).

Applying the fixed point theorem we obtain a unique solution £(¢, x) to (2.9) for ¢t > T7.
Note that if W(¢,x) is defined by (2.6), one has:

which shows that V,¥(t,z) — £ € o(t"). Next we have

Vi@@? :L“) = ng(tv :13)7



and

VL£(,2) + Ver(t V() = 7,

which shows that 1
V2U(t,x) — ;€ o(t™).

To complete the proof of (2.3), we will use the notation of [DG, Sect. 1.4 ]. We
denoted there by
[tlatQ] DS g(‘g?tl;tan?g)

the trajectory for the force —V,V (¢, x) having position = at s = t; and momentum ¢ at
s = ty. We also put:

Z(s,t1,te, 2,8) := (s, ty,ty,x,&) —x — (s — t1)E.

It is easy to check that Z(s) satisfies the following integral equation:

3(s) = /tt G s (W)VV (1,7 + (1 — 1) + 5())du, (2.11)

for

0 for u < ty,
Cys(u) =< u—ty for ty <u<s,
s —ty for s < u.

It follows from standard Hamilton-Jacobi theory (see eg [DG, Prop. 1.8.1]) that:
g(t7 T7 t? 07 6) = v&‘S(t7 6)'

Hence x
V. VU(t, ) — e t 1 (T¢ — 2(t,T,t,0,8)).

It follows then from hypothesis (2.1) that:
¢
5(t,T,1,0,6)| g/ sf(s)ds, for f e L (ds). (2.12)
T

Hence

Z(t) € ()2 L' (dt) No(t).

which ends the poof of (2.3) for |a| = 1.
To finish the proof of (2.3) for |a| = 2, we compute:

V&”L’(t, f) = Vfﬂ(t, T, t, 0, g)
= (t=T) (1 + 27 Ve (1, T.4,0,€))



so that
V2U(t,x) = V(L x)

L (213)
= (t—=T)"" (14 253 Vea(t, T,1,0,9))
It follows again from the equation (2.11) that
t
Vez(t)] < / sf(s)ds, for f € L'(ds). (2.14)
T
Hence,
Vez(t) € ()L (dt) No(t).
Note that since V¢zZ(t) = o(t), (1 + 25 VZ) ™! exists for ¢ > Ty and
V2U(to) ~ 1 = (¢ - 1) (14 Ve T,,0,6) — 1
= (7?0 Vez(1)]) + O(t™2).
This implies (2.3) for |a| = 2. O
We will also need the following lemma.
Lemma 2.2 Assume in addition to (2.1) that
L2102Vttt < 00, Ja] =3 (215)
0

Then the function V(t,x) satisfies

92 (t,x) € o(t™3/?), |al = 3.

Proof. jFrom [DG, Prop. 3.4.3] and its proof, we obtain that under assumptions (2.15),

one has:
850‘2(15) € o(t3/2), la] = 2.

So we obtain

1 -1 .
~ /2
Ve (1 + P v52<t>> € o(t*).

i From (2.13), we deduce that we have:

1 1 5 -1 -~
VAU(t,w) = = Vat(t 1) Ve (1 + t_TV§Z(t)> € o(t™%2),

which proves the lemma. O



3 III. Position-type wave operators for time-decaying

potentials

In this section we consider the case of time-dependent potentials.

(t,z) € RT x X — ¥(t,x) we define the unitary operator Uy (t) by

Uy (t)u(z) := ™/ 42 o) 7y (j) :

where the Fourier transformation F is defined by

!

Fu(z) = (27T)_"/2/eiw’m u(x')dx'.

Let the time-dependent Hamiltonian be defined as

H(t) = —;DQ +V(t ).

For a real function

Let U(t, s) denote the unitary dynamics generated by H(t) in the sense described in [DG,

Sect. B.3].

We first recall the existence of the asymptotic momentum observable for time-dependent

potentials (cf [DG, Sect. 3.2]).
Theorem 3.1 Assume that
V(t,x) = Vi(t, z) + Vi(t, 7)

with
/OO |Va(t, )| sodt < 00,
0
/ IV Vi(t, )] sodt < 0.
0

Then there exist the limit

s— lim U(0,t)f(D)U(t,0), f € Coo(X).

t——+00

(3.1)



There exists a vector D of commuting self-adjoint operators with a dense domain such
that (3.1) equals f(DT).

