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0. Introduction

A system of N non-relativistic classical particles interacting with pair potentials
is described by a Hamiltonian of the form

N
1
H(.’L‘l,...,.’EN,fl,..., 27 ?4— Z V;j(xi—:rj). (001)
j=1 1<i<j<N
This Hamiltonian generates a flow ¢(¢) on the phase space R*V x IR*".
An analogous system of N quantum particles is described by a Hamiltonian

of the form
N

H:= —Z—A + > Vilm — z). (0.0.2)
j= 1 1<i<j<N
It generates the unitary evolution e~ on the Hilbert space L?(IR*").

The aim of this book is to describe the asymptotic behavior of the dynamics
#(t) and e ™ for t — +oo. (The cases t — —oo and t — +oo are completely
analogous; for notational convenience we will restrict ourselves to the case t —
+00).

Roughly speaking, we will show that the evolution for large time is sim-
pler. It is close to the free evolution in certain variables; in other variables it
resembles a bounded motion. This observation, which was made by physicists a
long time before the first rigorous results about this subject, is the basis for the
interpretation of many physical experiments. In fact, in many experiments the
particles are initially far apart, then they scatter from one another and at the
end they move away. Experimental physicists measure the probability of vari-
ous outcomes of such experiments — the so-called scattering cross-sections. These
scattering cross-sections can be computed from the so-called scattering operator.
Note, however, that in our monograph we will not study the scattering operator
itself — which relates the asymptotics ¢ — —oo with the asymptotics t — +oc.
We will concentrate on the questions related to the limits ¢ — +oo (which means
the study of wave transformations/operators and asymptotic observables).

Usually scattering theory is considered in the context of quantum mechan-
ics. As a matter of fact, the results for quantum scattering theory are usually
far more satisfactory than their classical counterparts. The theorem about the
asymptotic completeness of long-range N-body scattering gives a very satisfac-
tory understanding of the problem in the quantum case. Such an understanding,
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at least for more than 2 particles, is lacking in the classical case. Nevertheless, we
think that it is instructive to study classical and quantum scattering in a parallel
way. Moreover, in order to thoroughly understand long-range quantum scatter-
ing one needs first to study its classical analog. One can argue that scattering
is a semi-classical phenomenon and a lot of scattering properties of classical and
quantum systems are analogous. We try to stress this aspect in our presentation.

As we indicated earlier, the main results of scattering theory have a funda-
mental importance for understanding some problems of non-relativistic physics.
The Hamiltonians (0.0.1) and (0.0.2) are very often used to describe physical
systems. Therefore, the main results of our monograph are usually very close
to the real physical world. There is also, however, another aspect of scattering
theory that we would like to stress. It is indeed a very elegant, natural and deep
mathematical theory. Its main results should be appealing to any mathematician,
even if he or she is not interested in its physical content. Their proofs are usually
very elegant and intuitive, at the same time they are tricky and technical.

We will always suppose that the 2-body potentials V;;(z) decay at infinity.
Roughly speaking, the general form of the assumptions that we will impose will
be the following:

09Vij(x)| < Co(1 + [z[)7#71 |a| < n. (0.0.3)

In the quantum case, we can also accommodate local singularities of the poten-
tials. We will not do so in the classical case. If 4 > 1 and n = 0 in (0.0.3), then
this is the so-called short-range case. If > 0 and n = 2 in (0.0.3), then this is
the long-range case. The dimension of the one-particle configuration space will
always be arbitrary.

The short-range case is much simpler to study. For short-range potentials,
it is possible to compare the full dynamics with a dynamics that is, at least
partially, free. Unfortunately, the physically most important class of potentials
are Coulomb potentials, which are long-range.

Our monograph would be much simpler, shorter and less interesting if we re-
stricted ourselves to short-range potentials. In fact, long-range scattering is the
central subject of our monograph. We study it under very general conditions,
which are motivated by the mathematical structure of the problem. If we were
interested just in the physically relevant case, that is in Coulomb potentials, we
would not make some of the constructions that we need to do to handle the
general case. Nevertheless, we believe that exploring the problem in its natural
mathematical generality gives a lot of insight that will be useful for future ap-
plications. In order to construct modified wave operators in the long-range case
with p > 0, we are forced to study in detail the corresponding classical system
and to understand the relationship between the classical and quantum dynamics
quite deeply. For Coulomb potentials, or more generally, for potentials satisfying
p>1/2 and n =1 in (0.0.3), it would be sufficient to use the so-called Dollard
modifiers, which is a cheap way of avoiding some of the work that we do.



If in Hamiltonians (0.0.1) and (0.0.2) we have just one particle, then there is
no interaction whatsoever and the dynamics is free. If we have 2 particles, then
after separating the center-of-mass motion we obtain reduced Hamiltonians

H@O:%§+V@) (0.0.4)

in the classical case and .
H = _EA + V(zx) (0.0.5)

in the quantum case, where the potential V' (z) decays in all directions. This is
the most often studied and the best understood case of scattering theory. The
first four chapters are devoted to the 2-body case.

The technical difficulties of proving the asymptotic completeness of 2-body
systems can be divided into two phases. First one needs to show that scattering
trajectories (in the classical case) and scattering states (in the quantum case)
move away from the origin as Cyt with Cy > 0. Then one can introduce wave
transformations (in the classical case) and wave operators (in the quantum case).
In the first phase, one does not see the difference between the short-range and the
long-range case. Only in the second phase, the difference becomes important. In
fact, if we already accomplished the first phase, the existence and completeness
of wave transformations/operators in the short-range case is very easy, whereas
in the long-range case, at least for a very slow decay, there is still a lot of work
to do. A pedagogical device that helps to describe the second phase in a clean
way is studying Hamiltonians of the form

H(z,6) = 58 +V(1,2) (0.0.6)

in the classical case and )
H = _§A + V(t,x) (0.0.7)

in the quantum case, where instead of the spatial decay (0.0.3) we have the time
decay, typically,

109V (t,z)| < Co(14+1)7# ol < n. (0.0.8)

We call the assumption (0.0.8) u > 1, n = 0 the fast-decaying case — it is the
analog of the short-range case for time-independent potentials. The assumption
(0.0.8) with p > 0, n = 2 is called the slow-decaying case — it is the analog of
the long-range case. We devote Chaps. 1 and 3 to the study of scattering for
time-decaying potentials.

The asymptotic completeness of 2-body systems can be shown in many ways,
and the literature on the subject is very rich. We do not intend to review all the
techniques that were used in this context (see e.g. [RS, vol III and IV], [H62, vol
IT and IV] and [Yaf4]).
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In the case of systems of N > 3 and especially NV > 4 particles, scattering
theory becomes much more difficult than in the 2-body case. The literature on
the subject is much more limited.

The case of 3-body systems is intermediate between the 2-body case and the
general N-body case. The asymptotic completeness of the 3-body systems, both
in the short- and long-range case with p > /3 — 1, was first proven by Enss
[E5, E6]. Note, however, that the method of Enss does not seem to generalize to
the case of general N-body systems.

To our understanding, there are essentially two approaches to proving asymp-
totic completeness for N-body systems. The first approach uses the so-called local
decay estimate

7wy 3 ex (e M)t < oo, (0.0.9

where € > 0 and x is a cutoff supported away of bound states and thresholds
of H. The estimate (0.0.9) is usually proven by considering the boundary values
of the resolvent. Its proof is based on the ideas of Mourre [Mol, Mo2, PSS].
The proof of asymptotic completeness based on the first approach uses then
time-independent observables, for instance homogeneous functions of degree zero
on the configuration space. Error terms that arise due to the commuting of
observables are usually O({z)~2) and can be handled by the local decay estimate
(0.0.9). This approach was used in the first proof of the asymptotic completeness
of N-body short-range systems of Sigal and Soffer [SS1] and in the proof of
Yafaev [Yaf5).

The second approach is fully time-dependent. One does not need to know
(0.0.9) nor to study the resolvent. The proof uses time-dependent observables,
for instance of the form J(%), where J is a compactly supported function. The
error terms are typically of the order O(¢t7?) and can be estimated in norm. This
approach was used in the work of Graf [Gr], which contained the first reasonably
simple proof of the asymptotic completeness of N-body short-range systems and
in [De8| where the first proof of the asymptotic completeness of long-range N-
body systems with p > /3 — 1 was given.

Throughout our monograph (also when considering 2-body systems), we will
stick to the second approach. We believe that this is the most natural and the
simplest method of handling the problem of asymptotic completeness. In par-
ticular, we do not need to study the resolvent. Note, however, that the first
approach, involving time-independent observables and a study of the resolvent,
has its advantages. It yields results about the properties of eigenfunction expan-
sions and scattering matrices that are of a considerable interest and that seem
to be inaccessible to a purely time-dependent approach.

We made an effort to make our monograph self-contained and accessible to
a reader with a modest mathematical background. The mathematical tools that
we use are quite limited, they include some elements of the real analysis, basic
properties of operators in Hilbert spaces and the simplest classes of pseudo-
differential and Fourier integral operators. We included a number of appendices



that provide the reader with an introduction to the mathematical tools that we
use.
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1. Classical Time-Decaying Forces

1.0 Introduction

The motion of a non-relativistic free particle in Euclidean space is described by
the Hamiltonian

HO('Z.’ f) = %62

A free particle moves along straight lines with a constant velocity.
To describe the motion of a particle in an external potential, one uses Hamil-
tonians of the form

1
H = __ ¢ 1.0.1
(2,6) = 5 €+ V(a), (1.0.1)
which yield the equations of motion
molx(t) = —V,V (x(t)). (1.0.2)

If the potential decays as x — 00, it is natural to expect that trajectories that es-
cape to infinity sufficiently fast should resemble free trajectories. Comparison of
the dynamics generated by the “full Hamiltonian” H(z,£) and the “free Hamilto-
nian” Hy(z, £) is the main subject of classical scattering theory, which we would
like to present in the first two chapters of this book.

A system of two particles interacting through a pair potential is described
by a Hamiltonian of the form

1 1
H(21,&1, 22, 6) = 2—ml§f + Q—mﬁ + V(z) — 2). (1.0.3)

In such systems, it is convenient to separate the motion of the center of mass.
To this end, we change the variables by setting yem := (mix1 +mox2)/(my +ms)
and y := x; — x9. We denote the corresponding momenta by 7., and n. We
also introduce the total mass mey, := my; + my and the reduced mass m :=
1/ (mfl + m;l). Then (1.0.3) becomes

1 1
ne. +—n"+V(y). (1.0.4)

H 1y 1M 9 b) ==
(Yems Mem, Y5 1) e 5

Thus the motion of the system separates into two independent parts: the motion
of the center of mass, which is free, and the relative motion of the pair of particles,
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which is described by a Hamiltonian of the form (1.0.1). Therefore it is common
to call (1.0.1) a two-body Hamiltonian (although the name one-body Hamiltonian
is also justified and used).

Our exposition of classical scattering is divided into two chapters. Only in
the second chapter we treat Hamiltonians of the form (1.0.1). The first chapter
develops scattering theory for somewhat different systems.

In the first chapter we study the motion of a particle subject to a time-
dependent force F(t,z). The equation of motion is the well known Newton’s
equation

Orx(t) = F(t,z(t)). (1.0.5)

The force F(t,z) and its derivatives with respect to x are assumed to decay in
time, but no assumptions on the decay in space are imposed.

Usually, in this chapter, we will not assume that the force is conservative. If
the force is conservative, then there exists a potential V (¢, ) such that

F(t,z) = =V, V(t,x) (1.0.6)

and the dynamics is generated by the time-dependent Hamiltonian
1
H(t,2,§) = & +V(t,2). (1.0.7)

This assumption, although customary in the literature, has nothing to do with
scattering theory, therefore in this chapter we consider the more general equations
(1.0.5) without assuming (1.0.6).

Dynamics with time-decaying forces are probably not so physically moti-
vated as those generated by (1.0.2). Nevertheless, from the mathematical point
of view, systems with the dynamics of the form (1.0.5) constitute a very nat-
ural class to study scattering theory. Most of the results about scattering for
systems that belong to this class can be formulated and developed in a partic-
ularly clean and simple way. One can remark in parentheses that this class is
invariant with respect to translations and Galilean transformations (changes of
coordinates from one reference system to another one that moves with a constant
velocity). Scattering theory for time-independent systems presented in Chap. 2
is somewhat more complicated (in particular, it is not invariant with respect to
Galilean transformations).

In practice, if one is studying a time-independent system, it is very convenient,
to reduce the problem to a time-dependent one. This is why we are considering
time-decaying forces in Chap. 1 and the time-independent ones in Chap. 2. We
also try to concentrate most of our discussions of various fine points of two-body
scattering theory in the first chapter.

In order to give the reader a rough idea what kind of assumptions can ap-
pear in a study of scattering theory for time-decaying forces, let us consider the
following condition:

O%F(t,x) € Ot~ 7+=), for |a| =0, 1. (1.0.8)
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If in the above condition we assume that p > 1, then we say that our system is
fast-decaying. If 1 > p > 0 then the system is said to be slow-decaying. (Note
that outside of the introduction we will use better, more general assumptions on
the forces than (1.0.8)). Let us briefly describe the content of Chap. 1.

In Sects. 1.1 and 1.2 we introduce the basic notation, a large part of which
will be used throughout some of the next chapters.

In Sect. 1.3 we introduce the asymptotic momentum ¥ (y,n), a basic asymp-
totic quantity that exists both in the slow- and fast-decaying case. For every
initial conditions (y,n), it is defined as the limit of the momentum &(t,y,n). It
exists under the condition

F(t,r) € O(t ' *) for some p > 0. (1.0.9)

Section 1.4 is devoted to an exposition of scattering theory for fast-decaying
forces. If 4 > 1 in (1.0.9) (which is essentially the fast-decaying condition) then
we can introduce the asymptotic position zg;(y,n) defined as

Jim (x(t, y,m) — € (y, n)) -

If ¢(s,t) denotes the evolution of our system and ¢o(t) denotes the free flow,
then

Jim po(—t)e(t,0)(y, n) = (za(y,m), € (y,n))- (1.0.10)

The mapping
X x X'3 (y,n) = (5 (y,n), €5 (y,m) € X x X'

allows us to label in a natural way all the trajectories of a given system with
trajectories of the free system. This fundamental property goes traditionally
under the name of the asymptotic completeness of the wave transformations.

If we assume, in addition, that

V.F(t,z) € Ot *>*) for some u >0, (1.0.11)
then
Bim (0, ¢)¢o(?) (1.0.12)

exists. We call (1.0.12) the wave transformations and denote it by F;. Clearly,
(1.0.10) is its inverse. Moreover, if (y,n) = Fgi(z, &), one has

Jim (6(8,0)(y,7) = 60(8)(2,) = 0. (1013)

Note that (1.0.13) does not follow directly from (1.0.12). The property (1.0.13)
means that, for any trajectory of the free system, there exists a trajectory of the
perturbed system that is asymptotic to it. This property is traditionally known
as the existence of the wave transformations.
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Scattering in the slow-decaying case is much more complicated than scatter-
ing for fast-decaying forces. We devote to it the rest of this chapter.

In Sect. 1.5 we begin with a study of solutions §(s, t1, ts, z, £) of the equation
of motion with the following boundary conditions: at the initial time ¢; we fix
the position x and at the final time ¢, we fix the momentum &. It turns out that
if p > 0in (1.0.8), T < t; <ty and T is large enough, then we can solve uniquely
this problem. (The final time ¢, can be put even to co).

The above result is used to prove that the distance of any two trajectories
with the same asymptotic momentum converges to a limit as ¢ — oo. Therefore,
the union of all trajectories with a given asymptotic momentum is naturally
isomorphic to the configuration space in the sense of affine spaces. It is a some-
what weaker statement than in the fast-decaying case, where one had a natural
isomorphism in the sense of vector spaces.

In general, in the slow-decaying case wave transformations Fg| are not well
defined. Fortunately, there exists a substitute. To define this substitute, we fix T’
big enough and, for every momentum &, we denote by s — Y (s, &) the trajectory
that has the asymptotic momentum & and that starts at the time 7" at the origin.
Now we can give our first definition of the modified asymptotic position zf(y, n),
given by the limit

Jim (z(ty,m) =Y (£, € (v.m))

and also our first definition of the modified wave transformation F, defined as
the inverse of the map

(y,m) — (x5 (y,n), & (v, m)).

A second definition of these concepts is given in Sect. 1.6. It is based on
a comparison of the flow generated by the equations (1.0.5) with the so-called
modified free evolution ¢sq(t). The modified free flow has the form

¢sd(t)(l"£) = (IE +}7(ta 5),5),

where the function Y (¢, &), called a modifier, is defined to be the position of the
trajectory that at time 7" is at the origin and at time ¢ has the momentum &.
It resembles the free flow, but it also has some large-time corrections to the free
motion reflecting the influence of slow-decaying forces.

The second definition of the modified wave transformation is the following:

Fea = lim (0, 2)salt)-
The second definition of the asymptotic position is
Th(y,m) = lim (2(t,y,m) = Y(t,£(t 1))

The definitions of the asymptotic position and the modified wave transformation
from Sects. 1.5 and 1.6 are equivalent.



1.0 Introduction 11

In most of Chap. 1 we do not assume that the force is the gradient of a
potential and therefore we do not use the Hamiltonian formalism. It is mainly
in Sect. 1.8 where we add the assumption that the force is conservative and
therefore the flow is symplectic. In this section we construct solutions of the
Hamilton-Jacobi and eikonal equations. They will be important in the chapters
on quantum scattering theory. Solutions of the Hamilton-Jacobi equation will be
also used in Chap. 2 devoted to time-independent Hamiltonian systems.

From the constructions of Sect. 1.8 it easily follows that if the force is con-
servative, then the modified wave transformation F is symplectic. In fact, let
S(t, &) be the solution of the Hamilton-Jacobi equation

05(1,€) = 5+ V(1. VeS(1,6))

with the initial condition S(7,&) = 0. Then it is easy to see that Y(t,€) =
VeS(t,€). Therefore S(t,€) + (z, €) is the generating function of the transforma-
tion ¢sq(t). This clearly implies that ¢s4(t) is a canonical transformation.

In Sect. 1.8 we also construct certain solutions of the eikonal equation

0. (5,2,6) = 3 (Vab* (5,2, )" + V (5,2).

These solutions turn out to be generating functions of the time translated wave
transformations ¢(s,0) o F¢i and ¢(s,0) o Ff.

In the slow-decaying case, before introducing the asymptotic position and the
modified wave transformation one has to make certain arbitrary choices. One can
say that one has to fix the gauge, which is best described by a choice of the family
of reference trajectories Y (¢, ). Of course, the choice that we describe in Sects.
1.5 and 1.6 is quite arbitrary, there is nothing special about the time ¢; = 7" and
the position 2 = 0 that were fixed to define Y (¢,€) and Y (¢, £). It is natural to
ask what happens if we change this “gauge”. We discuss these things in Sect.
1.9.

In Sect. 1.10 we study the smoothness of basic quantities defined in the
preceding section. Roughly speaking, we use the following condition:

O2F(t,z) € O(t~'71o=1), for all o € IN". (1.0.14)

where > 0 is a smooth version of the slow-decaying condition, and u > 1 is a
smooth version of the fast-decaying condition. Results of Sect.1.10 will be used
in our study of quantum scattering.

In Sect. 1.11 we give conditions under which one can define a relative wave
transformation for a pair of time-decaying forces.

In Sect. 1.12 we discuss various possible modified free dynamics, such as the
so-called Dollard dynamics, which works in the case p > 1/2, and its improved
versions due to Buslaev and Matveev. These dynamics have the advantage that
they are easier to calculate than the dynamics ¢gq(t) that we introduced in Sect.
1.5. On the other hand, with the exception of the Dollard dynamics, they require
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much more smoothness on the potentials.

In the literature, classical scattering theory was seldom treated as the end in
itself. The main papers investigating explicitly this subject by methods similar
to the ones used here were [Sim1, Pro| in the short-range case and [He] in the
long-range case. Another approach to this subject, more inspired by classical
statistical mechanics, was used earlier in [Co2, Hu2, Hu3].

Most efforts were devoted to quantum scattering theory. Nevertheless, many
results about classical scattering were used as intermediate steps in quantum
scattering theory (especially in the long-range case). Many ideas were first dis-
covered in the setting of quantum scattering theory, and only afterwards their
classical counterparts were formulated — which from the logical point of view is
rather unnatural. So the list of contributions to classical scattering theory con-
tains many papers on quantum scattering.

Most of Sect. 1.3 is based on [Sim1].

In the long-range case, the paper that is usually quoted as the first is that of
Dollard [Dol]. This paper dealt with the Coulomb quantum case. Its ideas were
further developed in [BuMa, AlKa, H61]. All of them were devoted primarily to
the quantum case. The first (and almost the only) paper that dealt specifically
with classical long-range scattering was due to I. Herbst [He|. In fact, most of
the material of Sects. 1.5 and 1.6 can be found in [He]. In particular, I. Herbst
noticed that there are two ways of defining a modified wave operator: starting
from a classification of trajectories as in Sect. 1.5 or using a modified free flow
as in Sect. 1.6. Note, however, that our presentation of these results uses weaker
assumptions on the forces than I. Herbst’s.

The boundary value problem considered at the beginning of Sect. 1.5 in The-
orem 1.5.1 was considered by many authors that studied long-range scattering,
e.g. in [He, H61, KiYal]. These authors first solved the Cauchy problem and only
then applied the inverse function theorem to obtain solutions of the boundary
value problem. The idea to use an integral equation to solve this boundary prob-
lem in one step was used in [De6].

The arguments used to show the existence of the modified asymptotic posi-
tion contained in the the proof of Lemma 1.9.7 are a classical adaptation of an
argument that I. Sigal used in the quantum case in [Sig2]. The use of solutions of
the Hamilton-Jacobi equations in long-range scattering theory is probably due
to L. Hormander. Before, people used functions that solved the Hamilton-Jacobi
equation only approximately, such as in [BuMa)] (see Sect. 1.5). The use of solu-
tions of the eikonal equation in scattering theory (see Propositions 1.8.3) seems
to have first appeared in [IK1| in the quantum context. Many estimates on the
derivatives of classical trajectories and other objects constructed in classical scat-
tering can be found in various papers on quantum long-range scattering, such as
[Ki5, KiYal, Ho1, IK1].

Let us remark that, strictly speaking, many of the above-mentioned papers
treated time-independent Hamiltonians. Nevertheless, most of their methods ap-
ply to the case of time-decaying non-conservative forces as well.
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1.1 Basic Notation

X will denote a finite dimensional Euclidean vector space, which plays the role
of the configuration space. Its elements will be denoted by x, y, sometimes z.
The Euclidean norm of z will be denoted by |z|.

X' will stand for the space dual to X — the momentum space. Its elements
will be denoted by £ and 7. (X and X' are naturally isomorphic, but still it will
be usually useful to make a distinction between them). X x X’ will play the role
of the phase space of our problem. If z € X and £ € X', then (z, &) denotes the
duality bracket of x and &.

Time will be denoted by t, s and sometimes u. We will usually restrict our-
selves to positive times.

IN denotes the set of natural numbers. We assume that 0 € IN. Multi-indices,
that is elements of IN" (n = dim X), will be denoted by «, 3, etc. || will denote
the length of the multi-index «. As a rule, derivatives will be understood in the
distributional sense.

V¥ f(x) will denote the kth differential of f at the point z (which is a k linear
functional on X). 0% f(x) will denote the ath partial derivative of f at .

If © is an open subset of IR", then C*(©,IR™) will denote the space of k
times continuously differentiable functions from @ to IR™.

Let us note that, for any function © > z — f(z), we have the following

identity:
a’j‘ J—
||Vf||L°°(6) = sup M (1.1.1)
T,Y€0, x#y ‘35 y\

Functions for which (1.1.1) is finite are called uniformly Lipschitz. By writing
f € C%(6,IR™), we will mean that the function f is locally Lipschitz, that is,
for every compact @; C O,

g @ =S
T,Yy€O1, £y |.T — y‘

We will write f € C*1(©,IR™) if and only if VE~1f € C%(6,IR™). By writing
05 f(x)] <C, o <k,

we will mean that f € C* 5! and ||VFf|l, < C.

If Y is a locally compact space and E a Banach space, C (Y, F) stands for
the space of functions f € C(Y, E) that satisfy lim,_,o, f(y) = 0. The space
Cw (Y, C) will be simply denoted by C(Y).

We will use the symbols (t) := /1 + 12, (z) := /1 + 22, etc.

The open ball with center at z, and radius r > 0 is denoted by

B(zg,r) :={z | |z — zo| < r}.

If © C R, then lg(s) will denote the characteristic function of ©.
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C will be the generic name for constants that appear in various estimates.
Often they will be different, even though denoted with the same letter. We will
usually omit the expressions “for all « € IN"” and “there exists a C' € IR such
that”; the reader will easily figure out where they should be added to make a
rigorous mathematical statement.

By writing

f(t) € ot®),

we will mean that .
lim M = 0.
t—oo tk

Sometimes we will need to describe estimates that, apart from ¢ € IR, involve
some auxiliary variables, say x € X. Let g(¢,x) be a positive function and @ C
IR x X. Then by writing “uniformly for (¢,z) € © we have

ft,z) € o(t*)g(t, z)” (1.1.2)

we will mean the following: if we set

— |f(t,z)]
f8): @ tmeey 9(6,2)

then
f(t) € o(t").
Likewise, by writing “uniformly for (¢,z) € © we have
f(t,x) € g(t,z)L'(dt)” (1.1.3)
we will mean that
f(t) € L'(dt).

It is convenient to introduce certain families of Banach spaces. These Banach
spaces will be used as technical tools in various proofs of this and the next
chapter.

For m > 0, T > 0, we put

zn = {z € C°([T, 0], X) | sup =)l < oo} (1.1.4)

with the norm

|2(s)]
Z||zm == sup ———=—.
12| zz2 S T

We will also need to consider the closed subspace Z7, of Zf* defined by

m m e |2(8)]
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1.2 Newton’s Equation

Let us now introduce basic definitions related to Newton’s equations. We will
assume that

R*'x X 3> (t,z) = F(t,z) € X'

is a measurable function that, for all 7} < T, < oo, satisfies the following condi-

tions:
J#2 |F(¢,0)|dt < oo,
(1.2.1)
SNV (t, ) ||oodt < 00.

Throughout this chapter we consider the equations of motion in the presence
of a time-dependent force F'(t,x)

(1.2.2)
0i§(t) = F(t, z(1)).

It follows from Proposition A.2.4 that the condition (1.2.1) guarantees the exis-
tence and the uniqueness of the solution of (1.2.2) for all positive times. These
solutions will be called phase space trajectories.

We will denote by [0,00[3 ¢ — (x(t,s,v,7n),&(t, s,y,m)) the solution of the
equations (1.2.2) with initial conditions

(s, 8,9,1) =¥,
&(s,8,5,m) = 1.
We will also write (z(¢,y,n),&(t,y,n)) for (x(¢,0,y,7n),£(t,0,y,n)). Often, we will
drop y,n and write simply (z(t), &(t)).
We denote by ¢(t,s) the evolution generated by the equations (1.2.2), that
is,
o(t, ) (y,m) = (z(t, s,y,m),n(t, s,y,m)).

¢o(t) will stand for the flow generated by the Newton equation with a force equal
to 0. The flow ¢y(t) is simply given by

$o(t)(z,€) = (z +1€,§).
Clearly, instead of equations (1.2.2), one can study the Newton equation
Orx(t) = F(t,z(t)). (1.2.3)

Solutions of (1.2.3) will be called configuration space trajectories. We will use
interchangeably both phase space and configuration space trajectories (which
contain the same amount of information) and we will usually call them just
trajectories, which should not lead to ambiguities.
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Sometimes we will assume that the force F(t, ) is conservative. This means
that F(t,z) = =V, V (¢, z) for some time-dependent potential V' (¢, z). In the con-
servative case, the equations (1.2.2) are the Hamilton equations for the Hamil-
tonian

H(t,z,&) = %fQ +V(t, ).

1.3 Asymptotic Momentum

We will start our exposition of scattering theory for (1.2.2) with a construction
of the so-called asymptotic momentum.

Theorem 1.3.1

Assume that ~
| IE( st < oo (13.1)
0

Then for every (y,n), there exists the uniform limit
Jim &(t,y,n) =: £ (y, m). (1.3.2)

Moreover, the function £1(-,-) has the following properties:
(1)

tim 01 vy )

t—00 t

(#) the function
X x X' (y,n) =& (y,n) € X'

18 continuous;
€ (y,m) —n| < C.

Proof. Clearly, one has

€)= = [ Flua(w)du,

from which we obtain that £(¢) has the Cauchy property near co. This shows the
existence of the limit (1.3.2). £*(+,-) is a uniform limit of continuous functions,
hence it is continuous.

To prove (i), we write

d N L
S — 1) =€) — " = - [ Fu,a(u))du
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Hence,

x(t) — &t :y_/o uF (u, z(u u—t/ du. (1.3.3)
Thus,

@ — &= % — /Ot %F(u,x(u))du - /too F(u, z(u))du. (1.3.4)

By the Lebesgue dominated convergence theorem, (1.3.4) converges to zero. 0O

The limit (1.3.2) will be called the asymptotic momentum along the trajectory

(@(1), &(2))-
Under the assumptions of Theorem 1.3.1, we can extend the definition of
&(t,s,y,m) to t = oo by setting

§(00,5,y,m) = lim &(L, 5,9, 7).
The following proposition will be useful in Chaps. 2 and 5:

Proposition 1.3.2
Assume (1.8.1). Then we have, uniformly for 0 < s <t < oo,

.Z'(t, 5 Y, 77) — Y- (t - 8)77 € |t - 8‘0(80)7
€(t7 Svyvn) S 0(80)'

Proof. We use
E(t, s, y,m) —n = [ F(u,z(u))du.

1.4 Fast-Decaying Case

The asymptotic momentum can be defined under very broad conditions on the
forces, which include both the fast- and slow-decaying case. Next we would like
to impose a more restrictive condition on the decay of the force. We are going to
study scattering theory in the fast-decaying case. Roughly speaking this means
that the force F(t,-) decays in ¢ like (¢)~'7# for some u > 1.

Theorem 1.3.1 gives a partial classification of all trajectories. Namely, they
are classified by the limit (1.3.2). One would also like to classify all trajectories
corresponding to a given asymptotic momentum. In the fast-decaying case, it
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is possible to classify them in a natural way with elements of the configuration
space X. This is described in the following theorem.

Theorem 1.4.1
Assume that

[T OUEE )t < oo. (1.4.1)
0
Then for any (y,n), there exists a uniform limit

Jim (@(ty,m) — €7 (y,m) = wig(y: m)- (1.4.2)

Moreover, the following is true:
(i) the function
X xX'3 (y,n) = zj(y,m) € X

18 continuous;
(1)

lzgi(y,m) —y| < C;

(iii)

Nm (z(t,y,n) — t€(t,y,m) = 24y, ).

Proof. By Lebesgue’s dominated convergence theorem, the limit of (1.3.3) exists
when ¢ — oo and is equal to

lim (z(t) — t&T) =y — /Ooo uF (u, z(u))du.

t—o0

zg;(+,-) is continuous as the uniform limit of continuous functions. a

The function (-, -) will be called the asymptotic position. The subscript fd
stands for “fast-decaying”.

Our next theorem shows that in the fast-decaying case, under an additional
condition on the force, the mapping from the initial conditions to the scattering
data is bijective. We first introduce some notation. For ¢ € [0, 00[ and (z,§) €
X x X', we denote by [0,%] 3 s — (yta(s,t,2,&), (s, t, x,&)) the solution of

8syfd(s,t,x,§) = ﬂfd(é‘,t,ﬂf, §),
asnfd(svtaxag) = F(Sa yfd(sataxag))a (143)
yfd(t,t,x,ﬁ) =$+t§, nfd(t,t,l‘,f) :g.

We will use the following convention to extend these trajectories for large time:
for s > ¢, instead of using the flow of Newton’s equations, we put

(yfd(sa t’ Z, g)’ nfd(sa ta €, f)) = ($ + 3&, 5) (144)
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Theorem 1.4.2
Suppose that (1.4.1) is true and

/0 T OIVLF (2, ) |ldt < oo. (1.4.5)

Then the trajectory (ysa(s,t,z,€), nea(s,t,x,€)) converges as t — oo, uniformly
in Ry x X x X', to a trajectory (ysa(s, 0o, z,€), nia(s, 00, x, &), which satisfies

Jim (y1a(s, 00, 2,€) — 7 = 5€) = 0, 1.4
{ lim (n¢q(s, 00, 2,&) — &) = 0. (1.4.6)

§—00

Moreover, the following statements are true:
(i) the trajectory (ysa(s, oo, z,€), nwa(s,00,x,&)) is the only one that satisfies
(1.4.6);
(#) the mapping
[0,00] x X x X' > (t,x,€&)
= (yfd(satvxaé-) i 557 nfd(svtaxag) - 6) € Coo(]R«ﬁX X XI)

1S continuous.

Proof. For simplicity of notation, we will usually suppress the parameters
(t,z,€) in ysa(s, t, z,€). Clearly, yq(s) satisfies the following integral equation:

yra(s) =z + s+ /St(u — ) F(u, ysa(u) )du. (1.4.7)

We will also set
z(s) == yu(s) —z — s

For any (t,z,€) € [0,00] x X x X', we define P as a mapping on Z3 by the
formula

P(z)(s) = /St(u — 8)F(u, z(u) + = + ué)du. (1.4.8)

Now we can rewrite (1.4.7) as

z =P(z). (1.4.9)

We will show that, for large enough 7', there exists a unique solution of the
equation (1.4.9) in Z3, .

Note that P is well defined as a map of Zj , into itself. Moreover, for z €
Z} o, P(2) is continuous with respect to (,z,£) on [0,00] x X x X'. Using
(1.4.5), we obtain that P is a contraction on Zj ., uniformly with respect to
(t,z,€) € [0,00] x X x X', provided we take T" large enough. In fact, one has

IP1) = Pl2)llog < [ IV P Ylaoller = 2 g
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By the fixed point theorem (see Appendix A.2), there exists a unique solution in
Z%OO of the equation (1.4.9), which depends continuously on (¢, z, £). This gives
a solution yq(s, 00, x, &) defined for s > T. We extend it for s € [0, 7], using the
existence and uniqueness for the flow defined by the equations (1.2.2). O

Note the identities
QS(S: t)¢0(t) (.’L', g) = (yfd(87 t, x, 6)) nfd(sa t, z, 6)))
¢ (t)o(t, s)(y, m) = (z(t, s,y,m) — t€(t, 5,9,m), £(t, 5,9, 7).

One can interpret the Theorems 1.4.1 and 1.4.2 in a more conventional way
by introducing the wave transformations.

Theorem 1.4.3
(i) Assume (1.4.1). Then there exists the limit

Jim 65 ()91(t,0) (1410

uniformly on X x X'. The limit is a continuous map from X x X' into itself.
(ii) Assume, in addition, (1.4.5). Then there erists the limit

lim 6(0, )o(t), (1.4.11)
uniformly on X x X'. The mapping
Fi X xX' —- X xX'

defined by the limit (1.4.11) is called the wave transformations. It is continuous
and bijective. Moreover, (1.4.10) is equal to (Fgy)™*.
(iii) If (y,m) = Fai(x,€), then one has

Jim (6(2,0) (3, ) = dn(t) (,)) = 0. (14.12)

Note the following identity:

(F) "y, m) = (2w, m), €4 (y, m))-

Remark. Let us note that the statement (ii7) of the above theorem does not
follow from the statements (i) and (ii) (or the other way around). In fact, the
relation described in (%ii) can be used to give another definition of the wave
transformation Fg; (beside the one given by the limit (1.4.11)). Fortunately,
under the assumptions of Theorem 1.4.3 both definitions are equivalent.
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Fig. 1.1. Fast-decaying wave transformation.

Remark. In the definition stated after (1.2.2), we use letters (y,7n) to denote
the initial conditions and (z,&) to denote trajectories. In the definition before
Theorem 1.4.2, it is the other way around: (y,7) denote trajectories and initial
conditions are expressed in terms of (z,£). At a first sight this may seem in-
consistent, in reality this is quite a natural convention: in both cases (y,7) are
the position and the momentum at the time s and the letters (z, ) are used to
denote the data related to the time ¢ — oco. We will try to conform to these
conventions throughout this and the next chapter, but it will not always be easy
to be consistent. In particular, in Sect. 1.5, where we study the boundary value
problem related to the slow-decaying case, we will not stick to this convention.

The problem (1.4.6) can be viewed as a kind of a Cauchy problem with the
initial conditions set at infinity. In the usual Cauchy problem, where we put
the initial conditions at a given point, a typical assumption used to guarantee
the uniqueness of the solution is the Lipschitz condition. In the case of (1.4.6),
the assumption (1.4.5) on the gradient of the force is an analog of the Lipschitz
condition. Below we will give an example of the non-uniqueness for the problem
(1.4.6) in the absence of condition (1.4.5). This example (or, more precisely, its
time-independent version) is due to Simon [Sim1].

Example 1.4.4
Take a cutoff function x € C§°(IR) such that x(s) =1 for |s| < 2 and x(s) =0
for |s| > 3. Consider the potential

2
V(t,a) = =5[22 ex(or?),

for x € IR and p > 0. It is easy to check that the force —V,V (¢,z) decays
like t7277, but the gradient of the force —V2V (¢, z) decays only like ¢t2. The
following two solutions are asymptotic to the same free solution when ¢t — oo:
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z1(t) :== 0, xo(t) :=1t7".

1.5 Slow-Decaying Case I

In this section we begin our study of slow-decaying forces. Our aim is to classify
all the trajectories in this case, taking into account their asymptotic behavior as
t — 00.

The slow-decaying case means roughly that the force F(t¢,z) decays like
(t)y"17# for some 0 < p < 1. In particular, the field felt by a particle moving
freely in the Coulomb potential has the decay of this type with u = 1.

Most of the time, when studying the slow-decaying case, we will assume the
following conditions on the forces:

/ T Bl|02 (2, ) loedt < 00, |a] = 0,1. (1.5.1)
0

Scattering theory in the slow-decaying case is more difficult than in the fast-
decaying case. In general, the usual wave transformation does not exist and the
problem (1.4.3) that was used to define the trajectories (ysq(s), 7a(s)) is of no
use. Instead, it is more natural to consider a mixed problem, where the boundary
conditions are the initial position and the final momentum. Hence we will start
with a rather detailed study of this problem, which is the subject of the next
theorem.

Theorem 1.5.1
Assume (1.5.1). Then there exists T such that if T < t; <ty < oo and (x,&) €
X x X', there exists a unique trajectory

[t1,t2] D 5+ (F(s,t1,t2, 2, 8),7(s, 11, ta, 2, ))
satisfying
asg(sa tl: t2a z, f) = ﬁ(sa tla t2: z, 6)5
8577(5, tlu t27 z, g) = F(S7 g(sa tl: t?a T, 6))a (152)
g(t1,t1,t2,$,£) =, ﬁ(tQ,t1,t2,$,£) :’5
(M(00,t1,00,z,&) = € means of course lim,_, 7(s, t1,00,2,&) = £). Moreover,
the solution satisfies the following estimates, uniformly for T <t; < s <ty <00
and (z,€) € X x X':
a?(ﬂ(satht%x,@ —z—(s—t)€) €o(s”)s —t:], B8] <1, (1.5.3)

2 (G(s, 1,2, 2,8) —x — (s — t1)€) € o(t)), |a| =1, (1.5.4)
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8;’;8?(77(5,151,152,3:,5) —& eo(sT), al+8| <1, 1.5.5
Fg(7i(s, t1, 19,3, 6) =€) € L(ds), ol =1,
g(satlat%x:g) - ?](S,tl,oo,x,ﬁ) € O(tg)‘S - tl‘a

)

ﬁ(satlatanag - ﬁ(S,tl, OO,JT,f) € O(tg)

1.5.6
1.5.7

)
)
)
1.5.8)

—_ o~ o~ o~

S = t2
Fig. 1.2. Boundary value problem for slow-decaying scattering.

Proof. We will suppress parameters %1, t3, x and & when possible, to simplify
the notation. An easy computation shows that 7(s) has to satisfy the following
integral equation:

9(s) =+ (s =10)€ = Ji(u—t)F(u,§(u))du

. (1.5.9)
—(s —t1) [;* F(u, §(u))du.
We will set
Z(s) :==g(s) —z — (s — t1)&
and introduce the following function:
0, u S tl,
Cus(u) =4 u—t, &t <u<s,
s — 11, s < u.
We extend Z(s) by setting Z(s) := Z(ty) for to < s < 0o. We define
P(2)(s) == — [2 G5 (W) F(u, 2 + (u — )€ + Z(u))du. (1.5.10)

where the map P depends on the parameters t{, %, x,£. Now we can write the
equation (1.5.9) in the form
z = P(2). (1.5.11)
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As in the proof of Theorem 1.4.2, we will apply the fixed point theorem to
solve (1.5.11), but now we choose for our Banach space the space Z; . We have

s =t H[P(2)(s)] < /:o |5 — 1] "G (WP (u, )| oodu. (1.5.12)

Note that
0< |s—ta| " Gslu) <1,

for any u, we have the pointwise convergence

lim ( sup |s — t1|_1<t1,s(u)) =0,

570 \{ta | T<t1<s}

and ||F(u,)]|e € L'(IR"). Therefore, by Lebesgue’s dominated convergence the-
orem, (1.5.12) is 0(s°), uniformly for T < ¢; < s. Hence, P is bounded on Z;
with norm o(t?).

Similarly we estimate:

|s = 01| 7' [VzP(2)v(s)]

. ) (1.5.13)
< S s = 0l T s (W)l = G [[VaF (u, ) leollvll 23, du.

Therefore,
IVEPE)lpzy ) < /t u = t[[[VgF (u, ) oodu € o(t9).

We fix T such that ©
| lu= Tl < 1.
T

Clearly, if T' < t; then the map P is a contraction on Ztll’oo. So, by the fixed
point theorem, there exists a unique solution of (1.5.2).

Let us now prove that Z(s) satisfies the estimates (1.5.3) — (1.5.6).

The fact that |Z(s)| € o(s°)|s—t;| is immediate by the properties of the range
of P that we described above.

Let us now prove (1.5.3) with |3| = 1. We use the identity

(1= V;P(3))Vez = VeP(3). (1.5.14)

Let us first check that V¢P(Z) belongs to the Banach space Zj, . Indeed, we
see that

|5 — 1|7 [VeP(2)(s)] S/t |5 — 1|7 Gy s () Ju — @[ V5 F (u, ) || o

1

By (1.5.1) and Lebesgue’s dominated convergence theorem, this quantity goes
to 0 when ¢; and s — ¢; go to oo, which proves that V,P(Z) € Z] . and

t1,00

IVeP(2)llz, € o(t?). We already know that V;P(Z) is contracting on Z}

11,007
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for t; > T'. Hence, using (1.5.14), we get that V¢Z € Z},  and [|[VeZ[| 5 € o(t)),
which implies (1.5.3) with |3| = 1.
Let us prove (1.5.4). First note that V,P(Z) belongs to Z; . Indeed,

VPEE) < [ G V3F () foodu € o). (1.5.15)
Moreover,
IV=P )iz < | Guelw) [V (1) st € o)
Thus, for ¢t; > T, the map P is a contraction on Zg, and using

(1 — V:P(2))Va2 = V,P(3), (1.5.16)

we obtain (1.5.4). .
The fact that n(s) — & = Z(s) € o(s°) follows from the formula

)= [ ® Plu, j(u))du. (1.5.17)

To prove (1.5.5) with || = 1, we differentiate (1.5.17) with respect to & and
obtain

Vez(s)| < C L2 NIVF (u,)lloo| Veii(w) | du
< CL NIV F (u, ) |[[u — ta|du € ofs”).

Next, we differentiate the identity (1.5.17) with respect to z. We get

Vaz(s)] < C L2 IIVGF (u, ool Vai(u) du

(1.5.18)
< C1s7 [P u||VeF(u, ) ||odu € o(s™1).

This shows (1.5.5) with |a| = 1.
Using

I |Vez(s)lds < C 72 ds [ V3 F (u, ) || scdu
=C (s = TIVgF (s, -)leeds < o0,

we obtain (1.5.6). (1.5.7) follows from the continuity of P on Zj ,, with respect
to te. (1.5.8) follows from (1.5.17) and (1.5.7). O

Let us remark that the above theorem immediately implies that £&* maps X’
onto X'

If in Theorem 1.5.1 we fix ¢; and put ¢, = co, we get a complete classification
of trajectories using the initial (at time ¢;) position z and the asymptotic momen-
tum &. This classification is not satisfactory from the point of view of scattering
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theory, because z is not an asymptotic quantity and because it depends on the
choice of t;.

In the fast-decaying case, all the trajectories with a given asymptotic momen-
tum were classified with the function zg(-,-), which was a natural asymptotic
quantity. Therefore, they were labeled with elements of the configuration space
X. In the slow-decaying case, they can be classified in a natural way by elements
of the affine space X. Unlike in the fast-decaying case, in general we cannot re-
place “affine” by “vector”. This classification is the subject of the next theorem,
which was first proven by I.Herbst [He] under more restrictive conditions on the
forces.

Theorem 1.5.2
Assume (1.5.1).
(i) Let (y1(s),m(s)) and (y2(s),m2(s)) be two trajectories such that

Jimm(s) = Jim m(s)
Then there exists

lim (y1(s) — a(s)).

8§—00
Moreover,
m(s) —ma(s) € o(s™). (1.5.19)
(ii) Let (yi(s),m(s)) be a trajectory and v € X. Then there exists a unique
tragectory (y=(s), m2(s)) such that

{ Jim 7, (s) = lim 75(s),
lim (y(s) — va(s)) = =.

§—00

Proof. Let us first show (7). We choose T large enough. Let z; := y;(T") and
€ := limy_, o m5(s), i = 1,2. Using the notation introduced in Theorem 1.5.1, we
note that 7;(s) = (s, T, 00, x;, £). Therefore,

1
771(3) - 772(8) = /0 (Il - x?)vl‘ﬁ(saT’ o, TX + (1 - T)$255)d7'
Using estimates (1.5.6), (1.5.5) of Theorem 1.5.1 we get that 7;,(s) — n2(s) €

L*(ds) No(s™'), which proves (i).
Let us now prove (i;). We will use the following integral equation:

yo(s) —yi(s) =z — /:o(u — 8)(F(u,ya(u)) — F(u,y1(u)))du. (1.5.20)

We set

and



1.5 Slow-Decaying Case 1 27

P(2)(s) = - /:O(u = 8)(F(u, p1(u) + 2 + 2(v) = F(u, y1(u)))du.

We see that z has to satisfy
z=P(2). (1.5.21)

By the now standard argument, we see that P is a contraction on the Banach
space Z%oo, for T large enough. Therefore, by the fixed point theorem, the equa-
tion (1.5.21) possesses a unique solution, which ends the proof of the theorem.
O

Theorem 1.5.2 means that the space of trajectories with a given asymptotic
momentum has the structure of an affine space. To turn it into a vector space,
we have to fix an “origin” in this space. Unlike in the fast-decaying case, where
we could use the free trajectory Wi(t,€) := t€ to fix the origin in a natural
way, in the slow-decaying case, we have to make an arbitrary choice. Namely, for
each £ € X', we need to choose a certain trajectory Y'(¢,£) with the asymptotic
momentum &.

ZIC/IN $

y1(s)

Fig. 1.3. Affine space structure.

One way to do this is to fix 7" large enough such that there exist the trajec-
tories

Y(t’ é‘) = g(t’ T’ w’ 0’ 6)’ E(t, f) = ﬁ(t’ T7 007 0’ é‘)

constructed in Theorem 1.5.1. (Let us stress that the choice of t; =T, and x = 0
is completely arbitrary).
From Theorem 1.5.2 and its proof we see that the following theorem is true:

Theorem 1.5.3
Assume the hypotheses of Theorem 1.5.1. Then for any (y,n), there exists

Hm (z(t,y,m) = Y (t,6 (y,m)) = 234y, m)-

Moreover, the following statements are true:
(i) the function
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X xX'>(y,n) —ah(y,neX

18 continuous;
(i)
|z (y: M| < Clz(T,y,m);

(iii)
.’E(t, Y, 77) - Y(ta §+(ya 77)) - x;—i(ya 77) € O(to)‘.’L‘(T, Y, 77)'7
(iv) the map
X x X'3 (y,n) = (z53(y,m), " (y,m) € X x X (1.5.22)
18 bijective.

We will call z}; (-, -) the modified asymptotic position.
Theorem 1.5.3 leads to our first definition of the modified wave transforma-
tion.

Definition 1.5.4
The inverse of the map (1.5.22) will be called the modified wave transformations
and will be denoted FJ.

Clearly, we have

(FH) "y, m) = (afi(y,m), ¥ (y, ).

1.6 Slow-Decaying Case II

So far, scattering theory for slow-decaying forces seems to have little resemblance
to the fast-decaying case. Now we would like to present a construction of modified
wave transformations that is more parallel to the one we gave in the fast-decaying

case.
Let T be the number fixed before Theorem 1.5.3. Denote, for ¢t > T,

Y(t,6) = §(t,T,t,0,8). (1.6.1)
The function f/(t, §) is called a modifier. Let us note its properties:
Y(T,¢) =0,

0 (Y (t,€) —t€) € o(t), |8 =0,1,
Y(ta 6) = Y(ta E(t, )a

z(t,s,Y (s,n),n) =Y (t,&(t,s,Y(s,n),n)).

(1.6.2)
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If we differentiate the last identity with respect to ¢ and plug in s = ¢ then we
obtain the following equation

QY (1,6) = € = VY (L F (1, Y (1,€)). (1.6.3)

(1.6.3) is closely related to the Hamilton-Jacobi equation, which we will con-
sider in the conservative case. The following theorem gives an alternative way to
construct the function zf (-, ) using Y (¢, £) instead of Y (¢, €).

Theorem 1.6.1
Assume that the hypotheses of Theorem 1.5.1 hold. Then

z(t,y,m) = Y (t,£(t,y,m) — 21 (y,m) € o(t°)|x(T, y,n)l.

Proof. Set
£ =&y, m).
Note that
§(t) =i(t, T, 00,2(T), &)
The difference of z(t,y,n) — Y (t,£(y,n)) and z(t,y,n) — Y (t,£(t,y,1)) equals
Y(t,E(t) = Y(t, B(t,EM)

=4(t,T,t,0,7(t, T, 00, z(T), 1)) — §(t, T,t,0,7(t, T, 00,0,ET))

= [y Veij(t, T,t,0,7ii(t, T, 00, x(T), %) + (1 — 7)ii(t, T, 00, 0, &4))dT

x Jo Vail(t, T, 00, 0x(T), £ )a(T)do

€ O@t)o(t™)[z(T)| = o(t°) |=(T)|.
(At the end we used estimates (1.5.3) and (1.5.5)). O

The identity

24 (y,n) = Jim (@(t, y,n) — Y (1, £(t,y,m))) (1.6.4)

obtained in Theorem 1.6.1 can be viewed as the second definition of zJ;(y, n).
For t € [T, o0, we denote by [0,t] 2 s = (ysa(s,t,,£),nsa(s,t,2,&)) the
unique trajectory such that

{ ysd(t; t:xag) =T+ Y(t, g),
nsd(ta t,ﬂ?,f) = 5

Our next result is an analog of Theorem 1.4.2.

(1.6.5)

Theorem 1.6.2
Assume that the hypotheses of Theorem 1.5.1 hold. Then the trajectory



30 1. Classical Time-Decaying Forces

(ySd(87 l,z, 5)7 nSd(87 l,z, 6))

converges ast — 0o to a trajectory (ysa(s, 00, x, &), Nsa(s, 00, x, £)), which satisfies

lim (ysd(sa o, T, 5) - Y(87 5)) = O:
see (1.6.6)
lim (7sq(s, 00, 2,&) — &) = 0.

8§—00

Moreover, the following statements are true:

(i) the trajectory (ysa(s,o0,x,&),nsa(s,00,x,£)) is the only one that satisfies
(1.6.6);

(i) the mapping

[0,00] X X x X' > (t,z,€)
= (ysd(sataxag) i ySd(SataOaS)a nsd(sataxaé-) - 6) € Cgo(]R51X X XI)

1S continuous,
(#i) we have, uniformly for 0 < s <t, T <t, (z,§) € X x X',

Ysa(s, 1,1, &) — ysa(s, 00,2, &) € o(t°) ((z) + (s)), (1.6.7)

Nsa(s,t, 1, &) — nsa(s, 00, 2,€) € o(t°)({s)"Hx) +1). (1.6.8)

Proof. First note that we already can solve (1.6.5) for x = 0. Namely, by (1.6.1)
(Ysa(s,,0,€),msa(s, 1, 0,8)) = (§(s, 1.1, 0,€),7(s, T’ ¢, 0,£)). (1.6.9)

By (1.5.7) and (1.5.8), there exists a limit of (1.6.9) as ¢t — oo that satisfies
(s, T,t,0,€) — §(s,T,00,0,€) € ot’)(s), (1.6.10)
(s, T,t,0,€) — 7i(s, T, 00,0,&) € ot°). (1.6.11)

Next consider the case of a general z. To simplify the notation, we will write

(ysa(s, ), msa(s, z)) instead of (ysa(s,t,x, &), nsa(s,t, z,£)).
Now ysa(s, ) satisfies the following integral equation:

Ysa(s, )
=4+ Y(t,6) +E(s —t) = [H(u— 8)F(u, ysa(u, x))du.

We set

(1.6.12)

2(8) :== ysa(s, ) — ysa(s, 0) — . (1.6.13)

If we subtract (1.6.12) with an arbitrary z from (1.6.12) with z = 0, we
obtain that z(s) satisfies the integral equation

z="P(2), (1.6.14)
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where
P(2)(s) == / " — 8)(F (1w, yea (11, 0) + 7 + 2(u)) — F(u, yea(ts, 0)))dlu.

Using hypothesis (1.5.1) and the now standard argument, we see that P is a
contraction of Z%oo for T large enough. Moreover, using Theorem 1.5.1 and
Lebesgue’s dominated convergence theorem, we see that P depends continuously
on the parameters (¢,z,&) € [0,00] x X x X'. Therefore, there exists a unique
solution z € Z%oo of the fixed point equations, which depends continuously on
(t,x,&) € [0,00] x X x X'. This proves that ysq(s, 00, x, £) exists, satisfies (1.6.6),
and also the statements (i) and (i) are true.
Next we remark that the inequality

t t
2(5)| = [ ull VP, ocl2(w) du < [ ]V F(u, ) oclaldu
and the Gronwall inequality imply
2(s)| < Clz|. (1.6.15)

This estimate will be useful in the proof of (%ii), which we are going to give now.

To keep track the dependence on the parameters, it will be convenient to
denote (1.6.13) by z(s,t¢,z,£) and the mapping P by Py, . Note that, for any
z € Z%Oo, we have uniformly in ¢, x, £ the following estimate:

1Prae(2) = Pooae(2)llzg, € o(t”)((z) + |21)-
If we take into account (1.6.15), then we see that
1Prog(2(+5,00,2,6)) = Pooa(2(:00,2,))ll 20 € o(t")(z)-
Therefore, from the proof of Proposition A.2.2 we obtain
12( 8, 2,€) — 2(-, 00, 2,€) |l 2. € o(t")(z)-

This together with (1.6.10) ends the proof of (1.6.7)
From (1.6.7) and from

t
2‘:(57 ta z, g) = - / (F(U, ysd(u7 ta z, g)) - F(U, ysd(u’a t7 07 5)))(1’(1,
we obtain easily

As,t,2,8) = 4(s,00,2,€) € o(t")({s) (&) +1)-
This, together with (1.6.11) yields (1.6.8). O

As in the section on the fast-decaying case, we will now interpret Theorems

1.6.1 and 1.6.2 using wave transformations. We start by defining an appropriate
modified free flow.
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Definition 1.6.3
We define the modified free flow ¢gq(t) by

XX X'3 (2,8~ ¢eat)(z,6) == (z+ Y (¢,6),6) € X x X',

Note that, in general, the above introduced modified free flow is defined only
fort>T.
Note the following identities:

¢(57 t)¢sd(t) (.’L‘, f) = (ysd(sa tv z, g)a nsd(sv t7 z, f))’

bua ()B(t,5)(y,m) = (2(t, 5,9,m) = Y (8, E(t, 5,9,m), (¢, 5,9,7))-
We have the following corollary of Theorems 1.6.1 and 1.6.2.

Theorem 1.6.4
Assume that the hypotheses of Theorem 1.5.1 hold. Then the limits

tliglo ¢(Oat)¢sd(t)a (1616)
Hm o2 (t)o(¢, 0) (1.6.17)

ezist and are equal to FJ and (F)™" respectively. The convergence of the mo-

mentum component is uniform and the convergence of the position component is
of the type o(t®)|z(T,y,n)| in (1.6.17). The convergence of (1.6.16) is of the type

o(t%)(z).
We have the following identity:

(FH) " w,m) = (afi(y,m), ¥ (y,m)).

Remark. Let us mention a difference between the slow-decaying and the fast-
decaying case, first pointed out by Herbst [He]. Namely, if (y,n) = F.5(z, &), then
in general it is false that

Jim (8(2,0) () = 4a(8) (2. ) = 0. (16.18)

The correct analog of (1.4.12) from the fast-decaying case is (1.6.6) or, in other
words,

lim (8(t,0)(y,m) — (z + Y (£,£),€)) = 0. (1.6.19)

t—o0

Of course, the momentum component of (1.6.18) converges to zero. But, in gen-
eral, the position component is divergent. Below we will give an example to illus-
trate this statement. But first let us give a heuristic argument why the existence
of (1.6.18) should not be expected.



1.7 Boundary Conditions for Wave Transformations 33

Let us subtract the x-component of (1.6.19) from the z-component of
(1.6.18). We obtain

Y(t,&) =Y (t, &) =4(t,T,t,0,8) — ij(t, T,t,0,7(t,T,00,0,§)). (1.6.20)

We know by Theorem 1.5.1 that 7j(t, T, 00, 0,&) — € € o(t°) and V¢3(¢,T,t,0,€) €
O(t). This yields a bound o(t) on (1.6.20) and not o(t°).

Example 1.6.5 Let us give an example illustrating the above remark. We will
consider the flow generated by the 1—dimensional force

F(t,z) =t17"

It is easy to solve exactly the equations of motion for this problem. In particular,
we have

g(sa tla t?a €, 6)

R e (e I Gt ) BT CE A AN ETE
v+ (s—t)€+logs —logt, — (s —t1)ty ', p=1.

We can choose T'= 1, and then we obtain

Y(s,ﬁ):{ (s=Dé+(fp+3) (" =1, 0<pu<,
(s—1)&é+1logs, p=1,
and
?(8,5):{(8_1)§+(ﬁ+i)(81“_1)—i(8—1)s“, 0<p<l,
(s—1Dé+logs—(s—Ds ', p=

Thus, for 0 < p <1,
lim (Y (s, €) — Y (s, €))

§—0Q

exists only in the case p = 1, and then it is non-zero.

1.7 Boundary Conditions for Wave Transformations

Let F* denote F¢j or F.;. Consider the equation

(y,m) = F*(x,8).

It turns out that it is often useful to express (n,z) in terms of (y,&). Unfor-
tunately, in general, this is possible only if we replace (y,7n) with ¢(s,0)(y,n)
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for s big enough. In this section we look more closely at ¢(s,0) o Ft with such
boundary condition.

First assume (1.5.1). Let T be given by Theorem 1.5.1. For any z,£ € X x X'
and s > T, we define

C+ (8, x’ 5) = 77(8, 8’ m’ '/I’" 5)'
Next we assume the fast-decaying condition (1.4.1) and (1.4.5). We set
2(s,2,€) = 53(6(0, 5) (2, ¢ (5, 2, £))).-

We clearly have
(s, 0)0F4 (244, ) = (x, ().

where we write (27}, (") instead of (z(s,z, ), (T (s, x,8)).

Proposition 1.7.1
The following identities are true:

zi(s,2,€) = lim (§(t, s, 00, 2, ) — t&)

t—00
= tli)rglo(g(t’ S’ t’ l" 5) - tg)’
(s, m,8) —x + s = /:o(ﬁ(t, 8,00, x,&) — £)dt. (1.7.1)

Assume now the slow-decaying assumption (1.5.1). We set

Za(8,2,€) = 234((0, 5) (7, C* (s, 2,€)))-

We clearly have
(s, 0)0F 4 (71, &) = (2,(7).
where we write (2., () instead of (2f(s,z,&),( (s, z,€)).

Proposition 1.7.2
The following identities are true:

Z;—i(saxaf) = lim (ﬂ(t,s,oo,x,f) - Y(t: g))

t—oo
= Jim (§(t, 5, t,7,6) = V(1,€)),

wa(s,2.6) —o +Y(5,6) = [ (0t 5,00,,€) ~ i(t, 5,00, Y (5, ), €))dt

Moreover, uniformly for x,& € X x X" and T < s, we have the following esti-
mates.
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7q(5,2,8) =2 +Y(s5,£) € o(s°) |z — Y (s, )],

O (z(s, 2, 6) =2 +Y(s,6)) € o(s") (|& = Y (s,6)| + (5)), 8] <1,
0%(z5(s,2,6) —x +Y(s5,€)) € 0(s?), |a| =1, (1.7.2)
0307 (C*(5,7,€) =€) € o(s7), [al + 8] <1,

0z (C*(s,2,8) =€) € L'(ds), |af =1.

Proof. The first identity follows immediately from the Definition 1.5.4. Let us
show the second identity.

Set
zea(t) == G(t, s, t,2,8) = Y (t,€), ((t) :=1(s,s,t,zE).
Then
bsd ()9(t, 5)(z,C (1)) = (25a(1), &)
Clearly,

t—o0

Moreover, ¢ (t)¢(t,s) converges uniformly on compact sets to (F.) ™ #(0, s).

Hence

Jim zeq(t) = z4.

The three last estimates of (1.7.2) follow immediately from Theorem 1.5.1.
The first two estimates follow from the identity

Z:(_l(sv o, é—) — Zo + Y(S: 6)

(1.7.3)
= (o = Y(s,€)) [° fol Vi(t, s, 00,720 + (1 — 7)Y (s, ), &)dtdT.

|

1.8 Conservative Forces

In addition to the hypotheses (1.5.1), let us assume that the force is conservative,
that is, there exist a real potential V'(¢,z) such that

F(t,z) = =V, V(t, x).

Under this assumption, Theorem 1.5.1 can be used to solve the Hamilton-
Jacobi equation. We refer to Appendix A.3 for some general facts about the
Hamilton-Jacobi equation.

With the notation of Theorem 1.5.1, for T' < t; <ty < 00, we put

S(ty,ta,x,&) = (& y(ta, 11,12, 2,§))
— Ji2 (37 (s,t1, ta,,€) = V(5,4(5, 11, t2,2,€)) ) ds.



36 1. Classical Time-Decaying Forces

By Appendix A.3, we know that S(t1, t2, z, £) satisfies two Hamilton-Jacobi equa-
tions. Let us describe the properties of this function in the following proposition.

Proposition 1.8.1
(i) The function S(t1,ts, z,&) is the only CH'(IRE) solution of the problem

atQS(tla t2a z, 6) = 552 + V(t27 st(tla t27 z, 'S))a
S(t,t,xz,&) = (z,§).
(11) The function S(t1,ts, x,€) is the only CH'(IRY) solution of the problem
_atl S(tln t2a z, 5) = %(sz(tla t?a z, f))Q + V(tla 33),
S(t’ t’ l" 5) = <x’€>'

(“Z) Vz‘s(tla t?a z, 6) = ﬁ(tla tla t?a z, 6)1 vfs(tla t2a €z, 6) = g(tQ’ tla t?a x, 6)1
(iv) The following estimates are true, uniformly for T < t; < ty, (z,€) € X xX':

¢ (S(tlatz,l"af) —(2,8) — 5(t2 — tl)fQ) € [t —tilo(td), Bl=1,2;
020f (S(t1,t2,7,€) — (2,6) — St —t1)€2) € o(t; ™), | > 1, || + 8] <2
O%(S(t1, b2, w,€) — (2, &) — 5(t2 — 01)€%) € L' (dty), |a] =2.

Proof. (i) — (iii) follow immediately from Appendix A.3. The estimates (iv)
follow immediately from the equations (%) and Theorem 1.5.1. O

The Hamilton-Jacobi equation containing z-derivatives is sometimes called
the eikonal equation. Below we construct certain solutions of the eikonal equation.
We start with the fast-decaying case.

Proposition 1.8.2

Assume (1.4.1) and (1.4.5) and that the force is conservative. Then the wave
transformation JF; is symplectic. Moreover, the following limit exists:

1
Jim (S(s,t,2,) = 3t6*) = ¥i(5,,).
It satisfies the etkonal equation
1
~0.B3(5,,€) = 3 (VuBi(s,7, ) + V(5,).

It is a generating function of ¢(s,0) o Fg, that is,

Vm@gi(s’xaé) = C+(S,$,f), v§¢a—i(3’$’£) = Z;S(S,l‘,f).
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Next let us return to the assumption (1.5.1). Recall that, in order to define
the family of trajectories Y (¢,£), we fixed a time T. With the same T, let us set

S(t,€) := S(T}t,0,€). (1.8.1)

The function [T,00[xX" 3 (¢,&) — S(t,§) is the unique solution of the
Hamilton-Jacobi equation with the zero initial condition at time 7"

0,S(t,€) = 562+ V (1, VeS(t,6)),
S(T,€) = 0.

Moreover, by (1.6.1), .
VeS(t,€) =Y (¢,6),

and the modified free flow can be written as
¢sa(t)(7,8) = (v + VeS(8,€),€)- (1.8.2)

We can also construct a solution of the eikonal equation in the slow-decaying
case, as described in the following proposition. Consequently, the following fact
is true:

Proposition 1.8.3
Assume (1.5.1) and that the force is conservative. Then the modified wave trans-
formation is symplectic. Moreover, the following limit exists:

Jim (S(s,t,2.€) = S(t,€)) = Bh(5.2.9)

It satisfies the etkonal equation
1
_8‘5’@;1(8’ €T, g) = E(vffv@;&(sa z, 6))2 + V(S, .I)

It is a generating function of ¢(s,0) o F.;, that is,

Vai(s,2,8) = (7 (5,2,8),  Vebiy(s,z,8) = 254(s, 2, €).
Uniformly for T < s, (z,€) € X x X', we have
O (B3(5,2,6) — (2,€) + 5(s,6)) € o(s") (Jo = Y(s,2)| + (s)), 1<[B]<2,

0200 (8L (5,2,€) — (2,6) + S(5,6)) € o), [a > 1, o]+ 8/ <2,
02 (B(s,2,6) — (2,6) + S(s,€)) € L} (ds), o] = 2.

Proof. (1.8.2) means that the flow ¢sq(t) is symplectic and generated by the
function S(t,€) + (z,£). This implies that F.f; is symplectic.
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Next let us compute:

t]i)lglo(S(S, t’ xz, 6) - S(ta 6))
= tli)lglo(S(s,t,x,f) —5(s,t,0,8)) + tli)rgo(S(s, t,0,€) — S(T,t,0,¢))
= fy 7i(s, 8,00, 72, £)dT — [7(5(7*(u, u,00,0,&) + V (u,0))du.

Thus, &1,(s, z,£) is well defined. a

1.9 Gauge Invariance of Wave Transformations

Throughout this section we assume the conditions of Theorem 1.5.1. Note that,
in this section, it will be convenient to denote F.j, zy, #f, by FT, 2t &+.

We have seen in the preceding sections that, in slow-decaying scattering
theory, one has to make some arbitrary choices. For example, the definition of
the reference trajectories Y (¢, £) was just a convention. In this section we examine
how the different objects we introduced are modified when we make a different
choice of reference trajectories.

Let us first examine what happens when we change the family of reference
trajectories in Theorem 1.5.3. Instead of considering (Y (¢,€), E(¢,€)), let us fix
a rather arbitrary family of trajectories (Yi(¢,€), E1(t,€)) that satisfy

tliglo El (ta f) = 6

By replacing Y (¢, &) with Y7 (¢, ) in Theorem 1.5.3, one can define another asymp-
totic position z;7 and another modified wave transformation ;" by

Hm (2(t, y,n) = Ya(t,&F(y,m))) = = (y,m),

(1.9.1)
(F) "y, m) = (@1 (y,n), € (y,m)).

One has

(FH y,m) — (F) "y, n) = (f(EF(y,m)),0), (1.9.2)

where f7 is an arbitrary function. The function f*(-) can be computed from the
formula

F5() = lm (Y (1,€) - Yi(t,)). (1.9.3)

(The above limit exists in the sense of the uniform convergence on compact sets
and f* is continuous if Y;(-, &) depends continuously on &).

Note that if the force F(¢,x) is conservative, then it is natural to require
that a modified wave transformation be symplectic. This is not always the case
for the above defined F; . Therefore, in the conservative case, one prefers a more
restrictive class of definitions of modified wave transformations.
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One might ask what are the natural quantities in the slow-decaying theory
(since F is not naturally defined). It is easier to describe them using inverse
modified wave transformations. The basic natural objects are the asymptotic
momentum

£ (y,m)

and the derivative of an asymptotic position along level sets of the asymptotic
momentum:

Vit (y,n)

It is easy to see from (1.9.2) that these quantities do not depend on the choice
of a modified wave transformation and are uniquely determined by the system
itself.

The derivative of a modified wave transformation with respect to z of order
|a] > 1 can be interpreted in an invariant way as a function on the affine space
X: namely, if 7+ and F;" are related by (1.9.2) then, for any |a| > 1,

Oy F (2, 8) = 07 F' (z — [7(£), 6).

KerVet(yn)

Note also that if we are given a wave transformation J;", then we can retrieve
the family of trajectories Y;(+,&) by the formula

Yi(t, &) = (t, 717(0,8)).

Sections 1.5 and 1.6 present two different, although equivalent definitions of
modified wave transformations. The definition from Sect. 1.5 is based on a com-
parison of the flow with a family of reference trajectories. The identity (1.6.16)
from Sect. 1.6 can be viewed as an alternative definition of F*, which is based
on a comparison of the flow with a modified free dynamics. Let us note that the
second definition, especially its quantum-mechanical analog, is probably more
common in the literature.

We have seen in Sect. 1.6 that we can associate to the family of reference tra-
jectories Y (t,€) a modifier Y (¢, £), which can be used in an alternative definition
of the wave transformation F*. This modifier satisfies the equation

Y(t,8) =Yt E,)).

Let us assume that we have fixed a different family of reference trajectories
(Y1(t, ), Eq(t,€)) leading to a different modified wave transformation F;". One
might ask if there exists a modifier Y; (¢, ) satisfying

Yi(t, &) = Yi(t, Ev(t,€)), (1.9.4)

such that the modified free flow defined with Y;(t,&) can be used to construct
the wave transformation F;" as in Theorem 1.6.4.

In general, the answer is negative. The second definition of F;" is possible only
if we assume that the reference trajectories satisfy certain regularity properties.
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A natural class of reference trajectories, for which the two approaches are
equivalent, is described in the following definition.

Definition 1.9.1
Let (Y1(t,€), E1(t,€)) be a family of trajectories satisfying

lim B (t,€) = €. (1.9.5)
We say that it is a regular family of reference trajectories if, uniformly in &, we
have 5
0 (Y1(t, &) —t€) € o(t), [B]=1,

(1.9.6)
OF (Ev(t, &) — &) € o(°), [B]=1.

(1.9.6) is equivalent to a much simpler condition.

Lemma 1.9.2
A family of reference trajectories satisfying (1.9.5) is reqular if and only if there
exists Ty > T and C such that

eVi(Ty, 6) < C, |8l =1. (1.9.7)

Proof. The conditions (1.9.6) follow from the identities
Yl(ta 5) = g(ta Ti, 00, Yl(Tb 6)7 6)7
Ey(t,&) = 7(t, Th, 00, Y1(T1,§), ),
(1.9.7) and Theorem 1.5.1. O
Theorem 1.9.3
Suppose that (Y1(t,§), E1(t,§)) is a reqular family of trajectories. Then for t large

enough, there exists a unique solution Y1(t,&) of the equation (1.9.4). It has the
following properties:

at?vl(t’ 6) = 6 - Vf?vl(t’ f)F(t, ﬁ(t’ 6))’ (198)

0 (Vi(t, &) —t€) € ot), |B|=1. (1.9.9)

The theorem follows from the following lemma.

Lemma 1.9.4

The map
X'5¢m Ei(t,6) e X! (1.9.10)
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1s tnvertible for t large enough, and the inverse mapping
X' sn—= Ef(t,n) e X’
satisfies for large t

0y (Z1f(t,n) —n) € o(t®), 8] =0,1. (1.9.11)

Proof. We know that, for 7' > T7,

[Ve(EL(t,€) =& < 5. (1.9.12)

© N

This proves the global invertibility of the map (1.9.10) for ¢ > T}. The estimates
(1.9.11) follow from (1.9.12) and (1.5.5). O

Proof of Theorem 1.9.3. We set
Yi(t,n) = a(t, = (t,)).
Following the proof of (1.6.2) we can check the following identity
o(t, 5,Y1(5,€),6) = Vit £(t, 5, Y1(5,€), €)).

Differentiating this identity with respect to ¢t and plugging in s = t, we ob-
tain (1.9.8). Using the estimates (1.5.3), (1.5.4) of Theorem 1.5.1, we obtain the
estimate (1.9.9). O

Definition 1.9.5
A function [T1,00[x X' 3 (t,€) — X is called a regular modifier if it satisfies

0, Y1(t,€) = &€ — VeYi(t, ) F(t,Yi(t,6)),

i (1.9.13)
oLTi(1,6) € O), |8]=1.
The modified free dynamics associated with Y; is defined as
o1(t) (2, ) := (x4 Yi(t, ), €). (1.9.14)

Theorem 1.9.6
Suppose that Y1(t,€) is a regular modifier. Then there exists a unique regular
family of reference trajectories (Y1(t,€), E1(t,€)) such that

Yi(t,€) = Yi(t, Ei(t,€)),  Jim E(t,€) =€

Moreover, the following limits exist uniformly on compact sets:
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Jim 60, )1 (t) = F',
lim 1" ()¢(t, 0) = ( D

t—00

Jim (Vi(£,6) ~ Y(£,0)) = 1 (€),
where F;", fT where defined at the beginning of this section.
The proof of the above theorem is divided into a series of steps.

Lemma 1.9.7
There exists

& (y,n) := Jim (z(t,y,m) = Yi(t,£(t,y,m))-

Consequently, there exists

(FF) = lim 6, ()6(t,0) = (3, €7).

(We will see later on that 7 =« and F = F}").
Proof. We have, using (1.9.13),
= fofl (ta 5) (F(ta ?'l(ta 5)) - F(t: m(t, Y, 77)))

Consequently, if we set

k(t) := |z(t,y,n) — Ya(t,€(t v, )],

(1.9.15)

then k(t) satisfies

%k(t)‘ < f(t)k(t), for some f € L'(dt).

By the Gronwall inequality, f(#) is bounded. Applying again (1.9.15) we see that
the limit of x(¢,y,n) — Y1(¢,&(t,y,n)) exists. O

Lemma 1.9.8
There exists the limit

Jim (Y (t, €(t,y,m) = Y (£, €(t,y,m)) (1.9.16)

For any & € X', the limit (1.9.16) does not depend on (y,n) as long as & =
&y, m).
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Proof. The existence of the limit (1.9.16) follows immediately from Lemma
1.9.7.

If £ (y1,m) = £ (y2, m2), then by (1.5.19)

f(t, Y1, 7’1) - f(t, Y2, 772) € O(til)'

Hence - -
Yl(t’ g(t’ Y1, 7’1)) - }/i(ta g(t’ Yo, 772)) € O(to)’

Y(t: g(ta Y1, 771)) - Y/(ta f(t, Y2, 772)) € O(to)'
Therefore, the limit (1.9.16) is the same for (y1,7:) and (y2, 72)- O
Set f*(€) to be the limit (1.9.16). Define

O7+(2,6) = (z + [1(£),9).

Lemma 1.9.9
We have

7 (y,m) =2 (y,m) + fFH(E (y,m))

and, consequently,

(F)™h = ¢zo(F )" (1.9.17)

Proof. Using (1.6.4), we obtain

7 (y,m) = tli}rcr)lo(:v(t, y,n) — Y (t,&(t,y,n)))
+ lim (Y (4,€(8, y,m)) — YA(t,€(t,y,m)) =« (y,m) = F*(y, ).

Lemma 1.9.10
We have

£ = lim (Y1(¢, &) — Y(¢,9)).

t—o0

Proof. We will write ¢(t) instead of ¢g4(t). Note that
611 (1)o(t) (2, €) = (x + Y (1,€) = Ya(t,€),6).
Using (1.9.17), we obtain
¢74(2,€) = (F")'oF*(2,6) = lim ¢7" (t)od(t)(x, €)
= lim (2 + Y (£,€) — Y1(1,€),6).

t—00

We define
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(Y1(t,€), B (t,€)) == ¢(t,0)0F (0, ). (1.9.18)

Lemma 1.9.11
(1.9.18) is the unique trajectory satisfying (1.9.4).

Proof. Recall from the proof of Lemma 1.9.7 that if we set

k(t) = |z(t,y,m) — Ya(t, £t y,m)),

then k(t) satisfies

0] < TR0, £ e D, (19.19)

If Z{ (y,m) = 0, then it means that

lim k(t) = 0.

t—00

By the Gronwall inequality (Proposition A.1.1 applied backward in time), this
implies k(t) = 0 for all ¢ > T. This means that (Y1 (¢, ), E1(t,§)) satisfies (1.9.4).

To prove the uniqueness, let (z(¢,y,n),£(t,y,n)) be a trajectory and assume
that, for some to > T1, xo = z(ty, y,n) and & = &(to, yn), we have

o = Yi(to, &)

Hence k(t9) = 0. By (1.9.19) and the Gronwall inequality, we obtain that k(¢) = 0
for all . Hence 1 (y,n) = 0, therefore the trajectory (z(¢,v,n),£(t,y,n)) equals

(t,0)0F (0, &) for £ = £+ (y,n). O

This ends the proof of Theorem 1.9.6 except for the regularity properties
of (Y1(t,€), E1(t,&)). They will follow from the estimates (1.9.20) proven in the
following proposition.

Proposition 1.9.12
(i) Assume that .
EYi(t,€) €0(t), |B]=1.

(For the moment, we do not assume that the differential equation (1.9.21) is
satisfied.) Then there exists Ty such that, for every Ty < t; < ty < o0, there
erists a trajectory

s (Yi(s,t1,12,8), Ei(s, 11, 2,€))

such that _
{ Yi(ty,t1,2,€) = Yi(ts, Er(t1, t1, 12, ),

Ey(ty, t1,19,&) = ¢&.
It satisfies, uniformly for Ty < t; < s < ty, the estimates

O (Yi(s, b1, t2,6) — (5 — t1)€ — Yi(t1,€)) € 0(s), [B] < 1. (1.9.20)
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(1) Assume, additionally,
BY1(t,€) = & = VeYi(4L,F (1, Yi(t, €)). (1.9.21)

Let Y1(t, &) be the family of trajectories constructed in Theorem 1.9.6. Then for
any s,

le(ta 6) = le(ta Sata é-)a
Yl(ta 6) = Yl(ta 3, Ooaé‘)

Proof. Using the notation of Theorem 1.5.1, we can write

(Yi(s, t1,t2,8), Ex(s, 1, 12,€)) = (§(s, 1, b2, 2, §), 71(s, 11, 12, @, §)),
where z is a function of t1, t9, £, which satisfies
z = Yi(t, i(ts, t, ta, 2, £)). (1.9.22)
The equation (1.9.22) can be written as
v =P(a)

where P is a map on X that depends on the parameters ¢;, £, and &.
Let us show that, for big enough t;, the map P is a contraction. In fact,

vmp(x) = Vﬁ}’}l(t, ﬁ(tla tla t2a x, 5))Vmﬁ(tla tla t2a x, 6)

By (1.5.5) and (1.9.13), this is O(t1)o(t; ') = o(t?). Hence, for big enough T} and

Tl S tla
1
IV.P@) < 5

which implies that the map P is a contraction and the equation (1.9.22) has a
unique solution. This ends the proof of the existence of the family of trajectories

(}/1(57 tl: t27 5)7 El(sa tla t27 5))
We note that

V¢P(z) :Vﬁifl(tlaﬁ(tlatlatZaxag))vﬁﬁ(tlatlat%x:f)
S O(tl)O(t?) = O(tl).

Therefore, from

Ver = (1 - VmP(x))_1V§7’(x)

we conclude that
Ver € o(t1). (1.9.23)

Now let us prove the estimates (1.9.20) . We write
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Yi(s, t1,12,6) — (s — 12)€ = Yi(ta,€)
=7(s,t1,12,2,8) — (s —t){ — = (1.9.24)
+}71(t1,77(t1,t1,t2,$,§)) - ﬁ(tlag) = 11(8) + 12(8)7

where z is the solution of (1.9.22). Now if we use (1.5.3), (1.5.4) and (1.9.23),
then we see that
0¢1i(s) € o(s), 18] =0,1.

If we use (1.9.13) (1.5.5) and (1.9.22), then we get
0¢1,(s) € ot1), |B]=0,1.

This implies the estimates (1.9.20) and ends the proof of (3).
Let us show (7i). We have

Yi(tt,00,6) = Yi(t, Er(t,1,00,€)),  Ei(o0,t,00,€) = €.
Hence, by the uniqueness part of Theorem 1.9.6, we have

(Yl(ta f)a El(t, 6)) = (E(ta t: 0, f), El(ta t: 0, f))

Therefore, for any s,
(Y1(s,€), Eu(s,€)) = (Ya(s, 1, 00,), En(s, t,00,¢)). (1.9.25)
Next we note the following obvious identity valid for any t, s:
Yi(t, s,00,&) = Yi(t, s,t, Ey(t, s,00,£)).
Using (1.9.25), we obtain

Yi(t,€) = Yi(t, s, t, By (1, £)).

But we know that 3
and, for sufficiently big ¢, the map & — FE;(t, &) is bijective. This shows that, for
any 1,

Yl(ta s, 1, 77) = Yl(tﬂ 77)'
O
Let us now describe a version of Proposition 1.9.12 valid for conservative

potentials.

Proposition 1.9.13
(i) Assume that F(t,x) is conservative. Assume that a function Si(t,&) satisfies

& 5:(t,€) € O(t), |8l =2.



1.9 Gauge Invariance of Wave Transformations 47

Then, for big enough Ty and Ty < t; < to, there exists a unique CH1(X') function
S1(t1,te, &) such that

O, S1(t1,12,€) = 367 + V(t2, VeSi(ty, 12, €)),
Si(t1,t1,€) = S1(t1, ).

It satisfies, uniformly for Ty < t; < ts,
O (S1(01,12,6) = (12~ 1)€ — 511, 8)) € olr), [6]=1,2.
(ii) Assume, in addition, that
0.5.(1,6) = 36 + V{1, V68 (1,))

Then for any t,t;, we have

Si(t,&) = Si(t1,t,6).

(#5i) There ezists the limit
Jim (51(4,6) = 5(4,6)) = 0" €). (1.9.26

Moreover,

Veo ™ (§) = fT(&)-

Proof. (i) and (i) follow from Proposition 1.9.12 and the standard theory
presented in Appendix A.3 if we set

Si(ty,t2,&) = S1(t, Er(th))
+ [2(GE3(s) + V (s, Ya(s)) — (Ya(s), V4V (s, Ya(s))))ds,

where (Yi(s), E1(s)) = (Yi(s, t1,t9,&, ), E1(8, t1, 19, x,§)).
To prove (i), we note that by the Hamilton-Jacobi equation

0y (S(¢,€) = Si(t,€)) =V (¢, VeS(t,€)) — V(¢ VeSi (2, §)) (1.9.27)
But, by Theorem 1.9.6,
VeS(t,€) = VeSi(t,€) = Y (t,€) = Ya(t,€)

is bounded. Therefore the right-hand side of (1.9.27) is integrable. This implies
the existence of the limit (1.9.26). O

Note that under the assumptions of Proposition 1.9.13, the modified free
flow ¢1(t) is symplectic and S (t,€) + (x, £) is its generating function. Hence the
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modified wave transformation F; is also symplectic. The generating function of
#(s,0) o Fi is given by

lim (S(s, ¢, 2, &) — Si1(t,€)) = @1 (s,2,€).

t—00
Just as &1 (s, x,£), the function &7 (s, z,£) also solves the eikonal equation

{ —554#(3,%'5) = %(VwéT(Saxag))Q + V(Sax)a

1.9.28
lim Vb7 (s,1,6) =E&. ( )

We also have
¢+(S’I1§) - @T(8,$,§) = U+(£)'

1.10 Smoothness of Trajectories

In order to prove the differentiability of trajectories with respect to parameters,
one needs to make certain assumptions on the differentiability of the forces. Let
us state the conditions that we will use in this section:

/°° 1O F (£, ) |oo (£) @ FHdt < 00, a € IN™. (1.10.1)
0

We will always assume that g > 0 in (1.10.1). The most important cases of
(1.10.1) will be g = 0, which can be called the slow-decaying smooth condition,
and g = 1, which can be named the fast-decaying smooth condition.

The condition (1.10.1) is akin to the conditions used by specialists in pseudo-
differential operators to define “semi-classical symbols” with ¢! playing the role
of Planck’s constant.

We would like to describe some bounds on the derivatives of the solutions
(F(s,t1,t2, x, &), N(s, t1, ta, x,&)), which were constructed in Theorem 1.5.1.

Theorem 1.10.1
Assume (1.10.1) with u > 0. Then one has, uniformly for T < t; < s <ty < o0,
(x,8) € X x X', the following estimate:

OF (§(s,t1,t2,3,6) — — (5 — 11)€) € o(s°)(t:) ™[5 — 1. (1.10.2)
Moreover, for some functions fs, fas € L*(du), one has
|a§ﬁ(g(5,t1,t2,$,§) -z — (s —=t)&)|
< Ji fo(w)(u) ~Hdu, p=1,
‘aga?(g(sa tlat%x: 5) - T — (S - t1)£)|
< ()1 fap()(u) Hdu, o > 1,

(1.10.3)

(1.10.4)



1.10 Smoothness of Trajectories 49

108 (7i(5, t1, b, 2, €) — €)| < J2° fi () (u)~du, (1.10.5)
1020¢ (i(s, t1, t2, 2, &) — )| < (1) [ fa,p(u) (u) ™ 7du, (1.10.6)
la] > 1.

Note that the somewhat uncommon right-hand sides of the above estimates
will be convenient in applications. To see what they mean, assume that f(u) €
L*(du) and set

9(s) == [ f(u)(w)~du.
Then it is easy to see that
g(s) €o(s™) if v >0,
g(s) € (s)7vLi(ds) if v > 1.

Proof. The proof of this theorem is a natural continuation of that of Theorem
1.5.1, where we already proved all the estimates with |a| + |8] < 1 under the
assumption (1.5.1). We will use the notation of the proof of Theorem 1.5.1.

We use Faa di Bruno’s formula to compute 6;‘3‘8? Z(s). We obtain

0297 %(s)
= = 5 {2 oo (w) VEF (1, ()0 02 () - - - 0320 () du.

or, equivalently,

(1.10.7)

0200 2(s) + [ G s (W) V3 F (u, (1) 0207 2(u)du
= — [ G s (W) V5 F (u, (1)) 0207 (z + (u — t1)€)du (1.10.8)
= 3 0 G (W) VG, G0} O () -+ 90 lu)du

q

We rewrite (1.10.8) as
(1= V:P(2)0200% = hag, (1.10.9)

where the map P was introduced in the proof of Theorem 1.5.1.
Now to prove estimate (1.10.2) for |3| > 1 we use the induction with respect
to |3]. The induction hypothesis H(n) is

0¢%(s) € s — ti]o(s*) (), 1< |8l <. (1.10.10)

H(0) is empty, hence true.
We assume that H(n — 1) is true. Consider 8 with |3| = n. The induction
assumption H(n — 1) implies

Rj(u) € O(u), 1<[6|<n—1. (1.10.11)
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Using (1.10.11), we easily see that in that case
s —t1] " hs(s) € o(s®){t:1) 7M. (1.10.12)

We recall from the proof of Theorem 1.5.1 that (1 — V;P(2)) is invertible on
Z},  for t; > T. Therefore, we can use the identity

07z = (1—V;P(2) " hs (1.10.13)
to show that
|s — 1|00z (s) € o(s)(tr) M
We want now to show by induction the following estimate, which we call
H'(n)
92925(s) € Oty ), Jal > 1, o]+ 8| < n. (1.10.14)
Assume that we know that H'(n — 1) is true. Let || + || = n and |o| > 1.
The induction assumption H'(n — 1) says that

0%5(u) € Oy, 9| >1, |y + 6| <n—1. (1.10.15)
Using (1.10.11) and (1.10.15), we easily see that
hap(s) € o(ti71*7H), (1.10.16)

We know from the proof of Theorem 1.5.1 that (1 — V;P(Z)) is invertible on Z
for t; > T. Therefore, we can use the identity (1.10.9) to show that

000z (s) € oty

This implies (1.10.14).

Now (1.10.3) follows immediately from (1.10.7) and (1.10.14).

To see (1.10.4), let us consider one of the terms on the right-hand side of
(1.10.7). Let g; be the number of the derivatives of § with |y;| = 0. Then by
(1.10.14) and (1.10.15)

12 Gy s () VA (u, ()0 0 (w) - - - 030 05" i(u)du

(1.10.17)
< Ot [ I VEF (u, ) [|oou) 2 du.

Now (1.10.4) follows if we take into account that [a| > 1 implies ¢; +1 < g.
To get the estimates on the derivatives of Z, we differentiate the identity

(1.5.17). Using again Faa di Bruno’s formula, we obtain
92925 (s

A )t ] L . (1.10.18)

= = X [ VgF (u, g(w)) 07 0 §(u) - - - e 0" G (u)du.

Then we use (1.10.14) and (1.10.15). O
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The remaining estimates of this section are essentially corollaries of the above
theorem.

Proposition 1.10.2

Assume the fast-decaying smooth condition, that is, (1.10.1) with = 1. Then
0207 (2 (s, 7, €) — x + sE) € o(s71),

0207 (234 ( )—z+sE) e (s)1*L(ds), lal >1,

020 (C*(s,2,€) — &) € o(s™171),

0207 (CH(s,7,8) — &) € (s)71*IL(ds).

S, T,

Proof. We use Theorem 1.10.1. For the first estimate, we use, in addition,
(1.7.1).
O

Proposition 1.10.3
Assume the slow-decaying smooth condition, that is, (1.10.1) with u = 0. Then

h(s,2,8) =2 +Y(s,€) € o(s")|x — Y (5,€)],

0 (7(5,2,8) — 2+ Y(5,8)) € o(s") (]2 — Y (5,)| + (),
020F (2515, 2, &) =z + Y (5,8)) € o(s' W), || > 1,
0207 (C* (5,7, 8) — &) € o(s71),

020 (C*(s,2,6) — &) € (s)!712IL1(ds), o] > 1.

Proof. We use Theorem 1.10.1. For the first two estimates, we use, in addition,
(1.7.3). O

Next we consider various functions defined the conservative case, which we
describe in the following proposition.
The following proposition follows immediately from Theorem 1.10.1.

Proposition 1.10.4

Assume (1.10.1) with p > 0, and that the force is conservative. Suppose that
la|+|8| > 1. Then the function S(t1,1ts, x, ) satisfies, uniformly for T < t; < to,
(z,€) € X x X', the following estimates:

ag (S(tlat%xaf) - <Z’,§> - %(tQ - t1)§2) € |t2 - tl‘o(t0)<t1)_u, ‘ﬁ| > ]-,
020 (S(tr,ta,,8) — (w,6) — H(ta — 01)€2) € o(t; "), ol +p>1,
030 (S(t1, ta, m,€) — (x,8) — §(ta — 11)€?) € (t)>71 1LY (dty), ol +p > 2.
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The following two propositions describe the regularity of the solutions of the
eikonal equation associated with the fast- and slow-decaying case. They follow
immediately from Propositions 1.10.2 and 1.10.3.

