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A scalar quantum field model defined on a pseudo Riemannian manifold is considered. The model is unitarily
transformed to the one with a variable mass. By means of a Feynman-Kac-type formula, it is shown that when the
variable mass is short range, the Hamiltonian has no ground state. Moreover the infrared divergence of the
expectation values of the number of bosons in the ground state is discussed.
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1. Introduction

1.1 Preliminaries

Analysis of the infrared behavior in massless quantum field theory is an important issue. The infrared divergence is
seen to arise as follows: the emission probability of massless boson becomes infinite with increasing wavelength. For
some scalar quantum field model, which is the so-called Nelson model [Nel64], a sharp result concerning the
relationship between the infrared behavior and the existence (or the absence) of ground states is known. The Nelson
model describes a scalar field coupled to a quantum mechanical particle with external potential V in such a way that the
interaction is linear. Namely the Nelson model with mass my > 0 is formally given by

2

where x denotes a cutoff function, p and g are the position operator and momentum operator of the particle,
respectively, with bare mass 1, which satisfy [p, g] = —i, and 7(x) is the momentum field canonically conjugate to the
scalar field ¢(x), which satisfy [¢(x), m(y)] = i5(x — y). The dispersion relation for the Nelson model is given by

on=v-A+m} (1.2)

in the position representation and the equation of motion is
@+ mod(x,1) = —x(x = q0), (1.3)
Fq = —VgV(g) — Vepx(x — q), (1.4)

where [ = af — A,. It is established that Hy with positive mass mo > 0 has a ground state but no ground state for
mp = 0, and the expectation value of the number of bosons in the ground state diverges as my — 0.

While the Nelson model defined on a static Riemannian manifold is unitarily transformed to a model with a variable
mass

_1 2 l 2 2 2 2 _
Hy=5p" +V(@+; (7 + (Vo())* + mip(0)?)dx + | p(x)x(x — g)dx, (1.1)

Um(®) = m(x)* > 0 (1.5)

and the dispersion relation (1.2) is changed to

®=/—A~+ vn. (1.6)

By comparing (1.2) and (1.6), the variable mass is seen to intermediate between massive cases and massless cases, and
furthermore the infrared behavior, as mentioned below, depends on the decay property of v, (x) as |x| — oo.

We consider in this paper a version of the Nelson model with variable masses. The Hamiltonian is formally
given by

* Corresponding author. E-mail: christian.gerard @math.u-psud.fr; hiroshima@math.kyushu-u.ac.jp; annalisa.panati @math.u-psud.fr; sakito@math.
kyushu-u.ac.jp


http://dx.doi.org/10.4036/iis.2009.399

400 GERARD et al.

= 2
Vm_mO

0

Fig. 1. Positive constant mass.
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Fig. 2. Long range variable mass.
Vm
0
Fig. 3. Short range variable mass.
Hioma =~ p2 4V !  + (Vo(x))? )d 1.7
formal = 5 P” + (@) + 2 () + (V(0))* + vm()B(x)* ) dx + ap(p,), (1.7

where p and ¢, and ¢(x) and 7(y) satisfy the same canonical commutation relations as that of the Nelson model. The
field operator ¢(p,) = f @(x)pg(x)dx is, however, a scalar field smeared by some function p, defined through vy, and a
given cutoff function yx, and « a real coupling constant. Thus the equation of motion is given by

O+ v ())P(x, 1) = —apg, (1), (1.8)
g = —V,V(g) — aVd(p,,)- (1.9)

Here O + v, (x) appears in (1.8) instead of [ 4 m%. This is a unitary transformed version of a Klein-Gordon equation
defined on a pseudo Riemannian manifold. See Section 2.5.

We are interested in investigating the infrared behavior of the Nelson model. In the case of constant mass
vm(x) = m(z) in (1.6), it is established that if my > 0, the Nelson model has the unique ground state up to multiple
constants (Fig. 1), but if my =0 no ground state exists unless the infrared regularization is imposed. See e.g.,
[BFS98, BHLMSO02, Che01, Ger00, HH06, Hk06, LMS02, Spo98] for detail. Here the infrared regular condition is
defined by

k2
f x( g dk < oo, (1.10)
R |kl
Conversely
k 2
/ X 2 dk = o0 (1.11)
R [k]

is called the infrared singular condition. The singularity in (1.11) comes from a neighborhood of k =0 if x has a
compact support, since the dimension is three.

Our paper is motivated by extending constant mass cases to variable ones. Namely, going beyond the case of
constant masses, we consider the infrared behavior of the Nelson model with variable masses. From the argument
mentioned above it is expected that the Nelson model may have ground states if the variable mass decays sufficiently
slowly in a neighborhood of origin (Fig. 2), but no ground state exists if it decays sufficiently fast (Fig. 3). Taking into
account of this intuitive argument, as the first step, we consider two cases: (1) vy, is long range and (2) vy, is short range.
In this paper we focus on (2) and prove that for a short range potential v > 0 such that vy, (x) = O(|x|?) with B>3H
has no ground state in the Hilbert space unless the infrared regularization is imposed.

1.2 Strategy

It is proven that the functional integration is useful device to show the existence and non-existence of the ground
state of the Nelson model with constant masses. It can be extended to the case of variable masses in this paper. The
main tool used in this paper is functional integral representations of the semigroup e~ and an extension of the strategy
developed in [BHLMS02, LMS02] where the Nelson model with constant mass is discussed.
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The Nelson model H can be defined as a self-adjoint operator on some probability space. It is easily shown that
or = lle”™1)7'e”™1, T >0, (1.12)

is a sequence approaching to a ground state of H if a ground state exists. Conversely
lim (1,90 =a > 0, (1.13)
T—o00 g

implies the existence of the ground state of H, but the absence of ground state follows from
. TN2 _
Tll)n;o(l"pg) =0. (1.14)

By making use of a modification of [LMS02] we show that (1.14) holds under the infrared singularity condition (1.11).
Throughout this paper we use the notation E,[- -] for f -+-dp and EJ[---] for f ---dv*, where V' denotes a
probability measure starting at x on a path space. By using the functional integration, we have the bound

T
(]’wg)z <E,, |:e—az ffr d.vj(') de(Xy,X,,lx—tI):| (1.15)

with some probability measure 7 on the product configuration space R? x C(R;RR?) and the so-called double potential
W = W(X,, X;, |s — t|) given by

x(k)?
2|k

Here \Il(k x) denotes the generalized eigenvector of —A + vy,. By controlling the behavior of measures py and
f ds fo dtW(X,, X;, |s — t]) as T — oo, we can show (1.14) under the infrared singular condition.

Next we consider the expectation values of the number of bosons in the ground state ¢,. Assume the infrared regular
condition (1.10) and the existence of ground state. Let N be the number operator. We can show that (wg, e PNy ) can be
analytically continued from B € [0, co) to the whole complex plane B € C. Then the moment (<pg,N” ol is glven by

Wk, X)W(k, Y)e "k gk, (1.16)

WX, Y, |t]) = /

(pp. N"ol) = (— s (pg.€” Nsog)[ :
dap" £=0

As an application we can show that the expectation value of the number of bosons in the ground state, (¢, Ngg),

Xk
diverges as fRz AN dk tends to infinity.

This paper is organized as follows: Section 2 is devoted to giving the definition of the Nelson model with a variable
mass. In Section 3 we discuss functional integration in Euclidean quantum field theory. In Section 4 we prove the
absence of ground state. Finally in Section 5 we show the divergence of (¢g, N¢,) in infrared singularity.