Moreover one has:

s— lim U(0,0)f (f) U(t,0) = f(DV), f € Cu(X).

t——+o0

The observable D is called the asymptotic momentum.
The main result of this section is the following theorem.

Theorem 3.2 Assume that
V(t,x) = Vi(t,x) + Vi(t, x)

with
[ Vil acdtt < o0,
0
/Oo<t)|a‘_1||8§V1(t, Hloodt < 00, |a] =1,2. (3.2)
0

Then there exists a function ¥ (t,z) € CH1(X) satisfying

o (\If(t,x) - Z) € o(t' 1oy n ()27l (de), |a] = 1,2.

such that the limits

QF = s— lim U(0,t)Uy(t) (3.3)
Q4 =s— lim Uy (£)"U (£, 0) (3.4)

exist. Moreover, Q3 is unitary and

Dt = QiDL (3.5)

10



We will start the proof of Theorem 3.2 with the proof of the existence of the limit
(3.3), which is easy.

Proof of the existence of (3.3).

By the chain rule of the wave operators, it suffices to prove that the limit

S— tlilglo Ul(O, t)U\p (t)

exists, where Uj(t, s) is the dynamics generated by $D? + V{(¢,z). We can rewrite Uy (t)

as:
Uy (t) = ™/t F, (3.6)

where U is the operator of multiplication by W(¢,z), and A = 1({z, D) + (D, z)) is the
generator of dilations. This shows that:

i0,Ug (t)p = '™/ 4et? (—atxp + f) A F .

We recall from Proposition 2.1 that W(t, z) satisfies the following estimates:

oy <\I/ — ;i) € oty n )2l LY (dt), |a| = 1,2. (3.7)
Using the eikonal equation (1.8), we compute for ¢ € H*(X):

(10, — 1 D* = Vi(t, z)) Uy ()¢

= e/ (9,0 + 4 — L(D 4+ V)2 — Y) t¢

= eV (9,0 — L(VU)? = Vi4 4 — 1D? = VUD — jAW)t~¢

= o/ (—1D? 4 (£ — VU)D + 5(4 — AW)) t7g

= e/ (126 IAL D2 4 716 (2 — VU)EAD 4 e (% — AW ¢ € LI(dt),
using the estimates (3.7). This proves the existence of the limit (3.3). O

To prove the unitarity of the wave operator Qg,, we will need more elaborate arguments
which are close to those of [DG, Sect.3.4]. In particular, we will split the potential into a
long-range and short-range part. To this end we recall the following result from [DG].

Lemma 3.3 i) Suppose that Vi(t, x) satisfies

[ oVl < o, ol = 12
0

11



Let j € C3°(X) be a cutoff function such that

/j(y)dy =1, /yj(y)dy =0,

and let
i(t.2) = [ Vil +thy)ily)dy.
Then one has:
LIV = Wittt < oo,
102V e ()1 < 00, o] = 1,2

[ 1027 Yoe (830t < 00, Ja] > 2,
0

So by replacing V; by Vi + V, we may assume in the rest of the section that V] satisfies:

IS NO2VA(E, ) [|oo (D)1 71dE < 00, || = 1,2,
1 (3.8)
o2 NI08VA(t, ) lo(t)21¥1dt < 00, o] > 2.

We choose for (¢, x) the solution of the eikonal equation constructed in Proposition 2.1.
;From Lemma 2.2, it follows that W satisfies in addition to (3.7), the estimate:

102 (t, ) € o(t™*?), |a] = 3. (3.9)
Using the estimates (3.7), we obtain the following identity:
ID*+ Vi(t,z) = 3(V,¥)? +W(t,2) + SAV + X(D + V,¥|D — V,¥)
= -0,V + LD+ V,VD—-V,0)+ %+ L}(de).
Here (.|.) denotes the Euclidean scalar product on X’. We define:

]_ .
Hl(t) = -0,V + i(D -+ Vx\II|D — VI\I]) + %7
so that
[ (t) = Hi(t)]| € L*(dt). (3.10)

12



and denote by Ui (¢, s) the (non-unitary) dynamics generated by H;(t). It is easy to see
that this dynamics exists and is uniformly bounded using (3.10). We will first prove some
propagation estimates for the dynamics Ui (t,s). We denote by Dy = 0, + [Hi(t), -] the
Heisenberg derivative associated with Ui (¢, ).