Proposition 1.10.5
Assume that the force is conservative and (1.10.1) with p =1 holds. Then

020 (D (5,7, €) — (z,€) + 35€2) € o(s71°), || + (8] > 1,
020 (B(5,7,€) — (@, &) + 35€%) € ()1 12ILL(ds), o] > 1.

Proposition 1.10.6
Assume that the force is conservative and (1.10.1) with y = 0 holds. Then

0 (@15, 2,6) — (2,6) + S(s,6)) € o(s") [z = Y (s,6)|, |B]=1,

0F (B35, ,€) — (2,€) + 5(s,6)) € o(s°) (| = Y (s, 6) |+ (5)), 18]>1,
000 (B53(5,7,€) — (w,€) + S(s,6)) € o(s' ), [a] > 1,

020 (B (5,3,€) — (x,8) + S(s,8)) € (s)*719IL (ds), o > 2.

The proof of the following proposition is an obvious extension of the proof
of Proposition 1.9.13.

Proposition 1.10.7
Assume the hypotheses of Proposition 1.9.13 (i) and (ii). Suppose also that, for

some tp,
0£51(t,€)| < Cp, 18] 2 2.

Then the function Si(t,&) constructed in Proposition 1.9.18 satisfies, uniformly
fort, <t, &€ X,

L — ez - Sl(tl,f)) colt), |8]>1.

o (5u(t,6) — 5

1.11 Comparison of Two Dynamics

In this section we compare two different classical dynamics. In the first theorem
we give conditions when trajectories of two slow-decaying systems are asymptotic
to each other.
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Theorem 1.11.1
Suppose that the forces Fi(t,x), Fy(t,z) satisfy

/ 18 Fy(t, ) [loo(®)9dt < 00, |a| =0,1, i=1,2, (1.11.1)
0

/Ooo 1F1(2,-) = Fa(t, ) [loo () dE < o0 (1.11.2)

Let the time T be chosen such that the conditions of Theorem 1.5.1 are satisfied
for both Fi(t,x) and Fy(t,x). Let Y;(t,€) and Y;(t,€) be defined as in Sects. 1.5
and 1.6, using the force F;(t,x). Then the following limits exist and are equal:

lim (Y1(t,€) — Ya(t,€)) = lim (V1(t, €) — Ya(t, €)).

Proof. Let §;(s,t1,ts, z,£) be the solution of the boundary value problem con-
structed in Theorem 1.5.1 for the force F;(t,z). Let us first show that, for
T <t < s <ty <00, there exists a uniform bound

|g1(87t15t25$’§) - g?(s: tlatQ; $a€)| S C (1113)

In fact, we have the following identity:
71(s) = Ga(s) =[2G s(u)(FL(u, 1 (u) — Fy
= 2 G s(u) (Fr(u, G2 (w) — F
+ U2 s (u) (Fa(u, Ga () — F

Hence
191(8) — G2(s)| < [ Ju— || Fi(u, ) — Fa(u,-)|[odu

+ [ lu = 4| VaFa(u, )|leo| §1 (u) — Fo(u)|du.

Therefore, the bound (1.11.3) follows by the Gronwall inequality.
Next recall that

Yi(t,€) = 5i(t,T,00,0,€),  Yi(t,€) = §i(t,T,,0,9).
Hence,

Yi(t) - Ya(?)

i i (1.11.4)
- fjeo CT,t(u) (Fl (U'a yl(“a T: o0, 05 6)) - FQ(ua y2(ua T: o0, 07 f)))du,

Yi(t) - Ya(t)

(1.11.5)
= [i(u—T)(Fy(u, §1(u, T,t,0,8)) — Fy(u, §a(u, T, t,0,€)))du.
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Using the bound (1.11.3) and the assumptions on the potentials (1.11.1) and
(1.11.2), we can estimate the integrands in (1.11.4) and (1.11.5) by an integrable
function. Thus, by Lebesgue’s theorem, both (1.11.4) and (1.11.5) converge to

/:(u — TY(Fi(u, G (u, T, 00,0, €)) — Fy(u, Ga(u, T, 00,0,€)))du.  (1.11.6)

|

In quantum scattering, it is useful to know when the difference of two solu-
tions of the Hamilton-Jacobi equation converges.

Theorem 1.11.2
Suppose that the forces F;(t,x) are conservative and F;(t,x) = —V,V;(t,x). Let
Si(t, &) be the solution of the Hamilton-Jacobi equation

BSit, :lz‘f“/;t,vsita 3
1Si(t,€) = 3¢ (t, VeSi(t,€)) (L117)
Suppose that
/ IVi(t, ) = Va(t, -)]eodt < 0. (1.11.8)
0
Assume, in addition, either one of the following hypotheses:
(i)
I NOXEi(t, ) |loo(t) @dt < 0o, |a| =0,1, i=1,2,
Joo I1EL(t, ) = Fa(t, ) [l (E)dt < 00;
or
(1)
I N Fi(t, ) leo(t)/2dt < 00, i=1,2,
SN0 Fi(t, Mleo(t)dt < 00, af =1, i=1,2.
Then there exists the uniform limit

Proof. We have
0(S1(t,€) — Salt, €)) = Vi(t, VeSi(t,€)) — Va(t, VeSa(t, ) (1.11.10)
Hence
04(S1(,€) — Sa(t, )l < IVa(t,+) — Valt, )lleo
IV Valt, oo Ya(t, €) — Ya(t, €)].

In the case i), (1.11.11) is integrable, because by Theorem 1.11.1 Yi(t, €)) —
Y5(t,€)| is bounded.

(1.11.11)
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In the case (ii), we first see that
Vilt,€) — €] < CW)'?, i=1,2.

Hence . )
Yi(t,€) - Ya(t,€)| < C(1)'/*. (1.11.12)

Therefore, (1.11.11) is integrable also in this case. O

1.12 More Examples of Modified Free Dynamics

So far, in order to define modified free dynamics, we used the modifiers ?(t, €)
or, more generally, modifiers Y;(t,&). They have quite special properties, which
are expressed in the equations (1.9.13). In the literature on long-range scattering
theory, one can find other choices of modified free dynamics of the form

ow (t)(z,8) = (z + W(t,£), ),

where W (t, £) is an appropriately chosen function. Such dynamics ¢y (t) conserve
the momentum and are (¢, &)-dependent translations in the x variable. This is
why they are called “free”. The main requirement on W(t, &) is the existence of
the limit

Jim (0, ) (1)- (1.12.1)

Moreover, in the conservative case, one also wants ¢y (f) to be symplectic.

For a given wave transformation F;", there exist many functions W (t,¢)
that satisfy these requirements. One of them is naturally distinguished: it is the
function Y (¢, £) in the notation of Sect. 1.9. One can argue that ¢y, (1) is in a sense
“the best” modified free dynamics for a given modified wave transformation F;".
Nevertheless, in practice, in order to calculate it, one has to solve the equations
of motion, which is usually hard. The modified free flows that can be found in
the literature are often much easier to calculate.

Clearly, the existence of (1.12.1) is guaranteed by the existence of the limit

Tim g5 (1) (1), (112.2)
or, equivalently, by the existence of

In the proposition below, we will give a family of examples of W (¢, &) that have
been considered by various authors and we will give the conditions for (1.12.3)
to exist.

Proposition 1.12.1
Assume that, for some N > 1, the force F(t,x) satisfies



56 1. Classical Time-Decaying Forces

(el N |02 F (8, -)||oodt < 00, || < N —1,
Iy {log F (L, || af (1.12.4)
I OMog F(t,)||eodt < 00, |af = N.

For a function [0,00[x X" > (t,&) — W (t,£) € X, we set (at least formally)
POV (1.6) =6~ | VW (u, €)F u, W (u, €))du. (1.12.5)

Moreover, we introduce

Wl(ta 6) =g,
Wn(t: 5) = P(Wn—l)(ta 6)

Then for 1 <n < N, the functions W,(t,£) are well defined and there ezists the
uniform limit

(1.12.6)

lim (V (t,€) — Wy (t,€)). (1.12.7)

t—00

The dynamics ¢y, (t) is the ordinary free dynamics ¢, which is used in the
fast-decaying case.

The dynamics ¢w,(t) is usually called the Dollard modified dynamics and
goes back to [Dol] in the quantum case. One has

Wa(t, &) = t€ — /Ot uF (u, u€)du. (1.12.8)

The dynamics ¢y, (t) was first introduced also in the quantum case by Bus-
laev and Matveev [BuMa). Its construction for the classical case can be found in

[He].
Proof of Proposition 1.12.1. We will first show by induction that, for n =
1 N-—-1

g ey 3

O (Wa(t,€) = Y (1,€)) € ot "¥), [B|< N —n. (1.12.9)

Note first that, by arguing exactly as in Sect. 1.10, we obtain that that Y (¢, £)
satisfies the following estimates:

oY (t,€) € O(t), |8 < N. (1.12.10)
Using (1.12.10) and the equation
OY (1,€) = € = VY (L F(, Y (1,€)), (1.12.11)
we easily obtain

(Y (t,€) —t€) € ot ™), |B| <N -1,
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which is the estimate (1.12.9) for n = 1.
Let us prove the induction step for (1.12.9). First note that the functions
W, (t, &) satisfy the following substitute for (1.12.11):

ath(ta f) =&— V§Wn—1(t= f)F(t, Wn—l(ta f)) (1'12'12)
If we subtract (1.12.11) from (1.12.12), then we obtain
= vﬁ?(ta g)F(t’ i}(t’ 6)) - VEWn—l(ta g)F(ta Wn—l(ta 5))a
and
= Z112=p Cs1,6 (06" VeV (8,€) — O VWo1(1,€)0 F (1, Y (8, )
+ Zﬂ1+,32:/3’ Cﬂl,ﬂ2a§ﬂl Vg?(t, f) (852F(ta Y/(ta 6)) - 852F(ta anl(ta 5)))

We will use now the induction assumption (1.12.9), which gives, for n =
2.....N—1,
i85(?'(1% f) - Wn(ta 5))
< ﬁﬁ ST (1.12.13)
e =5 ot ) VAF (oo, 18] < N —n.

By integrating (1.12.13), we obtain (1.12.9). If n = N, § = 0, then (1.12.13)
becomes

d - 1 1
7 V(6,6 =W (,) € o(tM)IF (oo + 0ot M)V F (2 ) oo
which is integrable and proves the existence of the limit (1.12.7). O

If the force is conservative, then the modified dynamics from the above propo-
sitions are symplectic. Let us describe how one can construct their generating
functions and let us compare them with S(¢,£), which is a generating function

Of ¢sd (t) .

Proposition 1.12.2

Assume that the force is conservative and, for some N > 1, satisfies
JE |92 F (¢, )| sodt < 00, 0 < |a| < N —2,
° . > (1.12.14)
Joo @Y THIOFF (¢, )[loodt < 00, |a| = N —1.

If [0,00[x X" > (t,&) — Z(t,£) € R, then we set

B(2)(t,€) = %th +f "V (u, VeZ(u, €))du, (1.12.15)
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Furthermore, we define
Zl(ta 5) = %té?a
Zn(t,€) = P(Zn-1)(t,)-

Then for 1 < n < N, the functions Z,(t,§) are well defined, V¢Z,(t,&) =
W, (t,&) and there exists the uniform limit

(1.12.16)

lim (S(t, &) — Zn(t, ). (1.12.17)

t—o0

Again, for N = 2, we obtain

1 t
Zo(t,€) = €+ /0 V (u, u€)du.
Proof. Note first the following formal identity:
VeP(Z) = P(VeZ), (1.12.18)

where P was defined in (1.12.5). Using (1.12.18), we obtain by induction on n
that V¢Z,(t,€) = W,(t,€). To prove the existence of the limit (1.12.17), we
compute

0,(S(t,€) — Zn(t,€)) = V(, VeS(L,€)) — V(t, Wy_1(t, ). (1.12.19)

Looking at the proof of Proposition 1.12.1, we see that, under the assumptions
(1.12.14), one has

2=

Wy_1(t,6) = Y (t,€) = Wy (t,€) — VeS(t,€) € o(tV),

which shows that (1.12.19) is integrable in time and that the limit (1.12.17)
exists. 0O



2. Classical 2-Body Hamiltonians

2.0 Introduction

In this chapter we study scattering theory for time-independent Hamiltonians of
the form

H(z,&) = %,52 + V(). (2.0.1)

The previous chapter, devoted to time-decaying forces, can be viewed as
a kind of an introduction to the present one. Many concepts and properties of
scattering theory are more transparent and easier to describe in the time-decaying
case. Therefore, it is in the previous chapter where we tried to explain them as
thoroughly as possible. In the present chapter we will often use facts proven in
the time-decaying framework.

Throughout this chapter we assume that the force is conservative and we use
the Hamiltonian formalism, since it allows for some minor simplifications.

Let us briefly describe the content of this chapter.

In Sect. 2.1 we give a couple of definitions and facts about unbounded tra-
jectories in rather general dynamical systems.

Beginning from the second section, we restrict our attention to Hamiltonians
of the form (2.0.1). Typical assumptions on the potentials that we have in mind
are the following: for some p > 0,

00V ()| < C{z)™#7l* o] =1,2. (2.0.2)
If 4 > 1 then we say that the system is short-range; if 1 > u > 0 then we say
that it is long-range.

In Sect. 2.2 we prove among other things the following bound on the trajec-
tories with zero energy:

[ (t,y,m)| < C(t)> .
This bound implies in particular that for zero energy trajectories we have
t
im 2 g (2.0.3)

Trajectories with this property that are unbounded for +¢ > 0 we call almost-
bounded trajectories for t — +oco. These trajectories are not well behaved from
the point of view of scattering theory.
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Section 2.3 is probably the most important of the whole chapter. In this
section we concentrated most new concepts that we did not introduce in the
previous chapter.

First of all, if one studies time-independent systems one needs to make clear
which trajectories are likely to have good properties from the point of view of
scattering theory. The right condition turns out to be the existence of Cy > 0
and 7T such that

lz(t,y,m)| > Co(xt —T), =£t>0.

The trajectories satisfying this condition we call scattering trajectories for t —
+o0.

The basic tool in the study of scattering trajectories is the classical counter-
part of the so-called Mourre estimate. Roughly speaking, this estimate says that
a certain observable ag(z, &), which is equal for large z to (z,&), increases along
the trajectories with a positive energy. Using the classical Mourre estimate, one
can show that the set of scattering trajectories is equal to the set of unbounded
trajectories with a positive energy.

Thus, all the trajectories fall into three disjoint categories: bounded, almost-
bounded and scattering trajectories.

Non-trapping energies are those energies for which all the trajectories escape
to infinity. Some basic properties of the dynamics for non-trapping energies are
described in Sect. 2.4.

The momentum always has a limit as ¢ — oo along scattering trajectories.
Nevertheless, for example along bounded trajectories, in general, it does not have
a limit. The quantity that has a limit along all trajectories is z(¢,y,n)/t. We call
this limit the asymptotic velocity and denote it by £*(y,n). It is a substitute
for the asymptotic momentum of the previous chapter. It turns out that the
scattering trajectories are exactly the trajectories with a non-zero asymptotic
velocity.

The construction of the asymptotic velocity is contained in Sect. 2.5. Section
2.6 is devoted to the short-range case. These two sections are parallel to Sects.
1.3 and 1.4 about time-decaying forces. The main difference consists in the fact
that the wave transformation is not well defined for the zero momentum.

Suppose that we want to study trajectories with the absolute value of the
asymptotic velocity greater than C; > 0. One way to do this is to choose a
function J € C*°(X) such that 0 ¢ suppJ and J = 1 on a neighborhood of
{£] |€] > Co} and to introduce the “effective time-dependent force”

Fyt,z) = —J (%) V.V (2).

It is easy to see that this time-dependent force belongs to the category of forces
considered in the previous chapter. Moreover, on any scattering trajectory with
|EF| > Cy, this time-dependent force coincides with —V,V(z) for large enough
time. Therefore, many statements on time-independent systems, especially from
Sects. 2.5 and 2.7, follow easily from Chap. 1 with help of this trick.
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In Sect. 2.7 we develop the long-range case. It is parallel to Sects. 1.5, 1.6
and 1.8 about slow-decaying forces. The main new difficulty is due to the fact
that the boundary value problem considered in Sect. 1.5, in general, does not
have a global solution in the time-independent case. But if we restrict ourselves
to an appropriate outgoing region, then we can solve this boundary problem.

Similarly, in general, there does not exists a function S(¢,&) that solves the
Hamilton-Jacobi equation

DS(1,€) = 38 + V(VeS(1,), (2.0.4)

for all (¢,£) € R* x X'. Because of this difficulty, it is in general not possible
to introduce a modified free dynamics for time-independent systems as cleanly
as it was done in the previous chapter. Therefore, we content ourselves with a
more complicated and less natural definition of the modified free flow in the
time-independent case. The main input into this definition is a function S(t, &)
that, for any € > 0, solves the Hamilton-Jacobi equation (2.0.4) for |£| > € and
t>T.

Section 2.9 describes some bounds on the derivatives with respect to parame-
ters of various objects that we constructed. In these bounds, we restrict ourselves
to the so-called outgoing region, that is, roughly speaking, to the subset of the
phase space in which the momentum is bounded away from zero and the angle
between the momentum & and the position z is less than 7. For the initial or
scattering data in an appropriately chosen outgoing region, time-independent
systems behave like time-decaying systems considered in the previous chapter.
Therefore, we can use the results of Sect. 1.10.

Sections 2.4 and 2.9 can be skipped by a reader who is interested just in the
basic material.

We already described a part of the literature on classical scattering theory in
the introduction to the previous chapter. Here we are going to comment just on
the work of various authors about the concepts that we introduce in this chapter
and that are not direct analogs of concepts that we discussed in Chap. 1.

Proposition 2.1.2 about trapping energies can be found in [GeSj]. Proposition
2.1.4 about the zero measure of trapped but not bounded trajectories is due to
Siegel [Sie].

As we mentioned earlier, most of the ideas of this chapter that were not
introduced in the previous one are contained in Sect. 2.3. It is in this section
where we introduce the classical Mourre estimate. Apparently, it appeared first
in [GeMal]. The Mourre estimate was invented by E. Mourre [Mol, Mo2]. Other
papers devoted to the Mourre estimate include [PSS, FH1]. The original Mourre
estimate was devoted to quantum N-body systems.

In our version of the classical Mourre estimate, we also use some of the ideas
of G.M. Graf [Gr] that suggest how to modify the observable we are constructing
so that its Poisson bracket with the Hamiltonian is everywhere positive.
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The fact that, for non-zero energies, all the trajectories are either bounded
or escape to infinity as |z(t)| > Co(t — T') for some Cy > 0, which we prove in
Theorem 2.3.3, was probably first proven in [Hu2].

The name almost-bounded trajectories was introduced in [De7]. In celestial
mechanics, they have been usually called parabolic trajectories. The study of
almost-bounded trajectories presented in [De7| was a by-product of the proof of
asymptotic completeness for N-body long-range systems contained in [De8|. In
particular, Example 2.2.4 and the a priori bound on almost-bounded trajectories
of Lemma 2.2.1 come from [De7].

The idea that trajectories with outgoing initial conditions have good prop-
erties from the point of view of scattering theory is probably as old as scattering
theory itself, nevertheless it seems to have been first exploited successfully on a
larger scale in the quantum problem by V. Enss [E1].

The construction of a function that solves the Hamilton-Jacobi equation in a
domain that is large enough for applications in scattering theory, which we give
in Theorem 2.7.5, is due to L. Hérmander [H&2).

2.1 General Facts about Dynamical Systems

In this section we will describe some general results about dynamical systems on
a non-compact manifold.

Suppose that M is a non-compact manifold. Let ¢(¢) be a continuous flow
on M, that is, a continuous map ¢(t) : R x M — M such that

¢(t) 0 ¢(s) = ¢t +5), ¢(0) = 1.

We assume that H : M — IR is a continuous function invariant with respect to
¢ and dp is a Borel measure on M invariant with respect to ¢. (We can think of
M as of a symplectic manifold with the symplectic measure du and of ¢(t) as of
the flow generated by a Hamiltonian H).

We can now introduce the following definition:

Definition 2.1.1

A point p € M belongs to a trajectory bounded at +oo if ¢(t)(p) stays in a
compact set for t € RE. We will denote the set of such points by BT (respectively
B~ ). We denote by B = BT N B~ the union of all bounded trajectories and by
R* the set M\B*, which is the union of all trajectories unbounded at +oco.

Proposition 2.1.2
The following subsets of IR are equal:

H(B") = H(B") = H(B).
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Proof. It is enough to show that H(B') is contained in H(B). Assume that
A € H(B"), and pick p € BTN H'({)\}). Then {&(¢)(p) | t > 0} is contained in
a compact set K. Therefore, there exist p,, € H~'({\}) and a sequence ¢, — oo

such that p, := ¢(t,)(P) = Poo-

We claim that p,, € B. Indeed, given an arbitrary 7' € IR and ¢ >
0, the continuity of ¢(7) implies that there exist n = n(e,T) such that
dist(¢(T) (poo), (1) (pr)) < €. We can, moreover, pick n large enough such that
T +t, > 0, and hence ¢(T)(p,) = ¢(T +t,)(p) € K. Since € is arbitrary, we
obtain that ¢(T)(p) € K. This proves that ps € B. O

Definition 2.1.3
The set H(B™) described in Proposition 2.1.2 will be called the set of trapping
energy levels and it will be denoted by o.

The second abstract result is due to Siegel [Sie].

Proposition 2.1.4
The sets BT\B and B~\B are of measure zero.

Proof. If K is a compact set in M, then denote by Bli( the set of p € M such
that ¢(t)(p) € K for t € R*. We set Bx = Bj; N Bx. Using the group property
of ¢(t), one sees easily that

ﬂmqﬁ(n)(B}) = Bk

One also has
¢(n+1)(Bx) C 6(n)(Bg)-

Using these two facts, we have

Bi\Bi = UpZo(6(n)(Bx)\é(n + 1)(Bx))
= UnZo ¢(n) (B \¢(1)(Bx))-

A little attention shows that the above union is disjoint. Hence, using the invari-
ance of the measure dyu, we get

o0

u(BE\Bx) = > u(Bg\o(1)(Bx))- (2.1.1)

n=0

So u(BE\Bxk) is either equal to 0 or to co. But since K is compact, the measure
of B{\Bx is finite, hence equal to 0. If we take a sequence K, of compact sets
converging to M, then we have

BN\B = J B\ | Bk, | B, \Bx,.
n=1 n=1 n=1

This clearly implies the desired result. O
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2.2 Upper Bounds on Trajectories

From now on we will assume that M is the symplectic manifold X x X’ and that
H is a 2—body Hamiltonian of the form

H(r,) = € + V()

where for the moment we only assume that the potential V' (z) is bounded and
that the force
F(z) :=-V,V(z)

belongs to C%!'(X). The free Hamiltonian will be, as usual,

Ho(l', g) = %52

We will consider the equations of motion generated by the Hamiltonian

H(z,§), ie.
{ o(t) = £(1), (2.2.1)
£(t) = =V V (x(1)). B

We will denote by (x(t,y,n),£(t,y,n)) the solutions of (2.2.1) with the initial

conditions
z(0,y,m) =y,
£0,y,m) =n.

We will also use the notation ¢(t)(y,n) = (z(¢,y,7n),&(t,y,n)) and ¢o(t)(z, &) =
(x + t&,€). Sometimes we will also use the notation

(‘T(t: s:y:n)ﬂg(t7 87y777)) = (l‘(t - Sayan)ag(t - 3;?!#7)) .

Note that in the case of our Hamiltonian the local Lipschitz condition of the
force together with the boundedness of the potential guarantees not only the
local existence and uniqueness of the trajectories, but also the completeness of
the flow, that means, no trajectory will escape to infinity in a finite time. In fact,
since V(z) is bounded and the energy is conserved, for any initial conditions

(y,m),
1€(t)| < C.

Therefore,
z(t) —y| < Clt].

Hence, within a finite interval of time, the solution (z(t),&(t)) stays inside a
bounded set, which means that the flow is complete.
Let us remark that, thanks to the conservation of energy, a point (y,7n) €
X x X' belongs to B if and only if z(¢,y, n) stays bounded for all t € R™.
Next we would like to give a certain useful a priori upper bound on trajecto-
ries with a given value of energy. Of course, it will not restrict the generality if we
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assume that the energy is zero, because we may add a constant to the potential
without changing the equations of motion.
Let
G(r) := inf V(z).

|z|=r

If there exists a sequence of r, — oo such that G(r,) > 0, then all the trajectories
with zero energy are bounded, because they cannot cross the spheres {|z| = r,}.

We will say that G(r) is negative at infinity if there exists Ry such that, for
r > Ry, we have G(r) < 0. In such a case, we define

R=inf{r | G(s) <0, s>r},
fix ro > R and set .
T .= / (—2G(r)) dr.
R
We denote by [—7', 00[> t +— w(t) the unique solution of
3(@(1)? +G(w(t) =0,
w(0) =79, w(0)>0.

The solution w(t) can be computed as follows. For r > 14, we set

K(r) = /T(—QG(rl))*%drl.

T0

Then w(t) is the inverse function of
[T, 00[2 r +— K(r).
We have the following result.

Proposition 2.2.1
Let G(r) be negative at infinity. Then for every (y,n) € H™'({0}), there exists
to such that, for allt > 0,

@ (t, y,m)| < w(t —to)-

Proof. The trajectory z(t) cannot cross the sphere {z | |z| = R}. Therefore, it
is enough to consider the case when |z(¢)| > R for all times. We have

dia(t) _

dt  —

dz(t)
dt

D=
M

< (=2V(x (1) < (=2G(x(1)))* -

Therefore,
Ak (@) _
dt -
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Hence, for ¢y := —K (|z(0)|), we obtain

K(lz(1)]) <t —to,
from which we deduce directly that

lz(t)| < w(t—to)-

O

Remark. If the potential V() is spherically symmetric and G(r) is negative at
infinity, then for any unit vector v, there are zero-energy trajectories of the form

z(t) = w(t — to)v.
Therefore, the bound of Proposition 2.2.1 is optimal for such potentials.

From now on, will assume that

lim V(z) = 0. (2.2.2)

|z|—o00
Under this assumption, zero-energy trajectories have special properties that we

describe below.

Proposition 2.2.2
Assume (2.2.2). Let (y,n) € H'({0}). Then

t
lim z(t,y,n)

Jim =22 =0, (2.2.3)

Proof. lim, ,,, G(r) = 0 implies lim, ,,, K(r)/r = co. Therefore, lim; ,, w(t)/t =
0. Hence (2.2.3) follows from Proposition 2.2.1. O

Motivated by the above proposition we introduce the following definition.

Definition 2.2.3
The trajectory x(t) is called almost-bounded at oo if and only if

and x(t) is not bounded for t > 0.

Analogously, we define trajectories almost-bounded at —oo.
Proposition 2.2.2 says that all the zero-energy trajectories are either bounded
or almost-bounded at +o0.
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Now let us give an example of almost-bounded trajectories.

Example 2.2.4 If ;4 > 0 and V(z) = Cy|z|™* is a one-dimensional potential,
then there are trajectories in H~'({0}) of the form z(t) = Cy#°, for § = 2/(2+ p)
and C; = (L(2 + p)?)YC*H. More generally, in any dimension, if g > 0 and
|V (x)| < C{x)*, then we have the bound

w(t)] < ).

with the same §.

2.3 The Mourre Estimate and Scattering Trajectories

In this section we strengthen our assumptions on the potentials. In addition to
(2.2.2), we will assume that

|l|im zV,V(z)) = 0. (2.3.1)
I|—00

The following class of trajectories will be the main object of investigations
throughout this whole chapter.

Definition 2.3.1
The trajectory x(t,y,n) is called a scattering trajectory for ¢ — oo if there exists
some T and Cy > 0 such that, fort > 0,

|z(t,y.m)| > Colt — T).

Scattering trajectories for ¢ —+ —oo are defined in an analogous way.

Note that almost-bounded trajectories and scattering trajectories are two
disjoint categories of unbounded trajectories. As we will see below, if we assume
(2.2.2) and (2.3.1), then every point in Rt belongs either to an almost-bounded
trajectory (if the energy is zero) or to a scattering trajectory (if the energy is
positive).

Along a scattering trajectory, we can translate a spatial decay of the force
—V.V(z) into its time decay along a scattering trajectory. Therefore, as we
will see in the following sections, scattering trajectories are better behaved than
general unbounded trajectories from the point of view of scattering theory.

Let us now introduce some special observables that are useful in the study
of scattering trajectories.

Let f € C®°(R"), f/>0,f=00n]0,1/2] and f =1 on [1, cc[. For r > 0,
we set

F(T‘) 2=1+‘/1rf(’f'1)d7'1.
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For any @ > 0, we define

ol €) = € () = 5 1€ e},

where {-, -} denotes the Poisson bracket.
Note that |z| > @ if and only if Rg(z) > 1Q?, and in that case

RQ (I) = —.TQ.

Fig. 2.1. Graph of the function Ry,.

The following proposition can be considered as a classical version of the

celebrated Mourre estimate for the quantum problem.

Proposition 2.3.2

We assume that the potential V(x) satisfies (2.2.2) and (2.3.1). Then, for any

v > 0, there exists () such that
{H,aq}(z,£) >0 if 2H(z,€) >,
{Hv aQ}(x,f) 2 2H($7§) - i ‘$| > Q.

Proof. We compute:

{H.ag) = &2 p (x—> e ($—> — (@, V(@) (g—)

Q? @? @?
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:L.Q
> (2(2.6) 2V (o) - (VY o) (5 )
Since V(x) and (x, V,V(z)) go to 0 when |z| goes to oo, this proves the propo-
sition. O

It will be useful to fix notation for some special subsets of the phase space
XxX'.Let R>0,e>0and —1 <o < 1. Then we define

Il ={8 e X x X" [§| > ¢ (z,8) = ofal[¢]},
I'feo =T \{(z,) € X x X" | |z| < R}

An easy geometric argument shows that if ¢ > 0 and 0 > —1, then there
exists Cy > 0 such that, for any (z,&) € I, we have

@+ s > Co(s +|zl), 5> 0.

As we will see below, a similar estimate is true for the full flow if e > 0, 0 > —1,
R is big enough and the initial conditions belong to I g, ¢o- One usually says that
I'Y, is outgoing for the free flow ¢o(t) and I'y , is outgoing for the full flow (t).

The most important consequence of Proposition 2.3.2 is the following theo-

rem.

Theorem 2.3.3

Assume (2.2.2) and (2.8.1). Then the following statements are true:

(1) If (y,m) € H1(]0,00]) "N RT, then (y,n) belongs to a scattering trajectory.
(1) The set H 1(]0,00]) NR* is open.

(ii) If e > 0 and —1 < o, then there exists R > 0 such that I';, , C H *(]0, c0)N
R*; moreover, there exists Cy > 0 such that, for any (y,n) € nge,a andt > 0,

[zt y, )| = Co(t + [y))-

(i) If K is a compact subset of H='(]0,00[) N R™, then there exist Cy > 0 and
T such that, for any (y,n) € K andt > T,

|z(t,y,m)| > Co(t —T).
(v) For any Ay > 0, there exists Q such that if (y,n) € Bt N H (A, 00|), then

limsup [z (t, y,n)| < Q.
t—o0

Proof. We will first prove (7).

Fix 2)y > v > 0. Choose @ such that ag satisfies (2.3.2) and (2.3.3) for this
7.

Let (y,n) € RT N H (], o0[) and let (z(t),£(t)) be the trajectory starting
at (y,n). Set
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Q1) == aq(z(t),£(t),  Rq(t) := Ro(z(t)).
Note the following properties of the functions ag(¢) and Rg(t), which we will use
in our proof.

§iRa(t) = ag(?),
siae(t) >0,
if Rq(t) > 3Q? then Zag(t) >2X —7.

The first equality follows from the equations of motion, the second and third are
consequences of (2.3.2) and (2.3.3).

Since aq(t) is an increasing function, there exists af; := lim;_,o ag(t). Con-
sider two cases.
Case (1) ay > 0. Then for sufficiently big ¢,

CLQ(t) = %RQ(t) >c>0.

Hence, for t > ¢, where t, is sufficiently big, we have Rg(t) > Q7. Therefore,

for t > t,,
2

%\x(t)ﬁ = Ro(t) > a+ b+ 5(20 — 7). (2.3.4)

Therefore (y,7n) belongs to a scattering trajectory.
Case (2) ay, < 0. Then for all ¢,

d

dtRQ(t) <0. (2.3.5)
Thus, clearly, Rg(t) is bounded and hence (y, n) belongs to a bounded trajectory.
This ends the proof of (7).

Clearly, in Case (2) there exists lim,_,o, Rg(%). If this limit was greater than
%QZ, then (2.3.4) would be true for ¢ > ¢, with ¢, sufficiently big and we would
be back in Case (1). Therefore, this limit is less than $Q*. Therefore, [z(t)| < Q
for ¢ sufficiently big. This proves (v).

Next note that (y,7) — a$(y,n) is the limit of an increasing family of con-
tinuous functions aq(t) on the open set H™'(]Ag, 0o[). Hence ay) is a lower semi-
continuous function. Thus the set {(y,n) | a$(y,m) > 0, H(y,n) > Ao} is open.
But (i) says that this set equals H~'(]\g, oo[) NR™. This implies (ii).

Now let us prove (7). Let us first fix some constants ¢y > 0, €y > 0 such that

1 —2¢co— |o_| > eo,

where 0 = min{o,0}. By Proposition 2.3.2, we can choose @ such that, for
|z > Q,
{ag, h}(z,€) > 2H (z,&)(1 — ¢p) > E2(1 — 2¢p). (2.3.6)

Let R satisfy
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R*(1—o-]) > @,
and let (y,n) € I';, .. Since R > @, we have, by (2.3.6), for small enough time
t,
S ho(t) > 2H (@ (t),£())(1 - o)
> 2H(y,n)(1 — co) = n*(1 — 2cy).
Moreover,
Rq(0) = 3v?,

aq(0) = (y,m) = —lylInllo-|.
Hence as long as |z(t)| > @ we have

Ro(t)

U2+ 1y, m) + 3°0% (1 = 2¢)

Ly —tlyllnllo—| + 1277 (1 = 2¢o)

3020 Jo )+ 5871 = 260 — o)+ 3o [(ly| ~ l)?
%RQ(l —lo_|) + %t2€062.

v

(2.3.7)

v

v

Since R?(1 — |o_|) > Q?, we deduce from (2.3.7) that |z(¢)| is greater than @ for
all times and, consequently, (2.3.7) holds for all times, which proves ().

Let us now prove (iv). Fix any R, €, 0 are such as in (iii). From the proof of
(i) we see that if (yo,m0) € K C R™ N H(J\g, 00[), then we will find Ty such
that

(.’E(T(), Yo, 770)7 §(T07 Yo, 770)) € FI—%_,G,U"
It follows by the continuity of the flow that we can find an open neighborhood

U of (yo,7m0) such that if (y,n) € U then (2(To,y,n),&(To, y,m)) € Tg.,- If we
now apply (i), then we see that

lz(t,y,m)| > Co(t = T),

for some Cy > 0 and T, uniformly for (y,n) € U. To extend this onto the whole
compact set K, we use the standard covering argument. This completes the proof
of the theorem. O

2.4 Non-Trapping Energies

In this section we would like to study the trajectories for non-trapping energies.
Results of this section will not be used in this chapter.

We start with the following simple proposition about the set of trapping
energies introduced in Definition 2.1.2.

Proposition 2.4.1
The set |0, 00[\o is open.
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Proof. Let 0 < \g < \. Let A\, €]\, 0o[NH(BT) such that A\, — \. Then, by
Theorem 2.3.3 (v), there exist

(@n; &) € H({A}) N BT N {(2,8)] |2] < Q}.

Next we use the compactness argument, and we see that, by taking a subsequence,
we can guarantee that there exists
dim (2, &) =: (2o, &0)-
Now since we know by Theorem 2.3.3 (i) that the set H~'(]\, 00[) "R ™ is open,
(x0,&) € B*. Therefore, A € H(B*), which implies the closedness of H(B*) in
R*. O
For non-trapping energies, one can strengthen the classical Mourre estimate.

By modifying the observable ag, one can make its Poisson bracket bounded below
by a positive constant in any interval of non-trapping energies.

Proposition 2.4.2

Assume that the potential satisfies (2.2.2) and (2.3.1). If I is a compact subset
of R*\o and v > 0, then there exists a function a(-,-) on X x X' such that, for
|z| large enough,

a(z,§) = (z,8)
and, for all (z,€) € H'(I),

{H,a}(z,&) > 2H(z, &) — 7. (2.4.1)

Proof. Let () and ag satisfy the Mourre estimate as in Proposition 2.3.2 with
7 replaced with v/2. Let G € C§°(X) such that G > 0 and G =1 for |z] < Q.
Set

r(y.n) =~ [ Glalt,y,m)dt.

Let I, C IR"\o be a compact set that contains I in its interior. By the compact-
ness of H~'(I;)N{z| |z| < Q} and Theorem 2.3.3 (iv), we see that r is a bounded
function on H!(I;). Moreover, {H,7} = G(x). Let g € C§°(IR) be such that
g >0, g =0 outside I; and g(A) = X on I. We put
ra(z,€) = G (R™'z) r(x,)g(H(z,)).
We have
{H,rp}(z,§) =R VG (R 2))r(z,£)g(H(z,€))
+G (R™'2) G(z)g(H (z,¢)).
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By picking R large enough, we can make the first term smaller than /2 and we
can guarantee that G(R™'z)G(z) = G(z). For such R, we set

a(z,€) == ag(z,&) + rr(z, ).

We obtain
{H,a}(2.) > {H,ag}(2,&) + Gla)g(H(2,6) - .

from which the estimate (2.4.1) follows at once. O

The variant of the classical Mourre estimate contained in Proposition 2.4.2
allows one to estimate the time that is needed for a trajectory with a non-trapping
energy to become outgoing.

Theorem 2.4.3

Assume that the potential satisfies (2.2.2) and (2.8.1). Let I be a compact subset
of R™\o. Then there exists Cy > 0 with the following property. For any (y,n) €
HY(I), we will find T such that

<y> Z COTa

and if t € IR, then
(x(t,y,m)) > Colt — T|. (2.4.2)

Proof. We will use the observable a(z, ) constructed in Proposition 2.4.2 that,
for (z,&) € H (1), satisfies

{H,a}(x,&) > C1 > 0. (2.4.3)
It is easy to see that, for (z,£) € H (1),
Cole) > lafa, ). (2.4.4)
Set a(t) := a(z(t,y,n),&(t, y,m)). By (2.4.3), for any (y,n) € H~'(I),
%&(t) > ). (2.4.5)

Let T be defined by the equality @(7") = 0. Then, by integrating (2.4.5) and using
(2.4.4), we obtain

Coly) > 1a(0)] = |fy a(s)ds| > 1T,

Cola(t,y,m)) > |a(t)| = | /1 Sals)ds| > Oyt — 7.
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2.5 Asymptotic Velocity

The aim of this section is to introduce the basic asymptotic quantity — the asymp-
totic velocity. It will be the analog of the asymptotic momentum constructed in
Theorem 1.3.1 in the time-decaying case.

We will need the following additional condition on the force:

/Ooo sup |F(z)|dR < oo. (2.5.1)

z[>R

Actually, as we will see from the proposition below, this condition implies (2.3.1)
and “almost implies” (2.2.2), which are the assumptions that we used before.

Proposition 2.5.1
Assume (2.5.1).
(1) If the dimension of X is greater than 1 than there exists

lim V(z). (2.5.2)

|z|—o00

If the dimension is equal to 1 then there exist both limy 1 V (2).
(i)
lim |z||F(z)| = 0.

|z|—o00

Proof. (ii) follows from Lemma A.1.3. Let us show ().
Clearly, for any unit vector v, there exists

Jlim V(tv).

If the dimension is bigger than 1, then we can connect two unit vectors v(0) and
v(1) with a curve [0,1] > 7 — v(7) such that |v(7)| = 1. Now,

Jim [V(00(0) = Vieo(0) < € Jim ( sup dFGo(r)]) =0

T€[0,1]

where in the last step we used (ii). O

Now we can show the existence of the asymptotic velocity. This result is the
first step of the classification of all the scattering trajectories, which is the main
goal of this chapter.

Theorem 2.5.2
Assume the hypotheses (2.2.2) and (2.5.1). Then for any (y,n) € X x X', the
following limit exists:

lim SGY e (2.5.3)

t—00 t
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The function £1(-,-) has the following properties.
(1) If € (y,m) # 0, then

lim &(t,y,m) = £"(y, n)- (2.5.4)

(ii) The set (£7)1(X"\{0}) is open and is equal to
H7'(J0,00)) N RT

and also to the union of all scattering trajectories.
(#ii) The map
(€N 7HXN{0}) > (y,m) = ¥ (y,m) € X'
1S CONLINUOUS.
(w) If € > 0 and —1 < o, then there exists R such that on I'y

€,0

& (y,m) —n € o(|y|°). (2.5.5)

Proof. If (y,n) € B, then, obviously,

lim z(t,y,n)

t—o00 t

=0.
Using Proposition 2.2.2, we get that if (y,7) € H~'({0}), then we also have

'/'C(t7 y7 77) — 0

lim

t—o0

Clearly, H~*()\) is a compact set if A < 0. Hence H™*(] — 00, 0[) C B. Therefore
it remains to consider the set RT N H~(]0, oc]).

Let K be a compact set contained in R™ N H~'(]0, oo[). Then, by Theorem

2.3.3 (iv), for all (y,n) € K, we will find T" and Cj > 0 such that
z(t,y,m)| = Co(t = T).

Now choose J € C*°(X) such that 0 ¢ suppJ and J =1 on a neighborhood
of {z | |z| > Cy}. Note that all the trajectories starting in K are, for ¢ > 71, also
trajectories for the following time-dependent force:

Fyt,z) = J (%) F(a). (2.5.6)

The force (2.5.6) satisfies the assumptions of Theorem 1.3.1. Hence the existence
of (2.5.3) for scattering trajectories as well as the statements (i), (1) and (iii)
follow from Theorem 1.3.1.

Clearly,
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o —n=~ [ Fle(u,yn)du. (2.7
Now (iv) follows from (2.5.7) and the estimates on z(¢,y,n) of Theorem 2.3.3
(#3). This completes the proof of the theorem. O

We will use the trick of replacing the time-independent force F(z) with a
time-dependent one J (%) F(z) many times. We will refer to it in the sequel as
“introducing an effective time-dependent force”.

The function £ (-, -) will be called the asymptotic velocity. (In the previous
chapter the analogous function was called the asymptotic momentum, but now
the name asymptotic velocity seems more justified, since, for bounded trajecto-
ries, it is the limit (2.5.3) that always exists, and (2.5.4) does not have to be
true).

We will sometimes write &(oo, y,n) instead of 1 (y, n).

Example 2.5.3 below shows that in general the asymptotic velocity is not
continuous on (£7)7*({0}).

Example 2.5.3

Consider a one-dimensional potential V' (z) that satisfies the assumptions of The-
orem 2.5.2, has a global maximum at z = 0 and goes to zero as |z| — co. Then
(x(t),&(t)) = (0,0) is a bounded trajectory, hence £*(0,0) = 0. On the other

hand, if 5 = #/2(V(0) — V()) and %y > 0, then £*(y, 1) = £/2V(0).

2.6 Short-Range Case

We are now going to study scattering theory for short-range time-independent
potentials. The short-range case means roughly that the force F'(x) decays like
(x)~'=# for some u > 1.

The first result is analogous to Theorem 1.4.1. It says that one can define
the asymptotic position exactly as in the previous chapter. Essentially, the only
difference is that now one has to assume that the asymptotic momentum is non-
zero.

Theorem 2.6.1
Assume that ~
/ sup |F(z)|(R)dR < oc. (2.6.1)
0

lz|>R
Let £ (y,m) # 0. Then there exists

Hm (z(t,y,m) — € (y,n)) = 25.(y, n)- (2.6.2)

Moreover, the following statements are true.
(i) The function

ENHHXN\{0}) 3 (y,n) = 2f(y,m) e X
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1S coOntinuous.
(ii) If e > 0 and —1 < o, then there exists R such that on I',,

z(y,m) —y € o(ly|°).

Proof. We introduce an effective time-dependent force as in the proof of The-
orem 2.5.2, and then apply Theorem 1.4.1. By the equality

T =y = [ tF(alty,m)dt,
the property (i) follows from the estimates on z(¢,y,n) of Theorem 2.3.3 ().
O

We will call z(y,n) the asymptotic position .
As in Sect. 1.4, for ¢t € [0,00[ and (z,&) € X x X', we denote by [0,¢] 2 s —
(Ysr(s,t, 2, &), se (s, ¢, 2, €)) the solution of
asysr(sa iz, f) = nsr(sa iz, f)a
a‘insr(sutaxug) = F(ysr(87taxa§))7 (263)
ysr(t’ t’ x, g) =T + té" nsr(t’ t’ x’ é‘) = f'

Note that, for every r € IR,

(ysr(sa t’ ‘T’ g)’ nsr(s’ t’ ‘/L.’ 6))

(2.6.4)
= (ysr(5 - Tat - + Tg: g): 77sr(5 - t— r,T + 7"6-,5))

The following theorem is an analog of Theorem 1.4.2 of the previous chapter.
The main difference is that, this time, one has to restrict oneself to the case £ # 0.

Theorem 2.6.2
Assume that the force satisfies (2.6.1) and, in addition,

/ ~ sup |02F(2)|(R)AR < oo, |a] = 1. (2.6.5)
0

|lz|>R

Then the trajectory (ys:(s,t,x,&),ns(s,t,2,€)) converges as t — oo uniformly
for (s,z,&) in compact sets of R x X x (X'\{0}) to a trajectory

S = (ysr(sa 0, T, g)a 7781‘(87 0, T, 5))a

which satisfies

{ lim (ysr(sa OO,.’L',S) - 55) = Oa
800 (2.6.6)

SILI&(nsr(sa o0, Ty 5) - 5) =0.

Moreover, the following facts are true:
(i) The trajectory (ys:(s,00,x,&),ns(s,00,2,£)) is the only one that satisfies
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(2.6.6).
(i) The mapping

[0,00] x X x (X"\{0}) > (¢, 2,¢)
= (Yer(5, 1, 2,6) — 2 — 8E, Ne(s,t,2,8) — &) € Cop(IRy, X x X)

1S continuous.

Proof. Let © be a compact subset of X x (X'\ {0}). Wecan finde >0, -1 < o
and r such that if (z,&) € O, then (z +7¢,§) € I'f,. Therefore, using (2.6.4), we
see that it is enough to prove the theorem for (z,&) € I'7,.

Clearly, there exists Cy > 0 such that if (z,¢) € I', and s > 0, then

|z + s&| > Cps. (2.6.7)

Introduce a cut-off function J(z) and a time-dependent effective force Fj(t,x)
as we did in the proof of Theorem 2.5.2. Clearly, the force F;(t,x) satisfies the
assumptions of Theorem 1.4.2.

Let yia,s(s,t,2,€) be the trajectory constructed in Theorem 1.4.2 with the
force F;(t,z). We know from this theorem that it satisfies

Yia,s(s,t,2,8) —x — sE € 0(s°). (2.6.8)

uniformly in (¢, z,&). Therefore, if we put together (2.6.7) and (2.6.8), we see
that if 77 is large enough, then this trajectory is also a solution of (2.2.1) for
s > T.

The fact that the trajectory (ys(s, 0o, z,€), ns(s, 00, x, £)) constructed in this
way is the only solution of (2.6.6) can be seen by the following argument. If there
exist two solutions (Ysr,1(s), 7sr,1(s)) and (Ysr2(s), 7sr,2(s)) that satisfy (2.6.6) then,
for s big enough, they both are solutions of the problem considered in Theorem
1.4.2 with the time-dependent force F;(¢,z). By the uniqueness of the problem
considered in Theorem 1.4.2, they coincide for s > T, hence for all s. O

The following identities are true:
¢(S - t)¢0(t)(x7 f) = (ySr(Sa t: z, 6)7 nSr(sa tv z, f))a
do(=t)p(t)(y,n) = (x(t,y,n) — t§(t, y,m), £(t,y,n))-

As in Sect. 1.4, we will now summarize the results obtained so far by intro-
ducing the wave transformations.

Theorem 2.6.3
(i) Assume (2.6.1). Then there exists the limit

lim ¢ (t)¢(t) (2.6.9)

t—o0



2.7 Long-Range Case 79

uniformly on compact sets in (£7)"1(X'\{0}). The limit is a continuous map
from (67)71(X"\{0}) into X x (X"\{0}).
(ii) Assume, in addition, that (2.6.5). Then there exists the limit

lim ¢(—t)¢o(t) =: Fot (2.6.10)

t—o0

uniformly on compact sets in X x (X'\{0}). The map
Fa o X x (X"\{0}) — (€)' (x"\{0})

defined by (2.6.10) is continuous and bijective. Moreover, (2.6.9) is equal to
(Fe)
(iti) If (y,m) = Fy (2, €), one has

lim (¢(t)(y, 1) — do(t)(z,€)) = 0. (2.6.11)

t—00

(iv) The mapping F is symplectic.
(v) The wave transformation intertwines the full and the free dynamics:

Ho F} = Hy,

o(t) o Fo = Fur 0 go(1).

Note also that

(FH) Hy,m) = @k (y,m), € (y,m)-

2.7 Long-Range Case

In this section we consider the case of long-range time-independent potentials.
This means roughly that F'(x) decays at infinity like () '~# for some 0 < u < 1.
In particular, the physically important Coulomb potential is of the long-range
type. Our main assumption on the potentials in the long-range case will be

/°° sup |02 F(@)|(R)dR < 00, |a| < 1. (2.7.1)
0

z[>R

As in Sect. 1.5, we start by a study of a mixed problem where boundary
conditions are the initial position and the final momentum.

Theorem 2.7.1
Assume (2.7.1). Then for any e > 0, 0 > —1, there exist R and €y such that, for

any t >0, (z,€) € I'y,,, there exists a unique trajectory
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[0,t] > s — (g(s,t,2,8), (s, t,2,£))

such that 3 .

059(s,t, 2, &) = 1(s,t, 2, §),

0s1(s,t, x, &) = F(j(s,t, 2, £)), (2.7.2)

§(0,t,3,8) =z, At t,z,8) =¢,
and

(s, t,z,8) —x — s&| < €s. (2.7.3)

Moreover, the following estimates hold uniformly for 0 < s <t < oo, (z,£) €
FP_%—E 0':

8?(g(s,t,x,£) - T 86) € O(((.’E) + <8>)0)8’ |ﬁ‘ < 11
63(@(8,@.%,5) - = 35) € 0(<$>0) |O,/‘ = 1,
020¢ (ii(s, t, 2,€) = €) € o(({@) +()7*),  |a|+[B] <1,

sup |02 (7i(s, t,2,8) = §)| € Li(dr),  |of =1.
{(s,t,z,€) |0<s<t, r<s+|z| (z,£ )El"f{ea}

Proof. We will reduce ourselves to the proof of Theorem 1.5.1 by introducing
an effective time-dependent force. For €, o as in the theorem, there exists Cy > 0
such that if (z,¢) € I'z, ,, then

lz+ (s —t1)&| > Co(|s — t1] + |z|)- (2.7.4)

We fix 0 < €9 < Cy and we introduce a cut-off function J € C*°(X) such that
0 & suppJ and J = 1 on a neighborhood of {z | |x| > Cy — ¢ }. Using J, we
define the effective time-dependent force Fj(¢,x) as in the proof of Theorem
2.5.2. It follows from (2.7.1) that F(t,z) satisfies the hypotheses of Theorem
1.5.1. Therefore, we can find T such that the boundary value problem considered
in Theorem 1.5.1 possesses a unique solution for any 7" < ¢; < t, and any z, £.
Let us denote it by (7s(s, t1,t2, x, &), Ns(s, t1, 2, x,§)). By enlarging T if needed,
we can guarantee that

‘gJ(S,tl, tz,.T,é-) — T — (S - t1)§| < €0|8 - t1|. (275)
From (2.7.4) and (2.7.5) we see that we see that
|yJ(s tl,tg,x €)| > ( 0—60)|S—t1|+00|$| (276)

We claim that if R = T(Co — €)/Co and (z,&) € I',,, then we can solve
our boundary value problem by putting

(s, t, 2, 8),7(s, 1, 2,€))

(2.7.7)
= (gJ(S +T‘,7’,t+7’,$,f),f]](5 +T‘,7’,t+7’,$,£)),
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where r = |z|Cy/(Co — €)-. In fact, obviously we have

(F(s,t,x,&),7(s,t,2,8)) = (G(s+r,rt+rx,&),n(s+rrt+rml)).

Moreover, by (2.7.6) we have
19s(s+rrt+rz &) > (Co—e)ls+r|
Hence,
Fi(s+rgis+rrt+rz&)=F(y,(s+rrt+rzl)).

Therefore the function (2.7.7) solves the boundary value problem (2.7.2) with
the initial time-independent force.

The uniqueness of the solution comes from the fact that any solution of
(2.7.2) with |§(s) — x — s&| < €s is also a solution of the problem considered in
Theorem 1.5.1 for the force F;(t, z) if time is large enough. Finally, the estimates
on (g(s,t,z,£),7(s,t,x,€)) are obtained directly from those of Theorem 1.5.1
using the identity (2.7.7) and replacing s, t1, o there by s + (z), (z),t + (z). O

It is easy to see that in general there is no global uniqueness for the solution
of (2.7.2).

We will now study scattering trajectories in a way that is parallel to that of
the previous chapter. We start with a discussion of the comparison of trajectories,
which is an obvious analog of Theorem 1.5.2.

Theorem 2.7.2
Assume that the potential V(z) satisfies the estimates (2.7.1).
(i) Let (y1(s),m(s)) and (y2(s),m2(s)) be two trajectories such that

limyl—(s):limyQ—(S)#O.

§—>00 S §—>00 S
Then there exists
lim (y1(s) — y2(s))-

§—00

(i) Let (y1(s),m(s)) be a trajectory such that

lim %.05)

§—00 S

# 0,
and let x € X. Then there exists a unique trajectory (yo(s),n2(s)) such that

Jim 7, (s) = lim 7(s),

lim (y1(s) — ya(s)) = =.

§—0Q
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Proof. The proof is reduced to the one of Theorem 1.5.2 by introducing an
effective time-dependent force. O

The above theorem provides a complete classification of the union of scat-
tering trajectories. All the points with a given non-zero asymptotic momentum
are labeled with elements of the affine space X.

Next we would like to discuss the Hamilton-Jacobi equation in the time-
independent case. Our main aim will be to construct a certain solution of this
equation that will be used to define the modified wave transformation. This
solution will also be useful later on, when we will consider the quantum 2-body
case.

The problem of finding solutions to the Hamilton-Jacobi equation is more
difficult in the time-independent case than in the time-dependent case considered
in the previous chapter. This difficulty stems from the fact that, in general, the
boundary value problem considered in Theorem 2.7.1 does not possess a global
solution. What is possible though is to solve the Hamilton-Jacobi equation in an
appropriate outgoing region. As we will see, this will be enough for the purposes
of scattering theory.

The following proposition is an immediate consequence of Theorems A.3.3
and 2.7.1.

Proposition 2.7.3
Assume (2.7.1). Let €, o, R be as in Theorem 2.7.1. For (t,z,£) € [0,00[xIg ,
we set

S(taxag) = <é"rg(t’ t,x,f)) - f(;5 (%ﬁQ(sataxag) - V(yj(s,t,x,&)))ds

(i) The function S(t,x,€) is the only CH'(X') solution on [0,00[xIg, , of the
problem
S(0,z,8) = (x,€).

(i) The function S(t,z,&) is the only C'(X) solution on [0,00[xI% , of the
problem

{ 0:S(t,z,€) = 587+ V(VeS(t,2,9)),

{ 0:S(t,2,€) = 3(VaS(t,2,8))* + V()
5(0,z,8) = (z,8).

(ii1) VyS(t,z,&) =n(0,t,2,8) and VeS(t,x,€) =7(t, t,x,§).
() The following estimates are true uniformly for 0 <t, (z,€) € I't_,:

o (Stt,2,8) — (2.6 = 51€) € ol(t+ eV, 181 <2,

0507 (5(t,2,6) — (2,€) = 318) € ollal ), lal 21, Ja]+ 8] <2,
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sup € L'(dr), la] = 2.

(2 )eRT <7,

% (50,2,6) — (2.6 - 1€)

Next we would like to give a simple condition for the solvability of the
Hamilton-Jacobi equation with given initial conditions. This criterion can be
viewed as a time-independent analog of Proposition 1.9.13, from which it easily
follows.

Proposition 2.7.4
(1) Assume (2.7.1). Suppose that a function [0, co[x X' > (t,n) — S(t,n) satisfies
the following condition: for any € > 0, uniformly for |n| > €, we have

1
o (Sl(t, n) — §tn2) cot), |8 <2.

Then for any €, > 0, there exists Ty such that, for T1 < t; <ty < oo and |§| > €1,
there exists a unique family of trajectories depending continuously on &

s (Yi(s, t1,t9,&), E1(s,t1,12,€))
satisfying the following conditions:
Yi(ti, t1,t2,€) = VpSi(t, Ei(t1, 41, 62, €)), Ei(ta, t1,t2,8) = €.
They satisfy, uniformly for Ty < t; < s < ty and [£| > €1, the following estimates:
8?(1/1(5,751,152,5) —s&) €o(s), 8] <1.

If € > €1, then let us denote

D= (s, Br(5,T,00,€)) | 5> T, [€] > e},

Eer = [T, 00[x{¢ | [£] > €}
If 0 < €y < €1 < €9, then by choosing t1 big enough we can guarantee that

Eeats C ety C Epty-

(it) Suppose that €1, t are chosen as in (i). Then, on §2, +,, there exists a unique
CYY(X') solution of the Hamilton-Jacobi equation

{ 0,51 (t,11,8) = 58+ V(VeSi(t, 11, €)),

(2.7.8)
Si(t1,t1,€) = S1(t1, €).

This solution satisfies

& (Sl(t, 0, €) — %(t — e - 51(t1,§)> co(t), |8<2. (2.7.9)
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(111) If, on Q2 1y,
05:(1,€) = 36+ V(VeSi(1,€)),

then, for (t,€) € 2¢+,, we have

Si(t,t1,€) = S1(t, ).

Proof. Suppose that ¢ < €;. We will find 77 and Cy > 0 such that, for t > T3
and |n| > €,
‘.’E(t, Vnsl(ta 77)7 77)| Z Cot.

We choose a cut-off J and define the effective force F;(¢,z) as we did in the proof
of Theorem 2.5.2. By Proposition 1.9.12, for all ¢; < ¢; big enough and [£| > ¢,
we will find families of trajectories

S (YLJ(S, tl, t2, f), ELJ(S, tl, tg, f))

satisfying the conditions

Y1,5(t,t1,t2,8) = VySi(ty, Ers(ti, t1, 10, €)), Er(te, t1,t,€)) =&

They satisfy the estimates

0F (V1,1(5,t1,12,€) — (s — )€ — VeSi(t1,€)) € o(s), |8 < 1. (2.7.10)

If ¢, is big enough, then F(z) coincides with F(¢,z) along those trajectories.
Therefore, we can write (Y7 (s), E1(s)) instead of (Y s(s), E1,s(s)). This ends the
proof of ().

To show (i1), we define

Si(t,t1,8) = Si(t, Ei(th)))

+ [ + V(¥i(3) = (0(5), TV (3 (),

where (1/1(8)7 El(s)) = (Y1(87 11, 1o, g)v El(sa l1, 1o, 5)
It follows from (2.7.10) that (2.7.9) is true for |5] = 1, 2. Next we note that

Si(t 1, €) — %t§2 =51(t,8) + /ttv(vgsl(satlaf))ds-
But by (2.2.2)
V(V@S’l(satlag)) € O(SO)'

Therefore, (2.7.9) is true also for || = 0.
(ii1) follows from the uniqueness of the solution of (2.7.8). O
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In the time-decaying case, in order to construct a global solution of the
Hamilton-Jacobi equation, it was enough to fix an origin in position and in
time for time large enough. In the time-independent case, one has to make a
more complicated construction. Moreover, in general, we cannot demand that
the function S(¢,&) be a solution of the Hamilton-Jacobi equation for all ¢ > T,
uniformly in &.

Proposition 2.7.4 can be used to construct solutions of the Hamilton-Jacobi
equation for the momenta outside of an arbitrarily small neighborhood of zero.
Below we construct a function S(¢,&) that solves the Hamilton-Jacobi equation
only for large enough time and non uniformly in the momentum, but at least is
defined everywhere.

We will also construct the family Y (¢, &) of trajectories with the asymptotic
momentum ¢ related to the function S(¢, &) similarly as in the previous chapter.
Both Y (¢,€) and S(t, &) will be used afterwards to define the modified free flow
and the modified wave transformations.

Theorem 2.7.5
Under the hypothesis (2.7.1), there exists a function S(t, ) that has the following
property: for any € > 0, there exists T, such that

B,S(1,€) = 352 L V(VeS(t,), for €] > 6, ¢ > T..

The function S(t,€) satisfies, uniformly for |£| > e,

1
o (St.6) - 51€) e olt), 181 <2.
Moreover, there exists a family of trajectories (Y (t,€), E(t,&)) for & # 0 such
that
,}H&E(t’ £§) =¢,

O (Y (t,€) —t€) € ot), [B]<1,

and that is related to S(t,&) by the following property: for any € > 0, there exists
T. such that if t > T, and |&| > €, then

Vns(t’ E(ta g)) = Y(t: g)

Proof. Our construction of the function S(¢, &) is inspired by a similar construc-
tion of Hérmander [H62, Thm 30.3.3].

The trajectories (Y (¢,&), E(t,£)) will be constructed consecutively for [£| >
27", For any € > 0, T it will be useful to have the notation

Qe =AW E(E) [>T, |¢] > e}

We will also use the sets = r, which were defined in Proposition 2.7.4.
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Apart from trajectories, we will define an increasing sequence of times
t, € R" and functions [0,00[x X’ > (t,n) — Sn(t,n) that satisfy the follow-
ing conditions:

(i) 0 (Su(t,€) — 5t€%) € o(t), |8l <2,

(i)  0Su(t, &) = 32+ V(VeSn(t,6)), n>1, (£,€) € 2gny,,
(8) Su(t,€) = Su-1(t,€), n=1, t<ty,

() Y(t,&) =VySult,E(t, ), n>1, (t,§) € So-ny,.

We start the induction by setting

So(t,) = 167

Suppose that we defined S,_1(¢,&). Besides, suppose that we defined the
trajectories (Y (¢,&), E(t,€)) for |£] > 2 ™. By Proposition 2.7.4 (i), we will find
t, such that there exists a family of trajectories (Y,,(t,£), E, (¢, €)) for [£| > 27773
satisfying

Y,(tn, &) = VySuoi(tn, En(tn,€)),  En(00,€) =E&.
For € > 27773, we set
Qep ={@, En(t,6)) [ t > T, [¢] > €}
By enlarging ¢, if needed, we can guarantee that

n fond fond n
'927",tn C A—IZ_n_l,tn’ ‘_’Q_n_2,tn C 027"73,%,'

Clearly, for |£] > 27! the new trajectories (Y, (¢, &), E,(t,&)) coincide with
(Y(t,€),E(t,£)). For 27" < [£] < 27"+ we set

(Y (#,6), E(1,€)) := (Ya(t, €), En(t,£))-

From Proposition 2.7.4 (i) we obtain the existence on (2)_, 5, of the solu-
tion of the problem

{ 0:5n(t, &) = 362 + V(VeSa(t,9)),
gn(tna 6) = Sn—l(tna 5)
Note that, on (25 .41, = (2-n+14,, we have
Snfl(ta 5) = Sn(ta 5)
Then we set

Snf S/ f —
S (t.6) = { 1(t, &) ort <t

Su(t, €)(1 = xa(€)) + 51E7xn(€)  otherwise,
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where x, € C$°(X') such that x,(§) = 1 for [£] < 2772 and x,(§) = 0 for
|£] > 2773, Eventually, we set

S(t,€) = Jim Su(t,6).

The above limit exists trivially: for any ¢, £, the number S, (¢, £) does not depend
on n for big enough n. This completes the proof of the theorem. O

Now we are prepared to define the asymptotic position and the modified
wave operator in the long-range case. As in Sects. 1.5, 1.6 and 1.8, we have the
choice of using, in these definitions, either the family of trajectories Y(¢,&) or
the generating function S(¢,&) (both introduced in Theorem 2.7.5).

We start with an analog of Theorem 1.5.3. It follows e.g. by introducing an
effective time-dependent force.

Theorem 2.7.6
Assume (2.7.1). Let €1 (y,n) # 0. Then there exists

Hm (z(t, y,m) = Y(t,£7(y,m))) =2z (y, n)- (2.7.11)

Moreover, the following statements are true:
(i) The function

(E)7HXN{0}) 2 (y,n) — zit(y,n) € X

18 continuous.

(i) If e > 0 and —1 < o, then there exists R such that, on F}{ we have

€,07

zt (y,m) — y € o((y))-

(111) The convergence of (2.7.11) is uniform on compact subsets of £ 1(X'\{0}).
(iv) The map

EHXN{0}) 3 (y,m) = (zh(y,m), € (y,m) € X x (X"\{0}) (2.7.12)
18 bijective.

Definition 2.7.7
We denote the inverse of (2.7.12) by Ff and call it the modified wave transfor-
mation.

This completes the construction of the modified wave transformation that is
parallel to that of Sect. 1.5.

Next we would like to present a construction of FI that is parallel to that
of Sect. 1.6. We start with an analog of Theorem 1.6.1.
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Theorem 2.7.8
Assume (2.7.1). Let £+ (y,n) # 0. Then

The convergence of (2.7.11) is uniform on compact subsets of E~1(X'\{0}).

The next result is similar to Theorem 1.6.2.
For any (z,§) € X x (X'\{0}), t € [0,00[, we will denote by
s = (ye(s, t, 2, &), me(s,t,2,€)) the unique trajectory such that
ye(t, 1, 2,8) = x4+ VeS(E, §)(¢,€),
nlr(t, ta z, g) = f

Theorem 2.7.9
Assume (2.7.1). Then the trajectory

R">s— (ylr(s,t,x,ﬁ),mr(S,taxaf))

converges uniformly on compact sets of R x X x (X'\{0}) as t — oo to a
trajectory
]R’+ S S (ylr(S, OO,$,§),771T(S,OO,$,€)),

which satisfies

S]?g(mr(s, 00, X, g) — é‘) = 0. (2713)

§—00

{ lim (yi,(s,00,2,&) — 2 — VS(s,8)) =0,

Moreover, the following statements are true:

(i) The trajectory (yin(s,o0,x,&), m(s,00,2,£)) is the only one that satisfies
(2.7.13).

(i) The map

[0,00] x X x (X"\{0}) > (t,z,¢)
= (ye(s,t,2,6) — 2 — yie(8,6,0,€), me(s,00,2,8) — &) € Con(IRs, X x X')

18 continuous.

Proof. Fix a compact set K C X x (X'\{0}). If (z,¢) € K, there exist Cy > 0
and T} such that, for s > T,

|z + s&| > Cps. (2.7.14)

Let us introduce a cutoff function J and a time-dependent force F;(t,z) as
in the proof of Theorem 2.5.2. We claim that we can find a unique trajectory

(ysd,J(Sa t: z, 6)7 nsd,J(sa tv Z, 5))
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for the force Fj(t,x) such that
{ ysd,J(ta ta x, 6) =T+ V{‘S’(ta 6))
nsd,J(ta ta zx, 5) = fa

and this trajectory converges as ¢ — oo to a trajectory

(2.7.15)

S (ysd,J(sa 0, T, g)a nsd,J(S: 0, T, 5))

In fact, the force Fj(t,z) satisfies the conditions of Theorem 1.6.2. Moreover,
for t > Ty and |£| > €, there exists a family of trajectories (Y (¢,€), E(t,£)) that
satisfies

V’)S(t’ E(ta g)) = Y(ta 5)

This family of trajectories clearly solves (2.7.15) with z = 0. Now the existence
of (Ysa,s(s,t,2,€), Msa,s(s,t,z,&)) follows from the arguments of Theorem 1.6.2.
To be exact, the trajectories Y (¢,£) and the modifier VS(t, &) that we are
now using differ from those used in Theorem 1.6.2, where they were fixed by the
condition Y (7,&) = 0. The reader will easily convince himself that, as long as
|€] > €, we can use the arguments of Theorem 1.6.2.
We also note the following estimate:

Ysa,z(8,t,7,€) — x — € € o(s")(x). (2.7.16)

Therefore, from (2.7.14) and (2.7.16) we infer that there exists 75 such that, for
s > TQ,

FJ(S’ ylr,J(S’ t,x, g)) = F(ylr,J(Sa t,x, g))
Hence, for s > T5, the trajectory yi. (s, t, x, &) is also a trajectory for the original
force F'(z). By setting yi(s) := ysa,s(s) for s > T} and extending it for s < T3 by
the flow, we obtain the trajectory y(s) satisfying (2.7.13). The statements (i)
and (i) of the theorem are direct consequences of Theorem 1.6.2. a

We can now formulate the results obtained so far in the now familiar language
of wave transformations.

Definition 2.7.10
We define the modified free flow by

X x X'3 (2,8) = odn(t)(z,€) :== (x4 VeS(L,€),6) € X x X'\

One has the following corollary of Theorems 2.7.8 and 2.7.9.

Theorem 2.7.11
(i) Assume that the hypothesis (2.7.1) holds. Then the following limit exists uni-
formly on compact sets X x (X'\{0}):
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Fir = Hm ¢(—t)¢u(t) (2.7.17)
and the following limit exists uniformly on compact sets of (€7) " 1(X'\{0}):

lim ¢, ' (t)o(t). (2.7.18)

t—00

The limit in (2.7.18) is equal to (F[)~ .
(i) If (v.1) = Fit (2,€), then one has

Tim (8(t,0)(y,m) — (z + Y (£,€),6)) = 0.

(iii) The mapping F,\ is symplectic.

(iv) The modified wave transformation intertwines the full and the free dynamics:
H o F[ = H,
$(t) o Fif = Fif o do(t).

2.8 The Eikonal Equation

The eikonal equation is especially interesting in the time-independent case, be-
cause it does not involve the time variable.

First let us describe the solution of the eikonal equation that is natural in
the short-range case.

Proposition 2.8.1
Assume (2.6.1) and (2.6.5). Let R, €, o be as in Theorem 2.7.1. Then, for (z,£) €
I'g o the following limit exists:

lim (S(t2,6) - %t&Q) = B (x,€).

It satisfies the eikonal equation

26 = S(Va3 (w6 + V(@)

It is a generating function of F., that is
(.’L‘, Vw¢;;($, 5)) = Fst (V§¢:r(x: f): f)
We have the identities

VEQ;.(J;, f) = 77(0, o0, Ty f),
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V@i (z,€) = lim (g(t, 00,,) — £)

t—o0

= lim (§(t, t, 2, €) — t6).

Next we describe the solution of the eikonal equation that, in the long-range
case, is naturally associated to the function S(¢,¢&).

Proposition 2.8.2
Assume (2.7.1). Let R, €, o be as in Theorem 2.7.1. Then, for (z,§) € I'y
there exists

€,07

lim ((t,2,6) = S(t,€)) = B (x,£).
It solves the etkonal equation

]‘2
3¢ =

(Vi (1, ) + V(@)

It is a generating function of F, that is

We have the identities

V.8 (z,€) = 7(0, 00, 7, €), (2.8.1)
Vedi(2,6) = lim (5(t,00,2,€) — Y (£,€))
e ~ (2.8.2)
= tlirglo(y(ta t,x, 5) - Y(t: 5))
The following estimates hold uniformly for (x,€) € I't .-
000; (B (z,€) — (,€)) € o((x)" 1), ol + (8] <2, (2.8.3)

sup |95 (Py (. €) — (2,€))| € L'(dr), |af =2.

(wag)epﬁ;,a

Proof. The proof is analogous to that of Proposition 1.8.3 and left to the reader.
The estimate (2.8.3) for |a| = 0 is proven as in the proof of Proposition 2.9.5. O

2.9 Smoothness of Trajectories

Now we are going to study the smoothness with respect to parameters of various
functions constructed in the previous section. We will use the following assump-
tions on the forces:
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o0
| suwp 08 F@)(R)* AR < 00, a € N". (2.9.1)
la|>R

We will always assume that g > 0 in (2.9.1). The case p = 0 will be called the
“smooth long-range condition”, and the case 4 = 1 will go under the name of
the “smooth short-range condition”.

Note that (2.9.1) is akin to the conditions used in the theory of pseudo-
differential operators to define “symbols of order —u”.

We begin with some estimates on the derivatives of the solutions

(F(s,t,x,&),7(s,t,2,€)) to the boundary value problem considered in Theorem
2.7.1. It will be an analog of Theorem 1.10.1.

Theorem 2.9.1
Assume that the force F(x) satisfies (2.9.1) with u > 0. Let R, ¢ > 0 and o be
as in Theorem 2.7.1. Then one has, uniformly for (z,€) € I'y,,, 0<s <t,

% (s, t,,6) —x — 5€) € o(((z) + 9)°) (x) ™|s|. (2.9.2)

Moreover, for some fs, fop € L'(du), we have

102 (i(s, t, 2, €) — @ — 5€)| < (T)’ Fo(w) () du,

(2.9.3)
p=1,
10200 (5(s. t,,€) — z — 56)| < {&)* <Z Fos () (u) du, (204
laf > 1,
107 (ii(s, t, 2, €) — €)| < (is Fp(u){u)~"du, (2.9.5)
1020¢ (s, t, 2, €) — €)| < (z)'— (;f: Jap(u){u) T Hdu, (2.9.6)

for o > 1.

Proof. Applying the trick used in the proof of Theorem 2.7.1, we see that these
estimates are obtained from those of Theorem 1.10.1 by replacing (s, t1,%2) by
(s + (2), (), T + (2)). O

Let us now state some estimates on solutions of the Hamilton-Jacobi and
eikonal equations.

Proposition 2.9.2

Assume (2.9.1) with p > 0. Let R, € and o be as in Theorem 2.7.1. Then the
function S(t,x, &) satisfies, uniformly for (t,z,&) € [0, 00| X F}J{’e,a, the following
estimates:
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8 _ _ 1 2 0 —u
o (S(t,2,6) ~ (@.6) ~ 3t€”) € ol((z) + ) @) "It
BAA (S(t z,€) — (z,€) — 1t§2) € 1-lol=n >
z Ve ) ) 5 0(<x> )a ‘a|+ﬁ5_ 1,

029; (S(t,x,g) —(z,€) — %t(s?) e rZlel=rprdr), |al+p > 2.

sup
(taxag) ER+ X F"‘,QU

Next we consider the smoothness properties of the solution of the eikonal
equation associated with the short-range wave transformation.

Proposition 2.9.3
Assume (2.9.1) with p > 1. Let R, € and o be such as in Theorem 2.7.1. Then
uniformly for (z,€) € Ff{ we have

€,07

050 (D3 (x,€) — (2,€))| € o((z) ),

sup  |050¢ (Bh(2,€) — (x,) € r' LY dr), o] > 1.

(mzé-)epvﬂ,_s,a'

Next we study the regularity of functions that we defined in the long-range
case.

Proposition 2.9.4

Assume (2.9.1) with p = 0. Then the function S(t,&) and the trajectories Y (t,€)
constructed in Theorem 2.7.5 for € > 0, uniformly for || > €, satisfy the esti-
mates

9 (S(t,€) — §t62) € o(2),
O (Y (t,€) — t€) € o(t).
Proposition 2.9.5

Assume (2.9.1) with p = 0. Let R, ¢ and o be as in Theorem 2.7.1. Then,
uniformly for (z,€) € I'g,,, we have

020 (B (w,€) — (z,€)) € o((x)'~1*),
sup  [020 (Pt (z,€) — (z,€))| € r* 1LY (dr),  |a| > 2.

(ng)ep;t_e,o

Proof. The case |a| > 1 follows immediately from (2.8.1) and Theorem 2.9.1.
Let us show the estimates for |a| = 0, || > 1. We use the first identity of
(2.8.2):
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VePii(zo,€) = lim (5(t, 00, 20,€) — V(¢ €))
= lim (5 (%, 00, § (s, 00, 2o, £), £) — §(t, 00, Y (5, £),£))
= §(s,00,20,§) = Y(s,£)
+ Jo~ ((t, 00,5 (s, 00, 20, ), §) — 7(t, 00, Y (s,£), &))dt

where we chose s big enough so that (Y(s,¢),&) € Ff{,w and (§(s, 00, 9, £),&) €
F;{,E,U for appropriate R, ¢,0. Then we can write

ﬁ(t: 0, g(sa 0, Ty, 5): 5) - ﬁ(ta o0, Y(Sv 5)7 5)
= f()l Vmﬁ(tv oo, TQ(S, 0, Zo, 6) + (]- - T)Y(Sa 5)7 5)(@(57 0, Xy, 6) - Y(87 6))d7—

and use the estimates of Theorem 2.9.1.
The case |a| = || = 0 will not be used later on and is left to the reader. O



3. Quantum Time-Decaying Hamiltonians

3.0 Introduction

Our presentation of classical 2-body scattering was divided into two chapters.
In the first chapter we studied scattering in the presence of forces that decay in
time. In the second chapter we investigated potentials that are time-independent
but decay in space. In the quantum case, we will also consider separately two
analogous classes of 2-body systems.

In this chapter we will treat time-dependent Hamiltonians of the form

H(t)=3D*>+V(t,z). (3.0.1)

We will make assumptions on the temporal decay of 02V (¢,z) that are uniform
in . We will study various objects that describe the asymptotics of the evolution
defined by (3.0.1) for ¢t — oc.

In the literature, scattering theory for time-dependent Hamiltonians of the
form (3.0.1) is rarely studied as the end in itself. They appear usually as auxiliary
objects useful in the study of time-independent Hamiltonians

H=1D*+V(z) (3.0.2)

with a potential that decays in space. As a matter of fact, results obtained in
this chapter will be used in the next chapter devoted to scattering theory for
Hamiltonians of the form (3.0.2). Nevertheless, we think that time-dependent
Hamiltonians deserve our attention. As we will see throughout this chapter,
under suitable conditions on V' (¢, ), scattering theory for such Hamiltonians
has very good mathematical properties and can serve as an excellent “training
ground” to learn some of the concepts of scattering theory for time-independent
Hamiltonians.

Let us briefly describe the contents of this chapter.

In Sect. 3.1 we fix the notation and discuss the relation between the evolution
U(t,s) and the time-dependent Hamiltonian H (t) that generates this evolution.
This question is studied in an abstract setting in Appendix B.3.

In Sect. 3.2 we introduce the asymptotic momentum, that is, the self-adjoint
operator defined by

DT = tliglo U(0,t)DU(t,0), (3.0.3)
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where the limit (3.0.3) has to be understood in a special sense described in
Appendix B.2. The existence of (3.0.3) is true under quite general assumptions
on the potential, e.g. if V (t,z) = Vi(¢,z) + Vi(t, x), where

Vo(t, z)| < C@),  po > 1,
VoVi(t, )| <C@ 7, > 0.

Another, equivalent definition of D7 is possible:
+_ 1 x
DT = tli>I<:r>lo U(0,1) ; U(t,0). (3.0.4)

A large part of Sect. 3.1 is devoted to a proof of (3.0.4). This part of Sect. 3.1
essentially will not be used in this chapter.

Sect. 3.3 is devoted to the fast-decaying scattering theory. In the fast-decaying
case, one can compare the dynamics with the evolution generated by the free

Hamiltonian .
H() = - D2 .
2

We prove that if we assume, for instance, that
Vit z)| <o) ™, w>1,
then the wave operator for the fast-decaying case
. —itHg —. -+
s— lim U(0,t)e (2 (3.0.5)

exists and is unitary. The unitarity of the wave operator goes under the name of
asymptotic completeness.
The wave operator implements the unitary equivalence of Dt and D:

Dt = Q5D (3.0.6)

In the slow-decaying case, the limit (3.0.5), in general, does not exist. We
need to replace in (3.0.5) the free dynamics e 0 with a modified one e **D).
It turns out that if we chose appropriately the function S(¢, £), then the modified
wave operator

s— Jim U0, t)e D) —. F (3.0.7)
exists and is unitary. It satisfies
Dt = Q4D (3.0.8)

The function S(¢, &) is not uniquely defined. The choice that we usually make is
a solution of the Hamilton-Jacobi equation with a certain potential that is close
to the potential V (¢, x).

The construction of the modified wave operator and the proof of its unitarity
are described in Sects. 3.4 and 3.5. In Sect. 3.4 we impose very weak conditions
on the potential, roughly speaking, we demand that
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02V (t,2)| < Cty ™7l >0, o] =1,2. (3.0.9)

In Sect. 3.5 we develop slow-decaying scattering theory under more restrictive
hypotheses
3V (t, )| < Calty™ 7, >0, Jaf > 1. (3.0.10)

The proofs in Sect. 3.4 are quite technical. Therefore we decided for the conve-
nience of the reader to give an independent treatment of this subject in Sect.
3.5. We recommend the reader to skip Sect. 3.4 on the first reading (the results
of this section are not used in the remaining part of this chapter).

In practice, it is useful to know how to construct a modified free dynamics
that can be put in (3.0.7) without solving the Hamilton-Jacobi equation. If the
potential satisfies

2Vt )| <O, u> 3, Jal=1,

then one can define wave operators using the so-called Dollard dynamics. Beside
its simplicity, the Dollard dynamics has the advantage of being applicable if
the system has some “internal degrees of freedom”. Dollard wave operators are
described in Sect. 3.6.

In Sect. 3.7 we present a construction of the modified wave operator that
is an adaptation to the time-dependent case of a construction of Isozaki-Kitada
[IK1]. This construction uses a Fourier integral operator

Ta(s)o(a) = (2m) [ [ im0 (y)ayde, (3.0.11)
where & (s, 7, £) is a solution of the eikonal equation. We show that
Qg = lim U(0, 5)J4(s). (3.0.12)

Note that (3.0.7) was the strong limit, whereas (3.0.12), under the hypotheses on
potentials that we use, is the norm limit. If the choices of S(¢, &) and (s, z, £)
are related to one another in the way described in Chap. 1, then the modified
wave operators defined by (3.0.7) and (3.0.12) are equal.

In Sect. 3.8 we describe examples of time-dependent potentials for which
the asymptotic velocity DT and the wave operator (% exist but asymptotic
completeness fails, that is, Ran(2;; # L?(X). Moreover, D has some pure point
spectrum, therefore D' cannot be unitarily equivalent to D. The first class of
examples, due to Yafaev [Yafl], is given in Subsect. 3.8.2. It is based on the
adiabatic approximation described in Subsect. 3.8.1. In these counterexamples,
0%V (t,z), |a| = 2, decays a little bit slower than O(¢ ?). In Subsect. 3.8.3 we
give sharper counterexamples, with 02V (¢,z) € O(t™?), |a| = 2, which is the
borderline for asymptotic completeness.

Similarly as in the classical case, if we assume the following verion of the
fast-decaying condition:

02V (t,z)| < Co®)™ 1 u>1, |al>1, (3.0.13)
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then wave operators have especially good properties. It turns out that (3.0.13)
implies that (2] is a bounded pseudo-differential operator in the following sense:
there exists a function a™(x, &) such that

Qho(x) = 2m)™ [ [ at(z, €)™ Ve (y)dydg,
0200 a* (2,€)| < Cap.

These properties of fast-decaying scattering theory are proven in Sect. 3.9.

It turns out that the condition (3.0.10) does not imply that 2 is a pseudo-
differential operator in the sense of (3.0.14). Instead, we show in Sect. 3.0.15 that
the time-translated modified wave operator is a Fourier integral operator in the
following sense: for s big enough, there exists an amplitude a™ (s, z,£) such that

U(s, 0)256(x) = (2m) ™ [ [ a* (s, x, £)e P21 g(y)dyd,
8§‘8?(a+(s,x,§) —1) € o(s™'@N.

A reader who needs just a short introduction to the basic construction of
modified wave operators can restrict himself to the first part of Sect. 3.2 and
Sect.3.5. On the first reading, it is also a good idea to learn the alternative
constructions of modified wave operators given in Sects. 3.6 and 3.7.

The existence of the asymptotic momentum and fast-decaying scattering the-
ory are very easy in the case of Hamiltonians considered in this chapter. The
most difficult subject of this chapter is slow-decaying scattering theory. The re-
sults about scattering in the slow-decaying case will be used in the next chapter,
where we will study the long-range problem. In fact, a desire to give a clear
exposition of the main technical difficulties of the long-range problem led us to
write a separate chapter on time-dependent Hamiltonians.

Let us sketch the history of long-range scattering theory. The definition of a
modified wave operator in the case of the Coulomb potential was first given by
Dollard in [Dol]. It was extended to a much larger class of potentials in [BuMa].
Other early papers on the subject include [AlKa, AMM]. In [H61], Hérmander
introduced modified free dynamics defined by exact solutions of the Hamilton-
Jacobi equation.

Asymptotic completeness for long-range two-body systems was first proven
by Saito [Sail, Sai2] and Kitada [Kil, Ki2, Ki3]. Their proofs used the stationary
approach.

A fully time-dependent proof was first given in [E5] and later in [Pel] in
the case p > 1/2 (see (3.0.10)). A time-dependent proof for potentials with a
slower decay was given in [KiYal, KiYa2|. Let us note that this proof allowed for
time-dependent potentials.

A different construction of modified wave operators, which uses a Fourier
integral modifier whose phase is a solution of the eikonal equation, was given in
[Kako, IK1].

It is possible to give other constructions of modified wave operators. One of
them, which instead of the modified free dynamics e **P) yses a dynamics of
the form

(3.0.14)

(3.0.15)
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Iy (t)o(x) = t’%ew(t’z)qﬁ(%),

where ¥(t,z) is an appropriate function, was used by Yafaev in [Yaf3] where
the existence of this type of modified wave operators was shown. Asymptotic
completeness of such wave operators under the same hypotheses as used in this
chapter was proved in [DeGe2].

A time-independent proof of asymptotic completeness using very weak as-
sumptions on the decay of the potential was given in [H62, vol IV]. This proof
used (mostly unpublished) ideas of Agmon.

A very appealing time-dependent proof of asymptotic completeness was given
by Sigal in [Sig2].

The proof given in this chapter in Sect. 3.5 follows to a great extent that of
[Sig2] in its slightly simplified form contained in [De6]. In Sect. 3.4 we present an
improved version of this proof that works under much less restrictive hypotheses
on the potential. In this proof, some of the ideas of [H62, vol. IV] are incorporated
into the method of Sigal.

Regularity properties of wave operators were considered in [I13, Agl]| and,
recently, in [JN, HeSk1].

Among numerous other papers on long-range scattering theory and related
subjects, let us mention [Ar, BC, Coml, Com2, Geo, GGNT, E6, Ikel, Ike2,
Ikell, I1, 12, IK2, 1IK3, IK4].

3.1 Time-Dependent Schrodinger Hamiltonians

Let us start with describing notation and facts concerning time-dependent
Schrodinger Hamiltonians. The basic notation concerning Hilbert spaces is given
in Appendix B.1.

Most of the time, we will work with the Hilbert space L?(X) where X = IR".
X is equipped with a scalar product. |z| will denote the length of z € X.

D := 7'V will denote the momentum operator (which is a vector of com-
muting self-adjoint operators). The free Hamiltonian is defined as

1

1
Hy:=-D?>=—-A.
2 2

We will sometimes use the scale of Sobolev spaces
H™(X):={peD'(X)| (1-2)%¢ e L*(X)}.
A time-dependent Schrodinger operator is a function IR™ — H (¢) with values
in self-adjoint operators of the form
1

H(t) = 5D2 + V(t, ), (3.1.1)

where R" x X > (t,z) — V(t,z) € R is a measurable function satisfying certain
conditions that permit to define a unitary dynamics U(t, s) generated by H(t).
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There are many different conditions that one can impose on V' (¢, z) for this
purpose. One set of conditions that we can use in this chapter, which will be
sufficient for applications in the following chapter, is as follows:

t— ||[V(t,-)]|oo belongs to L (dt),
1 1 (3.1.2)
t— |[(1+ D?)~2[D? V(t,x)](1+ D*)~2|| belongs to L (d¢).

Then we define U(t, s) by the following convergent expansion:

Ult,s)=>.  [...f oy (y, ) Vi, z)el™ = ody, - - du;.

N=0 >y, > >u;>s

By Proposition B.3.6, it follows from Hypothesis (3.1.2) that the unitary
dynamics U(t, s) is D?-regularly generated by H(t) in the sense of Definition
B.3.2. Note also that U(t, s) preserves H'(X).

The hypothesis (3.1.2) has the following disadvantage. It implies that, for
almost all times, the potential V (¢, ) has to be bounded. This is somewhat dis-
appointing, because in most of this chapter the boundedness of V (¢, z) does not
play a role, it is the boundedness of V,V (¢, x) that is important. Alternatively,
instead of (3.1.2), we can assume a much more general hypothesis, which, unfor-
tunately, is not explicit. We can just suppose that U(t, s) is a unitary dynamics
in the sense of Definition B.3.1 that is B-regularly generated by H (t) in the sense
of Definition B.3.2 with B = D? + 22,

We will denote by V,V (¢, ) the distributional derivative of V' (¢,z), which is
equal to the (possibly unbounded) operator [D,iV (t,z)]. Note that [D,iV (x)]
is bounded iff the distributional derivative V,V(z) is in L*°(X), and then
[D,iV(z)] = V,V(z).

We define the Heisenberg derivative associated with H (t):

d .
D = a -+ Z[H(t), ]

3.2 Asymptotic Momentum

As in the classical case, we will start our exposition of scattering theory for time-
dependent potentials with a construction of the asymptotic momentum, which is
a basic asymptotic quantity common to the fast- and slow-decaying cases. Our
first result will be the quantum analog of Theorem 1.3.1.

Theorem 3.2.1
Suppose that

/0°° I[(1+ D?)~", V(t,2)]||dt < oo. (3.2.1)
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Then there exists the limit
s—Cy— tliglo U(0,t)DU(t,0) =: D*. (3.2.2)

D™ is a vector of commuting self-adjoint operators. If we assume, in addition,
that
V(t,x) = Vo(t,z) + Vi(t, z)

such that -~
| et o)llat < oo, (3.2.3)

lim [ [|[(1+eD?)™, Vit 2)][ldt = 0, (3.2.4)

e—=0 /o

then D% is densely defined.

Remark. Let us note that the conditions (3.2.3) and (3.2.4) imply (3.2.1). More-
over, (3.2.4) follows from the following condition: for some o < 1/2,

| Iy sVt 2)(D) e < oo, o] = 1. (3:2.5)

Proof of Theorem 3.2.1. Let us first prove the existence of the limit in (3.2.2).
By a density argument, it is enough to show the existence of

s— lim U0, £)g(D)U(t,0) (3.2.6)
for g € C§°(X). Now,
477(0,£)g(D)U t,0) = U(0, )iV (¢, z), 9(D)]U (%, 0).
By Lemma C.1.2,
IV (t,2), g(D)]Il < Cll[(1+ D)1, V(t, z)]ll-

This is integrable. So the existence of (3.2.6) follows by integration.
Next let us prove that D' has a dense domain. Let Ui (¢, s) denote the dy-
namics generated by the Hamiltonian

1
H(t) := §D2 + Vi(t, x).
Then it is very easy to see that there exists
tlg(r)lo U(0,t)Us(t,0).

Now,
s— lim U3 (0, ) (1 + eD?) UL (¢,0) — (1 + eD?) !

. (3.2.7)
= [P UL(0,1)[(1 + €D?) ™, Vi(t, 2)|U. (¢, 0)dt.
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This converges to zero as € — 0. Therefore
N + 2 -1
S 1%(1 +e(DT)?%)

e T _T 2\~1 _
—s 15%(s lim U,(0,1) (1 + eD?) Ul(t,0)>_1

By (B.2.2), this implies that the self-adjoint operator D' has a dense domain.
O

The observable D classifies the states in L?(X) according to their asymp-
totic behavior in momentum space. It turns out that there exists an alternative
method of constructing D" using the operator ¢ instead of D. Consequently, D"
describes also the asymptotic behavior of states in position space.

