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Abstract

We review the various assumptions under which abstract versions of the quantum me-
chanical virial theorem have been proved. We point out a relationship between the virial
theorem for a pair of operators H, A and the regularity properties of the map IR 5 s
el*4(z — H) lel*4A. We give an example showing that the statement of the virial theorem in
[CFKS] is incorrect.

The virial theorem in Quantum Mechanics

The virial relation is the statement that if H, A are two selfadjoint operators on a Hilbert
space H, the expectation value of the commutator [H,iA] vanishes on eigenvectors of H :

(1) Iy (H)[H, 1AL (H) = 0.

The virial relation is a very important part of Mourre’s positive commutator method. In fact,
combined with a positive commutator estimate, one can use the virial relation to obtain the local
finiteness of point spectrum (or even the absence of point spectrum). Moreover, for Hamiltonians
having a multiparticle structure, it is an essential tool to prove the positive commutator estimate
itself (see eg [Mo], [PSS], [FH]).

If H, A are both unbounded operators, some care has to be taken with the definition of the
commutator [H,iA] which a priori is only defined as a quadratic form on D(H)ND(A). A rather
weak assumption under which (1) can be formulated without ambiguity is the following one:

there exists a subspace S C D(H) ND(A) dense in D(H™) for some n € IN, such that

(2) |(Hu, Au) = (Au, Hu)| < C(|H ul* + [u]®), u € S.

The quadratic form [H,iA] extends then uniquely from S to D(H") which means that the left
hand side of (1) has an unambiguous meaning.



The obstacle to a direct proof of (1) is of course that an eigenvector of H needs not be in
D(A). Actually the counterexample that we will construct below shows that the virial relation
does not hold under assumption (2).

To overcome this, additional assumptions on H and A are needed. To our knowledge, three
different types of assumptions have been used in the literature to prove the virial theorem in an
abstract setting.

e In [Mo, Prop. I1.4], (1) is proved under the following assumptions:

i) D(H)ND(A) is dense in D(H),
(M) ii) e!*4 preserves D(H) and for each u € D(H) SUP|5<1 | Hel*4u|| < oo,

i17) the quadratic form [H,iA] on D(H) ND(A) is bounded below, closeable,

and it extends as a bounded operator from D(H) to H.

In fact the condition “e'*4 preserves D(H)” implies i) and the second part of i), see [ABG,
Prop. 3.2.5]. Moreover, it was noticed in [PSS] that Mourre’s proof works without change under
a condition weaker than 7i7). So the assumptions which are really needed for the validity of
Mourre’s proof are:
i) €4 preserves D(H),

(M) 33y |(Hu, Au) — (Au, Hu)| < C(|Hul?? + [ul]?), u € DUH) N D(A).

e In [ABG, Prop. 7.2.10], (1) is proved if H is of class C*(A) i.e. if

(ABG) dz € C\o(H) such that
R > s+ e*4R,e7 ¥4 is C! for the strong topology of B(H).

We have used the notation R, = (z — H)™!. Two equivalent characterizations of the C*(A)

property in terms of commutators are:

dz € C\o(H) such that

!
(ABG) | (4, Rou) — (Rru, Aw)| < Cllul?, u € D(4),

e i)3z € C\o(H) such that R,D(A) C D(A), R*D(A) C D(A),

(ABE) 30)|(Hu, Au) — (Au, Hu)| < C(Hul + [ul), u € D(H) 1 D(A).

e Finally in [CFKS, Thm. 4.6], (1) is proved under the following assumptions:

i) D(H)ND(A) is dense in D(H),

i) |(Hu, Au) — (Au, Hu)| < C(|Hull® + |u]]?), u € D(H) N D(A),

i13) 3 Hy, selfadjoint such that D(H) = D(Hy), [Hy,1A] extends as a bounded
operator from D(Hy) to H, and D(A) N D(HpA) is a core for Hy.

(CFKS)

Since D(HpA) = {u € D(A)|Au € D(Hp)} C D(A) one can suspect that there is a misprint in
the last condition and that it should be replaced by the stronger version: D(Hy) N D(HpA) is a
core for Hy. Anyway, such a change does not invalidate the discussion below.