Proposition 3.4 The following estimates hold:
i) (D = VU(t, 2))Up(t, 0(D)~Hx) | € O™,

ii) (D = V¥(t,2))*Ui(t,0)(D)*(z) 2| € O(t~*/?).

Proof. Let us first prove 7). We compute
= %[D + VU, i(D—VU)|(D - VV)
= -V2¥(D - VU).

Since V2W¥ = 1 + R(t), where R(t) € L'(dt), we have:

L(D = V) + R()(D — V).

Dy(D ~ V) = —

We introduce the observable
Cy(t) :=t(D — VVY(t,x)),

and we have

D,Ci(t) = R(t)Cy(t). (3.11)
If we put
fi(t) = U0, 6)C1 () U (£, 0){ D)~ (x) "I,
we deduce from (3.11) that
SR < gD,

for
g(t) = [|UL(0, ) R(t)Us (£, 0)|| € L*(dt).

By the Gronwall inequality, we obtain

f(t) < Cf(T),

13



which proves 7).
Let us now prove ii). We compute for 1 <i<j<mn

Dy(D — V¥);(D — V¥); =—-2(D—V¥),(D - V),
2D = V) (1)(D ~ V)
FE (D~ V(D ~ V),

~2(D = V¥),(D — V)

+ Ek: ri(t)(D — V), (D — V),
—i—Xk:mk(t)(D — VU), (D —-VVU);

+ Zk: biji(t)(D — V),

where

Tij(t) = Vf]\I/(t,x) - 6”% € Ll(dt),
bz‘jk(t) = Va;Tij(t) S 0(2573/2),

using (3.9). Introducing the matrix valued observable
Calt) = (D~ VO)(D ~ TW),).

we obtain:

D, Cs(t) = Ra(t)Ca(t) + Ra(t)Ch(2),
where R;(t) € o(t71/2) and Ry(t) € L'(dt). We define now:

F2(t) = U0, ) Ca() U (£, 0){D) () |l

and we obtain using (3.12):

Sh0) < olt )R + 90120,

where g(t) = || Rao(t)|] € L?*(dt). Therefore by the Gronwall inequality, we obtain:

folt) < CtY/2,

which proves 7). O

End of the proof of Theorem 3.2.

(3.12)

(3.13)

Let us first prove the existence of the limit (3.4). By the chain rule of the wave

operators, it suffices to prove the existence of

s— lim Uy (6)U3 (,0).

—00

14
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We compute
i_lﬁtUif, (t) — e—ifm/4f*tiA?e—i\Il _ e—z‘wn/4jc'*tiAe—i\Ilat\I,

= Us(t) (x(D = V¥) — 2 — 9,).

2t
Let us now pick ¢ € D(D?) N D(z?) and compute:
i1O,UG () UL (¢,0)0

(3.15)
= Us(t) (£ = (D + VW) (D = VI) Uy (t,0)¢.

Using (3.7), we have:

(5 - 5(0+v9)) = 2 (D - V) + R,

where R(t) € (t)L'(dt). So we obtain:
10U (1)U (£, 04|
< [ROII(D — VO, (£,008]| + [[(D — V®)2U,(t,0)¢]| € L*(dt),

using Proposition 3.4. This proves the existence of the limit (3.15).
The identity (3.5) follows from

X

U (D)0 = £ ()

This completes the proof of the theorem. O

4 1IV. Eikonal equation 11

In this section we prove some additional results on solutions of the eikonal equation.

Although, strictly speaking, these results involve time-dependent potentials, they will be

used in our construction of position-type wave operators for time-independent potentials.
Let us start with the following extension of Proposition 2.1.