Theorem 3.2.2
Assume (3.2.8) and (3.2.4). Then

D* = 5—Coo— Jim U(0, t)%U(t, 0). (3.2.8)

To prove this theorem, we will need some additional techniques, which will
be further developed in a somewhat different situation in the next chapter. Note
that the remaining part of this section will not be used in this chapter except for
Sect. 3.8.

Proposition 3.2.3
Assume (3.2.1). Suppose that j,g € C(X) and suppj Nsuppg = 0. Then

2 dt

[ (2)swwioe] <o, oe 2. 329)

If, moreover, J € C§°(X) such that J =1 on a neighborhood of suppg then

s— lim U(0,1)7 (%) g(D)U(,0) = g(D*). (3.2.10)

Proof. We will prove the proposition by constructing a suitable propagation
observable and applying Lemma B.4.1 of the Appendix B.4. By a covering argu-
ment, we may assume that the support of g and j are very close respectively to
& € X' and zy € X, with & # zo. We can then find v € X’ and 6; < 6, such
that

suppg C {z | (v,z) > 6,}, suppj C {z | (v,z) < 62}.

Choose a function J € C*(IR) such that J' € C°(IR) and

sz((v, 7)) > j%(z).
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Set J(z) == J({(v, z)).
We consider the following propagation observable:

X

2(t) == 9(D)J (7) 9(D).

t

which is uniformly bounded in ¢. We compute its Heisenberg derivative. We

obtain
Do(t) = [V(t,2),ig(D)]J($)g9(D) + he

+5:9(D)(D = $)VaJ (§)g(D) + he.

We claim that, for some Cy > 0, the second term on the right-hand side of
(3.2.11) is greater than or equal to

(3.2.11)

CO%g(D) 7 (%) (D) + O(t™). (3.2.12)

One way to prove (3.2.12) is to use the pseudo-differential calculus. In fact,
by Proposition D.5.3 we can rewrite the left-hand side of (3.2.12) as

%rw(t,x, D)+ O(t%), where r(t, z,&) = g*(€) (5 — %) \ (%) .

The right-hand side of (3.2.12) can be rewritten as

(42, D) + 0, where plt0,8) = 7€) (1)

Both r(t,z,&) and p(t,z,&) are symbols of the class S(1,go(t)) (see Appendix
D.5). We clearly have

r(t,z,€) > (62 — 01)p(t, z,£). (3.2.13)

Using (3.2.13) and the sharp G(R)ardinginequality(seePropositionD.5.4), weget3r™(t,z, D) >
2(02 — 01)p™ (¢, x, D) + O(t %), whichproves(3.2.12).
Applying Lemma B.4.1, we see that (3.2.12) implies (3.2.9). Let us now
consider J € C*°(X) such that V,J € C§°(X) and suppV,J Nsuppg = 0. We
will prove now that there exists

s Jim U(0,1)J (%) g(D)U(t,0). (3.2.14)

In fact, take j,§ € C$°(X) such that jV,J = V,J, jg = ¢g and suppj N
suppg = 0. Then we can estimate

(40 2)tm) ) < 2o

This is integrable along the evolution by (3.2.9). Hence (3.2.14) exists.

i +O(t™?). (3.2.15)
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If we assume, in addition, that J € C§°(X) and suppJ Nsuppg = @, then we
know by (3.2.9) that

o0 2dt
/ HJ (%) g(D)U(L,0)¢| = < oc. (3.2.16)
1
Clearly, if a function f(t) satisfies
lim f(t) exists /oo f2(15)g < 00
t—o0 ’ 1 t ’

then lim; o f(t) = 0. Hence (3.2.16) and the existence of (3.2.14) imply that
(3.2.14) is zero if J € C§°(X),suppJ Nsuppg = (.

Unfortunately, this is not the end of the proof of (3.2.10), since we need to
show that there is no propagation for large |z|/t. To this end, take functions
F € C*(R), f € C§°(IR) such that F' =0 on a neighborhood of 0, F =1 on a
neighborhood of oo, and F' = f2. Set

o2 =a(D)F (1) (D).

—Dag(t) =[V(t2),9(D)IF (%) g(D) + he
+19(D)f* (%) (D) (3.2.17)
+579(D)DE f2 (&) g(D) + he.
Let § € C§°(X) such that gg = g. The third term on the right-hand side of
(3.2.17) equals
=9(D)f (&) (§(D)DE +he) f (&) 9(D) + O(t~>R?)
> —g(D)f (%) 9(D) + Ot*R?).
Hence, for R > Cy,
—D&g(t) > —C||[V(t,z),9(D)]|| + Ot *R7?). (3.2.18)
Therefore, for R > Cy and any ¢, > 0,

s— lim U(0,1)@r(1)U(t,0) < U(0,t0)Pr(to)U (to, 0)

+C [ IV (¢, 2), g(D)]lldt + O(t5 R ?).
(3.2.19)
By choosing ¢, big enough, we can make the integral on the right-hand side of
(3.2.19) as small as we wish. For a fixed ty, the first and third terms on the
right-hand side of (3.2.19) go to zero as R — oo. Hence

s— lim (s— Jim U(0, 1)@ (1)g(D)U 1, 0)> —0. (3.2.20)

R—o0
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But we already know that, for big enough R, R,,
s— Jim U(0,1) (P, (t) — Pa, () U1, 0) =0,
using the fact that the function
X X
(&) (z)
has a compact support. Therefore, for big R,
s— tliglo U(0,t)Pr(t)U(t,0) = 0.

This ends the proof of (3.2.10). O

Proposition 3.2.4
Assume (8.2.1). Suppose that g, J € C§°(X) and suppg NsuppVJ = 0. Then

[N -5 7 () smweo T <clolr, oe 2x), @22
= Jim |5 - D‘ 4 (%) 9(D)U(t,0) = 0. (3.2.22)

Proof. We consider the following propagation observable

o(t) = —o(0) (2) (2= 0) 1 (2) o0,

t t t

which is bounded uniformly in ¢, and compute its Heisenberg derivative. We
obtain

Do(t) =—19(D)(DJ($))(§ — D)*J(§)g(D) + he
—[V(t,2),ig(D)J()(§ — D)*J ()g(D) + he
+39(D)J(5)(F — D)*J(%)9(D)

+9(D)J(§)(§ — D)V (¢, 2),iD]J (%)g(D) + he.

Using Lemma C.1.2, we see that the terms in the second and fourth line of the
right-hand side of (3.2.23) are integrable in norm. Let j € C$°(X) such that
j =1 on suppV,J and suppg N suppj = 0. Then the first line of the right-hand
side of (3.2.23) can be written as

(3.2.23)

1
2t

9(D)VI(5) (f - D)33 (f) 9(D) + he + O(t?).

t t
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This is integrable along the evolution by Proposition 3.2.3. Now by Lemma B.4.1
we obtain (3.2.21).
To prove (3.2.22), we observe that there exists

s— lim U(0,)@(H)U(t,0), (3.2.24)

because the Heisenberg derivative of @(t) is integrable by Proposition 3.2.3. More-
over, @(t) < 0 and, by (3.2.21), we have

/ (6, U(0, )bV (2, om% < . (3.2.25)
1
Therefore,
lim U(0, )@(1)U(t,0) = 0,
which proves (3.2.22). O

Proof of Theorem 3.2.2. Let f,g € C°(X) and ¢ € L*(X). Since the domain
of D7 is dense, it suffices to show that

X

lim U(0,0f (§) Ut 0)g(D*)6. = F(D)g(D*)o (32.26)

Choose J € C§°(X) such that J =1 on a neighborhood of suppg. Then, by
(3.2.10), the difference between the two sides of (3.2.26) is equal to

lim U(0,4) (f (%) = £(D)) J (2) g(D)U(t,0). (3.2.27)

t—o0

By the Baker-Campbell-Hausdorff formula, we have

fO)-f(2) =R VF(rD+(1-72)(D-2)dr

o (3.2.28)
+o7 Jo Af (TD + (1 - T)%) dr.
Therefore (3.2.27) equals
Jim B(t) (£ = D) J (%) 9(D)U(t,0)¢ + O(t™Y),
where B(t) is bounded. This equals zero by (3.2.22). O

3.3 Fast-Decaying Case

The asymptotic momentum constructed in Theorem 3.2.1 gives a classification of
the states in L?(X) according to their behavior under the dynamics U(t,0). We
would like to know whether the asymptotic momentum D is unitarily equivalent
to the momentum. The answer is positive only if we assume some additional
conditions on the potential. In the fast-decaying case, one can construct a unitary
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operator that intertwines the momentum and the asymptotic momentum in a
particularly simple way.

Theorem 3.3.1
Suppose that the potential can be written as

V(t’ l‘) = ‘/E)(ta iL‘) + ‘/l(ta .T),

such that ~
| IVo(t ottt < o0, (3.3.1)
0

/°° IVaVi(t, 2 - [loo(t)dt < oo, (3.3.2)
0

and Vi(t,0) € Ll (dt). Set

loc

o) = | "Vi(s, 0)ds.

Then there exist

s— lim U(0,t)e ttHo-#(1) (3.3.3)
s— lim etHoT M (1, 0). (3.3.4)

If we denote (3.3.8) by (% 4 then (3.8.4) equals $2%,. Moreover, $2 4 is unitary.
The conditions of Theorem 3.2.1 are satisfied. Hence DT exists and

Proof. It is enough to assume that V;(¢,0) = 0 and 6(¢) = 0. Let us prove the
existence of (3.3.4), the case of (3.3.3) being simpler.
We introduce an auxiliary dynamics U (s, t) generated by

Hi(t) :== %DQ + Vi(t, z).
First we see that there exists
tliglo U(0,t)U(t,0). (3.3.6)
Next we note that the following identity is true:
UL(0,)2U(t,0) = = + tD + /O 010, $)VaVa(s, 2)Un (s, 0) (t — s)ds.  (3.3.7)

Hence

lzU1 (¢, 0)(D) *(z) || < C(t). (3.3.8)

Let us now prove the existence of
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s— lim e Moy (t,0). (3.3.9)

— 00

Consider a vector ¢ = (D)~'(z)~'4. Then

%e“H" U1 (t, O)Qb
= o [V, (t, 72)2dTUy (¢, 0)(D)~ {x)~ 1),

which is integrable by (3.3.2) and (3.3.8). Hence (3.3.9) exists.
Now the existence of (3.3.6) and (3.3.9) imply the existence of (3.3.4). O

3.4 Slow-Decaying Case — Hormander Potentials

In this section we begin our study of scattering theory in the slow-decaying
case. In this case, the asymptotic momentum is well defined, although the usual
wave operators, characteristic of the fast-decaying case, in general do not exist.
Nevertheless, for a very large class of potentials, one can show the existence and
completeness of modified wave operators that have almost the same properties
as the usual wave operators. They are defined using a modified free evolution — a
unitary evolution that conserves the momentum and resembles the free evolution
but takes into account the shape of the slow-decaying potential. Modified wave
operators intertwine the momentum and the asymptotic momentum.

In this section we prove that modified wave operators exist and are unitary
under quite general assumptions on the potential. This proof is unfortunately
rather involved. The reader who prefers an easier exposition of the slow-decaying
case under more restrictive hypotheses should go directly to Sect. 3.5.

For slow-decaying potentials satisfying only the hypotheses of Sect. 3.2, the
asymptotic momentum D% can have a spectral measure that is different from
the one of D. In fact, we will give in Sect. 3.8 examples of a time-dependent
slow-decaying potential for which 1oy (D) is an infinite dimensional projection.

The main result of this section is the following theorem.

Theorem 3.4.1
Assume that
V(t,x) = Vi(t, z) + Vi(t, x)

such that ~
LIVt oot < o,

/°°<t>la\—1||agv1(t, Meedt < o0, |a] =1,2. (3.4.1)
0
Then there ezists a C™ function S(t,&) such that

s— lim U(0,t)e D) (3.4.2)
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s— lim eGP U (¢, 0). (3.4.3)

t—o0

exist. If we denote (8.4.2) by (2}, then (8.4.3) equals 2. Moreover, 21" is
unitary and
D* = QLD (3.4.4)

Remark. Note that by Lemma 3.4.5 (3) if
/ (O, ) lloodt < 00, Jal =1,
0

then the hypotheses of Theorem 3.4.1 are satisfied. Under the above conditions,
one can also use the Dollard construction of modified wave operators (see Sect.
3.6).

One might want to know what is the relationship of the function S(¢,¢) and
the potentials that appear in the statement of the theorem. It is natural to ask
whether, as this function, we can take a solution of the Hamilton-Jacobi equation
with the potential Vi(¢, ). It turns out that this is possible if we strengthen the
assumptions of the theorem, as we describe in the following proposition.

Proposition 3.4.2
If instead of (3.4.1) the potential Vi(t,z) satisfies one of the following two hy-
potheses:

/°°<t>lal—1||agw(t, Mieodt < 00, o] = 1,2,3, (3.4.5)
0

or
Joo V2102 (E, loodt < 00, ol =1,

Joe N, )loodt < 00, |af = 2,

then, as the function S(t,§) in Theorem 8.4.1, we can take the solution of the
Hamilton-Jacobi equation

0,S(t, &) = 5€ + Vi(t, VeS(t, ),
S(T,¢) =0,

(3.4.6)

(3.4.7)

which exists for large enough T.

Proof. The proposition follows from Lemma 3.4.5 (7i), Theorems 3.4.1 and
1.11.2. O

The proof of Theorem 3.4.1 will be divided into a series of lemmas. First we
need some additional analysis of classical scattering that was not contained in
Sect. 1.10.

Recall that, under the assumption



110 3. Quantum Time-Decaying Hamiltonians

[T 18Pl < 00, ol = 0,1, (3.4.8)
0

for T <ty < s < ty, we constructed in Theorem 1.5.1 the solutions (s, t1, ta, x, &)
of the classical boundary problem, where we fixed the initial position and the fi-
nal momentum. In Theorem 1.10.1, assuming the so-called smooth slow-decaying
condition, we showed some estimates on the derivatives of these solutions. Un-
fortunately, in this section, we will deal with a much wider class of potentials
and we need to generalize a part of Theorem 1.10.1.

Note that, in the following proposition, we do not assume the force to be
conservative.

Proposition 3.4.3
Suppose that, for n =0,1,..., we fir positive numbers k(n) that satisfy

k(n) + k(m) < k(n +m). (3.4.9)
(Note that this implies k(0) = 0). Assume that
/0 TNOCF () | (81219 Dds < 00, |af > 1. (3.4.10)
Then, uniformly for T < t; < s <ty < 00, we have the estimate

ag(g(s, t1,t0,2,6) —x — (s — t1)€) € o(t))|s — tl\(tg)"”m’l). (3.4.11)

Proof. Recall from the proof of Theorem 1.5.1 that

Z(s):==g(s) —z — (s — t1)&
satisfies

5(s) = — : Cors () F (w0, () du. (3.4.12)

We will prove our proposition by induction with respect to |5|. The induction
hypothesis H(n) will be

0£%(s) € o(t9)[s — t1|(t)=IFI7D, 1 < |B] < . (3.4.13)

Let us assume that H(n — 1) is true. Consider § such that |3| = n. We use
the Faa di Bruno formula to compute 8? Z(s), and we obtain

%) S22 G o (u) Vg F (u, (1)) 085 () du
= [? Gy, () V3 F (u, 5 (u)) ?<x+<u—t1> )du (3.4.14)
S g1 S G (W) VEF (u, (w)) 025 (u) - - - 9 () du.

(3.4.14) can be rewritten as
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00z —V:P(2)0{z =Y g, (3.4.15)

where the map P was introduced in the proof of Theorem 1.5.1. The induction
hypothesis H(n — 1) implies

1023(u)| < Clu— ;)" 0D, 1< 6] <n—1.
Therefore,
lgs(s)| < C<t2>n(|61|*1)+...+n(|5q\*1) fttlz Ctl,s(u)”VgF(U, Y loo (12)d
< C<t2>n(q71)+n(\51|*1)+...+n(|5q|*1) ‘S _ tl‘ fttlz ||V%F(u, ')”oo(u)qin(qil)du
€ C<t2>H(|’B‘_1)|S - t1|0(t10).

Moreover, we know that (1 —V;P(Z)) is uniformly invertible on Z} for T < ¢; <
ty < 0o. Therefore, we can use the identity

0z =(1-V:P(2)" Y 0
to show that (3.4.13) is true. O

From now on we assume that the force is conservative and F(t,z) =
—V.V(t,z). Recall that the functions §(s, t1, t2, z, ) are used to define the func-
tion S(t, &), which is the solution of the problem

0:S(t, &) = 12+ V(t, VeS(t, €)),
WS (8,€) = 387+ V(E, VeS(t,£)) (3.4.16)
S(T,€) = 0.
Below we give estimates on S(t, &) that follow from Proposition 3.4.3.
Corollary 3.4.4
Suppose that
Jo oV (¢, lso(t) @ 1dt < 00, ol = 1,2,
(3.4.17)
JoNogV (¢, Moo () =17+ dE < 00, o] > 2.
Then
% (S(t,€) - 1te?) e ot), [8l=1,2,
(3.4.18)

0 (S(t,) — §t62) € o(t+=171-2), | > 2.

Below we will show how we can change the splitting of the potential into a
slow-decaying and a fast-decaying part such that the results of Proposition 3.4.3
will be applicable to Vi(t, z).

Lemma 3.4.5
(i) Suppose that Vi(t,x) satisfies
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[T 102V et < 00, o] = 1.
0

Then there exists a splitting

such that

Vi(t, z) = Vi(t,z) + Vi(t, z)

S5 Ve (2, ) lloodt < 00,

S5 @2 05 TA(t, ) oodt < 00, |af > 1.

(i) Suppose that Vi(t,z) satisfies

| @ o, ldt < o0, faf = 1,2

Then there exists a splitting

such that

Vi(t, ) = Vi(t, z) + Vi(t, x)

[ VA ) awtt < oo,
0

/oo 105 VA(t, )l (8)*' 1t < 00, |a] = 1,2
0

| N0ETi( Ylae (8%t < 00, o] > 2.
0

(#3) Suppose that Vi(t, ) satisfies

[ @ 1o et < oo, o] = 1,2,3.
0

Then, in addition to (3.4.19), the potential Vy(t,z) satisfies

[T ONos Vit it < o0, o] = 1.

(3.4.19)
(3.4.20)

(3.4.21)

(3.4.22)

Proof. Consider first (). Choose j € C§°(X) such that [ j(z)dz = 1. Set

Now,

Vi(t,z) = [ Vilt, z +t3y)j(y)dy,
Vi(t, z) = Vi(t, z) — Vi(t, 2).

Valt,z) = [(Vilt, ) — Vi(t, @ + t2y))dy

= [ Jo VVi(t, z + t2y)t2y;(y)drdy.
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Moreover,

_1

VEVI(t, ) = (=1)F 13 *D [ V(L + t3y) VELj(y)dy.

Let us now prove (7). This time we assume additionally that [ j(z)xdz = 0.
We define V(t,z) and Vj(t, x) as above. Now,

Vit ) = [ VL Vilt, )ty (y)dy + O DI V2Vi(E, ) oo (3.4.23)

The first term on the right-hand side of (3.4.23) is zero. Hence (3.4.19) is true.
Moreover,

VEVI(t, 2) = (=1)F=27 252 [ V2V(t, 2 + t2y) VE~2j(y)dy.
This implies (3.4.21).

The proof of (%) is similar. O

Corollary 3.4.6
Suppose that we are given a potential V (t,x) satisfying the assumptions of The-
orem 3.4.1. Then we can introduce a new splitting

V(t,z) = Vi(t, z) + Vi(t, x)

such that o
Jo o Vs(t, ) llodt < o0,

57 102Vi(E, oo (1)1t < 00, ol = 1,2

57 105 VA(E, ) lloo (1) 219/t < 00, |a| > 2.

For T big enough, let S(t,€) be the solution of the Hamilton-Jacobi equation
(8.4.16) with this new Vi(t,z). Then

9 (S(t,€) — 1t€?) € oft), |8 =1,2,
1 (3.4.24)
o (S(t,) — 3t62) € o(t27)), || > 2.
Finally, if we set
ot 2, €) = /01 R(t, 72 + (1 — 7)VeS(t, €))dr,
where Fi(t,x) = =V, W(t, ), then
oo lg(t, - leodt < o0,
(3.4.25)

210282 g(t, -, ) loo(t) 20+l 1BDAE < 00, |a| + || > 1.

Proof. Lemma 3.4.5 (i7) implies immediately that we can change the splitting
of V(t,z).
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The estimates on S(t, £) follow immediately from Corollary 3.4.4 with x(n) =
n/2.
It remains to show the estimates on g¢(t, z,£). By the Faa di Bruno formula,
020 Fi(t,mx + (1~ T)VeS(1,))
= L VIRt 2+ (1 = T)VeS(t,€))0P VeS(4,€) -+ 04" VS (1, €)

= f5(t, z, €).

Now,
st 2,8)] < O VEHTHA(E, ) [|oo () 210D+ 5 (0 +1)
= CIVEHTVi (L, ) oo (030959
This implies (3.4.25). O
Now let
T(ta z, 5) = legg(t, z, 5)
Set
G(t) :==g(t,z,D), R(t):=r(tz, D).

Lemma 3.4.7
One has

Vi(t, z) — W(t, VES(t, D)) =G(t)(x — VgS(t, D)) + R(t). (3.4.26)
Moreover

IGOI, Nz, GO, [[VeS(, D), GWI, IR € L' (de).

Proof. First note that

Vi(t,z) — Vi(t, VeS(t, D)) = aG(t) — G()VeS(t, D)

= G(t)(x — VeS(t, D)) + Ty [z, Gi(t)).

This implies (3.4.26).
Then we note that

g(t, 2,€), Veg(t, z,€) € L'(dt, S((t)~'da” + (t)d€?)),
where we used the notations of Appendix D.1. Hence
G(t),R(t), [z, G(t)] € L*(dt, w((t)~'dz? + (t)d€?)).
Finally, note that
Vag(t,,€) € L'((t)dt, S((t)~'da” + (£)d€?)),
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VeS(t,6) € S((t), (1) 'da® + (t)dg?).
Hence, by Proposition D.5.2,

[VeS(t, D), G(t)] € L(dt, w({t)"*dz® + (t)d&?)).

We define
Hl(t) = %DQ + Vi(t, .T),
H(t) =1D?+Vi(t,z) + R(t)
= 3D + Vi(t, VeS(t, D)) + G(t) (x — VeS(t, D)),
]51 = % + Z[ﬁl(t), ]

We also define Uy(t, s) to be the dynamics generated by H(t).
Note that the operator H)(t) is not, in general, self-adjoint.

Lemma 3.4.8 ~
There ezists a two-parameter family of uniformly bounded operators U,(t, s) de-
fined by

i0,U\(t,s) = H(t)Ti(t, s)
{ Ui(t,t) = 1.

We also have ) ) )
iasUl(t, S) = Ul(t, S)Hl(S).

Proof. Let

W (t,s) := Ui(s, t)Ui(t, s).

It satisfies
{ oW (t,s) = Z(t,s)W (t, s),

W(t,t) =1,
where Z(t,s) := Uy(s, t)R(t)Ui(t, s). We observe that ||Z(-,s)|| € L*(dt), which
by Proposition B.3.6 implies the lemma. O
Lemma 3.4.9
(z — VeS(t, D)Oi(t, T)(z) ™" (3.4.27)

18 uniformly bounded.

Proof. We compute:
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Di(z — VeS(t,D)) =D+ V.Vi(t, VeS(t, D)) VES(t, D) — 0,VeS(t, D)
+Z[G(t), (31‘ — VgS(t, D)](J? - VfS(t, D))
= i[G(t), (x — VeS(t, D)](z — VeS(t, D)).

Let
F(8) == IO(T, t)(x — VeS(t, D) Th(t, T) () |-
Then
$1@) <|SO(T,t)(x — VeS(t, D) Oi(t, T)(z) |
= |GA(T, ) (Di(z — VeS(t, D)) Ui, T) () M| < g(t) £ (2),
where

g(t) = ||OW(T, t)[(z — VeS(t, D), G(]T(t, T)||
is integrable by Lemma 3.4.7. Therefore, by the Gronwall inequality
f(t) < CF(TD).

But f(T) = ||z(z)!|| is bounded. This completes the proof of the lemma. O

Proof of Theorem 3.4.1. We observe that, by the arguments of Theorem 3.3.1,
the norm limit

tliglo UI(T7 t)U(ta T)

exists. Moreover,

1H(t) = Hi(®) ]| = | R(®)]| € L' (dt),

which implies that the norm limit
tllglo UI(T7 t) Ul(tv T)

exist. By the chain rule of wave operators, it suffices to prove that the limits

s— tli)m U\(T, t)e *S®D), (3.4.28)
s— lim SOOI (¢, T) (3.4.29)

exist.
Next we observe that

eiS(t,D) (32 _ VgS(t, D))e—z's(t,D) =z,
which implies
|(z — VeS(t, D))eSGD) ()" < O, t>T. (3.4.30)

We have, for ¢ € D((z)),
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d - ) 5 .
0@ t)e P = DT, )G(1)(z — VeS(t, D))e g
This is integrable by Lemmas 3.4.8 and 3.4.7, and by (3.4.30), which proves that
the limit (3.4.28) exists.

Similarly, for ¢ € D({(x)) by Lemmas 3.4.8, 3.4.7 and 3.4.9

d iS(tD)
dte U1

(1,T)6 = —SEDG(1) (@ — VeS(t, D)Ti(1, T)o

is integrable, which proves the existence of (3.4.29).
The proof of (3.4.4) is immediate. This completes the proof of the theorem.
O

3.5 Slow-Decaying Case — Smooth Potentials

In this section we give an independent treatment of the topics discussed in Sect.
3.4 if the slow-decaying part of the potentials satisfies the smooth slow-decaying
condition. For potentials of this class, one can avoid some of the technicalities of
the previous section and give a simpler proof of the existence and completeness of
wave operators. The main result of this section is the following analog of Theorem
3.4.1.

Theorem 3.5.1
Assume that
V(t,z) = Vi(t, z) + Vi(t, x)

such that
Jo~ Vs, ) lloodt < o0,
(3.5.1)
Jo ey 109 VA(E, )l odt < 00, o] > 1.
For T big enough, let S(t,&) be the solution of the problem
0:.9(t, &) = €2+ Vi(t, VS (¢, €)),
1S(0,) = 36 +Vit, VeS(0,) 55
S(T, &) =0.
Then the limits
s— lim U(0, t)e D) (3.5.3)
s— lim e®&DU(¢,0) (3.5.4)

t—o0

ezist. If we denote (8.4.2) by 2%, then (3.4.8) equals QL. Moreover, 2} is
unitary and
D = 25D (3.5.5)
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We will use the notation introduced in Appendix D.1. Note that the force
Fi(t,z) = —V,Vi(t,z) can be regarded both as an element of L'(dt,S(go(t)))
and as an element of L'(dt, ¥ (go(t))).

We set
g(t,2,6) = [L R(t,mz+ (1 — 1)VeS(L, €))dr,
r(t,z, &) == diveg(t, z, §).
We define
G(t) :=g(t,z,D), R(t):=r(t,z,D).
Lemma 3.5.2
One has
Vi(t,z) — Vi(t, VeS(t, D)) = G(t)(x — VeS(t, D)) + R(2). (3.5.6)

Moreover, G(t) and R(t) belong to L*(dt, ¥ (go(t))).

Proof. First note that
Vit,z) — Vi(t, VeS(t, D)) =a2G(t) — G(t)VeS(t, D)
=G(t)(z — VS, D)) + Xiy [z, Gi(1))-

Let us show the following estimate on g¢(t, z, £):
/wmﬁfﬂuymw@WHh<m,mﬂeN? (3.5.7)
0
Let us recall that, in Proposition 1.10.7, we proved that
025 (t,€)| < Cu(t), 18] > 1. (3.5.8)
By the Faa di Bruno formula,
008 Fit, mx + (1 — T)VeS (1, €))
= YL OOVIF(t, 7 + (1 - 7)VeS(t, )0 VeS(t,€) - - - " VeS (8, €)
= Efé(t:xaé-)

We have
|5t 2, 6)| < O|VIEFIHV(E, ) || oo (2)2.

Therefore, g(t,z,£) and r(t,z,£) belong to L'(dt, S(go(t))), which implies that
G(t) and R(t) belong to L' (dt, ¥(gy(t))). O

We define
Hi(t) := 3D° + Vi(t, z),

D] = 8t -+ Z[H](t), ]
Let Uj(t, s) be the unitary propagator associated with H(t).
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Lemma 3.5.3

(z — VeS(t, D))Ui(t, T)(z)

s uniformly bounded.

Proof. We compute:

Di(z — VeS(t, D)) = D+ [Vi(t, ), VeS(t, D)] — 8,VeS(t, D)

= i[(Vi(t, 7) = Vi(t, VeS(t, D)), (z — VeS(t, D))

= 1[G (1), (x = VeS(¢, D)|(z — VeS(L, D))
+i[R(t), (x — VeS(t, D))
Let
F@t) = (T, t)(x — VeS(t, D) (L, T){z) "

Then
@) <IGU(T,t)(x — VeS(t, D)i(t, T){(x) |

= (T, )(Di(z — VeS(¢, D)) Ui(t, T) (=) |
<g@)f(t) + h(t),
where the functions

9(t) = (T, 1)[(z = VeS(t, D), GO, T)|

h(t) = |G(T, ¥)[(z — VeS(¢, D), RO, T){z) ||

are integrable by Lemma 3.5.2. Therefore, by the Gronwall inequality,

f(t) <C(1+ f(T))

is bounded.
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(3.5.9)

O

Proof of Theorem 3.5.1. We start with the proof of the existence of (3.5.3)
and (3.5.4). We first observe that, by the arguments of Theorem 3.3.1, the norm

limit

exists. So, by the chain rule of wave operators, it suffices to prove that the limits

s— lim Uy(T, t)e *®D),
t—o00

s— lim SOOI (¢, T)

exist.
We first observe that

e!S(D) (x — VeS(t, D))e_is(t’D) =z,

(3.5.10)

(3.5.11)
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which implies
(@ = VeS(t, D)) SEP @) | < O, ¢>T. (3.5.12)
Let ¢ € D({(z)). By (3.5.12) and Lemma 3.5.2,
AT, 1)e~ 5DV g = U(T, 1) (Vi(t, ) — Vi(t, VeS(t, D)))eS®:P) g
= U\(T,t)G(t)(x — VS(t, D))e 5GP
+UN(T, t)R(t)e=5t:P) g

is integrable, which proves that the limit (3.5.10) exists.
Similarly, for ¢ € D((z)), by Lemmas 3.5.3 and 3.5.2,

LeSEDU (¢, T)g = —eSEPIG(t) (x — VeS(t, D) Ui(t, T)é
—eSEDIR() (¢, T)¢

is integrable, which proves the existence of (3.5.11).
The proof of (3.5.5) is immediate. This completes the proof of the theorem.
O

3.6 Dollard Wave Operators

In this section we would like to describe the construction of wave operators using
the so-called Dollard dynamics. To use this construction, roughly speaking, one
has to demand that the potentials decay as |V, V (¢,z)| < C{t)"1=* for u > 1/2,
which is a severe restriction as compared with the results of Sects. 3.4 and 3.5,
where we used solutions of the Hamilton-Jacobi equation to define modified free
dynamics. Nevertheless, Dollard wave operators have big advantages. First of all,
their construction is very simple. Secondly, they easily allow to handle the case
of additional degrees of freedom.

Assume that our system possesses some “internal degrees of freedom” (e.g.
spin). More precisely, let us assume that the Hilbert space of our system is
L*(X) ® H; where H; is a certain auxiliary Hilbert space. Suppose that the
time-dependent Hamiltonian has the form

H(t) = 3D°® 1y, +V(t,2),
where  V*(t,z) =V (t,x) € B(H,)
and the Hamiltonian H(t) generates a flow U(t, s) in the sense described in Sect.
B.3.
Scattering theory for such H(t) in the fast-decaying case is completely anal-

ogous to what we described in Sect. 3.3. In the slow-decaying case, however, if
the potential couples the internal degrees of freedom in a nontrivial way, the
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constructions of Sects. 3.4 and 3.5 do not go through. In fact, we cannot even
write the Hamilton-Jacobi equation. Nevertheless, it turns out that the so-called
Dollard modified wave operators, which we are going to present in the following
theorem, work in the case of internal degrees of freedom.

We will assume that the time-dependent potential V' (¢, ) is equal to

V(t,z) = Vi(t,x) + Vi(t, ),

where, for almost all (¢, z), the operators V;(¢, x) and Vi(¢,z) are self-adjoint on
B(%l)a
fOOO SUDgex ”VS(t’ x)HB(Hl)dt < 00,

1 (3.6.1)
Joo (8)2 supgex 107 Vi(t, )|l By dt < o0, |af =1.
By Lemma 3.4.5 (i), we can change the splitting of V' (¢, x) so that
Jo7 supgex [|Vs(t, 2) || By dt < o0,
S5 (8)% supgex 102 Vi(t )| o) dt < 00, |a| =1, (3.6.2)

Jo={t) supex 197Vi(t, 2)|| ey dt < o0, |af = 2.

Now we can introduce the Dollard modified dynamics. For £ € X', we denote by
T (e—i fotvl(s,sg)ds)

the unitary propagator on H; for the time-dependent Hamiltonian V' (¢,¢£). The
symbol 7" stands for “time-ordering” and is defined in Definition B.3.5.

Definition 3.6.1
We define the Dollard modified dynamics Up(t) by

UD(t) = e—i%tDZT (e—z’ fotV1(s,sD)ds) .

The modified free dynamics Up (t) was essentially first introduced by Dollard
[Dol].
We have the following result:

Theorem 3.6.2
Under the above conditions, the limits

s—tlirgo U0,t)Up(t) =: 2, (3.6.3)
s— lim Up(t)*U(t,0) (3.6.4)

ezist and the limit in (3.6.4) is equal to £25*. Moreover, 28 is unitary and
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Dt = QDO

Proof. By the chain rule of wave operators and the arguments used in the proof
of Theorem 3.3.1, we may replace in H (t) the potential V;(¢, ) by 0, and assume
that U(t,0) = Uy(t,0).

We first claim that

(z — tD)U(t,0){z) ' € O(t2), (3.6.5)
(z — tD)Up(t)(z) "+ € O(t?). (3.6.6)
Indeed, we compute
410, ¢)(z — tD)U(t, 0)(z) !
= U(0,8)tV,V (¢, z)U(t,0)(z)" € (t)2 L'(dt),
which proves (3.6.5) by integration from 0 to ¢. Similarly
$Un(t)*(z — tD)Up (t)(z) "
= Up(t)*tV,V (t,tD)Up(t)(z)~" € (t)2 L (dt),

which proves (3.6.6).
Let us now prove the existence of the limit (3.6.4). For ¢ € D({(x)), we
compute

%UD (t)*U(t,0)¢ = iUp(t)*(Vi(t,tD) — Vi(t, z))U(t,0) . (3.6.7)

Now let ¢ € D({x)). Using the Baker-Campbell-Hausdorff formula (3.2.28) ap-
plied to V(¢,x) and the estimates (3.6.2), (3.6.5), we obtain that

[Un ()" (Vi(t,tD) = Wi(t, z))U (2, 0) ||
< ClIVaA(E, sl (@ — tD)U (¢, 0){z) [ {z) Il + CH| ALVA(E, -) [l ool 8],
is integrable, which proves the existence of the limit (3.6.4). The proof of the

existence of the limit (3.6.3) is analogous except that we use (3.6.6) instead of
(3.6.5). O

3.7 Isozaki-Kitada Construction

In this section we introduce another construction of wave operators in the slow-
decaying case — a time-dependent version of the one introduced in the time-
independent case by Isozaki-Kitada [IK1]. We will prove that, for smooth slow-
decaying time-dependent potentials, the two wave operators coincide.
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We will assume that the potential satisfies the so-called smooth slow-decaying
condition, that is

[0 102V (2, oot < 00, o] > 1. (3.7.1)
0

First let us recall some facts from Chap. 1. In Proposition 1.8.3 we con-
structed a function @1, (s, z,£) that, for s > T, solves the eikonal equation

0,85 (5,4,€) = L (Vellas,7.6) +V(s,7).

By Proposition 1.10.6, the function @ (s, z, ) satisfies the estimates

0207 (Bl (s, 2,€) — (w,8) + §s£2) € (s ), o] > 1,

5 (3.7.2)
020, (DL (s, 2, &) — (x, &) + £s€2) € (s)?71* L (ds), |af > 2.

We define next, for s > T, the following operator:
Th()8(x) = (2m) [ [ om0, dyde (3.7.3)

By Theorem D.13.2 and (3.7.2), the operator J;(s) is uniformly bounded on
L?(X) for s sufficiently big.
The main result of this section is the following theorem:

Theorem 3.7.1
Assume that the potential V (t,x) satisfies the estimates (3.7.1). Then the follow-
ing results hold:
(i) the norm limit
lim U(0, 5)J54(s) (3.7.4)

exists.
(11) (8.7.4) is equal to 2%, defined in Theorem 3.5.1.

To prove part (i) of Theorem 3.7.1, for large s,¢, we will construct an ap-
proximation of U (s, t) as a Fourier integral operator. A more refined construction
will be given in Sect. 3.10. Similar constructions first appeared in [Ki5], where
they were used to prove the existence and completeness of wave operators for
smooth time-dependent potentials.

In order to construct this approximation, let us recall some constructions of
the classical case. In Chap. 1 we introduced the function S(s,t,z, &), which is
the solution of the Hamilton-Jacobi equation

{ —055(s,t,2,8) = L(V,S(s,t,3,8))? + V(s,2),
S(t,t,x,&) = (z,€).

By Proposition 1.10.4, the function S(s,t,z,¢) satisfies, for s < ¢, the esti-
mates
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0207 (S(s,t,2,€) — (2,£)) € o(s'~ ), |af > 1,

I sup \8§8§(5(5,t, T, &) — (x,8))|s1%2ds < 0. |a| > 2. (3.7.5)
{(t,2,€) | s<t}
For T < s <t < oo, we denote by I(s,t) the operator
I(s,t)p(x) := (2m)™" / e LB =HWE g (y)dyde, (3.7.6)

By Theorem D.13.2 and (3.7.6), the operator I(s,t) is uniformly bounded on
L*(X) for t > s sufficiently big.

Recall from Proposition 1.8.3 that the functions S(s,€) and &(s, z,&) are
related by the identity

Dh(s,x,8) = tliglo(S(s, t,x,&) — S(t,£)). (3.7.7)

Proposition 3.7.2
Assume that the potential satisfies (3.7.1). Then

sup |U(t,s) — I(t,s)] € o(s"). (3.7.8)

Proof. We compute

AU (t,s)I(s,t) = Ul(t,s)(iH(s) + 35)I(s,t)

(3.7.9)
=Ul(t, s)P(s,t),

where P(t, s) is the operator defined as

P(t,s)p(z) == (2m)™" / / ST A S(s,t,2,£)p(y)dEdy.  (3.7.10)

Note that
I(t,t) =U(t,t) = 1.

Therefore .
I(s,t) — U(s, ) = — / U(s,u)P(u, )du,
and
sup || I(s,t) = U(s,t)| < / sup  ||[P(u,t")||du. (3.7.11)
{t | s<t} s At | ust’<oo}

Now (3.7.5) implies that, for Ty < s <,

J77SUPY | s<i<oo} ||8§8?Aw5(s,t, )| eods < 00,
1020{S(5,1,3,€)| < Cayp, lo] > 1, (3.7.12)
VoVeS(s,t,x,6) — 1] < 3.
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From the estimates (3.7.12) and Theorem D.13.2, we infer that the right-hand

side of (3.7.11) is o(s?). 0
Proof of Theorem 3.7.1. Let us now prove (i). We compute the derivative
4U(0,5)J5(s) =U(0, s)Q4i(s), (3.7.13)
where
L(5)0(y) = ( / / At (s, 7, €)ei®almO- i g () dedy.  (3.7.14)

We have the following estimates for s > Tj:
000, A,y € L1(ds),
020 B (5, 2,6)| < Cag, laf > 1, (3.7.15)
VaVebiy(s,2,6) — 1] < 5.

Therefore, by Theorem D.13.2 ||Qf;(s)|| is integrable, which proves that the norm

limit (3.7.4) exists.
Let us now prove (ii). We first claim that

Jh(s)* =s— Jim eSEDII (s,1)*. (3.7.16)

[ade]

To see this, it is enough to prove that if x € C§°(X), then

tli)rcr)lo(eis(t’D)I(s,t)* — JH(8)")x(z) = 0. (3.7.17)
U D (s, 1y - () (0)0(a)
” (3.7.18)
= (2m) " [ [ e Pl OHEN (s, 1, v, €)(x)déde,
where

b(s, t 2, f) _ (efis(s,t,$,§)+iS(t,§)+i¢;i(s,w,ﬁ) _ 1) X(x)

By (3.7.7), the amplitude b(s,t,z,£) goes uniformly to zero as ¢ — oo together
with all its derivatives. Therefore (3.7.17) is true.

Let us now fix a vector ¢ € L?(X). Using first (3.7.16), and then Proposition
3.7.2, we see that, for s < ¢, one has

J5(8)*U(s,0)p = eSEPI[(s,)*Ul(s, 0)¢ + o(t°)

— &S (t, 5)U (s, 0)6 + o(s") + o(t2). (3.7.19)
Therefore, if we let t — oo in (3.7.19), we obtain
Jh(8)U(s,0)6 = 28 + o(s°). (3.7.20)

Letting then s go to oo, we obtain
lim J5(s)*U(s,0)6 = 2479,

which is the desired result. O
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3.8 Counterexamples to Asymptotic Completeness

There exists a large class of time-dependent potentials for which the asymp-
totic momentum DT and the wave operator (27 are well defined but asymptotic
completeness breaks down, that is, Ran{2{; # L?(X). Moreover, it is possible
to construct potentials such that DT has some pure point spectrum, hence it is
not unitarily equivalent to D. For such potentials, asymptotic completeness fails
even if we try to use modified wave operators.

In this section, we construct some potentials with such a property. Such
examples were first found by Yafaev [Yafl]. A related construction giving a
sharper class of counterexamples was given by Yajima [Yal]. The breakdown
of asymptotic completeness is related to the adiabatic approximation. We will
start this section with a rather general discussion about the adiabatic approxi-
mation. These considerations lead easily to the counterexamples in [Yafl], which
we give in Subsect. 3.8.2. The sharper counterexample in [Yal] uses the fact that
certain quadratic time-dependent Hamiltonians are exactly solvable and will be
given in Subsect. 3.8.3.

3.8.1 Adiabatic evolution

Let ‘H be a Hilbert space and R > ¢t — H(t) a family of self-adjoint operators
with a fixed domain D that is C' in norm-resolvent sense. Let U(t,s) be the
unitary evolution generated by H(t). Let t — P(t) be the spectral projection for
one eigenvalue A\(t) of H(t), and let us assume that P(t) and \(t) are C'. Note
that we will often drop (¢) from H(t), P(t), etc.

Definition 3.8.1
The adiabatic evolution is the unitary evolution Uaq4(t, s) generated by the time-
dependent Hamiltonian

Haa(t) == H(t) + [P(t),iP(t)].

Proposition 3.8.2
The adiabatic evolution satisfies

Una(t, s)P(5) = P()Usa(t, 9).

Proof. Differentiating the identity P2 = P, we obtain
PP+ PP =P,

which implies that . .
PPP=(1-P)P(1-P)=0.
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Thus . .
(% + i[Hada ])P =P - [[P7 P],P]

=(1-P)P(1- P)+PPP=0.
O

We would like to know if the adiabatic evolution approximates the exact
evolution for large times. To this end, we have to investigate the existence of the
limit

Jim U(0, £)Uaa(t,0) =: 2. (3.8.1)

The simplest method of proving the existence of such limit is to prove that
[P,iP] € L'(dt). Tt turns out that this will never hold for the Hamiltonians that
we would like to study. Typically we have only [P, zP] € O(t™"). Tt turns out,
however, that the following criterion is useful.

Proposition 3.8.3
Set

Assume that

K(t)=o(t%), K(t)e L'(dt), K(t)[P(t),P(t)]e L*(dt). (3.8.2)
Then there exists the limit (3.8.1).
Proof. We have

5= Jim U(0,1)0sa(t,0) = 5= Jim U(0,1)(1+ K (1) Ura(t,0).

Moreover, _
[H,K] =[P, iP]. (3.8.3)
Therefore,
§U0,0)(1+ K)Uaa(t,0) = U(0,)(K — K[P, P))Usalt,0)
is integrable. O

3.8.2 Counterexample Based on the Adiabatic Approximation
Let W(z) € C§°(X). Let g(t) be a C* function such that ¢g(0) = 1. We set
H(t) := %DQ + V(t, x),

where  V(t,z) = g 2(O)W(-%).

9(t)

(3.8.4)

Suppose that A(0) € ogisc(H(0)), where
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H(0) = %D2 + W (x).

Let P(0) be the corresponding projection. Note that if A is the generator of
dilations, then we have

H(t) =g 2(t)g “(t)H(0)g"(t),
P(t) = g7 (t)P(0)g"(¢),
A(t) = g72(t)A(0).

Note that [A, (z — H(0))"!] is bounded for z & o(H(0)), therefore [A, P(0)] is
bounded too.
Now we fix g(t) = 4/(t)(1 +1log(t))~¢ for € > 1/2. Then we have the following

estimates on V' (¢, x):
eV (t,z) € O(t~3(logt)™), o =1,
02V (t,x) € O(t %(logt)*), |af=2.

As we will see from the theorem below, the Hamiltonian defined in (3.8.4)
does not satisfy asymptotic completeness.

Theorem 3.8.4
(i) The asymptotic momentum DT for H(t) exists.
(#) The usual wave operator

s— lim U(0,t)e "Ho =
ezists, DY = 4D, and
Ran(2; = Ranlx\ (0} (D") = Hc (D).
(#ii) The norm limit

lim U(0,)Uaa(t, 0) =: 2

t—o0

exists and is unitary. Moreover,

Ran(2; P(0) C Ranll;(D") = H,p, (D). (3.8.5)
Hence Ranf2; # L*(X).
Proof. The potential V (¢, z) satisfies the conditions of Theorem 3.2.1, hence ()
is true.

Let us show (7). Let g,J € C§°(X) such that 0 ¢ suppJ and J = 1 on a
neighborhood of suppg. By the methods of Sect. 3.2, we show that

s— lim Ua(0, t)e"tHog2(D)

= o= Jim U000} (£) D) (359
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exists. Then we use the fact that vectors of the form g(D)¢ with g € C§°(X)
with 0 ¢ suppg are dense in L?(X).
Let us show (7). We will use Proposition 3.8.3. We have

P(t) =—gg~'g~*[A,iP(0)]g"*
€ 0(9(t)g~" (1)),
K(t) = —iggg~*[(H(0) = A(0))~"(1 — P(0)), [4, P(0)]]g**
O(9(1)9(2)),

K(t) = =% " [A, [(H(0) = A(0)) (1 = P(0)), [4, P(0)]]] g
=9 + 99)g™[(H(0) = A(0))7'(1 = P(0)), [4, P(0)]]g**
€ O(g(1)§(t)) + O(F*(1)),
K(t)[P(1), P(t)] € O(g*(t).
But we have
O(9(t)g(1)) = O((logt)~™),
O(4(t)g(1)) = O(g*()) = O({t)~*(log1)=*),

hence the assumptions of Proposition 3.8.3 are satisfied.
Let us show (3.8.5). Let J € C§°(X) with 0 ¢ suppJ. Then

J(DT)2HLP(0) =s— lim U(0,2)J(})U (¢, 0)£2;5P(0)
= s— lim U(0,)J($)Uaa(t, 0)P(0).

t—00
But
J(%)Uad(ta O)P(O) = J(%)P(t)Uad(ta 0)
=g (6 J(D) P(0)g" (1) Uaal(t, 0)
converges to zero in norm. O

3.8.3 A Sharper Counterexample

In this subsection we give a sharper counterexample using the special properties
of certain quadratic Hamiltonians.

Let us fix a certain cutoff function x € C§°(IR) equal to 1 near the origin
and C' > 1/8. Define

H(t) = 3D*+V(t, ),
o ) | (3.8.7)

where V(t,z):= Ct—fx(
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We denote by U(t, s) the unitary evolution generated by the Hamiltonian H (¢).
Note that one has

8oV (t,z) € O(t™3/2(logt)z), |af =1,

02V (t,z) € Ot ?), |a|=2,
so V(t,z) almost (but not quite) satisfies the conditions of the existence and
completeness of modified wave operators for general slow-decaying potentials in
Theorem 3.4.1 or of the existence and completeness of Dollard wave operators in

Theorem 3.6.2.
It will be useful to introduce another Hamiltonian

1 Cz?
Hy(t) = §D2 + t—2

The evolution Uy(t, s) generated by Hy(t) can be computed explicitly. Indeed,
if we put

Tip(x) i=1"1o(7),

Uog(z) := e7="/4g(x),

Hy := 1D+ (C — §)a?,
then it is an easy computation to check that

Uy (t,1)¢ = TyUge "'5"¥ g,

As we will show below, the Hamiltonian H(t) violates asymptotic complete-
ness.

Theorem 3.8.5
(i) There ezists the asymptotic momentum for H(t)

Dt i=5—Cy— Jim U(1,t)DU(t,1).
(#) The usual wave operator
s— lim U(1,t)e ‘- DHo —. of
exists, satisfies DT = Q4 D, and
Ran(2; = Ranlx\ 0} (D") = H(D").
(#ii) There erists another wave operator
lim U(1,)Uy (1, 1) =: 25

Moreover,
Ran(2 C Ran]l{o}(D+) = H,p(D7). (3.8.8)
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Hence (Ran{2)* is infinite dimensional.

Proof. (i) and (ii) are proven as in Theorem 3.8.4.
Let us show (744). Suppose that 9 is an eigenfunction of Hy for the eigenvalue
A. Then

Uy(t, l)w(x) — t—n/4e—i)\10gt+ia:2/4tw( )’ (3.8.9)

o~
m|»—| 8

Moreover,

LU, Uy (t, 1) = U(1, 1) 2 (1 —x (ﬁ)) Uy(t, )y (3.8.10)

If we use (3.8.9), (3.8.10) and the exponential decay of ¢ (which is an eigenfunc-
tion of a harmonic oscillator), then we see that

”%U(l’ t)UY(ta 1)¢” < Cltil €xXp (—02 logt),

which is integrable. Hence (25 exists. O

3.9 Smoothness of Wave Operators in the Fast-Decaying
Case

In this section we will study scattering theory for potentials that satisfy the so-
called smooth fast-decaying condition. More precisely, we will assume that the
potential satisfies

/ 0182V (2, ) ||aodt < 00, |a] > 1. (3.9.1)
0
To simplify, we will also suppose that
/ IV (¢,0)]dt < o, (3.9.2)
0

which implies that we do not need to renormalize the free dynamics in order to
define wave operators.

In the classical case, under these assumptions, the wave transformation is
smooth and all its derivatives are bounded. In the quantum case, there is an
analog of this property, which can be expressed using an appropriate class of
pseudo-differential operators

The main result of this section can be formulated in the following theorem
(see Appendix D.4 for the notation concerning pseudo-differential operators).

Theorem 3.9.1
Assume (3.9.1) and (3.9.2). Then

‘QES € l‘p(la gO)'
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In other words, we can write

Dho(w)=(2m) " [ [ a* (@,€)e" Po(y)dyde,

where a € S(1, go)-

Remark. Set ' '
Pe(x) = e, qbg(:v) = aT(z, £)e'e.

Note that ¢ is a generalized eigenvector of D with the eigenvalue &. Similarly,
¢§ is a generalized eigenvector of Dt with the eigenvalue £. It follows from
Theorem 3.9.1 and Lemma D.6.1 that the wave operator (2 is bounded on all
the weighted spaces (z)™L?(X). Therefore, the following identity makes sense if
we treat ¢¢, ¢ as elements of (x)™L*(X) for m > n/2:

The class of operators ¥(1, go) is associated in a natural way with the problem
we are looking at in this chapter. Unfortunately, in this class we do not have a
“semi-classical parameter”, and hence no symbolic calculus is available. A natural
semi-classical parameter s ! appears if we allow our quantities to depend on the
initial time s.
Let us define
Qu(t, 8) :==Ul(s, t)Up(t — s).

We extend the definition of 24(,s) to ¢ = oo in the obvious way. Clearly,
4(00,0) = ;. The following theorem is an extension of Theorem 3.9.1.

Theorem 3.9.2
Assume (3.9.1) and (3.9.2). Then, uniformly for s <t < oo, we have

Qa(t, 8) — 1 € T(o(s°), go(s)), (3.9.3)
In other words, there exist a(t, s, x,&) such that

079 (alt, s,2,€) — 1) € o(s)”*),

Du(t, )0(x) = 2m) " [ [ a* (25,2, e (y)dyde.

We first prove the following lemma.

Lemma 3.9.3
Let
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/ ~ 8)]adad? P(t)||dt < oo,
0

or, using the notation of Sect. D.5, P(t) € L'(dt,¥(go(t))). Let W(t,s) be the
unique solution of
{ oW (t,s) = W(t,s)P(t),

W(s,s) =1.
Then
¥(o(s°), g0(s)), s<t,
Wit~ 1€ { W (o(t). go(t)), < s.
Proof. Clearly,
o(s%), s<t,
Wi(t,s)—1¢€ { ogto)) £ < g

Let us now prove by induction on || + |3] that

o(s7IBh, s <t

o 1< (3.9.4)

ad%ad? (W (t,s) — 1) € {

Assume that (3.9.4) holds for |a|+ |5| < n—1. Using the Leibniz rule, we obtain

dadad? W (t, s) = )+<EJ> . C, sad? ad B W (t, s)ad?ad P(t).
1,01 72,02 )=\,

We can rewrite this as
dad®ady W (t, s) + (adad) W (t, s))P(t) = Ras(t, s).

By the induction assumption,

This implies (3.9.4) for |a| + 8| = n by the Gronwall lemma and proves the
desired result. O

Proof of Theorem 3.9.2. One has
Op(24(t,s) = —id2q(t, s)VV(t,z + (t — s)D),
(3.9.5)
.Qfd(s, S) =1.
It follows from (3.9.1) that, uniformly for 0 < s <¢,
V¥(t,x + (t — s)D) € L' (dt, ¥(go(2))),

Applying Lemma 3.9.3 to (24(t, s) gives (3.9.3). O
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3.10 Smoothness of Wave Operators in the
Slow-Decaying Case

In this section we will show that in the smooth slow-decaying case case the time
translated wave operator

2a(s) = U(s, 00625,

and the evolution U (s, t) are Fourier integral operators associated with the canon-
ical transformation @(s,0) o F.; and @(s, t) respectively in the sense described by
the following theorem.

Theorem 3.10.1
Assume (8.7.1). Then, for Ty < s < t, there erist functions a(s,t,z,€) and
a®(s,x,&) such that

a'+(87 ‘/Lli 5) = tli>m CL(S, t? .’,E, 6)7
0207 (a(s,t,z,6) — 1) € o(s71?), Ty < s<t< oo, (3.10.1)
020¢ (a* (s, 2,8) — 1) € o(s7%), Ty < s < o0,

U(s, )é(z) = (2m)™ / / St -iweg(s ¢z E)p(y)dyde,  (3.10.2)

Dh()0(w) = @m) [ [erabaO-bhot (s, 0, )p(y)ayds.  (310.3)

Proof. Note that it follows from Proposition D.14.1 that
I(s,t)I*(s,t) — 1 € ¥(o(s"), g0(5))-

Hence, for s > Tj,
|1(s,t)I*(s,t) — 1|| < Cp < 1,

and so I(s,t)I*(s,t) is invertible. Using the Neumann series and the Beals crite-
rion (see Theorem D.4.1), we obtain

(I(s,t)I*(s,t)) * — 1 € ¥(0(s°), go(s)). (3.10.4)

Set
W (s, t) :=U(t,s)I(s,1).

Then it follows from (3.7.9) that, for Tp < s <'t,

(3.10.5)

%W(s,t) = W(s,t)ﬁ(s,t),
W(t,t) =1,
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where _
P(s,t) := I7%(s,t)P(s,t)

= (s, ) (I(s, )1 (5,8)) " P(s, ).
and P(t,s) was defined in (3.7.10).
By (3.10.4) and Propositions D.14.2 and D.14.1, we have
P(s,t) € L*(ds, ¥ (go(s)))-
Therefore by Lemma 3.9.3 (with the role of s and ¢ reversed), we get
W (s,t) —1 € ¥(0(s"), go(s))- (3.10.6)

We know that

U(s,t) = (I(s,t)I*(s, 1)) (s, t)W*(s,1). (3.10.7)
Now (3.10.4), (3.10.6), (3.10.7) and Proposition D.14.2 imply the properties of
U(s,t) stated in our theorem.

If we know that U(s,t) can be written as a Fourier integral operator (3.10.2),
then it is easy to see that 2f(s) can be written as a Fourier integral operator
(3.10.3). In fact, we note that

DU (s, )" $(y)

. . : 3.10.8
= (2m)7" [ [ a(s, t, 2, §)erw s S50 (1) deda. (3108

Using similar arguments as in the proof of (3.7.16), we see that (3.10.8) goes to

025 (5)0(y) = @m)™ [ [ @ (s, 2, €)e 0020 (2)ded.

when ¢ goes to oo. O
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4. Quantum 2—Body Hamiltonians

4.0 Introduction

In this chapter we study scattering theory for quantum time-independent 2-
particle systems. They are described by Hamiltonians on L?*(X) of the form

1
H= 5D2 +V(x), (4.0.1)

where V' (z) decays in space in all directions. The previous chapter was devoted
to Hamiltonians with time-decaying potentials and should be viewed as an intro-
duction to the present one. In particular, various objects related to long-range
scattering theory were discussed in Chap. 3. Therefore we advise the reader to
first become familiar with the previous chapter, in particular with Sects. 3.2, 3.3
and 3.5.

In the mathematical physics literature, the name scattering theory is usually
reserved for Hamiltonians of the form (4.0.1). Classical systems, studied in Chaps.
1 and 2, and time-decaying quantum systems described in Chap. 3 are seldom
studied for their own sake; they are usually considered only as tools that are used
to study (4.0.1).

The most obvious classification of states in the case of a time-independent
2-body Hamiltonian is

LQ(X) = pr(H) & H(H),

where Hp,(H) is the space of bound states of H and H.(H) the continuous spec-
tral subspace. It is not a priori clear that any state in H.(H) behaves asymptot-
ically for large times as a free particle. Actually, we saw in Chap. 2 that in the
classical case there are unbounded trajectories with zero energy that behave at
infinity very differently from free trajectories. In the quantum case, it turns out
that under rather weak conditions on the interaction, any state in #.(H) behaves
asymptotically like a free particle. In more precise mathematical terms, H.(H)
is equal to the range of the wave operator. This fact is called the asymptotic
completeness of 2-body scattering and will be the central result proven in this
chapter.

Let us describe the main strategy of our proof of asymptotic completeness.
The first step is contained in Chap. 3, where we consider time-decaying potentials
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V(t,z) and the dynamics U(t, s) they generate. We show the existence of wave
operators for this dynamics, which (in the long-range case) are defined as

s— lim U(0,t)e %), (4.0.2)
t—o0
Along with the existence of (4.0.2), we show the existence of

s— lim eSO U(¢,0), (4.0.3)
t—00
which implies the unitarity of the wave operator for the dynamics U(t, s).

Note that the existence of (4.0.3) is straightforward in the fast-decaying case;
it is much less easy in the slow-decaying case.

The second step consists of a number of propagation estimates for the dy-
namics e . Their aim is to show that if x € C°(IR) is supported away of 0
and eigenvalues of H, then any state e % y(H)¢ moves away from the origin in
a controllable way. This enables us to replace the time-independent potential by
an effective time-decaying one

V(t,x) = J(3)V(x),

and the dynamics e “ by U(t,0). More precisely, we are able to show the
existence of the limit

s— lim U(0,t)e " x(H). (4.0.4)
Now (4.0.3), (4.0.4) and the chain rule yield the existence of
s— lim eiStD) gt  1¢(IT), (4.0.5)

which implies asymptotic completeness.

The concept of the wave operator was introduced by Mgller in [Mg|. There-
fore, wave operators are sometimes called Mgller operators.

The literature on mathematical aspects of quantum scattering theory is very
rich and contains numerous techniques. The reader will find a bibliographical
review of this subject up to the early eighties in [RS, vol III].

Among the main approaches to the problem of asymptotic completeness, one
can distinguish the abstract Kato-Birman approach, the stationary approach and
the time-dependent approach.

The Kato-Birman approach is a time-dependent method which has two basic
ingredients. The first one is the existence and completeness of wave operators for
a pair (Hy, H) of Hamiltonians whose difference is of trace class. The second one
is the invariance of wave operators under the replacement of Hy, and H with
f(Hp) and f(H) for suitable functions f. It applies only to a rather narrow class
of fast decaying short-range potentials. The reader can find its description in
[RS, vol III] and [Yaf4].

The stationary method is usually more efficient. It is based on the study of
the boundary values of the resolvent (z — H)'. A modern exposition can be
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found in [H62, vol II] (the short-range case) and [H62, vol IV] (the long-range
case), see also [Agl] and [RS, vol III and IV].

We never use the stationary method in our monograph. The main objective
of our exposition is to prove various properties related to asymptotic complete-
ness. We think that studying the resolvent (z — H)™' is a kind of a detour for
our purposes and, in our opinion, leads to unnecessary complication. But the
most convincing argument against the stationary method is the following: if the
potential is time-dependent, then the time-dependent method works quite well,
while the stationary method is much less useful (see, however, [How, Yaf5] for
the short-range case).

On the other hand, the stationary method gives some important additional
information that seems not to follow easily by the time-dependent method. By
the stationary method, one obtains some properties of the boundary values of the
resolvent, which are especially useful in the study of the scattering operator and
eigenfunction expansions. But these topics are not covered by our monograph.

In the time-dependent approach, the main object under study is the dynamics
e”"H Tt was used in the first proof of the existence of wave operators in [Col].
On the other hand, in the problem of asymptotic completeness time-dependent
techniques entered the literature quite late with papers of V. Enss [E1, E2]. Ideas
of Enss aroused a considerable interest and inspired a number of papers by other
authors, among them: [Dav, KiYal, KiYa2, Pel, Sim2].

The time-dependent approach to scattering theory proved to be the most
successful. It led to a series of remarkable results about N-body systems begin-
ning with [E5, SS1|, which we discuss later on. There exist various techniques
related to the time-dependent approach. In particular, one of the techniques that
proved to be important is the so-called method of positive commutators (or, more
exactly, the method of positive Heisenberg derivatives) — see Appendix B.4 for
references.

Even the time-dependent approach comes in a number of different varieties.
The original argument due to V. Enss [E1, E2], who was first to use the time-
dependent method to show asymptotic completeness, was based on the so-called
RAGE theorem. We do not use this idea, because it seems not to work for more
than 3 particles. The approach that we use is based on positive commutators
and weak propagation estimates. Positive commutators have a relatively long
history, culminating in the work of E. Mourre [Mo1]. Weak propagation estimates
showed their extraordinary efficiency in the work of Sigal and Soffer [SS1], who
proved asymptotic completeness in the N-body case. In our presentation of the
propagation estimates of this chapter, we also use ideas of Graf [Gr] and Yafaev
[Yafl].

Let us now briefly describe the content of this chapter.

Section 4.1 is devoted to the problem of the self-adjointness of Schrédinger
operators and some of their general properties. We refer the reader to [RS, vol I
and II] for more details.
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In Sect. 4.2 we prove so-called weak large velocity estimates. This is a simple
example of a weak propagation estimate. Their typical form is as follows:

[T IBwe oY < oo,
0

where B(t) is a certain uniformly bounded observable. The weak maximal veloc-
ity estimates say roughly that the velocity of a particle is bounded by the square
root of its energy. These estimates were first found by Sigal and Soffer [SS1, SS3],
although our presentation follows that of Graf [Gr].

One says that a Hamiltonian H satisfies the Mourre estimate on the energy
interval A with conjugate operator A if

WA(H)[H,iAll(H) > Colla(H) + K, (4.0.6)

where Cy > 0 and K is a compact operator. Hamiltonians of the form (4.0.1),
under certain assumptions on V' (z), satisfy the Mourre estimate on any positive
energy interval with a conjugate operator equal to the generator of dilations

A= %((:g, D) + (D, ).

The existence of an estimate as (4.0.6) has deep consequences on the spectral
theory of H on the interval A. It was used in a fundamental paper by Mourre
[Mol] to prove the absence of singular continuous spectrum for H in A. His
ideas were related to some earlier work by Lavine [La3]. The abstract Mourre
commutator method has been extended and refined and applied to a wide variety
of problems (see, among others, [Mo2, PSS, Yaf2, JMP, ABG, BG]).

The Mourre estimate is shown for 2-body systems in Sect. 4.3, where we also
describe a number of its consequences. In particular, we will show that the point
spectrum can accumulate only at 0.

In our presentation of scattering theory, we made an attempt to describe
its basic steps in a form that stresses various natural objects and we attach less
importance to technical estimates that involve arbitrary cutoff functions. Besides,
we prefer arguments that generalize easily to the N-body case. An example of
such a natural construction is the asymptotic velocity, which we introduce in
Sect. 4.4. The asymptotic velocity is the self-adjoint operator defined by

Pt = s—Coo— lim eitf ZeitH (4.0.7)
t—o00 t
Another equivalent definition of P is
Pt :=5—Cy— lim """ De "M 1°(H). (4.0.8)
t—00

(The limits (4.0.7) (4.0.8) are strong Cy, limits defined in Appendix B.2.) The
existence of (4.0.7) holds under very weak assumptions on the potential, e.g.
V(z) has to be A—compact and, roughly speaking,
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VoV (2)| < C{x)™ 7", u>0.

The existence of the observable PT in the 2-body case follows easily from the
existence of (modified) wave operators. Therefore in the literature it was usually
not considered for its own sake. It becomes much less trivial in the N-body case,
where its first explicit construction was given in [De6]. (Nevertheless, it appeared
implicitly in the earlier work on the subject, especially in [Gr]).

We think that, even in the 2-body case, introducing the asymptotic velocity
is a useful idea. First of all, it helps to organize the proof of asymptotic com-
pleteness. Secondly, it can be shown to exist under rather weak assumptions. In
fact, as we will see in Sect. 4.10, there are 2-body Hamiltonians for which the
asymptotic velocity exists, and thus one can argue that some kind of a scattering
theory for such systems is available, but for which the wave operators fail to be
complete.

The proof of the existence of (4.0.7) relies on a number of weak propagation
estimates. The idea of using this type of estimates in scattering theory is due
to Sigal and Soffer [SS1]. In our presentation, we follow a very elegant approach
due to Graf [Gr| with some modifications inspired by Yafaev [Yafl].

We also show that

Ny (P") = 1PP(H), (4.0.9)

which means that the states of zero asymptotic velocity coincide with the bound
states of H. As we saw in Chap. 2, an analog of this property is false in classical
mechanics. This property follows from the so-called minimal velocity estimate
[Gr], whose proof is based on the Mourre estimate. The property (4.0.9) plays
an important role in the proof of asymptotic completeness.

Section 4.4 is probably the central section of the whole chapter. The result
of this section enable us to reduce the study of time-independent potentials to
the framework of Chap. 3.

In Sect. 4.5 we describe the joint spectrum of the asymptotic velocity and the
energy. This result can be viewed as a weak form of asymptotic completeness. It
will not be used in the proof of the asymptotic completeness of wave operators.

Section 4.6 is devoted to short-range scattering theory. Roughly speaking we
assume that

V(z)| < C{z)™, p>1.

Using Sect. 4.3 and the results of Chap. 3, one proves the existence of the short-
range wave operators

the—tho —. ,Q+

s— lime e

t—o00

and the fact that
Ran2f = H.(H).

This property of the wave operator goes under the name of asymptotic complete-
ness. The wave operator implements the unitary equivalence of P* and D on
‘H.(H), meaning that

Pt = QF DO,
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Section 4.7 is devoted to long-range scattering theory. In this section we treat
in a parallel way potentials with the long-range part 1] satisfying roughly

05Vi(@)] < Cala)™ 7, u>0, |a|=1,2, (4.0.10)
or the stronger condition
10°Vi(z)] < Colz)™1 ¥k >0, |a>1. (4.0.11)

The second condition allows for some simplifications, whereas the first condition
is essentially optimal for asymptotic completeness. Asymptotic completeness un-
der condition (4.0.10) is due to Hérmander, who used a slightly stronger hypoth-
esis in [H62| to show asymptotic completeness by the time-independent method.
The results of Sect. 4.3 allow us to reduce ourselves quite easily to the case of
long-range time-dependent potentials treated in Sect. 3.4. In this way, we can
prove the asymptotic completeness of the modified wave operators

QF = s— lim et e=15tD), (4.0.12)

t—00

where S(¢, &) is a solution of an appropriate Hamilton-Jacobi equation.

If 4 > 1/2, then it is possible to construct wave operators in a simpler way,
using the so-called Dollard modifiers, instead of solutions of the Hamilton-Jacobi
equation. Besides, one can include Hamiltonians with internal degrees of freedom.
This is the subject of Sect. 4.8.

In Sect. 4.9 we consider another construction of long-range wave operators
due to Isozaki and Kitada [IK1]. We assume in this section that the potentials
satisfy the smooth long-range condition, roughly, (4.0.11). The Isozaki-Kitada
construction is based on a time-independent modifier, which is a Fourier integral
operator J;| defined by

() = @m) [ @O0 (@, €)p(y)dyde, (4.0.13)

associated with a solution @ (z, &) of the eikonal equation, where ¢*(z,&) is a
cutoff equal to x(3£?) in an appropriate outgoing region. It turns out that the
limit
s— lim " Jte tHo (4.0.14)
t—00

exists and is equal to the usual long-range wave operator (2;7 multiplied by an
energy cut-off xo(Hp). This type of a construction proved useful to study various
properties of the scattering matrix (see for example [IK3, GeMa2]), because it
works well within the stationary approach to scattering theory.

This ends the main part of this chapter devoted to the existence and com-
pleteness of wave operators. The remaining sections of this chapter describe more
special topics.

In Sect. 4.10 we describe a Schrodinger operator for which the short-range
wave operator and the asymptotic velocity exist but the wave operator is not
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complete. We prove this by constructing an additional wave operator whose
range is orthogonal both to the bound states and to the usual scattering states.
Such an example was first given by Yafaev [Yaf2] and we essentially follow his
construction. Its main ingredient can be viewed as a certain version of the Born-
Oppenheimer approximation. The variables of the configuration space are divided
into two components, z and y. If we choose the potential V'(x,y) in an appropri-
ate way, then there exists a nontrivial channel that describes a particle moving
away from the origin as Cyt for Cy > 0 and spreading in the direction of the y
coordinate at the rate of Cv/1.

Weak propagation estimates, which we used so far in this chapter, give very
weak information on the decay of || B(t)e™"" ¢|| for some observables B(t). Their
advantage consists in very weak assumptions on the potentials and the fact that
they are valid for all ¢ in the Hilbert space. One can also study the so-called
strong propagation estimates. They describe a faster decay of observables, typ-
ically B(t)e™®2 ¢ € O(t~), but they are valid only for ¢ in a certain dense
subspace of the Hilbert space. Usually, they also require stronger assumptions
on the potentials.

It seems that weak propagation estimates are more important than the strong
ones. In particular, they are sufficient for proving the existence and completeness
of wave operators. Nevertheless, in order to prove certain detailed results on wave
operators for smooth potentials we need some strong propagation estimates,
notably the strong low velocity estimate.

The next three sections are devoted to strong propagation estimates. They
are due to Sigal and Soffer [SS3]. The abstract method used to obtain these
estimates consists in finding a positive (unbounded) observable with a negative
Heisenberg derivative. A similar method is also used in partial differential equa-
tions to prove the propagation of the wave front set along bicharacteristics (see
[H63]).

In Sect. 4.11 we prove the strong large velocity estimate. It says roughly that,
for x € C§°(IR) and 6 large enough,

Tpg,oof(Z) X (H)e ®H (z)N € Ot ). (4.0.15)
This estimate is relatively easy to show and it requires very weak assumptions
on the potentials.

The estimate that is much more useful is the so-called strong minimal velocity
estimate. It says, more or less, that, for x € C§°(IR\{0}) and 6 small enough,

o0 (Z)x(H)e ™ (z)~N € O(t~N). (4.0.16)

Its proof is more difficult than the proof of (4.0.15) and it requires essentially
that the potentials are smooth. In order to show this estimate, one has first to
prove a strong propagation estimate for the generator of dilations A, roughly:

o002 (2)X(H)e " (A)y~N € O(t~V). (4.0.17)

t
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The estimate (4.0.17) is shown in Sect. 4.12 and the estimate (4.0.16) is shown
in Sect. 4.13.

Note that there exists an alternative approach to strong propagation esti-
mates based on the study of boundary values of the resolvent, which is due to
Jensen, Mourre and Perry [JMP, Jen].

Scattering theory, especially in the long-range case, is intimately connected
with the theory of pseudo-differential and Fourier integral operators associated
with the metric (z)~?dz? + d€2. In the remaining part of this chapter, we would
like to explore these relationships. Roughly speaking, we assume that V'(z) is a
symbol of the class S({z) *, () ?dz?), where p > 0 in the long-range case and
p > 1 in the short-range case. Under such a condition, if x € C§°(IR), then x(H)
itself is a pseudo-differential operator. This property and other simple properties
of functions of H are described in Sect. 4.14.

In Sect. 4.15 we present a construction of a Fourier integral operator I that
has the same phase as the Isozaki-Kitada modifier (4.0.13) but its amplitude in
the outgoing region solves asymptotically the appropriate transport equation.
We call it an improved Isozaki-Kitada modifier.

In Sect. 4.16 we show a number of strong propagation estimates that use mi-
crolocal cutoffs. There are various possible ways to show these estimates. Origi-
nally these estimates were obtained in [IK4] using similar estimates on the resol-
vent (H — \)~! and the Fourier transform. In our approach, we first show these
estimates for the free evolution e~“H0 using the non-stationary phase method.
Then we use the improved Isozaki-Kitada modifiers and the Duhamel formula
to obtain similar estimates for the full evolution e ®#. The crucial step of this
proof is an application of the strong minimal velocity estimates of Sect. 4.13.

If we multiply the wave operator by a pseudo-differential cutoff supported in
an outgoing region, then it equals an improved Isozaki-Kitada modifier modulo
terms in ¥ ((z)~). In particular, this means that the wave operator with a cutoff
in an outgoing region is a pseudo-differential operator in the short-range case and
a Fourier integral operator in the long-range case. These facts follow from the
microlocal propagation estimates of Sect. 4.16 and are proven in Sect. 4.17.

One can also ask about regularity properties of wave operators without a
microlocal cutoff. Such properties are the subject of Sect. 4.18. We show that,
for x € C§°(R\{0}) and s < s,

(2) ™2 x(Hp)(z)* is bounded. (4.0.18)

This result was obtained by Jensen-Nakamura [JN]| and Herbst-Skibsted [HeSk1].

In the case of a positive s, one can strengthen this property and show that
(4.0.18) is true for 0 < s = s'. This result is due to Isozaki [I3] and requires a
somewhat different proof.



4.1 Schrodinger Hamiltonians 145

4.1 Schrodinger Hamiltonians

In this section we will describe notation and facts concerning Schrodinger Hamil-
tonians. The basic notation concerning Hilbert spaces is given in Appendix B.1.
Most of the time, we will work with the Hilbert space L?(X) where X = IR".
Basic notation concerning this Hilbert space was given in Sect. 3.1.
We will also use the notation (z) := /1 + 22 and

|s], s <0, 0, s<0,
sl = |sl4 =

0, s >0,

(s),s <0, 1, s <0,
(s)- = { (s)4 = {

1, s >0,
A Schrodinger operator is an operator of the form

1
H:§D%H4@, (4.1.1)

where V(z) is a real-valued function on X satisfying appropriate conditions that
make it possible to define (4.1.1) as a self-adjoint operator.
Let us list conditions that are useful in defining H:

Definition 4.1.1
(1a) V (z) is Hy-bounded with the Hy-bound a, if

lim |[(A 4+ Ho) 'V ()] = ay.
A—00

(1b) V(x) is Hy-compact if

V(z)(1+ Hy)™" is compact. (4.1.2)

(2a) V (z) is Hy-form bounded with the Hy-bound ay if

Jim (|3 + Ho) 2V (2) (A + Ho)# || = as.

(2b) V(x) is Hy-form compact if

(1+ Ho)’%V(x)(l + HO)’% is compact. (4.1.3)

Let us note the following implications.
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Proposition 4.1.2

(i) V(z) is Hy-bounded with Hy-bound a, = V (z) is Hy-form bounded with Hy-
form bound < a;.

(i) V(x) is Hy-compact = V(x) is Hy-bounded with Hy-bound 0.

(1i) V(x) is Ho-form compact = V(x) is Ho-form bounded with Hy-form bound
0.

(iv) V(z) is Hy-compact = V (x) is Hy-form compact.

The following proposition gives certain sufficient conditions for the self-
adjointness of H.

Proposition 4.1.3
(i) If V(x) is Hy-bounded with Hy-bound less than 1, then H is a self-adjoint
operator with the domain

D(H) = D(Ho) = H*(X),

(i) If V(z) is Ho-form bounded with Hy-bound less than 1, then H is a self-
adjoint operator with the form domain

Q(H) = Q(Hy) = H'(X).

The Hy-form compactness of V(x) means that V(x) decays (in some mean
sense) in all directions. This is typical for 2-body interactions and this assumption
will be satisfied most of the time in this chapter.

We will usually assume a stronger assumption, namely, the Hy-compactness
of V(z), because it is technically somewhat easier than the Hy-form compactness.

Let us state the so-called Weyl theorem for Schrodinger operators.

Proposition 4.1.4
Assume (4.1.3). Then for any x € C§°(IR), the operator x(H)—x(Hy) is compact
and

Oess(H) = [0, 00]. (4.1.4)

Our main object of interest will be the one-parameter group of unitary op-
erators e~ generated by H. If ¢ € L?(X) we will sometimes use the notation

OPRES e_itHgb.

If A(t) is an operator-valued function, then the Heisenberg derivative of A(t) is
defined as

DA(t) := SA(t) +i[H, A(t)].
Note that

%efitHA(t)efitH — efitH (DA(t)) efitH'
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4.2 Weak Large Velocity Estimates

In this and the next section we will assume that (4.1.3) holds. Note that, com-
pared to the assumptions used in the remainder of this chapter, (4.1.3) is a very
weak condition.

The main result of this section gives a rigorous meaning to the idea that, for
large time, the probability of finding the particle in the region x> > 2Ht? goes to
zero in a certain weak sense. This result gives us very little control on the rate
at which this probability goes to zero. Therefore it is called a weak large velocity
estimate. The weak large velocity estimate will be used very often in this chapter
in the proof of the existence and completeness of wave operators.

Proposition 4.2.1
(i) If x € C§°(R), 0, < b, and suppy C] — oo, £03[, then

/1'00 ]1[01,02] <%> X(H)¢t

(i) Let x € C°(R), suppx C] — 00, 303, F € C*(R) with F' € C{*(R) and
suppF' Cl6y,00[. Then

2
dt
T <ol

s— lim e F (M) x(H)e ™ = 0.

t—o00 t

Before the proof of this proposition let us state a simple lemma.

Lemma 4.2.2
(i) Let x € C§°(R) and f € C§°(X). Then

s (2

(1) If, moreover, 0 < x < 1, suppx C [—o0, %02] and 0 < f <1, 0 & suppf, one
has

H co@t™).

kd

HX(H)Di (@) H <0+ o(t9). (4.2.1)

Proof. (i) follows from the bound
I(H +1) '[H,z](H +13) | <C

and the methods of Appendix C.1.
Let us now prove (ii). We first claim that
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kd

x(H)f (—

t

) V(z)x(H) = o(t%). (4.2.2)
Indeed, by (4.1.3) x(H)V (z)x(H) is compact, moreover, s— limy;_,, f (‘T) = 0.

Therefore,
nmf(%gxunvum&n=m

which, using (i) proves (4.2.2). Using (4.2.2), we compute

X(H)DZ 2 () 2 Dy(H)
< x(H) (Df? (&) D + 2% (&) V(2)) x(H) + o(t) (4.2.3)
= 2x(H) f2 () Hx(H) + o(t?).

This clearly has the norm less than 62 + o(t°). O

Proof of Proposition 4.2.1. We will prove the proposition by constructing
a suitable propagation observable. Let 6 5 < 6 1 < 6y < 6; < 6y such that
suppx C [—00,36%,[. Choose f € C§°(IR) so that suppf C [0_1,00], f =1 on
[90, 01] Define

S

F(s) = / f2(s1)ds.

—0oQ

Our propagation observable will be

We compute:

—Da(t) =t x(H)f? () Zx(H)
—5t ' X(H) (D (i) +he) x(H).
Choose ¥ € C°(R), f € Cg°(R) such that xx = x, ff = f,0< ¥ <1,

0 < f <1, suppx C [—o0, 562,] and 0 ¢ suppf. Using Lemma 4.2.2 (1), we see
that the second term on the right of (4.2.4) equals

(4.2.4)

%MHV(%QX<)(||fC')+m)MHyH%r%. (42,5

Using Lemma 4.2.2 (i) to estimate (4.2.5), we see that (4.2.4) can be estimated
from below by
]

Cot ' x(H) f? <7> x(H), (4.2.6)

where Cy := 6y — 0_1 > 0. By Lemma B.4.1, this implies
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[l

and ends the proof of (7).

Let us prove (ii). Let the function F satisfy the conditions described in (ii).
Clearly, we can assume additionally that F' > 0 and F'(s) = 1 for s > Ry. Choose
fe C§°(X) such that f =1 on suppF’ and suppf C [01, 00[. Then

2d
< <clol. (4.2

_ S 7 |T _
Do) = x()f (45 507 () i + 0,
where B(t) is uniformly bounded. Therefore, by (i), there exists the limit

s— lim e"7@(t)e " (4.2.8)

t—o00

If, in addition, F' has a compact support, then, by (i), we have

F(gle(®)ee) < Clioll*. (4.2.9)

Thus, if F satisfies the conditions in (i) and has a compact support, the limit
(4.2.8) is zero.

Let us now take functions F; € C*®(IR), f € C§°(IR) such that suppF; C
[0y, oc[, F1 =1 on a neighborhood of oo, and F] = f2. Set

2a(0) = () () (D),

By the previous discussion, we know that, for R > 1, the limit

) itH —itH
s— lim e Pr(t)e

exists. Repeating the calculations of the proof of (i) and keeping track of R we
obtain

~Dog(t) = bx(H)f* (&) Ex(H) — ax(H)DE £ (1&) x(H) + he
> 4 (1= %) XU (&) #x(H) + O R)
(4.2.10)
Hence, for R > C,

—D&g(t) > O(t™"R™7). (4.2.11)

Therefore, for ¢, > 0, we have

S— tllglo eth@ ( ) tH — eitOHdsR(to)e_itoH

+ i € (D(s)) 7" ds (4.2.12)

< el @p(tg)e 0 + Oty R72).
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For a fixed ¢y, the terms on the right-hand side of (4.2.12) go strongly to zero as
R — oco. Hence

s— lim (s— lim eitHQPR(t)X(H)eitH) = 0. (4.2.13)

R—o00 t—00

|

We remark now that, for R > 1, the function Fi(|z|) — F} (7

support included in |6y, ool. So,

) has a compact

s— lim e (&, (t) — Pr(t)) x(H)e " = 0. (4.2.14)

t—00
Letting R tend to infinity in (4.2.14) and using (4.2.13), we obtain
s— lim e, (t)e " = 0.

t—00

This ends the proof of (ii). O

4.3 The Mourre Estimate and its Consequences

We first define the self-adjoint operator
A= 1((z, D)+ (D,x))

called the generator of dilations. A is defined as the infinitesimal generator of
the unitary group 7T; defined by

Tip(z) = e % gle 'z), ¢ € L*(X).
It is easy to verify that
D(A) = {¢ € L*(X) | Ap € L*(X)}.

For an Hy—bounded potential V' (x), we will denote by V.V (x) the (possibly
unbounded) operator [A, iV (x)], defined as a form on D(A) N D(H,).

The following theorem describes the Mourre estimate for 2-body Hamiltoni-
ans.

Theorem 4.3.1
Suppose that (4.1.2) holds and

(1—- A2V, V(z)(1 - A" is compact. (4.3.1)
Then, for any A\ < Ao, there exists a compact operator K such that

]][Al,/\z}(H) [H, ’L.A]]l[)‘ly,\z}(H) = 2H]][)\1,)\2] (H) + K (432)
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Moreover, for any A &€ opp(H) and § > 0, we can find an open neighborhood A
containing \ such that

W (H)[H, iAo (H) > 2(\ — 6)14(H). (4.3.3)

Proof. As a form on D(A) N D(H), we have
[H,iA] = D* — 2V,V = 2H — 2V (z) — 2V,V (x).
Using (4.1.2) and (4.3.1), we see that
(1—2)'2V(z) + 2V, V(2)(1 —A)!

is compact and
]l[)q,/\z](H)(l - A)
is bounded. This implies (4.3.2).
To prove (4.3.3), we use the fact that if A\ & op,(H), we have

S— ’]il_rf(l) ]][)\*N,A‘HC} (H) = ]]{)\} (H) =0.

Since K is compact, this implies that K, , ;) (H) tends to 0 in norm when
k tends to 0, which proves (4.3.3). O

Theorem 4.3.1 is analogous to the classical Mourre estimate proven in Propo-
sition 2.3.2 in Chap. 2.

The next theorem is known as the wvirial theorem and has been proven by
various authors [Wei, Kal, Mo1, PSS]. Our proof follows [PSS].

Theorem 4.3.2
Assume that H is self-adjoint with domain H*(X) and

(H +4)'aV,V(2)(H +14)~" is bounded.

Then for any A € R,
Ty (H)[H, iy (H) = 0.

Proof. Let Hy = ;D? As maps on S(X), we have
Hy(1+ ieA) = (14 2¢e+ icA)Hy,

which gives
Hy(1 +ieA) ' = (1 +2¢ +ieA) ' H,,

and hence
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(Hy +14)(1 + ieA)~ (Hy +14)7"
(4.3.4)
= (1 +2¢e+i€A) *Ho(Hy +1) ' +i(1 +1eA) 1 (Ho + 1) L.

This implies that (1+4€4)~" is bounded on H?(X). We also deduce from (4.3.4)
that
s—lim(Ho +1)(1 +ied) (Ho+i) "= 1. (4.3.5)

If we define
Ac:= A(l +ied) ' =ie (1L +ied) ' —de !,

we claim that

w—lim(Ho + %)~ '[H, iA.](Ho + 1)~
e—0 (436)
= (Ho +1) '[H,iA](Hy + i) .

Indeed, we have
(Hy + i) [H,iAJ(Hy + 1) ¢
= —e '(Ho+ i) '[H,(1+ieA) | (Hy +1)"
= (Ho + i) H(1 +i€A) " [H,iA](1 + ieA) " (Hy + i)~ L.

This implies (4.3.6), using (4.3.5) and the fact that (Ho + i) "*[H,iA](Hy + )"
is bounded.

Let now v;, 1 = 1,2, be eigenvectors for H with the energy A. Since 9); €
H?(X) and H; = My, we have, by (4.3.6),

(1/11 | [H, iA]%) = lg%(%HHa iAe]%)
= ll_I)%(H?/jl’ 2Ae¢2) - (iAewla H%) = 0)

which proves the proposition. O

The next result is due to Mourre [Mol].

Theorem 4.3.3
Assume the hypotheses of Theorem 4.3.1. Then for any A\ < Ao such that 0 &
[/\17 A2]:

dim]lpp(H)]l[)\l,)\z](H) < 0.

Proof. If Ay < 0, the result follows immediately from (4.1.4).
Assume now that \; > 0. By (4.3.2), for some compact operator K, we have

]l[)q,)\z] (H) [Ha iA]]l[)q,)\z] (H) Z 2)\1]1[)\1,)\2] (H) + K. (437)

Let v, n € IN, be orthonormal eigenfunctions with eigenvalues in [A{, Ag]. Using
(4.3.7) and Proposition 4.3.2, we obtain
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0= (wna ]I[Al,)\z] (H)[H, iA]]l[Al,)Q] (H)wn) > 2/\1”1/)71”2 + (wm Kwn)

If the set {1, }new is infinite, the sequence 1, tends weakly to zero, so
Jim (v, Kipy) = 0,

since K is compact. But this is a contradiction, since A; > 0. This completes the
proof of the theorem. O

Note that Theorem 4.3.3 implies that the only accumulation point of o, (H)
can be at 0. Therefore

1°P(H) = 1——7~(H). (4.3.8)

opp(H)

Bound states of a 2-body Hamiltonian fall into three categories. Bound states
with a negative energy are the most physical ones. Sometimes a Hamiltonian
may possess a zero energy bound state. Finally, a priori one should not rule out
positive energy bound states.

One might think that positive energy bound states can be an obstacle in de-
veloping scattering theory. It turns out that they are not. We know by Theorem
4.3.3 that they are discrete in ]0, 0o[. Therefore, for instance, in proofs of asymp-
totic completeness we just localize in energy outside of the pure point spectrum.
Nevertheless, it is good to know that under quite general assumptions on the
potentials there are no positive bound states whatsoever. This result is due to
Froese-Herbst [FH2]. It will follow from the more general Theorems 6.5.1 and
6.5.4 valid in the N-body case.

Theorem 4.3.4
(1) Assume the hypotheses of Theorem 4.5.1. Let 1 € H?*(X) satisfy Hy = Ev
with E > 0. Then for any 6, we have

e’ly € H*(X).

(i) If E < 0, then
e(=FI"?=9lkely ¢ H2(X), €> 0.

(#i) If, moreover,
lim [|(A = 34)" 22V, V(2)(A = 54)) 72| < 1,

A—00

then H has no positive eigenvalues.

4.4 Asymptotic Velocity

In this section we construct the fundamental asymptotic observable for time-
independent 2—body Hamiltonians, namely, the asymptotic velocity and describe
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its basic properties. It will be the analog of the asymptotic momentum con-
structed in Theorem 3.2.1 in the time-decaying case. Beside its independent in-
terest, this observable will be useful in our proof of the asymptotic completeness
of wave operators for the Hamiltonians we study in this chapter.

The main results of this section are stated in the following theorem.

Theorem 4.4.1
Assume that (4.1.2) holds and

K2 (= 2)71VV (@) T 0o(5) (1 — 2)7Y dR < o0, (4.4.1)
Then (4.1.8) holds, and hence the conclusion of Theorem 4.2.1 is true. Likewise,
(4.3.1) holds and hence the conclusion of Theorem 4.3.3 is true. Moreover, the
following holds:

(i) There ezists

s—Co — lim eitng_”H =: Pt (4.4.2)

The vector of commuting self-adjoint operators PT is densely defined and com-
mutes with the Hamiltonian H. It is called the asymptotic velocity.
(i)

5—Coo — Jim e De "1y 10y (PT) = PT. (4.4.3)

(iii) 1
H]lx\{()}(P+) = §(P+)2

(iv)
1oy (P*) = T°P(H).

(v)
o(P* H) = {(&16%) | £ € X} U{0} x oy (H). (4.4.4)

Remark. The assumptions of this theorem are more general than the assumptions
of Theorem 4.6.1 about the existence of short-range wave operators and than the
assumptions of Theorem 4.7.1 about the existence of long-range wave operators.

Similarly as in the classical case, the space Ranllx\ (o} (P*) can be called the
space of scattering states. By Theorem 4.4.1 (iv), it coincides with the continuous
spectral subspace. This fact should be compared with the case of classical Hamil-
tonians, where there may exist unbounded trajectories that are not scattering
trajectories.