2. The Nelson model on a pseudo Riemannian manifold

2.1 Particle
We introduce the Schrodinger operator H, by

1
H, =§p2+v, 2.1)

where p, = —iV,, p?> = p-p,and V is an external potential. We say that V is Kato-class if and only if

1%
lim sup/ VI dy=0
O s Jix—y<r X — VI

and V is local Kato-class if and only if 15V is Kato-class for arbitrary compact set K C R®. If V = V, — V_ satisfies
that V, is local Kato-class and V_ Kato-class, we say that V is Kato-decomposable. When V is Kato-class, V €
bc L' (R¥ and Vis infinitesimally small with respect to p? in the sense of form, furthermore when V = L? (R?) + L®(R?)
with p > 3/2, V is Kato-class. In particular an arbitrary polynomial is local Kato-class.
We introduce assumptions on external potential V:

Assumption 2.1 (Assumptions on V). We assume (1)—(3) below:
(1) V =V, — V_ is Kato-decomposable with V_ € L? (R?) for some p > 3/2.

loc

(2) V is bounded from below and V(x) > C|x|* with some q > 0 for x € R> \ M with some compact set M.
(3) The ground state of Hy is unique and strictly positive.

H,, is defined as a quadratic form sum. Since V is Kato-decomposable, H}, is closed on 0(p*») N Q(V,) and bounded
from below, Whgre Q(T) denotes the form domain of 7. See [Sim82, Theorem A.2.7]. Moreover it follows that

sup, > Ep,, [effo VBADAS) o6 for arbitrary t > 0, where (By)1=0 denotes the 3-dimensional Brownian motion starting
at zero on a probability space (W, By, Pw). By (2) of Assumption 2.1, V — o0 as |x| — oo. Then H,, has a compact
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resolvent. This can be proven by showing that {yr € Q(H,)||¥|l < 1, (¥, Hy¥) < 1} is compact in L*(R%). See
e.g., [RS78, Theorem XIII.67]. In particular the spectrum of H,, is purely discrete and the ground state ¢, of H, exists.
By assumptions, V. € LIIOC(R3) and V_ € LP(R?) with p > 3/2, and V(x) > C|x|9 for sufficiently large ||, it is known

that ¢,(x) exponentially decays. We used this in Section 4.
Now let us define a unitary transformation. By (3) of Assumption 2.1 we can define the ground state transformation

Up: L*(R%) —> Iy = LZ(R3,¢3dx)

by
1
Upf = —f. (2.2)
Pp
Set
L,= UPHPU;1 (2.3)

and the probability measure 1, on R? is defined by
dpp(x) = pr(x)dx. (2.4)

Thus the operator L, acts on the probability space LA(R?; dup). Formally L, is given by
1 Vo,
Lf=—5Af+—Vf (2.5)
2 ©p

on L2(R%; dp), it is of course not clear whether ¢, € C I(R?) or not. However by the Kolmogorov consistency theorem
we can construct a continuous Markov process X = (X,),cg associated with the semigroup e "%». This process X is a
formal solution of the stochastic differential equation:

Vo,
dX, = dB;, + — (X,)dt.
Pp

We will discuss the Markov process X in Section 3.

2.2 Boson Fock space
The Boson Fock space over the one particle space L2(R?) is defined by

F = Q% LY, (R,

where Lgym(R3”) is the set of L? functions Sk, ... ky), kj € R3, j=1,...,n,0on R such that it is symmetric with
respect to ki, ..., k, with Lfym(Ro) = C. The Fock vacuum 1 @ 0® 06 - - - in .% is denoted by Q4. The annihilation
operators a(f) smeared by f € Lz(]R3 ) and the creation operators a’(g) by g € Lz(R3) are defined in .% and satisfy
canonical commutation relations:

la(f).a"(®)] = (f. O, (2.6)
[a(f), a(@)] = 0 = [a(f),a’(®)]. 2.7
Here (f, g) » denotes the scalar product on a Hilbert space .#". We omit # unless confusion arises. Note that
@) =a'(fh

and that a'(f) and a(f) are linear in f. We formally write a(f) = f a(k)f(k)dk and a'(f) = f a’(k)f(k)dk. For a
contraction operator T : [2(R?) — [2(R?), define the contraction operator I'(T) : # — % by I'(T)Qy = Qs and

DD (fi)---a"(f)Rz =a' (TH) - a' (Tf)Qz.

Note that I'(TS) = I'(T)I'(S) and I'(/) = I. Then for a self-adjoint operator & in L2 (R?) there exists a unique self-adjoint
operator dI'(h) in % such that

eitdl"(h) — F(eith)’ t e R.

2.3 The Nelson model with variable mass

Let us assume that —A 4 vy, is a self adjoint operator in L?(R®). Suppose that —A 4 v, has generalized
eigenfunctions W(k, x):

(—A + vm())W(k, x) = |k W(k,x), keR>. (2.8)

We introduce the following assumptions.
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Assumption 2.2 (Assumptions on V(k,x)). The generalized eigenvectors satisfy that

(1) sup, |W(k,x)| < oo,
(2) W(k,x) is continuous in x for almost every k,
(3) the generalized Fourier transformation:

(F k) = 2m) 3 Lim. / F)W(k, x)dx (2.9)

is unitary on L*(R>).
By (3) above the inverse of &, !, is given by

(F o) = 2m) ¥ Lim. / g(k)W(k, x)dk. (2.10)
Recall that @ = \/—A + vy,. Then we have
FoF ' =o, (2.11)
where o is the multiplication operator given by
wlk) = k|, keR>. (2.12)
Let x be a cutoff function. We define the field operator with the variable mass vy, and the cutoff function x by
~ 1 -
b = —= ('@ Pp.) +a(370.)), 2.13
(x) 7 (@' px) o (2.13)
where
pi() = (2m) / Wk, )Wk, x) x(k)dk. (2.14)

A physically reasonable choice of yx is
xa (kD)
Jan®

where x, is an ultraviolet cutoff defined by xa(s) = {J $Z4. If we take (2.15) as x, then p, — 8(- —x) in . as
A — o0. N
Let us define the free Hamiltonian H; by

x(k) =

A >0, 2.15)

H = dT(®). (2.16)
The total state space is defined by the tensor product of #,, and .#:
H=H,®F. (2.17)
Definition 2.3 (The Nelson model with variable mass). The Nelson Hamiltonian with the variable mass vy, is
defined by
H=1,81+1Q®H; +ad (2.18)
on the Hilbert space #, where D= fﬂgé 5(x)dx under the identification # = 11?3 Fds.

Now we derive the equation of motion associated with H. Let

o(f) = Jli (a*(ﬁ‘/zf) + a(aT/Zf)) (2.19)
be the field operator smeared by f. Then 5(x) = ¢(py). The time evolution of ¢(f) is given by
o(f 1) = e p(f)e (2.20)
and that of x by
g = e xeiH, 2.21)

Since
[dT (@), a(f)] = —a@f), [dT(@),a" (/)] = a'@f),
o(f,t) and g, satisfy that
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Po(f, 1) + (= A + vn)f, 1) = —a(pg,, ), (2.22)
g = —VV(g,) — ap(Vpy,,) (2.23)
on J¢. Compare with (1.8) and (1.9).

2.4 Unitary transformation

In this subsection we unitarily transform the Nelson Hamiltonian to some self-adjoint operator H. Let Hy be defined
by

=dl'(w) (2.24)
and ®(x) by
_ x(k) — x(k)
D(x) = ﬁ/(m W(k,x)a Jo® Y )dk. (2.25)
Define H by

H=L,®1+1QH;+ad, (2.26)
where © = fﬂfg ®(x)dx. We introduce some assumption on cutoff function .

Assumption 2.4 (Assumptions on x). Assume that x is real, x >0 (#0), x/Jo € L*(R®) and x/w € L*(R?),
where X denotes the inverse Fourier transform of .