It is easy to verify that (M) implies that e*4 R, e~ 4 is in B(H,D(H)) and that
IR 55— e*AR,e7 ¥4 is C! for the strong topology of B(#, D(H)).

and hence (M) implies (ABG). The relation between (M') and (ABG) is even more straightfor-
ward: if e!*4 preserves D(H) then (M') is equivalent to (ABG) (see Theorem 6.3.4 in [ABG]).
If H € CY(A) then (Au, R,u) — (Riu, Au) is the quadratic form of a bounded operator
[A,R.]o € B(H) (cf. (ABG')). From (ABG") it follows then that D(H) N D(A) is a core of H
and that the quadratic form (Hu, Au) — (Au, Hu) is continuous for the topology of D(H ), hence
it extends uniquely to a continuous quadratic form [H, Al on D(H). Identifying D(H) C H C
D(H)* in the usual way [H, A]y becomes a continuous operator D(H) — D(H)* and then one
has (see [ABG, Thm. 6.2.10])
(3) [A,R.]o = R,[H, AloR,.

We shall prove in an appendix that D(H) is preserved by e'*4 if [H, AlyD(H) C H. In other
terms, if (ABG) holds and [H, A]gD(H) C H then (M) is satisfied.

That (ABG) is more general than (M') can be seen from the following example: consider in
L?*(IR) the operator H of multiplication by a real rational function (which may have poles, e.g.
take H(z) = 1/x) and let A = —id/dx; then clearly H € C'(A) but e*4 and (A +i)\)~! do not
leave the domain of H invariant.

In conditions (M) and (ABG) assumptions either on the action of e*4 on D(H) or on the
action of (z — H)™! on D(A) are made. No comparable assumptions are made in condition
(CFKS). However reading the proof (in particular the proof of [CFKS, Lemma 4.5]) one can see
that the assumption that (z — Hy)~! preserves D(A) is implicitly used, to justify the identity
(3) (with H replaced by Hy). We give below an example showing that the virial relation does
not hold if one only assumes (CFKS) (or a slightly stronger version of it). In particular, we
show that the relation (A+i\) 'D(H) C D(H), which plays a crucial role in the argument from
[CFKS], is not true under their conditions.

Finally let us mention that in concrete situations (e.g. H is an L? space and H, A are
differential operators), the use of cutoff and regularization arguments can be an alternative to
the abstract approach relying on (M) or (ABG) (see for example [W], [K]).

Results

Let us introduce the following definition concerning multicommutators: we set ad}H = H.
For k > 0, if ad¥ H is a bounded operator from D(H) to # and the quadratic form [ad¥ H, A]
on D(H) ND(A) extends as a bounded operator from D(H) into H we denote it by ad®™ H.

Theorem 1 There exists a pair H, A of sefadjoint operators on a Hilbert space H such that:
i) H, A satisfy (CFKS),

i) the multicommutators ad® H extend as bounded operators from D(H) to H for all k € IN,
iii) the pair H, A satisfies a Mourre estimate away from 0: for each compact interval I in IR\{0}
there exist ¢ > 0, K compact such that

1,(H)[H,iA]L,(H) > cl;(H) + K,
i) the virial relation does not hold for H, A: there exists A\ € opp(H) such that

Lgny (H)[H, 1AL (H) # 0.



Thm. 1 is a consequence of Thm. 2 below, which establishes a link between the virial relation
and the C'(A) property.
Let Hy be a positive selfadjoint operator on a Hilbert space H. For ¢ € H we consider the
rank one perturbation of Hy
Hg = Hy — ¢ >< ¢,

which is selfadjoint with D(Hy) = D(Hy). Note that A < 0 is an eigenvalue of Hy if and only if
(¢, (Hy — N)~'¢) = 1 and Ker(Hy — A) is generated by (Hy — A)~!¢.
Let A be another selfadjoint operator on ‘H such that

D(Hp) N D(A) is dense in D(H)),
the quadratic form [Hy, A] on D(Hy) ND(A) is bounded for the topology of D(H).

Theorem 2 Assume that Hy is positive and Hy, A satisfy (4). Assume that the virial relation
holds for Hy, A for each ¢ in a core S of A. Then Hy is of class C'(A).