(4.4.4) gives a description of the joint spectrum of the asymptotic velocity and
the Hamiltonian. It can be shown independently, as a consequence of Sects. 4.6
and 4.7, where we prove the existence and completeness of wave operators under
additional assumptions on the potentials. Therefore, (4.4.4) can be considered
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as a very weak version of asymptotic completeness. Its proof will be given in the
next section.

The proof of Theorem 4.4.1 will be divided into a series of lemmas and

propositions, some of them of an independent interest. Throughout the section
we assume (4.1.2) and (4.4.1).

We start with a rather technical lemma that deals with various properties of
the potentials.

Lemma 4.4.2
(1—-2)"'V,V(z)(1 - A)"" is compact, (4.4.5)

(1—-A)"2V,V(z)(1—A)"" is compact. (4.4.6)

Moreover, if J € C*(X) such that J' € C§°(X) and J =0 on a neighborhood of
zero, then

(1 A) 'V, V(2)] (%) (1—A) ' e L'(dR). (4.4.7)
Finally, if x € C§°(IR), then
D, x(H))J(%) € o(R®) N L' (dR). (4.4.8)

Proof. Writing
(1-2)"'V, V()1 - A" =(1-A2)7D,iV(x)](1 - A)~!

we see that (4.4.5) is true.
Let us prove now (4.4.7). We can assume that suppJ C X\B(1). Now (4.4.7)
follows easily from the following identity:

(1-A)7'V,V(2)J (£) (1 - 4)"

+(1= 2)7H LDV (&) + AT (£)) (1= A) 7'V, V (@)oo () (1 — 2)

= J(5) (1 = A7V @)l () (1 - 2)7

Both terms of the above expression are integrable in R on [1, co[. This completes
the proof of (4.4.7).

Next let us prove (4.4.6). Choose F' € C*°(IR) such that F' =0 on [0,1] and
F =1 on [2,00]. Set

Co ::/ F(1/s)ds.
0
We first note that
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is compact. Moreover,
[P = )7V (@)gF () 1- A)7dR (449)
— (1 —A)‘lewV(x) (m)( A)- 1,

where

flal) = [ F(1/5)as

and the integral on the left of (4.4.9) is norm convergent by (4.4.7). So (4.4.9) is
compact. But Cy — f(|z|) is a function of compact support. Hence

(1= 24)"2V,V(2)(Co = f(|2]))(1 - A)~

is compact too. This immediately implies (4.4.6). (4.4.8) follows easily from
(4.4.5) and (4.4.7). O

Our next proposition describes an important weak propagation estimate,
which, in the more general N-body case, was first obtained by Graf [Gr].

Proposition 4.4.3
Let x € Cg°(IR) and 0 < 6 < 6. Then

[ oo (5) -5} e

Proof. Let 65 < 03 < 6, be such that suppx C] — oo, 263[ and let R € C>(X)
be a function such that

2

< < cllg). (4.4.10)

1
V2R >0, VR=0 on aneighborhood of zero, R(z) = 53;2, lz| > 6.

Let J € C§°(IR) such that J =1 on [0, 0,].
Set
M(t) = 3(D = §,VR(})) + 3(VR($), D = §) + R(5)-

We consider the following uniformly bounded propagation observable

D(t) := x(H)J(7)M () ()x(H).

t

We compute:

)X(H) + he
=)y (H) (4.4.11)

De(t) = x(H) (DJ(3)) M(1)J(

|8
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The first term on the right-hand side of (4.4.11) can be written as

XUDT (7) BOT (7)) +0(¢) + (8) L )
for a certain uniformly bounded operator B(t) and j € C$°(IR),suppj C]6s, ool
Using Proposition 4.2.1, we see that this term gives an integrable contribution
along the evolution.

The second term in the right-hand side of (4.4.11) is integrable in norm by
Lemma 4.4.2.

We observe now that

J($) (D= §V2R($)D - §)J () =¢(D—§, J2(5VR($)D - ) +0(t™)
> (D = %), g, 0y (5) (D = £)) + O(t7%)
and apply Lemma B.4.1 to complete the proof of the proposition. O
Lemma 4.4.4
Let x € C§°(IR) and 0 < 61 < 6. Then
) x x i
s Jim Tip, g, (%) (; - D) Y(H)e " =0, (4.4.12)

Proof. Let J € C§°(X) such that 0 ¢ suppJ and J(z) =1 for 6; < |z| < 6.

Let x € C§°(IR) such that xx = x. First note, using (4.4.8) that
s=Jim J () (3 = D) x(H)e" = s~ lim x(H)J (%) (5 = D) x(H)e~".
Set
x T\ . T T
()= x(#) (D= 3) 1 (F) v (3) (2= ) w0
We have

—D&(t) =2t 'd(t)
+2t7'x(H) (D - 2) (D — 2, VJ (£))3*(H J(%)( g) ) + he
X(H)VLV (@) T (5)X°(H)T (§) (D — %) x(H) + he

¢
Clearly, the right-hand side of the above expression is integrable along the
evolution by (4.4.7) and Proposition 4.4.3. Therefore, there exists the limit

ﬂ~IH

tliglo (9| 2(t) ) - (4.4.13)

But, again by Proposition 4.4.3, we have
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o dt
| @leten T < oc. (4.4.14)
Hence the limit (4.4.13) is zero. O
Proposition 4.4.5
Let J € C(IR). Then there exists
s— lim ei# J <f> it (4.4.15)
t—o00 t
Moreover, if J(0) = 1, then
— i —lim otH 7 () oitH ) —
S 1%1_{130 (s tli)rgloe J (Rt) e ) 1. (4.4.16)
If we define
s—Cly — lim e 2 =it — p+. (4.4.17)
t—00 t

then the vector of commuting self-adjoint operators Pt is densely defined and
commutes with the Hamiltonian H. Hence Theorem 4.4.1 (i) is true.

Proof. By density, we may assume that J € C§°(X) and that J is constant on
a neighborhood of zero. It also suffices to prove the existence of

- }E?o itH J (%) X?(H)e—itH
‘ - - (4.4.18)
= s— lim ¢’ x(H)J (%) X(H)e™

for any x € C§°(IR), using Lemma 4.2.2 (7).
As the first step, we will show that there exists

s— lim e"H@(t)e "H
fmee (4.4.19)
where  &(t) := x(H) (7 (%) + (D - %,VJ (%)) x(H).

To see this, we note that

D(t) = —x(H)V.V(2)VJ($)x(H)
(4.4.20)
+HTIX(H)(D = 2, V2T (2) (D - 2))x(H) + O(t™?).

The first term on the right of (4.4.20) is integrable in norm by (4.4.7) and the
second is integrable along the evolution by Lemma 4.4.3. Therefore the limit
(4.4.19) exists.

It remains to show that (4.4.19) equals (4.4.18). But this follows from Lemma
4.4.4.

This completes the proof of the existence of (4.4.15). (4.4.16) follows imme-
diately from Proposition 4.2.1 (7). The fact that P exists as a densely defined
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commuting vector of operators follows then from Proposition B.2.1 and B.2.2.
The fact that P™ commutes with H follows easily from Lemma 4.2.2 (i). O

As in Chap. 3, the asymptotic velocity of a scattering state is also the limit
of its momentum.

Proposition 4.4.6
Let g € Coo(X). Then

s— lim " g(D)e ™ 1x\ (0} (PT) = g(PT)1x\ (o3 (PT). (4.4.21)

t—o0

Hence Theorem 4.4.1 (ii) is true.

Proof. It is enough to assume that g € C§°(X) and to prove that

s— lim et (g(D) -9 <£)> J (E) x(H)e ™™ =0 (4.4.22)

—00 t t

for any J € C§°(X\{0}) and x € C§°(IR).
We already know that the limit exists. Next we note that, by the Baker-
Campbell-Hausdorff formula (3.2.28),

(9(D)—g(2))J () x(H)e
=B(t) (D - %) J(2) x(H)e™™ + O(t™),

t

(4.4.23)

where B(t) is uniformly bounded.
(4.4.23) converges to zero strongly by Lemma 4.4.4. Hence (4.4.22) is true.
O

Next we will prove the so-called low velocity estimate in a version due to Graf

[Gr].

Proposition 4.4.7
Let x € C°(R), 0 > 0 and suppx C363, co[\opp(H). Then

I

Proof. Let 6y < 05 such that 162 & op,,(H). Let us also fix 0y, 6, 64 such that
00 <0<, < 03 < 04 and 9% > 0,0,.
By Proposition 4.3.1, we will find a function x € C§°(IR) such that ¥ =1 on

a neighborhood of 163, suppx C]363, 36| and

2
dt
< <clap (4.4.24)

toas () 00

X(H)[H,iA[X(H) > 035 (H). (4.4.25)

Let x € C°(IR) such that ¥ = 1 on suppy.
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We also choose J, J € C°(X) such that J = 1 for |z| < 6, J =1 on suppJ
and suppJ,suppJ C {z | |z|] < 61 }.

Set
M(t):=J (£) +(D - £,VJ (%)),

O(t) = x(H) M ()X (H) X (H) M (t)x(H).
)"

Using the boundedness of (z)x(H)(z
We compute

1 we see that &(t) is uniformly bounded.

Do(t) =1t x(H)(D— %, V2] (%) (D - 2))X(H)4x(H)M*({t)x(H) + he
—X(H)V,V (z)J (2)X(H) %% (H)M*(t)x(H) + he
+t I (H)M@)R(H) ([H,iA] = 4) % (H)M*(t)x(H)
=: Ri(t) + Ro(t) + R3(t).
The term R;(t) can be written as
Ri(t) =t (H)(D — 9)J(2)B(t)J(2)(D — £)x(H) + O(t™?) + ()" L' (dt)

for a certain uniformly bounded operator B(t). Using Proposition 4.4.3, we see
that R;(t) is integrable along the evolution.

The term Ry(t) is integrable in norm.

Let us now estimate the term Rj(t). By (4.4.25), we have

= x(H) M (t)x(H)i[H, A]x(H)M* (t)x(H)
> 5t~ x (H) M () X* (H)M* (¢)x (H)
=03t ' (H)M (t)M*(t)x(H) + O(t™2) + (t) ' L*(d¢t).
By Lemma 4.2.2 (i) and (%), we have
ITEXE)EXE) TN < 15 TEXENDIEXE)] + O
< 6,04 + o(t%).

So,
— i X(H) M () X(H) 4 5(H) M (0)x(H)
= —IX(H)M(t)J(2)X(H) 45 (H)J(2)M* (t)x(H) + O(t?)
> —10,0,x(H) M (t)M*(t)x(H) + O(t7?).

Therefore,

Ry(t) > Cox(H)M () M*(t)x(H) + Ot %) + (t) "L (dv),

where Cy := 02 — 6,0, > 0.
We write then
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M(t)=J (2) +(D = 2,VJ (2)) = My(t) + My(t).
We use now the inequality
(My + M) (M7 + M) > (1 — €)My M7 + (1 — e ") MyM;
to deduce that
Ry(t) > (1—€)Cot~'x(H)J? (%) x(H)
+(1 = e )Cox(HND = £,V ($)UVT (%), D — £)x(H).

The second term on the right-hand side of (4.4.26) is integrable along the evolu-
tion by Lemma 4.4.3. Hence, by Proposition 4.2.1, we obtain

[ G)wanef

_<CWW (4.4.27)
Thus we have shown our lemma for y supported in a sufficiently small neigh-
borhood of

(4.4.26)

%9% E]%ag,oo[\app(H).
Now assume that y is any C§° function supported in |363, co[\opp(H). We can

write .
X =D Xjs
7j=1

where x; are C§° functions with sufficiently small supports, such that

oo x 2 dt )
/ ']l[o,ao}<| ‘>XJ(H) , J=1,.
1 t
By the Schwarz inequality,
J7° (o001 (52) X (D) il o o) (421 25 () ) &
1
< (5 Phons () o #)" (5 o (£) 4
< gl
Hence 9
00 T dt
/1 Tjo,6] (%) X(H)dr 5 = n*Cllol?.

|

The following proposition shows that the states with zero asymptotic velocity
coincide with the bound states, and hence Theorem 4.4.1 (iv) is true.

Proposition 4.4.8
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Ny (PT) = 1°P(H).

Proof. Let Hp = 7¢ and J € Cop(X). Then
) itH 7 (2 a—itH
Jim 117 (5) e 19

= J(0)¢ + lim &7 (] (£) - J(0)) ¢ = J(0)¢.

This shows that PT¢ = 0 and proves

(4.4.28)

]1{0} (P+) > 1PP(H).

Let us prove the opposite inequality. Let 6 > 0. Let x € C§°(]362, 0o[\opp(H))
and J € C°({z | |z| < 0}). Then
x

Vi witH 2
s— lim e X(H)J (t

) Y(H)e ™ = \2(H) J>(P™). (4.4.29)

By Proposition 4.4.7,

0 2dt

1
Therefore, (4.4.29) is zero, which proves that

Loy (PF) < I y0ommm (H)- (4.4.31)
But by (4.3.8) the right-hand side of (4.4.31) equals 1°°(H). O

The following proposition proves that Theorem 4.4.1 (%4i) is true.

Proposition 4.4.9

1
Hlx\o(P7) = 5(P7)’ 1o} (P7).

Proof. Let x € C§°(IR) and J € C§°(X\{0}). It is enough to show that
X(H)J(PT) = x(5(P*)?)J(PF). (4.4.32)

We have
(x(H) = x(3(P*)?)) J(P*)

= s— lim ™ (x(H) — x(Hp)) J (%) emith

t—00

(4.4.33)

by Lemma 4.4.6.
But x(H) — x(Hy) is compact and J (%) goes strongly to zero. Therefore,
the right-hand side of (4.4.33) goes to zero in norm. O
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4.5 Joint Spectrum of P and H

In this section we prove part (v) of Theorem 4.4.1. It gives a complete description
of the joint spectrum of the commuting operators P+, H. This description can
be shown independently as a consequence of the existence and completeness of
(short-range or long-range) wave operators. But in order to show the complete-
ness of wave operators, one has to strengthen the assumptions on the potentials,
and the result about the joint spectrum, as we will see below, is true under the
same assumptions as those we used in the theorem about the existence of the
asymptotic velocity.

Lemma 4.5.1
Let J € C§°(X\{0}) and g € C§°(X). Then

[ o= a7 (F) e min - )

dt < o00.

Proof. Using the representation

9(D) = (2m)™ [ g(y)e™ @y,

we obtain

I(t) =(01-4)"1J (%) [V(2),g(D)](1—A)*
= (27)™" [ §(y)ydy [, dTR(t,d7),
where  R(t,7) = (1—A)™"J (%) WD)y (£)e (WD) (1 — A)L

Let J; € C§°(X\{0}) such that J; =1 on a neighborhood of suppJ. Commuting
N times functions of ¥ we obtain

R(t,7) =(1—-A)1J (%) e iTwD) J, (%) V.V (z)e i-D@D) (1 — A)-!
+7 (2) By (t,yr) VoV (2)e 0-DW0) (1 — A),
where
Ty\ N
IBu(tyn(i - ) <c (7).
Therefore, I(t) can be estimated by

C [ g)yldy fy ar||(1 = 2) 2 (2) Vv (1 - 2)

1 , (4.5.1)
+C [ 19@)yldy Jy dr(ZV (1 — 2)71 7, Vet (1 - A)71.

Now we use Lemma 4.4.2 (4.4.7) to see that the first term of (4.5.1) is integrable
and (4.4.5) to see that the second term is O(t 7). O
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Proposition 4.5.2

o(P*) = X.

Proof. Let § € X and || =7y > 11 > 19 > 0. Let g € C§°(B(&, 70)) such that
9(&) # 0. Let J € C§°(] — o0, r9]) such that J =1 on]—o0,r;| and j := —=J" > 0.
Clearly, we have

J (1€ = &l)g(€) = 9(£), (4.5.2)
7€ = &DIE — &l = r15(1€ — &),
(4.5.3)
91 — &l < rog(§).
Let x € C°(IR) such that x(5£%)g(€) = g(£). Consider the observable
2(1) = x(t)J (|7 — &) 2017 (|5 - &) xtan.
By Proposition 4.4.6, we have
S— tliglo eitH@(t)e_itH — 92(P+).
Let us now compute:
DO(t) = x(H)J (|2~ &) [V(2), 2(D)T (|2 — &) x(H) s
+x(H) (DJ (|2 = &) 2(D)J (| = &|) x(H) + he.
We claim now that
(DJ (‘% — & )) #(D)J ( & ) +he > —Ct2. (4.5.5)

In fact, choose § € C§°(X) such that gg = g and suppg C B(&y, 7). Then,
commuting functions of D and of , we see that the left-hand side of (4.5.5)
equals

=

(

to(D) U (2~ &) (F2.6 = D) PD)UNE (3~ &of) +he
+19(D)|2 - &|(J5) (|2 — &|) 9(D) + O(2)
> (s —m)3g(D)|2 = &|(J5) (|2 — &) 9(D) + O(t72),

which implies (4.5.5). Note that if we look for cancellations in the left-hand side
of (4.5.5), we actually obtain

CHER) PN

x
P&

) +he > —Ct 3,
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although it will not be needed in what follows.
By Lemma 4.5.1, the first term on the right-hand side of (4.5.4) is integrable
in norm. Thus
D®(t) > R(t) € L'(dt).

Let us now complete our proof. Using (4.5.5), for any t, € IR*, we have
G2(PT) =e™id(ty)e ol 4[5 (DP(t))e " dt

, . (4.5.6)
> el d(ty)e™ 0 — || R(t)]|dt.
By choosing ty big enough, we can make the integral on the right-hand side of
(4.5.6) as small as we wish. We claim that
: ito H —itoH
tggrgo et P(ty)eo

| (4.5.7)
exists and is non-zero. To this end, note that
¢i0€0D (1 )e—ofo D
=y (%D2 +V(x+ t0§0)) J (%) g*(D)J ('t%') % (%D2 +V(z+ tofo)) .
This goes strongly to g?(D), which is a non-zero operator. But
"0 @(10)e" | = [} p(1g)e5507]
This shows that (4.5.7) is nonzero.

Therefore, g(PT) # 0. Hence & € o(P*). This completes the proof of the
proposition. O

Corollary 4.5.3

o(P+, H) = {(g %g2> €€ X} U {0} x oy (H).

Proof. Proposition 4.4.9 shows that

o(P+, H) N (X\{0}) x R {(g %gZ) e X} | (4.5.8)

It follows from Proposition 4.5.2 that we have the equality in (4.5.8).
Finally, Proposition 4.4.8 and (4.3.8) show that

o(PT, H)N ({0} x R) = {0} x (opp(H) U{0}).
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4.6 Short-Range Case

The asymptotic velocity constructed in Theorem 4.4.1 gives a classification of
the states in L?(X) according to their asymptotic behavior under the evolution
e~®H The states with zero asymptotic velocity coincide with the bound states
of H. However, we would like to have a better understanding of the space of
scattering states Ranllx\ (o3 (P*). It is natural to ask whether lx\ (o3 (P*)P* is
unitarily equivalent to the momentum D. In this section we will assume that
the potential V' (x) satisfies a short-range condition. In this case, one can give a
positive answer to this question by constructing the wave operators. The main

result of this section is the following theorem.

Theorem 4.6.1
Assume that (4.1.2) holds,

]

/Ooo H(l = 4) VYV (@)l (ﬁ) (1—4)7|dR <o, (4.6.1)

and, for a certain N,

/ H(l — A)_IV(QT)]][LOO[ <%> (1- A)iN dR < o0. (4.6.2)
0
Then there exist . .
s— lim et =itHo (4.6.3)
s— lim e"tHoe =t ¢ (H), (4.6.4)

If we denote (4.6.3) by 2, then (4.6.4) equals 21*. One has
orof =1, Lot =1H).

Moreover, the hypothesis (4.4.1) holds, and hence the operator P* exists and
one has
Pt =0iDO (4.6.5)

sr

1°(H)H = QF Ho2:*. (4.6.6)

Remark. Tt is easy to see that just for the existence of wave operators the
hypotheses (4.1.2) and (4.6.2) are sufficient.

Remark. Sometimes it will be convenient to strengthen the hypothesis (4.6.2)
as follows:

Ed

[ s () a-sfan <o s
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Writing V.V (z) as [iD,V(z)] we see that then the hypothesis (4.6.1) follows
from (4.6.7) and (4.1.2).

Proof. Let us first prove the existence of (4.6.3). Let J € C§°(X\{0}) and
X € C§°(IR). Denote

M(t):=J (%) +(D-2,VJ (%)),
B(t) := x(H)M(t)x(Hy).
We will use the following easy identity consequence of (4.4.3):

s— lim e 0 M (t)x(Hp)e "0 = J(D)x(Hy). (4.6.8)

t—o0

By a density argument, it suffices prove the existence of

s— lim eitHe—itHoJ(D)X2(H0) = g— JEEO e“Hx(HO)M(t)X(HO)e_”HO

t—o0

. . 4.6.9
= s— lim e @(t)e tHo, ( )
t—o0
using (4.1.2) and (4.6.8).
We compute:
LD(t) + iHD(t) — iP(t)Hy
= x(H) (D -2,V (%) (D —2)) x(H,) (4.6.10)

+X(H)V (z) M (t)x(Ho)-

The second term on the right of (4.6.10) is integrable in norm by hypothesis
(4.6.2) and the first is integrable along the evolution using Lemma 4.4.3. This
implies the existence of the limit (4.6.9).
To prove the existence of (4.6.4), we note first that by Theorem 4.4.1 and
Lemma 4.4.4
s— lim M (t)e ™ = J(PT). (4.6.11)

Using the fact that 1°(H) = 1x\;0}(P") and a density argument, we see that it
is enough to show the existence of

s— lim e"Hoe~H J(P*)\?(H). (4.6.12)

t—00

But by (4.6.11) and (4.1.2), the limit (4.6.12) equals

Vi eitHog (4o itH
s— lim ™70 (t)e ™. (4.6.13)
But the existence of the limit (4.6.13) follows by the same arguments as the
existence of (4.6.9).
To show (4.6.5), let us consider g € Coo(X). Then we have by Theorem 4.4.1

(i)
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g(P+)]1X\{0}(P+) =S— tllglo eitHg(D)e_itH]lX\{o}(PJr)

= g— tll)rgé eitHe*itHog(D)s_ tll)rgé eitHoefitH HX\{O} (P+)

Finally, to prove (4.6.6), we use (4.6.5) to obtain
1 +\2 1 + 2 )t* + +x
§(P ) = E‘erD ‘er = ‘erHO‘er :

Then we use Theorem 4.4.1 (i) and (iv). O

One can generalize the above theorem and define a wave operator that in-
tertwines two Hamiltonians that differ by a short-range term.

Proposition 4.6.2
Let

1
H;, = 5D2 +Vi(z), i=1,2,

where V; are two potentials satisfying the hypotheses (4.1.2) and (4.4.1) of The-
orem 4.4.1 and let P;* be the asymptotic velocities associated with H;. Assume
that

||

/Ooo H(l — A7 (Vi(@) — Va(2)) 1,001 (E) (1-A)2|dR<oco. (4.6.14)

Then if (k,j) = (1,2) or (k,7) = (2,1), the limits

s— lim eiter_itHj ]IC(HJ) = ..Q+(Hk, HJ)

t—o0

exist and

)42 (Hj, Hy) = 1°(Hy),
b = P 2" (Hj, Hy),

Proof. Let J, x and M(t) be as in the proof of Theorem 4.6.1. Arguing as in
the proof of this theorem we see that it is sufficient to show the existence of

i aitHy a—itH; +\ 2
s Jim eIt J(PF) 2(H)),

J
= 5= Jim "o (Hy) M (8)x(Hj)e .

Then we mimic the arguments of the proof of Theorem 4.6.1. O
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4.7 Long-Range Case

In this section we begin our study of scattering theory in the long-range case.
In this case, the asymptotic velocity is well defined, although the usual wave
operators used for short-range potentials typically do not exist. Nevertheless,
one can construct modified wave operators, which intertwine the momentum
and the asymptotic velocity on the space of scattering states.

In this section we will construct modified wave operators and we will show
that they are complete. We will use the results of Sect. 4.3 to reduce ourselves to
the case of long-range time-dependent potentials treated in Sect. 3.4. The main
result of this section is the following theorem.

Theorem 4.7.1
Assume that V (x) satisfies the assumptions of Theorem 4.4.1 and can be written
as

V(z) = Vi(x) + Vi(a) (47.1)
such that
/OO H(l — A)_IV'S(.’L‘)]][LOO[ (%) ( — A)_% dR < o0,
0
| l|im Vi(z) =0,
T|—00
J5° sup |02Vi(z)|(R)®—1dR < 00, o] =1,2. (4.7.2)
|z|>R
Then there exists a function S(t, &) such that the limits
s— lim e/# e 15(t:D) (4.7.3)
t—00
s— tl_i)m ei5(t:D) g ~itH ¢ (H) (4.7.4)

exist. If we denote (4.7.3) by F, then (4.7.4) equals . Moreover, one has
Qr=19H), 20F=1,

(4.7.5)
QFPt = QfD,  HOF = QFH,.

Before proving Theorem 4.7.1, let us explain how one can get rid of the
short-range part V;(z) of the potential. To this end, let us introduce the auxiliary
Hamiltonian

H, := 1D? + Vj(z).

T2

We also introduce the asymptotic velocity associated with H;

P i=5-Cu — lim e Ze~th,
t—00
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It follows immediately from Proposition 4.6.2 that the following lemma is
true.

Lemma 4.7.2
There exists . _
S— tli)m " He M (H)) =: (), (4.7.6)
s— lim e'tHhetH e (), (4.7.7)

Moreover, (4.7.7) equals 2 and
Q0 =1°(Hy), 9 =1°(H),
QFH = HQ, fpt=pProt.

By the above lemma, it is sufficient to show Theorem 4.7.1 assuming that
Vi(z) = 0, which we will do in the remaining part of this section. In other words,
in what follows, V(z) = Vi(x).

Let us now explain how one can construct a function S(¢,€) that can be
used in the definition of modified wave operators. This is somewhat complicated,
because we want to show the theorem for a very large class of potentials (due
essentially to Hérmander).

The most obvious candidate for this purpose is the function S(¢,&) con-
structed in Proposition 2.7.4 that satisfies asymptotically the Hamilton—Jacobi
equation with the potential V{(x), more precisely, for every € > 0 there exists 7,
such that

OS(t,€) = L2+ V(VeS(,€)), t>T., [€]>¢

=3
4.7.8
% (S(t,€) — 3t€?) €o(t), in [¢|>e |8 <2 (478)

Unfortunately, this function can be used to define modified wave operators only
under some additional assumptions on the potentials. In the general case, one
needs a function whose construction is described in the following proposition.

Proposition 4.7.3
Let V(x) (4.7.2), that is,

/OO(RW"1 sup [0°V(z)|dR < 00, |a| =1,2.
0

lz| 2R

Let j € C§°(X) be a cutoff function such that

Jiwdy=1, [yilwdy=o,

and let
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Wt z) = / V(z + t3y)j(y)dy. (4.7.9)

Then there exist a function S'(t, €) that satisfies the following properties:
(i) for every e > 0, there exists T, such that

0,8(t,6) = %g? VL VESE), (ST, |€l>e

(i1) For every e > 0,

0 (S(t,6) —5t€%) €olt), in [l >¢e Al <2
O (S(t,6) —1te?) €o(t219)), in |g|>e, |8l >2.

Proof. Arguing as in the proof of Lemma 3.4.5, we see that, for any € > 0, the
time-dependent potential V(t, z) satisfies

fOOO Sup|w|2€t |8§‘~/(t, x)‘<t>|a|_1dt < o0, ‘CE| = 172)

J§2 SUD 45 |02V, ) [(t)21oldE < 00, o] > 2.

One can then follow the proof of Theorem 2.7.5 to prove the existence of S(t, ).
O

Now we can describe the modifiers that can be used to construct the wave
operators.

Proposition 4.7.4

(i) The function S(t,&) constructed in Proposition 4.7.3 using the potential Vi(z)
can always be used in Theorem 4.7.1 to construct modified wave operators.

(#1) Suppose that instead of (4.7.2) Vi(x) satisfies one of the following hypotheses:

/ (RY1 sup [8°Vi(2)|dR < 00, |a| = 1,2, 3; (4.7.10)
0

lz|>R

or
Jo (R)!? sup g5 |05 Vi(2)|dR < 00, |af =1,

(4.7.11)
Jo (R) sup > g [0 Vi(2)[dR < 00,  [a| = 2.

Then, in Theorem 4.7.1, we can replace S(t,&) with the function S(t,€) con-
structed in Theorem 2.7.5 for the potential Vi(z).

To prove the existence and completeness of modified wave operators, we will
first reduce the problem to an effective time-dependent potential, and then we
will apply the results of Chap. 3.
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Let © C X\{0} be a compact set. If the dimension of X is one, then we
assume additionally that @ is either to the right or to the left of 0. Let J €
C$°(X\{0}) such that J(z) =1 on a neighborhood of ©. Fix also zy € O. Set

Vilt,z) i= (V(w) = Vitao))J (7 ) + Vitao).
The potential V;(t,z) will be called an effective time-dependent potential.

Proposition 4.7.5
(i) We have

V(t€) — Vi (t,t€) = 0 for & in a certain neighborhood of ©.

(i) If V(x) satisfies

/OO(R)‘“H sup |0°V(z)|dR < 00, |a|=1,...,n,
0

|z|>R

then Vy(t,x) satisfies

[0 10Vt Yt < 00, fal =1,.,m.
0

(#i) If V(z) satisfies
Jo(R)2 sup 5 |03 V(z)|dR < 00, |a| =1,
Jo*(R) supjy 5 g |02 V(@)[dR < 00, || =2,
then V(t,x) satisfies
Jo V2102Vt lsodt < 00, o] =1,
Joe o7Vt )leodt < 00, af = 2.

Proof. The property (i) is immediate.
To show (i7), we write, for |a| > 1,

22Vi(t,z) = ¥ CpdlV(x)thlmlelge=b g (%)

B<a, 1<|B]

+(V(t, z) — V(tzo) )t 1*o* T (2).

The terms that contain the derivatives of V(z) give clearly the correct decay. To
estimate the last term, let us denote

r:= inf |z|.
zEsuppJ
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Consider x € tsuppJ. Clearly, txq € tsuppJ too. Hence x and tzy can be joined
by a curve of the length less than 7|z — tzy| that lies entirely in {z | |z| > rt}.
Therefore,

(V) = V(t20))0* J ()| < mla — to| supjgysy, [V V()07 (3))]
<Ct Sup|:c|>rt |V$V($)|’

where in the last step we used the compactness of suppJ. O

Let S;(t,&) be the solution of the Hamilton-Jacobi equation
{ 0S5 (t, &) = 382 + Vi(t, VeSs(t,6)),
SJ(TOa 5) = Oa

constructed in Sect. 1.8 for some 7j large enough.
Let

Vit 2) = [ Vilt,z +£/2y)(y)dy,

where j € C§°(X) is the same function as in (4.7.9). For a Tj sufficiently big, let
S;(t, &) be the solution of the Hamilton-Jacobi equation

{ ath(t’ g) = %gZ + VJ(t’ Vng(ta 6)),

Sy (Ty, &) = 0.

Lemma 4.7.6

Uniformly on ©, there exists the following limits:
lim (S,(t,€) - S(t,6)) = 0 (&), (4.7.12)
Jim (Sy(t,€) = 5(1,6)) =: 67(). (4.7.13)

Proof. Let us show (4.7.12). By Proposition 4.7.5 (i), for ¢ > T; and for &
in a certain neighborhood of @, both functions S;(¢,&) and S(t, &) satisfy the
Hamilton-Jacobi equation with the same potential V;(t, z):

0,8, (t,€) = 5&% 4+ V(t, VeSy(t,)),
9, S(t, &) = 5&% + Vy(t, VeS(t,€)).
They also satisfy, for £ in a neighborhood of ©, the estimates
07 (Ss(t,€) — 31€?) € o(t), 18] <2,
O (S(t,€) - 5t6%) € o(t), |8l <2,

It follows then from Sect. 1.9 that
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t]i)I(I)lo (Sj(t, f) - S(ta 6))

exists for & € @. This ends the proof of (4.7.12).
To show (4.7.13), observe that, for £ a certain neighborhood of ©, and t > T

V(t,t€) = Vy(t, t€).

Then we argue as above. o

The following lemma follows immediately from Lemma 4.7.6.

Lemma 4.7.7
The following limits exist:
tliglo eiS(t,D)e—iSJ(t,D) HQ(D) — e_i0-+(D)

lim 5 (t.D)g—i8s(t,D) lo(D) = e i6T(D).
t—00
We will denote by Uj(t, s) the unitary evolution generated by
HJ(t) = %DQ + VJ(t, .T)

We also introduce the asymptotic velocity (asymptotic momentum) associ-
ated with H(¢)

D}_ = S—Coo — tll)I& UJ(O, t)DUJ(t, O)

= S—Coo — tlirglo UJ(O, t)%UJ(t, 0)

The Hamiltonian H;(t) belongs to the class considered in Chap. 3. Therefore,
the following lemma is true.

Lemma 4.7.8
(i) There exist the limits

s— Jim (0, t)e i8s(LD) (4.7.14)
s— lim 20 (¢, 0). (4.7.15)

If we denote (4.7.14) by f)j’,lr, then (4.7.15) equals fZ}“{; fZ}’,lr is unitary and
2}.D =D, (4.7.16)
(#i) Under the additional assumptions (4.7.10) or (4.7.11), there exist the limits

s— lim U;(0, t)e ™" (P), (4.7.17)
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s— lim eV, (¢,0). (4.7.18)

t—o00

If we denote (4.7.17) by £27,,, then (4.7.18) equals £237.. 27, is unitary and

Q.—}:II‘D = 'Dj_'Q}—,lI" (4.7.19)
Lemma 4.7.9
There exist the limits .
s— lim MU (0,1)1e(DF), (4.7.20)
s— lim U;(0,t)e """ (PY). (4.7.21)

If we denote (4.7.20) by wy e, then (4.7.21) equals wjg. Moreover,

W}L,QW}L,Z) = lg(P7), W}L,ZJ‘*’}L,@ = HO(D}L)a

+ Dt ptt
wreDj = P wje.

Proof. It is enough to show the existence of
s lim U (1,0)Jo(DI)X* (5(D7)?) (47.22)
for any Jy € C§°(©) and x € C§°(IR). Set
M) = Jo(2) + (D — £, Vo (2)).
Then, by Theorem 3.2.2,
T (3(D5)?) = s Jim Us(0, t)x(Ho) M (t)x(Ho)Us (t,0).
Therefore, (4.7.22) equals

S— tll)f([)lo ey (H)M (t)x(Ho)Uy(t,0). (4.7.23)

Lo(t) + iHD(t) — ib(t)Hy(t) = x(H)N(D - 2,V2Jo(2) (D — 2))x(Hy)

(4.7.24)
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The first term on the right-hand side of (4.7.24) is integrable along the evolution
by Lemma 4.4.3 and Proposition 3.2.4. The second term is clearly integrable in
norm. The third term is seen to be integrable in norm using Proposition 4.7.5
(#) and Lemma C.1.2. Therefore the limit (4.7.23) exists. O

Proof of Theorem 4.7.1. First consider the case with the additional assump-
tions (4.7.10) or (4.7.11). We apply Lemmas 4.7.8, 4.7.9, 4.7.7 and the chain
rule:

wiel2f e Pllg(D) =s— lim U5 (t,0)1e (D7)

xs— lim U;(0,t)e~#s®D)
fmree (4.7.25)

% tllglo eiSJ(t,D)e—z'S(t,D) 1o (D)

= s— lim e~ (D).
t—o0
Note that we used (4.7.16) to pass (D7) through £27, and to change it
into lg (D). This ends the proof of the existence of (4.7.3).
Using Lemmas 4.7.8, 4.7.9, 4.7.7 and the chain rule, we obtain

6o O g(D) 2ty = lim ¢SED)e 1100 16(D)

xs— lim eV BP)U, (¢, 0)
t—00
xs— lim U (0, t)e g (PT)

= 5— tliglo etS(t,D) g —itH 1o (P+).

(4.7.26)

Since © was an arbitrary compact subset of X disjoint from 0, this gives us the
existence of

s— tlggo @iS(t,D) o —itH T\ (o3 (P).

But, by Theorem 4.4.1, we have
1°(H) = Ix\jo3 (PT). (4.7.27)

This ends the proof of the existence of (4.7.4).

The proof of the general case, that is, without the additional assumptions
(4.7.10) or (4.7.11) is similar. The only difference is that we use Sj(t,£), fl}flr,
instead of S;(t,€), £27),. O

4.8 Dollard Wave Operators

As in Chap. 3, it is often convenient to consider other modified free dynamics, like
the Dollard and Buslaev-Matveev dynamics. Among them, the Dollard dynamics
is of particular interest. In fact, using the Dollard dynamics, one can give a rather
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elementary proof of asymptotic completeness for a class of long-range potentials
that are only in C%!(X). Besides, in the case of the Dollard dynamics, we can
easily take into account the presence of additional degrees of freedom.

We assume now that our Hilbert space is L?(X) ® H,, where H; is a certain
auxiliary Hilbert space describing the additional degrees of freedom. Suppose
that

H= %Dz X ]]’Hl + V(J?),

where V*(z) =V(x) € B(H;) for almost all z € X.

We assume that
V(z)(1 — A) ! is compact on L*(X) ® H,,

]

L ‘(1 — A) ',V (@) g o ( R) (1)

and V(x) can be written as

dR < oo,

such that

]

/O°° H(1 — A) Wy (@) o ( R) (1—A)3|dR < oo,

[T (R sup 92 Vi(@) IR < o<, o] = 1.

|z|>R

Theorem 4.8.1
Define

Up(t) := e "HoT (e—i Js V1<sD)ds) ’

where T denotes the time ordering. Then the limits

s— lim e Up (1), (4.8.1)
s— lim U (t)e “H1¢(H) (4.8.2)

exist. If we denote (4.8.1) by (27, then (4.8.2) equals £2}*. One has
Q05 =1, Q505 = 1(H),
(4.8.3)
PO = 04D,  HQL = QF Hy.

Proof. First we get rid of the V;(x) part of the potential in e "

this, we can assume that Vi(z) = 0.

. Having done
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Then we introduce © C X, V;(t,x), H;(t) and Us(s,t) as we did in the in
the proof of Theorem 4.7.1. We set

Up,s(t) := e tHo (e_"ft;S VJ(SD)ds) .
Then we know from Chap. 3 that
s— tllglo U;(0,t)Up 4 (1), s—tliglo Up,;(t)Us(t,0)
exist. Besides, obviously
Up,;(t)1e(D) = Up(t)le(D).

Hence the theorem follows by the chain rule. 0

4.9 The Isozaki-Kitada Construction

In this section we introduce another construction of long-range wave operators
due to Isozaki-Kitada [IK1]. This construction uses a time-independent modifier
associated with a solution of the eikonal equation. We will prove that, for a
correct choice of the solution of the eikonal equation, the two notions of wave
operators coincide.

We will assume that

T|—00
J(RY=1 sup [09V (2)|dR < 00, |af > 1. (4.9.1)

|z|>R

Note that these conditions imply the hypotheses of Theorem 4.4.1 about the
existence of the asymptotic velocity and the hypotheses of Theorem 4.7.1 about
the existence and completeness of modified wave operators.

In Proposition 2.7.3, for any ¢ > 0, 09 > —1 and R, large enough, we
constructed a function S(t,z, &) on the outgoing region R™ x F;{O,CO’UO that solves
the Hamilton-Jacobi equation

{ 0S(t,z,8) = 36+ V(VeS(t2,6)),
5(0,2,8) = (z,£)-

Moreover, in Theorem 2.7.5, we constructed a function S(¢,£) such that, for any
€ > 0, one has

05(1,6) = L€ +V(VeS(t.E), Il >e 1>T.

Finally, in Proposition 2.8.2, we proved that the limit
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@1—;(33,6) = tll)Iglo(S(t, .73,6) - S(t7 6))

exists on I and solves there the eikonal equation

Ro,€0,00
Lo 1 + 2
The function & (z,£) satisfies the estimates
020 (P (2. €) — (2,€)) € o({)' ™), |af + 8] 20, (4.9.2)
uniformly for (z,&) € I'g, ., 5,- We know from Sect. 4.7 that

s— lim etH e 5tD) — o
t—o0
exists and has the properties described in Theorem 4.7.1. Below we will show
how to construct (2, in a different way.

Let us fix some constants ¢y > 0, 0 > —1 and Ry such that S(t,z,£) is well
defined on R* x I'j Choose also € > €, 0 > 0y and R > Ry. Choose

Ro,€0,00°

functions Fy, FF € C*(IR) and xp € C§°(IR) such that
Xo(s) =0, s<s3€, xo(s)=1, s>3€,
F(s)=0, s<Ry, F(s)=1, s>R, (4.9.3)
Fy(s) =0, s < oy, Fy(s)=1, s>o.

We set

0 (@,€) == F(lalxo(26) Fy (£2).
Let us note that ¢ (x, &) € S(1, go). We define next the following operator:
o) = (2m) " [ gt (2, €O W g(y)dedy. (4.9.4)
Note that, by the remark after Theorem D.15.1, J;! is a bounded operator on
L?(X).

The following theorem shows how we can use J;' to construct the modified
wave operator.

Theorem 4.9.1

We have . .
s Jlim e Jre M0 = Qi xo(Ho), (4.95)
s— lim etHo Jte A (H) = O *xo(H). (4.9.6)

As in Sect. 4.7, the proof will be based on a certain auxiliary time-dependent
Hamiltonian. The notation will be completely analogous to that of Sect. 4.7. We
define V;(t,z), S,(t,€), Hy(t), Us(t,s), Dy and £27,, as in Sect. 4.7
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Note that ~
[0 Vit lledt < o0, ol > 1,
0

and hence V;(t,z) satisfies the smooth slow-decaying assumption of Chaps. 1
and 3.

Recall from Theorem 1.8.1 that, for 7 big enough and T < s < ¢, there
exists a unique function Sjy(s,t,z,&) that solves the two-sided Hamilton-Jacobi
equation for the potential V;(¢,z). As in Chaps. 1 and 3, we set

Sy(t,€) == 85(Ty,,0,8),
D, 2, €) == lim (Sy(s, ¢, 2,€) = Su(t,€)).
Recall that
aséj’lr(s,x,f) = %(deﬁ,lr(s,m,@)z +Vi(s,z), s>Ty,
0207 (B,(5,2,€) — (2, 6) — 3€%) € o(s' 1), |l +[B] > 1.

So @7,.(s,x,&) satisfies the estimates (3.7.2). So we can define, as in Sect.
3.7,

Th(8)e(z) = (2m) " / / (i PTaem =18 ) dedy, (4.9.7)

which is a bounded operator on L?(X) with norm O(1).
Recall from Chap. 3 that the following alternative definition of the wave
operator Qj’,lr is possible:

Q1 = Jim U(0,6)J5 (2). (4.9.8)

Next we show that the functions @ (z, &) and @7, (s, z, ) are closely related.
We recall that the function o was defined in Lemma 4.7.6.

Lemma 4.9.2
Let @1 be a convex subset of ©. Then there exists Ty such that, for Ty <t < t'
and %,§ € Oy, we have

®3,(t,,6) = B (5, ) = 316+ 07(©)

Proof. Let §;(s,t,t',2,£) denote the (unique) trajectory for the potential
V;(t,z) that satisfies the boundary conditions as in Chap. 1. Clearly, for T,
big enough, Ty <t < s <t and §,& € Oy, §(s,t,1',1,£) is also a trajectory for
the potential V' (z). Consequently, for Ty <t <t and %,£ € O,

Sy, t' z, &) =St —t,z,8).

We also observe that
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St —1,6) = S(t,€) =— [ (362 +V(VeS(s,€)))ds
= -1te2 + O(t) sup. [V(VeS(s,6))|-

So we have .
lim (S(t' —t,€) — S(¥,€)) = —§t§2.

t' =00

Now we compute:
Bhelt,2,6)= Jim Sy(t,t',2,6)~S,(t,€) = Jim (Sy{ — 1,2,6)~S(¢ ~ 1,6))
+ Jim (S(# ~ 1,6) - S(t, €))
+ lim (S(#,€) — 5, (t,€))

= (2, €) — 316° + 0™ (8).
O

The following lemma says that, in some sense, we can localize .J;\ in momen-
tum and in position.

Lemma 4.9.3 B
(i) Let f, f € CP(X) and f =1 on a neighborhood of suppf. Then

(f (%) — 1) Tt (%) € O(t™). (4.9.9)

(i1) If g, g € C§(X) such that § =1 on a neighborhood of suppg, then
9(D)Jy; (1 = §(D)) € ¥((z)™™). (4.9.10)

Proof. (i) follows by the non-stationary phase method described in Proposition
D.12.1. (i) follows by Proposition D.15.3 (ii). O

The following lemma allows us to reduce the Isozaki-Kitada construction to
the case of effective time-dependent potentials.

Lemma 4.9.4

s— lim U;(0,¢) Jife ™ lg(D) = Qfe 7" Pllg(D)xo(Ho), (4.9.11)
s— lim " 17U, (¢, 0)16(DF) = ¢ (D11 (D) xo(Ho) 257 (4.9.12)

Proof. Let O be a convex set contained in ©. Let f, f,9,5 € C(6,) such
that f =1, § = 1 on a neighborhood of suppg and f = 1 on a neighborhood of
suppf. The proof follows from the following identity, which is true for ¢ > Tj:
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F&) ke “og(D) = F(£)T 4, (Dg(D)ei P xo(Ho). (4.9.13)

This identity follows immediately from Lemma 4.9.2 and

F(2)a (@696 = 7 (%) 9(©)xo (36).
Let us show (4.9.11). Clearly,
g(D) = s— lim el f()g(D)e~ 0,
Now,

s— lim Us(0,t)J;fe"Hog(D) = s— Jim U;(0, ¢
0
0

=~
+
~»
—
+18
S—r
Q
—~
S
SN—r
CDI
RS
g

~
\I&hl
—~ = =5

~
SN N’ N

=s— 11m U,y
t—00

(
=s— hm Uy(
(
0,

\1

t) T (D)™ (P)xo(Ho)g(D)
= F(DF)s— lim Us(0, )55, ()e P)xo((Hog(D)
= J;(Dj)gzlrefiﬁ(D)Xo(HO)Q(D)
= Q}L,lre_w+(D)X0(Ho)g(D)-

We used: (4.9.13), Lemma 4.9.3 (i), at the last step, we used

f(D}) 25, = 25, f (D).

=8— th]

S =8 =18 =8

~—~~

Likewise,
g(D}) = s~ lim U5(0,1)g(D)  (5)Us(1,0),

and, by similar arguments, we obtain
s— lim eHo J*U,(t,0)g(D}) = s— lim etHo J*g(D )f(%)UJ(t, 0)
= s lim €0 (D) g(D) F(5)Us (1,0)
=s— lim eHog(D)J 1 f f($)g(D)U,(t,0)
= “’+(D)g( )Xo(Ho)s— lim J7E(t)U;(t,0)9(D7)
= ¢ (D) 9(D)xo (HO)QJlrQ(D}L)
= " (PV1g(D) xo(Ho) 2J5:9(D5)-

itHo (

|

Proof of Theorem 4.9.1. We apply (4.9.8), Lemma 4.9.4 and the chain rule,
and we get

s— lim ¢ Jfe 0 1g(D) = wieRfye  Plo(D)xo(Ho),  (4.9.14)
s— lim "0 J e g (PT) = &7 (Mg (D)xo(Ho) 2 jwis.  (4.9.15)

But, by (4.7.25), the limit (4.9.14) equals 27 xo(Ho) and, by (4.7.26), the limit
(4.9.15) equals xo(Hog) ™. O
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4.10 Counterexamples to Asymptotic Completeness

In this section we construct a class of time-independent potentials for which the
asymptotic velocity P and the short-range wave operator 2} are well defined
but the asymptotic completeness fails, i.e. Ran(2} # H (H). We will also see
that P restricted to H.(H) will not be unitarily equivalent to D, therefore the
asymptotic completeness breaks down for any definition of modified wave opera-
tors. Such examples were first constructed by Yafaev [Yaf2], and the construction
that we will give is based on Yafaev’s. They are related to the time-dependent
counterexamples based on the adiabatic approximation given in Subsect. 3.8.2.

We start this section with an abstract version of the Born-Oppenheimer
approximation in scattering theory, which will be the key idea used to construct
the counterexamples.

4.10.1 The Born-Oppenheimer Approximation — an Abstract Setting

Let H be a Hilbert space and H a self-adjoint operator on H. Let P be an
orthogonal projection. Suppose that we want to approximate the Hamiltonian H
with another Hamiltonian that commutes with P. There exists a natural choice
of such an approximation, which is described below.

Definition 4.10.1
We define the Born-Oppenheimer Hamiltonian as

Hgo = PHP+(1—P)H(1-P)
= H +[P,[H, P
=H-PH(1-P)—(1-P)HP.

It is clear from the first formula defining Hgo that [Hpo, P] = 0.

Remark. The adiabatic evolution Uyq(t, s) introduced in Sect. 3.8 was a unitary
evolution that preserved a family of spectral projections P(t). Similarly, the
Born-Oppenheimer evolution e~##80 commutes with P.

We would like to know under what conditions the Born-Oppenheimer evolu-
tion approximates the exact evolution on RanP for large times. To express this
property, we will investigate the existence of the limit

lim " e "HBoy, (4.10.1)

t—o0

for ¢ € RanP.
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Let Heg be an auxiliary Hilbert space, and let I : Hog — H be an isometry
such that
11" = P.

Let us define
heg :=I1*HI = I*Hpol.

Clearly, Hgol = Ihes. Hence, instead of (4.10.1), we can look at the existence
of

. iwtH —itHgo 1 itH 7, ,—itheg
tll)ronoe e Ip = t]l)I(I)loe Ie [0} (4.10.2)

for ¢ € Hes-
In order to prove the existence of (4.10.2), one has to start with a study of
the dynamics generated by heg. To this end, let us introduce the notation

d )
Dheﬂ' = & + Z[heff, ']a

In what follows, we suppose that D is a dense subset in Heg and B(t) €
B(He.s) satisfy

| IDs B ]t < o0, 6 € D. (4103

Then there exists the limit

BT :=s— lim e"eft B(t)e et
t—00

We will try to give a criterion that guarantees the existence of

s— lim e [e~"ther gt (4.10.4)

t—o00

Proposition 4.10.2
Assume that L is a self-adjoint operator such that

LP =PL=0, RanL C Ran(l — P).

Let
K :=—-L"'(1- P)[H, P|P

be bounded. Let t — B(t) € B(Hes) satisfy and

lim KTB(t) =0, (4.10.5)

/0 T NH = L, KIIB(®)||dt < oo. (4.10.6)

Then the limit (4.10.4) ezists.

Proof. We first note that
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s— lim eitHIe—ithef-rB-l— = s— lim eitHIB(t)e—itheff
o Paee . (4.10.7)
= S— }i}m e’LtH(l + K)IB(t)e*Ztheg.
Now,
G (1 + K)IB(t)e s = &' (H(1+ K) — (1 + K)Hgo)IB(t)e "

teitf (1 + K)I(Dp, B(t))e~ e =: R (t) + Ry(t).

But
Ri(t) = e [H — L, K|IB(t)e "t ¢ L'(dt),
RQ(t)¢ € Ll(dt)’ ¢ €D,
by (4.10.6) and (4.10.2) respectively. Hence (4.10.7) exists. 0

4.10.2 The Born-Oppenheimer Approximation for Schrodinger
Operators

Let us now be more specific about our Hamiltonians. Let G be an auxiliary Hilbert
space and X := R". Let Heg = L*(X) and H = L?(X,G) = L*(X) ® G. Let
X 3z — G(x) be a family of self-adjoint operators with a fixed domain D C G
that is C* in the norm-resolvent sense. Let © — FE(z) € B(G) be another family
of self-adjoint operators. Let ¢(x) be a normalized eigenfunction of G(z) for the
eigenvalue A(z). Let P(z) denote the projection onto ¢(z). All the dependence
on z is assumed to be C'°. We set as operators on H

H = 1D2 + [2(G(a) + B(x))da,

P := [2 P(z)dz,

L := [$(G(z) — \(z))dz.

We also define an operator from Heg to H:

1y = [ w(@)o@)ds.

(Note that, in the above formula, X 5 z + v(z) is a L? function with values in
C and X > z +— ¢(z) is a smooth function with values in unit vectors in G.)
In this case, the effective Hamiltonian is equal to

het = $D2 + 2 (Dya(z) + a(z)D,) + e(z) + A(z), (4.10.8)

where

a(z) == —i1(Vao(2)|d(2)),
e(z) = (6(2)|E(2)p(2)) + 5(Vod(2)|Vai(2)).

We need to know some properties of the evolution generated by heg. Unfor-
tunately, because of the first order term, this operator does not fall into the class
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that we considered in this chapter. Nevertheless, we easily see that methods of
this chapter after minor modifications apply to operators of this form.
The following lemma follows easily by the methods of this chapter.

Lemma 4.10.3

Suppose that

h= D2+ 3 (Daals) + a(@)D2) + v(a),

where a(z) € C™(X, X), v(x) € C*(X,R) are real valued functions such that

lim a(z), 2Vza(z), v(z), 2Vv(r) =0,

|z| =00

0ga(z)] < Calz)™,
05v(2)| < Cafz)™ .

Then the Hamiltonian h has the following properties:
(i) oess(h) = [0, 00[ and, for any Ay < Ay such that 0 & [A1, Ag],

dim ]lpp(h,)]l[/\l,)\z] (h,) < 0.

(ii) If x € C§(R), suppx N (opp(h) U{0}) =0, J € C(X) and J =1 on a
neighborhood of {z | %xZ € suppx}, then for any N,

(1 _J (%)) emithy (B) ()N € O(t™N).

Now let us formulate a criterion for the existence of the effective wave oper-
ator for Schrodinger operators.

Proposition 4.10.4

lim %ﬁl =0, (4.10.9)
|:c|og>oo z )
ih SUP|z>r 9 (z) R <00
Moreover, suppose that
105 P(@)[| < Cafz) ™,
1105 P(2), 05 E(2)]|| < Cow)~"o=1Al,
(4.10.10)

105(1 = P(2)) L7} (2)]| < Cag®(z)(z)™,
ITE(z), (1 = P(x) L~ (@)]l| < Cg*(x){x)~".
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Then there exists the limit

lim e*? Je 7 "her 1¢(heg). (4.10.11)

t—o0

Proof. Let x € C§°(IR), suppx N (opp(heg) U {0}) = 0. By density and Lemma
4.10.3 (i), it is enough to show the existence of

tli}g) eitH Iefithegx(heﬂ) )

Let J € C°(X) and J = 1 on a neighborhood of {z | 12® € suppyx}. Then,
by Lemma 4.10.3 (i),

(DheﬁJ (%) X(heﬁ)) emithen (7)=N ¢ O(+N),

Therefore, it follows easily by the methods of this chapter that

s z —i
= Jim o0 () x(ho)e™ = x(hor).
We will take .
B(t):=J (;) X (Pefr)

and we will apply Proposition 4.10.2.
Note also that in our case

H-L=3D?+ E(z),
K =L7'(1 - P)[3D2+ E(z), P]P.
Therefore, we need to show that

KIJ(2)x(heg) € o(t°), (4.10.12)

[3D% + E(z), K| LJ(2)x(her) € L(d1). (4.10.13)

But . .
1J (?) X (heit) = J (?> X (Hzo) PI.
Therefore, we can replace I.J (%) X (heg) in (4.10.12) by J(

mating (4.10.12), we move D, to the right until it hits J(
way, the first expression of (4.10.12) can be estimated by

) (Dg) N P. Tn esti-
) (Dy)~NP. In this

z
t

z
t

sup [[L7}(2)(1 = P@)[[(IP'@)]| + [|1P"]| + [[[E (=), P(z)]])-

|z|>et

This is less than C'supj,s, ¢°(+)(z)~" and thus it converges to zero.
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The estimation of (4.10.13) is based on the same principle, except that it
involves a much larger number of terms. In order to handle this, denote by ad
either V; or adg(g). Then

502+ B@), 17 @)(1 - P(2)) [302 + B(w), P@)] P(0)
is a sum of terms
ad® (L7 (z)(1 - P(x))) ad® P(z)ad™P(z) D},

where |a| + |B1] + |B2| > 2. This (modulo D}, which is controllable by (D,)™"))
can be estimated by ¢?(x)(x) 2. This shows that (4.10.13) and (4.10.12) hold,
and completes the proof of the proposition. O

Remark. The propagation estimate of Lemma 4.10.3 (43) is an example of a strong
propagation estimate. A similar estimate will be shown later in Sect. 4.13. Of
course, in order to show Proposition 4.10.4, it is enough to use Lemma 4.10.3
(#) just for N > 1.

We think that it is not very elegant to use strong propagation estimates to
show existence of wave operators, as we did that above. In fact, in the counterex-
ample that we will give in the following subsection, it would be possible to avoid
strong propagation estimates and to use just weak propagation estimates. This,
in fact, would be more in the spirit of our general approach. However, referring
to strong propagation estimates makes it possible to avoid giving conditions on
the dynamics e~## in Proposition 4.10.4.

4.10.3 Counterexample to Asymptotic Completeness

We will now use Proposition 4.10.4 to construct examples of potentials for which
the asymptotic completeness of wave operators is violated.

We will assume that G = L*(Y), where Y = IR™ and pu > 0. We take
W e S({y)*, {y)2dy?). We set

g(z) = (x) (log{z)) ¢

for e > 1/2. Let ¢ € C§°(IR) be a cutoff function equal to 1 in a neighborhood of
0. Our basic Hamiltonian will be
H=4iD+iD:+V(x,y) on L*XxY),
|

where  V(z,y) := g72(2)q(Z)W (L).

We also introduce the auxiliary Hamiltonian

Glz) = %DS + g2 )W (L> |
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Note that if
Gy = %DZ + W(y),
A

= %(( y>+<Dy7y>)a
then
G(z) := g7 ()9~ (2)Gog™ ().
We choose an isolated eigenvalue )\ of the operator Gy. Let ¢ be a corresponding
normalized eigenvector and P, the projection onto ¢y. Let Ly := Gg — Ag. We

e G(x) = g ()9 () Gog(2),
b(2) = 54 (2) o,
Py(z) = g=A(z) Pagi ),
Az) = g2(x) o,
E(z,y) = g7%(z) (1 - a({%)) W (),
L(z) = g=*(2)g~ () Log"* (z).

<

We now have
a(x) = Vazg(x)g ' (z)(do| Ady),
e(@) = 1 Bw,y) o0 ()| 5oty + 3588 Al

Recall that the effective Hamiltonian hes was defined in (4.10.8).
Let us state a theorem that describes the properties of the Hamiltonian H.

Theorem 4.10.5
(i) The asymptotic velocity P for H exists and

IPP(H) = Tyoyxqoy (P).

(#) There exists the short-range wave operator
OF = s lim eitH a=itHo.
sr t—00 ’
it satisfies P25 = Q2+ D and
RanQ:; = Ran]lXX(y\{o}) (P+)
(#i) There exists the Born-Oppenheimer effective wave operator

"tH [e 7 thett (o) =: 2. (4.10.14)

Moreover,
Ran(2}; C Ranlly, o3 (P™).
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Before we show Theorem 4.10.5 let us give the estimates satisfied by the
potential V' (z,y).

Lemma 4.10.6
(i) V(z,y) satisfies the estimates

_q_Dl+lsl

RV (,9)| < Cral(w) + ()75 (log((a) + ()77

(ii) For any Cy > 0, on {(z,y) | |z| < Coly|}, the potential V(x,y) satisfies the
estimates

V(z,y)| < C((z) + (y)) "'~ % (log({z) + (1)) H

(iii)
|05 E(2,y)| < Cag () (), 18] > 0.

Proof. Let us show (i). It is enough to consider

muwr=g%wwgéy

The derivative 6;’831/1(35, y) is a linear combination of terms

(0397 (2)) -+ (0397 (2)) y*O° VEW (5)

9(z)

where v =, 4+ ---+ 7, and n = k + |6| + 2. This can be estimated by

() 1lgH 02 () |y |*

g(z)

PVEW <L> ‘ . (4.10.15)

Using

“y‘k+|6g—k—|6|(x)aévkw (L)) <C,

g(x
we obtain that, on {g(z) < Coly|}, (4.10.15) is less than

C(z)"g=P1=2(z) = C(z)~M=11/2-1 (Jog(z))<0 2. (4.10.16)

Using
<G,

VW (—y )
g(x)
we obtain that, on {g(z) > Cy|y|}, (4.10.15) is also less than (4.10.16). This ends
the proof of (i).
To show (i7), we note that on {(z,y) | |z| < Cy|y|} one has
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V(z,y)| <Cg2a) |7 \
< Cg=2*#(x)(z)™ = Ola) /2 (log(x)) ™).
Finally (iii) is easy and left to the reader. O

Proof of Theorem 4.10.5. V (z,y) satisfies the assumptions of Theorem 4.4.1.
Hence (7) is true.

By Lemma 4.10.6 (ii), V (z,y) satisfies the short-range condition outside any
conical neighborhood of X x {0}; hence (%) follows by an obvious modification
of Theorem 4.6.1.

Let us show (7). We will show that the hypotheses of Proposition 4.10.4 are
satisfied.

First note that the function g(x) satisfies the conditions of Proposition 4.10.4,
in particular,

029(x)| < Caglz){z) . (4.10.17)

Next note that our operator Gy is “dilation smooth”, that is,
|lad’ (Go — 2)7Y| < 00, 2z & a(Go).

Hence
|lad’; Pol| < oo, |lad’y(1 — PO)G51|| < 00.

Therefore, if we take into account (4.10.17), then we get
105 P(x)[| < Cafz)~,
103(1 = P(2))L "} (2)]| < Cag®(z)(z) 1.

If we take into account the exponential decay of ¢y (cf Thm. 4.3.4), then we see
that
102P(2)0°E(z)|| < On(z) N, N > 0.

Finally, let us write
[E(z), (1= P(z)) L7 ()]
= —[E(z), P(z)](1 — P(z))L™}(z) + hc
+(1 = P(2))L ()3 D5, E(z)IL ' (z)(1 = P(x)).

The first term of the right-hand side is O({x) °°). To deal with the second term,
we use

VyE(z,y)| < Cg~>(z)(z)7",

I(L(z) +8)7"Dy|| < C,

I(1 = P(z)) L7} () (L(z) +19))I| < Cg*(=),
I(1 = P(z)) L~ ()] < Cg*(w).
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Thus we see that

I[E(z), (1 = P())L™ ()]l < Cg*(z){z)™".

Therefore, the assumptions of Proposition 4.10.4 are satisfied. Hence the limit
(4.10.14) exists.
We also see, using the exponential decay of ¢q, that, for any Cy > 0,

5T tlilglo ]][Co,w[(%)leiitheﬁ =0.

This shows that Ranf2; C Ranly o (PT). O

4.11 Strong Large Velocity Estimates

In our proof of the existence of the asymptotic velocity and of the existence and
completeness of wave operators, the main tool that we used were the so-called
weak propagation estimates. In the remaining part of this chapter, a major role
will be played by strong propagation estimates.

In spite of their name, strong propagation estimates do not imply the corre-
sponding weak propagation estimates. They say that certain observables decay
quite rapidly, but only on vectors in a certain dense subset of the Hilbert space.

The first strong propagation estimates that we prove are the strong large
velocity estimates. Their intuitive content is similar to that of the weak large
velocity estimates of Sect. 4.2. Note that strong large velocity estimates hold
under rather weak assumptions: it is enough if the potential is form bounded.
They were discovered by Sigal and Soffer [SS3].

Proposition 4.11.1
Assume (4.1.8). Suppose that x € C§°(IR), and suppx C| — oo, 363[. Then, for
any s > 1,

[ et = 0/ x(ms dt < Cllga) 2o, (4.11.1)

and, for any s > 0,

111 = 60 x(H) 0| < Cll )20 (4112)

Proof of Proposition 4.11.1. It is enough to prove the proposition for s =
n € IN, and then to use interpolation. The proof uses induction with respect
to n. We assume that our proposition is proven with n replaced with n — 1
(unless n = 1 when we do not assume anything at all). Let us fix some constants
6, > 0y --- > 604 with 6y > 6; and suppy C] — oo, %HZ]. Using Lemma A.4.1, we
can construct a function J € C*(IR) such that J' > 0,
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Oa § S 025
J(s) =
13 § 2 015

and VJ € C®(R),v/J' € CZ(IR). We set
F(s) :=J(s)|s — 63"

Note that

( ) Oa S S 925 ( )
s —05]", s> 6,

and
—nF(s) 4+ F'(s)(s — 03) = J'(s)|s — 05" > 0.

We also have
F'(s) = J'(s)|s — 03] + n|s — 65|71 (s) =2 f7(s) + f3(s)
for fi € C§°(R), fo € C*°(IR). Note that
0, s <6y,

fa(s) = { (4.11.4)

n/?|s — 05| D12 5> 0,.

Let us note that the only reason for splitting F” into fZ and f7 is the need to
guarantee the smoothness of f;, fo, which in the case of such a splitting follows
immediately from Lemma A.4.1. With a little more care we could avoid it.

We consider the following (unbounded) propagation observable

]

o) = (e (1) e
We compute:

“Dalt) = () (-nF (2) + F (1) 2) x(e
) (D2 P (2) 4 he) ()

||

(4.11.5)
> o (H)F' (121) y(H)em !

= S x(H) (D f2 () +he) x(H)e.

Let us now choose two cutoff functions ¥ € CP(R) and f € C*(R) such
that ¥ = 1 on a neighborhood of suppy, suppx C] — oo, %HZ[ and f =1 on a

neighborhood of suppf;, suppf C [f3, oo[. We have
—X(H) (D £2 () +he) x(H)e~

~ (4.11.6)
= —x(H)f; (&) (D& F (&) +ne) f; (&) x(Hyem.
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Applying the commutator expansion lemma C.3.1 for A = z,B = Y(H), we

obtain
WE) (1) = 5 ¢l ( ) fi(2)R(H) + Ot ™).

la|<N
Therefore, (4.11.6) equals
XCH) S (%) XUH) (DT () + he) CH): () w(H
+1<|a |+E|a <N ( )8a1f(J?[) al,az( )8042fz( )X( )tn*1*|al|*|a2| (4_11.7)

+O (1),

where By, o,(t) are uniformly bounded. Using then Lemma 4.2.2 to deal with
the first term of (4.11.7) and the inequality

B!By+ BB, > —6BB, — 6 'B}B,

to deal with terms with |a;| = 0 or |az| = 0, we see that, for any § > 0, (4.11.7)
is greater than or equal to

(=05 — o(£*) — COX(H) f2()x(H)

(4.11.8)
—C(1+671) ||z| — O3t} 22 + O(t72).
Collecting (4.11.5) and (4.11.8), we obtain, for ¢ > #,,
Do) > Cox(H) 2 () x(H)w! ne
—Ct"2x(H) [|z| — 0st|}* x(H)t" > + O(t ),
where Cy := 03 — 0, > 0. Integrating (4.11.9) from ¢, to t;, we obtain
(Gto: P(to)bry) > (D1, P(t1)P1y)
+Co it | £ (%) X(H)aﬁtHQt"‘ldt (4.11.10)

n—2 2
=C fig |ll=] = 05t x(H)er) t"~*dt — C|g]|”.

We know, by the induction assumption, that

[ el = 0t x| 2 < oy

Moreover,
(D10, D(t0)b1,) < Cli{2) 2 9II%,
Therefore, (4.11.10) implies

2
(60 (1)) + Co [ P at < Ol ol

to

I3 (u) X(H)é,

t

which, using (4.11.3), (4.11.4), completes the proof of the proposition. O
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4.12 Strong Propagation Estimates for the Generator of
Dilations

Our next goal is the proof of strong minimal velocity estimates. They are
much more difficult to show than strong maximal velocity estimates and require
stronger assumptions on the potentials.

As a first step towards their proof, we will show a family of strong propagation
estimates about the generator of dilations A due to Sigal-Soffer [SS3].

Note that various estimates for the generator of dilations are interesting and
useful for their own sake. They are closely related to microlocal propagation
estimates of Sect. 4.16.

Theorem 4.12.1
Suppose that the hypotheses of Theorem 4.3.1 hold and

|lad’y (H +4) || < 0o, n € IN. (4.12.1)

Suppose that Ay > 0, x € C°(R), and suppx C 3o, 00[\opp(H). Then, for any
s>1,

7= ol ae < cllayL)?, (4.12.2)

and, for any s > 0,

14— txal*x(m@)s| < CllCAY 6] (412.3)

Proof. It is sufficient to show the proposition for s = n € IN and then to use
interpolation. We will use induction on n. We assume that (4.12.2) and (4.12.3)
hold for all m < n, unless n = 1 where we do not assume anything. Let us choose
constants A\g < Ay < Ag--- < A5. We assume that x € C°(IR), x = 1 on a
neighborhood of A5 and

X(H)i[H, A]X(H) > \iX*(H). (4.12.4)

Using Lemma A.4.1, we can construct a function J € C*°(IR) such that J' <0

and
]-: S S )\1;
J(s) =
O: s> /\27

and v/J € C®(R),v/—=J' € CF(IR). We set
F(s):=J(s)|s — A3|™

Note that F' € S((z)™, (z)2dz?),
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|S_)‘3|n’ SS)‘la
F(s) = (4.12.5)
07 S Z )\27

and
nF(s) — F'(s)(s — X\3) = J'(s)|s — 3" < 0.

We also have
F'(s) = J'(s)|s — As|" = nls = Xa[" 1T (s) =1 = f2(s) — f3(s)

for f, € C(R), fo € S({z)™V/2, (z)=2dz?). Note that

fas) =

77,1/2|8— /\3|(n—1)/2, s S Al,
(4.12.6)

0, SZ/\Q.

We consider the following positive unbounded propagation observable

A

o(t) = x(H)F (5 ) X1,

and compute

~Do(t) =x(H) (F'(3) 4 - ( ) x(He
H) [H,iF ()] x(H (4.12.7)

> \sx(H)F' (%) x(H)lf”’1 — X(H)i [H, F (4)] x(H)t".

Let us now estimate the second term in the last line of (4.12.7).
From (4.12.1) and the commutator expansion lemma C.3.1, if N is large
enough and m € IR such that H +m > 0, we obtain

[(H +m)~",iF($)]

t

= ¥V LEFO(Dad) (H +m)~ + Ot~V ).

1 ]'f,]

We write FY = —f2 — f2: we also split F*) = f fro with fr1, fro €
S({x)m=k)/2 (2)~2dz?). After applying the commutator expansion lemma sev-
eral times we arrive at the following expression:

[(H+m)_1,iF(%)]
= —Yi 1 fi(5)(H +m) [H,iAl(H +m) " fi(£) (4.12.8)
14 = BCTIPBE1S - 207+ 0N,

where B(t) is uniformly bounded.
We observe now that, using hypothesis (4.12.1) and formula C.2.2, we have
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lladix(H)|| < o0, neN, x e C(R). (4.12.9)
Using (4.12.9) and Lemma C.3.1, we obtain
X(H)(H +m) f;(§)(H +m) !
X(H)fi(3)X(H) (4.12.10)

+ XN (DB (t) + O,

where Bj(t) are uniformly bounded. Using (4.12.10) and (4.12.8), we obtain, for
some uniformly bounded B(t),

—x(H)[H,iF ($)]x(H)

= —x(H)(H +m)[(H +m)~",iF ($)](H +m)x(H)

= Yi ox(H) fi($)x(H)[H, iA]"( ) fi(4)x(H)

+EX(H)(H +m)|4 = x| 2B (1) 4 = | "2 (H + m)x(H) + O~

> MY px(H) ()X (H) fi(5)x(H)

—~Cux(H)(H +m)[§ = X3|22(H +m)x(H) + Ot )

> MY i (H) 7 (4)x(H)

—CEx(H)(H +m)|§ = x| *(H + m)x(H) + Ot"7).

Plugging this into (4.12.7), we finally get
—D&(t) > t"'Cox(H) f3(2)x(H)

~Cx(H)(H +m)|A — \st|""2(H +m)x(H) (4.12.11)
+O(t" N1,

where Cy := Ay — \3. Integrating from ¢y to ¢, we deduce from (4.12.11) and
(4.12.6) that

(616|P(t0)bto) > (D0, [P(t1)bes) + i 1|2 (5)x (H) el Pt
~C [ || A = Xt Z (H + m)x(H)i|[?dt — C|lg]”.

Now we note that, by the induction assumption,
21 = gt 7P (H + m)x (H) il Pt < Ol[(A) Vg1
By an application of the commutator expansion lemma, we have

(1] 8(t0)61)| < CI(AY 201"

Therefore,

(S0l B(t1) 1) + i 1 L1 fa($)x(H) el dt < ClI(AY 1.

Therefore, (4.12.2) and (4.12.3) are true for n, which completes the proof of
the induction step. 0
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4.13 Strong Low Velocity Estimates

In this section, following [SS3], we will show how the strong propagation estimates
for the generator of dilations imply strong low velocity estimates.

Theorem 4.13.1

Suppose that the hypotheses of Theorem 4.12.1 hold. Suppose that \g > 0, x €
C§(IR), and suppx C [%)\0, oo[. Then, for any s > 1,

o 1 372 H —itH
/1 ol | 3z | X(H)e™™ ¢

and, for any s > 0,

z° —itH
Tiopo) | 72 x(H)e "¢

2
#71dt < C||(A)* %9, (4.13.1)

2

< Ct*||(A) %)% (4.13.2)

Proof. We will use the constants Ay,..., A5 and the functions h, F' and f;
introduced in the proof of Proposition 4.12.1.
Consider the observable

Then

+2¥2 x(H)fi (%) 46 (%) x(H)t ! (4.13.3)
> 252 x(H)f: (%) (4 =) fi (%) x(H)m
Choose a function g € C*°(IR) such that 1 > g > 0 and
1, s < Ay,
m@={
0, s> As.
Then the right-hand side of (4.13.3) is greater than
2%, Cox(H) f2 (%) x(H)tm!
+252  X(H) fi (%) (4 = M) 62 () £ (%) x(H)t,

where Cy := Ay — A3 > 0. We note that

(4.13.4)

2
ad® f; (%) € O(t), k € N,



4.13 Strong Low Velocity Estimates 199

(because, effectively, f; can be considered as a function in C§°).

Using the commutator expansion lemma C.3.1 to move g (%) to the right
and to the left, we transform (4.13.4) into a sum of terms of the form

A A .
x(Hg: () B (5) x(He= + o), (4.13.5)

where B(t) is bounded uniformly in ¢ and the functions g; are bounded and
supported in | — oo, A5] and j > 0.

Thus we have shown that

—-Do(t) > " 'Cox(H)f3(%)x(H)
—OX(H)Nj—oo g ($)X(H)E" + O(t72).

2

o8

[

Hence,
(D16 @(t0)bto) > (1, [B(t1) 1, + Co it | fo (%)X (H) [t dt
~C Jig M—sopa ()X (H) | Pt" dt — O[]
But by Proposition 4.12.1, we have

/100 Hll[—oo,,\4] (é) xX(H)o(t)

(615 |2(t0)$to) < CllII".

2 n
t"dt < CJ(A) 2 ¢l

Obviously,

Thus we obtain

1 2
(@110(t)6) + Co [ IL(x(EnlPe e < CIl(A)

This implies (4.13.1) and (4.13.2) and completes the proof of the theorem. O

Corollary 4.13.2
Under the assumptions of Theorem 4.13.1, for any s > 1, we have

0o 2 2
[ toss (3) xtmed et < e, wase
and, for s >0,
z’ i -5 s/2 1112
Toxo) { 37 | X(H)ée| < O()"[(2)"*4]". (4.13.7)

Proof. Clearly, in the estimates of Theorem 4.13.1 we can replace ||<A)5_/2q5||2
with ||(A)S,/2X1 (H)¢|)? for any x; € C°(IR) such that xx; = x. But it is easy to
see that

(A (H)> < [l{2)* 8] (4.13.8)
for s € IN. By interpolation, (4.13.8) can be extended to s > 0. O
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4.14 Schrodinger Operators as Pseudo-differential
Operators

In this section we will collect some properties of H and its functions related
to the pseudo-differential calculus. We use the notations in Sect. D.8. The first
proposition follows immediately from Proposition D.11.2.

Proposition 4.14.1
Assume that V(z) € S(1,(z)"2dx?). Then for any z € o(H) and x € C(R),
we have

(z— H)™Lx(H) e ¥(1,q1).

Next we describe a simple consequence of the commutator expansion lemma.

Lemma 4.14.2
Assume that V(z) € S(1, (z)~2dz?). Let x € C°(IR) and n € IN. Then

e Hy(H){x)" = Z(x}"’j@)ij (1), (4.14.1)
=0
with Bj(t) uniformly bounded. Besides, for any m,

() e~y (H)(z)"(D)™ € O({t)"). (4.14.2)

Proof. Let us show (4.14.1). For n € IN, set
Ay (t) := e X (H) () e
By a direct computation, we check that

A0 ) = (i) x(H) (ady (a)") (o)

is bounded for 0 < k£ < n. Using Taylor’s formula, we obtain

1 n—1 tk dk) 4
nll) = 7 .1 4in " 3
()= 3 g n(0)+ 0
which implies (4.14.1).
(4.14.2) follows easily from (4.14.1). O

Lemma 4.14.3
Assume that V(z) € S(1, (z)~2dz?) and

lim V(z) = 0.

|z|—00
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Then for any x, xo € C®(IR) such that X', xy € C$(IR) and suppxNsuppxo = 0,

Xo(Ho)Xx(H) € ¥({z) *).

Proof. We can split the potential
V(z) = Vi(z) + Va(2)
such that Vi(z) € ¥({z)~*°) and |Va(z)| < dist(suppxo, suppy). We set

1
H, = 3D +Vi(a).

By Proposition D.11.3, we have

Xo(Ho) = xo(H1) € ¥((z)™%).

By Proposition D.11.4, we obtain

xo(H1)x(H) € ¥((z)"*).

4.15 Improved Isozaki-Kitada Modifiers

The goal of this section is to construct certain Fourier integral operators similar
to the Isozaki-Kitada modifiers. They will turn out to be approximations to the
wave operators in the outgoing region (although we will have to wait until Sect.
4.17 to see a proof of this fact).

We would like to treat the short-range case in a way parallel to the long-range
case. Therefore, let us recall from Proposition 2.8.1 that if we assume that the
potential V' (z) satisfies the smooth short-range condition

/ sup |02V (z)|R?IdR < oo, |a] > 0, (4.15.1)
0

|z|>R

then, for ¢ > 0, 09 > —1 and Ry > 0 large enough, and for (z,&) € FEJg,UO,R(),
there exists the limit

lim (S(t,2,8) — 3t€?) =: &(x,€). (4.15.2)

t—o0

. . . J’_
This function satisfies on I'g . .

38" = 3(Va®i(2,6))* + V(2),

(4.15.3)
020 (B (w,€) — (2,6)) € o((@) ™)), 0,8 €N,
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In the following lemma we state the basic properties of the Isozaki-Kitada
modifiers for the short-range and long-range case. (i) is just a reminder of The-
orem 4.9.1. So, it is enough to prove (7).

Lemma 4.15.1
Let g7 (z,€) € S(1,91) and xo € C§°(R) be the functions introduced in Sect. 4.9.
(1) Assume the smooth short-range condition (4.15.1) and set

J; = J(@Sr, q ) Q'i' — gs— lim e'tH g—itHo_

t—00

Then
Q2ixo(Ho) = s— lim ' Jre ™", (4.15.4)

S:

(ii) Assume the smooth long-range condition (4.9.1) and set

Ji = J(@q"),  Qf =s— lim eMHeT0D),

t—00

Then
+ — «_ Tim oitH 7+ ,—itHo
erXO(HO) =S tlggloe Jlre .

Proof. It is enough to show that, for ¢ € C§°(X) with a sufficiently small
support, .
s— lim (xo(Ho) — Jgr)e™"g(D) = 0.

Let J,J; € C§°(X\{0}) such that J = 1 on a neighborhood of suppg and
J1 = 1 on a neighborhood of supp.JJ. We choose the supports of g, .J, J; small
enough such that

i (2) ¢* (2,6)9(6) = Ji (2) xo(3€)9(6).
Then
s— lim (xo(Ho) — Jg5)e™"0g(D) = s— lim (xo(Ho) — J5£)J (4)e~*og(D)
= s5— lim J1 (%) (xo(Ho) — J5})J (£)e~ "o g(D)
(2)(xo(Ho) — Jit)e~"Hog(D).

=s5— hm Ji

But
z

Ji(3) (xo(Ho) = Jir)9(D) (4.15.5)
is a pseudo-differential operator with symbol
T1(2) (x0(3€?) — ¢* (2, )P @O-i(20)) g(¢)
= Ji(3) (1 - ePHO79) xo(567)9(€)
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and by (4.15.3), all the semi-norms in S(1, go) of this symbol go to zero as t — oc.
Therefore (4.15.5) converges in norm to zero. a

Let us note that FIO’s with phase @7 (z, £) are pseudo-differential operators.
More exactly, the following fact is true.

Lemma 4.15.2

If a € S(1, g1) with suppa € FI‘{O co.00 then an operator A = J(®F,a) belongs to

VU(1,g1). Moreover, if I' C X X X’ then A € U({x)~°) on " iff A € ¥({x)~>)
on I'.

Proof. We have J(&7

sr’

a) = b(z, D) for
b(z, €) = a(z, £)e! @8 iP5 (2:6)
By (4.15.3),
ei<$7§)_i(ps-t($7§) € S(l’gl)
So b € S(1,g1). Moreover, b € S({(z)~*°) on I' iff a € S((x)~*°) on I O

In what follows, we will write &*(z, &) instead of &} (z,&) or & (z,&), and
J* for Jif or J. We denote by 27 the short-range or long-range wave operators
2 and 2.

Let us list the properties of these functions that we will use:

2% x0(Hp) = s— tli)m et J+eitHo
1€ = LV, 8 (2,6))” + V(a),

and, uniformly for (z,&) € I'g, ., ,,» We have
020 (8" (,€) — (2, €)) € o((2)™), |al + 8] > 0. (4.15.6)

Proposition 4.15.3

Let ¢¢ > 0, =1 < 0g and Ry > 0 be such that ®*(x,€) is defined on FRO co00"
Let € > €y, 0 > 0y. Then there exist functions i*(x,€) € S(1,¢91), r*(z,€) €
S({(x)~", g1) such that suppi®,supprt C I'y rt e S({z)™) on It , and

€0,00’ €,07
the operators

It = J(®",i*), Rt :=J(@®" )

satisfy
HIT—ItHy=R",

2% xo(Ho) = s— hme“:HIJr —itHo
t—o0

Moreover, ITI1* is elliptic on a conical neighborhood of I,

Proof. Note that the following identity is true:
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(Vo®* (2,6) Vi + 12,87 (x,€)) (det Vo Ve (,€))* = 0. (4.15.7)
Indeed, by differentiating with respect to x and & the eikonal equation
3(Va®"(2,6))” + V(2) = 3€%,

we get
V.V, V, V@t = -V2¢TV, V7.

Using then the identity

(det A(s))fl % det A(S) — Ty (A_l(s) dgis)) ’

we obtain
V81V, det(V,VP)2
= Ldet V,Ve@+)2 Tr (V,VedT) 'V, 87V, (V, Vb))
= —1det(V,Vdt)2 4,81,

which proves (4.15.7).
The amplitudes of It and R™ are related by the identity

(Vo®* (2, )V + 2A,0* (2, 6) — §4,) it (x,6) =1+ (2, ). (4.15.8)
For any ¢(z,£) € S((z)™, g1), we set
Le(x,8) =V, PF(2,6)Vae(w,€)
— 1 (det Vo Ved™ (z,6)) 7/ A, (det Vo Ved™ (,6)) " (3, €).
Note that £ maps S({x)™, g;) into S({x)™!, g;). Putting
bt (x, &) = (det Vo Vbt (z,£)) 2 it (x, €),
Pt (2,€) = (det V,Ved* (2, €)M rt (2, 8),
we can rewrite equation (4.15.8) as
Lot (z,€) = p*(z, ). (4.15.9)

We will find a sequence of (1,01, Ry), (€2,09, Ry),... such that ¢ < ¢ <
K < E 0 < O < <0 <0oand Ry < Ry < --- < Ry < R, and if
(z,€) € FEJJ_”UJ_,RJ_ and 0 < s, then we have

(g(87 o0, T, g)a g) € Fe—;+1,aj+1,Rj+17

where §(s, 00, z, &) are the trajectories defined in Chap. 2. Then we define induc-
tively the following functions:
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by (z,€) =1, (,€) € T7f 5o o
b (2,€) = J5° P 1(§(u, 00, 2, €), €)du, (€,8) € Il o s
i (x,) = (det V,Ved(x,€)) b (x, ), (2,6) €TL o0 rons
B (2,€) = 1 (det V, Ved* (2, €))% Ayih (2,8),  (@,8) €T, p.-

Recall that
(u, 00, 2,8)| > C(|x| + ulf]).

Using this, we easily see that b (z,€),%t (z,€) € S((z)™™,¢1) and p; (z,€) €
S((z)y=™2,g1) on I'* o . Moreover, for (z,§) e I} o |

€ms0m €m,0m,

m

LY b (2,8) = p(z,€). (4.15.10)

J=0

We can assume that the function ¢*(z,£) € S(1, g1) constructed in Sect. 4.9
is supported in Feto,o—oo,Roo- By the Borel Lemma (see Lemma D.9.3), we can find
bt (z,€) € S(1, 1) such that, for any m € IN,

m

b (x,€) = 3 ¢ (2, 8)b] (x,8) =: ¢ (z,€) € S({z)™™ ", q1). (4.15.11)

Jj=0

It follows from (4.15.10) and (4.15.11) that

p*(z,8) = L0 (2,€) = ¢" (2, )P (2, &) + wm(2, &) + Loy (2, 6),

where wn,(z,€) € S((z) ', 1) and suppw,, C suppVe't C I\, o \I'[ p.
Since m was arbitrary, this shows that £b* € S({z) !, 1), suppLdb™ C I\ , »
and Lb" € S((x)~>) on I'7,.

Finally, we set

(oo}

it(2,6) = (det V, V@ (z,8)) bt (2,6),
r(z,€) = (det V,Ve® (z,8)) ™" pt(z, ).

We have 7%(z,&) € S((z)™", g1), supprt(z,&) C I}, p_ and rt e S((z)~>)

€00,0 00

_|_
on Fw. O

4.16 Microlocal Propagation Estimates

Throughout this section we will assume the smooth long-range condition (4.9.1).
Let us note that the smooth short-range condition (4.15.1) implies (4.9.1). More-
over, by Lemma A.1.3, it follows from (4.9.1) that

92V (z) € o((z)7l), e IN. (4.16.1)
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Therefore, the results of Sect. 4.14 on the pseudo-differential properties of H and
of Sect. 4.13 on strong propagation estimates hold. Moreover, by Theorem 4.3.4,
the operator H has no positive eigenvalues.

The main results of this section are certain microlocal propagation estimates
for the propagator e ®#. These estimates intuitively mean that the evolution of
a state localized in an outgoing region is very close to the free evolution and are
related to the estimates of Theorem 2.3.3 (ii3) for classical 2—body Hamiltonians.
They can be shown in a number of different ways. They were originally obtained
by Isozaki-Kitada [IK4] using estimates on the resolvent (H—\)~" and the Fourier
transform. Our proof is based on the time-dependent approach. We first show
these estimates for the free evolution, where they follow from the non-stationary
phase method. Then we use the improved Isozaki-Kitada modifiers to extend
these estimates to the case of the full evolution.

Theorem 4.16.1
Assume the smooth long-range condition (4.9.1). Let € > ¢g > 0, 0 > g9 > —1.
Let x € Cg°(IR\{0}), pi(x,&) € S(1,g1) such that pr € S({x) >, ¢1) outside
It Letp. € S(1,91) such that p- € S({(x)=>°) on I'} , . Then the following
results hold:
(i) There ezists 69 > 0 such that

o 50 (5 )X (H)e™ ()= € O((t)™), t > 0, N € IN.
In the case when V(x) = 0, we can improve this result: there exist dg, 01 > 0 such
that

z|

]1[0,50](T)X(H)e_itH]][Oﬁﬂ(%) € O(t_oo)a t>0, NeN.

(i) |
(@) Vx(H)e () N eo((t) M), >0, NeN.
(#1i) There exists &g > 0 such that

Lo 50) (F)X(H e p, (z, D)(z)N € O(t~*), ¢ > 0, N € IN.

(iv)
() Mx(H)e ™ p, (z, D){z)¥ € ON ™M), t+>0, N < M.

(v)
(x)p_(z, D)x(H)e "™ p (z, D){(z)N € O(t™), t >0, N € IN.

Let us show first a special case of this theorem, namely the propagation
estimates for the free Hamiltonian.
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Proof of Theorem 4.16.1 for V(z) = 0. (1), (i) and (v) follow easily by the
non-stationary phase method from Proposition D.12.1.
To see (ii), we write

(@) VX (Ho)e 0 (z) ="
Lol (15 ) N x(Ho)e ™o (z) Vo5 (F) + O((t) ™).

The first term on the right of (4.16.2) is O(¢t~*°) for a sufficiently small d; > 0

by (i).

To show (iv), we choose dy > 0 as in (i77) and we write

(@)~ Mx(Hp)e ™op, (z, D)(z)N = 11,5 ( ) (z)~M x(Ho)e "Hop. (z, D)(z)"
Hgsny00 (E) (@) M x(Ho)e *Hop, (z, D)(w)V.

(4.16.2)

The first term is O(¢~>°) by (iii). The second term we write using (4.14.1) as
Liso.00) () PR M {z)NI(t) B(t),

where B;(t) are uniformly bounded. This is clearly O((t)N—M). O

Next we would like to show the propagation estimates for the full Hamil-
tonian. We will use the same conventions and constructions as in the previous
section. In particular, we will write @™ (x, ) and we will use the functions i*(z, £),
r*(z,&) that we constructed in Proposition 4.15.3.

Lemma 4.16.2

Let € > 0 and 0 > —1. Let pi(z,&) € S(1,91) such that p. € S({(x)~>) on
a conical neighborhood of X x X'\I',. Let I'* be as in Proposition 4.15.3. Let
X, X1 € CP(R) such that xx1 = x. Then there ezists p,(z,&) € S(1,¢1) and
r_o(z,€) € S({(x) ) such that py(z,€) € S({x) *°) on a conical neighborhood
of X x X'\I'}, and

X(Ho)p-(, D)(2)™ = I"x1(Ho)p (z, D) (@) "™ + 1_oo(z, D).

Proof. The proof is based on the fact that ITI1* is elliptic on a conical neigh-
borhood of I'f,. Therefore, we can write

x1(Ho)py (z, D)) = ITT™p, o(z, D){x)NITTTT™ + 7 o(z, D)

with pyo(z,&) € S(1,01) and pio € S({(z)~*) on a conical neighborhood of
X x X'\I', and r_so0(2,€) € S({z)~>°). Define

Pra(z, D) = I""pyo(z, D) {x) " Tt (z)~".
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Clearly, py(z,€) € S(1,91) and py(x,D) € ¥({xz) ) on a conical neigh-
borhood of X x X'\I'f . Therefore we can find p,(z,£) € S(1,9:1) such that
py(x,D) € ¥((r)~°) on a conical neighborhood of X x X'\I'f,. r 1 €
S({x)~>°) and

]34-,1(-’13', D) = XI(HO)ﬁ—}—(xa D) + Tfoo,l(ma D)
O

Proof of Theorem 4.16.1. (i) is essentially a reformulation (under stronger
assumptions on the potentials) of Theorem 4.13.1.

(i) follows from (i) by the argument similar to the one used in the V(z) =0
case.