Proposition 4.1 Let V(t,x) be a time-dependent potential such that for any € > 0

+oo
/ lol=1 sup 92V (¢, 2)|dt < oo, |a] = 1,2. (4.16)
0

jo|>et

15



Then there ezists a real function V(t,x) such that for any € > 0:
1
—0¥(t,r) = §(Vm\1’(t, )2+ V(t,x), in || > et t > T, (4.17)

satisfying in |z| > et:

OX(W(t, x) — L) = o(tlely N ()2l LY (de), |o| = 1,2. (4.18)

2t

Proof. In [DG, Prop. 4.7.3], we proved under the hypotheses (4.16) the existence of a
function S(¢, &) satisfying for any € > 0 the Hamilton-Jacobi equation

1
,9(t, &) = 552 +V(t,VeS(t,€)), in |€] > e,t > T, (4.19)
and the estimates
o8 (S(t, &) - ;t§2> —oft), o] = 1,2in |€] > e. (4.20)

As above we will define U (¢, z) as:

W(t,x) = vee((z,€) = S(L,€))-

Let us check that for |z| > €t,t > T, there exists a unique solution ¢ of (2.9) with [£| > e.
In fact if |z| > et, the map £ — x —r(t,£) sends the set {£||¢| > €/2} into itself for ¢t > T.
and is a contraction there. The estimates (4.18) can then be proved as in Proposition 2.1.
O

The following proposition will be needed to compare two solutions of the same eikonal
equation.

Proposition 4.2 Let V(t,x) be a time-dependent potential such that for any e > 0

400
/ o= sup 02V (¢, z)|dt < oo, |a| = 1,2. (4.21)
0

|x|>et

Let © C X\{0} be a compact set. Suppose that for & in a certain neighborhood of © and

t > Tpy the functions S;(t,§),i = 1,2 are two solutions of the Hamilton-Jacobi equation

.8t €) — ;@ LVt VaSi(t,€)

16



such that
1
o (506~ 51¢%) € ot lal =12

Let Wi(t,z),i = 1,2 the two solutions of the eikonal equation (4.17) given for % in a

certain (maybe smaller) neighborhood of © and t > Ty by

\I}i<t’x) = VC§(<J:7§> - Sz(tvf))

Then the limit

lim (U (¢, ty) — Us(t, ty))

t—+o00

exist uniformly for y € ©.

Proof. As in (2.8) set

it €) o= VOB ZE

Recall that r;(t, &), Vri(t,€) € o(t°). Let &(t, z) be the solution of

or equivalently:
§i+ri(t, &) =y

Such a solution exists for a sufficiently small neighborhood of © for ¢ sufficiently big.
Recall that if we set

Uit x) = x&i(t, ) — Si(t, &(t, 7)),

then

It follows from [DG, Thm. 1.9.6] that V¢S (t,£) — VeSa(t,€) € O(1), which implies
that r(t,€) —r2(t,&) € O(t™1). We deduce then from

&1 — &of < |rult, &1) — it &o)| + |t §2) — ra(t, &2)]. (4.22)

that
&i(ty) —&(ty) €O™), y e 6. (4.23)

17



Now we compute for y € © and t big enough:
O (Wi(t, ty) — Wa(t, ty))
= 01 (L, ty) — 0o (L, ty) + yVa Wi (L, ty) — yVaUa(t, ty) (4.24)
= (VWi (t,ty) — Vala(t,ty)) (y — 3 (Vali(t ty) + Vo Ua(t, 1)) -
By the estimates (4.18) we have:
y — 0: Wit ty) € (¢ L (d1),

which using (4.23) implies that the rhs of (4.24) is in L*(d¢). This completes the proof of
the proposition. O

5 V. Position-type wave operators for time-independent

potentials

In this section we prove the existence and completeness of position-type wave operators
for long-range time-independent potentials.

Theorem 5.1 Assume that
V(z)(1—A)~" is compact, (5.1)
and
{11 = A) VLV (@) 1 () (1 = A) Y| dR < oo, (5.2)
and that V (x) can be written as
V(z) = Vi(z) + Vi(x), (5.3)

such that

2]

/OOO H(l — A) " Wi(2) 1 00 <R> (1-— A)—% dR < oo,
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/°° sup |9°Vi(2)[ (R AR < oo, |a| = 1,2. (5.4)
0 |z|>R

Then there exists a real function V(t,x) such that the limits

s—tlim Uy (t) (5.5)
and
s— lim Uy (t)e "™ 1°(H) (5.6)

exist. If we denote (5.5) by Q04 then (5.6) equals Q03*. Moreover one has

QLOL = 19(H), Q& QE = 1,
(5.7)

P =QiDOL*,  19(H)H = Q} HoQb.