Proof. Let ¢ € S, A <0, u = (Hy — \)7'¢, o® = (¢,u) ™!, so that X is an eigenvalue of Hyy.
Since a¢ € S and by hypothesis the virial relation holds for H,4, A we have:

0 = (u,[Ho, Alou) + o®(u, Ad) (¢, u) — o’ (u, $)(Ag, u)
— ((Ho — N1, [Ho, Aly(Ho — \) 1) + (Ho — N)~1¢, Ap) — (A, (Ho — N)~19).
Using (4), this implies that
[(Ho = N) "¢, Ag) — (A, (Ho — N) '9)| < Cllgl|*, Yo € S.
Since S is dense in D(A), this implies (ABG') and hence that Hy is of class C(A). O
If we assume the following condition which is stronger than (4):

D(Hy) ND(A) is dense in D(H)),
(5) [Hy, A] extends to a bounded operator [Hy, Aly : D(Hy) — H,

D(Hy) N D(HyA) is dense in D(Hy),
then for ¢ € D(A) we have:

[Hg, A] = [Ho, A] — [l >< |, A] = [Ho, Alo + [Ad >< ¢| — |¢ >< Ag],

and hence the pair Hy, A satisfies then (CFKS).

Note that if in addition to (5) we assume that the multicommutators ad® Hy are bounded
operators on D(Hy) then for ¢ € D(A®) = NpewD(AP) the multicommutators ad® Hy have the
same property.

By Thm. 2 to construct the pair H, A in Thm. 1, it suffices to find a pair Hy, A satisfying
(5) such that Hy is not of class C1(A).

Let H = L%(IR, dx), q the operator of multiplication by = in H and p the self-adjoint operator
in # associated to —id/dx.

We will consider the operators

(6) HU = ewqa A=e"P - D,



which are selfadjoint operators on their natural domains given by the functional calculus. We
note that D(A) = D(p) N D(e*P). Noting also that D(e*?) C D(e“P) if 0 < a < w and using
Fatou lemma we see that the domain of e“? can be described as follows: a function f € L?(IR)
belongs to D(e“P) if and only if f has an analytic extension to the strip {z + iy| —w <y < 0}
and ||f(- + iy)||z2 < const. Then lim,,, f(z + iy) = f(z + iw) exists in L? and one has
() () = f(z — iw).

The operators e“?, e¥? were considered by Fuglede in [Fu] in order to show that the Heisenberg
form of the canonical commutation relations is not equivalent to the Weyl form.

From the Weyl form of the canonical commutation relations el®Pel?? = el@BelBeeior it follows,
by formally taking o = = —iw with w = (27)'/2, that e“Pe¥? = e“%“P. This commutation
property will certainly hold on a large domain (we give below the details of the proof) although
the operators e“? and e“? do not commute, which is the reason why Hy is not of class C'(A).

wq

Lemma 1 Let Hy, A be the pair defined in (6) for w = (27r)%. Then

i) Hy, A satisfy (5),

i) the multicommutators ad% Hy are bounded operators from D(Hy) into H for all k € IN,
ii) on D(Hp) N D(A) we have [Hy,1A] = wHy,

iv) Hy is not of class C'(A).

Proof of Thm. 1. Applying Lemma 1 and Thm. 2 for S = D(A*), we see that there exists
¢ € D(A*>) such that for H = Hy properties i), i) and ) of Thm. 1 are satisfied. Property
iii) follows from Lemma 1 i77) and the fact that H — Hy, [H, A] — [Hy, A] are compact operators.
O

Proof of Lemma 1. Let us consider the sequence of operators e @/n, Clearly e~@/n tends
strongly to 1 in the spaces H and D(e“?). Let us verify that the same is true in D(e“?). In fact
using the Fourier transformation, we see that eWPe—d'/n = g(a-iw)*/ngwp , in particular o= @/n
preserves D(e“P). This easily implies that e~7'/n tends strongly to 1 in D(e“P). Similarly we
have pe*qZ/" = e*qz/”p - 2ie*‘12/”q/n, which shows that e~7"/" tends strongly to 1 in D(p) and
hence in D(e“? — p).

After conjugation by Fourier transformation, we see that the same results hold for the oper-

ator e P°/". Let now
TTZ — e_qz/ne_pz/n.