Remark 2.5. Since the space dimension under consideration is three, from ¥ > 0 in Assumption 2.4 it follows that
x(0) > 0 and then it follows that
k 2
/X( )" ik = oo, 2.27)

(k)

The next proposition is standard.

Proposition 2.6. Suppose Assumption 2.4 and (1) of Assumption 2.2. Then the Nelson Hamiltonian H (resp. H ) is
self-adjoint on D(L,) N D(Hy) (resp. D(L,) N D(Hf)) and bounded from below. Moreover H (resp. H ) is essentially
self-adjoint on any core of L, ® 1 +1® Hy (resp. L, ® 1 + 1 ®Hf)

Proof. Since & (resp. dJ) is infinitesimally small with respect to L, ® 1 +1® H; (rep. L, ® 1 +1 ®ﬁf), the
proposition follows from the Kato-Rellich theorem. (]

Let £, = ['(¥) which is a unitary operator on .%.
Proposition 2.7. Suppose Assumption 2.4 and (1) of Assumption 2.2. Then
H=(1® FHH(1® F;". (2.28)

Proof. Since

Fo 2 p ()= () x( OV, X)

and Fpa' (@ 12p)F, ' = a'(Fo~'?p,) and ?’ba(cﬁ 1/2/))()?‘}7 = a(Fw1/2p,), it follows that beD(x).?'b = d(x)
for each x. By F@F ! = w it also follows that F FH T ! = H;. By a simple limiting argument we can complete the
proof. (]

We give a remark on the relationship between H and the standard Nelson model Hy introduced in [Nel64]. Namely
Hy=L,®1+1Q H; + ady, (2.29)
where &y = fﬂgi ®y(x)dx and

X( ) ik X( ) ik )
) k) + ——= k) |dk.

Let vy(x) = m® be a nonnegative constant. Thus the generalized eigenfunction is W(k,x) = e* and p, = (- — x). Then
H covers Hy.

2.5 Klein-Gordon equation on pseudo Riemannian manifold

In this subsection we give an example of a Klein-Gordon equation defined on a pseudo Riemannian manifold .#
such that a short range potential v, (x) = O((x)~F2) appears, where (x) =+/1+ |x|%. See [FUL96] for details.

Let x = (£,x) = (x0,x) € R x R. Let .# be the 4 dimensional pseudo Riemannian manifold equipped with the
metric tensor:
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e ™ 0 0 0
—e @ 0 0
8 = glx) = . (2.30)
0 0 —e™ @ 0
0 0 0 —e™ ™

Note that g depends on x but independent of ¢. The line element associated with g is given by

ds* = e "9dr @ dr — e Z dx) @ dx’.

The Klein-Gordon equation on ./ is
O + m*¢p = 0, (2.31)
where the d’ Alembertian operator is defined by

O = "0 — &0 > e~

Thus the Klein-Gordon equation (2.31) is reduced to the equation

3t ’ )
Whel‘e

Ky = ™™ Z aje*“*)a,- — eI,

The operator Ko[ ¢~ s is symmetric on the weighted L? space L*(R?; e=@dx). Now we transform the operator K to
the one on LXR?). In order to do that, the unitary map Up: L2(R*; e *@dx) — L2(R?) is introduced by
Uof(x) = e= /29 f(x).

Lemma 2.8. There exist functions v and 0 such that UOKOUO’1 =A—v vx)=0(x) " 2 for >0 and —A +v
has no non-positive eigenvalues.

Hence the Klein-Gordon equation (2.32) is transformed to the equation
)
or?

on L*(R%). Although the proof of Lemma 2.8 is straightforward, we shall show this statement through a more general

scheme in what follows.
Suppose that g = (g,.), 1, v=10,1,2,3, is a metric tensor on R* such that

= A¢p—v¢ (2.33)

@) guwx) = guv(x), i.e., it is independent of time ¢,
(2) goi(®) =gpx) =0, j=1,2,3,
(3) g;j(x) = —y,;(x), where y = (y;) denotes a 3-dimensional Riemannian metric.

_|:goo 0:|
=10 _, |

Let .# be a pseudo Riemannian manifold equipped with the metric tensor g satisfying (1)-(3) above. Then the line
element on . is given by

Namely

ds* = goo(x)dt @ dt — Z y,-j(x)dxi ® dx’.
ij

Let g~! = (g"”) denote the inverse of g. In particular 1/goy = g°°. We also denote the inverse of y by y~' = (3V). The
Klein-Gordon equation on the static pseudo Riemannian manifold .# is generally given by

Oe¢ + (m* + nR)$ = 0, (2.34)

where 7 is a constant, R the scalar curvature of .#, and [, is given by

=y —— 0"/ 1det gl (2.35)
. 4/|d e

Let us assume that goo(x) > 0. Then (2.34) is rewritten as
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P

o = K9, (2.36)

where
=800< T Za\/metgyﬂa —m —nﬂ)

The operator K |'C30(R3) is symmetric on L2(R?; p(x)dx), where

J]detg]
_ Yldetsl _ iz ety 2.37)
800

Now let us transform the operator K on L2(R3; p(x)dx) to the one on L2(R?). Define the unitary operator U :
L*(R?; p(x)dx) — L*(R?) by

Uf = p'/*f.
Let p; = d;p and 9;0;0 = p; for notational simplicity. Furthermore we set o = gpy” and o'/ = a}z. Since
U~'9;U = 8 + 45, we have as an operator identity
U71 (Z 3igo())/ijaj> U= £00 Z )/Uaiaj + Vl + V27 (238)
ij ij

where

w=z@ww9%

ij
1 P i Pi O
V2=— <2 ll J+2U — o =2,
4 Zj: P PP
Set |detg| = G and 9;G = G;. Hence we have

G
Vi= 8w Z()’;j + _> %,
7 2G

where y/ = 9;)"/, and directly we can see that

MZa |det g|yVa; = V, —i—gooZy’aB (2.39)
Comparing (2.38) with (2.39) we obtain that
(; d;gooy"d; — V2> U=gw—F——= \/|—d—t_— Z 0/ Idet g|y" ;. (2.40)
Then we proved the lemma below.
Lemma 2.9. [t follows that
UKU™' = Z 3ig00Y" 8 — v, (2.41)

where v = goo(m?> + nR) + Va.

By Lemma 2.9, (2.36) is transformed to the equation'

8t2 (Zagooy 3 — v)¢ (2.42)

on L2(R?).

Proof of Lemma 2.8. Now we come back to the proof of Lemma 2.8. Set

e u=v=0,
g;w(x) = _e—e(x)’ nw=v=1, 2,3,
0, w .
Then
J/|det . .
- Videtsl e, o’ =gy =8, (2.43)

800
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and UKU~! = A — v follows by (2.41), where, inserting (2.43) to v, we have

o s AO |V
v=e '(m +nR)——+ . (2.44)
2 4
Taking n =0, m = 0, and 6(x) = 2a{x)~#, we obtain
v(x) = a{x) BB — DIxI* = 3B) + a*(x) (2.45)

In the case of 0 < 8 < 1 and a < 0, we see that v > 0 and v = O({x) #~?). Furthermore —A + v has no non-positive
eigenvalues. In the case of 8 > 1 and a > 0, we see that however v # 0. We can estimate the number of non-positive
eigenvalues of —A + v by the Lieb-Thirring inequality [Lie73]:

#{eigenvalues of —A +v <0} < C;r / lv_(x)>?dx, (2.46)

where v_ denotes the negative part of v and Cjr is a constant independent of v. This yields that —A + v has no
non-positive eigenvalues for sufficiently small a. Thus the lemma holds. O

3. Functional integrations

3.1 Path measures for particles

In order to construct a functional integral representation we introduce a probability measure P* with reference
measure [, such that (f, e Irg) can be expressed as

(f.ehg) = f dpp(OE[f(Xo)g(X1)]- 3.1

We already mention that formally L, is given by
Vew

P

1
Lyf == Af+— 2 Vf. 3.2)

Thus X = (X;);cr is the solution of the stochastic differential equation
dX, = dB, + Vlog ¢p(X,)dt. (3.3)

The regularity of ground state ¢, is, however, unclear. So we construct the process X through the Kolmogorov
consistency theorem. Let us set L, = L, — inf o(Lp).