Before starting the proof of Theorem 5.1, let us first recall some results from [DG]. In
[DG, Chap. 4] we proved under hypotheses (5.1) and (5.2) the existence of the asymptotic
velocity observable. Its definition and properties are recalled in the following theorem.

Theorem 5.2 Assume (5.1) and (5.2). Then for all f € Co(X) there exist the limit

s— lim e f <f) e (5.8)

t—-4o00

Moreover there exist a vector of commuting self-adjoint operators P with a dense domain

called the asymptotic velocity such that (5.8) equals f(P7).

One has:
1
Loy (P) = (P (5.9)
1{0}(P+) = 1PP(H). (5.10)
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The proof of Theorem 5.1 consists in introducing an effective time-dependent potential
and applying then the results of Section 3.

Let © C X be compact such that 0 ¢ ©. Fix J € C5°(X) such that 0 ¢ suppJ and
J =1 on a neighborhood of ©. Fix also zp € X such that |z # 0. We introduce now
the following effective time-dependent potential:

Vi(t,2) == (Vi) = Viltao))J (f) T Vi(to). (5.11)

Obviously, for y in a neighborhood of ©
Vi(ty) — Vi(t, ty) = 0. (5.12)

;From [DG, Prop. 4.7.5], we obtain that
[ e o2Vt ledt < oo, Jal = 1,2, (5.13)

We denote by Uj(t, s) the unitary dynamics generated by %D2 + V;(t,z) and by D7 the
asymptotic velocity associated with U, (¢, s) (see [DG, Thm. 3.2.2]):

F(DF) = s Jim U(0,0)f (f) U (£,0), f € Co(X).

The following result has been proved in [DG, Sect. 4.7]. It shows that on Ranly(D™) one
can replace asymptotically the dynamics e ## by the effective dynamics U (¢, 0).

Lemma 5.3 There exist the limits

s— lim ™ U, (t,0)10(DT). (5.14)
and
s— lim U (0,t)e ™1 (PT) (5.15)

If we denote (5.14) by wje, then (5.15) equals wi. Moreover,
wiewse = le(P), wjswje =le(D]),

(5.16)

+ Dt — ptt
wieD; = PTwje.
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Proof of Theorem 5.1. Let ©,, C X be a sequence of compact sets such that 0 ¢ ©,
and ©,, / X\{0}. Since 1{py(P") = 1PP(H), we have:
1°(H) = s— lim 1e, (PT).
Consequently to prove the existence of the limit (5.6), it suffices to prove the existence of

S—tligl U\I;(t)*e_itHlen(P+),

for all n.

Let us fix one such compact set ©. We define V;(t,z) as in (5.11). It follows from
(5.13) that V;(t, x) satisfies the hypotheses of Theorem 3.2. Consequently for the function
U (t,x) described in Theorem 3.2 the limits:

s— lim Uj(0,t)Uy, (1),
S— thm Uq/J (t)*UJ(t, 0)

exists.
We define then as in Lemma 3.3:

V(t,2) = [Vilw+ tb)jy)dy. (5.17)
It is easy to see that V (¢, z) satisfies for all € > 0:
fOOO Sup|z\2€t ‘83‘7(757 $)|<t>|a‘_1dt < 09, ’a| = 17 27

Let W(¢,z) be a solution of the eikonal equation described in Proposition 4.1. It remains

to show that the limits
s—,lim_Uy(t)*Uy, (0)16(D5),

' (5.18)
= lim_Us, ()" Ua(t)16(P)

exist.
To do this we recall from Section 3 that W (¢, z) is the solution of the eikonal equation
for the potential

Vit x) = [ Viltw+thy)jl)dy.

constructed in Proposition 2.1. It is easy to show that and that V(¢,ty) and V;(t,ty)
coincide for y in a neighborhood of © for ¢ big enough. Using then Proposition 4.2 we
obtain the existence of

lim (V(t,ty) — V(¢ ty)), fory € O.

t——+o0

Using then the chain rule, we obtain the existence of the limits (5.5) and (5.6). The
identities (5.7) follow then from (5.16) and (3.5).0
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