Let us show (7). Our basic tool will be the identity

; . t )
e WHIT = [Te itHo +z'/ e it=o)H pre-isHoqy, (4.16.3)
0

We can assume that p™ € S((x)~*°) on a conical neighborhood of X x X'\ I'/.
Let x; € C°(IR\{0}) such that xx; = x. First we note that by Lemma 4.16.2
and Lemma 4.14.3

X(H)p+(z, D)(z)"

(4.16.4)
= X(H)I*x1(Ho)p+(, D){z)NI™* + x(H)R-co,1,

where R_ 1 € ¥((z)~>°), pi(z,&) € S(1,¢1) and py € S({x)~>, g1) on a conical
neighborhood of X x X"\I'* .
Now, by (4.16.3) and (4.16.4),

By (i), I(t) € O(t™).
To estimate I;(t), we note that, for §; > do,

.30 ()X (H) I ()
= g (E)X(H) T g 3 (2) ()Y + O (7).

Using then (%ii) for the free Hamiltonian, we get I (t) € O(t~>°).
To estimate I5(t), we first note that we can assume that r* € S({(z)~*°) on
a conical neighborhood of I'},. Therefore, by Proposition D.15.2, for M € IN,
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R* = {(z) ™M By (z)Mp_(x, D) + r_so2(z, D), (4.16.5)

where By is bounded, 5 € S(1,¢1), b € S({x)7°°, 1) on a conical neighbor-
hood of I'f, and 7 » € S({(x)~>°). We cut the integral into pieces 0 < s < ¢/2
and t/2 < s < t. To the first piece we apply (v) for the free Hamiltonian, and to
the second piece we apply (i) for the full Hamiltonian. We get I1(t) € O(t~).
This ends the proof of (%ii).

(iv) follows from (%ii) and (4.14.1) similarly as in the case V(z) = 0.

To show (v), we also use (4.16.4) and (4.16.3) and we write

(z)p_(z, D)x(H)e " p,(z, D){z)"

= (@)"p_(z, D)x(H)e ™ R_«,

+(@)"p_(z, D)x(H)Ite~*"ox, (Ho)py (x, D){x)N I

+ Jo(@)Vp_(x, D)x(H)e~ =" Rte~Hox, (Ho)qy (x, D){z)N It
= Iy(t) + L (t) + L(2).

Using the estimate corresponding to (iv) for t < 0, we get that Iy(t) € O(t ).
Using Propositions D.15.2 and D.15.3, we have

(@)"p-(z, D)x(H)I* = B(z)"p_1(w, D) + r-coz(z, D)

where B is bounded, p_1(x,€) € S(1,¢1), p—1 € S({x) °°) on a conical neighbor-
hood of I', and 7 5 € S({z)~>). Using (iv) and (v) for the free Hamiltonian,
we get I1(t) € O(t=).

To estimate I5(t), we use again (4.16.5). We cut the integral into pieces
0 <s<t/2and t/2 < s < t. We apply (v) for the free Hamiltonian to the
first piece and to the second piece the analog of (iv) for ¢ < 0. Thus we obtain
I,(t) € O(t~*°), which proves (v). O

4.17 Wave Operators with Outgoing Cutoffs

Wave operators for potentials satisfying smooth long- or short-range assump-
tions have good regularity properties. In this section we will show one of them.
We will prove that if we multiply the wave operator with a pseudo-differential
cutoff supported in an outgoing region and with the energy bounded away from
zero, then we obtain a pseudo-differential operator in the short-range case and
a Fourier integral operator in the long-range case. It will turn out that the wave
operator with such a cutoff is essentially equal to the operator I constructed in
Proposition 4.15.3.

Theorem 4.17.1
Lete > ¢g > 0 ando > 09 > —1. Let p;(x,€) € S(1, g1) such that p, € S({x) )
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outside I'S, and x € Cg°(IR\{0}).
(i) Assume the smooth short-range condition (4.15.1). Then there erist a1, as €
S(1,91) with ay,ay € S({(x)~°) outside I} , such that

25X (Ho)p+ (z, D) = as(x, D),
Q5 x(H)ps (2, D) = as(z, D).
(1) Assume the smooth long-range condition (4.9.1). Then there exist ¢1,co €

S(1,g1) such that ci,co € S({x)~>°) outside I'." ., and 7_o01,T—02 € S({z)~)

€0,007
such that
Q;X(Ho)p+(l', D) = J(¢1_|;= Cl) + 7”,0071(33, D)a

Q;*X(H)p-l-(l‘a D) = J(él—ta 62)* + T—OO,Q(xa D)

We will use the same conventions and constructions as in the previous sec-
tion. In particular, we will write @ (x, &), and we will use the functions i*(z, £),
r*(z,€) and the operators IT, Rt that we constructed in Proposition 4.15.3.

Now Theorem 4.17.1 follows from the following theorem.

Theorem 4.17.2

Let e,0, p*,x be as in Theorem 4.17.1 and let i* be as in Proposition 4.15.5.
Let x1 € C§°(IR) such that xx1 = Xx. Then under either the smooth long-range
or smooth short-range assumptions there exists r_; € ¥({x)~>°) such that

Q+X(H0)p+(:]:, D) = XI(H)I_I_X(HO)p-F(‘T’ D) + 7‘*00,1(37’ D)a (4 17 1)
QX (H)p(x, D) = X1 (Ho)I**X(H)ps (z, D) + r_so2(z, D). o

Proof. Let us show the first identity of (4.17.1). The proof will be based on

2% x0(Ho) =s— tllglo eitH [+o—itHo
=TIt i[5 et RTemtihodt,
We have
QX (Ho)ps (2, D) = x1(H)2+x(Ho)p (z, D)
= x1(H)I"x(Ho)p+(z, D) + [° R-co,1 (t)d,

where ' .
R o1 (t) = ixa(H)e™ Rte "oy (Hy)p, (x, D).

Let us prove that, for any N, M,

(DYM ()Y R_o 1 ()(z)V (D) € O(t~). (4.17.2)
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This will imply that
IKDYM(x)N [° R_po 1dt{x)N (DY || < 00, N,M € N

and hence [;° R_ 1(t)dt € ¥((z) ).
First note that, for any M, N, by (4.14.2),

(D)M(x)™ x1 (H)e" (z)=" € O(t").
Next, by Proposition D.15.2,
()Rt = B{z)"p_(z, D) + r_wo(z, D),

where p_(z,€) € S({x)™', g1) such that p_ € S({(z)~>°) on a conical neighborhood
of I, r 0o € S({(x)~*°) and B is bounded. Now,

({@)"P- (2, D) + 1_c00(x, D))e™ " x(Ho)p+ (z, D){z) (D)™ € O(t™),

by Theorem 4.16.1 (iv) and (v) applied to the free Hamiltonian Hy. Therefore
(4.17.2) is true. This ends the proof of the first equality of (4.17.1).

To show the second equality of (4.17.1), we use the same arguments, switching
the roles of H and H. O

4.18 Wave Operators on Weighted Spaces

The goal of this section is to study wave operators multiplied by an energy cutoff
with support away from zero as maps on weighted L? spaces.
The main result of this section is the following theorem.

Theorem 4.18.1
Suppose that x € C§°(R) and 0 & suppx and s' < s or 0 < s =s.
(i) Assume the smooth short-range assumption (4.15.1). Then

(2)* Qix(Ho){2)" € B(L*(X)). (4.18.1)

(1) Assume the smooth long-range assumption (4.9.1). Then
() x(Ho)(z)* € B(L*(X)). (4.18.2)

Theorem 4.18.1 for 0 < s’ = s is due to Isozaki [I3]. For general s’ < s, it is
due to Jensen-Nakamura [JN]| and Herbst-Skibsted [HeSk1].
Proof of Theorem 4.18.1 in the case s’ < s < 0. We will consider the short-
and the long-range cases at the same time, using the unified notation introduced
in Sect. 4.15. We will use the improved Isozaki-Kitada modifiers.
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It is enough to assume that —s =: n € IN, and then to use interpolation. We
will write m := —s’ € IR, where 0 < n < m.
Let x1 € Cg°(R) with x1x = x. We have

()" 2 x(Ho){x) ™ = (2)"x1(H)82" x(Ho)(x) ™™
= (@)"x1 (H) I x(Ho){x)™™ (4.18.3)
+i Jo~ (@) " xo (H ) R e~ ox (Ho ) (z) ™ dt.

The first term on the right-hand side of (4.18.3) is obviously bounded. Let
us consider the second term. By Lemma 4.14.2,

(@)"e ™ x (H) = 3 Bj(t){t)! (z)",

where Bj;(t) are uniformly bounded. On the other hand,
()" TR = B,_j{(z)" 7 7'p_(x, D) + r_s(z, D),

where B,,_; is bounded, 5_ € S(1,g;) with p_ € S({z) *°) on a conical neigh-
borhood of I', and r o, € S({(x)~>°). Using the analog of Theorem 4.16.1 (ii),
(iv) for t < 0 and the free Hamiltonian, we get

(t) (z)" T RFe"ox (Ho) ()™ € O(())" ™),

which is integrable and yields the boundedness of the second term (4.18.3). O

The proof of the s = s’ case will be more direct, without the use of improved
Isozaki-Kitada modifiers. We will deal separately with the short- and long-range
case. The proof of the short-range case with s = s’ > 0 is based on the following
estimate:

Proposition 4.18.2

Assume (4.15.1). Let x € C°(R), 0 & suppx, Jo € C(X\{0}), Jo =1 on
{ac : sx? € suppx} and s > 0. Then

"< Ol s (4.18.4)

o = tDI* Ay (7 ) x(H)o

Proof. We will show the estimate for s =: n € IN, and then extend it by
interpolation. We need to show that

falt) := |[lx = tD["Jo (£) x(H)éd|| < Cull(z)"¢ll, n > 0. (4.18.5)

Clearly, (4.18.5) is true for n = 0.
Now suppose that we know that
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fm(t) < Cull(z)™¢ll, 0<m<n-1.
Choose J € C§°(X) such that JyJ = Jy and 0 & suppJ. We set
Vit x) =T (2) V(z),

and note that
&) NozVs(t, e € L'(dt), |l > 0. (4.18.6)

Let us compute the derivative of f2(¢). We have

G120 =275 (ulx(H)Jo (%) (x — DY
xtV,V;(t,z) (@ — tD)? 9Ly (2) x(H) ) (4.18.7)
+ (aulx(H) (Do (2)) (= — tD)™J (2) X(H) 1) + cc.

Let j € C§°(X) such that jV.J, = VJy and the support of j is disjoint of
{0}u {m : szt € suppx}. Then the second term of the right-hand side of (4.18.7)
can be written as

g0(t) = (el x(H)j (2) B()j (2) x(H))t>~' + O(t2)

for some uniformly bounded operator B(t). By Theorem 4.13.1, this is integrable.
The first term of the right-hand side of (4.18.7) can be estimated by

C oy i OPNVIVI () loofn(t) = g1(8) fu(2).

Using the induction assumption and (4.18.6), we see that ¢;(¢) € L'(dt). Thus
we have

L] < 90(H) + 501(5) + 391 (1) F2(1)-

Applying Gronwall’s inequality (see Proposition A.1.1), we obtain that f2(¢) <
C,f%(0), which completes the proof of the proposition. a

Proof of Theorem 4.18.1 (i) in the case s’ = s > 0. Let Jy be as in
Proposition 4.18.2. We know that

S— tl_iglo eitHe*itHoX(HO) =g— tli{?o eitHX(H)JO (%) e—itHo

We have . .
<¢t|X(H)J0 (%) e itHo| g [2sgitHo ] (%) X(H)¢t)
= (delx(H) o (2) |z — D Jo (2) x(H) 1) -

Using Proposition 4.18.2, we see that (4.18.8) is bounded by C||{(z)*®||>. There-
fore,

(4.18.8)

Q8 x(Ho) |z |* x(Ho) 025" < C(x)*. (4.18.9)
This shows the boundedness of (4.18.2). O
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Next we would like to treat the long-range case of Theorem 4.18.1 with
s=s5>0.

Let us fix x € C§°(R) with 0 & suppy, J, Jo € C§°(X\{0}) such that Jy =1
on {a: |%x2 € suppx} J = 1 on a neighborhood of suppJ. We will use V;(t, ),
H;(t), Us(t,s) and S;(t,&) introduced in Sect. 4.7. Recall that

<% + [iHy, ]) (x = VeSy(t, D))

(4.18.10)
= [(z = VeSy(t, D)), (Vi (t, 2) = Vi (£, VeS(t, D)))] -
Besides, Lemma 3.5.2 implies that
Vi(t,x) — Vy(t,VeS(t, D)) = (x — VeS,(t, D))Gy(t) + Ry(2),
where the operators G;(t) and R;(t) have the property that
ad(y_v,s,,0)Gr(t), ad(s_v,s,¢0)Rs(t) € LH(dt), n > 0. (4.18.11)

We have the following estimate.

Proposition 4.18.3
Let S;(t,€), x € C§°(IR) and Jy € C§°(X) be as above. Let s > 0. Then

llx = Vess (&, D) o (2) x(H)i||” < Cllia) ol (4.18.12)

Proof. We will prove the proposition by induction on s = n € IN, and then
apply an interpolation argument. Let

falt) ==

& — VeS;(t, D)™ (%) (H)éi,

and let us compute the derivative of f2(¢). Using (4.18.10), we obtain

L1t =25 (ailx(H)Jo (%) (@ = VeSs(t, D))
x [(@ = VeSy(t, D)), i(Vi(t,@) = Vi(t, VeSa(t, D))]

x (z = VeSy(t, D))=y (%) X(H)¢t)

+ (8e/x(H) (DJo (2)) (z = VeSy(t, D)*Jo (2) X(H)r) + cc.
(4.18.13)
The term on the last line of (4.18.13), which we call gy(t), is integrable by
Theorem 4.13.1 (see the proof of Proposition 4.18.2).
Commuting factors of z — V¢S, (t, D) through G;(t) and R;(t), we see that
the sum in (4.18.13) equals
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o C (elx(H) o (%) (z = VeSs(t, D))" Tadl, g g0y Ga(®)
x (z = VeSy(t, D))" Jo (2) x(H)y) + cc
+ X775 5 (belx(H) o (2) (@ — VeSat, D))" ad{, v,s,(,0) R (¢)
x (z = VeS;(t, D))" Jo (2) x(H) ) + cc.
This can be estimated by
70 Cifa(®) fai(Dlladl, g, .0y G (D)
+ 502 Cifalt) foor—(8) | adly g s, 0y B ()] = 91 (D Falt) + 92(8) F2(8),

where, by the induction hypothesis and by (4.18.11), g1, g» € L. Therefore,

SI20] < 90(0) + 391(8) + (G1 (6) + 92(0) S2(0)-

Finally, we apply Gronwall’s inequality, and we see that f,(¢) is bounded by
Cy|l{x)™¢||, which completes the proof of the proposition. O

Proof of Theorem 4.18.1 (i) in the case s’ = s > 0. We know that
Qi x(Ho) =s— lj)m e~ 50:D)x (H,)

= s— lim e**# J, (;) e #StD)y (Hy)

t—o0

—g— }H& ez'tHX(H)JO (%) e—iSJ(t,D)eig""(D)}Z(HO)’

for x € C°(IR\{0}), Xx = x and a smooth function o*. But (z)%e" () (Hy)(z)~*
is bounded for s € IR, so it suffices to show the boundedness of

(v) *s— lim ¢\ (H).Jy (%) e 9S16D) ()5, (4.18.14)
We have
(lx(H) o (5) e D aPeeis 00y (3) x(H) 1)
= (@ (H)Jo (%) Iz = VeSs(t, D)2 To (%) x(H)ér)

Using the bound of Proposition 4.18.3, we see that (4.18.15) is bounded by
C||{z)*®||?. Therefore, (4.18.14) is bounded. O

(4.18.15)
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5. Classical N—Body Hamiltonians

5.0 Introduction

A system of N non-relativistic particles moving in Euclidean space IR” is de-
scribed with phase space RM x IRM”, with the coordinates

(xla"'axNagla""gN)a

where (z;,&;) are the position and momentum of the i-th particle. Its motion is
described by the Hamiltonian

N
&

H(z,§) = 22 +2V;j($i_37j), (5.0.1)

i=1 <M o

where m; is the mass of the i-th particle and V;;(x) is the interaction potential
between particles ¢ and j. The most important case of such a Hamiltonian is the
one encountered in celestial mechanics where

—mimj

Vij(z) = (5.0.2)
]
Typical assumptions that we will keep in mind in this chapter are
|05Vij(2)| < Cz) ™1, >0, |o| =0,1. (5.0.3)

This and the next chapter will be devoted to the scattering theory of such
systems. In this chapter we will discuss the classical case and in the next chapter
the quantum case. In this chapter we will also introduce basic concepts and
constructions that are used in the description of N-body configuration space.
They are common to classical and quantum N-body systems. They will be used
both in this and the next chapter.

As in Chap. 2, where 2—body Hamiltonians were considered, the aim of
scattering theory for N—body Hamiltonians is to give a classification of the
asymptotic behavior for large times of all trajectories of H(z,¢).

A number of articles contained in the literature deals with problems con-
nected with the singularity at the origin of the potential (5.0.2) (see e.g. [Sal] and
references therein). This class of questions will not concern us. In fact, throughout
this chapter we will assume that the potentials are bounded.
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From our point of view, the literature on the classical N-body theory is
rather limited (see works of Saari [Sa2|, Marchal-Saari [MarSa] and Hunziker
[Hu2]). On the other hand, the quantum N-body problem was studied much more
extensively. There are some reasons for this. The results that can be obtained in
the quantum N-body case are usually more complete and satisfactory than those
that describe the classical N-body case. In fact, the article [De7], which is the
main source for this chapter, was directly inspired by the results of [De8], which
concerned the quantum case. Nevertheless, from the pedagogical and logical point
of view it seems that it is better to look at classical N-body systems first. In
particular, some of the important results about classical N-body scattering have
simpler and more transparent proofs than their quantum counterparts.

Let us briefly describe the contents of this chapter. In Sect. 5.1 we introduce
basic concepts used to describe N-body systems. We will use the formalism of
generalized N-body systems. To our knowledge, this formalism was first used by
Hormander in unpublished lecture notes and it was then described by Agmon
in [Ag2]. Generalized N-body Hamiltonians are functions on the phase space
X x X' of the form

H(z,6) = €+ Y ()
beB
where, for every b € B, z° is the projection of the vector z on a certain sub-
space X°. They are sometimes called Agmon Hamiltonians. We will usually call
them simply N-body Hamiltonians. They provide us with a mathematical frame-
work that makes it possible to describe N-body Hamiltonians of the form (5.0.1)
and also some other similar Hamiltonians in a particularly convenient way. At
the end of Sect. 5.1 we explain how this formalism is related to usual N-body
Hamiltonians of the form (5.0.1).

In Sect. 5.2 we introduce various functions on the configuration space that
are very important in some of the proofs of both classical and quantum N-body
scattering theory. With these functions, one constructs certain observables on
phase space whose Poisson bracket with the Hamiltonian is approximately pos-
itive. Functions with an approximately positive Poisson bracket were an impor-
tant ingredient of a number of papers on scattering theory, notably [Mol, SS1].
But only in [Gr] it was discovered how to distort these functions to make them
more adapted to the N-body problem (see also [De6, Yaf5]). Our presentation
and details of the construction come from [De6, De8]. Sects. 5.1 and 5.2 are
prerequisites for the next chapter.

In Sect. 5.3 we prove among other things that the union of all trapping
energies for all subsystems is a closed set. The proof of this fact is based on the
so-called classical Mourre estimate, which says that a certain observable has a
positive Poisson bracket with the Hamiltonian in a certain subset of phase space.
The Mourre estimate was first introduced in the quantum case in [Mol]| and
[PSS]. Its classical counterpart comes from [Gel] in the 3-body case and from
[Wa2] in the N-body case. The construction of the observable that is used in the
Mourre estimate is quite technical and can be skipped on the first reading.
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Section 5.4 presents a proof of the existence of the asymptotic velocity, that
is, the limit
z(t, vy,
lim 7( Y, 1) =: ¢t

t—00 t

(y,m).

This is a very important construction, because it provides us with a nontrivial
parametrization of all possible trajectories. Unfortunately, this parametrization
is far from being one to one. It has a quantum analog, which actually was dis-
covered first and can be used as an intermediate step in the proof of asymptotic
completeness.

Historically, it was the proof of the asymptotic completeness of N-body short-
range systems that was first (see [SS1] and a later proof in [Gr]). The proof
contained in [Gr| inspired the construction of the asymptotic velocity in the
quantum case, first in [De6], and then in a somewhat different formalism in [De8|.
Only afterwards, in [De7], it was realized that the existence of the asymptotic
velocity in the classical case follows by essentially the same arguments.

In physical terms, one expects that every N-body system for large time will
break into a certain number of almost independent clusters. If we denote the
corresponding cluster decomposition by a, then we say that such a trajectory is a-
clustered. The existence of the asymptotic velocity implies that every trajectory
is a-clustered for a certain cluster decomposition a. Note that in the case of
a-clustered trajectories it is natural too look separately at its internal (intra-
cluster) motion, described by the component z%(¢) and the external (inter-cluster)
motion, denoted by x,(t).

At this point we know two functions that describe the asymptotics of tra-
jectories: the full energy H(y,n) and the asymptotic velocity £ (y,n). One can
ask if it is possible to describe the joint image of these two functions inside of
IR x X. The main result of Sect. 5.5 says that the closure of this image is con-
tained in a certain set described in terms of trapping energies of subsystems. In
Sect. 5.6 we will show that the closure of this image contains another similar set
described in terms of the so-called regular trapping energies. This pair of inclu-
sions has a quantum analog, which in fact is more satisfactory: the inclusions
are replaced with an identity, the joint image with the joint spectrum and the
trapping energies with the thresholds — see [De6, De8| and the next chapter.

The a-clustered trajectories whose internal coordinate is bounded for t — oo
can have various behaviors. Some of them are very unstable. The category that
has particularly good properties is the set of trajectories that end up in a “well”
of the potential V*(z*). For these so-called regular trajectories, it is possible to
show certain regularity properties of asymptotic quantities £ (y, n), H*" (y,n).
These results are also presented in Sect. 5.6.

In the two-body case, we showed that zero-energy trajectories satisfy the
following a priori bound

[a(t)] < O,

It turns out that this bound has an N-body analog, which we show in Sect. 5.7.
Namely, we prove that every a-clustered trajectory satisfies
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[2?(t)] < O{)» .

This result comes from [De7] and its quantum analog is an important step in the
proof of asymptotic completeness in the long-range quantum case contained in
[De8|.

Classical trajectories that end up in the free region can be described in a much
more satisfactory way than those that move in other directions. In particular, it
is possible to define free region wave transformations that fully classify all the
asymptotically free trajectories. This can be done both in the short-range and in
the long-range cases with p > 0. It is described in Sect. 5.8.

Outside of the free region a full description of trajectories seems to be impos-
sible without very severe restrictions on the potentials. In the case of the so-called
a-clustered trajectories, it is usually more difficult to describe the asymptotics of
the internal coordinate z*(t). On the other hand, the external coordinate z,(t)
is much better behaved. If z > 1 in (5.0.3), then there exists the limit

: _ — ot
tliglo(xa (t) tga (t)) T xsr,a'
In the long-range case, if S, (¢, &,) is a solution of the appropriate Hamilton-Jacobi
equation, the limit
lim (2, (t) — Ve, Sa(t, &a(t))) = 21,

t—00

exists only under some additional assumptions. In particular, it always exists
if 4 > /3 — 1. These facts are shown in Sect. 5.9 and they were first proven
in [De7]. Note that this is the same borderline as for the proof of asymptotic
completeness in quantum N-body scattering (see [De8] and the next chapter). In
fact, one can argue that the existence of :cf;,a is the correct classical analog of the
quantum asymptotic completeness. Nevertheless, the result in the quantum case
is much more satisfactory, because it gives a complete classification of states in
the Hilbert space, whereas the classification given by (H (y,7n),{"(y,n), 74 . (y, 7))
or (H(y,n),&* (y,m), 21,4 (y, n)) is only partial.

In the case of regular trajectories, one can show certain regularity properties
of the asymptotic quantities =7 ,(y,7), :vf;,a(y, n), which we indicate in Subsect.
5.9.3.

Hunziker showed in [Hu2| that if the potentials are of compact support, then
not only the external motion of a-clustered trajectories has a good asymptotics,
but also the internal motion is asymptotic to a bounded trajectory of the internal
Hamiltonian. He proposed to call this property the asymptotic completeness of
classical N-body scattering. In Sect. 5.10 we prove a closely related result. We
assume that the potentials decay faster than any exponential. Then the internal
motion is asymptotic to a trajectory of the internal Hamiltonian with a zero
asymptotic velocity. This can be thought of as another property that can be
called the asymptotic completeness of N-body classical systems.

Let us mention that in the case of 3-body systems with radial potentials it

is possible to obtain quite detailed understanding of classical scattering theory
(see [Ge3)).
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5.1 N-Body Systems

In this section we introduce a generalization of N—particle Hamiltonians that is
originally due to Hérmander and Agmon [Ag2]. We will define various geometric
concepts and auxiliary Hamiltonians that are useful in N-body scattering theory.

We will see at the end of this section how standard N —particle Hamiltonians
fit into the more general class of generalized N-body Hamiltonians. The reader
not familiar with N—particle Hamiltonians should first go to the end of the
section to get a intuitive feeling for the various definitions that we introduce.

Although the class of generalized N-body Hamiltonians was first introduced
in the quantum case (see [Ag2]), it is natural to consider it also in the classical
case. Actually, the material in this section will also be used to describe quantum
Hamiltonians in Chap. 6.

We denote by X a finite dimensional Euclidean space. The Euclidean norm
of a vector x € X will be denoted |z|. Moreover, we will put

(x) == Va2 + 1.

Suppose that
{Xy | be B} (5.1.1)

is a finite family of subspaces of X. Let
{X, ]| a€ A} (5.1.2)

be the smallest family of subspaces of X satisfying the following conditions:
(1) X belongs to (5.1.2);
(2) the family (5.1.2) is closed with respect to intersection;
(3) the family (5.1.1) is contained in (5.1.2).
Subspaces X, will be sometimes called collision planes.
We endow the finite set A with a semi-lattice structure by

a<b if X,D X, (5.1.3)

Clearly, there exist unique minimal and maximal elements in A denoted by @i,

and amax. In fact,
X

Gmin

=X, KXopar = ﬂ X,.
acA

One often assumes that
Xamax = {0}7

but this additional condition is not necessary. Clearly, for a;, as € A, there exist
a unique element bigger than a; and as. This element will be denoted by a; V as.
One has

Xa1Va2 = Xa,l N Xag-

A chain is an ordered sequence {ay,---,ax} of elements of A with
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a < --- < Qg.

The chain is said to connect a = a; to b = ag. The length of the chain is k. A
chain is maximal if one cannot insert a new element into it.

For a € A, we denote by #a the maximal length of a maximal chain con-
necting a to ayax. The number #a is called the height of a.

For a € A, we denote by X the space X. We denote by 7¢ and m, the
orthogonal projections of X onto X® and X, respectively. We will often write z°
and z, instead of 7%z and w,x. If a < b then we define

T, mlr = nlm,x =: a:Z

The following sets will be important later:

Za = Xa\ U Xb:
bZLa

Y, =X\ U X,
bLa

The following elementary proposition describes the “stratified structure” of

the family {Z,}aca-

Proposition 5.1.1
The family {Z,}aca is a partition of X. It means that

Z,NZy=0, a#b, and X =) Z,.
acA

Moreover, the family {Zy}v<q is a partition of Y,. The set Y, is open.

If €,6 > 0 then it is useful to define the following sets:
X::={z € X | dist(z, X,) < €},
70 = X,\ U X},
bZLa

a

14
Z80 = X\ U X}, (5.1.4)
bLa
vi=X\U X}
bLa

The following class of functions will be especially useful in our study of N-
body systems:

Definition 5.1.2
Let f be a function X > x +— f(z) € C. We say that f € F if, for any a € A,
there exists a neighborhood U, of X, such that f depends within U, only on x,.

Let us now introduce the definition of a (generalized) many-body Hamilto-
nian.



5.1 N-Body Systems 223

Definition 5.1.3
Let X be a Euclidean space and let {X, | b € B} be a finite family of linear
subspaces. For each b € B, let v’ € CV1(X?) be a real function such that

lim v°(z%) = 0. (5.1.5)

|zb| =00

Then the classical Hamiltonian on X x X'

H(z,§) = %52 + 3 ()

beB

is called a (generalized) many-body Hamiltonian.
Let A be the corresponding lattice of subspaces and

N = #amin-

Then H(x,§) is also called an N-body Hamiltonian.

For any a € A, we set

V(z) ==Y 1"z, and V(%) :=> 2"(a").

beB b<a
We define .

H,(z,¢) := 552 + Ve(z?).
Clearly, H = H,_,, . Note that

H,(z,&) = %52 + H*(z%,&*), where H%(z% &%) = %(5“)2 + Ve(z?).

Clearly, H* is a many-body Hamiltonian on the space X°. The corresponding
lattice of collision planes is indexed by A% := {b < a}.
If we set

Lo(z) = V(z) = V*(2%),

then we have
H(Jﬁ,f) = Ha(xaé) + Ia(x)'

Since X%mi» = {0}, it is convenient to assume that
pmin (gmin) = (),
We then have
Vomin(gtmin) = () and ~ H%mir (g% £Omin) = ()

on the phase space {0} x {0}.
We will also define the Liouville derivative
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d
D:=— H -1.
= {H(,),}
To end this section, we will explain how standard N—body Hamiltonians fit
into the class of generalized N —particle ones.

The configuration space of a system of N v-dimensional particles is

X1 x - x Xy,
where X; = --- = Xy = IR”. An N—particle Hamiltonian is a function on
Xp x - x Xy x X] x---x X} given by

Y og

H(z,8) =3 52—+ > Vij(wi — 2))- (5.1.6)

i=1 <M o

It describes the motion of N particles of masses m; interacting through pair
potentials V;;(z; — z;), which are usually assumed to go to 0 at infinity.

Let us now identify various concepts from the formalism of generalized N-
body Hamiltonians in the case of (5.1.6). We have

X=X, % x Xy,

where the scalar product is defined by the quadratic form

N
> m;. (5.1.7)
i=1

The set B is the set of pairs in {1,..., N}.
The set A is the set of partitions of {1,..., N}, whose elements a will also
be written as

CL:{Cl,...,Ck}.

The sets C; are traditionally called clusters and a € A are called cluster decom-
positions. The set A is endowed with its natural lattice structure by saying that
a < b if a is finer than b, that is, all clusters of a are included in clusters of b.
Note that the height #a is equal to the number of clusters in a.

For a pair 7, j of indices, we will denote by (7, j) the smallest partition having
{i,j} as one of its clusters. Then we define

Xo={zeX|zi=1z; (iJ)<a}l. (5.1.8)
In other words,
Xo={xeX| forevery m=1,...,k, if i,j € Cp, then z; =z}

It is immediate to verify that the family {X,},c4 defined in (5.1.8) satisfies
the conditions specified at the beginning of the section. Moreover, the lattice
structure defined by (5.1.3) coincides with the one introduced above.
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A special role is played by the maximal cluster decomposition amax =
{1,...,N}. Clearly,
Xamax:{$|$1:...:x]v}’

Xomex ={x | myzy +---+ myxy = 0}.

Note that X,,,,, is the subspace of the center-of-mass motion and H®*»2~ is the full
Hamiltonian without the center-of-mass motion. The space X %™ is sometimes
called the reduced configuration space of the system and H%"< is called the
reduced Hamiltonian. We have

1
H(./,E’ é‘) = iggmax + Hamax (xamax, é—amax)’

therefore the reduced Hamiltonian contains the whole nontrivial information
about the system.

For an arbitrary a, the Hamiltonian H(z?, &) describes the internal motion
of the clusters C,...C} and %{2 describes the kinetic energy of the relative
motion of the clusters C ..., C}.

Below we give some pictures that show typical low-dimensional configuration
spaces of many-body systems.

In the case of a 2-body system, the full configuration space is 2-dimensional,
and there are just two collision planes corresponding to amin = {{1}, {2}} and

amax = {1, 2}.

—_ e e e e - - - = >

Fig. 5.1. Configuration space of a 2—body system.

The configuration space of a system of 3 one-dimensional particles is 3-
dimensional. On the following picture, we show the reduced configuration space
of such a system, which is 2-dimensional. The picture shows the collision planes
corresponding to all five cluster decompositions:
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Omax = {{15 2, 3}}a
(1,2), (2,3), (3,1),
Omin = {{1}’ {Q}a {3}}5

F* F* F*
I
w o =

Fig. 5.2. Reduced configuration space of a 3—body system.

Probably the most complicated N-body configuration space whose picture
it is still possible to draw is the reduced space of a system of 4 one-dimensional
particles. This configuration space is 3-dimensional. On the following picture, we
show the unit sphere in this space and its intersections with collision planes.

In the case of a reduced 4-body system, 3-cluster decompositions are labeled
by pairs of particles. They correspond to 2-dimensional collision planes and their
intersections with the sphere are big circles. Every two 3-cluster collision planes
intersect along a line that corresponds to a certain 2-cluster decomposition. Every
such a line intersects the sphere at two points, one of which is shown at the
picture.
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X(14)(23)

Fig. 5.3. A sphere in the reduced configuration space of a 4—body system.

To finish the section, let us mention some other Hamiltonians slightly dif-
ferent from the standard ones that can be considered as generalized N —particle
Hamiltonians. The first example is obtained by allowing particles not only with
pair interactions but also with triple, quadruple, etc. interactions. In the quantum
case, such models are quite common in nuclear physics. For example, a potential
describing a triple interaction between particles ¢, j, £ would be of the form

Vi (@i — x5, 25 — 1),

where Vj;x(z,y) goes to 0 when |z| or |y| go to co. Such a potential is of the form
v®(z®) for

a={{i, 5k}, {u},..., {t~v=s}}

Another example is obtained by adding some particles of infinite masses. One
then obtains a Hamiltonian of the form

v g

H(z,&) =) DT + > Vilz; — ) + ZVZ(%) (5.1.9)

i=1 4T 55

Note that in this case H(z,£) is no more translation invariant and we have
Xamer = {0}

The configuration space of such a system is X = X; x---x X, where X are
configuration spaces of particles having a finite mass, so it is the same as in the
system of N particles, but the family of collision planes is different. Namely, to
the usual family of subspaces corresponding to cluster decompositions we have
to add the subspaces {(x1,...,2zn) | z; = 0} and their intersections.
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Below we give a picture that shows the configuration space of a system of 2
particles interacting with a particle of infinite mass.

X

Gmax

Xy

Gmin

Fig. 5.4. A 3—body system with one particle of infinite mass.

5.2 Some Special Observables

One of the most important techniques of scattering theory is the use of observ-
ables having an approximately positive Poisson bracket with the Hamiltonian.
An especially successful example of such an observable is the so-called Graf’s
vector field. This section will be devoted mostly to a construction of this vector
field, or actually, of its “potential” — a scalar function on the configuration space.
Graf’s vector field appeared originally in [Gr]. The function R(z), whose gradient
is essentially Graf’s vector field, first appeared in [De6]. Its construction that we
are going to present is taken from [De6, De8|.

The function R(z) is a distortion of 2?/2. At the end of this section we will
study another useful observable, r(z), which is a distortion of |z|. This observable
first appeared in [Yaf5], and was then used in [De8] to prove the asymptotic
completeness of long-range N-body systems.

Note also that similar functions having an approximately positive Poisson
bracket with the Hamiltonian were used before [Gr], especially in [SS1]. The
main discovery of [Gr| was the idea how to distort these functions in a vicinity
of collision planes, which considerably simplified the study of N-body systems.

Let p = {pas,a € A} be a sequence of numbers indexed with elements of .4
such that p, . = 0. We define

ZP = {zx € X |22+ pa > T + pp, Vb # a}. (5.2.1)
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We will say that a sequence p is admissible iff there exists § > 0 such that
EnX) =0, b¥£a.

In applications to N-body systems, we will need a family of sets =# with an
admissible p. Such a family of sets we will call a Graf partition. On the following
picture we show a typical Graf partition for a 3-body system.

Gmax

Z2)

Fig. 5.5. Graf partition on the configuration space of a 3—body system.

The following picture of the configuration space of a simplified 4—body sys-
tem will be used to illustrate the properties of admissible partitions of unity.

Fig. 5.6. A sphere in the configuration space of a simplified 4—body system.
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If we choose a non-admissible p, we still get a partition of the configuration
space with a positive Poisson bracket, but it does not have the properties that
we need. An example is shown on the picture below.

Fig. 5.7. A non-admissible partition on the 4—body configuration space.

The next picture shows an admissible partition of unity for the simplified
4—body system.

Fig. 5.8. An admissible partition on the 4—body configuration space.

Proposition 5.2.1

(i) For a # b, the intersection EPNE] is a set of measure zero. The sets {=}aen
are closed and

| = =X. (5.2.2)
acA

(i) There exist admissible sequences p. More precisely, for any € > 0, there exists
0 > 0 and a sequence p such that
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=p €0 € J
—a - Za Xa\bLgJaXb. (523)
Moreover, such p satisfies
Xc =z (5.2.4)
a<b

Proof of Proposition 5.2.1(3). It is obvious that the sets =¥ are closed and
that their union is X. The intersection 5” N =} is a zero set of a non-trivial
quadratic polynomial, hence of zero Lebesgue measure. O

In the proof of (i) we will use the following simple geometric observation.

Lemma 5.2.2
There exists M > 0 such that we have

M|z 2 < |z%? + |2°%, a,b € A. (5.2.5)

Proof. For a,b € A, we have
XaVb — Xa fay Xb.

Therefore |/|2%|2 + |z%|? is a norm on X%'*, which is clearly equivalent to the

usual norm |z2V®|, because the space is finite dimensional. Therefore, there exists
a constant M > 0 such that (5.2.5) is true. O

Now suppose that p is an arbitrary sequence with p, . = 0. We split our
study of the set =¥ in a series of lemmas.

Lemma 5.2.3
If a # ay, then
EPC XYPe

Proof. If x € =7, then
T2+ pg > T

Therefore,

a|2

2% < pa.

Lemma 5.2.4

For any a,b € A,
SN Xy = g,
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Proof. We have
%+ pg > T2+ pa > T) + ppe

Therefore
|21 > py — pa.

Lemma 5.2.5
For any a,b € A,

—_ V M(pave—pa)—pa
:5 ﬂ Xb v - @.

Proof. We have
2%+ po > T3 + P > Thoyy + Pave-

Therefore
|$aVb|2 Z Pave — Pa-

By Lemma 5.2.2, this yields
|xa‘2 + ‘xb|2 Z M(Pavb - pa)-

By Lemma 5.2.3, this implies

2|2 > M(pavs — Pa) — Pa-

Proof of Proposition 5.2.1. Let v > 0. Choose p such that

Pa <€ a €A,

Py > %paa #b < #CL, aab €A
If #b < #a, then

Py —pa > 2 ps— pa
= (14+y)M~'p, =: 62, > 0.
If #b > #a and b £ a, then, clearly, #(a V b) < #a. Hence
M (pavs = pa) = pa > M (MHE = 1) p, — p,
= Ypa =: 055 > 0.

Therefore, by Lemmas 5.2.3, 5.2.4 and 5.2.5, we have
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Eg C Xga\ U Xga,l U U Xga,2> )
#b<#a #b>4#a, bLa

This implies (5.2.3).
Let us now prove that (5.2.3) implies (5.2.4). Observe that if a £ b, then

EPcX\ X0

Hence

U= cx\x..

a’b
By (5.2.2), this implies (5.2.4). O

Let us now put
() == s (a), (5.2.6)
1 2
Re(z) »= gmax{z, + po}- (5.2.7)

The next proposition describes some properties of R” and {¢?}.c4. Note that
the first identity of this proposition is only valid almost everywhere. Besides, all
the derivatives in this proposition are in the distributional sense.

On the following picture, we show the vector field V,R(z) for a system of 3
particles. V,R(x) is often called a Graf vector field.

Fig. 5.9. Level sets and gradient of R” on the 3-body configuration space.

Proposition 5.2.6
R? is a continuous convex function. Moreover, one has
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i) Re(z)= P 394(2)(25 + Pa),

(

(17) Vg R(x) = Y xq°(x),
acA

(ii7) VIRP(z) > ¥ m.ql(z),
acA

(iv)  EVZRP(2)¢ — EVRP(z) — VRP(2)€ + 2R*(x)

> EAQ§($)|§¢1 —z.[°, € X +iX,
ac
(v) max{z? Ci} < 2RF(x) < 2%+ Cy, for some C,Cy >0,

(vi) if p is admissible, then R?,q° € F.

Proof. The function R?(x) is, clearly, continuous, as the supremum of a finite
family of continuous functions. It is convex, as the supremum of a family of convex
functions. In other words, its second distributional derivative is a measure with
values in positive matrices. Inside Int=" we have

V2R’ = T,.

This proves ().

The set X\ Uges Int=? is the union of subsets of zero sets of quadratic poly-
nomials. Therefore it has codimension 1, and hence it is of measure zero. Inside
Int=? we have

1
R = 5(372 + pa)-

This implies (7).

Any convex function is differentiable almost everywhere in the usual sense
and its distributional derivative is equal to its usual derivative. Inside Int=? we
have

VRl = z,.

Therefore (ii) is true.
(i), (ii), (i) and the positivity of p, imply (iv). The properties (v) and (vi)
are obvious. This completes the proof of the lemma. O

We will now smooth out R” and {¢”}.c 4.

It follows from the proof of Proposition 5.2.1 that we can find two sequences
p~ and p* such that p; = pl =0, p; < pf for a # ampm and if p; < p, <
pf, a € A, then p is admissible. We fix two such sequences. We also fix a function

[ € CF (Xatamalpz,pl])  such that £ >0, [ f(p)dp =1,

where dp = ®,a,,,,dpa- We define
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R(z) = [ f(p)R¢(z)dp,
@a(x) = [ f(p)af(z)dp,

Lemma 5.2.7
R(z) is a smooth convex function. Moreover one has:

7) max{z? C,} < 2R(x) < 2? + Cy, for some C1,Cy > 0,
“) va(x) =X l’aqa(l'),
acA
”7') ViR(.’L’) =X 7"'(L(]a(m) - xavaa(x) > 2 7I'tz(]a(x)a
acA a€A
w)  EVR(z)€ — EVR(z) — VR(2)E + 2R(z) > z, 0a(7)[€a — 7a?,
ac
£e X +iX,

(
(
(
(

(v) R, €F, a€A,

(vi)  the following functions are bounded:
0%(2R(z) — 2?), a € N",
07 (zVoR(z) — 2?), o € N",
0%(zV2R(x)x — 2%), a € IN"™.

Proof. The properties (i)-(v) of Lemma 5.2.7 are immediate consequences of
Lemmas 5.2.6.

Let us now prove property (vi) of Lemma 5.2.7. We will actually prove the
following more general estimate:

102(zV )" (2R(z) — 2%)| < Cyup, k €N, a € N". (5.2.8)
Note that
zVyR(z) — 2? = 2V,(R(z) — 327),

zV2R(z)r — 2* = ((2V,)? — 2V,) (%R(z) — ixQ) :

Therefore (5.2.8) will imply (vi).
Note that

2h(e) =t = 3 U2+ po)at () f(p)p. (5.2.9)

Let us fix @ # auin and a subset {ay,a9,...,a,} C A\{a, amin}. Let us also
label the elements of A\{a, Guin, @1, .., 0.} as {by,...,bm}.
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Our aim will be to estimate the derivatives of the ath term in the sum (5.2.9)
for x € X such that

$Z+P;§$Zj+ﬂ;, j=1,...,n,

and
a2+ p, > @y, +pl, k=1,...,m.
Obviously, any x € X satisfies such conditions for some subset {a1, as,...,a,} C
A\{a, amin}-
For j =1,...,n, we set
ﬁaj ‘= Pa;j — Pa + ‘sz - 'TZ
and

f(paapau“"pan) = /f(pa’pal""’pan’pbl""’pbm)dpbl - -dpp,, -

We have the following identity

Sz + pa) gt () f(p)dp
= [(12°? + pa)@2(2) F (Pas Pars - - - » Pan)dpadpay - - - dpa,

(‘xaP + pa) f(Pas Pay + Pa — xil + .Z‘Z, vy Pay T Pa— xin + xi)

(5.2.10)

Now note that on the support of the above integral we have
|2 < pyf-

Therefore, |z — z,| < C).
Moreover,
Ty — Th < pE = Py (5.2.11)

Therefore,

2 2 _ .2 2 2 2 + +
z _xaj_a: _‘Ta+xa_xaj Spa +paj_pa'

Hence |z — 24, | < Cs.
Thus, on the support of the integrand we have

Zq — To; | < |2 — 2| + |7 — 24;| < C1 + Co. (5.2.12)
Now we remark that
ag(wi)kf(pav Pay + Pa + le — 5, Py + Pa + xin — )

is a linear combination of terms of the form
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(z2 —a2)Fr ... (xin_l — 22k (24, — ) L (T — Ta)O"

05 .. 05 F(PaPar + pa+ 22, — T2, Pay + Pa + T2, — T2).

By (5.2.11) and (5.2.12), this is bounded. O

Proposition 5.2.8
The set F N CFP(X) is dense in Coo(X) in the uniform topology.

Proof. It is enough to show that one can approximate functions of C§°(X) with
elements of F N C§°(X).

Let f € C§°(X). Clearly, f is uniformly continuous. Therefore given 6 > 0
there exists € > 0 such that

|T1 —zo| <€ implies |f(x1) — f(z2)| <.

We construct a partition of unity g, as in Lemma 5.2.7 with the requirement
that suppg, C X:. We set

=D t(2)f(z

acA

Clearly, f € F N C(X). Moreover,
f@) = f(z) = 3 (f(xa) — f(2))ga(®).

acA

Therefore,

1f(2) = f(@)| < 3 1f(ma) = f(@)]ga(z) <6 Y qu(w)

acA acA
O

Another function on the configuration space that will play an important role
in our considerations is

r(z) := /2R(x).

The following lemma describes the properties of r(x).

Lemma 5.2.9
r(z) is a smooth convex function. It belongs to F. It satisfies

max{|z|,C1} < 7(z) < 2|+ Oy
for some C1,Cy > 0. Moreover,
|05 (r(2) — ()] < Colz)™", o€ N,
10%(xVpr(z) — (7)) < Colz)™!, @ € N, (5.2.13)
|03 (xVar(z)z)] < Cofz)™!, o€ N,
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Proof. Note that, by (5.2.7), the polynomial
R 3t — t%¢V?R(z)€ — 12V R(z)¢ + 2R(x)
is nonnegative. Hence its discriminant is negative, which means that
4(EVR(7))? — 8¢V?R(z)ER(x) < 0.

Consequently,

20 ()6 = 1 2p(s _ VR(z)VR(z)
eV =€ (VR() T )520.

This proves the convexity of r(z).
Now we would like to show (5.2.13). Actually, we will prove a more general
estimate

102(2V) (r(z) — (2))| < Coplz)™, k€N, a € N". (5.2.14)
If we note that
tVar(z) — |z| = 2Va(r(z) — |z),
aVir(z)z = ((2V4)? — 2V,)(r(z) — |2)),

then we see that (5.2.14) implies (5.2.13).
By (5.2.8), we clearly have

102 (V)" R(z)| < C(z)™>C710 ke N, o € N™.
Therefore,

0% (zV ) er (z)| < Clgymx(=eb=1) e N, o € IN".

|07

Obviously,
|05 (2V4)(z)| < Clz)'7*, ke N, @ € N".

The above two estimates imply easily
02(xV,)F(r(z) + () | < C(z)y™>C1eb=3) ke N, a € N™

This is actually a stronger inequality than what we need, for our purposes it
would suffice to know that

10%(2V2)*(r(z) + (z)) 7 < C{z)™", k€N, o € N™. (5.2.15)
Now (5.2.14) follows from the identity

ey = 2R(z) — (z)?
r(z) — (z) ) T @)

from the estimate (5.2.15) and from (5.2.8). O

Y
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5.3 Bounded Trajectories and the Classical Mourre
Estimate

In this section we begin our study of N-body Hamiltonians. We assume in this
section that the potential satisfy

lim (z)|V 0 (z)| =0, b€ B. (5.3.1)

|zb| =00

We will study bounded and unbounded trajectories of N-body systems. One of
the concepts that we will use will be that of trapping energies, that is, the energies
at which bounded trajectories exist. We will show a certain relationship between
the set of trapping energies of the full system and the sets of trapping energies
of subsystems.

The main tool used in this section will be the so-called classical Mourre
estimate. This estimate says that a certain observable, which is a modification
of (z,&), has a positive Poisson bracket with the Hamiltonian in a certain region
of phase space. This construction is based on an analogous construction of the
quantum case [Mol, PSS] and in the classical case was first given in [Gel] in the
3-body case and in [Wa2| in the N-body case.

Let us first introduce some definitions.

Definition 5.3.1
Fora € A, we define B®T to be the set of (y*,n*) € X*xX®* such that z*(t,y*, n*)
is bounded fort > 0, where (exceptionally) we denote by z*(t,y*, n®) the trajectory
generated by H®(x% &%) with the initial conditions (y*,n®).
The set
% := H"(B*")
is called the set of trapping energy levels of H*(x%,£%). Note that o*i» = {0}.
We also define
= J o’

b<a

We will denote simply by o, T the sets g%max rmax,

Note that 7 is an analog of the set of thresholds of the quantum Hamiltonian
H.

Let us first notice an immediate property of the sets 7 and o.

Proposition 5.3.2
(1)
[ ;nin inf V4(z%),0] C ,
(i)
[inf V(z), min inf V*(z%)[C o.

AF0max
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Proof. LetinfV(z) < A < ming 4, inf V*(2%). Then V~'({\}) is a non-empty
set. The trajectory with initial conditions (y, 0) for some y € V~'({\}) is confined
to V71(] — oo, A]) , which is a compact set. Hence A € o. This proves (ii).

To prove (i), we note that

U [inf V' min V®[U{0} = [ min inf V*(2?),0].
b<a a?'éamax
a#amax, a?ﬁamin
O
In particular, the set 7 of “classical thresholds” usually contains some inter-
vals. On the contrary, in the quantum case, we will see that the set of thresholds

is much smaller.
The main results of this section are the following two theorems.

Theorem 5.3.3
Let [\, Aa] C IR\7. Then there ezist constants C1 and Cy > 0 such that, for any
(y,m) € H7'([A1, Ag]), either

z(t,y,m)| < Ch, (5.3.2)

or, for some C,
(t,y,m)| > Cot = C. (5.3.3)

Theorem 5.3.4
The sets T and o U T are closed.

As we mentioned, in order to prove the above theorems, we will construct
a certain observable having a positive Poisson bracket with the Hamiltonian
H(z,€) in some region of phase space. This observable extends the one con-
structed in the 2—body case in Propositions 2.3.3 and 2.4.2.

Proposition 5.3.5
(i) Let [A\1, Ao] C R\ 7. Then there ezists a function G(z,£) € C*H(X x X'), Ry
and Coy > 0 such that

050 (G2, €) = (2,6)| < C, o]+ 6] <1, (z,) € H' [\, o)),
{H’ G}(x,f) > 007 (xaf) € H_l([)‘la)‘Q])’ |£U‘ > Ry.

(i1) If moreover [A1, Ao] C R\ (T U o), then we can choose G(z,§) in such a way
that it will additionally satisfy

{H’ G}(x,{) > 005 (m,f) € H_l([/\la /\2])'
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Proof of Theorem 5.3.3 given Proposition 5.3.5. First we construct a
function G(z, ) that satisfies (i) of Proposition 5.3.5.

Note that we have the following estimates:

G($,§) < Cla ($,§) € H_l([)‘b )‘2])? |$‘ < R07

Coz) > G(z,8), (x,€) € HY([A1, Ag]), for some Cs,

{H,G}x,&) > Cy, (z,&) € H([A1,\2]), |x| > Ry, for some Cy > 0.

Now suppose that (z(t),£(t)) is a trajectory in H([A;, A]). We consider

separately 3 cases.
Case (1) If
lim inf |z(t)| > Ro,

then, for t > T,

%G(w(t),{:(t)) > Cy > 0. (5.3.4)
Therefore,

G(z(t), (1)) > Cs + Cot.
Hence

(z(t)) > C;'(C5 + Cot),

which shows that (5.3.3) is satisfied.
Case (2) Let
liminf |z(t)] < Ry, limsup|z(t)| > Rp.
t—00 t—o00
Suppose that, for ¢ € [T1, T3],
lz(t)] > Ry and |z(T1)| = |z(Ty)| = Ry.

Then for ¢ € [T1, T3], we have

d
SG(0),£0) 2 Gy
and hence
G(2(12),£(T3)) — G(z(Th),&(Th)) = Co(Ta — Th). (5.3.5)
Therefore,

9Cy(Ry) > Co(Ty — T1).

This gives a bound on the time that can be spent without interruption outside a
ball of radius Ry. By the finiteness of the velocity, this means that the trajectory
z(t) is bounded.
Case (3)

limsup |z(t)| < Ry.

t—o0
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In this case, the trajectory is obviously bounded by Ry. This ends the proof of
the theorem. O

Proof of Theorem 5.3.4 given Theorem 5.3.3. The proof uses the induction
with respect to a € A. We will explain the last step of the induction.

Assume that we know that, for a < ampax, the set o® U 7% is closed. This
implies that 7 is closed, because

= |J (c*ur®).
u:/éama,x

Let now A € o U 7. By the closedness of 7, there exist \; < A < Ay such that
[A1, Ao] € IR\7. By Theorem 5.3.3, we will find Ry such that all the bounded
trajectories of H '(JAi, A2[) are confined to the ball of radius Rp.

Suppose now that there exist A\, € o such that A\, — \. Let the trajectories
(n(),&,(t)) be bounded and H(z,(t),&,(t)) = An. Then they will stay inside a
compact set and, by passing to a subsequence, we can assume that there exists

lim (zr,(0), & (0)) =: (y, n)-

n—oo

By the continuity of the flow, the trajectory (z(¢,y,n),&(t,y,n)) is bounded.
Clearly, H(y,n) = A. Therefore, A € 0. O

Now we are going to construct an observable with the properties described in
Proposition 5.3.5. The construction of this observable is rather tedious. It consists
in cutting and pasting functions in various regions of phase space. Moreover, one
has to use an induction argument on the number of particles N. We start with
a lemma that describes such a construction close to Z,.

Lemma 5.3.6

Let \€ER, a € A, [\, \] CR\(6°U %) and e,y > 0. Assume that Proposition

5.8.5 holds for the Hamiltonian H®(z®, £%) and the energy interval [\, \y].
Then for any large enough & > 0, there exists a function g, € C%' (X x X')

such that

020 9a(2,€)| < C, ol + 16| <1, (2,€) € HT'(] = 00, A]),
{H,90}(2,8) > Wyes (@) U5, 5, (H(2,€%) =7, (2,€) € H'(] — 00, A]).

Proof. Let x € C§°(IR) such that 0 < x <1 and x = 1 on a neighborhood of

zero. Set . .
o) = (52) 1 (1= (3)).

Let m € Cg°(X?) such that m > 0, and m =1 on {2 | [2°] < €}. We choose
h € C§°(IR) such that A =1 on [A{, \o] and supph C IR\o®. We define

M) = =h(H ) [ m@ gt (5:3)
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where x%(t,y% n®) is the trajectory generated by H*(z%,£%) with the initial con-
ditions (y*,n*). We observe then that since by hypothesis Proposition 5.3.5 holds
for the Hamiltonian H* for the energies in supph, we can apply Theorem 5.3.3
to H®. Consequently, every such a trajectory with the energy H® from supph
spends a finite amount of time in suppm. Therefore the integral in (5.3.6) is
well defined. By the compactness argument, we see that M (2%, &%) is bounded
together with its derivative for |z%| < R. We set

9a,r(7,€) == fo,r(x)M(z%,£°).
We compute:

{Ha ga,R}(‘T’ 5) = gvzfa,R(l‘)M(LEa, ga)
+fa,r(2) VoI (2)Vea M (2, £%) (5.3.7)
+fo,r(@)h(H (2%, £%))m(z®).

The first term on the right of (5.3.7) is bounded by O(R™!) for (z,£) € H™'(] —
00, A]). The second term is bounded by C'sup,cquppy, » |[VIa(2)|. By choosing R
big enough, we can make the sum of these terms less than 7. Enlarging R and
choosing § big enough, we can make sure that the third term is greater than or
equal to

ﬂy;’é (95)]1[}1,,"\2] (H*(z,£%)).
We set
90(2,€) 1= ga,r(2, &)
for such R. O

Lemma 5.3.7 o
Let A € RR. (i) Let [A, As] C R\7. Then for any v1,72 > 0, there exists a

sequence p = {p, | a € A} and, for any a # amax, @ function g.(x, &) such that
if (x,6) € H™'(]—00,2]), then

0200 galw, €)| < O, Jal+ 8] < 1,
{H7 ga}(xa 6) > qg(x)]][j\l,j\2](Ha($a7§a)) - 71, (538)
g8 (2) 1o ()| < 72

(ii) Let [\, Xo] € R\(7 U ). Then for any vi,7. > 0, there exists a sequence
p = {p. | a € A} and, for any a € A, a function g,(z,&) such that (5.8.8) is
satisfied.

Proof. The proof uses a decreasing induction with respect to n = #a. At the
nth step of the induction we construct a sequence p™ and functions g,(x, &) with

#a = n.
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We start the induction by setting pX*! = 0, a € A. (There are no a’s with
#a = N + 1, hence no functions g,(z, ) are available yet).

Let n = N, N — 1,.... Suppose that we have already constructed gy(z,¢)
for #b > n and we have chosen a sequence p"*! such that, for #b > n and
(x,€) € H (] — o0, A]), we have

020 go(z,€)| < C, ol + 8] <1,

{H, g} (2,6) > ¢f (2)15, 5, (H(2*, %) = 1, (5.3.9)

n+1

1

gy (@)1p(2)] < 72

Let € > 0 have the property

—_pnt1

XeDENT, Fa=n. (5.3.10)
Then there exists ¢; such that

|Ia(x)]1Y;,51 ()| < v, H#a=n.

Using Lemma 5.3.6 for this € determined in (5.3.10), we find § > §; and, for any
a € A such that #a = n, we construct g,(z,&) € C% (X, X') with the following
property:

020 90(2,)| < C, o +18] <1, (2,6) € H™(] =00, A]),
(H, 00} (5,6) > Tyea ()5, 5, (HO (@, €)) =, (2,€) € H1(] = 00, ).
We choose a new sequence p" such that
pyt=pf, #b>n, it < pf, #b <,
so as to guarantee that, for #a = n,
]ly,f’5 > qgn-
This implies that, for #a = n and (z,£) € H™'(] — o0, A]), we have
H 00} 0 €) 2 0 (9,5, (H07,6)) = o
La(2)qg" ()] < 72

Note also that
pn+1 > pn b >
ap >q, , #b>n.

Hence the induction assumption (5.3.9) implies that (5.3.11) is true also for
#a > n.

In the case of the proof of (i), we repeat this construction until we arrive
at n = 2. We put p := p?. Note that in this case we have constructed g, for all
#a > 2, which means for all a # aax.
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In the case of (ii), we stop at n = 1 and we put p := p'. In this case, we have
constructed g, for all #a > 1, which means for all a € A. O

Proof of Proposition 5.3.5. We choose v;,7, > 0, 5\1, 5\2 and 1/2>Cy >0

such that o
[Al,AQ]ﬂUUTZQ,

/\1::\1+Cl+’h, )\225\2—%,
01—M72202>0,

where M is the number of elements of A. We construct the functions g, and a
sequence p as in Lemma 5.3.7. We set

G(z,8) := (Vo R(2),6) + Y gal, ).

acA
For (z,£) € H (] — oo, A]), we have
{H,G}z,8) = (ViR (2)&,€) + LucalH, ga}(z, )

> % ah(a) (6 + By 5,y (H"(a,€9)) — M. (5.3.12)

It is easy to see using 1/2 > () that

6 + ]l)‘l Az] (Ha( ga)) 2 201]1[;\1+C1,5\2](Ha(x,§))'

Besides, on the support of ¢?(z) we have

|Ha(z, &) — H(z, §)| < 7.

Therefore,
qg(x)]l[iﬁcl,f\ﬂ(Ha(m: £)) > qg(m)]l[A1=>\2](H($: £)).
Hence
go(2) (& + Uiz, 5y (H (2%, €%)) > 20105 () Un, ) (H (2, 6)).
Therefore,

{H,G}(z,&) > C, — My, (x,€) € H ' ([A, \g)).

By choosing v; > 0 small enough, we can guarantee that 2C; — M~; = Cy > 0.
This proves (ii).
The proof of (i) is similar except we sum just over a # @pyax- O

5.4 Asymptotic Velocity

In this section we introduce the basic asymptotic quantity for classical N —particle
Hamiltonians, the asymptotic velocity. This result is similar to the one already
obtained for 2—body Hamiltonians. It is, however, much deeper.
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The proof of the existence of the asymptotic velocity is taken from [De7]. It
was inspired by arguments used in [Gr| to prove the asymptotic completeness of
N-body quantum short-range systems.

Throughout this section we will assume that

Js° sup |[Vev®(z)|dR < oo, b € B. (5.4.1)

|z°|>R

The following theorem describes the main result of this section.

Theorem 5.4.1
Assume the hypotheses (5.4.1). Then the following properties hold:
(i) For any (y,n) € X x X', the following limit exists

lim 2t y,m) =: £ (y,n). (5.4.2)

t—00 t

This limit is called the asymptotic velocity.
(ii) If €t (y,m) € Ya, then

. _ ot
N & (¢, y,m) = & (v, 1)
(111) If €t (y,n) € Yy, then there erists
Hm H((t,y,m),E(t y,m) =: H*"(y,n). (5.4.3)

(iv)
H(y,n) = %(51)2(?/, n) + H" (y,n). (5.4.4)

Theorem 5.4.1 gives a rough classification of all trajectories of an N—body
system. In this classification, two functions are available: the full energy

X xX'> (y,m) — H(y,n) € R
and the asymptotic velocity
X xX'"3 (y,m) =& (y,n) € X.

It is sometimes convenient to use another asymptotic quantity, the asymptotic
internal energy of the subsystem a defined in (5.4.3):

(€)' (Ya) 3 (y,m) = H** (y,m) € R.

However, as follows from (5.4.4), this quantity is a function of H(y,n) and

X (y,m)-
The set
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(€57 (Za)
will be called the set of a—clustered trajectories.

In physical terms, Theorem 5.4.1 means that, for large times, any system
of classical particles separates into subsystems. The centers of masses of the
subsystems have a separation of order O(t). The size of the subsystems is of
order o(t). We will see in Sect. 5.7 that one can get a more precise result about
the size of the subsystems.

We start with a simple lemma about the boundedness of the velocity.

Lemma 5.4.2
Assume the hypotheses (5.4.1). Then for any (y,n) € X x X', there exists C
such that

z(t,y,m] < CC), €t y,m)] < C.

Proof. Since V(z) is bounded and H(z,&) is constant on a trajectory, we get
that

1
5E(8) = H(z(1),£() = V(=(1)) < C.
Using then the identity & (¢) = £(¢), we obtain the desired result. O

The main tools of this section are the so-called propagation estimates. They
were first used in quantum scattering theory, notably in [SS1]. The next two
propositions are classical analogs of quantum propagation estimates due to Graf
[Gr]. The abstract argument that is used in the proof of classical propagation
estimates is explained in Lemma A.5.1.

Proposition 5.4.3
Assume the hypotheses (5.4.1). Then for any ¢ > 0, a € A and any trajectory

(x(t),&(t)), one has

S Ty (B2 (20— &4(8))* ¢ < oo, (5.4.5)

Proof. We consider the observable
#(t,7,€) := DIR(®)
= R() + (VR(2), (€ - 2)).

We compute

Do(t,2,8) =t7(§ - $), VZR(3)( — 1)) — (VR(}), VoV (2))

(5 — £)2 — (VR(2), V.V (2)). (5:46)
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We observe that, by Lemma 5.4.2, the function ®(t,z(t),£&(t)) is uniformly
bounded in t. Moreover, the second term on the right-hand side of (5.4.6) is
integrable along the trajectory, using Lemma 5.2.7 (v) and hypothesis (5.4.1).
Therefore, by Lemma A.5.1, for any a € A,

S qa(B2) (228 — £,(1))? 4 < oc. (5.4.7)
Let us also note that
T i) -6 2L T a0 - &) (5.4)
Given € > 0 we can choose the functions R(x) and ¢,(z) such that
> (@) > yg () (5.4.9)
b<a
Now (5.4.7), (5.4.8) and (5.4.9) imply the proposition. O

Proposition 5.4.4
Assume the hypotheses (5.4.1). Then for any ¢ > 0, a € A and any trajectory

(z(t),&(t)), one has

fl HYE(HQ)

22— £,()| 4 < oo, (5.4.10)

Proof. Let J € FNC§(X) such that suppJ C Y,. We consider the observable

D(t,x, &) = J(%) a

?_ga

and we compute

D@(t,l’,f) = J(%)‘_ §a|
+HVI(5), €= D% — &l (5.4.11)
J( )(V I ( ) ol a>|$ta _§a|_1-

We observe, using Lemma 5.4.2, that the function @(t,z(t),£&(t)) is bounded
uniformly in ¢. The second term on the right of (5.4.11), for an appropriate
admissible p, equals

Z AR ENVI(), 6~ D% - &l < O T id@l6 - 21
which is integrable along the flow by Proposition 5.4.3. Moreover, the third term
on the right of (5.4.11) is also integrable along the flow. Therefore, by Lemma
A1,
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o T2y |zl e ()4 < oo, (5.4.12)

O

Proof of Theorem 5.4.1. Consider first a function J € C§°(X) N F. We have
728y = —L(v,J(2), (28 — ¢(1))) (5.4.13)

For an appropriate admissible p, (5.4.13) equals
b T (T (D), 20— 6, 1),
which is integrable by Proposition 5.4.4. So the limit

lim J (@) (5.4.14)

t—o0

exists for any J € C§°(X) N F. Since C§°(X) N F is dense in Cy(X), we see that
the limit (5.4.14) also exists for J € Cy(X). For a given (y,7), we can choose a
function J € Cy(X) such that

4@);@ E> T

Hence there exists (5.4.2), which proves ().
Let us now prove (ii). Let (y,n) € X x X’ such that z = {7 (y,n) € Y,. Note
first that
Vi Lo(x(t)) € L (d1),

by (5.4.1). Next we compute

%(xa(t) —t&4(t)) =tV La(2(t)).
So

Ta(t) = 1 (t) = y — J3 5V, La(2(s))ds € o(t),

and hence
(1)

4

which completes the proof of (ii).
To prove (i), we just note that if £ (y,n) € Y, then

d

G H@(0),6(0) = (VoLo(2(1)),€1)),

= &(t) +o(t’),

which is integrable.
To prove (iv), note that, by the conservation of energy,

H(y,n) = H(z(t,y,n),&(t y,m))
= 382ty m) + La(z(t, y,m) + H*(z(t, y,m), (L, y, m))-

Now we use

lim €y n) = (& w.n) Jim L(a(t,.n) =0.

t—oo 9
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5.5 Joint Localization of the Energy and the Asymptotic
Velocity

In this section we will make the same assumptions on the potentials as in the
previous section, that is, (5.4.1). Note that, by Proposition 2.5.1, (5.4.1) implies
the assumptions (5.3.1). Therefore all the results of Sect. 5.3 on the bounded
trajectories and trapping energies are true under the hypothesis (5.4.1). In this
section we will present their refinements that take into account the asymptotic
velocity.

First let us present a refinement of Theorem 5.3.3.

Theorem 5.5.1
Let [A1, Xo] C R\7?, and let © C Y, be compact. Then there ezist constants C
and Cy > 0 such that, for any (y,n) € (67, H*Y)71(O x [A1, Xo]) and some T,
C, either

lz®(t,y,n)| < Cy, t > T, (5.5.1)

or
lz%(t,y,m)| > Co(t —=T)—-C, t > T, (5.5.2)

Definition 5.5.2

Let us denote by E47 the set of (y,n) € (§7)71(Z,) such that z°(t,y,n) is bounded
for t > 0, where, as usual, x(t,y,n) denotes the trajectory generated by H(z,§)
with the initial conditions (y,n).

Let us note that £maxt = Bamax:t
By definition, we have

ET C (1) 1 Z,). (5.5.3)

In general, however, we cannot replace the inclusion in (5.5.3) by the equality.
Using Theorem 5.5.1, we can prove the following inclusions.

Theorem 5.5.3
The following inclusions are true:

(&, H*")"Y(Z, x (6®\1%)) C £+, (5.5.4)

(€T, HY)(Za x (0" UTY) = (61) 7 (Za), (5.5.5)

ELH) (X x X)) J{(E A+ %gﬁ) | &€ X,, A€ UT). (5.5.6)
acA

Proof of Theorem 5.5.1. First we construct a function G*(z%, £%) that satisfies
(i) of Proposition 5.3.5 with H(z, &) replaced with H*(z%, £%).
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Let (x(t),£(t)) be a trajectory in (§F, H)™1(© X [A1, Ag]). Then

G (@ (t),80(1) = {H", G }a"(t),£°(1))

(5.5.7)
Ve GO (2%(t), €9(8)) Ve La ().

The second term on the right-hand side of (5.5.7) is o(t°). Moreover, for large
enough time, (2%(t),£%(t)) € (H*) ' ([A1, A2]) for some [A1, Ao] C IR\7® such that
[A1, Ao] CJA1, Ao]. Therefore, for t > T, |2*| > Ry and T large enough, we have

G (1),€°(1)) > Co > 0 (553)

Next we argue as in the proof of Theorem 5.3.3. O

Proof of Theorem 5.5.3. The first and second inclusions follow immediately
from Theorem 5.5.1.
To prove (5.5.6), note that (5.5.5) implies

(5 HY ) ((67) 7 (Za)) € Za x (0" UTY).
Hence
(€ H) (€)1 (22) € {6 5€ + V) | &0 € Zo, AE0"UT").

Finally,

E () (7)) C {(6n3€+ V) | &€ Xoy A€ UTY,

since the right-hand side is easily seen to be closed, using Theorem 5.3.4. O

5.6 Regular a—Trajectories

Various asymptotic quantities that can be defined in N-body scattering tend to
be ill-behaved. They are often discontinuous, it is difficult to predict their range.
Nevertheless, there are some regions in phase space where they are well-behaved.
This is for example the case of the free region (£7)7!(Z,. . ), where scattering
is essentially as regular as possible, as we will see in Section 5.8. In this section
we will describe some regions where the asymptotic internal energy and the
asymptotic velocity are continuous and the closure of their joint range fills up
the set that one would expect by heuristic arguments. These regions correspond
to the “wells” of the potentials V*(z®), which can trap a-clustered trajectories

for large enough time when the effects of the interaction become negligible.

Definition 5.6.1
For any a € A, we define
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W2(X) := U bounded connected components of (V2)~'(] — oo, A]),
Oreg = U VIOWV(X))
AER
= [inf V(z?), sup{A | W*(}) # 0},
Ent = /\lE_JR{(y,n) € (€N HZ,) | x%(t,y,m) € W(N), t big enough}.

The set £ is the union of a—clustered trajectories that end up in a well

of the potential V. It turns out that scattering inside £ is quite regular in

comparison with the general case. Indeed, we have the following theorem:

Theorem 5.6.2
The following inclusions are true:

ol, Co%  ELtCEWT. (5.6.1)

reg reg

The sets £ are open. Moreover, the function

reg
Ext 3 (y,m) — (X (y,m), H** (y,n)) (5.6.2)

18 continuous. Finally,

(61, HoH) (&%) D X, x o (5.6.3)

reg-

The proof of Theorem 5.6.2 is based on the following lemma.

Lemma 5.6.3
Let &€ Z,, 6 >0, \; € Oreg- L€t Uy be a certain compact connected component
of (V%) 1(] = oo, A1]). Then there exist € > 0 and Ty such that if (y,n) satisfies

Yo — To&f | < €T,
na— & <e,
He(y*,n") < A1,
y* € Uy,
then one has, fort > Ty,
|za(t, y, 1) — Yo — tna] < 62,
[Salt, ysm) — mal <6,
|H(z(t, y,m), £t y,m) — H(y* n*)| < 6,
z%(t,y,m) € Us.

(5.6.4)
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Proof. Let J € C§°(X) a cutoff function equal to 1 near " and supported in
Y,. We will denote by

(z(t,s,9,m),&(t, 8,9,m))

the trajectories satisfying the initial conditions (z(s, s, y,7n),&(s, s,v,m)) = (y,n)
associated with the time-dependent force

YV, V(%) + Fi(t, ), (5.6.5)

where

Fy(t,z) = —J (%) V.1, (x).

This force satisfies the assumptions of Chap. 1. By Proposition 1.3.2, these tra-
jectories, uniformly for s < ¢, satisfy

|za(t, 8,9,m) = Yo — (t — 8)71a| € 0(s°)|t — s, (5.6.6)
[&a(t, 5,9, 1) — nal € 0(5°), (5.6.7)
|H(z"(t, s,y,m), £, s,y,m) — H*(y*, n")| € o(s°). (5.6.8)

Suppose now that (y,n) satisfy the assumptions of the lemma. We see that,
for s large enough,

H(@*(¢, s,y,m),8°(t, 5,9,m)) < Av.
By continuity of the flow, we also have
z%(t,s,y,n) € U. (5.6.9)
By (5.6.6) and (5.6.7), we can choose s large enough such that, for s < ¢,
|Za(t, 5,y,m) — Yo — (£ = 5)na| < 8|t — 5], (5.6.10)

[€a(t, 8,9,m) — na| < 6. (5.6.11)
We have

w(mst,y,n) _ 5{—:‘ < Iw“(t,?ym)\ + Iwa(t,s,y,n)*tya*(tﬂ)na|
(5.6.12)

|ya_sf¢_ﬂ (t_3)|77a_f;_‘
+ t + t .

The first term on the right of (5.6.12) is less that C/t because of (5.6.9). The
second is 0(s®) by (5.6.6). The last two terms are less than 2¢. Therefore, for any
given 01, by choosing s big enough and ¢ > 0 small enough, we can make sure
that

t
35(:52%77)_5; <51'
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In particular, we can demand that this is true for ¢; satisfying J = 1 on the ball
B(&F, 61). Therefore, for t > s,

FJ(ta .T(t, s, Y, 77)) = _vl'la(x(t’ s, Y, 77))

Hence, for Tj large enough and ¢ > 0, we have

(‘T(t + TO; T(), Y, 77)’ g(t + TO; TO; X, 77)) = (l‘(t, Y, 77)’ g(t’ Y, 77)) (5613)

Now the estimates (5.6.4) follow from (5.6.6), (5.6.7) and (5.6.8) O

Proof of Theorem 5.6.2. The inclusions (5.6.1) are obvious.
Let us prove the openness of £%F. Let (y°,n°) € £%F with such that

reg * reg
X, n°) =&,
Ha’+(y0an0) = )‘0 < A1:
xa(ta yoano) € Ula t> Tla

where U, is a compact connected component of (V)™ (] — oo, Ay[).
Let € > 0 and Ty > 717 be chosen as in Lemma 5.6.3. By enlarging Tj if
needed, we can make sure that

|:v(T0,y0,770) - TO&H < 6TOa
|§u(T0: y07 770) - §¢1+| < €, (5614)
H*(x*(To, 4% n°), €%(t, 4% n°)) < A1

By the continuity of the flow, we can find a neighborhood U of (y°,7°) such that
if (y',n') € U, then

m(Tanlanl) _ é“"
To a

<€,

&a(Tos ¥t n') —&F| < e,

24Ty, yt,nt) € Uy,
H(2%(To,y",n"),&(To, y',n")) < A

Thus the conditions of Lemma 5.6.3 are satisfied for all

(y,n) = (z(To,y"n"), €(To,y",nY), (y',n') eU.

This implies that & C £%; and proves that £, is open.

reg
Let us now prove the continuity of £ inside £%F. With the above notation,

reg
we have, for (y1,m) € U,
€5 (", n') = €700 %) = Jim [&a(t,y", ') — &
< limsup Ealtsytyn') = &a(To, ¥ M) + &a(To, yhn') — EFI <0+ e

(5.6.15)
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Since €, ¢ can be arbitrary small, this implies the continuity of £ at (y°, n°).
A similar argument proves (5.6.3). O

The following corollary of Theorem 5.6.2 should be compared with the in-
clusion (5.5.6) of Theorem 5.5.3.

Corollary 5.6.4

GRICSPIE UA{@,A +38) 16€ X0 A U ot}
ac >

5.7 Upper Bound on the Size of Clusters

The existence of the asymptotic velocity implies that if (y,n) € (£7)"*(Z,), then
the system separates into clusters of size o(t). From Theorem 5.7.2 below, we
shall see that the size of the clusters can be estimated in a more accurate way,
for instance if |V,0?(2°)| < C(x)~17#, then the size of clusters can be bounded
by C ()22t~ This theorem can be viewed as a generalization of Proposition
2.2.1 to N—particle systems. A quantum analog of this estimate plays a big
role in the proof of the asymptotic completeness of quantum long-range systems
[De8]. The results of this section are taken from [De7].

In our estimate we will use certain auxiliary functions that measure the rate
of decay of the potentials.

Definition 5.7.1
Fora e A, let

g°(s) = sup |Vy'(a")],
b<a,|zb[>s

ga(s) == sup |V b(2?)].
bZa,|zb|>s

We denote by w®(t) the unique solution of

w(t) = —g*(w(1)),

w®(0) = 0, lim »“® — o,

tsoo ¢

and by we(t) the unique solution of

Wa(t) = —9a(t),

we(0) = 0, lim 28 — .

t— t

Note that if we put
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G%(s) = /SOO 9°(s1)ds1,

then w®(t) is also the unique solution of
2 (0°(t))* = G*(w" (1)),
¢(0) =0, w*(0) > 0.

S

The function w®(t) can be computed exactly as in Sect. 2.2
The function w,(t) can be computed from the formula

= /Ot ds /:o Ja(s1)ds.

In the following theorem we state the main result of this section

Theorem 5.7.2
Assume (5.4.1). Suppose that z(t,y,n) is a trajectory such that (y,n) € (£1)1(Z,).

Then there exists € > 0 and C such that

lz%(t,y,n)| < Cw(t) + Cw,(et). (5.7.1)

Proof. Let us consider a function r € C*°(X*) constructed as in Sect. 5.2 with

the space X replaced by the space X°¢. We put
x

it ) = wi()r (m?t)) .

We compute
Dry(t,z,€) = wa(t)r(w‘s“t)) + Gl )2
D2ry(t,7,8) = oi((€0 — L), V2r(55) (62 — Z2))
—w(wam)v V( ) (1) (r(5) — o5 w(wam))

> —Vr(25)VaV (@) + () (r(2g) — s Vr(as)) -
) descrlbed in Lemma 5.2.9 and the fact that (y,n) €

Using the properties of (z
Y2z ) we get that, for some € > 0,

VoV (2(t) = —Vr(Zah)VaaV (24 (1)) -

)
< Cg*(w?(t)) + Cgalet).

Vr(Z0 )Vwala(x(t))

a(t

—Vr(

On the other hand, using again Lemma 5.2.9, we get

‘(T( o )_ %thﬂ'(wa(t)

we(t)
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Therefore,
Pi(t, z(t)) > —Clw(t)| — Cg*(w*(t)) — Cgalet). (5.7.2)
Since w* < 0 and @w*(t) = —¢*(w*(t)), we deduce from (5.7.2) that
;—;(rl(t,x(t)) — 2Cw*(t) — Cw,(et)) > 0. (5.7.3)

From Lemma 5.2.9 and the fact that |x%(¢)| € o(t), we deduce
r1(t,z(t)) € o(t).
So we have
r1(t, z(t)) — 2Cw*(t) — Cwy(et) € o(t).
This together with (5.7.3) implies
d

3 (11 (6, 2(t)) = 200°(t) — Cuwa(et)) <0,

and hence
r1(t, z(t)) < 2Cw*(t) + Cw,(et) + Ch,
which by Lemma 5.2.9 implies (5.7.1). O

Let us give examples of the functions w,(t), w®(t) for various rates of decay
of the pair potentials.

Corollary 5.7.3
(i) Assume that

/ sup |Vv’(z?)|R*dR < 00, b€ B, p>0.
0 |2¥>R

Then
o(t'™"), n<1
o), p>1

Therefore, in this case, if (y,n) € (£7) *(Z,), then
| (¢, y,m)| < C (8>,

w(t) € o(t¥ M), w,(t) € {

(ii) Assume that

V00’ (2?)] < Ce @l b e B.
Then

w?(t) € O(logt), we(t) € O(1).
Therefore, in this case, if (y,n) € (£7)7(Z,), then

|2%(t,y,m)| < C(logt).
(iii) Assume that, for any b € B, the support of v*(x®) is compact in X°. Then
w(t) € O(1), wy(t) € O(1).

Therefore, in this case, (E7)™1(Z,) C YT, or in other words

lz%(t, y,m)| < C.
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5.8 Free Region Scattering

Scattering in the free region corresponds in physical terms to all particles moving
apart without forming clusters. It is very similar to scattering for 2-body Hamil-
tonians. In particular, one is able to give a complete classification of trajectories.
We have

gomin = Exgo = (€97 (Zaw)

reg

We will see in next sections that classical scattering in other regions of phase
space is not so well understood.
We will study separately the short-range and the long-range case.

5.8.1 Short-Range Free Region Case

In this subsection we will study the trajectories in (£7)7*(Z,,, ) for short-range
interactions. This case is almost identical to the case of 2—body potentials con-
sidered in Chap. 2. It is based on comparing the full dynamics with the free
dynamics:

¢o(t)(2,€) = (z + 1€, 8).

Our first theorem is analogous to Theorems 2.5.2 and 2.6.3.

Theorem 5.8.1
(i) Assume

/OO(R) sup |V,v°(2%)|dR < 0o, b€ B. (5.8.1)
0 |

zP|>R

Then there exist the limits

lim (z(t,y,m) — 16 (¢, y,m)) = 254, W), (5.8.2)
Jim 6o(—1)6(0) (5:83)

uniformly on compact sets of (€)™ (Z,_. ). Moreover, we have

Gmin

Hm go(=t)(t)(y, 1) = (25 0,5, (¥, 1), €7 (y,m))-

and the limit (5.8.3) is continuous from (§7) Y Z,,.,,) into X X Z,,,. .
(1) Assume, in addition, that

/OO<R) sup |00V v*(2’)|dR < o0, |a|=1, beB.
0

lzb|>R
Then there exists the limait

lim ¢(—t)¢o(t) = Fif (5.8.4)

t—o00 SI,@min

uniformly on compact sets of X x Z, . . The map



5.8 Free Region Scattering 259

fS—I;;amin : X X Zamin - (§+)_1(Za1nin)

18 bijective, continuous and called the free region wave transformation. Moreover,

(5.8.8) is equal to (Ff, ).

(ii) If (y,n) = f;{,am:fﬂzin&), one has
|6(8)(y,m) — do(t)(2,€)| = 0 when t — oo. (5.8.5)

(iv) The mapping F.- is symplectic.

ST,Qmin

(v) The free region wave transformation intertwines the full and the free dynamics
H oy:sr,ami“ = H(),

¢(t) © fsr;amin = ‘7:s_|r—,amin © ¢0 (t)

Proof. Let us define

|z|%min .= min |z°,
By the continuity of &+ on (§%) '(Z,,,) proven in Theorem 5.6.2, we obtain
that if K is a compact set included in (£7)"!(Z,_. ), then there exist cy, T such
that

x| (t,y,n) > cot—T), (y,m) €K, t=>0. (5.8.6)

We may then use (5.8.6), as we used Theorem 2.3.3 (iv) and (%), to introduce
an effective time-dependent force

Fyt ) = —J (%) V.V (z),
where J € C*°(X) such that
1
suppJ C {x € X | |x|%min > 500}, J=1on {z € X | |z|* > ¢},

and apply the results about time-decaying forces. O

5.8.2 Long-Range Free Region Case

The study of long-range scattering for trajectories in the free region (£7)~(Z,,.. )
can also be reduced to the case of 2—body potentials.

First note that we can construct a solution of the Hamilton-Jacobi equation
in a similar way as we did in Theorem 2.7.5. We have the following analog of
Theorem 2.7.5.

Theorem 5.8.2
Under the hypothesis
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o0
/ sup [9%0°(a?)[(R)-1dR, beB, |a|=1,2 (5.8.7)
0 |at[>R
there exists a function

Rx X3 (&) —S

Gmin

(t,§) eR
that has the following property: for any € > 0, there exists T, such that
1
OSamin(t:€) = 58 + V(VeSanu (1,€)), €€ 270, 12T

For any € > 0, the function S, (t,€) satisfies, uniformly for § € Z; |

%(&m@@—%mﬁedm 8] < 2.

Proof. The proof is almost identical to the one of Theorem 2.7.5, except that
we replace sets {|¢ | > 27"} with Z2 ". O

We define now the modified free flow by
X X Zgin D (2,8) = Prrapn (D) (2,8)
= (x + V¢Sa,,. (8,8),8) € X x X'
We have now the following analog of Theorem 2.7.11.

(5.8.8)

Theorem 5.8.3

(1) Assume (5.8.7). Then the following limit exists uniformly on compact sets of
X xZ

Gmin

T G(—)6mamn () = Fiba (5.8.9)
and the following limits ezist uniformly on compact sets of (§7)"1(Z,....)
Hm (z(t, y,m) = VS (t,6(E y,m) = 214, (45 1), (5.8.10)
10 B (H6(0). (5.8.11)
The limit in (5.8.11) is equal to (Fy, . )" Moreover,

(Pt ) 2@om) = (kg (0,m), 6 (0, m)) -

The map
Fitamn X X Zagn = (€))7 (Zain)
15 bijective, continuous and called the modified free region wave transformations.
(i) The mapping ﬂiamin is symplectic.
(#ii) The modified free region wave transformation intertwines the full and free
dynamics
Ho ﬁr,amin = HO:

¢(t) © ‘Eryamin = ',Flj,amin © ¢O (t)
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5.9 Existence of the Asymptotic External Position

The results about the asymptotic behavior of trajectories in (£7)1(Z,) with
0 # Qpin are rather limited. The components of a-clustered trajectories that
are usually better behaved are z, components. The results of this section, taken
from [De7], can be viewed as poor substitutes for asymptotic completeness. (Note
that asymptotic completeness can be shown in the quantum case under similar
conditions on potentials as those used in this section).

5.9.1 Asymptotic External Position in the Short-Range Case

Theorem 5.9.1
Assume (5.8.1). Then for (y,n) € (£7) Y(Z,), there exists the limit

Hm (24, y,m) — ta(t, y,m)) =t 254 (v, 7). (5.9.1)

We also have
Hm (za(t,y,m) — €7 (y,m) = 254y, m)-

The proof is completely analogous to the proof of Theorem 2.6.3.
The observable x:r,a is called the asymptotic external position.

Note that Theorem 5.9.1 can be interpreted as follows.

Corollary 5.9.2
Let (y,n) € (§7)7Y(Z,). Then there exists a unique trajectory Z,(t) of the Hamil-
tonian £&2 such that

2a(t, Y1) — Za(t) € o(t").

Proof. In fact, we set Z,(t) =z ,(y,n) +t£* (y,n). O

5.9.2 Asymptotic External Position in the Long-range Case

The external position in the long-range case is not asymptotic to free motion. It
is possible to describe this asymptotics in a number of ways.

Probably the most canonical way to describe the asymptotics of the x, com-
ponents of a-clustered trajectories is to compare them with the motion generated
by the following Hamiltonian on X, x X_:

h'a(xaaga) = %62 + Ia(xa)-

This is also a generalized N-body Hamiltonian, but much simpler than H (z, £). In
particular, the set Z, is the “free region” for h,(z4,&,). Therefore, the trajectories
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for he(xq, &) with the asymptotic velocity in Z, are “asymptotically free” and
well understood by the results of Subsect. 5.8.2.

Below we will show that the motion of an a-clustered trajectory is asymptotic
to an asymptotically free trajectory generated by hy(z4,&,)-

Theorem 5.9.3
Assume that

/ T sup |00 (@)|(R)IAR,  beB, |a|=1,2. (5.9.2)
0

zb|>R

Assume either one of the following conditions:

(i) (y,m) € ES and p =0, or

(ii) (y,n) € (€7) N(Za) and p =3 —1.

Then there erists a unique trajectory Zo(t) in X, for the Hamiltonian hy(x4, &)
such that

zo(t,y,m) — Za(t) € o(t°).

Proof. Let (y,n) € (£7)71(Z,) and denote z(t) = z(t,y,n). Let Z.(¢) be an
arbitrary trajectory in X, for the Hamiltonian h,(z,,&,) such that
lim ()

t—oo

=& (y,m)- (5.9.3)

Such a trajectory exists by Theorem 5.8.3, since £ (y,n) € Z, and Z, is the free
region for hy(z4,&,). We compute

5 (@a(t) = 23(1) = Ve, La(@(1) + Va, L(F3(2))
= - (vzala(xa(t)) - Vmala(jé(t))) (594)
— (Voo la(2(t)) = Vi, La(a(?))) -
We set
Za(t) == w4 (t) — FL(2),
From (5.9.3) and (5.9.4), we obtain
2l < F(D)]2a(t)] + 9(2),
Jim Z.(t) = 0.
where g(t) = f(t)|z*(t)|. Using (5.8.7), we obtain (¢) f(t) € L*(dt).

If (y,n) € &, then |z%(t)| is uniformly bounded. Therefore, (t)g(t) € L'(dt).
In general, if (y,n) € (£)7'(Z,), then we have by Theorem 5.7.2

[a?()] < C()* .
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We also have
({tyHEf(t) € LH(de),

so, for ;1 = /3 — 1, we have
(t)g(t) € L'(dt).

Summarizing, in both cases we have (t)g(t) € L*(dt). We deduce from Lemma

A.1.2 that
tlggl() Z(t)
exists. Using now the fact that Z, is the free region for h,(z,,&,) and
lim 20 ¢ 7
t—oco

we can find, as in Subsect. 5.8.2, a unique trajectory Z,(t) for h,(z4,&,) such

that
. ~ _ ~1 . .
Jim (2, (2) — 25 (1)) = lim z4(2).
O

This completes the proof of the theorem.
An alternative method that can be applied to describe the external compo-
nents of a-clustered trajectories uses solutions of the Hamilton-Jacobi equation.

If we apply Theorem 5.8.2 replacing H (z,£) with hg(xe, &), then we will

convince ourselves that there exists a function

R x X, 3 (t,€) = Sa(t, &) € R

with the following property: for any € > 0, there exists 7T, such that
0:8a(t, &) = 382 + (Ve Su(t, &), t2To, & € Z,
(5.9.5)

O, (Salt, €a) — $E2) € ot), &€ Z5, |l <2.

Theorem 5.9.4
Assume the hypotheses of Theorem 5.9.3. Then, for any (y,n) € (£7) 1(Z.),

there exists the limait

Jim (@a(t,y,m) = Ve, Salts €t y,m)) == aifa(y,).

The observable xf;,a(y, n) is called the asymptotic modified external position.

Proof. Using the Hamilton-Jacobi equation (5.9.5), we compute

4 (24(t) — Ve, Salt, &(1)))

= VZGSa(ta ga(t)) (vxaIa(V&zSa(ta ga(t)))) - (VwaIa(x(t))) (5 9 6)
V2 Sa(t £a(t)) (Vau La(#a(t)) = VauLa(Ve, Salt, £a(1)))) -

—VgaSa(t, §a(t)) (Ve La(2(t)) = Vi, La(24(2))) -
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As in the proof of Theorem 5.9.3, we deduce from (5.9.6) that, for

2a(t) = a(t) = Ve, Sa(t; &(t)),

one has

2a(t)] < f(t)lza(t)] + 9(2) (5.9.7)
for f(t),g(t) € L'(dt). Applying then Gronwall’s inequality (A.1.2), we obtain
the theorem. a

Note that an alternative way of proving Theorem 5.9.4 is to apply Theorem
5.9.3, and then Theorem 5.8.3 with H(x, &) replaced with hy(z4,&,)-

5.9.3 External Position for Regular a-Trajectories

We already saw in Sect. 5.6 that regular a-trajectories are better behaved than
general a—trajectories. Here we study the regularity property of the external
position.