Proposition 3.1. Suppose that Assumption 2.1 holds. Then there exists a probability space (2, B,P*) and an
R>-valued continuous Markov process X = (X;),cg starting at x such that for to < t; < --- <t, and fy, f, € HCp and
[FEeL®®), j=1,....n—1,

(fon e hfy ooty = / dw(x)EX[ ﬁ(xfp}. (3.4)
=0

J

Proof. We show an outline of the proof. The proof is based on the Kolmogorov consistency theorem. For
th <t <---=<t,and A; € (%’(IR@), j=0,1,...,n, where %(IR@) denotes the Borel o-field, let

V(Ag X -+ X Ap) = (g, e 701 gDy
Thus v satisfies the consistency condition

VAg X -+ XAy X R¥ x -+ x R) = v(Ag x - -+ X Ay).

m

By the Kolmogorov consistency theorem there exists a measure v, on (R*)(=%2) guch that

v(on-~-xAn)=IEvm|:
j

L (Xz/)i|,
=0

where X,(w) = w(t) for w e (R the point evaluation. We note that by the Feynman-Kac formula
E, [1X; — Xs|2”] can be expressed in terms of Brownian motion (B;);~ on (W, By, Py) as

E,. [1X; — X,[*"] = / deiéw[le — Bo*"0y(Bo)gp(Bi_s)e o V(B*"”]e“-”i“f““v%

By (1) of Assumption 2.1 we have
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sup Ej, |:e_fo V(B')dri| < 00,

xeR3

and IEY,SWHB,__Y — By|*"] = Cault — s|" with some constant Cs,. Then it can be shown that E, [1X; — X,?"] < Clt — s
with some constant C independent of s and 7. Then X = (X,),cg has a continuous version X = (X,),cg. The image
measure of vy on 2 = C(R;R?) with respect to X is denoted by P and define' the measure

P()=P(-|Xo = x) (3.5)
for x € R? on Q. Then
(Lag e @001, oGl 0 — B []—[ 14X, )} . (3.6)
=0

Here E* = Ep.. By a simple limiting argument, (3.4) can be proven. Finally we shall show the Markov property of X.
Let

P A) = (e7514) . 3.7)

Then (3.6) is represented as
J T T s - pgiamnase.
j=0 j=1

Hence it is enough to show that p,(x, A) is a probability transition kernel. Note that e~" is positivity preserving. Then
0<e e f <1 for all function f such that 0 < f <1, and e o1 = 1 follow. Then it satisfies that

—tL,

(@) p:(x,-) is the probability measure on R* with p,(x,R®) = 1,
(b) po(x,A) = 14(x),
© [ ps(y,A)pi(x,dy) = prys(x, A).

Hence p,(x,A) is a probability transition kernel. Then the process X constructed above is Markov under the
measure P*. (]

By (3.4) it can be seen that X is invariant with respect to any time shift, namely

/ dupy B [T X)) | = / dpip(OE" ]‘[]?,-(XW,,)}

Lj=0 A /=0
for any s € R. The time reversal property also holds:
f dpp B | [T 4 | = / dpip()E" ]"[ﬁ-(x,,)].

Lj=0 _ | j=0

Moreover X, and X_; for —s < 0 < t are independent, since

E'X_sX,] = B X _E'[X,| B s0]] = E'IX_E[X/]] = E[X_JE'[X,],

where %[a,b] =o0X,,a<r<b).

3.2 Building of quantum fields and semigroups

The free Hamiltonian Hy can be regarded as the infinite dimensional version of the harmonic oscillator
Hy = % p2 + %xz — % The process associated with H,g is the Ornstein-Uhlenbeck process (g;),cr, and hence

/ dxW(x)’ B giqs] = (e, ey = 71,

where W(x) = 7~ /4¢=*"/2 is the ground state of Hos. There exists an infinite dimensional version of ¢ = (¢:)cg.
Letd = 1,2,... denote the dimension. Let ®,(f) be the Gaussian random process indexed by real-valued f € LZ(Rd )

on some probability space (2, 1ts) with mean zero and the covariance given by

L oA,
/ Dy(f)Pa(g)dia = 3 (f> )2y
2

The set of the linear hull of functions of the form : ®4(f;) - - - ®4(f,) : is dense in L?(2y), where : Z : denotes the Wick
product of Z inductively defined by : ®,(f) := ®4(f) and

' Let o(Xp) denote the o-filed generated by Xy. For Z C €, let P(Z|o(Xy)) = Ep[12]0(Xo)]. Then P(Z|o(Xp)) is o(Xy)-measurable. Thus P(Z|o(Xp))
is a function of Xp, i.e., P(Z|o(Xo)) = Gz(Xp) with some Gz. P(Z|Xy = x) is defined by Gz(X,) with X, replaced by x, i.e., P(Z|Xy = x) = Gz(x).
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L () Pa(fi) - Pulfy) :
1N - —
= Ra(fi) ®alf) s =5 Y (o) Ralfi) - Palf) - Palfi)
j=1
where (I>;(\jj~) denotes neglecting ®4(f;). Note that

1
G Pa(fi) - Palfu) 1,2 Pa(pr) -~ Palom) ) = Sum 5 D s Po1) - (fas Pot)-

0€G,
For Hilbert spaces A and B, let
CAB)={T:A—> B||Tlaep=1}
be the set of contarctions from A to B, and
Co(A,B) = {T € €(A,B) | T is isometry}.
The second quantization I' is a functor:
[ LR, LPRY) — CL(2a). L (20)
and
I CoLP R, LXRT) — ColL*(2a), LA L),

and it is defined by ['(T)1,2(9,) = 1;2(9,) and

L) = a(f1) -+ Palfu) =2 Pa(Tf1) - Pa(Thp) : . (3.8)
It satisfies the semigroup property:

(TI(S) = I(T19), (3.9)

when S € €(LARY), LA([RY)) and T € €(L2R?), L2(R?")). Contraction operator ['(T) depends on d and d’, we do not,
however, distinguish them, and simply write I'(T). T'(e~X) for a self-adjoin operator K in L*>(R?) is one parameter
unitary group on L2(2,). Then its generator is denoted by dI'(K), namely I'(e="K) = ¢~#I'K),

Let 2 > 0 be a Borel measurable function on R?. Define the family of isometries j;;(f) € Homo(L2(RY), L2(R*1Y),
t e R, by

— itk 1/2
- e h(k) o 4
Jap®Of = NV fk), keR? kg eR (3.10)
+
It satisfies that
Jan($) jan(t) = eI, (3.11)
For a given Borel measurable nonnegative functions /4; on R3, hy on R*, h3 on R3 ..., we have a sequence
@)Y 2wy s Y (3.12)

Each isometry in (3.12) satisfies (3.11). Define Jy,(t) € €o(L*(24),L*(2441)) by the second quantization of
Jan() € Co(LARY), L2(RI)), namely J, (1) = ['(jau(r). Hence it follows that
Jan(s)* Jan(r) = T(e” =), (3.13)
Sequence (3.12) is inherited on [*(9,) as
J3n, (1) Jan, (1) Jsny (1)

[2(2) =5 [H(92y) 5 [H(2s5) = ... (3.14)

Let /2 and f be Borel measurable nonnegative functions on R?. The crucial property is the intertwining property given
by

