COUNTING CLOSED GEODESICS UNDER INTERSECTION CONSTRAINTS

NEGATIVELY CURVED SURFACES

Let Σ be a closed (i.e. compact and without boundary) negatively curved Riemannian surface.

Topologically, Σ consists in a surface of genus g (meaning that it has g holes) where $g \ge 2$.

Typical examples are *hyperbolic surfaces* $\Gamma \setminus \mathbb{H}$ where \mathbb{H} is the Poincaré halfplane and Γ is a discrete subgroup of $PSL(2,\mathbb{R})$; in this case the curvature is constant and equal to -1.

CLOSED GEODESICS

On a Riemannian surface, there are remarkable curves called geodesics which (locally) minimize lengths.

Example. On the sphere $\mathbb{S}^2 \subset \mathbb{R}^3$, the geodesics are exactly the great circles; in particular every geodesic is periodic.

The negativeness of the curvature implies that the geodesic flow is *chaotic* (i.e. very sensitive to initial conditions).

However, in every nontrivial class c of deformation of closed curves $\mathbb{S}^1 \to \Sigma$, there is exactly one closed geodesic (i.e. a periodic geodesic trajectory) γ_{c} , which minimizes the length in the class c.

YANN CHAUBET

COUNTING PRIMITIVE GEODESICS

We denote by \mathcal{P} the set of *primitive* closed geodesics (i.e. closed geodesics which are not a multiple of a shorter one). A famous result of Margulis [Mar69] reads

$$\sharp \{ \gamma \in \mathcal{P} : \ell(\gamma) \leqslant L \} \sim \frac{\mathrm{e}^{hL}}{hL}$$

as $L \to \infty$, where $\ell(\gamma)$ denotes the *length* of the closed geodesic γ and h > 0 is the *topological entropy* of the geodesic flow (*h* measures the chaos; if Σ is hyperbolic then h = 1).

Note the analogy with the prime number theorem which reads $\pi(x) \sim x/\log x$ as $x \to \infty$ where $\pi(x)$ is the number of primes which are smaller than *x*.

IMPOSING CONSTRAINTS

A natural question to investigate is whether we can understand the asymptotic growth of the number of geodesics that satisfy a certain (geometric or topological) constraint.

We will be interested in the following features:

- self–intersection numbers;
- homology classes;
- geometric intersection numbers.

SELF-INTERSECTION NUMBERS

For $\gamma \in \mathcal{P}$ we denote by $\iota(\gamma, \gamma)$ its self-intersection number.

Mirzakhani [Mir08, Mir16] showed that, provided Σ is a hyperbolic, we have for any $k \in \mathbb{Z}_{\geq 0}$,

 $\sharp \{ \gamma \in \mathcal{P} : \ell(\gamma) \leqslant L, \ \iota(\gamma, \gamma) = k \} \sim c_k L^{6g-6}$

as $L \to \infty$, for some $c_k > 0$ independent of L.

Each closed geodesic γ gives rise to a *homology class* $[\gamma] \in H_1(\Sigma, \mathbb{Z}) \simeq \mathbb{Z}^{2g}.$

This homology class is determined by the *al*gebraic intersection numbers of γ with a basis $(a_1, b_1, \ldots, a_g, b_g)$ of the first homology group.

Lalley [Lal88] and Pollicott [Pol91] showed that for any $\xi \in H_1(\Sigma, \mathbb{Z})$, we have

Let γ_{\star} be a simple and non-separating closed geodesic.

We denote by $\iota(\gamma, \gamma_{\star})$ the geometric intersection number between γ and γ_{\star} .

for every $k \ge 0$. In fact, h_{\star} is the entropy of the surface with boundary Σ_{\star} obtained by cutting Σ along γ_{\star} .

HOMOLOGY CLASSES

$$\sharp\{\gamma \in \mathcal{P} : \ell(\gamma) \leqslant L, \ [\gamma] = \xi\} \sim c \frac{\mathrm{e}^{hL}}{L^{\mathrm{g}}}$$

as $L \to \infty$, where c > 0 is independent of ξ .

GEOMETRIC INTERSECTION NUMBERS

Then one can show [Cha21] that there are $c_{\star} > 0$ and $h_{\star} \in [0, h]$ such that, as $L \to \infty$, we have

$$\in \mathcal{P}: \ell(\gamma) \leqslant L, \ \iota(\gamma, \gamma_{\star}) = k \} \sim \frac{(c_{\star}L)^k}{k!} \frac{\mathrm{e}^{h_{\star}L}}{h_{\star}L}$$

The proof uses tools from microlocal analysis to study the transfer operator $f \mapsto f \circ S$ associated to the dynamical scattering map S.

Then [Cha21] for every $\mathbf{n} = (n_1, \dots n_r)$, there is $c_{\mathbf{n}} > 0$, $d_{\mathbf{n}} \in \mathbb{Z}_{\geqslant 0}$ and $h_{\mathbf{n}} \in \left]0,h\right[$ such that, as $L \to \infty$,

where $\mathbf{i}(\gamma, \vec{\gamma}_{\star}) = (\iota(\gamma, \gamma_{\star,1}), \ldots, \iota(\gamma, \gamma_{\star,r}))$ — here we need **n** to be *admissible*, that is $\mathbf{n} = \mathbf{i}(\gamma, \vec{\gamma}_{\star})$ for some γ .

The number h_n is the maximum of the entropies of the surfaces Σ_i that are encountered by any γ satisfying $\mathbf{i}(\gamma, \vec{\gamma}_{\star}) = \mathbf{n}$, while $d_{\mathbf{n}}$ is the number of times such a γ travels through a surface of maximal entropy.

[Cha21]	Yann Cha
	arXiv:2103
[Lal88]	Steven P. 1988.
[Mar69]	Gregorii A negative o
[Mir08]	Maryam Surfaces.
[Mir16]	Maryam I preprint an
[Pol91]	Mark Pol

MULTIPLE CURVES

We fix a family of pairwise disjoint simple closed geodesics $\gamma_{\star,1}, \ldots, \gamma_{\star,r}$. Those curves separate Σ into sub-surfaces $\Sigma_1, \ldots, \Sigma_q$.

 $\sharp \{ \gamma \in \mathcal{P} : \ell(\gamma) \leqslant L, \ \mathbf{i}(\gamma, \vec{\gamma}_{\star}) = \mathbf{n} \} \sim c_{\mathbf{n}} L^{d_{\mathbf{n}}} \mathrm{e}^{h_{\mathbf{n}} L}$

REFERENCES

aubet. Closed geodesics with prescribed intersection numbers. arXiv preprint)3.16301, 2021

Lalley. Closed geodesics in homology classes on surfaces of variable negative curvature.

A Margulis. Applications of ergodic theory to the investigation of manifolds of curvature. *Functional analysis and its applications*, 3(4):335–336, 1969.

Mirzakhani. Growth of the number of simple closed geodesies on hyperbolic Annals of Mathematics, 168(1):97–125, 2008.

Mirzakhani. Counting mapping class group orbits on hyperbolic surfaces. *arXiv arXiv:1601.03342*, 2016.

llicott. Homology and closed geodesics in a compact negatively curved surface. Journal of Mathematics, 113(3):379–385, 1991.