Theorem 5.9.5
(i) Assume (5.8.1). Then the function

Exd > (y,m) = x4, (y, ) (5.9.8)

18 continuous and

(0, €, HoF) (Exeg ) D X X Xq X 0 (5.9.9)

reg

(1) Assume (5.8.7). Then the function

Ewd 3 (y,m) = a4 (v, m) (5.9.10)

18 continuous and

o 6T Hot) (Ed) D X, x X, x o°
Ir,a

reg-

(5.9.11)

The proof is similar to the one of Theorem 5.6.2 and left to the reader.

5.10 Potentials of Super-Exponential Decay

In this section we consider the case of potentials that decay faster than any
exponential. Only in this case, one can get a rather complete classification of all
trajectories. In fact, the result of Theorem 5.10.1 below is close to what we would
like to call the existence and completeness of wave transformations. This result
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comes from [De8]. It was inspired by a similar result about compactly supported
N-body potentials that was proven in [Hu2|.

Let us first introduce some notation. For any a € A, we denote by ¢y, (t)
the flow on X x X' generated by H,(z,&). By &f;. we denote the corresponding
asymptotic velocity.

We will assume in this section that, for any # > 0, there exists Cy such that

(Vee®(2%)| < Che™ 171 a € A,

(5.10.1)
(V2.0°(z%)| < C.

The following theorem gives a complete classification of trajectories for pair po-
tentials satisfying (5.10.1):

Theorem 5.10.1
Assume that (5.10.1) holds. Then one has the following results:
(i) For (y,m) € (£7) 1(Z,), there exists the limit

lim ¢, (=)o (t)(y, n). (5.10.2)

t—00

() For (z,€) € (£f,) *(Za), there exists the limit

lim ¢(=t)¢u, (t)(x,§) = F/(x,8). (5.10.3)

t—00

The mapping
F(&h) (Za) = (€7) 71 (Za)
is called the a—region wave transformations. The mapping (5.10.2) is equal to
(FH
(ii1) If (y,n) = F, (x,), then one has
|6(6)(y,m) = P, ()(2,€)| < Cpe™, 6> 0.
(iv) F} intertwines the dynamics of H(x,&) and Hy(z,§)

HoFy =H,  §(t) o Ff =F, o¢n,(t).

Remark. Let ¢ya(t) denote the flow on X x X generated by H®(z%,£%). By
&}, we denote the corresponding asymptotic velocity. Clearly, we have

(6, (1) (y,m)" = dua(t)(y® n%),

(0. () (¥ M)a = Ya + 17, a)

& (Y5 1) = o + Efra (¥, 1%).
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Thus Theorem 5.10.1 gives a complete classification of the a—clustered trajecto-
ries. Namely, they are classified by an almost bounded or bounded trajectory of
H(z* &%) and a free trajectory of $£2.

If we assume instead of (5.10.1) that the pair potentials have compact sup-
port, then, by Sect. 5.7, there are no almost-bounded trajectories of H*(x%,£%).
In this case, the internal part of a trajectory in (£1)7!(Z,) is asymptotic to a
bounded trajectory of H*(z%,£%). Of course, this result can also be deduced di-
rectly from Theorem 5.4.1. This result is due to Hunziker [Hu2], who called it
the asymptotic completeness of classical N-body systems, although, as we saw,
there are a number of other properties that can be called by this name.

Proof of Theorem 5.10.1. Let (y,n) € (§)7'(Z,). From (5.10.1) we deduce
that, for any 6 > 0,

lim e’ /t Vo Lo(2(t,y, 7))t = 0. (5.10.4)

t—o0

From (5.10.4) we see that we can apply Corollary A.6.2 with

Fi(z) = =V, V(z), Fy(z) = =V, V(z?),
T1 (t) = .Z'(t, Y, 77)5
since Fi(z) — Fy(x) = =V I,(x). This proves (7).
Let now (z,€) € (£f.)7'(Z,), and let z5(¢) the trajectory for H,(x,£) starting
from (z,&). Again from (5.10.1) we obtain

[ade]

lim e% / Vo Lo (2a())]dt = 0.
t

We obtain now (7i) by exactly the same argument, exchanging the roles of Fj
and F5.

Finally, (iii) follows from Corollary A.6.2 and (iv) is an immediate conse-
quence of (7). O



6. Quantum N-Body Hamiltonians

6.0 Introduction

A system of N non-relativistic distinguishable particles moving in the Euclidean
space IR” is described by the Hilbert space L?(IR""). Its evolution is usually
described by a Hamiltonian of the form

N
1
Hi=3 g Di+ 3 Viloi—a) (6.0.1)
]:

1<i<j<N

If some of the particles are identical, then only a certain subspace of LQ(]RN Y)
carrying an appropriate (bosonic or fermionic) statistics describes physical states.
We will not consider this question; let us only mention that the results described
in this chapter can be easily modified to take into account particle statistics
[De9].

If the particles are point charges, then the interaction is described by
Coulomb potentials

Z;Z;

Vile) = 77

where Z; are charges of the i-th particle. This class of potentials is the most
important from the physical point of view; nevertheless other, usually short-range
interactions are also of interest (e.g. Yukawa, van der Waals, dipole interactions).

One of the main goals of mathematical scattering theory is to give an asymp-
totic description of the evolution e="# for ¢+ — co. As we will see, for a very large
class of potentials, including the physically important Coulomb case, we possess
a very deep and satisfactory understanding of this asymptotics.

This understanding was first reached on a heuristic level by physicists, who
conjectured that an N-body system evolving according to (6.0.1) will eventually
break up into independent clusters and each cluster will evolve as a bound state
of the corresponding cluster Hamiltonian. This conjecture is the basis for inter-
pretation of experimental data. In fact, suppose that we consider an experiment
involving a certain number (preferably small) of particles. For definiteness, we
can imagine that these particles are electrons and nuclei. During a typical exper-
iment, these particles scatter from one another; then they move away in various
directions. During scattering, it is difficult to describe the state of the system.
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But after a long enough time, one can observe that the system breaks up into
independent clusters such as molecules, atoms, ions or single electrons. The same
picture is true if we go with time to —oo.

In practice, it is difficult to measure the state of a system while it undergoes
a scattering process. What experimentalists usually measure are the probabilities
of obtaining the final configuration provided we know the initial configuration.
Asymptotic completeness is a precise statement that describes all the possible
initial and final configurations in very simple terms.

During scattering, system of particles can undergo all kinds of changes: clus-
ters change their momenta, sometimes they change their composition, they break
up or bind. In our example, where we treat electrons and nuclei as “elemen-
tary particles”, an ion may capture an electron, an atom may become ionized,
molecules may undergo a chemical reaction. It is remarkable that most of these
phenomena, which comprise a large part of physics and chemistry, can be under-
stood mathematically using the Hamiltonian (6.0.1). In particular, the existence
and completeness of wave operators explains in a very satisfactory way why the
standard description of scattering processes is correct.

\6) breakup
o

-7

-7 /. elastic scattering
G oy ®

® >0

NG _ rearrangement

o O

Fig. 6.1. Three possible scattering processes.

We remember from Chap. 4 that, roughly speaking, typical mathematical
assumptions that give a reasonable 2-body quantum scattering theory are the
following:

the short-range assumption: |V (z)| < C(z)™*, pn>1, (6.0.2)

the long-range assumption: |02V (z)| < C{z)~1*=# 1 >0, |a| <2. (6.0.3)

In the N-body case, the situation is somewhat more complicated. The short-range
assumption is sufficient to guarantee that the usual wave operators exist and are
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complete. The long-range assumption (6.0.2) in the N-body case with N > 3
does not guarantee the existence and completeness of modified wave operators.
In fact, there are counterexamples for u < 1/2 (see [Yaf7]). The existence and
completeness of wave operators for systems with an arbitrary number of particles
has been shown only for 1 > /3 — 1 ~ 0.73. For physical applications, this is
probably sufficient, because in the nature there seem to be no potentials with
a slower decay than p = 1, as in Coulomb potentials. Various other physically
interesting potentials are usually short-range.

Nevertheless, N-body systems satisfying (6.0.3) have many elegant mathe-
matical properties related to asymptotic completeness. Studying these properties,
even though they may not have an immediate physical relevance, seems to clarify
mathematical arguments needed to handle physically important cases.

It should be stressed, however, that N-body Hamiltonians are interesting
not only because of their physical importance. We think that N-body scattering
theory is also a very appealing piece of mathematics worth studying even if we
disregard its physical aspects. The aim of our exposition is to present its logical
structure and relationships between its various elements, and therefore in our
theorems we usually try to state assumptions that are as weak as reasonably
possible.

Let us now describe the contents of this chapter.

Basic definitions concerning the configuration space of N-body systems were
given at the beginning of Chap. 5. In Sect. 6.1 we only recall some of them. We
also define basic Hamiltonians that will be studied in this chapter.

Section 6.2 gives a short introduction to geometric methods used in the study
of N-body systems. We also prove the so-called HVZ theorem, which describes
the essential spectrum of H in terms of the spectra of its cluster Hamiltonians
(see [RS, vol I1I] and references therein).

In the classical case (if the potentials are bounded), a bound on the energy
yields automatically the finiteness of the velocity of trajectories. In the quantum
case, there are similar results, but they are much more subtle. They are known
as large velocity estimates. We studied various kinds of large velocity estimates
in Chap. 4. In this chapter we will need only weak large velocity estimates, which
we prove in Sect. 6.3 (see [SS1, Gr]).

One of the deepest technical results about N-body systems is the Mourre
estimate. It says that, for some Cy > 0,

1a(H)i[H, A]I5(H) > Cola(H) + compact operator, (6.0.4)

if A is an interval disjoint of thresholds of H. The Mourre estimate is used to
prove various important properties of N-body Hamiltonians. Some of them, es-
pecially those related to the boundary values of the resolvent, are beyond the
scope of this book (see [Mol, PSS, JMP, Jen, CFKS, ABG]J). Another con-
sequence is the local finiteness of the pure point spectrum. We will need the
Mourre estimate again in a crucial step of the proof of asymptotic completeness.
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The proof of the Mourre estimate for N-body systems is given in Sect. 6.4 (see
[Mol, Mo2, PSS, FH1, CFKS]).

In Sect. 6.5 we prove the exponential decay of non-threshold eigenfunctions.
The result is a consequence of the Mourre estimate. We also describe two related

results. We prove that the eigenvalues do not accumulate from above at thresh-
olds and that there are no positive eigenvalues (see [FH2, FHHO, Pe2, CFKS]).

Section 6.6 presents a number of weak propagation estimates. Using these
estimates, we can show that, for long-range N-body systems satisfying (6.0.3),
there exists the so-called asymptotic velocity

T
Pt i=s—C,— lim e Ze=4H
t—o00 t

We also prove that the eigenstates of Pt with zero eigenvalue are eigenstates of
H. Essentially, all the propagation estimates of Sect. 6.6 are taken from [Gr|, with
some modifications based on [Yaf5, De8]. The existence of the asymptotic velocity
was first shown (in a different formulation) in [De6], and then reformulated to its
present form in [De8]. The ideas of considering similar asymptotic observables is
much older; they were used for example by Enss [E3].

With help of the results of Sect. 6.6, it is easy to show the asymptotic com-
pleteness of short-range N-body systems, which we present in Sect. 6.7. The
original proof due to Sigal and Soffer [SS1] was simplified by Graf [Gr], then also
by Yafaev [Yaf5]; nowadays one can argue that it is one of the most elegant and
deepest pieces of mathematical physics.

Section 6.7 ends the main part of this chapter, which gives the most im-
portant and best understood elements of N-body quantum scattering theory. In
fact, a full proof of asymptotic completeness for short-range N-body systems is
contained in Sects. 5.1, 5.2, 6.1, 6.2, 6.3, 6.4, 6.6 and 6.7. The remaining sec-
tions of this chapter are devoted to more special topics of mathematical rather
than physical interest and to the proof of asymptotic completeness for N-body
long-range systems, which is technically more involved.

In Sect. 6.8 we introduce the notion of the asymptotic separation of a dy-
namics. We say that a dynamics is asymptotically separated with respect to the
factorization L?(X) = L?*(X,)® L*(X?) if it can be approximated for large times
by a dynamics that acts independently in L?(X,) and L?(X?%). An example of
a Hamiltonian that generates a separated dynamics is the cluster Hamiltonian
H,. Other examples are Hj,) and H, gep, which are defined in this section. In the
short-range case, e “*# can be asymptotically approximated by a the dynamics
e #Ha o=H@) and e “Ha-ser on some large subspaces of the Hilbert space. The
problem becomes much more difficult in the long-range case and is closely related
to asymptotic completeness. As we will see later on, in the long-range case with
© > /3 — 1, we will be able to use e~*a-se» to approximate the full dynamics.
This result will serve as the key element of our proof of asymptotic completeness
in the long-range case.
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Sometimes it is convenient to replace the full Hamiltonian H by a simpler
many-body Hamiltonian with a time-decaying perturbation. This trick, which
goes back to Sigal and Soffer, is described in Sect. 6.9.

N-body systems satisfying (6.0.3) have a quite well behaved scattering the-
ory, even though asymptotic completeness may fail. This we already saw in Sect.
6.6, where we proved the existence of the asymptotic velocity and we showed
some of its properties. Section 6.10 can be regarded as a supplement to Sect. 6.6.
In this section we give a complete description of the joint spectrum o(P*, H).
We also describe some large subspaces on which asymptotic separation holds.

In Sect. 6.11 we describe asymptotic clustering. This property involves a
simplified effective dynamics that commutes with the external momentum. This
property was first proven by Sigal and Soffer [SS2] for = 1; then it was extended
to the u > 1/2 case [DeGel]. It is related to Dollard wave operators (see Sects.
3.6 and 4.8). It implies the so-called asymptotic absolute continuity, which is a
certain property of the spectral measure of P* [De6, De8|.

The remaining part of this chapter is devoted to a proof of the asymptotic
completeness of long-range N-body systems. The most technical elements of this
proof are contained in Sects. 6.12 and 6.13. It is based on [De8]. It is technically
convenient to use the framework of effective time-dependent Hamiltonians of the
form H(t) = H + W (t,z). We also use various special observables such as R(x)
and 7(z), which were constructed in Sect. 5.2. Characteristic for these sections is
the use of functions of x/t° rather than of x/t, which was typical for the previous
sections.

Recall from Sect. 5.2 that r(x) was a deformation of the function |z| that took
into account the geometry of configuration space. A special role in our analysis
is played by the operator

byt = 3x(H)(DVr () + Vr(F)D)x(H).

0

In Sect. 6.12 we show that in the Heisenberg picture this observable possesses a
limit, which we call b}, and which is equal to |P¥|x?(H).

In Sect. 6.13 we concentrate our attention on the states for which the asymp-
totic velocity is zero, and hence that belong to the kernel of ZV);C|r A priori, such
states may spread not faster than o(t). We show that in fact they spread not
faster than O(#°) with § = 2(2 + u)~'. Note that an analogous statement was
proven in the case of classical N-body systems (see Theorem 5.7.2). Nevertheless,
the result in the quantum case is more difficult to show.

In Sect. 6.14 we prove that if ;1 > /3 — 1, then asymptotic separation holds,
that is, on a certain subspace of the Hilbert space defined in terms of the spectrum
of the asymptotic velocity, there exists a relative wave operator

s— lim gt Hasep g=itH (6.0.5)

where the Hamiltonian H,_s, has the property

Hygop=he @ 1+ 1@ H".
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The proof of the existence of (6.0.5) is based on the Cook method. We need to
show that a certain expression of the order

force along the trajectory x size of the cluster

is integrable in time. The force decays as t ' and, as follows from Sect. 6.13,
the size of a cluster grows not faster than #°, where § = 2(2 + u)~!. Hence we
obtain the condition

p> 2024 p)7,

which is satisfied for p > /3 — 1.

N-body scattering theory has a long and interesting history. Below we will try
to describe the main contributions to its development, focusing on the problem
of the existence and completeness of wave operators.

The formulation of N-body scattering theory using wave operators and a
proof of the orthogonality of channels was given by Jauch [Jau]. The existence of
wave operators for a class of short-range potentials was proven by Hack [Hack],
and then extended to potentials with local singularities by Hunziker [Hul].

The reader will find a review of most results of the earlier phase of N-body
scattering theory in the monograph of Reed and Simon [RS, vol III].

Whereas the existence of N-body wave operators (under some restrictive
conditions, which in the long-range case involved also bound states) was rela-
tively easy to show, the problem of asymptotic completeness for a long time
remained open. The first attempts to prove it were made by Faddeev. Faddeev
used clever resolvent identities (named afterwards Faddeev equations) and the
stationary method to study asymptotic completeness for a certain class of short-
range potentials in dimension 3 or bigger for 3-body systems [Fa]. Unfortunately,
his method required to impose certain implicit assumptions on the potentials
(the absence of zero-energy resonances and bound states for subsystems).

After Faddeev the stationary method was developed by Ginibre and Moulin
[GM] and Thomas [Th] for 3-body systems, by Hagedorn [Ha] for 4-body systems
and by Sigal [Sigl] for N-body systems. All of these papers had the same draw-
back, namely, implicit assumptions. The only exception was the work of Loss and
Sigal [LoSig|, which contained a stationary proof of the asymptotic completeness
of a certain (rather small) class of 3-body systems without implicit assumptions.

One should also mention proofs of asymptotic completeness for some special
N-body systems. Iorio and O’Carrol proved asymptotic completeness for small
potentials in 3 or more dimensions [IoO’C]. Lavine proved asymptotic complete-
ness for a class of repulsive N-body potentials [La2]. Note, however, that, under
the conditions of these two theorems, only the free channel is open.

Scattering for the energies below the lowest 3-cluster threshold is also rel-
atively simple and asymptotic completeness can be shown in this region quite
easily, see e.g. [Comb].

With the advent of time-dependent and geometric methods, mathematical
physicists have essentially abandoned the stationary approach based on resolvent
identities, such as the Faddeev equation, in the study of N-body scattering.
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Some of the early successes in mathematical N-body scattering theory are
associated with the name of E. Mourre. He found an abstract theory, that started
with a pair of operators A and H satisfying the estimate (6.0.4), and led to
a number of results about the spectral properties of H and estimates on the
boundary value of the resolvent of H. Mourre proved that the hypotheses of this
theory were satisfied by 3-body systems [Mol, Mo2], then Perry, Sigal and Simon
showed that they were true also for an arbitrary number of particles [PSS].

The first big success in the quest for a rigorous proof of the asymptotic com-
pleteness of N-body systems was achieved by V. Enss. Using his time-dependent
approach [E1, E2], he proved the asymptotic completeness of 3-body systems first
in the short-range, and then in the long-range case with p > /3 — 1 [E5, E6].
His proofs were valid essentially for the same class of potentials that we cover in
this chapter. They were based on the analysis of the phase space properties of
propagation.

In 1985, Sigal and Soffer announced a proof of the asymptotic completeness
of short-range systems with an arbitrary number of particles [SS1]. (Their proof
was preceded by a seminal paper of Mourre and Sigal [MoSig]). The proof of
Sigal and Soffer was time-dependent, but its philosophy was different from that
of Enss. Enss relied heavily on the so-called RAGE theorem (see [RS, vol III})
and on the compactness of various operators. The basic idea of Sigal and Soffer,
which proved very fruitful also in the further development, was the following:
find a bounded observable whose Heisenberg derivative is positive. Then the
expectation value of any observable dominated by this derivative is integrable in
time. This idea could be traced back to Putnam and Kato (see Appendix B.4
for references). Nevertheless, it was Sigal and Soffer who first showed its great
flexibility and used it to prove a variety of propagation estimates.

A new proof of the propagation theorem, which was the key ingredient of
Sigal’s and Soffer’s proof, was given in [De2].

In 1989, a very elegant and simple proof of N-body asymptotic completeness
for short-range potentials was found by Graf [Gr]. The basic strategy of Graf was
that of Sigal and Soffer — to find observables with a positive Heisenberg derivative.
In the case of Sigal and Soffer, those observables were mostly functions of

y=H&D+DE).

Graf found a new observable, which was essentially the Heisenberg derivative of
a modification of z2/t taking into account in a very clever way the geometry of
the configuration space. Another feature of Graf’s proof was its complete time-
dependence. Sigal and Soffer used conical cutoffs and the local decay estimate

/ ()~ 3¢t g2t < 00, € >0, (6.0.6)
0

which followed from the Mourre estimate, whereas Graf used cutoffs of the form

J(%)

+|8
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and did not have to use the local decay estimate.

The problem that remained open was the asymptotic completeness of long-
range systems with 4 or more particles. A number of very interesting but some-
what technical results that were valid for long-range N-body Hamiltonians were
obtained by Sigal and Soffer in [SS2, SS3]. One of them was the method of strong
propagation estimates, that we described in Chap. 4 (where it was used in the
case of 2-body Hamiltonians; it clearly generalizes to the N-body case). Another
result was the so-called asymptotic clustering, proven for x = 1 in [SS2] and
extended to the case p > 1/2 in [DeGel].

It was typical for the proofs of the asymptotic completeness of short-range N-
body systems that they used the short-range condition only in the last step and
essentially all the propagation estimates that were needed were valid under the
long-range assumption. In particular, the long-range condition was sufficient to
show the existence of the limits of various observables in the Heisenberg picture,
even without knowing if wave operators exist. These limits generate a natural
commutative C*-algebra. It is possible to describe the spectrum of this algebra.
This approach to scattering theory, which was less satisfactory than the existence
and completeness of wave operators but still preserved the basic physical picture
that is associated with scattering, was proposed in [De6]. Technically, it was
based on propagation estimates of [Gr| (although those of [SS1] were used in
an earlier version of this work, see [De5]). Later on, in [De8], those results were
reformulated using the vector of commuting self-adjoint operator P* called the
asymptotic velocity, instead of commutative C*-algebras.

The approach of Graf to asymptotic completeness for short-range N-body
systems (or to the existence of the asymptotic velocity, as in Sect. 6.6) was based
on the construction of a certain observable, which was the Heisenberg derivative
of a distortion of

x?/t.

Yafaev found a similar proof, which used the Heisenberg derivative of a distortion
of |z| [Yaf5]. Yafaev’s proof used only time-independent observables. Because of
that, unlike in [Gr|, Yafaev had to use the local decay estimate (6.0.6), which
can be regarded as an extra complication. On the other hand, Yafaev’s approach
yielded an extra bonus — it could be used in the framework of the stationary
scattering theory to study eigenfunction expansions and wave operators of N-
body systems [Yaf6].

One can say that the proof of the asymptotic completeness of 3-body long-
range systems of [E5, E6] was based on considering a certain asymptotic effective
Hamiltonian H ", which enabled to localize “bad” states at thresholds. Sigal and
Soffer tried to extend this idea to the 4-body Coulomb case in [SS3]. Nevertheless,
it turned out that the right approach to prove the asymptotic completeness of
long-range systems with 4 or more particles was to localize in z/t, that is, in
the asymptotic velocity. This idea was applied in [De8], which contained the
first proof of the asymptotic completeness of long-range N-body systems. The
proof was valid for any number of particles for 1 > v/3 — 1, which was the same
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borderline as in the work of Enss. It also gave a heuristic argument why it should
be difficult to extend the result to slower decaying potentials.

Let us mention other papers on the problem of the asymptotic completeness
of N-body systems: [Ki6, Tam, SS5, Zie].

Apart from asymptotic completeness, there are various other problems about
N-body scattering that one can study. In particular, one can ask whether the
eigenfunction expansions are well defined, or (which is essentially equivalent)
what are the properties of the kernel of wave operators. One can also study the
regularity of the scattering matrix. These questions usually involve a study of
the boundary value of the resolvent. We do not consider these questions in our
monograph. Among the papers devoted to this subject, let us mention [Yaf6,
Sk1, HeSk2, GelSk, 14, 15, 16, 17, Bom, Va].

3-body systems can be regarded as an intermediate case between the 2-body
and N-body systems. For 3-body systems, the validity of the asymptotic com-
pleteness was pushed to p > 1/2 in [Ge4] if we impose some additional virial-type
assumptions on the potentials and the spherical symmetry. The main step of the
proof involves a refined analysis of a one-dimensional 2-body Hamiltonian in the
presence of a time-decaying potential.

Positive potentials also give the opportunity to prove asymptotic complete-
ness for a slower decay in 3-body systems, see [Wa4|.

A counterexample to asymptotic completeness for 3-body systems with po-
tentials satisfying (6.0.3) with 4 < 1/2 was given by Yafaev [Yaf7]. His coun-
terexample involves a construction of an additional non-standard wave operator.

The traditional scattering theory regards the Laplacian as the unperturbed
Hamiltonian. It is also possible to consider other types of scattering, with other
exactly solvable operators serving as free Hamiltonians.

For example, N charged particles in the constant electric field E are described
by the N-body Stark Hamiltonian

N N
1
=14 = 1<i<j<N

Scattering theory for such Hamiltonians was studied in [AT, HeMSk].
N charged particles in the presence of a constant magnetic field B are de-
scribed by a Hamiltonian of the form

H::iv:

=1

(D; + g Az + Y Vijlai — z;),

2m; 1<i<j<N

where Az is the vector potential of B. Scattering theory for such Hamiltonians
was studied in [GeLal, GeLa2, GeLa3].

Scattering theory for N-body Hamiltonians in combined constant magnetic
and electric fields was studied in [Sk2, Sk3].

In relativistic and solid state physics, one sometimes considers the so-called
dispersive N-body Hamiltonians
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H:= ij(Dj) + Z V:L](xz - xj)'

1<i<j<N

Here w;(&;) is the kinetic energy of the jth particle, which does not have to be
a quadratic form. Scattering theory for 2-body dispersive systems is very similar
to the usual non-dispersive case, described e.g. in Chap. 4. Scattering theory for
N-body dispersive systems is still poorly understood, see [De3, Ge2].

6.1 Basic Definitions

Basic definitions and facts about Hilbert spaces are given in Appendix B.1. Basic
definitions about the geometry of the N-body configuration space X are given
in Sect. 5.1. Section 5.2 contains constructions of certain observables related to
N-body systems that will be used in this chapter. This section will be devoted
to some basic definitions about N—particle quantum Hamiltonians.

Most of the time, we will work in the Hilbert space L?(X), where X is a
Euclidean space having the meaning of the configuration space of an N-body
system. Recall from Sect. 5.1 that X is equipped with families of subspaces

{Xp | be B} C{X,|ac€ A}

We will denote by D, D, and D® the momentum operators :~'V, 7'V,
and 17'V® on L?(X) respectively. Likewise, A = —D? A, = —D? and A® =
—(D*)? will denote the Laplacians corresponding to the variables z, x, and z°
respectively.

We will now introduce the definition of a (generalized) quantum N —particle
Hamiltonian. We assume that, for every b € B, we are given a real function
(called a potential) X° > z° — v°(2°). We will always assume that

v (2?)(1 — A% is compact on L*(X?), b € B. (6.1.1)

In other words, for every b € B, the potential v°(z?) is a relatively compact
perturbation of —A®. We will also assume that

Uamin (xamin) — 0.

We set
Viz) = I;gvb(xb), (6.1.2)
Ve(z?) == (,Z v°(2?).

Note that the hypotheses (6.1.1) implies that V(z) and V%(z®) are bounded
relatively to —%A with the infinitesimal bound. Using Kato-Rellich’s theorem
(see Theorem B.1.3), we can introduce the following definition.
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Definition 6.1.1
The Hamiltonian on L*(X)

1
H::§D?+Vu)

with domain H?*(X), where V(z) is given by (6.1.2), is self-adjoint and bounded
from below. It is called a (generalized) many-body Hamiltonian.

Similarly we define clustered Hamiltonians

1
H, = §D2 + Vi), a€ A

Clearly, H = H,

Gmax *

We may identify L?(X) with L?(X,) ® L?(X?). Then we can write
1
Hy=-3A,®1+1®H",

where )
H® = —§A“ + Ve(z?)

is a self-adjoint operator on L?(X%) called a reduced clustered Hamiltonian with
domain D(A?).

For any a € A, the clustered Hamiltonian H, and the reduced clustered
Hamiltonian H* are examples of generalized many-body Hamiltonians. Their
configuration spaces are X and X respectively. Their families of subspaces are
{Xp|beB, b<a}and {X*NX,|be B, b<a} respectively.

Note that X%min = {0}, L*(X%min) = €, V%min(g%in) = () and H%in = (.

If we set I,(z) := V(z) — V*(z), we have:

H = H, + I(z).

Obviously, instead of studying H it is sufficient to study the reduced Hamil-
tontan H%a_ Clearly, H* is an N-body Hamiltonian acting on the space
L?(X%max) associated with the Euclidean space X% and the family of vector
subspaces {X =N X, | a € A}. We can always replace H with H% and X
with X%ma<_Tf we do this we guarantee that

X, = {0} (6.1.3)

This procedure is a generalization of the separation of the center-of~-mass motion
for standard N —body Hamiltonians, which was described in Sect. 5.1. Most of our
results are valid without the assumption (6.1.3). Sometimes it will be convenient
to impose this assumption, which we will always state explicitly.

We will sometimes prove certain properties P(a) of the Hamiltonians H,
using the induction with respect to the semi-lattice A. The logical structure of
such a proof is the following:



278 6. Quantum N-Body Hamiltonians

(Vaea (Voo P(b) = P(a))) = VocaPla).
Every a € A can be renamed ap,.,. Therefore it is actually sufficient to show
va<amaxP(a) = P(amax)’

which is notationally more convenient.

6.2 HVZ Theorem

In this section we just assume (6.1.1).
A very important role in the analysis of N—particle systems is played by the
following set of energy levels, called the set of thresholds.

Definition 6.2.1
The set of thresholds of a subsystem a € A is defined as

T = U Upp(Hb)-

b<a

The set T will be simply denoted by T. Moreover, we set X% := inf(T*) and
X = Yomax = inf(T).

Note that op,,(H®in) = {0}. Hence X < 0.

Let us now prove the following fundamental result, known as the Hunziker-
Van Winter-Zhislin theorem. Its proof can be considered as a good introduction
to geometric methods in the study of N—particle systems.

Theorem 6.2.2
Assume (6.1.1). Let H be an N—particle Hamiltonian with X,
the essential spectrum of H is equal to

= {0}. Then

Gmax

Oess(H) = [X, 0.

From Theorem 6.2.2 we obtain the following picture of the spectrum of a
typical N—particle Hamiltonian.

b))
<2

P ©

AVAR N4 X oV, AV

opp(H) Tess (H)
x: bound states of H
®: thresholds of H

Fig. 6.2. Spectrum of an N—body Hamiltonian.
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Before the proof of the above theorem, let us state some general properties of
N-body Hamiltonians that hold under the assumptions (6.1.1) and will be useful
throughout his chapter. The first lemma describes properties that can be proven
exactly as in the 2-body case.

Lemma 6.2.3
Assume (6.1.1). Let x € C§°(IR) and J € C*®(X) such that VJ is bounded. Then

[X(H), 7 (%)] (H+1) €0t (6.2.1)
(x)’x(H){x)™* is bounded for any s € R, (6.2.2)
11,00 ('“%”) P (2P (1 =AY € o(t%), be B. (6.2.3)

The next lemma says that on Y, we can in some weak sense approximate the
full Hamiltonian H by H,.

Lemma 6.2.4
Let x € C(R), § > 0, J € CY(X) such that suppJ C Y? and 0%J, |a| = 0,1
are bounded. Then

(x(H) = x(Ha)) J(7)(H + i) € o(t°).

Proof. Let x¥ be an almost-analytic extension of x constructed in Proposition
C.2.1. Then

and
(2 = H) ' o(2)(2 — Ha) "' J(3)

= (z— H) ' o(x)J(£)(z — Hy) ™" (6.2.4)
+(z — H)"'Lu(z)(z — Ha)™'[Ha, J ()] (2 — Ha)™".

DIz -
The first term on the right of (6.2.4) is o(t°) by (6.2.3), the second is O(t™!),
which completes the proof of the lemma. O

We will often use Lemmas 6.2.3 and 6.2.4 without quoting them.
Next let us recall that in Sect. 5.2 we constructed a “smooth partition of
unity” g¢,(x) satisfying, for some ¢,0 > 0,
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suppgs C Z5°, ¥ qu(z) =1,
acA (625)
102q4(2)] < Cuy, 0 < qu(z) <1,

We will also need a closely related family of functions

~ qa\T
da(z) = %{3 (6.2.6)
(Xoea @5 (2))?
They have the following properties:
suppde C Z5°, ¥ Go(z) =1,
acA
09Ga(2)] < Cay 0 < Ga(r) < 1.
Let B be an operator. The following formula is sometimes useful:
B =73 Gu(x)Bda(z) + 5 Z[qa , [@a(2), BJ]. (6.2.7)
acA aEA
In particular, if B = —A then we get the so-called IMS localization formula
[CFKS]:
Z Qa Aqa 5 Z |an . (628)
acA aEA
Proof of Theorem 6.2.2. Let us first prove that oes(H) C [ X, o0.
We prove by the induction with respect to a € A that, for any a,
Oess(H®) C [X¢, 0. (6.2.9)

It is enough to consider anax and to assume that (6.2.9) is known for a < Gpax-
Let x € Cg°(IR) with suppy C] — oo, X[. Let g,(z) be the partition of unity
satisfying (6.2.5). We have

X(H) = Z x(H)a(?)
o< (6.2.10)

using Lemma 6.2.4.
On the other hand, by the induction assumption, for any a < ayax, we clearly
have
o(H®) = opp(H*) U[X?, 00[C [ X, 00l

But
o(H,) =o(H*) + RY,

where + denotes the algebraic sum of subsets of IR. Therefore,

o(H,) C [X, 00,
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which implies that all the terms in the second line of (6.2.10) vanish for @ # amax-
The remaining term is compact. Letting ¢ tend to oo, we see that x(H) is compact
for any x with suppx C| — oo, X[, which shows that oes(H) C [X, 00l

Let us now prove the converse inclusion by constructing suitable Weyl’s
sequences for a given energy level A > Y. Let a € A, a # amax such that
Y =info,,(HY).

First we note that we will find a sequence of vectors u,, € D(H®*) and p, — oo
such that

[unll = 1,
nh_)rgo(Ha - X)u, =0, (6.2.11)
Unp = ﬂ[o’g](m)un

pn
In fact, since X € o(H®), there exists a sequence 4, € D(H") satisfying the first
two properties of (6.2.11). Let F' € C§°(IR) such that F =1 on [0,1] and F =0
on [2, oo[. Replacing i, by

enF ()i,

Pn
for suitable sequences p, — 0o and ¢, — 1, we may guarantee that also the third
property of (6.2.11) holds.
Next we pick y, € Z, such that

{z | 2% <2, |z, —yal <2} C Yo

We claim that we will find a sequence of vectors v, € D(3D?) such that

[[on]] = 1,
lim (=3D7 = A + Z)v, =0,

Lo (172 = Yal)vn = va-
In fact, if w, € X with |w,| =1, we can set
n(a) = eaF (|22 = g VORI em),
where ¢, is such that ||v,|| = 1. We put
On(T) 1= vp(x4) @ up(x?).
Note that ||¢,|| = 1, ||[Hoy|| € O(1) and ¢, tend weakly to 0. We have
(H=XNon = Iu(z)én
(6.2.12)
+ (=240 = X+ 2)vn) @ty +v0 @ (H® = D))
Now, using (6.2.3), we get

L(2)¢n = La(2) o) (| 22 = ya) o) (%) (H + )7 (H + i) — 0.
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Therefore,
(H = A\)gn — 0.

Consequently, ¢, is a Weyl’s sequence for the energy level A, which proves that
A € Oess(H) (see [RS, vol. I, Thm. VIL.12]). O

6.3 Weak Large Velocity Estimates

In this section we will show large velocity estimates for N-body Hamiltonians.
They are similar to those proved in Sect. 4.2 for 2-body Hamiltonians.

In the 2-body case, the maximal velocity is essentially equal to v/2H. This
comes from the fact that, for 2—body Hamiltonians, the kinetic energy of a
particle far away from the origin is very close to its total energy. For N —particle
Hamiltonians, it is possible to extract more kinetic energy from the system by
building bounded clusters of particles. Therefore, the maximal allowed velocity
is in general larger in the N-body case.

Proposition 6.3.1
Assume (6.1.1). Let x € C§°(IR) and suppy C] — oo, 307 + 2.
(i) Let 6, < 6y. Then

‘/loo H]l[01,92] <%> X(H)qst

2
dt
< <clap

(i) We have

: |z| —i
s— Him Tjg, o) (7 X(H)e " = 0.

The proof of the above proposition follows by exactly the same arguments
as in the proof of Proposition 4.2.1 except that it uses Lemma 6.3.2 instead of
Lemma 4.2.2.

Lemma 6.3.2
Assume (6.1.1). Let x € C§°(IR) with suppx C [—oc,36% + X[ and 0 < x < 1.
Let f € CP(R), 0 < f <1 and 0 & suppf. Then one has

HX(H)Dif (M) <6+ o(t). (6.3.1)

[\ ¢

Proof. We write
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X(H)DZ f(B) = Y ocux(H)DZqa(2) f (%)
= Ea#amax X(H)Dﬁ%(g)f(%):

for € small enough, using the fact that 0 &€ suppf. Next we write

IX(H)D&aa(2) F()I < IIX(H) Dataga(5) ()]

(6.3.2)
() D2 go(2) F(2)].
We have
IX(H) D2 4u(2) F(2) ] < IIx(H) D] Zaa(2)] € O(o).
Using then the direct sum representation
21
Ha = f (553 + Ha)dé-aa
Xa
we obtain that
X (Ha)Dal| < 6,
for some 6, < 6. Therefore,
IX(H)Da2200(5) F(EDN = lIX(Ha) Dataa(2) ()] + 0c(°)
< 61 + o (t°).
Choosing € small enough in (6.3.2) this gives (6.3.1). O

6.4 The Mourre Estimate

This section is devoted to a proof of the Mourre estimate, which plays a very
important role in the study of N—particle Hamiltonians. The Mourre estimate
was first proved in [Mol] for N = 3, and in [PSS] for general N. Our proof follows
essentially [FH1, CFKS].

In this section we will consider N—body Hamiltonians satisfying
X, =10}, (6.4.1)

i.e. we assume that the center-of-mass motion has been separated. We assume
(6.1.1) and

(1 — A% 2PV 08 (2%) (1 — A%) 7! is compact on L*(X?), b € B. (6.4.2)

We recall from Sect. 4.3 that we denote by A the generator of dilations

A= ({z. D) +(D,z).
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Note that if a € A, we have
A=A, @1+ 18 A°

where

A= (G, DY)+ (D0%), Aw = 3 (3 Da) + (D)

are the generators of dilations along the spaces X* and X, respectively. If a =
@min, We put A%in = 0 acting on L?(X%min) = C.
Note also that it follows immediately from (6.1.1) and (6.4.2) that

(H + 1) '[H,iA](H + )" is bounded. (6.4.3)
The main result of this section is the following theorem.

Theorem 6.4.1

Let H be an N—particle Hamiltonian satisfying the hypotheses (6.1.1), (6.4.1),
(6.4.2). Then the following results hold:

(1) For all \; < Xy such that [A;, o] NT = 0, we have

dimI??,,, (H) < cc.

Consequently, opp(H) can accumulate only at T. Moreover, T and T U oy, (H)
are closed countable sets.
(it) For A € [X, 00|, let

dA):=inf{A\—7 |71 < A\ T7€T}

Then for any € > 0, \ € [X, 00|, there exists an open interval A containing A
and a compact operator K such that

TA(H)[H, iA]lA(H) > 2 (d(\) — €) T4(H) + K. (6.4.4)

(#i) For any e > 0, A € [X, 00| there exists an open interval A containing \ such
that
Iy () [, i AT (H) > 2 (d(Y) — ) 15 (H). (6.4.5)

Note the following easy consequence of Theorem 6.4.1 (i):

Corollary 6.4.2
WPP(H) = Tyyg,, ) (H). (6.4.6)

The remaining part of this section will be devoted to the proof of Theorem
6.4.1. For any A € IR and k > 0, we define
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AY =[N = K, A+ K]
Ifae A, A > X% and k > 0, then we set
d*(A) :==inf{A\—7 | 7 < A\, 7 € T},
d®*(X) == inf{d*(\1) | A\y € A5},

do()) .:{ d*(A) A € [X% co[\oPP(H?)
' 0 Ae[X? o0]NoPP(H)
d®®(\) == inf{d*(\;) | \; € A5},
Note that d(\) = dom=<()). Likewise, we will write d*()), d(\) d*()\) instead of
domesk (X)), domas (\) dome=r()).
Note also that d*°()\) = d*(\) and d*°(\) = d*()).

The proof will use the induction with respect to a € A. Let us list the
statements that we will show:

Hi(a) Let e >0, A € [X¥% 00[. Then there exists an operator K® compact on
L?(X%) and an open interval A containing X such that

TA(HY[H® 1A IA(H®) > 2 (d*(X) —€) Wa(H?) + K°.
Hy(a) Lete> 0, A € [¥% oco[. Then there ezists an open interval A containing
A such that
Ia(H*)[H®, iA" 1A (H®) > 2 (d°(\) — €) 1a(H").
H3(a) Fiz Mg € R, k>0 and € > 0. Then there exists 6 > 0 such that, for any
A € [X% N\, we have

Mg (H*)[H®,iA T pg (H?) > 2 (d*(\) — €) Tpg (H®).

Si(a) T® is a closed countable set.
So(a) For all Ay < Ay such that [A1, \o] N T = 0, we have
dim1fy ) (H*) < oo.
Consequently, oP?(H®) can accumulate only at T*. Moreover, T*U op,(H®) is a

closed countable set.

Note that S (@max), S2(@max) and Hi(amax) are the statements (i) and (%) of
Theorem 6.4.1.
We will show, for any a € A, the following implications.
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(Si(a) and (Vo<aH3(b))) = Hi(a), (6.4.7)
(Vb<aS2(b)) = Si(a), (6.4.8)

Hy(a) = Ss(a), (6.4.9)

Hi(a) = Hy(a), (6.4.10)

Hy(a) = Hy(a) (6.4.11)

As explained at the end of Sect. 6.1, it is enough to show these statements for
0 = Qmax, Which we will do in the sequel.

Note that the implication (6.4.8) is obvious. The implication (6.4.9) follows
exactly as in Theorem 4.3.3 using the virial theorem.

Lemma 6.4.3
Let A €] — 0o, X[. Then there exists an open interval A containing A such that

1 (H)[H, A1z (H) = 0.

Proof. The virial theorem says that, for any A € IR,
I (H)i[H, Ay (H) = 0.

So it is enough to take A such that AN oPP(H) = {A}. O

Lemma 6.4.4
The implication Hi(amax) = Ha(Gmax) 18 true.

Proof. By Hi(amax), we can find A; © X and a compact operator K; such that
Ta,(H)[H,iAllA, (H) > 2(d(X) — €/2) 14, (H) + K;. (6.4.12)

If A& opp(H), then s—lim 5 (H) = 0 for A\, {\}. By the compactness of
K, we will find an open interval A 3 X such that

IA(H)K 1(H) > —€ello(H). (6.4.13)
Now since d(\) = d()), (6.4.12) and (6.4.13) imply
]lAl (H)[Hﬂ Z‘4]]]A1 (H) > 2 (d(A) - 6) ]]A1 (H)

Now assume that P := Iy (H) # 0. Using the compactness of K, we pick
a finite rank projection F' such that F' < P and

A= P)K\(1-P)—(1-F)EK,(1-F)| < (6.4.14)

€
5
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We have
1a,(H)[H, iAll5,(H) = 1a,(H)(1 = F)[H,iA](1 - F)14,(H)
+14,(H)P[H,iA|P1,,(H)
—1,,(H)(1 = F)P[H,iA]P(1 — F)15,(H) (6.4.15)
+1,4,(H)F[H,iA](1 — P)1a,(H) + he
=Ry +Ry+ R3+ Ry + Rj.
Composing (6.4.12) to the left and right by (1 — F') and using (6.4.14), we obtain

Ry >2(d(A) — 5)1a, (H)(1 = F) + (1 - F)Ki(1 - F)

(6.4.16)
> —ells,(H)(1-F)+(1-P)Ki(1-P) - 5.
It follows then from the virial theorem (Theorem 4.3.3) that
Ry, =R3=0. (6.4.17)
Finally,
R+ R; =F*R,+ R,F
> —eF*F — ¢ 'R;R, (6.4.18)
> —e— e (1= P)l, (H)K>14,(H)(1 - P),
where

Ky = ]lA1 (H)[H’ ZA]F[I_L ZA]]]A1 (H)

is a compact operator using (6.4.3) and the fact that F' is a finite rank projection.

Collecting (6.4.16), (6.4.17) and (6.4.18), we obtain
I, (H) [H7 iA]]lﬂl (H)
(6.4.19)

Using the compactness of K7 + K5, the fact that 14(H)(1 — P) tends strongly to
0 when A tends to {A}, and composing (6.4.19) to the left and right by 1,(H)
with A sufficiently small, we obtain

14(H)[H,iA]lA(H) > —2€l4(H).

Since d()\) = 0, this completes the proof of the lemma. O

Next we give a uniform version of the above lemma.

Lemma 6.4.5
The implication Hy(amax) = H3(Gmax) 15 true.
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Proof. By Hs(amax), for every A € R, we will find () such that x > §(\) and

1 ys00 (H)[H, A1 yson (H) > 2 (d(X) = €) 1 ysn (H). (6.4.20)

5(N)
AA

We will find a finite sequence of \;, ¢ = 1,..., N such that A’f{/ % cover [, Aol
where 6; := 0();). Thus we have

1ys; (H)[H,iATD g (H) > 2 (d(\;) — €) 1y, (H). (6.4.21)

We set .
§ = imin{é()\i) li=1,...,N}
Now let A € [X, Ao]. Then for some i = 1,..., N, we have A C A‘f\i. Moreover,
d®()\) < d()\;). Hence

1ps (H)[H,iAllxs (H) > 2 (CZ()\i) - 6) a3 (H)

2 (d"(\) — €) 1 (H).

v

Lemma 6.4.6
Let 6 >0, J € C®(X) such that suppJ C Y and 8%J are bounded. Then

(1—2)1J(&)aV I,(z)(1— A) € o(RY).

z
R

Proof. Let b€ B, FF € C*(R), F =0 around 0 and F =1 around oco. Clearly,

[F(5), (1= A%)7(1 - &%) € O(R™).

b
R
Therefore,

(1— A) T PN ad v b (ab) (1 — AV
(6.4.22)

= F(IZ1(1 = 25712V 50 (22) (1 — AP)~' + O(R™") € o(RY),

using the fact that F(Jz—;l) tends strongly to 0 when R tends to oo.
Now,

(1-— A)_IJ(}%)wiIa(ac)(l — A~
= bga(l — A) M I(£)2V e (2?) (1 - A) ! (6.4.23)
= bgau — AL (E)VF(2) 2P b (22) (1 — A)
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for some € > 0. It follows from (6.4.22) that (6.4.23) is o( R%). O

The geometric argument needed for the proof of Theorem 6.4.1 is the follow-
ing expansion of the commutator [H,iA]. It is related to the expansion (6.2.10)
used in the proof of Theorem 6.2.2.

Lemma 6.4.7
Let x € C§°(IR). Then
X(H) [, AN (H) = 3 ol 55X (Ho) [ Hay iAIX(Ho)du () + (R, (6.4.24)
acA
2H) = S Gu( V2 (H,)dn (L) + o(RY). 4
X" (H) %q(R)X( )ia() + o(R') (6.4.25)

(H)HAAN(H) = T oG x (H) i Al (H)iu ()
+ 3 ) OU(H) = X(Ho)) [Ho PA(Ha)iu (3)
+ X GBI Hay iAI(H) = x(H)@(R)  (6.4.26)
+ 2 GG ), A H)G(3)
+ 3 [00(3): [1a(F) x(H) [ H. Al (H)])

The second and the third term on the right-hand side of (6.4.26) are o(R°) by
Lemma 6.2.4. The fifth is O(R™?). To handle the fourth term, note that

Ga(§)x(Ha)[La(2), iA]x (Ha)
= X(Ha)a(%)La(), iA]x(H,) + O(RTY),

which is o(R%) by Lemma 6.4.6. This proves (6.4.24).
To prove (6.4.25), we write

and we use a similar argument. O

Lemma 6.4.8
The tmplication

(Sl (a'max) and (vb<amaxH3(b))) = Hl(amax)
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18 true.

Proof. Using the closedness of 7 (that is, the statement Si(amax)), wWe easily
see that
d(\) = sup d®()).

k>0
Hence we will find xk > 0 such that

d*(\) > d(\) — %

Moreover, it is easy to see that

min inf{d**(A — \)) + A | A — A € [N} = dF(N).

a<Gmax

By Hj;(a), we will find § > 0 such that, for any A — A\; € [X*, A], we have
s (H® + A)[H®, i A% 05 (H® + A1)
A A
. (6.4.28)
> 2 (do (A = A1) — §) Tag (H + M),

Therefore,

]IA‘; (Ha) [Haa iA] ]]A‘; (Ha)
- ? g (HO + L€2) ([, 1A% + €2)1 55 (H + L€2)dE,

2 f s (H® + 560)2(d (A = 58) + 362 — §)d&a

> 2(d°(N) — ) lLag (Ha) > 2(d(N) — 214 (H,)

—~

Now choose ¥ € C§°(IR) such that y = 1 around A and suppy C Aj. Then, using
Lemma 6.4.7, we get

X(H)H,iAX(H) - = ¥ da(F)x(Ha)[Hay 1A]X(Ha)Ga () + o(R?)
> (d(\) - 5) 2, Ga(R)X *(Ha)qa(%) +
= (d(}) - %)XZ(H) +0(R°) + Kg.

o(R°) + Kr

where
KR = Qoo (5)X(H)[H, i A]X(H ) Gapn ()

_Q(d()\) 26)qamax(%)XQ(H)qamax(%)'
Using the fact that §,,,, (z) is compactly supported since X, . = {0} and the

boundedness of (i+ H) '[H,iA](i+ H) !, we see that K is a compact operator
for any R. Choosing R big enough we obtain

X(H)[H, iAlx(H) > (d()) — 3)x*(H) — £ + K&. (6.4.29)
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Finally, we multiply both sides of (6.4.29) by 14(H) such that x =1 on A and
A is a neighborhood of A, and we get (6.4.4) with

K =1a(H)Krla(H).

6.5 Exponential Decay of Eigenfunctions and Absence of
Positive Eigenvalues

There are basically two approaches to the study of the exponential decay of
eigenfunctions of N-body Hamiltonians. One of them, due to Agmon [Ag2], is
applicable in the case of eigenfunctions below the essential spectrum. It gives a
very good understanding of the rate of decay of eigenfunctions in various direc-
tions of the configuration space. We will not describe this approach, since it is of
a limited use in the case of embedded eigenvalues.

In order to study the exponential decay of eigenfunctions with embedded
eigenvalues, one needs to apply commutator techniques. Early results and refer-
ences on this subject are described in [RS, vol IV]. A very precise understanding
of uniform exponential upper bounds has been achieved by Froese-Herbst [FH2]
(see also [CFKS]). We describe this result in Theorem 6.5.1 below. Note, how-
ever, that the understanding of direction-dependent exponential upper bounds
for eigenfunctions with embedded eigenvalues is still missing (see [Del, De4| and
the references therein).

Modifying the arguments of Theorem 6.5.1, one can show that eigenvalues
cannot accumulate from above at thresholds (although they can accumulate from
below). This result is due to Perry [Pe2]. We describe it in Theorem 6.5.3.

Finally, if we impose slightly stronger assumptions on the potentials, then,
following [FH2, CFKS], we show in Theorem 6.5.4 that there are no positive
eigenvalues. (See also [FHHO)] for related results).

Theorem 6.5.1
Let H be an N—particle Hamiltonian satisfying the hypotheses (6.1.1), (6.4.2).
Let v € H?(X) such that Hiy = E1). Let

T:=sup{36>+ E | 0 >0, e’I*ly € L2(X)}. (6.5.1)
Then T € T U {oo}. Moreover,

T=sup{i6®’+ E | 0>0, "¢ € H*(X)}. (6.5.2)

Definition 6.5.2
For any 7 € T U {0}, we define inductively a closed subspace £, C RanlPP(H)
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as follows. Suppose that we defined €, for all 7 > 7, 7 € T U{oo}. Then &, is
spanned by the vectors

Y € (Ur,5r En)t  such that, for some E, Hvyp = Ev
and T=sup{i0>+E |6 >0, eIy € L*(X)}.

Clearly,
’ &, C Ranlf?_ (H).

]_0057—]

Moreover, by Theorem 6.5.1 we have

D
Ranl®(H) = > &,
TETU{o0}

Theorem 6.5.3
Let A <17 €T U{oo}. Then

dim ]1]_00,,\] (H)gT < 0.

Consequently, the eigenvalues of H can only accumulate at thresholds from below.

Note that
Eso = {¥ € RanTPP(H) | e/l € L2(X), 6 € R}

Theorem 6.5.4
Assume (6.1.1), (6.4.2). Assume, in addition, that

limsup [|(A — $4) 32V, V(2)(A — 24) 5| < 1. (6.5.3)

A—00

Then Ex = {0}. Consequently, the Hamiltonian H has no positive eigenvalues.

The proof of Theorem 6.5.1 will be broken up into a number of steps.
First let us consider F' € C*°(X) such that

F(z) = f(lz]), f' 20, [03F(2)] < Calz)' 7, ol > 0. (6.5.4)

Let g(x) be defined by
VF(z) = zg(x),

so that by (6.5.4)
920, |02g9(x)| < Cola) 1%, |a > 0. (6.5.5)

Let us define the operator
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Hp :=1(D+iVF)2+V(z)
. (6.5.6)
= H—LY(VF)2+i((D,VF)+ (VF,D)).

Let us list some properties of Hp:

Lemma 6.5.5
(i) The operator .
—3(VF)? + 5((D, VF) + (VF, D))

is —A bounded with a zero bound. Therefore Hp with domain H*(X) is a closed
operator.

(i)

(i1i) As forms on C§°(X),
Hp =el'He F.

In the following lemma we collect some properties of et where 1 is an
eigenfunction of H.

Lemma 6.5.6
Let v € H*(X) such that Hy = Ev, and g := efp € L*(X). Then

(1) Yl < Cllyel,
(12)  Hpyr = EYr,
(1)  (Yr|[H,iAlYr) = —[lg"*(2) Avr|® — (Yr|G(2)Vr),
where G(z) = 5 (z- V(VF)*(z) - (z- V)’g(2))
()  (rlHYr) = Elvr|? — 3l (VF)*)r),
where C in (i) depends only on the constants in (6.5.4).

Proof. By Lemma 6.5.5 (7ii), we have, for ¢ € C§°(X),

(H-polvor) = (e7"He" plypp) = (" ¢| HY) = E(lvr),

which shows that ¢r € D(H* ) = D(Hp) = H*(X), and that (ii) is true.
By Lemma 6.5.5 (%), we have

I = Agll < C([|1Hroll + (|01,

which together with (%) implies (7).
Let us show (7). Let us denote by H2(X) the Fréchet space of compactly
supported functions in H?(X). It follows from (6.4.2) that
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[H,iel" Aef'| = ef'[H, iAlel" + eI AgAel” + ef'Gel', (6.5.7)

is true as an identity between quadratic forms on H?(X).
Let now j € C§°(X) with j = 1 near the origin and let 9, = j(:=)1. Clearly,
we have

Hm ¢, =1 in HA(X), by € H2(X),

m—o0

and using (7), we also have

lim e, = ¥r in H*(X). (6.5.8)

m— 00

Using the identity (6.5.7), we have
(Ul [H, ie" Ae"Jthn) = (" m|[H, iAle ) + [|g"/2 A" Y || + (" hm |G Yhyn).
We will show that
Tim (4 [H, ie” AeFTn) = 0,
im (e [, Al ) = (6r|[H, iA]op),
Tim_|g"/2 AeP 4pry |2 = [|g7 At ]|?,
Tim _(e"4p |GeT ) = (Yr|Gor),

(6.5.9)

which will imply (7).
The second, third and fourth identity of (6.5.9) follow by (6.5.8). In order to
show the first identity of (6.5.9), we write

| (Yl [H, ie" Ae” [h)| < [[{x)e” (H — E)ipmi|[[[{2) ™ Ae" thll. (6.5.10)
Now it follows from (6.5.8) that
1{z) =" Ae || < C. (6.5.11)
We also claim that

lim (z)e” (H — E)¢y, = 0. (6.5.12)

m—r00

In fact, using that (H — E)i = 0, we have
(z)e’ (H — E)pm = (2)e"[3D?, j(Z)]),
which shows that
(z)e” (H — E)m|(z) < C(|De"y(x)| + |e"y(z)]) € L*(X),

Since obviously (x)ef' (H — E)1),, goes pointwise to 0, this implies (6.5.12). Hence
(6.5.10) goes to zero. This ends the proof of (7). O

The proof of Theorem 6.5.1 will use a contradiction argument. We assume
that
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T=%0§+E€TU{OO}.

Since T(H) is closed, we can find 6; and € > 0 such that 67 + F ¢ T U {oo},
01 Seo <01+6, and

ety € L2(X), ePrtalely & [2(X). (6.5.13)
We fix a cutoff function x € C§°(IR) equal to 1 near the origin, and put
Fo(z) = (01 + ex(12)) (x).

Let us list some properties of F,,(z):

10%F,(z)] < Colx) ™1, |a] >0, (6.5.14)
(VE,)? — 62| € O(e), (6.5.15)
lz-V(VF,)?| € 0(e) + O({x)™). (6.5.16)
We have ef»1) € L?(X) but, by (6.5.13),
lim [le" ]| = oco. (6.5.17)
We put
b= o
"l

Let us describe some properties of v,.

Lemma 6.5.7

i) Jim f,<nl0faPds =0, Ja] <1, R20,
i) w— dim 1, =0,

i) ||n| 2(x) < C,

w) lim (H — E — $(VF,)?)¢, = 0.

n—oo

(
(
(
(

Proof. Property (i) follows directly from (6.5.17) and implies ().
(i) follows from Lemma 6.5.6 (7).
Let us show (iv). By Lemma 6.5.6 (%), we have

(H = E = }(VF.)?) ¥ = gnAthy + i - Vgnthn. (6.5.18)
Using property (i), the fact that |[¢,|| = 1 and

v+ Vgn(z) € O((z)7),
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we obtain
Jim z- Vg (2)ihn = 0.

It is more delicate to handle the first term on the right-hand side of (6.5.18).
Using (711) and the boundedness of (—A+1)"'[H,iA](—A+1)"!, we obtain that

| (von|[H, iAlgn)| < C,
which, using Lemma 6.5.6 (%ii), gives
llg2/? Adu|| < C.
Using property (i), (6.5.19) and the fact that
/2 € O({a) /%),

we obtain
Tim || g, Aty = 0.

This ends the proof of (iv).

Lemma 6.5.8
For every neighborhood A of %0% + E, one has

lim sup (L4 (H)yn|[H, iA]1a(H)¥n) < O(e).

Proof. By (6.5.15) and Lemma 6.5.7 (iv), we have

limsup [|(H — E — 162)4]| € O(e).

n—oo

This implies that if A is a neighborhood of %0% + E, then
lim sup | ()| € O(c),

lim sup [|(H + &) Ir\a (H) ]| € O(e).

(6.5.19)

(6.5.20)

(6.5.21)

(6.5.22)

(6.5.23)

Using the fact that (H+14)"'[H,iA](H+17)"" is bounded, we deduce from (6.5.23)

that
lim sup(¢,,|[H, i A]y)
n—o0

= li7IL11_)S£p(wn\]lA(H)[H, iA]1A(H)y) + O(e).

By Lemma 6.5.6 (i), we have

(YnllH, iAlYn) < = (¥n|Gu(@)n) ,
where G, (z) =

1
2

(@ V(VE)*(z) = (z- V)’ga(z)).

(6.5.24)



6.5 Exponential Decay of Eigenfunctions and Absence of Positive Eigenvalues 297

Using (6.5.16), we see that
Gn(z) € O(e) + O({z) ).

Therefore,
limsup | (¢n|Grtin) | € O(e).
Hence
lim sup(¢n|[H, iA]¢pn) < O(e) (6.5.25)
n—o0
Using (6.5.24), (6.5.25), we obtain the lemma. O
Lemma 6.5.9

There exists a neighborhood A of %0? + E and Cy > 0 such that

lim inf (1 (H )b | [H, iATLA(H)¥n) > Co + O(e). (6.5.26)

Proof. Since 367 + F ¢ 7(H), we can apply the Mourre estimate

(La (H)u| [H, iAJLA (H)3pn) > Col[a(H)nll* + (4n, Ktn).-
Using (6.5.22) and the fact that 1, tends weakly to 0, we obtain (6.5.26). O

Proof of Theorem 6.5.1. It suffices to observe that, for small enough ¢, Lemmas
6.5.8 and 6.5.9 contradict each other. O

Proof of Theorem 6.5.3. Let ¢,, n € IN be an orthonormal sequence of eigen-
vectors of H with eigenvalues F,, such that E, * E < 7. Assume that ¢, € &;,

n € IN. By the definition of £,, we can pick § < y/2(7 — F) such that

E + %02 ¢7T and e¢, € L*(X) where F(z):=6{z).

We set

e ¢n
le" ul
First note that Lemma 6.5.6 is true for the sequence 1, uniformly in n.
Next we note that also Lemma 6.5.7 is true for the sequence 1,,. This requires,
however, a somewhat different proof.
The property (iii) of Lemma 6.5.7 follows immediately from Lemma 6.5.6
Next we will show Lemma 6.5.7 (ii), or actually its stronger version
w— nh_)nolo(l — Ay, = 0. (6.5.27)

Clearly, using the fact that ¢, is an orthonormal sequence and H¢,, = E, ¢,, we
see that
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w— lim (1 — A)¢, = 0. (6.5.28)

n—oo

Moreover, by (7ii) we have
(1= A)n| < C. (6.5.29)
Now, for any n € C§°(X),

(0| (1= Aypy) = Ll 20nion)

< (e"(1 = A)n|gn).

Hence
lim (n[(1 — A)y,) =0, ne CP(X). (6.5.30)

n—oo
Now (6.5.30) and (6.5.29) imply (6.5.28).
To prove Lemma 6.5.7 (i), it is enough to pick x € C§°(IR) such that x =1
on [0,1] and to show that

Tim (1 A)x (%) ¥ = 0. (6.5.31)
But .
(1 - A)§X (‘%‘) q/)n = K(l - A)¢n,
where

]

K= (1— A)sy (E) 1_a)

is compact. Hence using (6.5.28) we see that (6.5.31) is true.
Finally, Lemma 6.5.7 (iv) is proven exactly as in the proof of Theorem 6.5.1.
Next, arguing as in the proof of Lemma 6.5.8 we see that, for any neighbor-
hood A of 10% + E, we have

lim sup (La(H )t |[H, i A[Ta(H)tn) < 0. (6.5.32)

n—oo

Arguing as in the proof of Lemma 6.5.9 we see that there exists an open neigh-
borhood A of 6% + E and Cy > 0 such that

lim inf (1 (H )b | [, iAJ14(H) ) > Co. (6.5.33)

Now, (6.5.32) and (6.5.33) contradict one another. O

Proof of Theorem 6.5.4. Let Hy) = Ev). For any 6 € IR set 1y = e?®)q).
Suppose that 1y € L?(X) for any § € R. Since V is Hy-bounded with the
relative bound less than 1, we will find Cjy > 0 such that as quadratic forms

1
5D2 > CoH — C.

Therefore, applying Proposition 6.5.6 (iv) to the function F' = 6(x), we obtain
on the one hand
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(va|5D*g) > Colvbe| Habg) — Clltbpl|>

o , (6.5.34)
= Cob” (V| 5z 00) + (CoE — O)||9o]|*.
On the other hand, it follows from (6.5.3) that
1
§D2 < C,[H,iA] + C, as forms on H*(X),
which gives
(Vo3 D*9) < Ci(4g|[H, iAlg) + Clltbal)? (6.5.35)
< C1(o|G(z)9) + Clltell?,
using Proposition 6.5.6 (7). By a direct computation, we have
—p(3zt _ 91’y _9p2 2>
G(z) = 0375 — 2755) — 20° 52
Combining (6.5.34) and (6.5.35), we obtain
/ ro(2) 0|2 (2)dz < 0, (6.5.36)

for \ ,
ro(x) =02 (CofSr +2C1 551)
+0C) (27 — 3:55) — CoE — 2C.
When 6 tends to 0o, then ry(x) increases to oo except for x = 0. This contradicts
(6.5.36) unless ¢ = 0. Hence &,, = {0}.
Now a simple induction argument shows that H has no positive eigenvalues.
O

6.6 Asymptotic Velocity

Traditionally, wave operators and scattering operators are regarded as the most
important objects in N-body scattering theory. Their existence and completeness
can be proven for a large class of potentials that includes essentially all physically
interesting ones. Nevertheless, it seems that from the mathematical point of view
another object has a more fundamental importance. This object is the asymptotic
velocity.

The existence of the asymptotic velocity can be shown for a very large class
of potentials — much larger than the class for which asymptotic completeness
has been shown. It implies easily the asymptotic completeness of short-range
systems. It is also an important preparatory step in our proof of the asymptotic
completeness of long-range systems.

The construction of the asymptotic velocity is described in the following
theorem.



300 6. Quantum N-Body Hamiltonians

Theorem 6.6.1
Assume (6.1.1) and

||

/OO H(1 — ATV 0P (28) Ly oo (f) (1-A"dR< oo, beB. (6.6.1)
0

Then the conclusion of Proposition 6.3.1 is true. Likewise (6.4.2) holds and hence
the conclusion of Theorem 6.4.1 is true. Moreover, the following holds:
(i) There ezists

§—Ci — lim et Ze=itH .= p+, (6.6.2)
t—00 t
The vector of commuting self-adjoint operators PT is densely defined and com-

mutes with the Hamailtonian H.
(ii) If a € A, then

§—Coo— lim e Dye 1y, (PT) = Py, (PT). (6.6.3)

(ii4)
]l{Xamax } (P+) — ]lpp(Hamax ) .

The proof of Theorem 6.6.1 will be divided into a series of lemmas and
propositions, some of them of an independent interest.

The next lemma is an obvious generalization of Lemma 4.4.2 to the case of
N-body potentials.

Lemma 6.6.2

It follows from (6.1.1) and (6.6.1) that, for any b € B,
(1 — A"V 00 (2%) (1 — A®) L is compact on L*(X?), 6.64)
6.6.4
(1 — A") 712V b (2P) (1 — AP~ is compact on L*(X?).

Moreover, let § > 0, J € C*°(X) such that 8>J(x) are bounded and suppJ C Y?.
Let x € C§°(IR). Then for any a € A,

(1— AV, 1u(2)] (%) (1— A e LY(dR), (6.6.5)
Dy, x(H)|J (%) € o(RY), (6.6.6)
Dy, x(H)] J (%) € L'(dR). (6.6.7)

Our next proposition is an important propagation estimate due to Graf [Gr].
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Proposition 6.6.3
Letae A, x € C°(R), 0 < 8 and € > 0. Then

/100 ‘ Lo,0 (%) Ly (%) (% - D ) X(H),

Proof. We can always increase 6 so that suppx C|— 0o, 6%+ X[, in order to be
able to apply Proposition 6.3.1. Let J € C§°(IR) be a cutoff function such that
J =1on|0,0]. Let j € C§°(IR) such that j =1 on suppJ’ and suppj C [f, col.
Let R(z) be the function defined in Sect. 5.2.

Set

2 dt
- < < Cllo|I* (6.6.8)

L(t) := %( —% VR(9) + 3(VR($), D - §) + R(}),

t

07 (5) 10 () x00
Then &(¢) is unlformly bounded and
D&(t) = x(H) (DoJ (£)) L(t)J (£) x(H) + he
~X(H)V,V(2)V.R (2) J? (&) x(H) (6.6.9)
+Ix(H)J (£)(2 =D, V2R (2) (2 - D))J (&) x(H).
The first term in the right-hand side of (6.6.9) can be written as
tIx(H)j(1$)B(@)i(5)x(H) + O ?),

for some uniformly bounded observable B(t). Using Proposition 6.3.1, we see
that this term gives an integrable contribution along the evolution.

Using Lemma 5.2.7 (ii), we can rewrite the second term in the right-hand
side of (6.6.9) as

= X(H)Vala(2) % q0($)T2(F)x(H).

acA

This is integrable in norm by Lemma 6.6.2.
Finally, using Lemma 5.2.7 (ii3), we have

tx(H)J (J%) (2 - D,V°R (%) (% - D))J (J%l) x(H)
2 agAt_1X(H)J (%) (:BTQ - Da) qa(%) (wTa - Da) J (%) X(H)

Therefore, by Lemma B.4.1, for any a € A, we have

) 2 - ) (e

For any € > 0, we can choose R(x) and ¢,(z) such that

dt < O||0|? (6.6.10)




302 6. Quantum N-Body Hamiltonians

s () < C o)
Therefore, _
e e (5) Do () (5 = Do) x(H)e|
<t | fLuwn () (3 - 2) 7 () xma| +0e @)
< st a (3) (2 - D) 7 (2) ximps| + 0

Now (6.6.10) and (6.6.11) yield

2
oo x |z | (:Ea ) dt )
Tye (Z) 100 (20 (22 = D, x(H)a|| & < Cllo]2,
[ (5) 30 (1) (%2 - D) xiamo < clol
as claimed. O
Lemma 6.6.4
Letae A, e >0,0>0. Let x € C§°(IR). Then
. kd TN\ (Ta —itH _
s Jim Ty (T 1y (?> (7 - Da> X(H)e ™ =0, (6.6.12)

Proof. We can always enlarge 6 if needed as in the proof of Proposition 6.6.3.
Let J € C$°(X) N F such that suppJ C Y2 N {z | |z| < 20} and J > 1 on
Yen{z | |z| < 0}. Let x; € C§°(IR), x1 = 1 on suppx.

Using (6.6.6), we have

s— lim J(%)(% — D,)x(H)e "

t—00

=s— tlim x1(H)J(2)(% — D,)x(H)e ™.

— 00

Set

a(t) == x(H) (% = D) 7 () 607 (5) (52 = pa) (.
We compute
D&(t) = —2t7'd(1)

+IX(H) (% — Do) (VJ(2), D = £)x3(H)J(%) (% — Da) x(H) + he

=:I1(t) + L(t) + I3(t) + O(t72).
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I,(t) is negative.
Using the fact that J € F, for some € > 0, we can write

Iy(t)
= = #7(H) (% = Da) VI()an(®) (3 = Do) () I () (% — Da) x(H)
= T t7'x(H) (2 — Dy) as(Z)By()J(2) (% — Da) x(H) + O(t72),

where By(t) are uniformly bounded operators. Using then Proposition 6.6.3, we
see that this term is integrable along the evolution.

I3(t) is integrable in norm by Lemma 6.6.2. This shows that there exists the
limit

lim (64| (t)b,). (6.6.13)

t—o0

But, again by Proposition 6.6.3, we have

["@lea) T < oo

This implies that the limit (6.6.13) is zero. O

Proposition 6.6.5
Let J € C(IR). Then there erists

s— lim e“# J (%) e . (6.6.14)

t—o00

Moreover, if J(0) =1, then

T i SitH T\ —itH) _
s— lim (s Jim e (Rt) e ) 1. (6.6.15)
If we define
§—Cio — lim e Ze=itH —. p+. (6.6.16)
t—o00 t

then the vector of commuting self-adjoint operators P* is densely defined and
commutes with the Hamiltonian H. Hence Theorem 6.6.1 (i) is true.

Proof. By density, we may assume that J € C§°(X) N F. It also suffices to
prove the existence of
s— lim e J (%) X2 (H)e™

t—o0

=s— lim e y(H)J (E) x(H)e 2 (6619
t—o0 t

for any x € C§°(IR).
Set
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s (5 (2) (02,53 (3)

As the first step, we will show that there exists
. itH —itH
s— lim e D(t)e ™. (6.6.18)
To see this, note that
DO(t) =—x(H)VV(2)VJ () x(H)

(6.6.19)
+'x(H)(D = %,V2J () (D — %)) x(H).

The first term on the right of (6.6.19) is integrable in norm by Lemma 6.6.2.
The second is integrable along the evolution by Proposition 6.6.3. Therefore, the
limit (6.6.18) exists.

It remains to show that (6.6.18) equals (6.6.17). This follows from Lemma
6.6.4.

(6.6.15) follows from Proposition 6.3.1 (ii). The fact that P* exists as a
densely defined vector of commuting operators follows then from Proposition
B.2.1. [P*, H] = 0 follows from Lemma 6.2.3. O

Proposition 6.6.6
Let g € Coo(X,)- Then

s— lim e g(D,)e ™ 1y, (P*) = g(P;)1y, (PY). (6.6.20)

t—00

Hence Theorem 6.6.1 (i) is true.

Proof. It is enough to assume that g € C§°(X,) and to prove that
L itH z —itH
s— lim e g(Dg)J ( ) X(H)e

t
—s— lim eitf g (wTa) J( ) ©(H)e-itH (6.6.21)

t—00

18

for any J € C3°(Y,) N F and x € CP(IR).
We already know that the limit on the right-hand side of (6.6.21) exists.
Next we note that, by the Baker-Campbell-Hausdorff formula (3.2.28), we

have
(9(Da) — g(22)) J(2)x(H)e

= B(t) (Da = %) J(E)x(H)e ™ + O(t™),
6

where B(t) is uniformly bounded. (6.6.22) goes strongly to zero by Lemma, 6.6.4.
Therefore (6.6.21) is true. O

(6.6.22)

Lemma 6.6.7
Let A\ € oPP(H)\T. Then the following is true:
(1) There exists C such that, for f € C%(X),
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[[Mpay (), f(@)]]] < C[IV flloo-
(1) If, moreover, f(x) =0 on a neighborhood of 0, then

1My (H), D2 f (@)][| < ClIVflloos e < 2.

Proof. We recall from Theorem 6.5.1 that, since A & T, 15 (H) is a finite rank
projection on exponentially decaying eigenfunctions. Hence

[[{z) Lpxy (H)]| < o0
Now we have
[y (H), f ()]
= [T (H)), £(0)] + Jo [Ty (H), 2V f (s2)]ds
= 0+ O([IV flloollTpny (H)I[)-

This proves (i).
To show (i), we use in addition the boundedness of ||(1 — A)(z) 1\ (H)||. O

Next we will prove the so-called low velocity estimate in a version due essen-
tially to Graf [Gr].

Proposition 6.6.8
Let x € C§°(IR) such that suppx N'T = 0. Then we can find ¢ > 0 such that

% dt

e
il L <ol (6.6.23)

/100 H]I[O’fd (7) X(H)I°(H) ¢y

Proof. Let A € R\T. Let
d(\)

where d()\) was defined in Theorem 6.4.1 and X' in Definition 6.2.1. We will show
that there exists a neighborhood A of A such that if x € C§°(IR) and suppy C A4,
then (6.6.23) holds. Then we can extend the validity of (6.6.23) to x with larger
supports by the covering argument (see the proof of Proposition 4.4.7).

Let \ < )\1, di < d(/\), 61\/2(/\ — Z) < d; and € < €71.

By Theorem 6.4.1 (i), we will find a function x € C§°(IR) such that x =1
on a neighborhood of A, suppyx C|] — oo, A;[ and

€ <

X(H)I(H)[H,AJI°(H)x(H) > 65 (H)1°(H). (6.6.24)

Let x € C§°(IR) such that ¥ = 1 on suppy. We will write
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X°(H) :==1(H)x(H), X°(H):=1°(H)x(H).

We may assume that suppy, suppxN7 = (. By Lemma 6.6.7, for f € C§°(X),
we have that

[f () x“(H)] € O™,
if, moreover, 0 & suppf, then [Df(%),x*(H)] € O(t™") + L'(dt).

Of course the same is true with x replaced with x. .
We also choose J, J € C§°(X) such that J =1 for |z| < €, J =1 on suppJ

and suppJ,suppJ C {z | |z| < &}, J € F.
M(t):=J (%) +(D-2,VJ (%)),
= 15

Set
D(t) := x“(H)M ()X (H)$X(H) M (t)x“(H).

Using the boundedness of (z)x¢(H){z)~', we see that &(¢) is uniformly bounded.
We compute:

Da(t) =t"'x(H)(D— %,V () (D - £)x° (H)%x (H)M*(t)x“(H) + he
4 H) + he

—XC(H)V,V (2)J(£)%(H) 4%
+HWC(H)M (63 (H) ([H,iA] — £) 5°(H) M*(t)x°(H)
=: Ri(t) + Ry(t) + Rs(t).
The term R;(t) can be written as as
Bi(t) = ¢ X (H)(Dy = )as(5) Bo(t)an (%) (D — )x (H)
+0(t72) + (&) ' L=1(d?)

for certain uniformly bounded operators By(t). Using Proposition 6.6.3, we see
that R;(t) is integrable along the evolution.

The term Ry(t) is integrable in norm.

Let us now estimate the term R3(t). By (6.6.24), we have

X (H)M ()X (H)i[H, AJ°(H)M*(t)x“(H)
> dyt =X (H) M () (X°)* (H) M* (t)x°(H)
= dyit X (H)M ()M () x*(H) + O(t%) + () 7' L7 (dt).
By Lemma 6.3.2, we have:
1T E)ARH) TN < IFTEONIT () ZDRH)I + O
2(A = X) + o(%).

)
)

So,
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— X (H)M ()X (H) X (H) M (£)x°(H)

t

> —e11/2(A — D) Lx¢(H)M(H)M*(£)x* (H) + O(t72).

Therefore,

Ry(t) > Cox*(H)M)M* (t)x"(H) + O(t™*) + () "' L7 (dt),

where by Cj := dy — €14/2(A — X) > 0.
We write then

M(t)=J (2) +(D = 2,V.J (2)) = My(t) + My(t).
We use now the inequality
(My + My) (M} + M3) > (1 — €)M M; + (1 — e )My M;
to deduce that
Ra(t) > (1— Cot x<(H)J? (2) x“(H)
(6.6.25)
+(1 = e )Cox*(H)UD = 5,V ($)HVJ (§), D = ) (H).

The second term on the right-hand side of (6.6.25) is integrable along the evolu-
tion by Proposition 6.6.3. Hence, by Proposition 4.2.1, we obtain

[l @) wum

< <clol.
The following proposition shows that the states with zero asymptotic velocity
coincide with the bound states.

|

Proposition 6.6.9

Ly, . 3 (PF) = 1PP(H™=).
Hence Theorem 6.6.1 (iii) is true.

Proof. Using the fact that
H = H*> + :D?

Gmax’

we see that it suffices to consider the case when X = {0}, H = H®%=<_ Let

H¢p=7¢ and J € C(X). Then

Gmax

lim e ] (2) e ¢

t—o0

6.6.26
= J(0)¢ + lim &7 (] (2) — J(0)) ¢ = J(0)¢. ( )
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This shows that PT¢ = 0 and proves
ﬂ{o}(P+) > 1PP(H).

Let us prove the opposite inequality.

Let x € C§°(IR) such that suppxN(oPP(H)UT) = (. Choose also J € C§°(X)
such that J(0) > 0 and suppJ C B(0,¢), where € > 0 is given by Lemma 6.6.8.
Clearly,

T

_ Y eitH 2
s— lim e x(H)J (t

) X(H)e =\ (H)J(P). (6.6.27)

By Proposition 6.6.8,

2 d¢
— <o, (6.6.28)

[ ) oms

Therefore, the limit (6.6.27) vanishes, which proves that

]l{o}(P+) S ]lTUO'PP(H)(H)- (6629)

But by (6.4.6) the right-hand side of (6.6.29) equals 1°P(H). O

6.7 Asymptotic Completeness of Short-Range Systems

The asymptotic velocity constructed in Theorem 6.6.1 gives a classification of
the states in L?(X) according to their asymptotic behavior under the evolution
e~ _TIn fact, we clearly have

1= 1z (P"). (6.7.1)
acA

Moreover, by Theorem 6.6.1,
]l{Xamax}(P+) = ]lZamax (P+) = ]lpp(}‘[amatx)7

i.e. the states with zero internal asymptotic velocity coincide with the bound
states of the full Hamiltonian with a removed center-of-mass motion. However,
we would like to have a better understanding of the spaces of scattering states
Ranly, (PT).

In this section we will assume that the potential V(x) satisfies the short-
range condition. In this case, one can describe the space Ranlz, (P") in a very
satisfactory way by constructing the wave operators.

Theorem 6.7.1
Assume (6.1.1) and
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[ 2 () 0 - 2

Then assumption (6.6.1) holds and hence the conclusions of Theorem 6.6.1 hold.
Moreover, for all a € A, there exist

dR < o0, beB. (6.7.2)

s— lim "o~ tHaPP (), (6.7.3)
s— lim etHae—itHY , (PT). (6.7.4)

If we denote (6.7.8) by 2
partial isometry such that

then (6.7.4) equals 2F%. The operator 25, is a

sra’ sr,a* Sr,a

Oallora = PP(H),  Of 007 = 1g,(PT), (6.7.5)
Of H,=HQY,,  Qf.D,=Prof, =P

Sr,a sr,a’ sr,a sSr,a sr,a”

Remark. By (6.7.1) and (6.7.5),

Z Ran(2f .. (6.7.6)
acA

If one notes that 2+

SIr,am

= 1PP(H % =<), then we can rewrite (6.7.6) as

Ranl®(H%) = Z Ran(2} ,, (6.7.7)

aF#Gmax

which is the usual statement of asymptotic completeness. The operators 2} , are
called the channel wave operators.

Remark. Let us recall that H,, H* and —%Aa can be regarded as many-body
Hamiltonians satisfying the assumptions of theorem 6.6.1, acting on the Hilbert
spaces X, X and X,. In particular, for all these Hamiltonians, we can deﬁne the
asymptotic velocities. The asymptotic velocity for H, will be denoted P, ( ); the

asymptotic velocity for H® will be denoted by P(®:* and the asymptotic velocity
for D? equals D,. Clearly,

(P%), = Da

+\% = +
(P&) =P
Note that we write P(j;) and P@-t for the asymptotic velocities of H, and H?,
and not P, and P®™, because the latter symbols can be understood as the z,-
and z%components of PT.

Note also that
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s, (P}y) = 15,(D,) ® Ny (PH).

But
]lZa (Da) == 1

Therefore,
1z, (Pl = Ny (PF) = TPP(H). (6.7.8)

Hence the existence of (6.7.3) and (6.7.4) are actually analogous statements ob-
tained by exchanging the roles of H and H,.

The fact that (6.1.1) and (6.7.2) imply (6.6.1) follows from a remark in Sect.
4.6.

The proof of Theorem 6.7.1, given what we already know, is not very diffi-
cult. It is a prototype of a certain type of reasoning that we will repeat several
times later on, while studying long-range scattering. It is useful to formalize this
argument by introducing the following definition.

Definition 6.7.2

Let H;, i=1,2, be many-body Hamiltonians on L?*(X) and © C X be a Borel
subset. Let P;" be the corresponding asymptotic velocities. We say that e~ js
asymptotic to e~*2 on @ if the following limits exist:

s— lim et ety g (P =: I, (6.7.9)
s— tgrgo et a5 (P =: I}, (6.7.10)

Proposition 6.7.3
We have I, = I'yi*. Moreover, Iy is a partial isometry satisfying

Lry =1o(Pf), LiL =1o(P)), (6.7.11)

LypPr =Py, H = HT,.

Proof. Let J € Cy(X). Then
(P =s— lim o2 J(2)e 0 1 (PY)
= J(P) 151
Hence I, P;" = P; I. Therefore

Ranl,; C Ranlg(Py).

The same statement is true if we exchange the roles of H; and Hs. Therefore,
(6.7.11) is true by Lemma B.5.1. O
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We will now show the following theorem that, by (6.7.8), implies Theorem
6.7.1.

Theorem 6.7.4
Assume (6.1.1) and (6.7.2). Then e ™ is asymptotic to e'*e on Y.

Proof. Let us first show the existence of the limit

s— lim e"He a1y, (P(t)). (6.7.12)

t—00

Let x € C§°(R) and J € F N C§°(X) such that suppJ C Y,. Denote
M(t) = J(3) + (D =%, VJ(F)),
D(t) = x(Ha) M (t)x(H).
By Lemma 6.6.4, we have

s— lim etHae = J(PT)y2(H) = s— Jim eHe V()2 (H)e .

t—o00 —00

Commuting x(H) through M (t) and using (6.6.6), this is equal to

s— lim eHe(t)e"H (6.7.13)

Now,
LB(t)(t) +iHP(t) — i0()H = x(H,)V,V(x)VJ () x(H)
+ix(Hao)lo(z) M (t)x(H)
+HIX(Ha)(D = £,V2] (2) (D = £))x(H).

The first two terms on the right of the above equation are integrable in norm by
(6.7.2). The third is integrable along the evolution by Proposition 6.6.3. Therefore
the limit (6.7.13) exists.

Next we interchange the role of H and H, and we prove that

s— lim eHae "y (PT) (6.7.14)

t—o0

exists. 0O

6.8 Asymptotic Separation of the Dynamics I

Suppose that the Hilbert space H is of the form

H=H, ®Hy. (6.8.1)
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Let H be a self-adjoint operator on H. In general, the evolution e~ does not
preserve the factorization (6.8.1) and “mixes” the spaces H; and H5. Only if the
Hamiltonian H has the form

H=H; ® 1y, + 1y, ® Ho, (6.8.2)

does the evolution

—itH _ o=itHy g o—itHy (6.8.3)

act independently in H; and in Hy. We will say that a Hamiltonian H satisfying
(6.8.2) and a dynamics e~ satisfying (6.8.3) are separated with respect to the
factorization (6.8.1).

In the case of N-body systems, for any a € A, the Hilbert space has a natural
factorization

(S

L*(X) = L*(X,) ® L*(X*). (6.8.4)
In general, an N-body Hamiltonian H is not separated with respect to (6.8.4).
We can ask when e " can be approximated by a dynamics separated with
respect to (6.8.4) for ¢t — oc.

Let us now describe some separated Hamiltonians that may be used to
asymptotically approximate the full dynamics. The first one we already know: it
is

H, = %DQ + Ve (z®)
=3;D2@1+1® H".

Theorem 6.7.4 says that on Ranlly, (P*) the full dynamics e “# can be approx-
imated by the dynamics e~*Ha.

This has, however, two drawbacks. First of all, this result is limited to the
short-range case. Moreover, the approximating dynamics is valid on a relatively
small subspace. Below we will describe separated dynamics that better approxi-
mate e 4

It will be useful to study more closely the geometry of the configuration space
and to introduce some new auxiliary definitions.

Fix a € A. Let us note that if we set

B :={beB|b<a}={beB|X" CX},

then

beBe
Now let us define
By := {be B | Xt c X, }

We set
Voo == 5 v(a)

bEB[a]
hia) = 5D} + Vig)(2a),

I[a} (x) = Z vb(x").
bQB[a]UBa
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If we note that B* N By, = amin and v®i» = 0, then we see that
V(z) =Vx*) + Vig(za) + g ().
The following Hamiltonian is clearly separated:
Hy) = 35D* + V(") + Vig(z,)
= h[a} QI+ 1R H.

The Hamiltonians H, and hy, are many-body Hamiltonians acting on L*(X)
and L?*(X,) and their asymptotic velocities will be denoted by P, and pf, re-
spectively. Clearly,

Phi=pl@l+1e PO
Set
Yv[a] = X\ U Xb,
bgB[a]UBa
Zp =X\ U X,
beZB[a]UBa

Viasep 1= Zja) + X = {2 € X | 7, € Zg}.

It is easy to improve Theorem 6.7.4.

Theorem 6.8.1
Assume (6.1.1) and (6.7.2). Then e ™" is asymptotic to e"iel on Y.

Note that Y}, in general, is considerably bigger than Y;, and hence Ranly;  (P™)
is larger than Ranlly, (PT). Nevertheless, we are forced to assume the short-range
assumptions, because we simply dropped the interaction Ij)(x). Let us define a
third separated effective Hamiltonian, which will work for a large class of long-
range potentials (including Coulomb potentials).

For any a € A, we define an auxiliary Hamiltonian on L?(X,)

he = 1D2+1I,(z,)
= hia + i) (%a)-

(Note that the “true interaction” I,(x) depends in principle both on z, and z®. In
the auxiliary Hamiltonian h,, we “freeze” the variable 2 to zero.) The following
Hamiltonian on L2(X)

Hasep: = LD? + V(2" + I, (a)
— %DQ + V“(:j;a) + V[a](.’L'a) -+ I[a}(:ra)
=h,@1+1Q H®

is clearly separated with respect to (6.8.4). Clearly, H, s, and h, are many-
body Hamiltonians acting on L?*(X) and L?(X,) respectively. The asymptotic
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velocities associated with them will be denoted by P and p; respectively.
Clearly,
P =pi @1+ 1® PO+

a—sep

The following theorem will be shown in Sects. 6.12, 6.13, 6.15:

Theorem 6.8.2
Assume (6.1.1). Suppose that ;= +/3 — 1 and

V(@) = v2(2") +07(2%), bE B,
J52 o8 (@) B e (%) (1 = A%) 7Y REdR < 00, b€ B, (6.8.5)
J52 020 @) My oo (%) | B#dR < 00, [o] =1, be B.

Then for all a € A, the dynamics e is asymptotic to e "He-ser on Z;,.

Corollary 6.8.3
Under the assumptions of Theorem 6.8.2, there exist

s— lim et e tHaser ], (pt) @ TPP(H?), (6.8.6)
s— lim e'tHa—seno=itHy  (pH), (6.8.7)

Denote (6.8.6) by =F. Then (6.8.7) equals = *. The operator = is a partial
1sometry such that

(6.8.8)
EiHyww=HE},  Efpt=Piz}
Moreover,
®
L*(X) = Z Ran='. (6.8.9)
acA

Proof of Corollary 6.8.3 given Theorem 6.8.2. To see (6.8.6), (6.8.7) and
(6.8.8), it is enough to note that Z, C Zp and to use Theorem 6.8.2. To see
(6.8.9), it is sufficient to use (6.7.1) and

Ranlz, (P*) = RanZ}.

|

The property (6.8.9) is closely related to asymptotic completeness for long-
range systems. In fact, we will use the operators = and the identity (6.8.9) in
our proof of the asymptotic completeness of long-range systems. One can even

say that, up to minor technical assumptions, Corollary 6.8.3 is equivalent to
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asymptotic completeness. The advantage of (6.8.9) and of the concept of asymp-
totic separation is that it uses the operators = that are intrinsically defined,
whereas modified wave operators are not.

Note that, in the short-range case, one can improve Theorem 6.8.2 as follows:

Theorem 6.8.4
Assume (6.1.1) and (6.7.2). Then for all a € A, the dynamics e """ is asymptotic
to e~ "Ha=ser on Vi N Yig—sep-

Nevertheless, in the short-range case, the dynamics e “.l seems to be a
better approximation of the full dynamics than e~##e-s» a5 seen from Theorem
6.8.1.

Sometimes asymptotic separation is valid only on a part of the Hilbert space.
To describe this phenomenon, let us introduce the following definition:

Definition 6.8.5

Let a € A. It is clear that
{¢p € L*(X) | there exists s— Jlim eltH o ttHa—sen gy}

is a closed linear subspace. We define QF

this subspace.
Likewise,

a_sep L0 be the orthogonal projection onto

{p € L3(X)) | there exists s— Jim eitHa—seng—itH gy}

15 a closed linear subspace. The orthogonal projection onto this subspace will be
denoted by Q.

Some subspaces of L?(X) contained in the range of Q7
described in Theorem 6.10.1.