D(e™"M=NVDY g, o(s) = Jg p(5)[ (e M), (3.15)
Here h(—iV) ® 1 = h(—iV) ® 12, is an operator on L>(R*™") under the identification L>(R*™") = LX(RY) ® L*(R).
Proposition 3.2. Leth; j=1,...,N, be Borel measurable nonnegative functions on R3. Let H; = dT'(hj(—iV)). Then
N 1 1
(‘I’, 1_[ e it ‘b) = (H Jit2nx ()W, l_[ Ji+2,hf"(ti)cb> . (3.16)
=l 2y =N =N [X(2y.3)

Here ]_[ivzl T, =T,---Ty and ]_[il:N T; =Ty --- Ty and h* is an extension of h to the nonnegative function on L2(R2+i)
defined by hi*(K, ks, ..., koyi) = hi(K) for k € R3.
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tH

In order to construct a functional integral representation of the semigroup e~"" we take the Schrodinger representation
instead of the Fock representation. In addition we need the Euclidean field. We set

2=25 wu=u3 Jji= e,

. (3.17)
De =24, wg=ps, &=jas),

where I denotes the identity operator on L?>(R*). It is well know that there exists an isomorphism between .# and
L*(2). By this isomorphism we can identify as Q7 = 1, Hy = dTI"'(w(—iV)) and ®(x) = ¢(X(x)), where

~ X ——\"

xtx) =|—T==v.0) . (3.18)
Vo)

Note that in the Schrodinger representation the test function is taken in the position representation while the momentum

representation is used in the Fock representation.

Definition 3.3 (The Nelson model in Schrodinger representation). In the Schrodinger representation the Nelson
Hamiltonian is defined by
@

L,®1+1®dl(e(—iV)) +a / (X0)dx (3.19)

R
on A, @ L*(2). Here we identify 5, ® L*(2) as f]gx LX(2)d .
In what follows we write (3.19) as H, dT'(w(—iV)) as Hy and ¢, @ [X(2) as K.

The operator dI'(I) is called the number operator. The number operator on L*(2) (resp L*(2g)) is denoted

by N (resp Ng). We define the specific families of isometries J; € €o(L*(2), [*(2g)) and E, € €o(L*(2k), L*(2s))
by

Jir =T() = T30,

- (3.20)
B, =T¢) = Ja ()
for t € R. Thus it follows that
Ty = e
E*E, = e IINE, 62D
Moreover we have
e PNeg = Je PN, B=>0, (3.22)
by the intertwining property (3.15).
Example 3.4. From Proposition 3.2 it follows that
(W, e Ne @) 15 5 = (BoJo W, Epdi D)2 0,)- (3.23)

3.3 Functional integral representations

tL

Combining the functional integral representations of both e~"l» and e~ stated in the previous sections, we can

construct the functional integral representation of e~
Let

Os(f) = Pu(jsf), seR

It is the Gaussian random process indexed by real-valued functions f € L*(R?) such that the mean is zero and the
covariance is given by

/Q SNy = /R Fgtke" V. (3.24)

Thus (¢,(f)),cr denotes the infinite dimensional version of the Ornstein-Uhlenbeck process. We note that J; :
O(f) - d(f) :=: &s(f1) - - - ds(fy) : and Js1 12 9) = 12 9,). Combining the process X; in (3.4) and J; in (3.20) we obtain
the theorem below.

Theorem 3.5. Suppose Assumptions 2.1, 2.2 and 2.4. Let F,G € 7, ® L*(2). Then

(F,e™MG) = / dup(x)Ex[<JoF(X0), s ‘b"(’?(x"))dSJ,G(X,)) ] (3.25)
L2(2g)
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Proof. By the Trotter product formula

™ — s _ lim (g—(r/n)ip o (/mad(x(x) e—(r/n)h«)",
n—oo

the factorization formula (3.21), Markov property of E, = J,J; and (3.4), we have

(F,e"™G) = lim / dup(x)Ex[(JoF(Xo), e Lo I X)) , } (3.26)
n—oo L*(Z2g)
Note that s+ ¥(-, X;) is strongly continuous as the map R — L2(R?) almost surely. Hence s — ¢,(X(X;)) is strongly
continuous as the map R — L?(2;). By a simple limiting argument we complete the proof. ]
Next let

bsi(f) = Ps(&ijsf), st eR.
It is also the Gaussian random process indexed by real-valued functions f € L?(R®) with mean zero and the covariance
given by
1 (- , )
/ 5Ny (Q)de = 5 f fo)gtye™ =10k (3.27)
2k

We see that &; : ¢y, (f1) - - ¢, (f2) := &5,/ (f1) - - - b5, (fn) : and E/112(9,) = 112(9,). Then we have the theorem.
Theorem 3.6. Suppose Assumptions 2.1, 2.2 and 2.4. Let F,G € H#. Then
(F, e—sHe—ﬂNe—lHG)

-/ dupu)]Ex[(EoJoF(Xo),e“fo"ﬁ"‘(’(’"‘“"”d’e“fx ""‘*(’”‘("'”d’EﬁJzG(X») } (3.28)
L2(25)

Proof. Throughout this proof we set ]_[j'.'=0 T, =ToT - Ty
Simply we put a¢(X(x)) = ¢. By the Trotter product formula we have
(F, eszefﬁNeftHG)
= lim lim (F, (e‘ﬁiﬂ”e—%”’e_%m) e‘ﬁN<e_ﬁL_Pe_#¢e_$Hf) G).

Inserting e~ /751 = J%Jg we have

n—1 o P

i=0 \ " "

m—1 ‘- .

1_[ (Js+t_i€EL'P€E¢J:+Li>Jy+ZG) .
i=0 " "

Let Er = JpJ3. Er is the family of projection on L?(2g). Since J5e?Jr = Ere?” Er and by the intertwining property
Joe PN = J*Je PNe = E;Ef Bg, we have

n—1
spo s -
- (F,J;; (Es_ie—nLve n¢%E5_i)Esc48d/3
l:0 n n

m—1
1y 1
1_[ (ES_"_,_,'e—mLPe ”l¢s+%Es'+’—’)jS+tG> ,
m

m

=l

where ¢r = apr(X(x)). By the Markov property of E; we can neglect all E, then we have

Iy !
i=0

i B ae? B — EEetss EE g _ 82,8 iecti 2
Again we use the fact Zge? Ey=Eg e? ?Eg, where Eg = HgEj denotes the projection on L (2s5). Hence we have

I
/e
!
3
- =
Lr
—
N\
= |

_;‘I
Q
|
= =
-
~—
]
S *
[a]
=

= tFo_ =
E§ [T (e e )Ef ﬁjs+,G> .

Since by the Markov property of EZ we can neglect E and E E, we can obtain
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n—1 m—1
Ty CLp g\ o
= (E()J()F,l |(e*n[1’e '1"’2-!-“) | |<e ntre '11¢‘+*”>dﬁfy+tG>,
i=0

i=0
where ¢sr = qSS,T()?(x)). By (3.4) and a limiting argument, we can prove the theorem. [l

4. Infrared divergence and absence of ground states

4.1 Abstract theory of the absence of ground states

In this section we assume Assumptions 2.1, 2.2 and 2.4. By the functional integral representation obtained in
Theorem 3.5, we can see that

(F,e™G) >0

forany F > 0 and G > O but F # and G # 0. Thus e~ is positivity improving. Then whenever a ground state @y of H
exits, ¢, > 0 by the Perron-Frobenius Theorem. In particular the ground state is unique if it exists. Now we introduce a
sequence approaching to the ground state. Let 1 = 1, ® 1;2(9) and

of = lle ™1~ e ™1, T > 0. 4.1)
Define
(1) =(,¢1, T>0. 4.2)

If H has a ground state, then (p; converges to ¢, strongly as T — oo. We can have a criteria on the existence and
non-existence of the ground state.