We deduce from the above observations that

(7) s- lim T, =1, in the spaces , D(Hy), D(A), D(Hy) N D(A).

n—-+0o

where D(Hy) ND(A) is equipped with the intersection topology. Since T, maps H into D(Hy) N
D(HyA), we see that the first and third conditions of (5) are satisfied.
Let us now check the second condition of (5). We claim that

(8) [Hg, IA] = ng, on D(Hg) N D(A)

In fact let w € D(Hy) N D(A), and u, = Tpu. By (7) it suffices to check that (Auy,, Hou,) —
(Hotp, Auy) = iw(uy, Hyuy,) for each n. Since Au,, € D(Hy) and Hyu, € D(A), we have

(Auy, Hyuy) — (Houp, Auy) = (un, AHou, — HyAuy,).



But wu,, is an entire function, decreasing faster than any exponential on each line Imz = Cst.

Hence we have ]
AHyu, (z) = @ Wy, (1 — iw) + i%(ewxun (z))

= e“"(up(z — iw) + i%un(:v)) + iwe“Tuy, (x)
= HoAu,(z) + iwHou, (x),
since w? = 2m. This proves (8) and hence the second condition of (5). Moreover it follows from
(8) that the multicommutators ad% Hy are bounded on D(Hp).
Let us now prove that Hy is not of class C'(A). Assume the contrary. Then (Ho+ 1)~
would send D(A) into itself. The function u(z) = e * belongs to D(A) and (Hy + 1) lu equals

(e¥* +1)~te=*". This function has a pole at z = —iw/2 and hence is not in D(A). This gives a
contradiction and hence Hy is not of class C1(A). O

Appendix

The following result is of some independent interest.

Lemma 2 Let A, H be self-adjoint operators in a Hilbert space H such that H € C'(A) and
[A,H)yD(H) C H. Then e*AD(H) C D(H) for all real s.

Proof. For any bounded operator S of class C'!(A) the commutator [S, A] extends to a bounded
operator in H denoted [S, Ay, and one has

. . t . .
Seltd = (ltAg -I—/ el(t_s>A[5, iA]e*ds.
0

Soift>0,u € H:
. t .
el < sull + [ 1S, Al ulas.
0

We shall take
S=H,=HQ1+icH)™" = —i/e + (i/e)R*

where R® = (1+icH)™!. Weset T = [A, H|o(H +1)~! € B(H) and we use [ABG, Thm. 6.2.10];
then
[A,H.]p = R°T(H +1i)R° = R°TH. +iR°TR".

Since ||R?|| < 1 we obtain
. t .
1ol < || Heul) + ¢)Tlul] + HTH/O | H-e'*ul|ds.

JFrom the Gronwall lemma it follows that for each tg > 0 there is a constant C' such that
|H.e™u| < C(||Heul| + |lul]) for all e > 0,0 < t < tg,u € H. Now it suffices to apply Fatou
lemma.O

As a final remark we shall prove a version of the virial theorem. Let A, H be self-adjoint
operators on a Hilbert space H such that e*AD(|H|”) C D(|H|?) for some real number o > 1/2
and all s (then the domain of |H|™ will also be invariant if 0 < 7 < 0). Set K = D(|H|?) and
identify L C H C K*. Then the group induced by €4 in K is strongly continuous hence the space
D(A;K) = {u € KND(A)|Au € K} is dense in K. So the sesquilinear form (Au, Hu) — (Hu, Au)



is well defined on the dense linear subspace D(A; ) of I (one needs this restricted subspace
only if 0 < 1; e.g. if 0 = 1/2 then one does not have anything better than HX C K*).

Assume, moreover, that the preceding sesquilinear form is continuous for the topology of K
and denote by [A, H]y the operator in B(K, K*) associated to it. If we set A, = (e’*4 —1)(ie)~!
then it is easily seen that

1 re . )
[H’ AE] = g/ el(E—S)A[H’ iA]OelsAds
0

holds in the strong operator topology of B(/C, *). In particular we see that [H, A.] converges
strongly in B(IC, K*) to [H,1A]p. This clearly implies the virial theorem, because the eigenvectors
of H belong to K.
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