The following proposition is an almost immediate consequence of Definition
6.8.5 and Lemma B.5.1:

and @} will be

a—sep

Proposition 6.8.6

Assume (6.1.1) and (6.6.1). Let QF and Q__. be defined as above. Then for all

a € A, there exists o
s—tligloe“He WHazsep Q0 (6.8.10)
and
s— lim eitH“‘sepe*itHQj. (6.8.11)

If we denote (6.8.10) with =7 ,, then (6.8.11) equals Z3%. The operator 5§, is
a partial isometry such that

:(-5* :(-5 — Q+ :'(-5 :(-5* — O+t
—Q,a—Q,a a—sep? —Q,a—Q,a a

N Y (6.8.12)
‘—’Q aHa sep _H“Q a’ ‘—’QaP P “Qa

a— sep_
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Proof. The existence of the limits (6.8.10) and (6.8.11) follows immediately
from the definition 6.8.5. Then we apply Lemma B.5.1. O

Let us now consider the basic example of an N-body system with pair in-
teractions. We can identify the set B with the family of pairs of {1,..., N} and
A with the family of cluster decompositions of {1,..., N}. Let us fix a cluster
decomposition

a:{Cl,...,Cm}.

Without restricting the generality we can assume that C; = {1},...,Cy = {k},
and C; have at least two elements for j = k+1,..., m. The set B* consists of all
pairs contained in one of the clusters Cj, j = k +1,...,m. The set B, consists
of all pairs contained in {1,...,k}.

In the space X, we can use the coordinates ¥y, ..., ¥y, where y; = x;, 1 <
t < k are just the positions of the corresponding particles and y;, k+1 <1< m
are the centers of mass of the clusters C;. Suppose that the total masses of the
clusters C; are M; for k+1 <13 < m.

Note that

k m

hag =Y 5=D? + sar D; + vi; (Y — y;),

d = 2w D ]:%1 g Ui+ 2 v )
k

ha =% 5-Di + s D7 + vii (Yi — y;

‘ JE::I 2m; ]_E+1 2Mj 1<z§]<k i (Vi = 43)

+ Y v ),
1<i<m, k41<j<m, i<j
where

Uf;f(yi_yj):pezc_vip(yi_yj)a 0<i:<k, k+1<j<m,
J

i —y) = X vy —yy), k+1<i<j<m.
peCy, qeC;
In particular, if we have a system of NV charged particles with charges Z;, i =

1,..., N, and 2-body potentials

AVA

’Uz’j(yi - yj) = ﬁ,
i~ Yj

and if we set
Z =% Z, k+1<j<m,
peCj

then the effective potentials are equal

eff
ol (i — ) = o, 0< i<k, k+1<j<m,

zeff zeff

veff(y yj) = w—ZyL', k+1<i,5<m.
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Thus Theorem 6.8.2 about asymptotic separation says that a system of sim-
ple particles 1,...,k and“composite particles” Cy,i1,...,Cy, can be described
asymptotically by an m-body Hamiltonian h,, provided that we avoid collisions
involving “composite particles” (which means restricting to Ranllz,, (P*)). In the

Coulomb case, if the composite particles are neutral (ZJ‘?H =0,k+1<j<m),
then asymptotically the composite particles do not influence the simple particles
at all.

6.9 Time-Dependent IN-Body Hamiltonians

When studying N-body Hamiltonians it is convenient to introduce a certain
class of Hamiltonians whose potential is a sum of an N-body part and a time-
dependent part. More precisely, let us assume that the Hilbert space is

L*(X) ® H,

where H; describes some additional degrees of freedom. Let us introduce a class
of Hamiltonians of the form

H(t) = H® Iy, + W(t,2),

where R™ x X 3 (t,z) — W (t,z) € B(H,) satisfies

/ " sup [V W (2, 2)| sy dt < 0. (6.9.1)
0

zeX

We will denote by U(t, s) the dynamics generated by H(t). We define the follow-
ing types of Heisenberg derivatives:

DA(t) .= LAt) + [H(t),iA®t)],
DA(t) := SA(t) + [H, iA(t))], (6.9.2)
DoA(t) := SA(t) + [LD?,iA(t)].

Let us introduce the following asymptotic observables associated with the
time-dependent Hamiltonian H ().

Proposition 6.9.1
Suppose that H is an N-body Hamiltonian satisfying (6.1.1) and (6.6.1). The
following limits exist and define operators with dense domains:

Ht :=Cy— lim U(0,t)HU(t,0),
. R . (6.9.3)
Pt =s—Cy— Jim U (0, t)3U(t,0).

Moreover,
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[H*, P =0.

Proof. Let x € C§°(IR). Using Lemma C.1.2, we get
IDXCE) = W (& 2), ix(H)|
< CIW (), (H + )7l < Ol VW (&, 2)],
which is integrable. This shows the existence of
Jlim U(0,t)x(H)U(t,0).
Therefore H* exists.
Next let us assume, in addition, that x(0) = 1. Using
IDx (T H)|| < CT VW (8, 2)ll, (6.9.4)
we obtain 5 5
| Jim U0, )x(T~ U (£,0) - \(T2H)|
< CT™ [P IVaW (¢, -] odt.

But (6.9.5) goes to zero as T'— oo. Hence

(6.9.5)

. . >, -1 g
s Jim (gg (0, ) (T~ H)U (1, o)) _ 1,
and so H™ is densely defined.

The proof of the existence of the limit defining Pt is completely analogous to
the one given in Sect. 6.6. Due to the presence of W (¢, x), additional terms arise
in the Heisenberg derivative of the various propagation observables. It follows
from hypothesis (6.9.1) that these terms are integrable in norm. O

Essentially all the results valid for time-independent Hamiltonians described
in this chapter generalize to the case of time-dependent Hamiltonians introduced
at the beginning of this section. For further reference, we will state a generaliza-
tion of Proposition 6.6.8 to time-dependent perturbations.

Lemma 6.9.2
Let x € C§°(IR) such that suppx N'T = 0. Then there exists € > 0 such that

[ oo () o §<ctor. 699

t

Proof. The proof is very similar to the one of Proposition 6.6.8. Using the
hypothesis (6.9.1) on W (t,z), it is easy to see that all the additional terms in
the Heisenberg derivative coming from W (¢, z) are integrable in norm. O



6.9 Time-Dependent N-Body Hamiltonians 319

It will be convenient to extend the definition 6.7.2 to the case of time-
dependent Hamiltonians.

Definition 6.9.3
Let H; be many-body Hamiltonians on L?(X) and let W;(t) satisfy the condition
6.9.1. Define the following operators on L?(X) @ H;:

Let Uy(t, s) be the unitary dynamics generated by H;(t). Let P, and H;" be the
corresponding asymptotic velocities and the asymptotic Hamiltonians. Let © be
a Borel subset of X.

We say that Uy(t,0) is asymptotic to Us(t,0) on O if the following limits
exist:

s— lim Us(0, 1)U, (t,0) 1 (P}, (6.9.7)
s— lim U1(0, 1) Us(t,0) e (P5). (6.9.8)

We have the following generalization of Proposition 6.7.3.

Proposition 6.9.4 )
Denote (6.9.7) by Iy, Then (6.9.8) equals I51*. It is a partial isometry satisfying

LT =1e(PF), IG5 =1e(By),
I P = Py
If moreover Hy = H,, then
Ly H = B I
It is often useful to replace the full dynamics e~*# by the dynamics generated

by an effective time-dependent Hamiltonian. This trick due to Sigal-Soffer [SS2]
is described in the following proposition.

Proposition 6.9.5
Assume (6.1.1) and

v (2%) = v8(2®) + P (2?), b € B,
J2 ([ = A0l (@) M oo (1) (1 — AN dR < 00, beB,  (699)

JE V(22 I oo (Z2) |lod R < 00, b € B.

Suppose that a € A, © C Y, is compact, J € CP(X), J=1 on O, suppJ C Y,
and y 1s a fived element of Y,. We set
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La(t,2) 1= T (§) (@) = Lua(ty)) + Las(ty).

Define
H,(t) := H, + 1,(t, ).

Let U,(t, s) be the dynamics generated by H,(t). Then there eist
H :=Cyp— lim U,(0,t)H,U,(t,0),
Hot = Op— th (0,2)HeU,(t,0),
By i=5—Co— lim Ua(0,8)2U,(t,0).

Moreover,
. 1 . -
Hy = §(P(J£))Z + H*Y, (6.9.10)
(Pdy)a = Coo = lim Uy (0,1)DaUa(t, 0). (6.9.11)

—itH

Furthermore, e is asymptotic to U,(t,0) on O.

Proof. We may identify H,(t) with H(t) considered at the beginning of this
section in two different ways.
First we identify

Xe L*(X,), H*, 1D? 4+ I,(t,x), H,(t) with X, Hy, H, W(t,z), H(t).

2 a

The fact that W (¢, z) satisfies (6.9.1) follows from the arguments in the proof of
Proposition 4.7.5. By Proposition 6.9.1, we obtain the existence of (P(J;))“, Hot

which are identified with P+, H.
Next we identify

Xa, L2(X9), 1D2, Ho +I,(t,z), H,(t) with X, Hi, H, W(t,z), H(t).

Note that this time H(t) belongs to the class considered in Sect. 3.2 (with internal

degrees of freedom). Using the results of Sect. 3.2, we obtain the existence of

(P(J;))a and the identity (6.9.11). Now (6.9.10) is easy and left to the reader.
Let us now prove the existence of the relative wave operator

s— lim "0, (t,0) 1o (P)- (6.9.12)

t—00

Let x € C°(R), J € C§°(X) N F such that suppJ C ©. Set
M(t) =7 (5) +(D~5.VJ (%)),
D(t) := x(H)M(t)x(Ha)-

Using Lemmas 6.2.4 and 6.6.4 applied to U,(t,0), we have
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v

X*(H)J(Py) = s= lim U, (0,8)®(t)U,(t,0).

Hence
s— lim ™ U, (¢, 0)x*(H;") J(P)
S . (6.9.13)
= s— lim HP(t)U,(t,0).
Now,
LB(t) + iHD(t) — iB(t) Hy(t) = x(H)V,V(2)VJ (2) x(Ha)
+X(H)M (8)[x(Ha), ilo(t, )]
+X(H)M(t)la,s(m)X(Ha)
+XH)D ~ 5,927 (%) (D = §))x(H):
(6.9.14)

We used here the fact that
Ia(z) = L(t,z), 2 € suppJ.

The first three terms on the right of (6.9.14) are integrable in norm. The last term
is integrable along the evolution. Therefore the limit (6.9.13) and, consequently,
the limit (6.9.12) exist.

The proof of the existence of the limit

s— lim U, (0,t)e " 1o (PT) (6.9.15)

is analogous. O

6.10 Joint Spectrum of P™ and H

The existence and completeness of wave operators gives a very satisfactory de-
scription of the asymptotic behavior of e~## . Unfortunately, it is known that the
asymptotic completeness fails for 4 < 1/2 and is proven only for u > /3 — 1.
Nevertheless, even with ;1 > 0, N-body Hamiltonians are quite well behaved from
the point of view of scattering theory. We saw this in Sects. 6.2, 6.3, 6.4, and
especially in Sect. 6.6, where we showed the existence of the asymptotic velocity
P7. In this section we continue the study of N-body systems with p > 0 from
the point of view of spectral properties of PT.

If asymptotic separation (or completeness) holds, then we can fully describe
the joint spectrum of (P*, H) in terms of the collision subspaces and thresholds.
Namely, if we consider the asymptotic momentum & = £, € Z,, then the only
possible open channels are those related to thresholds and bound states of H,
and hence the energy takes only the values

T+ %fﬁ, T € opp(H*) UTE
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Our first result will say that the same description is also true under the assump-
tion p > 0.

Then we will give results related to the notion of asymptotic separation.
Recall from Sect. 6.8 that we introduce there the relative wave operators =,
which were unitary operators from Ran@ ., to RanQ;. We will describe some
large subspaces of L?(X) that are contained in Ran@; ., and RanQ/. Moreover,
we will see that asymptotic separation is true on a large subspace of the Hilbert
space L?(X). This subspace can be described explicitly in terms of the joint
spectral measure of H and P*. (We will see in Sect. 6.15 that this subspace is

included in the range of modified wave operators.)

Theorem 6.10.1
Assume (6.1.1) and

v*(2%) = vl(a®) +vf(2%), b€ B,
- A28 (g0 Ty g (121 (1 - A YdR < oo, beB,  (6.10.1)

SNV (@) Iy o (D) | 0d R < 00, b € B.

Then the following is true:

(i)
o(PH H) = U { (&7 +3€2) | & € X,y 7€ 0™ (H)} . (6.10.2)

acA

(i) Let llf(f:g(Ha) denote the projection onto Ran1P?(H?) N D({z*)). Then
ﬂZ[a] (p:) ® ]]g\']’a (Ha) < ]lZ[a] (pz_;) ® ]lfé)g(Ha) < Q;—,sep'
(iti) Let Xyreg = {(ar T + 3E2) | & € Za, T € 0pp(HY)\T}. Then
]lza,reg(P+’ H) S Ql_;'

Remark. To some extent, the part (i) of this theorem is the quantum analog
of Theorem 5.6.2. In the classical case, however, we could only prove that the
joint image of H and P* contained a certain set related to the so-called regu-
lar a—trajectories (see Corollary 5.6.4), which corresponds to the C inclusion in
(6.10.2). This was due to the instability of bounded trajectories for classical sys-
tems. In the quantum case, most bound states are strongly localized as Theorem
6.5.1 shows, which is the reason for the stronger result.

The proof of the above theorem is divided into a series of lemmas.

Lemma 6.10.2
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]IZ[ (pa) ® ]lIR\Ta (Ha) < HZ[a]( ) ® ]lfg)g(Ha) Qa sep*
Hence Theorem 6.10.1 (ii) is true.

Proof. The first inequality follows by the exponential decay of non-threshold
eigenfunctions (see Theorem 6.5.1). Let us show the second inequality.

Let ¢ € Ranll;j(H*) N D((z*)). Let Py denote the projection onto ¢. By
density, it is enough to show the existence of

s— lim "t = MHa—ser g (1) \? (H,_sep) Py (6.10.3)

for any g € C§°(X,) such that suppg C Z,) and x € C§°(IR).

We may assume that there exists J E Cg°(X) N F such that J|y = g.
Additionally, we may suppose that

(Ta,2") € suppJ = (2,4,52%) €Y}, 0<s< L (6.10.4)
Clearly,
9(pa) Py = J (Pl sep) Py
Set
M(t) :=J (% + D_E,V:w] N ’
(1) =7 (3) + (D -5V (3)) (6,105
D(t) == x(H) M (t) PyX(Hosep)-
By Lemmas 6.2.4 and 6.6.4, (6.10.3) equals
s— lim e H @(t)e "tHa=ser (6.10.6)

t—o0

We have
LD(t) +iHO(t) — ib(t)Hysep = X(H)VV (2)VJ (2) Pyx(Hasep)
+x(H)M (t) (g (%) = L) (7a)) PoX (Ha - sep)
+HTIX(H)(D — 2,927 () (D — %)) Pyx(Ha—sep)
= 0 (t) + LIr(t) + I5(t).

I, (t) is integrable in norm. I3(t) is integrable along the evolution. I5(t) we can
write as

I(t) = x(H)M(t)T1as(2) = Ta)s(€a)) X (Hasep) Py
+X(H)M(t) f01<VI[a],l(37aa Sxa)a $a>P¢X(Ha—sep)d3a
which is integrable in norm, using ||z*P,|| < oo and
| IXED M @)V (w0, 52 dt < €,

which follows from (6.10.4). Therefore the limit (6.10.3) exists. O
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Lemma 6.10.3
We have
a(P+) =X, (6.10.7)
1
§(P+)2112 (P*) = Hlg, (P). (6.10.8)

%min

Proof. One way to prove (6.10.7) is to follow the proof of Proposition 4.5.2.
Using an effective time-dependent potential, it is possible to give a different proof.
Let © C Z,_. be compact. Let J € C§°(X) such that suppJ C Z,,.. and

m111

J =1on O and yy € 6. We introduce I, . (t,z), Hy_. (t), U, (t,5), P(J;min),
H} as in Proposition 6.9.5. Note that

1
H(t) = =5 D* + L, (1,),

hence H(t) belongs to the class of Hamiltonians considered in Chap. 3. In Chap.
3 we showed that such Hamiltonians satisfy

p—f—

(amm

=Cqs —th

Gmin

(0,4) DU

Omin

(t,0),
o(P

(amm )
H;min = %(P(—gmln))Q.

’

—H js asymptotic to U, (¢,0) on @. Hence

o (P+|Ran]1@(P+)) =0,
Hlg(P*) = 3(P*)*1g(P™).

Moreover, e

we obtain (6.10.7) and (6.10.8).
a

Taking a sequence of compact subsets ©,, * Z,

min

Lemma 6.10.4

1
> Y {(xa,T—i- 5% ) | 2o € Xy, T € app(H“)} (6.10.9)
acA

Proof. By (6.10.8) applied to h,, we obtain
1
ol () = 500, ().

Hence

Hyseplz, (pF) @ Upy (H®) = (7 + 5(03)) Nz, () ® Mgy (H).
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By Lemma 6.10.2,

Tooo(ray7a (H®) ® 1z, (p3) < Qi _sep-
Therefore,
( a— sep|Raan sep y Ho SePlRanQ;r sep>
{(xa,T + 533&) | 24 € Z,, T € OPP(H“)\T“}.

But the operator H+ is unitary from RanQ; to Ran@;. Moreover,

a—sep
—+ —t + 4ot
—Q, aHﬂ sep — H‘—’Q a’ —Q, aPa sep =P —Q,a"

Hence, for any a € A,

1
o (P+|RanQ;f7H|RanQi) D {(xa,T + —xi) | Lo € Ly, T E gPp(Ha)\Ta} ‘

2

Since o(P*, H) is closed, this implies

o(P* H) D Ugea{(2a,7 + 122) | 24 € Zo, T € 0¥ (H*)\T1}
= UaeA{(:ra,T—l— 5T ) |z, € X4, T € app(H“)}

This completes the proof of the lemma.

Lemma 6.10.5
Let J € C§°(X), suppJ C Y, x € C§°(IR). Then the following is true:
(i) We have

s— lim eitHJ(%)X(Ha)e—itH — J(P+)X(H _ %(er) )

t—00

325

(it) Let ¢ € D((z*)) N Ranl®?(H®*) and let Py be the orthogonal projection onto

¢. Then there exists

— lim oitH J(Z\P, o itH
s— lim e J(5)Pye 5.

(i11) Assume additionally, that suppx NT* = 0. Then there exists € > 0 such

that if suppJ C {z | |x*| < €}, then

— 1 z\ 1¢( o a\o—itH _
S }L‘&J(t)ﬂ (H*)x(H")e = 0.

Proof. Let Jy,J € C(X) such that suple,suppJ Cc Y, © C Y, such that
suppJ C ©,J; =1on @, and JiJ = J. Using J define an effective Hamiltonian
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H,(t), the corresponding asymptotic velocity P( )» etc. as in Proposition 6.9.5.
Let

(1) follows from the following computations:
s lm ¢ () (HO)e
eI A
Ta(t, 007 ()
XS— tllglo U, (0,8)x(H*)U,(t,0)s— Jim U,(0,t)e 1 J, (PT)
= Pt d (B Fg i (PF)
= J(P)Gex(HS — 5(PR)) e (PT)
= J(P)x(H — 5(P;)*) J.(PF).

To prove (ii), we first note that, by an obvious modification of Lemma 6.6.7
(i), ¢ € D({x*)) implies
[J1($), Py € O@™Y).

Therefore
s— tli)m e J(£)Pye " =s— lim e“HJ( )Py Jy(%)e™H
= I,/ J(B)s ~ lim Ua(0, 1) PyUa (t, 0) I 5 J1 (P).
But

s— lim Uy (0,) PyUs(t, 0)
exists because
47,(0,t) PsU, (¢, 0)
= Ua(O,t)[fa(t, x), Pd,][v]a(t, 0) € O(Vfa(t, x))

is integrable. This ends the proof of (ii).
Now let us prove (%ii). Let j € C§°(IR) such that suppj C [—o0, €]. Set

o) = 1N () X

We will show that

s— lim ei*" ] (%) B(t)J (f) et = (. (6.10.10)

t—o0 t

Clearly, (6.10.10) equals
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Iied(Bf) (s— lim U, (0,1)®()U,(t, 0)) s J(PY). (6.10.11)
Applying Lemma 6.9.2 to the Hamiltonian H,(t), we see that the expression in

brackets in (6.10.11) is zero (see an analogous argument in the proof of Proposi-
O

tion 6.6.9). This ends the proof of (7).
Now we can show the C inclusion in (6.10.2).

Lemma 6.10.6
(6.10.12)

1
(Pt,H)cC {(ma,T—i- 5962) | 24 € X,, TE app(H“)}.
acA

Hence Theorem 6.10.1 (i) is true.
Proof. Let y, € Z, and 7 & o,p(H®) U T°. We will show that

(Yo T + 392) € o(PT, H).

Let x € C§°(IR) such that suppx N (oPP(H*) U T?) = () and x(7) # 0. Let
€ > 0 satisfy the requirements of Lemma 6.10.5 (4) and let J € C§°(X) such
that suppJ C Y, N{z | |z%| < €} with J(y,) # 0. Then, by Lemma 6.10.5 (3),

J(PH)X* (H — 5(P)?) 6.10.14)

o i itH a T\ —1tH
= s— Jim eI (D) (HO)I (e .

(6.10.13)

But x(H*) = 1°(H*)x(H*"), and hence, by Lemma 6.10.5 (%), if € > 0 is small
enough, then (6.10.14) is zero. Therefore (6.10.13) is true.

Hence
1
o(P*,H)N Zy x R C {(xT + ixﬁ) | Za € X, 7 € 0P (H®) U 7'“} .

But Uges Zo = X, and therefore
o(Pt,H) C U {(xa,T—i- %xﬁ) | z, € X,, T € oPP(H?) U'T“}
acA
= To, T+ 322) | 24 € Xo, T € 0PP(HY) }.
U{(eur+3) | )

Lemma 6.10.7
]lEa,reg(P+’ H) S QI'

Proof. Let y, € Z,, 7 € 0,,(H*)\T*, that is,
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(ya, T + %yg) E Ea,reg-

We will show that if J € C*(X), x,x € C(R), J(ya) # 0, x(7 + 3y2) # 0,
X(7) =1 and the supports of J, x are sufficiently small, then
S— tli>m eitHa,sepe—itHJZ(P+)X2(H)>~<(H _ %(P;—)Z) (6.10.15)
exists.
We may assume that J € F, suppJ C Y, and (z,,2%) € suppJ implies
(24, 52%) € Y}g for 0 < s < 1. We may also assume that suppx N oP?(H*) = {7},
We define
M(®) = J2(2) + (VJ2(3), D - 3.

t
Using Lemma 6.10.5 (i) and (ii1), we see that

THPHXPH)X(H — 5(P;)?) = s— lim e x(H)J($)X(H")J ($)x
= s— Hm "y (Hygep)J (§)Uiry (H)J () x (H)e "
= s— lim ey (Hy sep) Uiy (HY) M () x (H )e ™.

Therefore, (6.10.15) equals
s— lim e"e=serx?(H,_gop ) N7y (H®) M (£)x(H)e ™" (6.10.16)

Existence of (6.10.16) follows then by the same arguments as the existence of
(6.10.3) in the proof of Lemma 6.10.2. O

6.11 Asymptotic Clustering and Asymptotic Absolute
Continuity

In the previous section we obtained a complete description of the joint spectrum
of the energy and the asymptotic velocity for very general long-range interac-
tions. However, this description does not say anything about the nature of the
spectral measure of these observables. In this section we will prove the property
of the spectral measure of P* called asymptotic absolute continuity, which was
introduced in [De6, De8]. To establish asymptotic absolute continuity, we will
make use of another property of N—particle systems, asymptotic clustering, in-
troduced by Sigal-Soffer [SS2]. This property holds when the potentials decay as
(x)~" with p > 1/2 ([DeGel]) and is related (and in the 2—body case identical)
to the existence and completeness of Dollard wave operators.

Let us first describe asymptotic clustering in the framework of time-dependent
Hamiltonians. We fix a € A and a function ¢t — I,(¢,2) € L*®(X) satisfying
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We also fix potentials v?(x°) for b < a satisfying (6.1.1) and (6.6.1). We set
Ho(t) = H, + L(t, 7).

We define U,(t, s) to be the evolution generated by H,(t) and

~

Pty = 5=Coo— lim U,(0,1), %Ua(t, 0)
the corresponding asymptotic velocity. Note that
(P(Jg))a =Co— tll)Iglo U,(0,t)D,U,(t,0).
We also introduce
I:I,I,D(t) = H, + fa(t, tD,, xz%).
We define U, p(t, s) to be the evolution generated by H,p(t) and
Pt

(@)D = s—Co— tll}g Uap(0,t), =U,p(t,0)

~ | 8

the corresponding asymptotic velocity (which is easily seen to exist, although,
strictly speaking, H, p(t) does not belong to the class of Hamiltonians considered
in Proposition 6.9.1). Note that U, p (¢, s) commutes with D,. Hence

(Fiyp)a = De

The following property has been called asymptotic clustering by Sigal and
Soffer [SS2]:

Proposition 6.11.1
Assume that - )
[T OVt ) ot < oo (6.11.1)
0

Then U,(t,0) is asymptotic to U, p(t,0) on X.

Proof. The proposition is proven exactly as Theorem 3.6.2. O

The following theorem describes the property of the spectral measure of Pt
called asymptotic absolute continuity:

Theorem 6.11.2
Assume (6.1.1) and

v(2%) = v)(a’) + v}(a), beEB,
I (= A% 20 (@) oo (21 (1 = A% Y dR < 00, beEB,  (6.11.2)

5 1V0 (1) I (2 o RY2AR < 00, b € B.
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Let a € A and let 0 C Z, be a set of measure zero with respect to Lebesgue’s
measure on X,. Then

TIy(P*) = 0.

Proof. We fix a € A. Let @ C Y, be a compact set and let I,(¢,z) be the
effective time-dependent potential introduced in Proposition 6.9.5. Let H,(t),
U, (t,s) and P(Jg) be the corresponding effective time-dependent Hamiltonian, the
evolution and the asymptotic velocity. Note that I,(t,z) satisfies (6.11.1).

Combining Propositions 6.11.1 and 6.9.5, we see that e " is asymptotic to
U,p(t,0) on 6.

Now let  C Z,NO be a measurable set. Clearly, 14(P™) is unitarily equivalent
to ]lg(P(J;),D). Moreover,

() p) = Bo(Da) L, (Pl 0)°) - (6.11.3)

Now, if 8 is of Lebesgue’s measure zero, then (6.11.3) and hence 1y(P*) are zero.
This proves the theorem for § C Z, N 6.

Now let # C Z, be any set of Lebesgue’s measure zero. We will find a sequence
O, C Y, of compact sets such that @, N O 7 0. We have lg, ro(P") & 1p(PT),
and lg,ng(PT) = 0. Hence 1y(PT) = 0. O

6.12 Improved Propagation Estimates

In this and the next section we use the notation introduced at the beginning of
Sect. 6.9. More precisely, we assume that the Hilbert space is L?(X) ® H; and
the evolution is generated by the Hamiltonian

H(t)=Ho1+W(t ),

where W (t, ) is a function with values in B(#,) and H is a N-body Schrédinger
operator on L2(X). We denote by U(t, s) the unitary evolution generated by H (t).
We assume, for some 1 > 0 and all b € B,

L0 = 2% Va0 (@) Uy (‘%') (1= A YRR < o0, (6.12.1)

/ sup VLW (¢, 2)||dt < oo. (6.12.2)
0 zeXx

We define the asymptotic velocity P, the asymptotic Hamiltonian H* and
three kinds of the Heisenberg derivatives: D, D and Dy as in (6.9.2). If ¢ € L?(X),
then we will write ¢, for U(t,0)¢.

The goal of this section will be to give some refined propagation estimates
on the dynamics U (t, s). These estimates will use functions of z /%, unlike those
of Sect. 6.6 that used only functions of z/t.
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Let us start with a propagation estimate that is an improved version of
Lemma 6.6.3. A similar estimate appeared first in [Gr|, where it was one of the
main tools in the proof of asymptotic completeness for short-range systems.

Proposition 6.12.1
Let x € CP(R), 0< 60, ¢>0,and1 >0 > (14 pu)*. Then

[ o (21 2) G-

Lemma 6.12.2
Let R(x) and q,(x) be the functions constructed in Sect. 5.2. Define

dt
— < C 9|1 (6.12.3)

B, = 1t"' ((VR(%),D) + (D, VR(%)))

—tP-2R(&) + 61272 (2R(%) - EVR(%)),
Cy :=((D = 03)V*R(3)(D - 63))
—(1= ) ((VR(F), D = 6%) +(D = 6%, VR(§)))
+2(6 — 1)%t P R(%).
Then
By = Dot® 'R(%), (6.12.4)
DoB;, =t"'Ci+ 317 ""PA’R(%)
(6.12.5)
3255 — 1) (2R(5) — 3VR(S))
Ci 2 eEA( 2)¢a(35)(Da — %) (6.12.6)
Proof. The identities (6.12.4) and (6.12.5) follow from Lemma 5.2.7.
Let us prove the inequality (6.12.6). Write C; as
C, =t"72(1—6)*(kV*R(%)k
—kVR(5%) — VR(3)k +2R(5)),
for
k=(1-0)"""%(D-2).
Note that
k—%=(1-06)1""°%D-2). (6.12.7)

Using Lemma 5.2.7 (iv) and (6.12.7), we get
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Ct 2 t26_2(1 - 5)_2 E (ka - %)Qa(t%)(ka - %)
a€A (6.12.8)

=X (Da - %)Qa(tﬂé)(Da - xTa)
acA

The assumption (6.12.2) easily implies the following estimate.

Lemma 6.12.3
Suppose that a € A, € >0, J € C*(X), 0%J are bounded and suppJ C Y. Then

(1— AL (%) VI(z)(1 — A)F € Ot L1 (dr).

Proof of Proposition 6.12.1. We may choose a constant # as in Lemma 6.3.2.
Suppose that J € C§°(IR) such that J =1 on [0, 6] and let j € C§°(IR) such that
j =1 on suppJ’ and suppj C [6, oo|.

We consider the propagation observable

®(t) == x(H)J (%) B,J (‘it') x(H).

Clearly, @(t) is uniformly bounded.
We compute, using (6.12.6) and (6.12.8),

Do(t) =x(H) (DJ (%)) B.J (%) x(H) + he

+t I (H)J (J%l) (DoBy) J (%) X(H) (6.12.9)
—t" I (H)V,V (2)V.R (%) J2 () x(H)

0
+[W (t,x),id(t)].
The first term on the right of (6.12.9) can be written as

]
t

i (1) b (5) xm + o

for some uniformly bounded B(t). This is integrable along the evolution by
Proposition 6.3.1.
The second term is greater than or equal to

s () (7 -0)a () (- 20) 1 ()

plus terms O(t1~%) and O(t3*%), which are integrable. (The term O(t 3*2)
is zero if § = 1).
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The third term equals

T X (H)waVala(@)aa (F) I (F) x(H)
= ¥ X(H)Vala(@)aa () X(H) % () + 0 2).

By Lemma 6.12.3, this is (£)' 9 °*L'(dt). This is integrable for § > (1 + u) L.
The fourth term involves commutators of W (¢, z) with x(H) and D, which
can be estimated by ||V, W (¢, x)||. This is integrable by (6.12.2).
Hence, for any a € A, we have

) 2
Jt! dt < C||¢||2. (6.12.10)

1

6o (%) (% = D) T (5) x(H) s

Arguing as at the end of the proof of Proposition 6.6.3 we obtain

o0
St

1

2b>a b (t%) (% — Da) J (%) X(H)¢t"2 dt < C||¢]?, (6.12.11)

which implies (6.12.3). O

We introduce now certain observables that will play a very important role in
this section. Let r(z) be the function constructed in Sect. 5.2. We define

by = 0t1r(%) + L ((Vr(%),D - 02) + (D — 62, Vr(3)))

(% z :
= % ((Vr(t%), D) + <D, Vr(t%))) + 5#5—1 (r(%&) _ %VT(%)) .
o = (D-62)Vr (%) (D-02%),
d =30 1) (r() = FVr(E))

We have

Dob, = t70¢, + °72d, + 70 A%r(%).

Note that, by Lemma 5.2.9, ¢; is a positive operator and d; is uniformly bounded.
For technical reasons, it will be convenient to fix an energy interval [A;, Ag]
and a function x € C§°(IR) such that xy =1 on [A, Ag]. We set

byt = X(H)byx(H),
Cyt = X(H)erx(H),
dyt = X(H)dx(H).

Note that, again by Lemma 5.2.9, the observable b,, is uniformly bounded.
The approximate positivity of the Heisenberg derivative of b, ; implies easily the
existence of the asymptotic observable associated with b, ;.
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Proposition 6.12.4
Assume 1> 6 > (14 p)™" and § > 1/3. Then there exists

v

s— Jim U(0,)by U (t,0) =: b} (6.12.12)

Moreover
. . o,
b; = \P+|X (H*). (6.12.13)

Proof. Clearly, b, ; is uniformly bounded. We compute:

Dby, = tx(H)ex(H
+x(H)V.V (2)Vr(F)x(H)
+[W(t, z), ix(H)bex(H)] + O(°72) + O(t~%).

)
)

The first term on the right-hand side is positive.

The second term is (£)!~°~°#L!(dt) by Lemma 6.12.3. This is integrable for
0> (14 pu)~

The third term is of the order O(||V,W (t,-)]|), hence integrable.

The term O(t°~2) is clearly integrable for § < 1. For § = 1, it is 0, so it is
also integrable in this case.

Therefore, by Lemma B.4.1, the limit (6.12.12) exists.

Let us now prove the identity (6.12.13). Consider ¢ such that ¢ = J(P*)¢
for some J € C$°(X). Such ¢ are dense in L?*(X). Note that, by Lemma 5.2.9,
we have

b= (Vr(F), D) + O("™),
evr (%) - B eo@).

So we get
by ¢ = lim U(0,¢)x(H)Vr (£) 7 (2) Dx(H)T(t,0) (6.12.14)
and
[PHIE(EY)¢ = lim U(0,0)x(H) 5T () x(H
(6.12.15)
= lim U(t, 0)x(H)§Vr () J (%) X(H)U(t,0).
We subtract (6.12.15) from (6.12.14), and we obtain
b — |PH*(HT)o
(6.12.16)

= lim U(0,1)Vr (2)7(2) (D -2)x2(H)U(t,0)¢.

For € > 0 small enough, (6.12.16) equals
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> 1im U(0,8)q0 (25) Vr (£) 7 (%) (Do — %) x2(H)U(£,006.  (6.12.17)

ac At

But by Lemma 6.12.1,

[l ()5 ()7 6) (0. 5) v

This implies that the limit (6.12.17) vanishes, which means that

2
dt < oo.

by = |PHx*(HT)g.

This completes the proof of the proposition. O

6.13 Upper Bound on the Size of Clusters

This section is devoted to a number of estimates that will lead to a proof of
asymptotic completeness for a large class of long-range systems. The existence of
the asymptotic velocity observable and the spectral decomposition (6.7.1) implies
that any state in Ranll;, (P*) separates into clusters of size o(t). We will see in
this section that one can get a better estimate on the size of the clusters. For
instance, if V »v°(z?) decay like C(x°)~'=# then the size of the clusters can be
bounded by C(¢)2C+# "

In this section we assume that 4 > 0, v > 0 and the potentials v®(x°) used
to define H satisfy (6.1.1) and the following hypothesis:

v (2?) = 0P (2) + vP(2?), b€ B,
15
Jo*

°|

v3< oI ('%)( A1 (RydR < 0, be B, (6.13.1)

LD (RydR < 00, beB, |a| =1,

/ VLW (¢, 2)]| (1) dt < oo. (6.13.2)
0
For a further use, let us put

V}(a:) = 2 beB Uf)(fb): H.):=H, + Ia,l(f)-
Tos() := Ypga v2(2%),  Lop(x) == Cpgq v7(2).

The theorem below summarizes the main idea of this section. Note, however,
that in Sect. 6.14 we will not use this theorem but more refined and technical
results contained in Propositions 6.13.8 and 6.13.9.

Theorem 6.13.1
Let 1 > § > max (2(2+pu) ', 1—v), 6 > 2/3. Assume the hypotheses (6.1.1),
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6.13.1) and (6.13.2). Let ¢ be a vector in Ranllg, (P1). Then there exists 6 > 0
{0}

such that
lim _|33‘ o =0
t—00 [6,00] t5 t )

One of the key technical ingredients of this section is a careful estimate of
the Heisenberg derivative of a function of b, ;. This estimate we describe in the
following proposition.

Proposition 6.13.2
Let F € C*(R), f € C*(R) with F' = f2. Then one has

DF(CbX’t) = Cf(CbX,t) (t_(scx’t =+ tJ_ZdX,t) f(Cbx,t) —+ CO(t_?’(s)
+e() ORI (dE) + A() 2 ML (dY) (6.13.3)
+3 ()1 L (dE) + O (E%),

DF(t' %bys) = LF(E bys) (1 P+t Ly + (1= 0)t Obyy) F(£ by )
+O(t1—45) + <t>2—25—(5uL1(dt) + <t>3—4(5—(5uL1(dt)

(Y- L1 (dg) + O(1359).
(6.13.4)

Lemma 6.13.3
Let x € C§°(R), fo € C®°(X) with all 0 f, bounded, € > 0, suppf, C Y. Then

(1= A) £ (2)DF, V(1 — A)~F € ()1-0-wL1(dt), |8] <2, (6.13.5)
(1=2)"fa(F)DP V(1 = A) e ()0 LN(de), 18] <3, (6.13.6)
(X(H) = x(Ha;)) fa(F)(D) € (&)L} (dt) + O (). (6.13.7)

Proof. Let us prove (6.13.7). Let X be an almost-analytic extension of .

(X(H) — x(Hay) fa()(D)

= 5 J0:X(2) (2 — H) Mogs(2)(2 — Hap) " fu()(D)dz Ad2

= o0 [ 0:X(2) (2 — H) " Los(2) fu() (2 — Hag) 7 (D)dz A dZ + O(t™)
€ ()10 mL(dt) + O(t ).
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Definition 6.13.4
The space ™" is the space of all differential operators of the form

bh= ¥ Dithhy(%),

j<mk<n
where
bjk € .7:, |8§‘b]k| < Ca |Ck‘ > 0,

and, for some € > 0 and all a € A,

bj (.Z')DJ = jk(xa)Dﬁ, T € X;

A generic operator in ™" will be denoted by b;"". Note that, using Lemma
5.2.9, we have
byewt ¢ ew? 4, e v (6.13.8)

Lemma 6.13.5
The following properties hold:

i D2 gmn Cwm—kl,nfd
(4) [D*, :

(“) [g,rm,m’sz,nz] C gmitme—1lni+na—6

Since we will work with the observables b, ; and ¢, instead of b; and c¢;, we
will need some results about the commutators of operators in the spaces ¥™° and
functions of the Hamiltonian. When studying such commutators, the following
object is useful.

Definition 6.13.6
Let b be an operator. Let x € C3°(C) and let X be its almost-analytic extension.
We set

}waz5%48%@X2—HY%@—£U*®Adz

Clearly,
’ [X(H)ab] :RX([H7b])

Moreover,
R (b}°) € O(1), n<4,
[X(H), 5] = Ry (6;77°) + Ry ([V (), 6]).

In the following lemma we describe the behavior of various commutators.
Note that it is enough to restrict our attention to the classes ¥™°, since U™ =
gm0,
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Lemma 6.13.7
Let x,x1 € C°(R). Then
(H +43) o0 aV)(H +4) L e ) 0L (dt), n<2, (6.13.9)
Ry ([6}°,iV]) € (1)~ L'(dt), n<2, (6.13.10)
[x1(H), 05" € O(70) + ()1 0~°rL1(dt), n <2, (6.13.11)
[x1(H), Ry (b}°)] € O(t™°) 4+ ()= L (dt), n <3, (6.13.12)

B, RyB)) € O ) + (' Li@), n<3. (6131

Proof. Note that any f; € ™" can be written as

fe= ¥ Dit*fira(F), (6.13.14)

Jj<m,k<n

where fj; () satisfies the assumptions of Lemma 6.13.3. Now (6.13.9) follows

from Lemma 6.13.3. All the remaining estimates follow now easily from (6.13.9)

except for (6.13.12) with n = 3, which requires a somewhat more careful proof.
We have

b (H), Ry(B)] = o [ 06(2) (2 — H) o (B, B (= = H) e A i,
which shows that
D2 (H), Ry ()] < CI(H +4) " [xa (H), 0| (H +14) 7. (6.13.15)
Using (6.13.14), we see that it is enough to consider
I(H +4) " [x1(H), fa(5) DgI(H + 1)~
<20(H +49)7" (xa(H) — x1(Hap)) fol35) D (H +0) 71| (6.13.16)
HI(H + 1) [x1 (Hap), fa(F)DGI(H + 1) 7.

By (6.13.7), the first term on the right-hand side of (6.13.16) is (t)* 2 ~*L*(dt) +
O(t7%). By (6.13.6), the second term on the right-hand side of (6.13.16) is
(Y0 mLI(dt) + Ot 0). O

Proof of Proposition 6.13.2 We apply Lemma C.4.1 replacing % with D. For
shortness, let us write x instead of x(H), and R(b) instead of Ry2(b). We set

B(t) := cby s = cxbex,

Cl(t) :
(

ex[V, by x,
t) := cx(Dobe)x-
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We have
[B(t), A1 ()] = ¢*x ([be x*](Dobr) + x?[be, Dobs] — [Dobr, X’1b1) X
We set
As(t) = Ax(R([be, Ho]) (Doby) + x*[bs, Dobs] — R([Doby, Hol)be)x
= AX(ROB; W7 + X277 = R0 ™) %)x =: AxAa(t)x,
Ca(t) = AXR([br,1V])(Doby)x — X R([Doby, iV])bix,
Cs(t) == [B(1), Az(t)]
= Ax([be, x*J A2 (t) + xbe, A2(t)] — [A2(2), x*Tbe) X
= Ax([b%, XAR(67 )7 + [, XX — [0, XPIR(6> )b %) x
+cAA ([0, ROPO)6 0 + Ry )0y + [0y, X2y
b = [y, RO b — R(6P )by )X
—AX(ROP™), X207 by + R(by )67 ™", X2y
D b2y — [R(by ™), X0y " — R(6P™) [0, X0 ) x
By Lemma 6.13.7, we have
1(t) € c(t)t=0=r L1(dt),
Co(t) € ()21 L1(dt),
(1) € ¢
(

Q

3

Cs(t) € A {t)1=30-m L1(dt) + AO(t=).

This ends the proof of (6.13.3). The estimate (6.13.4) follows from (6.13.3) by

DF (' by) = (1= 0)t by f2(t' by) + DF (chyy)|

c=t1-9
O
We can now start our study of the states in the kernel of IV);. The following

proposition gives quite precise information on the behavior of the observable b, ;
on such states.

Proposition 6.13.8
Assume that 1 > § > max (2(2+p) 51 —v), 6 > 2/3. Let

0 > limsup,,, [|dyll, 175 < 0o < 0. (6.13.17)

(i) Let x1 € C*(IR) such that x; € C(R), and f € C§°(IR) such that suppf €
[00, 91[ Then
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[t @ haxatmaed e < clol (6.13.18)

| et @b E)e dt < Cllo, (6.13.19)

(ii) If ¢ € Ranly (b)), Fy € C®(R), F, € C&(IR) and suppF. € [0y, 00|, then
lim Fy (10, )6, = 0. (6.13.20)

Proof. Let us prove (i) first. Take F' € C*°(IR) such that suppF CJ6p, oo[ and
F' = f2. We consider the following uniformly bounded propagation observable:

B(t) = xo(H)F (' by )xa (H).

We compute, using (6.13.4):

DE(t) = 1 (H)F(#bys) (1= 0)t by + 1 ) £(£ 0y )x2 (H)
+X1 (H)f(tl_abx,t)tl_%cx,tf(tl_(sbx,t)xl (H)
+O(t1—45) + <t>2—26—6uL1(dt) + <t>3—46—5uL1 (dt)
+<t>4—6(5—6uL1(dt) + O(t3—6(5)

+W(t, ), ix1(H)]F (by,) x1(H) + he
+x1 (H) W (t, ), iF (b, ) ]x: (H).
(6.13.21)
We have
2—-20—0p <0, 3—46 —op <0,
4—-66—6p <0, 3—-60 < —1.
Moreover,

IW (2, ), xa (H)]I| < ClIVaW (2, -)lloo € (£) L1 (d1),
IV (¢, z), P by )l < CE VW (1, -)lloo € (8)! 771 (d1).
Therefore, all the remainder terms on in (6.13.21) are integrable in norm.

Using the fact that suppf C]6p, oo and d,; > —0, we obtain that the first
line on the right-hand side of (6.13.21) is greater than or equal to

C()t_lf2 (t1_5bx,t)

for Cy := (1 — )0y — 6 > 0, which, by Lemma B.4.1, implies (6.13.18) and
(6.13.19). This ends the proof of (3).

Let us prove now (ii). Consider an arbitrary function F' € C*(IR) with
F' € C§°(IR) and suppF C|fy, oo[. We claim that
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s— lim U(0,t)F(t*°b, )U(t,0) exists. (6.13.22)

In fact, using Proposition 6.13.4 and the estimates (6.13.18), (6.13.19), we
get that the Heisenberg derivative of F'(t! %b, ;) is integrable along the evolution,
which proves the existence of the limit (6.13.22).

By (6.13.18), the following is also true:

s— lim U(0,t)F(t'=%b, ;)U(t,0) = 0 if, in addition, ' € C°(IR).  (6.13.23)

Let us now assume that F, € C*(]6,, o0[), (F?)" = f?. Using Proposition
6.13.2, we obtain

f)Ff (cbys) > cf (chyt)(E s+ 177 2dy ) f(cby )
+cO(t30) + c(t)t 0w L1 (dt) + Aty 20+ L1 (dt)
+3t1 300 (dt) + AO(t73) + (W (t, ), iF?2(cby )]
> c(O(t°72) + (£)°~1LY(dE)) + ()P 2L (dt) + ()33 L1 (d¢).

Let now ¢ € Ty (b;) Consider the quantity

ke(t) = (04| F (Chye) dr)-

We have

tllglo kc(t) =0,

Lhe(t) > c(O(872) + (1) L1 (dt)) + (1) 2L (dt) + ()P L (do).
Therefore

ke(t) = — [ Lke(s)ds
(6.13.24)
< CO(t—1+5) + C2O(t72+26) + 630(t73+36)-

Let now 0 < p < 1. If we set ¢ = pt'~°, we get from (6.13.24)

lim k-5 (1) < Cp. (6.13.25)

t—00
On the other hand, we deduce from (6.13.23) that, for 0 < p; < ps < 1,
tll)rglo kpltl—é (t) — kpgtl_‘s (t) = O (61326)
Therefore, from (6.13.25) and (6.13.26) we see that if 0 < p < 1, then
Jim ks (t) = 0. (6.13.27)

This proves (6.13.20) and completes the proof of the proposition. O
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Proposition 6.13.8 means that, along the evolution of a vector in Iq) (IV);),
the observable b, ; is less than 6,t°~'. The next proposition uses the fact that byt
is essentially the Heisenberg derivative of #°r(z/t°) and turns this information
into an information on the size of the observable r(z/t°).

Proposition 6.13.9
Let p,v,d satisfy the assumptions of Proposition 6.13.8. Let 0, 6y, 601, f be as
in Proposition 6.13.8. Let 0y satisfy

Let x1 € C§°([A1, A2])- Suppose that fi € CP(R), Fy € C*(IR) such that Fy >
0, £F. > 0, \/£F. € C§°(IR), suppF_ C] — o0, 61], suppF’ |y, o[, and

supp fi, suppFy. C [fa, 00|,
(i) The following propagation estimates are true:

PG
/loot—l (t'~ 5bXtF+( ( )

7)) xaH)
[t nar, ( (2)) s

(iz)
s— lim F_(t'"%b,,) F (r (%)) xi(H = 0. (6.13.32)

t—o0 t

2
@ < C|lé|?  (6.13.29)

2
@ < Cl¢|?, (6.13.30)

1

dt <C|¢|>.  (6.13.31)

Before proving Proposition 6.13.9, we need some auxiliary estimates.

Lemma 6.13.10

Let F € S({s)?, (s)7?ds?) and f € C*(R) with all d*f bounded. If p =0, then
[f(r(5)), F (' byp)] € O ),
[f(ct'r(%)), F(t7%,4)] € cO(t'79).

6

(6.13.33)

[F(r(§), F(t'~°by )] € O %) + O(t*~*)
+(t)* =00 L(de),
[f(ct’r(%)), F(t* %, )] € cO(t1 %) + cO(t2 %) + O (t* %)
+c(t)3=3-0m L1 (dt).
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Proof. We observe that f(r(5)) belongs to ¥*°. Applying then Lemma 6.13.7,
we obtain easily that

[bys F(r($))] = x(H)by*x(H)
+R, (b ") byx(H) + he € O(t?), (6.13.34)
[yt [bxts F(r(F)]] € O(7) + (1)1 =2~ L1 (dt).

Applying then Lemma C.3.2, we obtain the estimates concerning f(r(3)).
Likewise,

[bx, f(ct'r(5))] € cO),

(6.13.35)
[byts [bxs f(ctr (D] € O@°) + cO(t™°) + c(t)' ~°# L (de),
and Lemma C.3.2 imply the estimates concerning f(ct’r(%)). O
Lemma 6.13.11
Let x1, Fy be as in Proposition 6.13.9. Then
X1(H)DoFy(r()) = x1(H)FL(r(5)) by — t7'r(F)) (613.36)
FO(EB) + ($)1-2-uL1(dy). o
Xl(H)DOF-i—(CtJ’f'(t%)) = CXl(H)F_IF(Ct‘ST(t%))bX,t (6 13 37)
+O(10) + cO(t%) + c(t) == L1 (dt). o
Proof. First we compute:
DoFy(r()) = Fi(r(5) (b — ot~'r ()
+t 2 (r(%))|Vr(%)[? (6.13.38)
= F(r(%)(t %, — 6t7'r (%)) + O(t™%).
Using the fact that x;x = x1 and the estimates
[X(H),b] € O(™°) + ()=~ L(de),
5 (6.13.39)
[X(H), Fi(r(5))] € 0(t™),
we get
O (H)FL(r(E)by = t0x 1 (H)F(r(%))by,
1(H)FL(r(55))be LH)EL(r(55)) by (6.13.40)

+O(t2) 4 ()12 L1 (dt).

Putting together (6.13.38) and (6.13.40), we obtain (6.13.36).
Likewise, we have
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DoF, (c'r(%)) = cF4(ctr(§)b + FY(ct'r(5))Vr($)
= eFL(etr ()b + CO()

0

and
cxl(H)FjL(ctJT(%))bt :cxl(H)FjL(ctér(t%))bx,t

+20(t%) + cO(t70%) + ct? =0 L1(d¢),
which yields (6.13.37). O
Proof of Proposition 6.13.9. We put

Fi(s) := /(05 = 01) Fy () Fi(s).

First we are going to show (7). Our basic observable will be

o(t) = i (F, (1 (5)) P20 Fy (7 () ) D).

We would like to compute its Heisenberg derivative. Using (6.13.36), we obtain
—Do(t)
=t (H)FL(r(5)) (01 — 170y ) F2 (803 ) iy (r(5))x1 (H) + he
X (H)FL(r(5)) (07 () = 00) F2(¢' by ) Fy (r(5))x1 (H) + he
+X(H)Fy(r(F)) (DF2(#'=b,1)) Fi (r(5)x(H)
+O(t20) + O(t1 =20 L1(dt) — [W (¢, z), 5D (t)].
= I,(t) + L(t) + I5(t) + L(t).

I(t) is ()17~ L'(dt), hence integrable.
We symmetrize I1(t) and I5(t) by commuting functions of r(35) with functions
of t'%b, 4, using Lemma 6.13.10. We obtain that I;(¢) equals

X (H) 4 (r(35)) (01 = £ by ) P2 (8 0by ) f4 (r(35))xa (H)

(6.13.41)
+O(t—26) + O(t1—46) + <t>2_36_6“L1(dt).

I,(t) equals

txa (H) Fi(r(5)) F2 (8 2by ) f (r ()1 (H)

(6.13.42)
+O(t—26) + O(t1—4(5) + <t>2—3(5—5uL1 (dt)

As in the proof of Proposition 6.13.8, using the conditions on pu, we see that, for
some Cy > 0, the term I3(t) is greater than or equal to
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Cot™'x1(H)F, (r(
X (H)F (o
+L'(de).

The expressions (6.13.41), (6.13.42) and (6.13.43) are all positive up to integrable
error terms. This implies the estimates (6.13.29), (6.13.30) and (6.13.31) and ends
the proof of (7).

Let us now prove (ii). Let F' € C*°(IR) such that F' € C§°(IR) and suppF C
] — 00, 00[ Set

NS (b ) P (r(55)) x0 (H)
NI bye)exef-(t by ) Fi(r(F)x(H)  (6.13.43)

L]

T8

D(t) := x1(H)F (r()) F2 (' by, F(r(5))x: (H).

Using Proposition 6.13.2, and the estimates (6.13.29), (6.13.30) and (6.13.31),
we get that ] ]
s— lim U(0,t)®(t)U(t,0) exists. (6.13.44)

Moreover, it follows from (6.13.29) that
if, in addition, F € C3°(R), then s— lim U(0,)@()U(t,0) = 0. (6.13.45)
For 0 < ¢ <1, we consider the observable
Do(t) = x1 (H)Fy (ct'r(5)) F2 (8 2by ) Fi (ct'r(F))x1 (H).
We have
~D&(t) =t x (H)Fi(ct'r(55)) (01 — t'7by)
XF2(t1 0y ) Fy (ct®r(%))x1 (H) + he
—Orct™ X (H)FY (et () F2 (8~ by e) i (ct'r (%)) x1 (H) + he
=X (H)Fy (ct'r(5)) (DF2(t b)) Fi(ct'r ()31 (H)
—[W(t, ), iPc(1)]

+c20(t%) 4+ cO(t70) + c(t)t0-om L1 (de).
(6.13.46)
As above, we symmetrize the first term in the right hand side of (6.13.46) using
Lemma 6.13.10. Hence the first term equals

et~ 0x (H) fo (ctr () (0r — 1720 F2 (' ~2b,) f (ctr (5))xa (H)
+0(t°) + A0t 20) + A(t)? 2 LY (dt) + AO(tH9).
The second term is cO(¢~'*9). The third term is greater than or equal to
Cot™"xa (H) Fa (ct'r () 2 (8~ by,) Fy (et () x1 (H)
+ 2 (H)Fy (etr (5) [ (8 by )@ f - (8 by ) i (ctr (5)xa (H)
+L'(dt) > L'(dt),
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(see the proof of Proposition 6.13.8). The fourth term is integrable uniformly in
c. Hence, for some g € L'(dt),

—D&,(t) > g(t) + cO(t™H) + 2Ot°) + AL (dt) + Ot 0).
Let ¢ be an arbitrary vector. Set
ke(t) = (b4 De(t) 1)

We have

%kc(t) < g(t) + cO(t ) + O(t°) + LM (dt) + SOt 7).

Hence, for ty < t, we get
ke(t) < ke(to) + [° g(s)ds + cO(#) + 2O(t) + AO(#270). (6.13.47)
By (6.13.44), if we put ¢ = pt=% with 0 < p < 1, then the limit

lim kpt—é (t)

t—o0

exists. Note that § > 2/3. Hence

tll>Icr>lo ko—s(t) < Cp+ t g(s)ds. (6.13.48)
0
But for a fixed t,
Moreover,
lim [ = 0.
Jim \ g(s)ds =0
Hence
lim k,-s(t) < Cp. (6.13.49)

t—o0

But we know from (6.13.45) that, for 0 < p; < py <1,

lim (kpyp-s(t) = kpye-s(t)) = 0. (6.13.50)

t—o0

Now (6.13.49) and (6.13.50) yield, for 0 < p < 1,

llm kpt_‘; (t) = 0,

t—00

which means that (6.13.32) is true. O
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6.14 Asymptotic Separation of the Dynamics II

In this section we are going to show Theorem 6.8.2, which says that, for a large
class of long-range potentials, the dynamics is asymptotically separated. This
result easily implies asymptotic completeness for a slightly smaller class of po-
tentials.

Before considering time-independent Hamiltonians, we will prove that time-
dependent Hamiltonians of the type considered in the previous two sections are
in a certain sense asymptotically separated, provided that both the temporal
decay of the time-dependent perturbation W (¢, x) and the spatial decay of the
potentials v®(z®) are fast enough. We will use the notation introduced in Sect.
6.9, and then used in Sects. 6.12 and 6.13.

Beside the Hamiltonian H(t) and the corresponding dynamics U(t,s), we
will consider another time-dependent Hamiltonian

Hyop(t) := H + W (t,0).

Usep(t, s) will stand for the dynamics generated by Hse,(t). Note that
y itH i [P W(s,0)d
Usep(t, 8) = e "™MeT (e_’fo (,0) 5) )

Therefore . .
Pt =s—Cy— tl_i)m Usep (0, t)%Usep(t, 0),

H = Coo— lim Usep (0, 1) HUsep (2, 0)

are the analogues of P* and H. Note that all the results of the previous section
are valid for Hgep(2).

The following proposition describes the asymptotic separation of the dynam-
ics U(t, s):

Proposition 6.14.1
Let 1> p >0 and v = 2(2+p)~". Assume the hypotheses (6.1.1), (6.13.1) and
(6.13.2). Then U(t,0) is asymptotic to Usp(t,0) on {0}.

Proof. We will prove the existence of
s— lim Usep (0, )U (¢, 0) 1oy (P). (6.14.1)

We set § := v. Note that  satisfies the assumptions of the Propositions 6.13.8
and 6.13.9, that is 1 > § > max (2(2+ p) ', 1 —v), § > 2/3. We define 6y, 61, 6,
as in (6.13.17) and (6.13.28). Let us pick F_, F; € C*(IR) such that F', F]_ €
C§°(R), suppF- C] —00,61], F- =1 on ] — 00, 6] and suppF;_ C] — o0, ).

It is enough to prove the existence of the limit (6.14.1) on a vector ¢ such that
¢ = x1(HT)¢ for some x; € C§°([\1, A2]) and ¢ € Ranllypy (P*). Let x € CP(IR)
satisfy x =1 on [A1, Ag]. We define b, ; := x(H)b:x(H), etc. as in Sect. 6.12.
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Note that, by Proposition 6.12.4,
¢ € Ranlly ().
Clearly
lim Usep(0,)U (¢, 0)p = lim Usep (0, )x2(H)U (¢, 0) . (6.14.2)
By Proposition 6.13.8, the limit (6.14.2) equals
lim Usep(0, ) x1 (H)F_(t*~b,, ) x1 (H)U (t,0) ¢ (6.14.3)

Set
B(t) = xa(H) Fi—(r () F_ (' by, ) A= (r (%)) xa (H).
By Proposition 6.13.9, the limit (6.14.3) equals

lim Ui (0, )1 () F- (b, ) Fu_ (r(2))32 (H)U (2, 0)

= lim Use, (0, )2()U (¢, 0)¢. (6.14.4)
We have
4o(t) + iHeep(t)D(t) — iP(t)H(t) = DD(t)
+xa (H), iW (8 2) ] Fi- (r (55) F- (8 by ) Fr- (r () (6.14.5)

+x1(H)(W (¢, 2) = W(t,0)) Fi(r () F- (¢ by Fi- (r(5))xa (H).

The first term on the right-hand side of (6.14.5) is integrable along the evolution
by Propositions 6.13.8 and 6.13.9. The second term is in (¢)~L'(dt), hence also
integrable. The third term can be estimated by

CllE-(r(5)2llsollVaW (£, )lloe < (6)° VL (d2). (6.14.6)

16

But § = v, therefore (6.14.6) is integrable. The existence of the limit (6.14.4)
follows then from Lemma B.4.2.
To prove the existence of

s— lim U(0,#)Usep(t, 0) Ly (P, (6.14.7)

t—00
it is enough to interchange H (t), U(t, s), P* and H* with Hyep(t), Usep(t, s), P,
H, and then proceed as in the proof of (6.14.1). O

Proof of Theorem 6.8.2. Let a € A and lgt © C Z, be a compact subset.
Let J € Cg°(X) satisfy J = 1 on © and suppJ C Y. We fix 3, € © and set

I (t ) == J (§) (L) () — T1a) (ty0)) + I1a) (t0)-

Let
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Hyg)(t) := Hy + I1q(t, ).

Let U 1(Z, 5) be the dynamics defined by I:I[a] (t). As in Proposition 6.9.5, we see
that e S | is asymptotic to Uy (t,0) on ©.
We also introduce

Higjsep(t) := Hia + I1q1 (£, 7a)-

Let Ulg)sep(, 5) be the dynamics generated by Hi5ep(t)- As in Proposition 6.9.5,
we see that e~Hialser is asymptotic t0 Ul sep(t, 0) on 6.
Now we are ready to apply Proposition 6.14.1. We identify X¢ and L?(X,) as
X and H; of Sects. 6.9 and Proposition 6.14.1. We also identify H¢, h[a]-l—f[a] (t,x),
H,(t) with H, W (t), H(t). Consequently, we identify Hiqjsep(t) With Hgep(2).
Clearly, we have

/Oo sup |V, W(t, z)[t"dt < oco.
1 T

Therefore, the assumption (6.13.2) is satisfied with v = p = V3 — 1. Thus, we
can apply Proposition 6.14.1, from which we obtain that Up,(t, 0) is asymptotic
t0 Ulg)sep(t,0) on X,.

By the chain rule, e~

is asymptotic to e *#Ha-ser on O. O

6.15 Modified Wave Operators and Asymptotic
Completeness in the Long-Range Case

So far, we have avoided introducing modified wave operators. We preferred to
speak either about usual wave operators, whose existence is restricted to the
short range case, or about the operators = introduced in Corollary 6.8.3, or
5( o introduced in Proposition 6.8.6. In fact, if we know that the operators =
exist and if we assume some mild additional hypotheses on the potentials, then
the existence of modified wave operators follows easily by 2-body methods, which
were described in Chap. 4. This is the subject of this section.

Combining Theorem 6.8.2 with the methods of Chap. 4, we obtain the follow-
ing theorem, which is the main result of this chapter. This theorem describes the

existence and completeness of modified wave operators in the long-range case.

Theorem 6.15.1
Assume (6.1.1). Suppose that 1 =/3 — 1 and

v*(2*) = vg(2°) +of (), bEB,
s vs( ) ,oo( )1 — A1 (Ry“dR < o0, b€ B, (6.15.1)
15 Ia H YR < o0, |a| =1, beB.

Let a € A and

349
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Su(t,£) = %tfi + /0 Ta(s€a)ds.

Then there exist

s— lim eitH g=i%a(t,Da)=itH® pp( fra) (6.15.2)
s— lim eiSa(bDa) it o—itH ) (P (6.15.3)

If we denote (6.15.2) with (X} ,, then (6.15.3) equals §47%. The operator (X, is
a partial isometry such that

=0 = ]lpP(Ha)’ o 0 = ]IZa (P+),

Ir,a* “Ir,a Ir,a* “Ir,a
+ — + + — pt+Ot
er,aHa - HQ]r,a? 'er,aDa - Pa er,a'

Remark. Clearly, Ran{2! = Ranly, (P*). Hence

Ir,a

L*(X) = iej Ran(2;! (6.15.4)

Ir,a*
acA

This property is called asymptotic completeness for long-range systems.

Before we prove this theorem, let us describe how it can be generalized to
slower decaying potentials. Such a generalization involves two additional difficul-
ties.

First, the Dollard modifiers that we used in (6.15.2) and (6.15.3) may be
insufficient and we may be forced to use different modifiers. In the two-body
case, we had an analogous problem and we know how to handle it.

The second problem is more serious. For slower decaying potentials, the
asymptotic completeness and the existence of wave operators may not hold on
the whole Hilbert space, but may be valid only on a certain subspace. Therefore,
we will have to insert additional projections Q7 and Qj,o to get the existence of
appropriate limits.

In the free channel a;,, we do not have problems with the existence and
completeness of modified wave operators, even for y = 0. This fact we describe
in the theorem below. It is an extension of the results of Sect. 4.7 to N-body
Hamiltonians. It will be convenient to state this fact as the property of the family

of Hamiltonians 1

he = §D§ + I (z4).
They are many-body Hamiltonians whose configuration space equals X, and
hence their free region equals Z,. The modifiers S,(¢,&,) that we will obtain in
this way will be used afterwards for modified wave operators of H corresponding

to various a € A.

Theorem 6.15.2
Assume that V(x) satisfies the hypotheses of Theorem 6.6.1 and
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v*(x%) = v (z®*) + vi(z?), a € A,
J5° (1 = A2 (@) o (5) (1 — A7 dR < 00, a€ A, (6.15.5)

Jo

Then for all a € A, there ezists a function

zvﬂxa)nm,w[(uaou (R 1R <00, a€ A, lo|=1,2,

R x X, 3 (t,&) — Sa(t,&) € R

such that the following limits exist:

s— tli)m githag=iSa(t:Da) (6.15.6)
s— lim eiSa(bDa)githa]] , (pt), (6.15.7)

If we call (6.15.6) wy ,, then (6.15.7) equals wif,, and

dx b + _
Wir,aWir,a = ]1’ Wi, awlr a ]lZa (pa )

— mt 12 _
wlr,aDa = DPq wlr,a’ wlr a? D hawlr,a'

We will see later that the functions S, (¢, €,) can be used to construct modified
wave operators for the full Hamiltonian H.

Combining Theorem 6.15.2 with Proposition 6.8.6 and 6.10.1 about asymp-
totic separation, we obtain the following theorem. It says that even with u > 0
we can define modified wave operators for bound states with a sufficient decay.

Theorem 6.15.3
Assume the hypotheses of Theorem 6.15.2. Let QF be defined as in Definition
6.8.5. Then for all a € A, there exists

s— lim eiSe(bDa)HitH® g=itH ()t (pt) (6.15.8)

t—o0

Let us denote the orthogonal projection onto the range of (6.15.8) by Qf{,o. Then
there exists

s— lim eitHe’iS“(t’D“)Qj{,O. (6.15.9)

If we call (6.15.8) 82}, ,, then (6.15.9) equals %%, ,. The operator (2, , is a
partial isometry satisfying

Ql—ir—,é,aglr,Qa QJ]IZa (P+) S ]lZa (P+)7 Q:Qa lr,Q, = Q+ ]]PP(Ha)’
NoaHa=H2 g0 2 gaDa =Pl g

Moreover,
L*(Xo) ® I 7o (H®) < L(X,) @ IE(H®) < QF,

351
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where 12 (H*) was defined in Theorem 6.10.1 (ii).

reg

The rest of this section is devoted to the proof of Theorem 6.15.2. Let us
first explain how to construct the functions S,(t,&,).

Proposition 6.15.4
Let v°(z®) for b € B satisfy the assumption (6.15.5) of Theorem 6.15.2. Let
Jo € C§°(X,) be a cutoff function with

./M%M%=L /%ﬂ%ﬁ%=&

and let . L
I(t,7,) = /Ia(xa +12Y4)J (Ya) AYa-

Then there exist a function Sa(t, &) that satisfies the following properties:
(i) For every e > 0, there exists T, such that

_ 1 ~ _
atSu(t: ga) = 552 + Ia(ta VﬁaSa(ta 641))7 t> Tea ga € ZZ
(i1) For every e > 0,

102, (Sa(t, &) — 51€2)| <ot), 1B =1,2, &€ Z,
0 (Salt: &) = 3162)| <o (t317)), B 22, & € Z

Proof. The proof consists in combining the arguments indicated in the proof of
Proposition 4.7.3 and those of Theorem 5.8.2. O

Proof of Theorem 6.15.2. The proof of Theorem 6.15.2 is very similar to the
proof of Theorem 4.7.1, so we will only describe its main points. Let us fix a
compact set © C Z, and repeat the construction in Sect. 6.9 with h, as our
N —particle Hamiltonian. More precisely, we fix a cutoff function j, € C§°(Z,)
such that j, = 1 on a neighborhood of @, and also z, € ©. We set

It 7)== (ha(wa) = Talt,t0)) u (20

t ) + I (to).

Let us denote by 1,4(t, s) the dynamics generated by

1 .
fm0=§m+hﬁ%)

and by pJ the corresponding asymptotic velocity. Then e “*he is asymptotic to
4 (t, ) on O.
Applying the results in Sect. 4.7, we obtain the existence of the limits
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S— tli)m 4 (0, t)e*ig"(t’D“)]le(Da) = ‘DI@;

s— lim eiga(t’D“)Tla(t, 0)le(pf) = 076,

t—00
such that R b e )
wa,@wa,@ = ]]@(Da)’ wa,@wa,@ = ]]@(p;;)’
15: d)j e = ‘UI@Da
Thus the theorem follows by the chain rule. 0

Proof of Theorem 6.15.1. We proceed similarly as above, except that we use
the results of Section 3.6 about the existence of the Dollard wave operators,
instead of the results of Sect. 4.7. O
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A. Miscellaneous Results in Real Analysis

A.1 Some Inequalities

First let us recall the well-known Gronwall inequality.

Proposition A.1.1
Suppose that f(t), g(t) and z(t) are nonnegative functions on [0,00[. Suppose
that z(t) satisfies the following inequality:

A0 < [ (f)2) + g(w)du (A11)
Then . ,
z(t) < exp (/s f(u)du)/s g(u)du. (A.1.2)
Proof. Set . .
v(t) = /S g(u) exp (/u f(ul)dul) du.
Then

v(t) < exp (/St f(u)du) /:g(u)du. (A.1.3)

Moreover, v(t) solves the following differential equation:

{ Lo(t) = F(t)u(t) + g(t),
v(s) = 0.

Hence it also solves the integral equation

o0 = | (o) + g(u))du. (A.1.4)

By subtracting (A.1.1) from (A.1.4), we obtain

v(t) — 2(t) > /:(U(u) — z(u)) f(u)du. (A.1.5)

Next we put
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n(t) := exp (— /stf(u)du) /:(v(u) — z(u)) f(u)du.

It satisfies 4
0

Therefore, n(t) > 0 for ¢t > s. Hence,
v(t) — z(t) > n(t) > 0.

This together with (A.1.3) implies (A.1.2). O

Next we describe a Gronwall-type lemma for solutions of second order dif-
ferential inequalities.

Lemma A.1.2
Let f,g be two positive functions such that (t)f(t),(t)g(t) € L'(dt). Let the
function z(t) € CH([0, 0o[, X) be such that

()] < F(O)]z(t)] + 9(t),
lim #(t) = 0.

t—00

(A.1.6)

Then the following is true:
(i) The limit
lim z(t)

t—00

exists.
(i) For a sufficiently large time T, there exists a unique bounded function z(t)
that solves the following problem:

{ () + f()2(t) + 9(t) = 0,

o (A.1.7)
tliglo 2(t) =0, 2(T7)=|z(T)|-

(#i) One has

Proof. Define
re(t) = |z(T)|+ Jp(s — T)g(s)ds + (t = T) [ g(s)ds,
Prz(t) == [h(s=T)f(s)z(s)ds + (t = T) [ f(s)z(s)ds.

Then it is easy to see that Pr is bounded on the Banach spaces Z9 and Zj}
defined in Sect. 1.1. In both cases, the norm of Py equals
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/ Y= T)f(1)dt.

T

Moreover, Pr maps nonnegative functions into nonnegative functions.
Next note that we can rewrite the problem (A.1.7) in the form

z =71y + Prz. (A.1.8)

Clearly, ry € Z3 and, for T large enough, the norm of Py is less than 1. We
fix such a T'. For this T, the problem (A.1.8) has a unique solution

= (1 — P)_l’f’T € Zgw

This ends the proof of (ii).
Let us now compute

which implies
B < [ (7(5)[o(s)] + gls))ds. (A-1.9)
Integrating (A.1.9), we obtain
2(O)] ~ [(D)] < (s = T)(F(s)lo(s)| + g(s))ds
+(t =) J7°(£(s)x(s) | + 9(s))ds.
We can rewrite (A.1.10) as

(A.1.10)

z| < rp + Prlzl, (A.1.11)

Let us now set
z1(t) = 2(t) = |=(t)].
Note that z1(t) € Z7. By (A.1.11) and (A.1.8), we have

ZEl(t) Z PTl'l(t)

We also set
y(t) =T (t) — PTIL'l (t)
This is non-negative and belongs to Z}..
Because |Pr|| < 1 on Zk, we can write

(1_7)’_1‘ y—ZPTy

n=0

This is nonnegative, because Pr preserves the positivity. Therefore

|z(8)] < 2(2).
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This completes the proof of (7).

Using the fact that z(t) is bounded and that (t)f(¢), (t)g(t) € L'(dt), we
finally deduce from (A.1.6) that |#(¢)| € L'(dt), which proves that x(¢) has a
limit at oo. O

Next we would like to present a very simple lemma on decreasing functions.

Lemma A.1.3
Let RT > s — f(s) be a positive decreasing function and n > —1 such that

J5° s"f(s)ds < oo. (A.1.12)
Then,
: n+1 _
Jim 7+ £ (1) = 0, (A.1.13)
t+r
sup s"*tf(s)ds € o(r). (A.1.14)
>0 Jt
Proof. We have
t " tn+1 t $n+1 ,
/0 " f(s)ds = —— £ (1 —/0 S f(s)ds. (A.1.15)

where — f(s)ds is a positive measure. Since f is positive, we deduce from (A.1.15)
that — fJ s"*!f'(s)ds is a bounded function. Obviously, it is increasing, hence it
tends to a limit when ¢ tends to oo. Therefore t"*!f(¢) also has a limit at oo,
which can only be 0 by (A.1.12).

To prove (A.1.14), we note that

1 rt+r 1 2r gntl
sup —/ "t f(s)ds §/ f(s)ds
t 0

0<t<r T r

goes to zero as r — oo by Lebesgue’s theorem, and

1 t+r
sup — s"tf(s)ds < sup t" ™ £ ()
r<t T Jt t>r
goes to zero by (A.1.13). O

A.2 The Fixed Point Theorem

In this appendix we describe some well-known facts related to the fixed point
theorem, which are useful in proofs of the existence of solutions of differential
equations. We start with the fixed point theorem itself, sometimes called Banach’s
principle.
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Theorem A.2.1
Suppose that (Z,d) is a complete metric space and P : Z — Z is a contraction,
that is, there exists ¢ < 1 such that, for any z,2' € Z,

d(P(2), P(z")) < qd(z, ).
Then there exists a unique z € Z such that

z =P(z). (A.2.1)

Proof. Let z; be an arbitrary element of Z. Set z, := P"(z). We easily verify
that if 7 < k, then

d(zj,21) < (1 —q) '¢’d(z0, 21).

Hence the sequence z, is Cauchy. We easily check that its limit satisfies (A.2.1)
and that two distinct fixed points of (A.2.1) cannot exist. O

If the map P depends continuously on parameters then so does the solution of
the fixed point equation (A.2.1). This fact follows from the following proposition.

Proposition A.2.2

Suppose that (Z,d) is a complete metric space, X is a topological space, P :
X X Z — 7 is a map that satisfies the following two properties:

(i) for any xy € X, there exists a neighborhood U of o and q < 1 such that, for
allz €U and z,2' € Z,

d(P(z,2),P(x,2")) < qd(z,2);

(i) for any z € Z, the function
X232 P(zr,2) € Z

1S CONLINUOUS.
Let z(x) be the solution of the fized point equation

Pz, z(x)) = z(x).

Then the function
Xozmz(z)eZ

1S continuous.

Proof. Fix 2y € X. For any € > 0, we will find a neighborhood U of z;, and
g < 1 such that, for any z € U and 2,2’ € Z,

d(P(z,2)),P(z,2")) < qd(z,2")
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and
d(P (o, 2(x0), P(z, 2(x0))) < €.
Then
d(z(x0), 2(z)) = d(P(x0, 2(z0)), P(z, 2(z)))

< d(P(2o, 2(20)), P(, 2(20))) + d(P(x, 2(z0)), P(x, 2(2)))

< e+ qd(z(zo), 2(x)).
Hence

d(z(zo),2(2)) < (1 —¢q) e

This clearly implies the continuity of z(x). O

Let us now state the following simple criterion for the contractivity of a map
that follows immediately from the mean value theorem.

Proposition A.2.3
Let Z be a Banach space and U a convex subset of Z. Suppose that P : U — U
15 a map such that, for any z € U,

IV.P(2)|| <¢g<1.

Then P is a contraction.

As an application of the fixed point theorem, let us state the following the-
orem about the existence of the solution of the Cauchy problem for ordinary
differential equations.

Proposition A.2.4
Let X be a Banach space. Suppose that a measurable function

11,15 x X 3 (t,z) — f(t,z) € X

satisfies the following estimates

/ P F(t0)]dE < oo, (A.2.2)
1o
/T IV (8, ) ldt < oo (A.2.3)

Then for any (s,y) € [T1,Ts] x X, there exists a unique solution
11, T3] 2t — z(t,s,y) € X
of the problem

(A.2.4)

{ Ow(t,s,y) = f(t,z(t,5,y)),
x(s,8,y) = v.
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Moreover,
\Vyz(t,s,y) < C. (A.2.5)

Proof. For any (s,y) € [T1,T3] X X, we set
2(t) ==zt s,y) —y
and define ,
P = [ flu,y+2(w)du.
Note that z(t) satisfies the equation
z ="P(z). (A.2.6)

If T > 0 is such that [s — T,s + T| C [T1,T3], we consider the Banach space
C([s—T,s+T],X) with the supremum norm. Note that P maps this space into
itself. In fact, from (A.2.2) and (A.2.3) it follows that, for any C,

/ sup |fux\du</ uO\du—l—C’/ IV f(u, )] du < co.
T

lz|<C

Next let us compute the derivative of P with respect to z:

V.P(2)v / Vo f (u,y + 2(u))v(u)du.

Therefore on C([s — T, s + T}, X) we have
s+T
IVPEN< [ 1V () lsedu (A.27)

Clearly, (A.2.7) goes to zero as T — 0. Therefore, for small enough 7', the map
P is contractive. Hence, for small enough 7', there exists a unique solution of
(A.2.6) in C([s—T,s+T], X). This is equivalent to the existence and uniqueness
of the solution of (A.2.4) on [s — T, s+ T]. In a finite number of steps, we can
extend this solution on the whole [T, T5).

Next we note that

V,P(z / Vo f(u,y + 2(u))du. (A.2.8)
Therefore, V,P(2) is bounded and
Vyz = (1—-V.P(2)) "'V, P(2)

implies the boundedness of V,z(s) for t € [s — T, s + T|. Hence (A.2.5) is true
for t € [s —T,s + T)]. By applying the chain rule a finite number of times, we
obtain (A.2.5) on the whole [T}, T5]. O

Let us remark that the choice of 0 in (A.2.2) is completely arbitrary. If we
replace 0 with any zq € X, then we obtain an equivalent set of conditions.



362 A. Miscellaneous Results in Real Analysis
A.3 The Hamilton-Jacobi Equation

In this appendix we recall some rather standard facts about the Hamilton-Jacobi
equation.

First of all, we will study the existence of solutions S(t,£) of the time-
dependent Hamilton-Jacobi equation with given initial conditions in a certain
open subset. Such initial conditions determine a solution inside a certain “tube”.
This solution can be computed from a well-known formula that involves the
action integral along certain trajectories.

We will also study the solution S(t1,%s,z,&) of the Hamilton-Jacobi equa-
tion naturally associated with the parametrization of trajectories by the initial
position and the final momentum. This solution satisfies two different Hamilton-
Jacobi equations — with respect to x and with respect to £. It appears naturally
in the semi-classical approximation of the quantum evolution. It is also useful in
quantum scattering theory. (For more information on Hamilton-Jacobi equations,
we refer the reader for example to [FM]).

We will consider in this appendix a time-dependent Hamiltonian h(t,z, &)
on X x X' defined for ¢ € [T}, T3]. We will assume that the function h(t, z, ) is
measurable and satisfies

J72 |020¢ h(t,0,0)|dt < oo, |af +|6] =1,

. ; (A.3.1)
Jr 1020 h(t, -, -)[|oodt < 00, o] + |B] = 2.
Note that if V/(¢,z) is a measurable function that satisfies
J1 103V (t,0)|dt < o0, ol =1,
o (A.3.2)

fT];2 ||8§V(t, )Hoodt < o0, ‘CE| = 27
then .
h(t,z,€) = §§2 +V(t,x)

satisfies (A.3.1).
It follows by Proposition A.2.4 that conditions (A.3.1) guarantee the exis-
tence of solutions of the Hamilton equations

Oz (t, s,y,m) = Veh(t, x(t, s,y,1),£(t, 5,,m)),
9&(t, 5,y,m) = =Vh(t,z(t, 5,9,m),£(t, 8,9,m)), (A.3.3)
z(s,8,9,m) =y, &(s:5,9,m) =1

We denote by ¢(t, s) the flow generated by h(t, z, ), which is defined by

o(t,s)(y,n) = (x(t, s,9,m),&(t, 5,9,m))-

We are now going to describe how to solve the Hamilton-Jacobi equation with
given initial conditions.
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Theorem A.3.1
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Suppose that s € [T}, Ty] and O, is an open subset in X'. Let yp € C"'(O;).

Denote, for shortness,

z(t,m) = =(t, s, Vyb(n),n),
E(t,m) ==&, 8, Vo (n),m)-

Fort € [T1, T3], we set
O, :={¢&(t,m) € X' | n € O,}

and
O={(t,§) e [I1,Tr] x X' | £ € O4}.

Suppose that, for t € [T1,Ts], the mapping
O; > n—>&(t,n) € 6,
is bijective and denote by n(t, &) its inverse. Assume also that
Ven(t,€) € Lig.(0).
Then there exists a unique function
O3 (t,&) — StE eR
that solves the Hamilton-Jacobi equation

{ 0iS(t,€) = h(t, VeS(t,€), ),
5(s,8) = ¥(¢)

and satisfies ViS € Li5,(0). The solution S(t,£) is equal to
S(t,€) == Q(t,n(t,€)),

where

Q(t,n)

= (n) + [L(h(u, z(u,n), € (u,n)) + (x(u,n), 8u&(u, n)))du.

Moreover,

VeS(t, &) = x(t,n(t, €)).

(A.3.4)

(A.3.5)

(A.3.6)

(A.3.7)

(A.3.8)

(A.3.9)

Remark. The condition (A.3.4) saying that the mapping n — &(t,n) is invert-
ible is, of course, the familiar condition of the absence of caustics. Namely, if
A, denotes the Lagrangian manifold {(y,n) | y = V,¥(n), n € O,}, then the
condition that (A.3.4) is bijective means that, for ¢ € [T7, T3], the Lagrangian
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manifold A; := ¢(t, s)A; projects bijectively on the & variables, which implies
that no caustics appear in the time evolution of A,.

Proof. We first observe that, by shrinking a little the open sets @, and ©, we
may assume that ng and V¢n are uniformly bounded. Let us first prove that
solutions of (A.3.6) such that VZS € L*(©) are unique.

Let S(t,€) be a solution of (A.3.6) . We fix € @, and compute:

L(VeS(t,E(tm)) — x(t,m))
= V25(t, £(t,m) (Voh(t, VeS(t, E(t,m)), () — Voh(t, z(t,0),£(E,7)))
+Veh(t, VeS(t,E(tm), £(t,m) — Veh(t, z(t,n), £(t,0)).
Set )
k(t) == VeS(t,&(tm) — z(t,n).

Then

L1k(t)] < |Lk(t)

dt
< (sup 19251090 + 1) V2t ()] = £
where f(t) is integrable. Thus
k(t)] < [ ()]e): 700
But k(s) = 0. Therefore k(t) = 0 for all ¢ € [T}, T3], which proves that

VeS(t,€) = z(t,n(t, ). (A.3.10)

We consider now the quantity S(t,&(t,n)), and compute its derivative with
respect to ¢. Using (A.3.10), we get

a5 (8, €(t,m))
= atg(ta f(ta 77)) + <V§S’(t’ f(t, n))a até-(ta 77)) (A'3'11)
= h(t,z(t,m),£(t,m) + (z(t, 1), 0&(t,m))-

Integrating (A.3.11) between t, and ¢, we obtain

S(t’ g(t: 77)) = Q(ta 77),

which shows that .
S(t,€) = Q(t,n(t,€)) = S(t,€)-

This proves the uniqueness part of the theorem.
Let us now prove that S(t, &) defined by (A.3.7) satisfies (A.3.9). To this end,
we remark that, using the equations of motion, we obtain
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0, VyQ(t,n) = (Voh(t, 2(t,1), (), Var(t,m)
+(Veh(t, z(t,m), £(,m)), Vol (t, 1))

(A.3.12)
+{Vaz(t,n), 0£(t,m)) + ((t,m), 0 V& (t, 1))
= at<x( ) 1] ),Vﬂf(t 77)>
Clearly,
VaQ(s,n) = Vyip(n) = (Vaib(n), Vil(s,m)). (A.3.13)
Now (A.3.12) and (A.3.13) imply
VuQ(t,m) = (z(t, ), V4&(t,n))- (A.3.14)
Moreover, we have
VeS(t,€) = (V,Q(E,n(¢,£)), Ven(t, €))- (A.3.15)

The identities (A.3.14) and (A.3.15) imply (A.3.9).
Let us now prove that S(t,¢) solves the Hamilton-Jacobi equation. We have

atQ(t’ 77) = h’(t’ :C(t, 77)’ f(t, 77)) + <$(t, 77)7 atg(ta 77)> (A316)
Using (A.3.7), and then (A.3.9), we obtain
atQ(ta 77) = ats(t’ 'S(ta 77)) + <V§S(t’ f(t, 77))7 atg(ta 77)>
= 8tS(ta g(ta 77)) + <‘T(t; n)a até-(t’ 77))

By comparing (A.3.16) and (A.3.17), we see that S(t,&) solves the Hamilton-
Jacobi equation. O

(A.3.17)

It will be convenient to state a variant of the above theorem with the inter-
changed role of the variables x and &.

Theorem A.3.2
Suppose that s € [T1,To] and O, is an open subset in X. Let ¢ € CH(Oy).
Denote, for shortness,

x(tJ Z/) = x(tJ 87y7 Vy¢(y))7

E(ty) =&t 5,9, Vb (y).

Fort € [Th,Ty], set
O, :={z(t,y) € X| y € O,},

and
O = {(t, w) S [Tl,TQ] X X| S Qt}

Suppose that, for t € [T1,T5], the mapping

;> y—z(t,y) € O (A.3.18)
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is bijective and denote by y(t, x) its inverse. Assume also that
V.y € L (O).
Then there exists a unique function
@3 (t,z) — S(t,z) e R

that solves the Hamilton-Jacobi equation

{ —0S(t,x) = h(t,z,V,S(t, x)), (4.3.10)
S(s,z) = ()
and satisfies VS € L2 (©). The solution S(t,x) is equal to
S(t’ l‘) = Q(ta y(ta IE)),
where
) . (A.3.20)
= ¢(y) - fs (h’(u1 .I(’U,, y)a g(’u’a y)) - <§(U’7 y)’ au.’E(U, y)))du’
Moreover,
V.S(t,x) = &(t, y(t, x)). (A.3.21)

Proof. Consider the Hamiltonian
h(t, %, &) := h(t, =€, 7).

Denote by é(t, s) the flow associated with k(t,#, ) and set ¢(€) = —(=€).
Let us denote by x the symplectic map

X: (j,f) = (‘/Llﬂg) = (_gﬁ 5;)
Then

h=hoyx.
Since x is symplectic, we have
b(t,s) =x "ot s)ox. (A.3.22)

Using (A.3.18), (A.3.22), we see that we can apply Theorem A.3.1 to h(t, %, €)
and 9(€), and find the function S(¢, &) that solves

{ 8iS(t, &) = h(t,VeS(t,€),9),
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If we put now

S(t,x) == —S(t, —x),

we see that S(¢, x) solves (A.3.19). Finally, (A.3.20) and (A.3.21) are direct con-
sequences of (A.3.8), (A.3.9) and of (A.3.22). O

Using Theorems A.3.1 and A.3.2, we will now solve the type of Hamilton-
Jacobi equation that is encountered in the semi-classical approximation of the
kernel of the unitary dynamics generated by a quantized h(t, z, £). It is also useful
in quantum scattering theory. We first introduce some notation. We set

Q1(t1,t2,71,&1) = (21,61)

+:f2(h(u,x(u,t1,x1,§1), E(u,t1,z1,&)) + (x(u, tr, x1, &), 0ué(u, tr, 21, &1)))du,

Qa(t1,t2, 2, 82) = (22,62)
+ Ji2 (h(u, ©(u, ty, 29, &), € (u, ta, T2, &) — (Bu(u, ta, T2, &), £ (u, ta, T2, &)))du

Note that if
(z2, &) = (z(ta, tr1, 21, &1), E(t2, t1, 1, &1))

or, equivalently,
(xla 51) = (x(tlv t27 T, 52)7 g(tla t27 T, 62))7

then
Q1(t1,ta, 71,61) = Qa(t, ta, T2, &2). (A.3.23)

This follows by integration by parts of the second term of the integrand in the
definitions of ()1 and @».
Let us define

S(t1,te, x1,&) = Q1(t1, ta, 21, &1 (L, t1, 21, &2)) (A.3.24)

or, equivalently,
S(t1, 12, 21,&2) = Qa(ty, 2, Ta(ta, 1, 21, &2), &2). (A.3.25)

Theorem A.3.3
Let s € [T1,T5], and let £2,, C X x X' be open. For any t1,ts € [T1,T5], denote
by Ity 1, C X X X' x X x X' the part of the graph of the flow ¢(t1,12) defined by

Lty o= {(21, &1, 72, &) |
(x1,61) = d(t1, 8)(y,m), (22,&2) = b(ta, 8)(y,m), (v, m) € 25}
Let us also denote by m the projection
T: X XX' XX xX - XxX'
(@1, &1, T2, &2) = (21,&2)-
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We will set

‘Qtl,tZ = 7-‘-(1—’751,152) = {m(tla S, Y, 77)7 §(t2a S5 Y, 77)‘ (ya 77) € 95,5}

and
2 :={(t1,t2, 21, &)| (x1,&2) € 24 41, }-

Assume that, for any ti,ty € [T1,Ty], the projection m restricted to Iy, 4, is a
bijection. We denote by

2440 2 (21,&) = (21,& (81, 2, 71, &), o (b1, 12, 21, &2), &2) € Thy 4,

-1
Fil‘tz) .

Ve,bi(t, ta, 21,62) € Lin,(£2)

the mapping (71'

Assume that

or, equivalently,
V:mx?(tl, tQa T, 62) € L?(?C(Q)

Then the function
23 (ti,t9,71,&) > S, b2, 71,6) € R
1s the unique solution of the Hamilton-Jacobi equation

{ atzs(tlat%xlag?) - h(tQ,V&zs(tlat%xlaéé)aéé)a

(A.3.26)
St t,71,&) = (21,&2)

such that
Ve, S(t1, 12, w1, £2) € Lig,(2),

loc

and it is also the unique solution of another Hamilton-Jacobi equation

{ =0y, S(t1, ta, 21,&) = h(t1, 1, Vi, S(t1, e, 21, §)),

(A.3.27)
S(t,t,21,&) = (21,&2)

such that
V2, 5(t1, t2, w1, &) € Lig(92).

loc

Moreover, the following identities are true:
Ve, S(t1, ta, 21, §2) = Ta(l2, t1, 71, §2), (A.3.28)

Vi, S(ti, 2, 21, &) = &i(te, 1, 21, &), (A.3.29)

Proof. First, we treat t1,x; as parameters and we apply Theorem A.3.1 with
s = t; and ¥(n) = (n,z1). This implies the existence and uniqueness of the
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solution of (A.3.26) expressed in terms of (); by the equation (A.3.24). Theorem
A.3.1 also implies (A.3.28).