Proposition 4.1. (1) When limy_, o, ¥(T) = a > 0, H has a ground state. (2) When limy_, o, ¥(T) =0, H has no
ground state.

Note that

iy (e
= e

Since ¢,(g) is a Gaussian random process, by means of the functional integral representation (3.25), we can see that

@/2) ( [ oxs, [ ¢,<5<<Xr>>dz)
(1,e ™M) = /du,p(x)IE" e 0 0

T T
_ / dup(x)]E"[e(az/z) [las ! dtW(XJ,X,,.Y—t)jI’

where
w Lo p— e
X, Y, |t) = Wk, X)W(k, Y)e dk. 4.3)
2w(k)
Note that
T T
/ dS/ dtW(X.DXI, |S - tl) >0 (44)
0 0

follows, since the left hand side is expressed as ( fOT os(X(X))ds, fOT o(X(X))dt). While

“TH {2 (@2/2) f”dsfzr dW(X, X, |s—1])
le™ 711" = | dup(0)E"|e o “Jo oo

_ / dy (x)]Ex|: s [ as f_T,,,de<X.\-,Xh|s—t)}
= p
by the shift invariance of X;. Then y(T) can be expressed as

2
<f dpp(x)E* [e(a2/2) foT ds fOT de(XJ,X,,|.Y—t)i|)

T T
f dpy(OE [e(a2 /2) fir ds fir dtW(Xs,X,,lstl)i|

() = 4.5)

Let /17 be the probability measure on (R x Q, B(R?) x ) defined by for A x B € BR?) x A,

1 T T
ur(A x B) = Z_ /dﬂp(x)Ex[lege(az/Z)fdedetW(X“Xhlstl)j|, (4.6)
T
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where Z; denotes the normalizing constant such that ;. becomes a probability measure.

Lemma 4.2. Integral fET ds fOT dtW (X, X,, |s — 1)) is real and it follows that

0 T
WT) < E,, |:e—az [ ,ds [ dtW(XS,X,,x—z)jI 4.7

Proof. The numerator of (4.5) can be estimated by the Schwartz inequality and the time shift of X as

T T 2
(/dMP(X)EX[e(aZ/Z)/(.] ds‘/; dtW:|>
< /d,le(x) <Ex |:e((¥2/2)fzdsj:dtwi|) <EX |:e(a2/2)jzdsjgdzw:|>
— /dﬂp(x)(Ex |:e(a2/2)/(‘)Tdsj;)Td[W:|) <Ex |:€(a2/2)/0Tds/‘0TdtW1|>.

Since X, and X; for s < 0 <t are independent, we have
(@2 2)( Tas (T aw [0 as [° dW)
/dﬂp(x)Ex [e / ﬂ) ./;) 4 +f—T f—T ! A

Moreover from [*, [+ 1 [ = [T /T =2 /%, i and (4.4), it follows that integral [°,.ds [ diW(X;, X, |s — 1])
is real and

— / djp (V) E* |:e_a2 [ as [Tawr@y [*as [ dtWi|.

Then the lemma follows. O

We can compute W explicitly. Note that the operator e~ V=24 hag the integral kernel

|t/ =AFmZ m\ ¢th/2 It] ;
— |tV —A+m’ X,Y)=2— K \/m ,
‘ 1) (271) (X — Y2 + |¢|)@+D/ @(m | [+ )

where K, denotes the modified Bessel function of the third kind. In particular in the case of d =3 and m =0
we have

/1]

1
VA Yy =—— 1 (g=23).
e ( ) ) 7_[2 (|X—Y|2+|t|2)2 ( )
Then
1 [
Wy, |T)) = 5/ dIt|(Wex, e Wy x)
T
1 W)V (X)W, )" (Y
:_/dX/dY< 07 GO0 ()
472 X —Y|" 4+ |T|

We are in the position to state the main theorem. This is an abstract version of [LMS02].

Theorem 4.3. Let Ay = R® x {t € Q||X,(v)| < T4, |s| < T} for some A such that

1
— <A<, (4.8)
q+1
where q is the positive constant given in Assumption 2.1. Suppose that there exists o(T) independent of T € Q
such that
0 T \I,Ii \% X)W \% Y
lATf ds/ dt/dX/dY( X, X0 (2)( x.X) (2 )zQ(T) 4.9)
-t Jo X =YY"+ s —1

and limy_, o, o(T) = oco. Then there is no ground states of H.

Proof. By Lemma 4.2 it is enough to show that
0 T
) lim EM[IATe—az fird‘v'/(l) dtW(XJ,X,,ls—t\):I _o,
T—o00

0 T
) Tlim E;LT[IA;[“Z [ as dtW(Xx,erlsftD] —0.
— 00

(1) follows from assumption (4.9). We shall prove (2). Note that
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0 T - 1 , )
ds/ dte™" N0 = — (7' — 1 (4.10)
/_T 0 w? ( )
and
T T o)
/ ds/ dte™ 15l = — (e’zT“’ — 1+ 2Tw). 4.11)
-T -T w
Then
0 T T
‘ f ds f AWK, X bs = 1| = 5 /o’
-t Jo
and

E |:1A[ o fordxj:dtW(Xs,X,,s—l):|
158 T
T T
fdﬂp(x)]Ex[lA;e(QZ/Z) deXdelWiI

f dup(x)E* e(a2/2) ffr ds ffr dtwi|

< PTDIx/ol?

C '
<f dup(OE*| e [ s f_,r,z,WD

< LTI/l o f dup(x)EX[lA;,]. (4.12)
JEs) o e S S ]
Moreover by (4.11), there exists a constant § > 0 such that
T T
TS|/l < f ds f dIW (X, X |5 — 1) < T8l x> @.13)
-T -T
Then we have
T T 1/2
(f ditp(E" |:ea2 frdsfrde<X.an-lsfl>D :
p
< Il (4.14)

T T
[ dpp(OE* |:e(a2/2) [ s, dtW(XJ,X,,.Y—t)jI

The crucial part is to show that there exists an at most polynomially growth function &(7T") such that

/ dup(x)IEx[lAcT» ] < E(T) exp(—cT @), (4.15)
This is proven in Lemma 4.4 below. Combining (4.12), (4.14) and (4.15) we have
lim ]E;Lr[lA‘] < lim g(T)echMq'H>e(¥2(5+1/2)T”X/wH2 = O’ (416)
T—o0 T T—00
since qﬁ < A < 1. Then (2) follows. O

It remains to show (4.15).
Lemma 4.4. (4.15) holds. Explicitly limy, o &T)/T 2 < oo.

Proof. Recall that the external potential is supposed to be V(x) > |x|* for sufficiently large |x|, and V, € LIIOC(R3) and
V_ e LP(R?) with p > 3/2. Then by [Car78], the ground state @, of H,, exponentially decays. More explicitly there
exist constants C > 0 and § > 0 such that

Pp(x) < Ce O™, (4.17)
We divide the left hand side of (4.15) as

/ E*| sup X, > T" <pp(x)2dx=/ +/ =0+ 0s. (4.18)
R? |s|]<T? [x|<T4/2 [xX|>T4/2

Let D,(n) = {aj/2"|j=0,1,...,2"} be the set of diadic points. By [KV86, Lemma 1.12] it follows that

E{ sup  |f(Xp)| > b} < %\/(f,f)+a(1:f,/2f,l_,é/2f) (4.19)

0<s<a,seD,(n)
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for f € D(Ly/?), where (f,8) = (f,8)12?g,(xran- The right-hand side above is uniformly bounded with respect to n,
and the indicator function 1{supm<u,xep o |FIX,DI>b} is monotonously increasing in n and X;(w) is continuous in ¢ for each
path w. Thus by the monotone convergence theorem, we have

lim E° sup lf(Xy)| > b:| = IEO|:1im sup lf(Xy)] > b:|

n—00 |:0<s<a,s€DL,(n) =00 0<s<a,seD,(n)

= IEO[ sup |f(X)| > b}.

0<s<a

Hence

3 - _
E° [sup FX)| > b} <27 VP +aly £, f) (4.20)

|s|<a

follows. We apply (4.20) to (4.18). Suppose that f € C*(R?) and
bxl, x| > T4,
X) =
f() {05 |x|§T/1_1~

Moreover we assume that

e ORI g2 @2y o g e—@/”‘xl‘”'a,ﬁ f-fel’ R, p=123, 4.21)
and the L? norm of each terms in (4.21) has a upper bound independent of T. By (4.20) for T* + b > 0,

EO[sup fX)l > T + b} = Eo[sup X, > T + b}

Is|<a |s|<a

VP + alf, Lof). (4.22)

<
T~ T'+b

Let |x| < T1/2. Thus we have

Ex|:sup X, > T/l:| = IEO|:sup X, + x| > TA:|

Isl<T [s|<T

6 =
E° X,| > T — , T(f, :
< [lfng 1X,| > |x|} <77 VD + T Lpf)

We estimate the right-hand side above. By (4.17) we have

(f.f) = f F@Pgp(ePdx < e f @2 dy i gy (4.23)

While

- 1 1
(f,Lpf) = —inf o(Lp)(f. f) + / @p(0)° - f() <— 5A+ V(X)) @p(x) f(x)dx
e\ 2

= —inf o(Lp)(f, /) + / Pp(0)°f(X)*V(x)dx — % / Pp()fCA(fpp) ().
Then the first term on the right-hand side above is
/ 0o f(X)?V(x)dx < C2e T / e 02 XMy 1= ape T (4.24)
and the second term is

/ () f (D) A(fpp)(x)dx

= / Pp(0) - (f)*Agp(0) + 2 () Vep(x) - V() + Af(x) - f)gp(x)) dx

=G(x)

< Ce /T /e_(a/z)mq“ |G(x)|dx = aze @7 (4.25)

Hence
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12 2
01 = —/lar — info(Ly)] + T(a; + as)e” @I, (4.26)
Moreover
O, < 2o~ /e_’s‘x‘qﬂdx = a4e_5w(q+“. 4.27)
(4.26) and (4.27) yield that
E., [IA;] < E(T)e~ T, (4.28)
where &(T) = }—% \/ |a; —inf o(Ly)| + T(az + a3) + a4. This completes the proof. U

4.2 Absence of ground state for short range potentials

In this subsection we give an example for a short range variable mass vy,,. We introduce the assumption below:

Assumption 4.5. Let vy, be of the form vy = kw with k > 0, where w: R® — R is bounded, —A + w has no
non-positive eigenvalues, and there exist positive constants C, R and B > 3 such that lw(x)| < C{x)~?.

Assumption 4.5 yields that there exists a generalized eigenfunction W.(k,x) satisfying (—A 4+ vy)W.(k,x) =
|k|>W,(k, x) and the Lippman-Schwinger equation
ke y(y)
U, (k,x) = * —— U, (k,y)dy (4.29)
4n lx =yl
by [1k60].
Lemma 4.6. Suppose Assumption 4.5. Then

(1) W (k,x) is continuous in x for each k but k # 0;
(2) the generalized Fourier transformation ¥ define by (2.9) with W, is unitary on L*(R®);
(3) there exist positive constants kg > 0 and Cy > 0 such that, for any k < Ky,

sup [ — W, (k,x)| < kCo(x)™"; (4.30)
keR?

(4) sup, ; |W,(k,x)| < 0o uniformly for sufficiently small «.
In particular vy, satisfying Assumption 4.5 fulfills Assumption 2.2.

Proof. (1) follows from [Ik60], and (2) again from [Ik60] since there exist no non-positive eigenvalues for —A + kw.
We prove (3). In general there exists a constant ¢ such that
1 &y < 1
————dy<c
R X —y1°()” (x)

if 0 < a < n < b. Then by the assumption 8 > 3, we have

/ Lo
R S |
wl—y0*

with some constant ¢’. Iterating (4.29), we have

z\k\Z =11
w
— W(k,x) = < > / / [T w0y dyy - - dyn 431
j 1 |)’] y]—1|
with yo = x. Note that
lw(y)l _
dy < sup [w(y)(y |f F oY S < Clx)™
|x_ | ye]R3 | )

with some constant C. The right hand side of (4.31) absolutely converges for sufficiently small x > 0. By (4.31)
it follows that

, 2 (kC\" kC
Wk, x) —e® <Y (=) 07 = ——— (07"
Wik, x) — e |_n=1(4”> (x) ol

This completes (3). (4) is derived from (3). The proof is complete. [
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Henceforth, we denote W, simply by W. We define Wy by W with W replaced by ¢**, i.e.,

k) ,
Wy (x, y, [t]) = / —é‘;(;) e Moemk =) g (4.32)
Then
_ 1 XXOx(Y)
Wy, It = o — /dX/dY =P - —yET (4.33)

Note that, if [ 2% gk < oo, then

w(k)?
0< p/od/dt ( y| —t)) —I/X()zdk
su s Wn(x, v, |s <
_ N 2 a)(k)3

x(k)*
w(k)?

Theorem 4.7. Suppose Assumptions 2.1, 2.4 and 4.5. Assume k < ko and

by (4.10). It is however not the case when [ dk = oo. This proves the following:

1
—q T +kCo(kCo +2) < 1, (4.34)

where ko and Cy are given in Lemma 4.6. Then H has no ground state.

Proof. Note that, by (4.34), one can take 0 < A < 1 such that

1
—— <A <1—kCyokCy+2
at1 0(kCo + 2).
It is enough to show (4.9), namely there exists o(T) such that

0 T (Wx, )" X)Wy, ) (Y)
1A,/_ ds/o dt/dX/dY VP b o(T) (4.35)

and o(T) — oo as T — oco. By (4.30) it follows that

sup |U(k, )W(k,y) — e e < kCo(kCy + 2).
x, v,k

Then
W(Xs, X, Is — t)) = Wy (X, Xi, |s — 1)) — kCo(kCo + 2)Wo (|t — s1),

where

2
Wo(IT)) = /%eﬂnww)d,{_

0 T
/ ds / diWy(X,, X, |5 — 1))
-T 0

1
> L / dXdY (OK(Y) log
472

By [LMSO02] on A7,

8T + |X + Y|? + T2
+IX+7Y"+ ) 4.36)

8724 +2|X 4+ Y|?

Note that ¥ > 0. While fBT ds fOT dtWy(|t — s|) can be computed as

0 T
/ ds/ dtWo (|t — s))
-T 0

L/dxfdr(xy(y)l ( (X = Y7 + T )
2 KO X =y P(x — Y 4472

2T T
— [ dX | dY x(X)x(Y rcta — t .
/ / XX (3 Y|< X =y arcan|X—Y|)

The second term on the right hand side above is uniformly bounded by some constant K with respect to 7. Then

0 T
kCo(kCy + 2)[ ds/ dtWy(|t — s|)

X_Y 2 T2 2 kCo(kCo+2)
( T+ ) + K. 4.37)

<1 dX/dYx(X)X(Y) log(|X “YP(X — Y2 + 4T
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By (4.36) and (4.37) we obtain

1 8T +|X+Y[>+T2
v v 8T2412|X+Y|?
W > o) /dX/dYx(X)X(Y) log Xyrarey pranproeysl e kCo(kCy + 2)K. (4.38)
(|X—Y\2(|X—Y\2+4TZ))
Since 1 < 1,
8T+ |X+Y|*+T?
8T +2|X+Y N 2(1—A—kCo(kCo+2))
log (X—yPir2p KOGt log T
(|X—Y\2(|X—Y|2+4T2))
as T — oo, and A + kCy(kCy + 2) < 1, the right hand side of (4.38) diverges. Then the theorem follows. O
g g

5. The number of bosons in ground state

In this section we suppose Assumptions 2.1, 2.2 and 2.4, but we do not assume x > 0. Moreover we suppose the
following assumption holds:

x(k)*
w(k)?

Assumption 5.1. Suppose that (1) [ dk < oo and (2) H has a ground state ¢, such that ¢, > 0.
Under Assumption 5.1 it follows that gog — @ strongly as T — oo. We have the proposition below.

Proposition 5.2. It follows that

T BN T —a2(1—e*ﬁ>f° dszdIW(Xs,X,,Lv—t\)
(g ¢ g,) =E,, | e -1 Jo . (5.1

Proof. By Theorem 3.6 we have

2

ro_gvor_ ] . <a2/2>H [° trox&dr+ [ sk dr
(pg.e ") =~ dup(0)E*| e
T

Since
1 —
(@50(f): $14(8) = 5 e P / e "N f(k)g(k)dk,
we have
0 T 2
H / $r0(RX)dr + / b0 5(X,))dr
-T 0
0 0 T T 0 T T 0
:/ ds/ dtW+/ ds/ dtW+e’3(/ ds/ dtW—f-/ ds/ dtW)
-T -T 0 0 -T 0 0 -T
T T 0 T
=/ ds/ dtw + 2(e™# — 1)/ ds/ dtw.
-T -T -T 0
Then the proposition follows. (]
Note that
0 T l X(k)2
ds | dtWX,, X, |s —t]) < = - dk < oo. (5.2)
T 0 2 a)(k)

Let g(8) = (o5 e AN ¢z). Thus we have a lemma below:

Lemma 5.3. Foreach0 < T. (1) g can be analytically continued to the hole complex plane C; (2) (pg € D(e*PN) for
all B € C; (3) (5.1) holds true for all g € C.

Proof. The proof is parallel with [HO3]. Let I1; = {z € C|%z > 0} and I1_ = C\ I1;. Set

g(B)=E [e‘“z“—e“>fofdsforde<xx,x,,s_z>]
— ur .

It is easily seen that g(8) can be analytically continued into the hole complex plane C in 8. We denote its analytic
continuation by g. Let 8y € I1 be such that {8y = € with some € > 0. Fix an arbitrary R such that R > €. We see that
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2(B) =Y (B~ Bo)"ba(Bo) (5.3)
n=0

for e U :={z€ C||By — z| < R}, and (5.3) absolutely converges. Let v(dp) denote the spectral projection of N with
respect to (pgT. Note that g(8) is analytic in the interior of I1,. Then

00 (& 1 [o¢]
sBr= [ ePudp =Y B por o [ prerdp) (5.4)
0 n=0 - JO
for B so that |8 — Bo| < €. Since g(B) = g(B) for B such that |8 — By| < €, we see together with (5.4) that
1 [ 0 —f
bu(Bo) = —,/ (—=p)'e " u(dp). (5.5
n:Jo
Substituting (5.5) into the expansion of g in (5.3), we have
o0 1 oo}
1= o=y [ ore (5.6)
n=0 - J0

for B € U. In particular the right-hand side of (5.6) absolutely converges for 8 € U, and UNTI_ # # by R > €, and,
for B e RN UNTI_, by Fatou’s lemma we have for any M > 0,

M o0 1 00
/ e Pudp) < 3 1o~ BI" / p'e P u(dp) < oo.
n=0 - J0

0

Thus fooo e PPu(dp) < oo follows for B e RNUNTI_. This implies that @y € D(e~#/PNy and (5.1) holds for
BeRNUNTI_. Since R is an arbitrary large number, we get (5.1) for all g € C. (I

By this proposition the moment (¢gz, N"¢,) can be derived by

(@5, N"pt) = (—=1)" ﬁ (¢g-¢ ™D 0. (5.7)
Lemma 5.4 (Pull through formula). It follows that
o’ x(k)* — >
(pg: Nopy) = dk o) (Wk, g, (H + (k) > W(k, )py), (5.8)
where H = H — inf o(H).
Proof. From
0 T
(¢§,N¢g):EM[a2 / ds / diw X, X,, |s—t|)] (5.9
-t Jo
it follows that
x(k)?

(¢, Nop) = @ / o / / dte” "R, [W(k, X,)W(k, X,)].

Generally it can be obtained that for bounded f and g,

Eu, [f(X0e(Xn] = (7L, fe™ ™M ge™pl), 1> 5. (5.10)
This can be proven directly by the Trotter product formula. Then since
By, [V X)Wk, X))] = (W(k, el e Wk, )t gl), (5.11)
we have
(¢y-Noy)
O‘; / dk )Sg [ OT ds /0 ' dre™ " (W(k, Je Ml eI Wk, Yt D).

Since (5.9) yields that

w(k)

there exists a subsequence 7" such that
s— lim N'gl' =N'’g, (5.12)

T'— o0

Let us reset T for 7”. By (5.11)
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Wk, Yl e MWk, et ol <sup|\v(k x)|? <00

and
Tim (W(k, e, e M, e gl = (W, g, e T, gy ).

By the dominated convergence theorem we have

hm/ X(k)Z/ / dte—|l—v|w(qj(k )e—vH T _(t_S)H\IJ(k .)e+lH¢T)
N—o0 2w(k) ’ £

_ [ g & o o
_/ 2a)(k)/ / dre ™= (Wi, g, =Wk, g ). (5.13)

The right hand side above is identical with

k)? it
/ ai X (3«) (Wlks Jogs (H + 0(0) > Wik, ).

By (5.12) and (5.13) the lemma follows. [l
Theorem 5.5. Ser R = X((’;;; dk. Suppose that (W(0, )¢g, 9s) # 0. Then
nggo(wg,ng) = 00. (5.14)

Example 5.6. Assume that v, = xw satisfies Assumption 4.5. Then |1 — ¥(0,x)| < «Cy holds by Lemma 4.6.
It yields that

I(W(0, g, @p) — 1| < «Co.
Thus (W(0, -)¢,, ¢,) # 0 holds for sufficiently small «.

Proof of Theorem 5.5.
By Lemma 5.4 we have

x(k)?

ot (W(k, ), @(k)*(H + (k) > W (k, )pg). (5.15)

o = [ a2

We can see that

Jim (WG, g, (k) (H + (k) Wik. )gy)

— (W(0, g, 0(k)*(H + w(k))>W(0, )g,)| = 0.

Let P, (resp. Py) denote the projection to the ground state ker H (resp. the orthogonal complement (ker H)* of ker H).
We have

(W(0, g, w(k)*(H + (k)" W(0, -)pg)
= (W(0, g, w(k)*(H + (k) > (Py + P;)W(0, )g,)
Then
Jim (¥(0, g, w(k)*(H + (k) > PaW(0, )pp) = [(¢g, W0, )py)*

and

Jim (00, Vg (k) (H + w(k)) Py W(0, -)pg) = 0.

Then we conclude that
Jim (WK, ), (k) (H + () Wk, )pg) = (W0, I, @)l (5.16)

Set A = |(¥(0, )¢g, 9o)|* > 0. Then
A =8 < (W(k, )pg, (k) (H + w (k) W(k, )gs)

for |k| < € with some sufficiently small € > 0. Then we have the bound

2 2 2 2
(A—s)%/ x(k) dk+© x(k)
k

k< (k) 2 Jikze o(k)?

dk < (¢g, Noy) (5.17)

with some positive b. Thus as R — oo, (¢g, Ngy) goes to infinity. Then the proof is complete. (I
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