In (A.3.23) we have already proven the equality of (A.3.24) and (A.3.25),
which means that we can express S also in terms of @),. Starting from (A.3.25)

we apply now Theorem A.3.2 treating t,,&; as parameters, with s = ¢, and
Y(y) = (y,&). We obtain (A.3.29) and (A.3.27). O

Remark. The symplecticity of the flow ¢(¢, s) implies that the function

(wa(t1, 12, 21, &2), &1 (1, T2, 21, €2))

introduced in the above theorem has the following properties: V& (t1, t2, 21, &2)
and Vg, xa(t1, 2, 1, &2) are symmetric and

Ve, 6i(t, to, 21, &) = Va,w1(t1, ta, 71, &2).
In fact, the symplectic form is conserved by the flow, hence
dzy A dé = dxy A dEs.
Therefore,

dl‘l A (Vz1§1(t17 t?a x1, SQ)dxl + vfzgl(tla t27 X1, 62)d£2)
= (Vo ma(t1, to, 21, &)dxy + Ve, 22(t, 12, 21, §2)dEs) A dés.

Remark. Assuming that the hypotheses of Theorems A.3.1 and A.3.3 are both
satisfied, one can express the solution S(¢,&) of (A.3.6) by

S(t, &) = cvgy(S(s,t,2,8) — (z,m) +¥(n)),

where c.v,, means the critical value with respect to the variable (z,7).

A.4 Construction of Some Cutoff Functions

It is easy to see that if F € C°(IR) and F' > 0, then F'/2 does not have to be
smooth. In fact, if 2y € suppF and F(zp) = 0, then F' may fail to be smooth
at zp. In our estimates we often need non-negative cutoff functions F' with the
property that F''/2 € C*°(IR) and (F')/? € C*(IR). The existence of sufficiently
many of such functions is guaranteed by the following lemma.

Lemma A.4.1
Let f € CP(R) and F € C*(IR) be defined as
{ T, e fo,1],

t

and  F(t) :=/ f(s)ds.

—00

f@) =
0, t ¢ [0,1].
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Then for any o > 0, we have F* € C*°(IR).

Proof. First let us show that, for ¢ near 0,
F(t)=e TO(1+O(t)). (A.4.1)

Consider the change of variable = = t(1 — ¢). Clearly, it is invertible for z — oo
and
L —224+0(z?).
Therefore, integrating by parts we get
F(1)=e 2724+ O(e "273).
Coming back to the original variables, we get (A.4.1).
Now let us show that F'®(t) is smooth at the origin. It suffices to prove that
lim (F)™(t) = 0, n € IN. (A.4.2)

t—0t

By Faa di Bruno’s formula, we have

(FOYD ()= Y Cpppoon PO FMI () - - - FMa) (1), (A.4.3)

ni+---+ng=n

By a direct computation, we see that
FM(t) = O(t™2)e T, (A.4.4)

Using (A.4.1) and (A.4.4) in (A.4.3), we get (A.4.2), which completes the proof
of the lemma. O

A.5 Propagation Estimates

The following lemma describes a certain type of reasoning that leads to estimates
on observables integrated along a trajectory. These estimates go under the name
of propagation estimates. They are better known in quantum scattering theory,
where they turned out to be a very powerful tool in the proof of asymptotic
completeness [SS1, Gr, De8|.

We will introduce propagation estimates in the context of the flow generated
by a rather general differential equation. Suppose that we consider solutions of
the differential equation

d
—a(t) = f(t,a(t)). (A.5.1)

If G(t,z) is a function on IR x X, then we define the Liouville derivative of
G(t,x):
DG(t,z) := 0,G(t,x) + f(t,2)V.G(t, x).
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Note that d
3,0t 2(t)) = DG(t, 2(1)).

The following lemma should be compared with its quantum analog contained
in Lemma B.4.1 ).

Lemma A.5.1
Suppose that z(t) is a solution of (A.5.1). Let ®(t,x), Bi(t,z) and B(t,z) be
functions such that Bi(t,z) and B(t,z) are nonnegative, ®(t,x(t)) is bounded
uniformly in t,

Jo° Bi(t, z(t))dt < oo,

D®(t,z) > B(t,z) — Bi(t,x).

Then o
/ B(t, 2(t))dt < cc.
0

A.6 Comparison of Two Dynamics

In classical scattering theory, it is common that we study two differential equa-
tions that are close in some sense. Given a solution of one of them we may want
to find a solution of the other equation that is asymptotic to it. Below we give a
proposition that describes a certain set of conditions when it is possible.

Proposition A.6.1
Let

R'"x X > (t,z)— fi(t,z) € X, i=1,2,

and let x1(t) be a solution of

o1 (t) = fi(t, 21(2))-

Let 0 > k and
sup |vzf2(ta $)| < K,
(tyx)ER 4 xX
Jim e 7 | fi(s,21(5)) = fals,21(s))Ids = 0.

Let xo.7(t) be the unique solution of

{ .I.Q’T(t) == f2(t; xQ,T(t)),
2o, (T) = 1(T).

Then there exists the limit
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lim afg,T(t) =: $2(t)
T—oo

The function xo(t) is the unique solution of the problem

{ Jfg(t) = fQ(t: .’1}'2(1;)),

: _ ot _
Jlim |1 (t) — z2(t)|e 0.

Proof. Note that z;(¢) and zr(t) satisfy

z1(t) = 21 (T) = J; fi(s,21(s))ds,
o (t) = 21(T) — J; fals, z2,0(s))ds.

Thus

ear(t) = 71(6) = = [ (ol mar(5)) — fils, ma(s)ds. (A.6.1)
Therefore, if we introduce
2r(t) == zor(t) — 1(2),
then we can rewrite (A.6.1) as
2r(t) = Pror(t), (A.6.2)

where the operator Pr is defined as

T
Prz(t) == /t (fo(s,z1(s) + 27(s)) — fi(s,z1(s))ds.
Let us introduce the Banach space
7Z = {z€ C(R",X) | tli)rgoe0t|z(t)| =0}
with the norm
|12 = sup e”[(2)].
>0
Now,

[Prar(t)] < i [fa(s, @1(s) + 20(s)) — fals, 21(s))|ds
+ i | fa(s,1()) = fils, 21(s))|ds € o(t%)e (]| 2] + 1).
Therefore, Pr is well defined for 0 < T < oo as a map on Z. It depends contin-

uously on 7 for 0 < T < oo.
Moreover,
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Pr(z1) — Pr(z)(t)] < [2° ke 0ds||z — 2|
= Le |21 — 2,

which proves that Pr is a contraction on Z for > k. By the fixed point theorem
(see Theorem A.2.1), there exists a unique solution in Z of (A.6.2). O

Let us state a version of the above proposition for the Newton equation.

Corollary A.6.2
Let
R" x X > (t,7) = Fi(t,z) € X, i=1,2

and let x1(t) be a solution of
Z1(t) = Fi(t, z1(1)).
Let k < 0 and
sip [V, Fa(t, 7)) < &

(t,x)eR4 xX
Jim e [ [Fy(s, 31(s)) = Fo(s, m1(s)) [ds = 0.

Let xo 1 be the unique solution of
o1 (t) = F3(t, w20 (1)),
2o,r(T) = 21(T),  or(T) = &1(T).
Then there exists the limit
111_1)20 zor(t) =: 22(1).
Moreover, the function z5(t) is the unique solution of the problem

{ .’Eg(t) - FZ(ta xZ(t))a

lim (|21 (t) — @2 ()] + [1(¢) — £2(2)[)e” = 0.

t—o00

Proof. We introduce the variables £ = kz and £ = 2. Then the equations of
motion can be rewritten as

{ Z(t) = KE(t), (A.6.3)

E(t) = F(t, k7 1%(t)).

Clearly,
IVag(kE, Ft, 5712))| < k-

Therefore, we can apply Proposition A.6.1. O
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A.7 Schwartz’s Global Inversion Theorem

It is well known that a function whose first derivative at yo € IR" is invertible is
invertible in a certain neighborhood of 4. The following proposition, known as
the Schwartz global inversion theorem, gives sufficient conditions that guarantee
the global invertibility (see [Sch]).

Proposition A.7.1
Suppose that the function

R">y—2z(y) € R (A.7.1)
satisfies
|detVyz| > Cp >0 (A.7.2)
and
o5z <C, ol =1,2. (A.7.3)

Then the function (A.7.1) is bijective.

Proof. First note that, by the local inversion theorem, there exist €, > 0 such
that, for any y, € IR",
z(B(yo,€)) D B(x(yo),0). (A.7.4)
Therefore z(IR") = IR".
We will now prove that the function (A.7.1) is injective. Fix y;, y € IR" such

that z(y1) = z(y2) = mo.
Note that, given a curve I" that starts at x(y;), we can find a unique curve

I that starts at y; and = (f) = I' (we start at y; and extend it by continuity).

Join y; and 1, with a curve [0,1] 3 7 — I". Set I" := z (f) The curve I’
can be continuously deformed to form a family of curves I';, 7 € [0, 1], with the
following properties:

The gorresponding curves fT are also continuously deformed. But I +(0) = 5o
and I (1) = y; for all 7 € [0, 1], hence y; = y». O



B. Operators on Hilbert Spaces

B.1 Self-Adjoint Operators

In this section we collect basic concepts of the spectral theory for self-adjoint
operators that will be needed in this chapter and we fix some notation. We refer
the reader for example to [RS, vol I] for a more detailed exposition.

Let H be a separable Hilbert space. The scalar product of ¢, € H will be
denoted by (¢|v).

B(H) denotes the set of bounded operators on H and C'B(H) the set of
compact operators on H.

RanB denotes the range of an operator B and D(B) denotes its domain.
B* denotes the adjoint of an operator B. We will often write B 4 hc instead of
B + B*.

Let H be a closed operator on #. The spectrum of H is denoted by o(H) C C.
If H is self-adjoint, then o(H) C IR and, for any Borel subset A C o(H), we can
define the spectral projection of H onto A denoted by 1a(H). If (Ay,...,A,) is
an n-tuple of commuting self-adjoint operators, then o(A1, ..., A,) denotes their
joint spectrum. If © is a Borel subset of IR", then lg(A4,..., A,) denotes the
spectral projection of (Aq,...,A,) onto O.

We also define the space H,,(H) of bound states of H, the pure point spectrum
opp(H), the continuous spectral subspace H.(H) and the continuous spectrum
o.(H):

IPP(H) == Eper 1py (H), Hpp(H) := RanlP?(H),
opp(H) :={A € R | Izy(H) # 0},

1°(H) :=1-1°°(H), H.(H):=Ranl‘(H),

Oc

):
(H) =0 (Hly ) -
We set
15,(H) o= T(H)Ia(H),  TP(H) = 1PP(H)15(H).

It is also useful to introduce the decomposition of o(H) into the discrete and
essential spectrum:

Odgisc(H) := {X € R | rankljy_c g (H) is finite for some € > 0},
Oess(H) := 0(H)\oqisc(H).
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The essential spectrum is stable with respect to perturbations that have a certain
compactness property.

Theorem B.1.1 Weyl criterion
If H, Hy are self-adjoint operators and

(H+i)' = (Ho+i)7" is compact, (B.1.1)
then for any x € C(IR),
X(H) — x(Hy) is compact, (B.1.2)
Oess(H) = Oess(Ho). (B.1.3)
Proof. The function z — (2 — H)™' — (2 — Hp)™! is norm continuous and
compact at +7. Hence it is compact for all z & o(H) U o(H,).

By density, it is sufficient to assume that x € C§°(IR). Let x be the almost-
analytic extension of x (see Proposition C.2.1). Then

(H) — x(Hy) = % [0:7@) (= 1) = (o= Hy) ) dzndz (B14)

The integrand in (B.1.4) is compact and integrable, hence (B.1.2) is true. (B.1.3)
follows from (B.1.2). O

The domain of an operator A, denoted by D(A), is in a natural way a normed
space with the norm

(JAg|2 + [|8]1*)? = [[(A*A + 1)7¢)|).

An operator is called closed, if D(A) is complete with respect to this norm. Any
subspace of D(A) dense with respect to this norm is called a core of A.

If a(-,-) is a hermitian form bounded from below by —\g, with the domain
Q(a), then it defines the norm

Va(é, 8) + (Ao + 1)]|g]J2. (B.1.5)

We say that a(-,-) is closed if Q(a) is complete with respect to this norm. In this
case, there exists a unique self-adjoint operator A bounded from below by —A
such that

a(6, ) = (¢|A¢), ¢ € Q(a),
Q(a) = D((A+ Xo)?).

Conversely, if the operator A is self-adjoint and bounded from below, then
we can associate with it a closed form bounded from below, with the domain

Q(a) = D((A+ \)7),
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such that a(¢, ¢) := (¢|A¢).

We denote Q(A) := Q(a). Any subspace of Q(A) dense with respect to the norm
(B.1.5) is called a form core of A.

Definition B.1.2
An operator B is said to be A—bounded if

(t) D(A) € D(B),

(i1) there exist Cy, Cy such that ||Bo|| < Col||Ag|| + Cil|9|l, ¢ € D(A).
The infimum of all Cy such that (ii) holds is called the A—bound of B.

Note that the A-bound equals
lim ||[B(A*A+ ) 2.
A—o0
If A is bounded from below, then it is also equal to
. —1
Jim | B(A+ ).
The following theorem is known as the Kato-Rellich theorem.
Theorem B.1.3
Let A be self-adjoint with domain D(A). Let B be symmetric and A—bounded
with the A—bound strictly less than 1. Then

(i) A+ B is self-adjoint with domain D(A)
(i) any core for A is a core for A+B.

Definition B.1.4
B is said to be A-compact if B(A*A +1)7% is compact.

If 0(A) # C, then the above definition is equivalent to the compactness of
B(A — 2)7! for any 2z & o(A).

Proposition B.1.5
Let B be A-compact. Then B has the A—bound equal to 0.

Sometimes it is useful to use a form version of the Kato-Rellich theorem,
sometimes called the KLMN theorem.

Definition B.1.6
Let us assume that the operator A is bounded from below. An operator B with
the form domain Q(B) is said to be A—form bounded if:

(1) Q(A) € Q(B),
(i1) there exist Cy, Cy such that |(¢|Bo)| < Co(d|Ad) + C1(d|d), ¢ € Q(A).
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The infimum of all Cy such that (i) holds is called the A-form bound of B.

Note that the A-form bound of B equals
Jim [|(A + 4) FB(A + 4) F].
One has the following form version of Theorem B.1.3.

Theorem B.1.7

Suppose that A is self-adjoint and bounded from below. Let B be symmetric and
A-form bounded with the A-form bound < 1. Then

(i) the sum of the quadratic forms of A and B is a closed symmetric form on
Q(A) that is bounded below,

(7) there exists a unique self-adjoint operator associated with this form, which is
denoted by A+ B,

(#i) any form core for A is a form core for A+B.

Definition B.1.8
The operator B is called A-form compact if

(A—2)"2B(A—2)"? is compact,
where z ¢ o(A).

Of course, the above definition does not depend on the choice of z.

Proposition B.1.9
If B is A-form compact, then it is A-form bounded with relative bound 0.

Note the following relationships between operator and form boundedness.

Proposition B.1.10

(i) If B is A—bounded with the A—bound a then B is A—form bounded with the
A—bound < a.

(i) If B is A—compact then B is A—form compact.

B.2 Convergence of Self-Adjoint Operators

Let A, be a sequence of operators in B(#H). Let us define the norm limit, the
strong limit and the weak limit of A,:

A= lim 4, if lim [[4, - A| =0,

n—o0
A=s—lim A, if lim A,¢=A¢, ¢EH,

A=w—lim A, if lim ($[A.0) = ($[A9), ¥, ¢ €H.

n—oo
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From now on, within this section, we will assume B, to be a sequence of
vectors of commuting self-adjoint operators on a Hilbert space H. More precisely,

B,=(B.,...,B™), [B:,Bi]=0, 0<i,j<m, n=1,2,....

We will not assume the boundedness of B,,. We will study various concepts
of the convergence of B,.

Proposition B.2.1
Suppose that, for every g € Coo(R™), there exists

s— lim g(B,). (B.2.1)

n—oo

Then there exists a unique (possibly, non-densely defined) vector of self-adjoint
operators
B=(B',...,B™

such that (B.2.1) equals g(B). B is densely defined if, for some g € Co(IR™)
such that g(0) = 1, we have

s— lim (s— nli_)ngog(Ran)) =1 (B.2.2)

R—

Definition B.2.2
Under the assumptions of the above proposition, we will write

B =s—Cyx— lim B,.

n—oo

If the limit in (B.2.1) is the norm limit, then we will write

B = Cy— lim B,.
n—00

Remark. If B, are bounded uniformly in n, then

s— lim B,, =s—C,— lim B
n—oco " X S ™

435, Bn = Coo lixg, B
If m = 1, then the strong C, convergence is equivalent to the strong resolvent
convergence, that is,
. N—1 N—1
s— lim (B, £i)” = (B+i)".
Likewise, the norm-C,, convergence is equivalent to the norm resolvent conver-

gence, that is,
lim (B, £14) ' = (B£4) "
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Proof of Proposition B.2.1. Denote (B.2.1) by 7(g). Clearly, the strong limit
preserves the multiplication. Moreover, we check that v(g) = v(g)*. Hence

Co(X) 3 g v(g) € B(H)

is a homomorphism of C*-algebras.
For any open @ C IR™, we define

Lo :=sup{y(g)| g € C(X), 0< g <1, suppg C O}.

In a standard way, we can extend the definition of g to arbitrary Borel subsets
©. We obtain a projection valued measure, that is, a map

O lg
defined for every Borel subset © C IR™ that satisfies the following conditions:
(i) 1 is an orthogonal projection,
(it) Iy = 0,
(i1i) 1o, 1o, = lo,nes;

() if © = EJOI O,, and ©; N O, = for j # n, then lg =s— ]éim YN 1,
n= —00
In a standard way, for any Borel function f on R™, we can define the integral

/ F(2)d1(z).

We can now set
B = / 2d1(z).

It is easy to check that B satisfies the requirements of our proposition. The
operator B is densely defined if only if

]lIRm = ]-a

which is equivalent to (B.2.2). O

Let us now describe the relationship of the spectrum of B with the spectra
of B,,.

Proposition B.2.3
(i) Suppose that
5—Coo— nh—>I£lo 9(Bn) = g(B).

Let A € 0(B). Then there exist A\, € 0(By) such that lim, o A\, = A.
(ii) Suppose that
Coo— lim g(Bn) = g(B)

n—0Q
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Then X € o(B) if and only if there exist A, € o(By) such that lim, ., A\, = A.

Proof. Let A € o(B). Let U be a neighborhood of A and g € Cy(X) such that
g(A\) =1 and suppg C U. Clearly,

liminf ||g(B,)l| > [ls— lim g(By)] = [lg(B)] > 1.

Therefore, we will find A, such that, for n > N, we have )\, € o(B,) UU. This
proves (i) and the = part of (ii).

To show the < part of (i), consider \, € o(B,) such that lim, ,,, A, = A.
Let U be a neighborhood of A, and g € Cy(X) such that suppg C U and, for
large enough n, we have g()\,) = 1. Because of the norm convergence, we have

1< lim [|g(By)| = || lim g(By)|| = [lg(B)]|

Therefore, U No(B) # 0. O

B.3 Time-Dependent Hamiltonians

In this section we try to answer the following question: when does a time-
dependent Hamiltonian generate a unitary dynamics and what does it mean.
If the Hamiltonian is independent of time, the answer is simple: the Hamiltonian
has to be self-adjoint. However, not every time-dependent self-adjoint Hamilto-
nian generates a dynamics.

The problem of finding sufficient conditions on a time-dependent Hamiltonian
that guarantee the existence of a dynamics has been studied by many authors
using a variety of methods. Among all these works, we would like to mention just
a few. The papers [Kal, Ka4] used the abstract theory of evolution equations in
Banach spaces. A different approach by reduction to a time-independent problem
has been given by Howland [How].

In the case of time-dependent Schrédinger operators, it is possible to use some
special methods to construct the evolution. A method based on Fourier integral
operators has been introduced by Fujiwara and developed in [Ful, Fu2, KiK] and
[Ki4]. Another approach based on the study of the integral equation satisfied by
U(t,s) by the perturbation of the free evolution has been introduced by Yajima
[Ya2].

We need first to recall some basic facts about the measurability and inte-
gration for operator-valued functions. We will say that a function [T}, T5] > ¢ —
B(t) € B(#) is Bochner integrable iff there exists a sequence B,,(t) of measurable
step functions (i.e. functions whose range is a finite set and every preimage is
measurable) such that

1o
lim [ |IB(t) = Ba(t)|dt = 0.
T

n—oo
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We will denote the set of Bochner integrable functions by L} (IR, B(H)). Note
that, for such B(t), the integral

to to
/ B(s)ds = lim B, (s)ds

t n—r0oQ t1
is well defined and does not depend on the choice of B, (t).

We will say that A(t) € WH(IR, B(H)) if there exists B(t) € L. (IR, B(H))
such that, for any #1,t, € IR,

Alts) — A(tr) = /t2 B(s)ds.

t1

We will write 4

AW = B(1).
Note that if A;(t), As(t) € WH(IR, B(H)), then A;(t)As(t) € WH(IR, B(H))
and

d d d

4 a0400) = (EAl(w) M)+ A0 Sa0. (B

Definition B.3.1
A unitary dynamics is a strongly continuous map [11, T3] x [T1,T3] > (t,s) —
U(t, s) with values in unitary operators such that

U(s,s) =1, se [T, Tr), U(t,u)U(u,s)=U(t,s), t,u,sé€[T1,Ts]

Note that we have U(t,u) = U(u,t)*.

As we saw above, the definition of of a unitary dynamics is quite obvious.
Unfortunately, the definition of a generator of such a dynamics is much more
arbitrary.

Definition B.3.2

Suppose that B is a positive invertible operator with a dense domain. Let
[T1,T5] > t — H(t) be a function with values in self-adjoint operators. We say
that the unitary dynamics U(t, s) is B-regularly generated by the time-dependent
Hamiltonian H(s) if the following conditions are satisfied:

(i) s = U(t,s)B™" belongs to WY ([T, Ty], B(H)), D(B) C D(H(s)) for almost
all s, and H(s)B™" belongs to Ll .([T1,Ts], B(H));

(11) O,U(t,s)B~1 = U(t,s)iH(s)B™};

(i) B~'2[H(t), B|B~'/2, originally defined as a quadratic form on D(B'/?),
extends to an element of L] .([T1, Ty], B(H)).

loc

Note that, by conjugation, (i) implies
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0;BU(t,s) = iB"'H(t)U(t, s).

Proposition B.3.3
Suppose that Ul(t, s) is B-regularly generated. Then it preserves D(B'/?).

Proof. Let ¢ > 0 and 9 € D(B?). Set
ke(t) = |B2(1+€eB)2U(t, s)v|*
= 19|12 = L)|(1 + B)2U(, s)¥1>
Using (ii), we obtain
k) = ¢ (WU, EH(?), (1+eB)'U(t, 5)v)
= (Y|U(s,)(1 + €B)7![B,iH(t)](1 + eB)"'U(t, s)¢)

Hence . .
k(1) < ||B~3[H(2), BB~

ke(t).
By Gronwall’s inequality,

ke(t) < Ck(0) = C||(1 + eB) "2 Bay|[%.

Letting € go to zero we obtain that BY/2U(t, s)B~'/? is bounded.
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Let us note another property of B-regularly generated dynamics that we will

often use in this chapter.

Proposition B.3.4

Let U;(t,s), i = 1,2, be two dynamics B-reqularly generated by two time-

dependent Hamiltonians H;(t). Suppose that
®(t) € WH([T1, 1), B(H)), ||B:®(t)B~2|| < C for almost all t,

and
Hy(t)®(t) — &(t)Hy(t)

originally defined as a quadratic form on D(BY?) extends to an element of

LL ([T1, Ts], B(H)). Set

JDL(t) = %@(t) tiHy()B(t) — i(£) Hy (1),

Then
UQ(S, tz)@(tg)Ul (tg, S) — UQ(S, tl)Q(tl)Ul (tl, 8)

= tt2 Us(s,u) (eD12(t)) Uy (u)du.

1

Proof. We can write

(B.3.2)
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UQ(S, t2)¢(t2)Ul (tz, 8) — UQ(S, tl)ds(tl)Ul (tl, S)

= S— 11_1)% UQ(S, t2)(1 + €B)71q5(t2)(1 + EB)flUl(tQ, 8) (B33)
—S— 11_1)% UQ(S, tl)(l + GB)_I@(tl)(l + GB)_IUl(tl, 8).

(B.3.3) equals the limit as € — 0 of the following expression:

S22 Us(s,u)(1 + €B)™ (:D1@(1)) (1 + €B)~'Us (u, s)du
+ fttf Us (s, u)i[Hy(u), (1 + €B) @ (u)Uy(u, s)du

+:{2 Uy (s, ) B(u)[iH: (u), (1 + €B) YU, (u, s)du
= Rl(E) + RQ(G) + R3(6).

Now R (€) goes to the right-hand side of (B.3.2). Moreover, for 1, ¢, € D(B/?),
we have

(Y| Ra(€))th1)
< € J? | B2Us(s, u)bo||| B~2[Ha(w), B|B~2 ||| B2 ®(u) B~ ||| B2Uy (u, 5)ib || du,

1

which clearly goes to zero. R3(e) can be handled in a similar fashion. O

So far, we have not given explicit conditions that, for a given time-dependent
Hamiltonian H(t), guarantee the existence of a unitary dynamics. Below we will
describe one possible set of such conditions, unfortunately, quite restrictive.

Definition B.3.5
Let

t— W(t)

belong to L, .([T1, Ts], B(H)). For any [s,t] C [Ty, Ts], we define the time-ordered
exponential of W (t) by the following convergent expansion:

T (efstw(“)d“) = i J-oof W(u)---W(up)duy,...du;.

n=0 >y, > >u;>s

Proposition B.3.6
Suppose that Hy is a fized self-adjoint operator, and

t— V(t)

belongs to Li. ([T1,Ty], B(H)). Set
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H(t) = Hy+ V(1)
W (t) := eitHoV/ (t)e itHo,

U(t, s) := e #HoT (efjW(u)du) oMo,
B := (Hy+1)2.

Then U (t, s) satisfies the following properties:
(i) s =~ U(t,s)B™" and t — B7'U(t, s) belong to WH' ([T, Ty, B(H)),
(i)

osU(t,s)B~t =U(t,s)iH(s)B™!,

0,B~1U(t,s) = —iB 'H(t)U(t,s).

If, moreover, V (t) is self-adjoint for all t, then U(t, s) is a unitary dynamics in
the sense of Definition B.3.1, and the conditions (i) and (ii) of Definition B.3.2
are satisfied.

B.4 Propagation Estimates

In this section we describe certain abstract arguments that are used in scattering
theory to prove propagation estimates and the existence of asymptotic observ-
ables and of wave operators. These arguments do not depend on the concrete
form of a time-dependent Hamiltonian.

In the first lemma we describe how two prove two types of the so-called
propagation estimates. This name is usually given to various estimates on the
evolution. The first type of a propagation estimate is a direct consequence of the
fundamental theorem of calculus. The second one is a version of the Putnam-Kato
theorem developed by Sigal and Soffer (see [RS, vol IV] and [SS1]).

Let U(t, s) be the unitary evolution generated by a time-dependent Hamil-
tonian H(t). We assume that all the conditions of Definitions B.3.1 and B.3.2
are satisfied and U(t, s) is B-regularly generated. For simplicity, we will write
U(t) := U(t,0). Note that U(t) satisfies

dUt)p = —iH()U(t)gp, ¢ € D(B3),
U(0) = 1.

We will denote by D®(t) the Heisenberg derivative associated with U(t):

D) =

= (1) +ilH(2), 8(1)].

Lemma B.4.1
Suppose that D(t) is a family of self-adjoint operators satisfying the conditions
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of Proposition B.3.4.
(i) Let D®(t) € LY(R*, B(H)). Then

12U (1)l < [2(0)] + [ [DB(s)lds. (BA1)

(ii) Suppose that ®(t) is uniformly bounded and that there exist Cy > 0 and
operator valued functions B(t) and B;(t), i =1,...,n, such that

D&(t) > CoB*(1)B(t) — 3 BX(t)Bi(t),
i=1
/ |B:()U)olIdt < Cllgl* i=1,...,n.
Then there exists Cy such that

[T IBOU@ela < ol (B.42)

Proof. (i) follows directly from the fact that

SUPU() = U(1) (DI ().

To prove (ii), for 0 < t; < ty, we compute
Co [ IBOU®)IPAt < [2(U)DEH)U (1))t + 3, [ | Bi(t)U (1) 9| *dt
< (U(t2)d|P(t2)U(t2)9) — (U(t1)d|P(t1)U (1))
+ X 2 IB:(U)]dt < Cllgl1%,
which proves the desired result. O

The observable @(t) used to derive (B.4.2) is called a propagation observable.
As we saw above, the main idea of the proof of (B.4.2) is to find a propagation
observable whose Heisenberg derivative is “essentially positive”.

Next we describe two methods of proving the existence of wave operators
and asymptotic observables. The first one is known as Cook’s method and the
second one is its variation due to Kato (see [RS, vol IV] and references therein).

Let H;(t) and Hs(t) be two time-dependent self-adjoint operators. Let U;(t)
be the unitary evolutions generated by H;(t) in the sense of Definitions B.3.1
and B.3.2. Let ;D be defined as in Proposition B.3.4.

Lemma B.4.2

Suppose that ®(t) is a uniformly bounded function with values in self-adjoint
operators satisfying the conditions of Proposition B.3.2. Let D1 C H be a dense
subspace.
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(i) Assume that, for ¢ € Dy,

/100 1(D1® (1)) Uy (H)8]| dt < oo.

Then there exists
s— lim U (t)®(t)U: (). (B.4.3)

t—00

(1) Assume that

|(Y2|eD1@(t)91)| < é || B () oo |||| Bri ()41 ],
||B22(t)U2(t)¢”2dt S C||¢||27 QS € 7{7 Z = ]-a - N,

J
1
[Bu@U(¢lPde < Cllgl*, ¢ €Dy, i=1,....n.

Then the limit (B.4.3) ezists.

The proof of (i) is easy and left to the reader. Let us show ().
Let ¢ € Dy, ¢ € H. Then

|(V|U3 (t2)®(t2) Ui (t2)d) — (¥|Us (81)P(t1) Ui (t1) )]
< 2 |(0|U3 () (D1 @(4)) Ui (1)) |dt (B.4.4)
< S0, (52 1By () Ua(0)612at) " (s | By ()T ()82t

Therefore,
U5 (t2)@(t2) Uy (t2)p — Us (t1)@ (1) Us (1) 9|
= ”%51 |(¥|Us (t2)@(t2) Ur(t2)9) — (¥|Us (t1)P(t1) Ur(t1)9)] (B.4.5)

< S, C (2 By (U (08]2ar) .

If we choose T big enough and T < t; < ty, then we can make (B.4.5) arbitrarily
small. This proves the existence of

5— tli)IcI)lo UZ*(t)Q(t)Ul (t)¢7 d) € Db

and hence it implies the existence of (B.4.3). O

B.5 Limits of Unitary Operators

The following lemma describes an argument often used in N-body scattering
theory. Its easy proof is left to the reader.
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Lemma B.5.1
Let U(t) be a family of unitary operators. Let QQ, Qo be a pair of orthogonal
projections. Suppose that there exist

2y :=s— tli)Igj Ut)Qo, 2:=s— tlg(l)lo U*(t)Q.
Let us assume that
Ran{2y C Ran@), Ran{2 C Ran().
Then (2, {2 are partial isometries such that

20 =92, 502 =Qo, 2 =Q.

B.6 Schur’s Lemma

The next classical lemma is known as Schur’s Lemma.

Lemma B.6.1
Let Y, Y" be spaces with measures dy, dp'. Let k(-,-) be a function on'Y XY’ such
that

essupy / k(y,y)|dp’ < C,  essupy. / k(y,y")|dp < C".

Then the operator
K : L3(Y,du) — LAY, dy),

Ku(y) :== [ k(y,y)u(y)dp
1s bounded and

K] < (CC')3.

Proof. We compute
(Kulv) < [|k(y,y")||uy)|lv(y)|dpdy’
< J1EQy, o) |2 [k Cy, y') |7 |u(y) | [o(y") | dpd !

< (J [k (y, o) u(y) Pdpd)? (f [k(y, o)l lo(y) Pdpdp)?
< (CCzlullllv]l,

which proves the lemma. O
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B.7 Compact Operators in L?(IR")

The following criterion for compactness of operators in L?(IR") is often useful.

Proposition B.7.1
Suppose that f,g € L*°(R") and

lim f(z)=0, lim g(¢&)=0.

|z|—00 [€|—00

Then the operator f(x)g(D) is compact.

Proof. Set f,(z) = Npn(|z|)f(z), gn = Tpn([€])g9(&§). Then the Hilbert-
Schmidt norm of f,(z)g,(D) equals

||fn||2||gn||2 < 0.

Hence f,(x)g,(D) are Hilbert-Schmidt operators. But

lim fo(2)gn(D) = f(z)g(D).

n—0o0

Hence f(x)g(D) is compact as the limit of a sequence of compact operators. O
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C. Estimates on Functions of Operators

Suppose that we know the properties of a certain operator A. In this appendix we
will describe how to study the properties of its function f(A). For instance, we
will prove some estimates on the commutator [B, f(A)]. Besides, if the operator
A(s) depends on a parameter s, we will prove some estimates on the derivative
of f(A(s)) with respect to s. Note that the second problem can be viewed as a
generalization of the first. In fact, if we take A(s) := e*ZAe "B then we have

% f(A(s)) = i[B, f(A(s))]-

We will use two approaches to study functions of operators. The first uses
the properties of 4 and the Fourier transform of the function f. The second
uses the properties of the resolvent (z — A)~! and an almost-analytic extension
of f. Both approaches yield similar results. Sometimes we will use the former
approach, sometimes the latter.

It is difficult to determine who first proved similar estimates. We learned
most of them from [SS1], where they were proven using the Fourier transform
method. The commutator expansion lemma was proven in [SS3]. An estimate
similar to that of Lemma C.4.1 played an important role in [SS1]. Its version
with a more careful remainder estimate was a key ingredient of [De8].

The notion of an almost-analytic extension is due to Hérmander [H62, vol I].
It was applied to study functions of operators in [HS].

C.1 Basic Estimates of Commutators

Probably the simplest estimate of [F'(A), B] can be formulated as follows.

Lemma C.1.1
Suppose that A = (Al,..., A") is a vector of commuting self-adjoint operators.
Let B be a self-adjoint operator. Assume that the quadratic form

m ((Ag|B(1 +ieB)™'¢) — (B(1 —ieB)™'¢|A¢)) , 6,4 € D(4), (C.L1)

li
e—0

is well defined and extends to a bounded operator that we call [A, B]. Suppose
that F' = f and f € L'*(R"™). Then
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I (A), BIIl < I NITA, Bl (C.1.2)

Proof. It is enough to assume that B is bounded, because otherwise we can
replace B with B(1 + ieB)™", and then use the limit described in (C.1.1).

Both f and F' are distributions in &'(IR™). Clearly, they can be extended to
test functions that are bounded together with their first derivative. Moreover, if
¢ € Ranllg(A) for some compact @, then ¢ — e%4¢ is bounded together with
all its derivatives. Therefore, we can write the following identity:

F(A)¢ = (21) ™ / F(€)eApde. (C.1.3)

Hence, in the sense of quadratic forms on Ranlg(A), for some compact ©, we
have

[F(A), B] = (21)~" / F(e)ede /0 LA AL Blei-TA Gy (C.1.4)

from which the estimate (C.1.2) follows immediately. O

Sometimes one needs to regularize the commutator [A, B] on the right-hand
side of (C.1.2) by using the inverse of A. Below we give an example of how this
can be done.

Lemma C.1.2
Suppose that f € C§°(IR"™). Then there exists a C that depends on f such that

ILf(A), BIIl < CIlI(1 + 4%)~F, B]|I. (C.1.5)

Proof. We set
flA)=(1+A4%) "A(A) A+ A7)
where f; € C°(IR"). We have
[f(A),B] = (1+4%)7'[f1(4), B](1+ A*)~
+[(1+ A%~ Bl f1(4)(1 + A%)~' + he

The first term on the right of (C.1.6) we treat as in the proof of Lemma C.1.1.
O

(C.1.6)

C.2 Almost-Analytic Extensions

In this section we describe the concept of an almost-analytic extension of a C'*°
function. Such extensions can be used as a tool in estimates on functions of
operators.
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We embed IR in €. We denote the variable of IR by z and the variable of C
by z = x + 1y.

Proposition C.2.1 3
Let f € CP(R). Then there ezist a function f € C§°(C), called an almost-
analytic extension of f, such that

fle=1 |2(2)| < CylImz]¥, NeN. (C.2.1)
Moreover,
of 1 .
flz) = 7 ——(2)(z —x)"dz A dz. (C.2.2)

Proof. Let x € C°(IR) be a cutoff function such that x(z) = 1 for |z| < 1.
Then it is easy to check that, for an appropriate sequence C),, the series

f(z + iy) Z i"or f y_' (C’i) (C.2.3)

converges uniformly with all derivatives. From

af Z n+1 nf

we easily see that f satisfies (C.2.1).
Next we note that the right-hand side of (C.2.2) equals

lim .- [, ( )(z — x)"tdz A dz, (C.2.4)

€—0 27

where C, is the domain
C. :={z€C||lmz| >¢ |z] <c},
for some c¢ large enough. Using Green’s formula, we obtain that (C.2.4) equals

lim 57 = Joc, [(2)(z — 2)7Mdz
o : | (25
=11_I>%%fm(f(/\+ze)()\+ze—a:) — fA—1e)(A —ie — z) " H)d.

Using the fact that [(A\f£ie—2z) 1| < e !, |[f(A£e) — f(N)] < Ce, and Lebesgue’s
dominated convergence theorem, we see that (C.2.5) equals

hm—./ (FOVO +ie — )" = FO)\ — i€ — )"\ = f(2).

e—0 277

This completes the proof of (C.2.2). O
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For p € IR, we denote by S?(IR) the class of functions f in C*°(IR) such that
|0 f(s)] < Cr(s)™*, k>0

Below we show how to construct almost-analytic extensions of functions from

S*(R).

Proposition C.2.2 5
Let f € SP(R) Then there exists f € C§°(C), called an almost-analytic extension
of f, such that

fle=1  1%(2)| < COx(@)NImz|V, NeN,
suppf C {z +iy | [y| < C(x)}

and (C.2.2) is true.

Proof. We easily see that we can choose a sequence C), such that

flevi = e (i)

is well defined. We also have

3= St (o) (- o)

n=0

which yields the desired estimate on ‘g—’; (2). a

C.3 Commutator Expansions I

In this section we prove a version of the commutator expansion lemma (see [SS3]).

Lemma C.3.1
Let A, B two self-adjoint operators with

lad} BJ| < o, j > 1.

Let p > —1 and f € SP(R). Let [p] denote the integral part of p. Then for all
N € IN such that N > [p|, we have

fO(A)ady, B+ Ry (f, A, B),

where
1A+ )" PIRy 1 (f, A, B)|| < en(f)|lad} T B, (C.3.1)
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and the constants cy(f) depend only on a finite number of the semi-norms of f

in SP(IR).

Proof. Our first aim is to show our estimate for —1 < p < 0. In this case, this
estimate is

I(A+ )N Ry.1(f, A, B)|| < ex(f)||ad} ' B]|.

Let f be an almost-analytic extension f of constructed in Proposition C.2.2.

We have
f(A) = gi( Yz — A)7'dz Adz.

So,

[f(A), B] =& [o2(2)(z — A)"ada(B)(z — A)~'dz A dz
g 127 fc ( )(z — A)_j‘ladQ(B)dz/\dz

. (C.3.2)
+L [ A (z)(z — A)"N1adVY(B)(z — A)"'dz A dz
_] 1 lf(j ( )adf‘l(B) + RN-I—l(faAa B)
It is immediate to see that, for [Imz| < ¢(Rez), one has
25411 < O(2) I (€33
Using then the estimates on %Jg(z), we obtain immediately that
||(A+i)N+1RN+1(f,A B)||
<cJ 1214 5E2)] 1 (2 = A)~[[Jad YT (B) |2 A dz (C.3.4)

< onad%“(B)n Je (ﬁ

Imz

N+1
) " (z) 1 kP |Imz[F1dz A dz.

Setting k = N + 2 we obtain that (C.3.4) is less than cy (f)||ad ™ B||. This ends
the proof of the lemma for —1 < p < 0.

Now let P,(s) := (s+1)”. For p = 0,1, ..., by a straightforward computation,
we get
pladY ' B p=N+1,

0 N+1>p. (C.35)

Rni1(P,, A, B) = {

Finally, we consider f, € S? with an arbitrary p > 0. We set p := p—[p] —
[—1,0[ and

fol(s) = P[p]+1(3)fﬁ(3)a
where f; € S?. We have
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Bf,(A) =%, LPY. (A)ad)Bf;(A) + Ry 11 (P, A, B) f5(A)
= Yo Y P (A £ (A)ad) ™ B
+3 oP +1(A)RN+1 i(f5, A, ad) B) + Ry 11 (P41, A, B) f5(A)
= Yo 71f9(A)ad) B + Ry11(f,, A, B)
for
Ry11(f, A, B)
= 015 PY. (A)Ryaa—(f5, A, ad B) + Riv41(Pya1, A, B) f5(A),
Now (A-+i)~W-1+5p9) | (A) is bounded, and (A+i)V*1=9 Ry1_;(f5, A, ad’, B)
can be estimated by C||ad) **B||. Using also (C.3.5), we get (C.3.1). O

Let us state the following consequence of the commutator expansion lemma.

Lemma C.3.2
Let A, B be self-adjoint operators. If f € SP(IR) with p < 1, then

[f(A), B] < C||[A, B]||.
If f € SY(R), then
[f(A4), B] < C||[A, B]|| + C||[A, [A, B]]|.

Proof. We use Lemma C.3.1 with N =0 and N =1 respectively. O

C.4 Commutator Expansions 11

Next we will give yet another version of the commutator expansion with a very
careful remainder estimate.

Lemma C.4.1

Let R > t — B(t) € B(H) be a one parameter family of bounded self-adjoint
operators that is C* in the norm sense. Let F € C*(R) with F' = f?, f €
C(R). Assume that

%B(t) = Ai(t) + Ci(2),
[B(t), A1(t)] = Aa(t) + Ca(2),
[B(1), A2(1)] = C3(2).
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Then there exist C' depending just on f such that

|4FB@®) - £ (B®) A f (B@)| < CUC:® + IC20)]| + T ).

Proof. We have

4F(B() = & [ fy F(s)(—is)e™™B(LB(t))e 1~"sBdrds. (C.4.1)

Up to an error of the order O(]|C}]|), the quantity (C.4.1) equals
=/ Ji F(s)(—is)e B Aje #1-75Bdrds
= £ [F(s)(=is)(e7*P Ay + Aje™F)ds (C.4.2)
+L 00 F(s)(—is)2(1 — 27)e™"™B[B, A ]e~ i1 =")sBdrds.
The first term on the right of (C.4.2) equals
5 (f2(B)A1 + A1 f*(B)) (C43)
= f(B)ALf(B) + 5[£(B), [£(B), Ai]].

We have
1 1. N i1
uwmng/éﬂmﬂm”W&+@mmm%m&

from which we obtain that

ILF(B), [f(B), Adlll € O(ll[£(B), A2]ll) + O([|C2l])
€ O(|Gsl) + O(lIC2l)-

The second term on the right-hand side of (C.4.2) up to a term of order
O([|C2ll) equals
= [ (1 = 27)F(s)(—is)2e B Ape~i0-)sBdrds Ca4)
= L [ [(r — ) E(s)(—is)%e~"P[B, Aye=i1-Bdrds, h

which is of the order O(]|Cs]|)- O
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D. Pseudo-differential and Fourier Integral
Operators

D.0 Introduction

The name “pseudo-differential operators” is usually used in two different (al-
though related) meanings. First, it is used to denote operators on L?*(IR™) defined
by certain integral formulas. The main ingredient of these formulas is a function
that is called the symbol of a pseudo-differential operator, which encodes the
phase space properties of the operator. If we use this meaning, then essentially
all operators on L?(IR") are pseudo-differential operators. This point of view is
taken in Sect. D.1, where we introduce the two most commonly used notions of
the symbol of an operator: the Kohn-Nirenberg symbol and the Weyl symbol.

In Sect. D.2 we introduce the phase space correlation function of an operator,
which is another object used to describe phase space properties of operators.
In the second, probably more common meaning, the word “pseudo-differential
operators” is used to denote some classes of operators that can usually be defined
by describing certain properties of their symbols. There is a large variety of such
classes, some of them are very useful in partial differential equations, others are
less known.

Probably the most natural class of pseudo-differential operators is the algebra
associated with the constant metric, which we denote by

W(l, d.’132 + d€2) = W(l, gO)'

(In the literature it often appears under the name ¥Q). Its symbols belong to
the algebra of functions with all bounded derivatives, which we denote

S(1,da* + d€?) = S(1, 9o)-

(In the literature it often appears under the name S3,). The algebra ¥ (1, go) has
very elegant properties, for instance, it is invariant with respect to the metaplectic
group. From the point of view of applications, however, it has a big disadvantage
— it does not possess a “small parameter” (a “Planck constant”), and therefore
does not have an asymptotic calculus, which is so useful in practice. Nevertheless,
in Chap. 3 we use this class of pseudo-differential operators. We describe the
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properties of symbols and operators associated with the constant metric in Sects.
D.3 and D.4 respectively.

The simplest way to introduce a “Planck constant” to pseudo-differential
operators is to make the operators depend on a parameter. This formalism, useful
in Chap. 3, is presented in Sect. D.5. It is essentially a reformulation of the results
of the preceding section.

A more refined way to introduce a “Planck constant” is to use classes of
pseudo-differential operators associated with certain non-uniform metrics. There
is a wide variety of such classes. The classes of operators that we need in Chap.
4 are

U((z)™, () *da’® + d€%) = ¥((2)™, 91).
They have symbols that belong to

S({@)™, (z)?da’ + dg?) = S((z)™, g1).

In this class, the quantity (z)~' serves as a small parameter.

This class is probably the most popular in applications in the literature on
partial differential equations, where it is denoted by ¥, and the roles of z and
& are usually switched. Basic properties of symbols in S({z)™, ¢;) and of the
operators in ¥ ((z)™, g1) follow easily from similar properties concerning the case
of the uniform metric. They are described in Sects. D.7 and D.8.

Because of the asymptotic calculus, we can sometimes look at operators of
U ({x)™, g1) locally in phase space. Such concepts are developed in Sects. D.9 and
D.10.

Properties of functions of pseudo-differential operators are studied in Sect.
D.11.

In Sect. D.12 we use the so-called non-stationary phase method to describe
some simple bounds on certain Fourier integral operators.

Sometimes it is convenient to approximate an operator with an integral ex-
pression that goes under the name of Fourier integral operators (FIO’s). This
happens especially when we consider the evolution generated by a self-adjoint
operator. The last three sections are devoted to the results about FIO’s that
are needed in Chaps. 3 and 4. In Sect. D.13 we describe a class of FIO’s whose
amplitude and the second derivative of the phase belong to S(1, go). This class
of FIO’s seems very natural. For instance, generically, elements of the metaplec-
tic group belong to this class. Nevertheless, because of the absence of a small
parameter, this class does not seem to be widely used in the literature. One can
introduce a “Planck constant” by introducing a parameter, as we do in Sect.
D.14. In Sect. D.15 we study FIO’s whose amplitudes belong to S({z)™, g;) and
the second derivative of phases belong to S(1, g1). Note that, in the literature, a
similar class is the most commonly used.

References about pseudo-differential operators include [H62, vol. III] and [Ta,
Tre, Ro, BoCh]. Properties of functions of operators similar to those described
in Proposition D.11.4 where proven in [SS1]. Fourier integral operators similar
to those considered in Sect. D.13 were probably first considered in [AF, Ful,
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Fu2|. Fourier integral operators with amplitudes in S({x)™, ¢g1) considered in the
literature usually have phases homogeneous with respect to one of the variables
(see [H62, vol IV]). Fourier integral operators similar to those considered in Sect.
D.15 were also considered, for example, in [Kib, Ki4, KiK, KiYal, KiYa2, Ya3|.

D.1 Symbols of Operators

Let §'(X)®8'(X) denote the space of sesquilinear forms on the space of Schwartz
test functions S(X). We will view &'(X) ® §'(X) as a kind of an extension of
the set of linear operators on L?(X). We will treat all the elements of this space
as “pseudo-differential operators” and we will define their symbols. Note that,
by Schwartz’s kernel theorem (see e.g. [RS, vol I]), elements of this set can be
defined by a kernel K € §'(X x X) with help of the following equation:

(846) = [ [ K(@,)d()(y)dzdy.

Let A € S8'(X) ® §'(X). Then we say that a; € &'(X x X') is the Kohn-
Nirenberg symbol of A if, for any ¢, ¢ € §(X),

(6|A) = (21)" / a1 (z, €)B () (y)d @8 dzdedy. (D.1.1)

We will write
A = ay(z, D). (D.1.2)

We say that as € §'(X x X') is the Weyl symbol of A if, for any ¢, € S(X),

(8l4v) = 2m) " [ o (xzﬂ,g) b(x)v(y)el=E) dzdedy. (D.1.3)
We will write
A =aj(z, D). (D.1.4)

Using basic properties of the Fourier transform on §'(X x X') and Schwartz’s
kernel theorem, we easily see that every element of S'(X) ® S'(X) possesses a
unique Kohn-Nirenberg symbol and a unique Weyl symbol. Conversely, with
any symbol in §'(X x X'), we can associate a unique Kohn-Nirenberg pseudo-
differential operator and a unique Weyl pseudo-differential operator.

The following well known identity [H61] allows one to go from the Kohn-
Nirenberg symbol to the Weyl symbol:

%(DwaD§)

€ a] = Q9. (D15)

Note that (D.1.5) makes sense for symbols in &'(X x X').
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D.2 Phase Space Correlation Functions

Properties of operators on L?(X) are closely related to the symplectic structure
of the vector space X x X'. The symplectic form is defined as

oY, Y') =y, n) — (v, ),

where Y = (y,n) and Y' = (y', ') are elements of X x X'. The Euclidean metric
on X induces a natural Euclidean metric on X x X' given by

Y? = [y]>+ [n]”.
It is also useful to introduce the notation
== (z,D)

for a vector of self-adjoint operators acting on L?(X).
Let ¢9 € L?*(X) be the ground state of the harmonic oscillator D? + z%:

do(x) 1= 7 "7,

For Y = (y,n) € X x X', we define the family of coherent states:
by (z) = m /e zley) Fileymtsiym)
— eill@m) (D) g = ¢ir(VE) gy
Define the following families of operators:
Py :=|oy)(oy], Y € X x X',
Pyiy = |¢y)(dy], Y,V € X x X'.

In other words, Py are the orthogonal projections onto ¢y and Py y are the rank
one operators with the Schwartz kernel ¢y (z) @ ¢y (2'). Clearly, Pyy = Py. It
is useful to know the Weyl symbols of those operators:

Py =p¥(z,D), py(Z)=2re YV

(g (xxY!
PY’Y =p$,,y(x,D), pY’,Y(Z) — 2ne—i%U(Y,Y')eia(Z,Y'_Y)e (Z ( Pl )) )

Note that py (7) is called the Wigner function of ¢y. Note the following property
of coherent states:

(810) = [(8IPrb)aY. (D.2.1)

Let us now define the following linear mapping;:
W LX) — L*(X x X')
= Wy(Y) = (oyv[¥).
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Let us note the following immediate properties of W:

('L) (ﬂ’l‘%) = (W1/11‘W¢2),

(D.2.2)
(1) W(D +izx) = (y + in)W.

Let us observe that 1 € S(X) if and only if (1 + Y?)*Wy € L*(X x X') for all
k € IN. This follows directly from (D.2.2) and from the fact that ¢ € S(X) if

and only if (2% + D?)*¥y € L*(X) for all k € IN.
For an operator A € §'(X) ® §'(X), we define the phase space correlation

function of A by

Wa(Y,Y") := (v |Ady) . (D.2.3)

Note that W, is equal to the distribution kernel of W AW™:
(V|WAW*U) = / WA(Y, YUYV (Y')YdY', U,V € L*(X x X').

An elementary computation shows that if a € §'(X x X') and A = a¥(z, D),
then

Wa(Y,Y') = /X _ alZ)pr(2)dZ, (D.2.4)
a(Z) = / Wa(Y, Y )pyy(Z)dYdY". (D.2.5)

D.3 Symbols Associated with a Uniform Metric

Definition D.3.1
Let Y be a Euclidean space with a metric dy?. We define

S(1,dy?) = {a(y) € C*(Y)|97a(y)| < Ca}.

S(1,dy?) is a Fréchet space with a family of semi-norms

[Bllay.y = > 110 blloo-

\al<N

(The space S(dy?) itself does not depend on the scalar product in Y, but the
family of semi-norms || - ||g,2,n does).
Let us describe a number of properties of S(1,dy?).

Proposition D.3.2

Let a € S(1,dy?).

(i) If b € S(1,dy?), then ba € S(1,dy?).
(i1) 0%a € S(1,dy?).
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(iii) If Q(-) is a quadratic form on Y, then e’ 9(Pv)q € S(1,dy?).
(iv) Let Yy be a vector space and j : Yo — Y a linear embedding, then a(j(-)) €
S(1, dyg).-
(v) Let mq,....my e R, Y =Y, @ ...0 Y5, and let Q(-) be a quadratic form on
Y. Then

(yn)™ . (ye) ™ P ()T () "™ a € S(1,dy?).

Proof. (i), (ii) and (iv) are obvious. (iii) follows from Lemma D.3.3 below.

Let us show (v). We can assume that ms,...,m; > 0 and myq,...,my < 0.
It is enough to consider the case m/2,...,my/2 € Z, and then to use the
interpolation.

Set A; = (V,Q, D,). We can write

(y1)™ - - - {ype)™e e @Pu) (y )7L (g )
= (yugpr)™+ - (g™t QP (g + Ay (g AY™(yn) T () T

Then we commute (y; ;1) "™+ - - - (y,) "™ to the right. Eventually we get a linear
combination of terms of the form

<yl+1>ml+1yaz+1Al’3ri1 - <yk>mkyakA£keiQ(Dy)<y1>—m1ya1A{3’1 . (yl)_m’yalAlﬂ’

where |a;| < m;. Then we use the fact that @) A% and (y;)~I™ly® are
bounded on S(1,dy?). O

Lemma D.3.3
Let R(y) be a non-degenerate quadratic form on'Y . Let a € S(Y'). Then for some
N,

| J e Wa(y)dy| < llallaye,n- (D.3.1)

Proof. It is enough to assume that Y = IR and R(y) = y*. Consider the operator
L defined as

(Lh)(y) = (1 + 247 (—iyL +1) b(y).

72 72
Then Le" =e"" | and hence

J e a(y)dy = [(£% )a(y)dy = [ ('£)*a(y)dy, (D.3.2)
where
Lh(y) = (iLy+1) (14252 'b(y).
But
(tL)%a(y)| < Cly) 2
Hence the integral (D.3.2) is finite. O
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D.4 Pseudo-differential Operators Associated with a
Uniform Metric

In this section a special role will be played by the class of symbols
S(1,da? +dé?) == {a € C®(X x X') | |020Fa(2,€)| < Cayp, B € N"}
Since we will often use this class it is convenient to introduce the notation
go = dz? + d&%

Pseudo-differential operators associated with the class of symbols S(1, go) can
be characterized in several equivalent ways, which are described in the following
theorem.

Theorem D.4.1
Let A€ §'(X)® S'(X). The following statements are equivalent:
(1) Wa(Y,Y") satisfies

(Wa(Y,Y')| S OY =Y) %, ke N;
(11) A is an operator on L*(X) such that
ad®ad?(A4) € B(L*(X)), a,f € IN";
(#ii) the operator A is of the form
A=a"(z,D), a€S(1,q);
(iv) the operator A is of the form

A=qa(z,D), a€ S(1,g);

The set of operators satisfying any of the above conditions will be called
¥ (1,g0). It is a Fréchet space with the family of semi-norms

[Allgo,y == > [ladpadiAl.
o[ IB1<N

Note that, in the literature, the properties (ii7) or (iv) are usually used to
define this class. The implications (#i1)=-(4i) and (iv)=>(ii) are essentially equiva-
lent to the Calderon-Vaillancourt theorem (see [CV, Ta] and [H62, vol I1I]). The
implications (4i)=>(iit) and (ii)=(iv) go under the name of the Beals criterion
(see [Bea]). The characterization (i) is due to Unterberger [Un].
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Proof of Theorem D.4.1. We will only prove that (i), (ii) and (i) are equiva-

lent. The fact that (74i) and (iv) are equivalent follows immediately from (D.1.5)
and Proposition D.3.2 (7).

(i1i) = (i): Let a € S(X x X'). Using (D.2.4), the identity

(1 + D%)eia(Z,Y’—Y) — (1 + |Y _ Y/‘Q)eia(Z,Y’—Y)

Y

and integrating by parts in (D.2.4), we see that property (i) is satisfied.

(i) = (iii): Using the decay of 0%py,y+(Z) and of W4 (Y, Y"), we deduce from
(D.2.5) that a € S(1, go)-

(i) = (ii): By a direct computation, we see that

(—iad,)%(—iadp)Pa”(z, D) = (—1)W|8§“85aw (z, D). (D.4.1)

Hence it suffices to show that if a € S(1, gy), then a%(z, D) € B(L*(X)). For
1,99 € S(X), using (D.2.5), we obtain

(Y1la™ (x, D)pa) = / Wa(Y, Y YWty (Y)Wehy(Y')dY dY".

It follows from condition (i) that the kernel W4 (-, -) satisfies the hypotheses of
Schur’s lemma (see Lemma B.6.1). So we have

\(1h1|a™ (z, D)pa)| < ClWabL||[|[Wape|| = C||11]]||22]|s

which proves that a%(z, D) € B(L*(X)).
(i) = (i): Recall that = denotes the (vector-valued) operator (z, D). For
Ae S (X)®S(X), we have

Y'-Y)A=[5,A+AE-Y)— (E-Y)A. (D.4.2)
Iterating this identity, we obtain
Y'—-Y)~
= ¥  Cl)(E-Y)(ad®A) (5 -Y)*®, acN™,

ajtoaztas=a

(D.4.3)

Let now A such that ad2A € B(L?(X)) for all @ € IN*". We observe that
(2 =Y)%y]|| < Ca, @ € N*". (D.4.4)
So, by (D.4.3), we get
(Y = Y")*(¢y, Apy)| < Ca, € N",

which proves that property (i) holds. O

It follows from the proof of Theorem D.4.1 that there exists M depending
just on the dimension of X such that, for any N,
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la(z, D)llgo,v < Cnllallgo, s,

la* (2, D)llgo,v < Cnllallgo, v, (D.-4.5)

lallgo,n < Cnllalz, D)llgo, w4,

lallgo,n < Cnlla™ (@, D)llgo,n+1-

Sometimes one encounters operators defined as follows.

Proposition D.4.2
Let b(x1,22,€) € S(1,dz? + dz3 + d&?). Then the operator

Ag(an) = @m) ™ [ [ =0y, 15, €)6 (22 dedr, (D.4.6)
belongs to W(1, gy). Moreover, A = a®(x, D), where

(D.4.7)

T:=r1=22

The class ¥(1, go) is closed with respect to the multiplication.

Proposition D.4.3
(i) Let A, B € ¥(1,q0). Then C := AB also belongs to ¥(1, g).
(i) If, moreover, A = a"(z,D), B = b*(z,D) and C = ¢“(z, D), then

c(z,§) = e%((DE,DnHDy,Dg))a(x’ )by, n)| (D.4.8)

z=y,§=n"

(i11) If, moreover, A = a(z,D), B = b(z, D) and C = ¢(z, D), then

c(w, &) = PP (z, )by, n)|,_, e (D.4.9)

Proof. (i) follows immediately from the Beals criterion. (i) and (%ii) follow by
explicit calculations. O

Propositions D.4.4 and D.4.5 are easy consequences of (D.4.8) or (D.4.9) and
Proposition D.3.2 (4ii). Note that the constants C' and N in Propositions D.4.4
and D.4.5 and Theorem D.4.6 depend just on the dimension of X.

Proposition D.4.4
There exist C and N such that

||I[A1, As]|]
< Cl|[z, Al

|[D; Aa]llgo.x + CILD; A]llgo, v | [, Az]llgo, -

g0,N
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It is often useful to know that, in a certain sense, the symbol of the product of
two pseudo-differential operators is approximately equal to the product of their
symbols.

Proposition D.4.5
There exist C and N such that

||CLW(.’L‘, D)bw(.I, D) + bw(LE, D)CLW(LE, D) - 2(ab)w($, D)“
< CONIV3 ¢allgo, v VZ ¢l go, -

The following theorem is a version of the so-called sharp G(R)ardinginequality.

Theorem D.4.6
There exist C and N such that if

a(z,£) > 0,

then
a¥(x,D) > —C||V3 cal|go,n- (D.4.10)

Proof. We will use the coherent states ¢y and the corresponding projections
Py introduced in Sect. D.2. Set

A= (2m)™ / a(Y)PydY. (D.4.11)

The Weyl symbol of A equals the convolution (2m) ™a * po. Now,
(@ = (2m)a*po)(Z) = (2m)™" [po(Y)(a(Z) —a(Z - Y))dY
= 2m)" [po(V)} i (Y)?V5a(Z — 7Y )drdY.

Hence, for some N, 5
1A = a"(z, D) < [V allgo- (DA4.12)

Now the theorem follows from (D.4.12) and the positivity of (D.4.11). O

Suppose that 7, is the operator of dilations defined by
(T;6)(x) = r=2¢(r~"a).
Then it is easy to see that
T,a(z,D)T , = a(rz,r D), (D.4.13)

T,a"(z,D)T_, = a"(rz,7 ' D). (D.4.14)
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(Note that in the case of Weyl symbols a similar covariance of symbols is true
for a much larger group called the metaplectic group).
Functions of operators in ¥(1, go) often belong to the same class.

Proposition D.4.7
(i) Let A be a closed operator. We consider o(A) as a subset of the Riemann
sphere CU {oo} by adding co to o(A) if A is unbounded.

Let 29 € C, 2y & o(A) and (z — A)™' € ¥(1,90). Let f be a function holo-
morphic on the neighborhood of 0(A) in CU {oc}. Then f(A) € ¥(1, go).
(i1) If A is, in addition, self-adjoint, and f is a C§° function on o(A), then

f(A) € ¥(1, go)-

Proof. First we check by the Beals criterion that if B € ¥(1,gy) and B is
invertible, then B~! € ¥(1, gy).
Let z & 0(A). We have

-1

(2= A) "= (20— A) " (1= (20— 2)(20 — A) )

Hence (20 — A)~! € ¥(1, go) implies (z — A) ™' € ¥(1, go)-
Consider now a function f holomorphic on a neighborhood of ¢(A). Clearly,

FA) = 5 [ 1) - 4) T,

where the contour 7 encloses o(A) in €U {oo}. This proves (i).
To show (i), we use

7(4) = 5= [ 8:7(2) e - )z A ds,

where f is an almost-analytic extension of f and the Beals criterion. O

D.5 Symbols and Operators Depending on a Parameter

Now we would like to consider symbols and operators that depend on a parameter
t. Suppose that f(t), c;(t) and c¢(t) are some non-negative functions. We define
a Euclidean metric on X x X' that depends on a parameter t:

g(t) == ci(t)da® + ¢ (t)de>.

The spaces S(f(t),g(t)), S(o(f(t)),g(t)) and L*(f(t)dt, S(g(t)) are defined to
be the spaces of functions
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t—a(t,r,§) € C°(X x X')

such that
030F alt, 2, )| < Capf (D! (el (1), @, €T,
020 alt,z,€) € o(f (1)) (W)c (1), o, BN,
g 0fa(t, z,)f (t)e,® (D" (1) € L}(dt), o, f €N,
respectively.

Similarly, we define the algebras W (f(t),g(t)), ¥(o(f(t)),g(t)) and
LY(f(t)dt,¥(g(t))) to be the spaces of operator-valued functions

t — A(t) € B(L*(X))

such that
ladbadA(t)[| < Capf(t)cl()ef (1), a,B € N,
lad$ad?A(t)]| € o(f ()l (t)cf (), a,8 €N,
lad$adA(®)[|f (t)e; 1 (t)eg *\(t) € L'(dE), o, B € N",
respectively.

In applications to scattering theory described in Chap. 3, a special role will
be played by the metric

go(t) := (t)2dx? + d€>.

The number ¢, (t)ce(t) has the interpretation of the “effective Planck con-
stant”. The following proposition can serve as an alternative definition of the
algebras defined above if this Planck constant is bounded.

Proposition D.5.1
Suppose that
cx(t)ee(t) < C. (D.5.1)

Then W (f(t),q(t)), T(o(f(t)),g(t)) and L(f(t)dt,¥(g(t)) are the sets of operat-
or-valued functions
t—a"(t,z, D)

such that a € S(f(t),g(t)), a € S(o(f(t)),9(t)) and a € L'(f(t)dt,S(g(t)))

respectively.

Proof. If both c,(t) and c¢(t) are bounded, then the proposition follows imme-
diately from Theorem D.4.1 and (D.4.1).

If not, we conjugate our operators and symbols with a t-dependent generator
of dilations 7} (t), where we take

r(t) == c. P (t)ck?(1). (D.5.2)
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By (D.4.14), the metric becomes ¢, (t)ce(t)dz? + ¢, (t)ce(t)d€2. Thus the coeffi-
cients in the metric become bounded. Now we can apply Theorem D.4.1. O

If
Ai(t) € (fi(t), 9(t), i=1,2,

then it is easy to see that

A8 As(t) € U(F (1) Fo(8), 9(1)), (D.5.3)

and
[A1(2), A2()] € T (f1(2) fo(t)ea(t)ce(t), 9(1)), (D.5.4)

To show (D.5.3), it is enough to use the definition of ¥ (the “Beals criterion”).
(D.5.4) is much deeper — one needs to use, for example, (D.4.8).

Sometimes it is possible to improve (D.5.4). Namely, the following fact follows
from the proof of Proposition D.4.4.

Proposition D.5.2
Suppose that

[, 4,(1)] € P(fiD)ee(t), 9(1)), i=1,2,
[D, Ai(t)] € P(fi(t)ea(t), 9(2)), i =1,2.

Then
[A1 (), Ao (t)] € T(f1(t) fa(t)co(t)ce(t), g(1))- (D.5.5)

Below we give a consequence of the proof of Proposition D.4.5.

Proposition D.5.3
Let a; € S(fi(t),9(t)), i =1,2. Then

ay (t,x, D)ay (t,x, D) + a3 (t, z, D)ay (t, z, D) — 2(ayas)" (¢, z, D)
belongs to W(f1(t) f2(t)ca(t)ci(t), g(t)).

Finally, Theorem D.4.10 and conjugating with ¢-dependent dilations can be
used to obtain the following version of the sharp G(R)ardinginequality.

Proposition D.5.4
Let a € S(f(t),g(t)) and
a(t,z,&) > 0.

Then
a"(x, D) > —C f(t)ca(t)ce(t).
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D.6 Weighted Spaces

Pseudo-differential operators are intimately related with various weighted Hilbert
spaces, such as

(@)"L*(X) ={¢ € D'(X) | (z) "¢ € L*(X)}.

The following lemma gives a criterion for the boundedness of operators on
(@)™ L*(X).

Lemma D.6.1
Suppose that A is an operator on L?(X). Then the condition (D.6.1) is equivalent
to (D.6.2):

(adgA)(z) 1*l € B(L*(X)), a€N",
(D.6.1)
(z)~*l(ad®A) € B(L*(X)). a € N
For any s € R, the operator (x)*A{x)~* is bounded. (D.6.2)

Moreover, for any n € IN,

[(z)" Ax) ™| < Cu 37 Il(adgA)(z) 1.

la|<n

Proof. It is easy to see that (D.6.2) implies (D.6.1).
Assume (D.6.1). We will show that (D.6.2) is true for s = n € IN. Clearly,

()" Adz) "|1* = [[{z) " A (@)™ Az) "]].

Recall that (z)?" = (1 + z2)". We commute n copies of z through A* to the left
and n copies of x through A to the right, and we get

[(@) A @) A2y < Y Capli(z)@ad2 A%|[[|ad? Adz) 7.

\al,|8|<n

D.7 Symbols Associated with some Non-Uniform Metrics

Let us consider a certain class of symbols associated with non uniform metrics.

Definition D.7.1

LetY = Y1®- - @Yy, 01,...,0, € R and let w(y) be a positive function. The space

dy?

S (w(y), % +- 4 @éﬁ> is the Fréchet space of functions a(y) € C*(Y)

such that
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1090 - 0%a(yr, ..., yk)| < Cowlyr, -, ye) () 70 () Tl o € INTE,

Let us list some properties of these spaces:

Proposition D.7.2

mi1 my, _dy; % dy
Letae S (<y1> ... <yk> k <y13>/251 4+ -4 —k(yk?;zak—> .

(i) We have

_ _ dy? dy?
83711 .. -5§k’°a(y1, LYk €S (<y1>m1 dilasl .., {yp)™ Ok | <y11)/%61 R ﬁ%) ]

(i) Let & = min{6y,8,} > 0 and a(J,vs, - -, yx) = a(§, 9, ys, - - -, y). Then

~ ~ . d42 dy?2 d 2
ae S (@) ), A+ M ),

(#ii) Let Q(-) be a quadratic form on'Y' and 61,...,6, > 0. Then

2

. 2
eQPy)g € § ((yl)ml s (yR)™, %{ Tt ot d?ﬁ“ k) .

Proof. (i) and (i) are straightforward.
Let us show (iii). Set b := e'@(Pv)g. We write

(y)~mrtlealor <yk>—mk+|ak|5ka;‘11 SO0 b
— <y1>—m1+\a1|51 e <yk>_mk+|ak|5keiQ(Dy)<y1)m1_|a1|‘51 e <yk>mk—\ak|5k

X (yp ) ~mtlealdn . <yk>*mk+‘0‘k|5ka;1 .- 0%kq,

Clearly, the expression on the last line belongs to S(1, dy?). By Proposition D.3.2
(v), the operator on the second line is bounded on S(1,dy?). Therefore, the above
function belongs to S(1,dy?) and, in particular, is bounded. a

D.8 Pseudo-differential Operators Associated with
the Metric g,

Set
g1 := () 2da? + d&>.

Define the Poisson bracket as

{a'la CLQ}(.T, 6) = azal(%f)agaz(%f) - 8§a1($,€)8za2(x,§).
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In this section we describe basic properties of pseudo-differential operators with
symbols in S({(x)™, g1). First note that the family of spaces S((z)™, ¢;) forms a
graded algebra with respect to the multiplication and a graded Lie algebra with
respect to the Poisson bracket, as explained in the following proposition.

Proposition D.8.1
If a; € S({z)™,¢g1), 1 = 1,2, then ajas € S({z)™ ™2 g;) and {ai,as} €
S({z)ym+m=t g;).

The following theorem describes several equivalent definitions of quantized
analogs of S({x)™, ¢1).

Theorem D.8.2
The following conditions are equivalent.
(1) A is an operator on L*(X) such that

(z)~™Had%ad’ A € B(I2(X)), «,f € N

(i1)) A =a"(xz,D) with a € S({x)™, g1).
(111) A = a(z, D) with a € S({x)™, g1).

Proof. Fix o, € IN". (i) implies
(z) ™Hladad?A € U(1, go). (D.8.1)
By Theorem D.4.1 and (D.8.1), if A = a(z, D), then
()™ 030 alx,€)| < Cap-
This shows (i) = (4ii).
(i) implies
(z) ™Hlg2 0l a(z, €) € S(1, go). (D.8.2)
By Theorem D.4.1, it follows from (D.8.1) that
(z) ™Had%ad’ A € B(L*(X)).

This shows (i) = (7).
Formula (D.1.5) and the boundedness of e**P=P¢) on S({x)™, g;) (Proposi-
tion D.7.2 (7)) show the equivalence of (i) and (ii). O

Definition D.8.3

The set of operators satisfying one, and hence all of the above conditions is
denoted W({x)™, g1). It is called the set of pseudo-differential operators associated
with the metric g, and the weight (x)™.
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Let us describe the relationship between various symbols of the same opera-
tor.

Proposition D.8.4
Let a(z,&) € S{z)™, g1), and a“(x, D) = a(x, D). Then (D.1.5) is true, and

i(5,) = 32 53D, De)Valr,€) € S(@)" " g0) (D.8.3)

Proof. To show (D.8.3), we note the following consequence of (D.1.5):

a(x,8) = 0o 1(3(Ds, De)Va(z, ) + Jy Zre™3PoPe) (1 Dy, De))*Ha(x, £)dr
and we use the fact that
({(Dg, De))"*a(z,€) € S((z)™ ", g1)

and e75(P=:P) maps S((z)™ "1, ;) into itself. O

It will follow from the following proposition that the family ¥ ({(z)™, g;) forms
a graded algebra with respect to multiplication, and a graded Lie algebra with
respect to the commutator.

Proposition D.8.5
(i) If A; € U({(x)™ g1), i = 1,2, then

A1A2 S W(<$>m1+m2’ 91), (D84)

[A1, Ay) € U({z)™Fm21 g)). (D.8.5)

(i) If, moreover, A; = a} (z, D) and A = o™ (z, D), then (D.4.8) is true, and

a(z,§)

= % (5((Dsy, De)) = (Day D) (a, €)an (02, &) ,_, - (D86)
J: )
§=6=41
belongs to S({z)y™+mz—n-1 g,).
(#3) If, moreover, A; = a;(x, D), A = a(x, D), then (D.4.9) is true, and
J;)ﬁ (Dayy Dey)) ar (21, &1)as (2, &2) o—zy, (D.8.7)
§=6=61

belongs to S({z)ymtm2—n=1 g
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Proof. The property (D.8.4) follows easily from the Beals criterion (Theorem
D.8.2 (ii)). In order to show the other statements of (i), one has to use the
symbolic calculus described either in (%) or in (%ii). O

Occasionally one is confronted with operators given by the expressions de-
scribed in the following propositions.

Proposition D.8.6
Let
b(z1, 2o, &) € S({w1)™ (32)™2 (), (1) 72da? + (xo)2dal + dE?).
Then the operator A defined in (D.4.6) belongs to W({x)™*™2 g;). Moreover,
A =a"(x,D), where a is given by (D.4.7), and

\gE]

a(xaé‘) - ll(%(<st1a D§> + <D$2’ D§>))jb('x1’x2’§) (D-8-8)

j 0 T=T1=T2

belongs to S({z)m™+mz=n=1 g,).

D.9 Essential Support of Pseudo-differential Operators

Definition D.9.1
Let a(z,§) € C°(X x X') and I’ C X x X'. Then we say that a € S({x)~>) on
rif

070fa(2,6)| < Capn(@) ™, a,BeN", NeN, (#,§€l

A subset I' C X x X' is called conical if (z,€) € I' and ¢t > 0 implies
(tz, &) € I

Let I' € X x X' be conical. Then we define the e—neighborhood of I" as
follows:

Ie:= {x,§ € X x X' : 3, ,cr such that

Z-dl<e |E—nl<e}.

Note that I'¢ is also conical.
The lemma below gives a partial justification why conical sets are useful.

Proposition D.9.2

For any conical set I' € X x X', there exists a function J € S(1, 1) such that
J € S({x)~>) outside I'* and J —1 € S({x)~>°) on I'. More precisely, for any
0 < Ry < Ry, we can guarantee that suppJ C I''\B(R;) x X' and J =1 on
I\B(R,) x X

Proof. Let S be the unit sphere in X. Let .Jy be the characteristic function of
I'nSx X"in S x X'. We smooth it out by convolving with a C§° function of a
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sufficiently small support. Then we extend it by homogeneity to X x X'. Finally,
we smooth it out in a neighborhood of {0} x X'. O

Lemma D.9.3
Let a; € S((x)™, g1), 1 € IN, and (m;);ew o strictly decreasing sequence of real
numbers. Then there exists a symbol a € S({x)™, (z) 2dz?® + d&?) such that

N
a— Z a; € S{x)™N+ ).
i=0

Ifa; € S{z) ) on I' C X x X', then a € S({x)~>) on I.

Proof. Let x € C§°(X) such that x = 1 on a neighborhood of zero. Then we

can set -
x
a(xaé-) = Z (1 - X (6)) a’i(‘x:f)
i=1 i
for an appropriate sequence of C; (see [H62, Prop. 18.1.3]). O

In some cases, one can say that pseudo-differential operators are very small
in I' C X x X'. This idea is the content of the following proposition.

Proposition D.9.4
IfAev({(z)™ q1), [ C X x X', and

A=a"(z,D) =a(z,D),
then a € S((z)=>) on I' if and only if a € S({(x)~>°) on I.

Proof. The proposition follows from equation (D.8.3), if we note that n can be
taken arbitrarily big and, for any 7,

({Dg, Dg))a(z,€) € S((z)™) on I.

Definition D.9.5
In the situation described in Proposition D.9.4, we will say that A € W({(z)~>°)
on . If ' = X x X', then we will simply say that A € ¥({(z)~>).

Proposition D.9.6
If A, € ()™, q1), [ C X x X' and A; € U({z) ) on [}, then A1Ay €
U((x)=>) on 1 U I5.

Proof. The proposition follows from (D.8.7) with an arbitrary n, if we note
that, for any 7,
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(i{Day, De,)) a1 (21, 1) 2 (22, &2) € S{z)™™) on I7U .

T=T2=11,
£§=&=4

|
Proposition D.9.7
Let '€ X x X',
b(w1,9,€) € S({w1)™ (w2)™2, (1) ~2da} + (w2) 2da} + d€?), and

‘6;1118;1228§b($,$,§)| S 006,/3,]\/<‘T>_N7 (‘T’f) € Fa a, Ckz,ﬁ € mn: N e N

Let A be given by (D.4.6). Then A € S({x)~*°) on I
Proof. We use the expansion (D.8.8). O

D.10 Ellipticity

Definition D.10.1
LetmeR and I' C X x X'. Let a € S((z)™, g1). We say that a is elliptic on I’
iff there exist R > 0 and Cy > 0 such that

la(z,§)| = Colx)™,  (2,€) € I\(B(R) x X').

Proposition D.10.2
LetmeR and I' C X x X' and A € U((x)™, g1). Suppose that

A=a"(z,D)=a(zx,D).

Then a is elliptic on I' iff a s elliptic on I'.

Proof. We use the fact that |a(z, &) — a(z, &)| < C{x)™ . 0

Definition D.10.3
We say that A is elliptic on I' iff the conditions of the above proposition are
satisfied.

Proposition D.10.4
If A; e U ({(x)™, g1), I} C X x X', and A; is elliptic on I}, then Ay A, is elliptic
on 17N I5.

Proposition D.10.5
Let ' C X x X',
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b(z1,22,8) € S((z1)™ (22)™2, (1) 2d] + (x2) >dz3+dE?) and, for some Co > 0
and R,

|b(z, 2, &) > (x)™*™, (2,§) € T'\(B(R) x X).
Let A be given by (D.4.6). Then A is elliptic on I.

Proposition D.10.6

Suppose that I' is a conical subset of X x X' and € > 0. Let A € ¥({z)™, g1)
be elliptic on I'“. Let B € ¥(1,¢1) and B € ¥({x)~*°) outside of I'. Then there
erist C € U({x) ™™, ¢g1), C € U({x)">®) on I, and R_,, € ¥({x)~ ) such that

B=CA+R .

Proof. Let
A=a"(z,D), B="0bj(z,D).

Suppose that
la(z, )| > Col2)™, (2,€) € I\B(R) x X".

Let ¢ € S(1, ¢1) be such that ¢ = 1 on I'\B(2R) x X' and suppq C '\ B(R) x X".
We set

co(2,€) = q(z,bo(w,§)a (2, ).

Then
CBV(CC’D)GW(:U’D) - bg(x’D) = bY(an)

with b € S({z)™1, 1) and b; € S((z)~*°) outside of I'. Then we set
ci(@,€) = gz, §)bi(x,€)a™ (2, €).

We continue this way, and we obtain ¢; € S({(z)™™7,¢;) and b; € S((z)™?, 1)
such that

(c§(z,D)+ -+ ¢} (z,D))a"(x, D) — by (x, D) = by 1 (z, D)

Using Lemma D.9.3, we define ¢(z, &) such that

=2 ci(@,€) € S((z)™" " g).

Jj=1

We set C := ¢¥(z, D). O
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D.11 Functional Calculus for Pseudo-differential
Operators Associated with the Metric g,

Let us study functions of pseudo-differential operators. We begin with the inverse.

Lemma D.11.1
Let A € W(1,g91) such that A is invertible in B(L*(X)). Then A" € ¥(1,¢g1).

Moreover, if we define the semi-norms

my(B) = sup ||(z)/"ladad),B]|,
o +|B]<n

then for any N, there exist constants Cy, N1, M such that
my(A7Y) < Comu, (4)[[A7HM.

Proof. Clearly, ad®ad} A~" is a linear combination of terms
Al (ad®ad? A)A~ .. A M (ad%ad ) A

such that o = a; +--- =y, =01 + - -- + ;- Then we use Theorem D.8.2 (i)
and Lemma D.6.1. O

Proposition D.11.2

(1) Suppose that A is a closed operator, (zo— A)~" € U(1, g1) for some zy & o(A)
and f is holomorphic on a neighborhood of o(A) in C U {cc}. Then f(A) €
W(l, 91)

(i) If, moreover, A is self-adjoint and f € C§°(0(A)), then

f(A) € ¥(1, q1).

Proof. The proof of (i) is essentially identical to the proof of Proposition D.4.7.
To prove (i), we use, in addition, Lemma D.11.1 to estimate the semi-norms of
my ((z — A)™') uniformly for z in a compact set suppf C C:

my ((z - A)_l) < Ollmz|™,
O

The following proposition follows easily by the methods of the proof of Propo-
sition D.11.2:

Proposition D.11.3

(i) Suppose that A;, i = 1,2, are closed operators such that, for some zy &
(A1) Uo(As),
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(20— A1) (20— A2)H €W (1, q0),

and form >0
Ay — A €¥({z) ™, q1)

Then for any function f holomorphic on a neighborhood of o(A;) U o(As) in
C U {oo}, we have

f(A1) — f(A2) € T({z) ™, 1)
(i) If, moreover, A; are self-adjoint, then for any f € C§°(0(A;) Uo(Ag)),

f(AL) = f(A2) € ¥({2)™™, 1)-

Proposition D.11.4
Suppose that A;, j = 1,2, are semi-bounded self-adjoint operators such that

(A] - i)_l € g’(]-:gl)a
V.= A1 — A2 € W(l,gl)
Let now f; € C*(R), fj € C3*(R), j = 1,2, such that

dist(supp f1, suppfz) > [[V]l.

Then
f1(A1) f2(As) € ¥ ({x)™*°, 91)-

Proof. By splitting the functions f; into several pieces, we can restrict ourselves
to the case where f; is supported on the left and f, on the right, or the other way
around. Therefore, let us assume that suppf; C| — 0o, A;[ and supp fo C]Ag, 00],
with A\; + [|[V]| < Ag. Let f € C®°(IR) such that 0 < f < 1, f =1 on a
neighborhood of suppf; and suppf C| — 0o, A1]. Define

1212 = f(A1)A2f(A1)-

Then ~
Ay = f2(A) AL+ FADVF(A) < M+ V]

Therefore 5
f2 (Ag) = 0

Using the semi-boundedness of A, and A, and the fact that f, € C°(IR), we see
that there exists a function g € C§°(IR) such that

Ja(Ag) — f2(1‘~12) =g(As) - 9(1212)-

If g is an almost-analytic extension of g, then
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F1(A) fo(As) = fi(A1)(f2(A2) — fo(Ay))
= L [00:9(2) f1(A1)(z — Ap) "1 (A — Ay) (2 — Ay)"dz A dz.

We have

(D.11.1)

Fi(A1)(z — A2) 7' (As — As) (2 — Ay) 7!

= fi(A1)(z — A2) 71 (1 — f2(A1)Ai(z — Ap)~!

+11(A) (2 — A2) (1 = f(A))V (2 — Ay) ! (D.11.2)
+f1(A)(z = A) TF(ADV (L = f(A)) (2 = Ag)

= Bi(z) + Ba(z) + Bs(z).

Fix f € C*(IR) such that f'e Ce(R) fif = f1 and f(l — f) = 0. Consider,
for instance, By(z). We have

By(2) = () (adf (2 = A2)7) (L= FAD)V (s = A2) 7",
which is a sum of terms of the form
fi(A)(z = A2) 7 (ad}, V) (2 = A2) !
(2= Ap) 7 (ad, V) (2= A2) 7N (1 = f(A))V (2 — Ap) 7!

Note that V € ¥(1,g;) and f(A;) € ¥(1, g1). Therefore,

adf,\V € ¥((z) ", 91).

Now, using

| (@ye+n+ial (adgadfady , V) ()78 < €,

f(A1)
[ (@)E+iel (adBad?(z — A5) 1) (@) *|| < Coftmz| Y,
where C, Cy, M depend on «, 5, k,n, we see that
| (@)¥adad? Ba(2)|| < Cs[tmz| =,

where C3, M depend on «, 3, N.
By the same method, we obtain an analogous estimate for By (z) and Bs(2).
By (D.11.1), we conclude that

|(2)¥adgad? £1(A1) fo(A2)| < ©
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D.12 Non-Stationary Phase Method

One of the basic tools in the study of integral expressions with rapidly oscillating
phases is the non-stationary phase method. We use this method to describe some
simple but useful estimates on a certain family of Fourier integral operators.

Proposition D.12.1
Suppose that c(z1,12,&) € S({x1)™ (x2)™2, dz? +dz2 +dE?), and there exist some
Co > 0 and t such that if (z1,x9,&) € suppe, then

(21— @2) 2 Co((z1) + (22)) + 1.

Let W(x1,19,&) be a real function on suppc(xy,xe,§) satisfying
02092 0F (¥ (w1, ,€) — (1 — m9,€)) € O((m1)) + O((wa)), |8 > 1,
Ve(¥(21,22,8) — (21 — 22,8)) € o({1)) + 0((z2))-

Let A be the operator with the kernel

K(z1,25) = (27)" / @) (1) 1y, €)dE.
Then A € U({x)~>) and || A|| € O(t=).
Proof. Define the formal operator
o= (14 (Vel(21,25,6)?) (1 + (Ve (1, 2,€), D).

Using the identity
E (eiW(.’L‘l,mQ,f)) — eiw(ml;z'Qaf)

and integrating by parts in £, we obtain

K(le,ﬁEQ) = (27T)_nfC(_/El’xQ,g)ENeiW(zl,zz,,f)dé-
= (2m) " [ M@ (L LYN (3, 29, £)dE,

where (*L)Nc(z1, 29, &) = en (21, Zo, &) is a sum of terms of the form
(1+ (Ve (21, 22,)2) ™ Vel (21,3, )
iy -8?’“V§W($1, o, €)0F c(x1, 22, §),

where N = || + -+ |Bk| + |7| = M — k. We have, for some Cy > 0,
1+ (Ve¥ (21, 29,€))* > Co({1) + (z2) +1)°.

Therefore,
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10210220 e (w1, T2, )| < Cagov (@)™ (@)™ (1) + (z2) + ).

Setting | |
EN(331, T2, §) = CN(xl, Tg, g)e“p(zl’“”2’5)_1@1—12,6)’
we obtain |
K(x1,1) = (27T)7n/5N(x1,x2,g)el(w1*$2,§>d§,
where

|aalaa2a?5N($1,$2,f)\ < Cop (@)™ ()™ (1) + (o) + )N FlenlFlazl+1B],

T Y2

Note that, for any Ny, we can find N such that

10210220 En (w1, w2, €)| < O (1) ™ () ()™, [on | + [aa| + 8] < No.

1 T2

Since Ny is arbitrary, we obtain that K_(z1,x2) is the kernel of an operator in
VU ({x)~>°) and its norm is O(t~ ). O

D.13 FIO’s Associated with a Uniform Metric

In this section we recall some results about a certain class of Fourier integral
operators associated with amplitudes from S(1, go).

Definition D.13.1

Suppose that a : X x X' — € and @ : suppa — IR are some functions. The
Fourier integral operator with phase ®(x,&) and amplitude a(z,§) is defined as
the operator given by the following formula:

I(®,a)(z) = (27)" / a(z, €)@= g ()¢ dy. (D.13.1)

In theorems that we will give below, we will give various conditions that will make
the expression (D.15.1) well defined.

The main result of this section is the following theorem on the boundedness
of a certain class of Fourier integral operators.

Theorem D.13.2
(i) Suppose that

O20P(x,€)| < Map, llo| + 8] >2, [a| > 1 (D.13.2)
and

|det M| > Co >0, M ech{V,VeP(x,8) | (z,6) e X xX'}. (D.13.3)
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where ch@ denotes the convex hull of the set ©. Let a; € S(1,90), i = 1,2. Then

J(®,a:)J (D, as)* € ¥(1, o). (D.13.4)

(ii) Suppose that

020{D(2,6) < Map, o] +18]>2, |8]> 1. (D.13.5)
Assume also (D.18.3). Then

J(®,a1)*J (@, az) € ¥(1, o). (D.13.6)

(i1i) Let @(x,&) satisfy either the hypotheses of (i) or of (ii). Let a € S(1,go).
Then J (D, a) is bounded on L>(IR™), and there exists an integer N and a constant
C depending on Cy and M, g, |a| + |B] < N, such that

17(2, a)ll < Cllallg,n- (D.13.7)

Proof. Let us prove (i). The kernel of J(®D,a;)J(P, as)* equals
K(z1,22) = (2m)7" [ a1(x1, E)ag(@s, €)e "1 872(720d¢

= (27) " [ ay(z1, §)aa(wa, )¢ Jo Voot Ammzd) i maaidr g
(D.13.8)
For fixed z1, x5, the map

1
X' 3 & n(wy, 20,€) 1= /0 Vo®(tz1 + (1 — 7)x0,&)dT € X'

satisfies the assumptions of Proposition A.7.1, hence it is invertible. Let us denote
its inverse by

N &(x1, 22, 7m)-
We note that

80‘18“2556(:61,3:2,7))‘ < Cap o]+ oo+ |6 > 1. (D.13.9)

We rewrite (D.13.8) as
K(-/I/llg x2) - (27T)_n/b(x1’ ./EQ, fr])ei("z(zl_$2)>d,’,}’
where

b(z1, 22, n) == a1(21, (21, T2, 7)) 82(22, £(1, T2, 1)) |det V€ (21, T2, 7).
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We easily see that all the semi-norms of b(z1, z2,7) in S(1, dz? + dz2 + d€?) can
be estimated by the right-hand side of (D.13.7). Therefore (D.13.7) follows from
Theorem D.4.1.

() follows from (i) by conjugation with the Fourier transformation.

(1) is an immediate consequence of (i) and (ii). O

Remark. In practice, instead of (D.13.3) we will use a simpler condition. We will
just assume that

Next we describe when Fourier integral operators described in Theorem
D.13.2 are invariant with respect to multiplication on the left and right with
pseudo-differential operators of the class ¥(1, gy).

Proposition D.13.3
(i) Suppose that a(z,&) and P(x,&) satisfy the assumptions of Theorem D.13.2
(i). Let B =b(x, D) € ¥(1, g0). Then

BJ(®,a) = J(2,¢),

where ¢ € S(1, go)-
(#i) Suppose that a(z,€) and (x,€) satisfy the assumptions of Theorem D.13.2
(ii). Let B € ¥(1, go). Then

J(®,a)B = J(,d),
where d € S(1, go).

Proof. To prove (i), we compute the kernel of BA:

K(z1,y) = (21) " [ [ [b(z1,&1)a(zy, &)e @1 o) fitige ) milvldg, da,ydE,
= (270) 7" [ ¢y, &) PELE) -1V g,
where
c(x1,&) = 2m) " [ [ b1, &) a(w, &)@ )bt t)-i@.L)dg, dr,
= (2m)™" [ [ b(z1, &1)alzs, 52)31.((561%2)’(&7%1 ArVatlratinet 4g du,
= (27)7" [ [ b(zy, fy ATV (21 + (1 — 7)2,&) + n)al(z, + 2, &)e~ N dzdn.

Now, using Proposition D.3.2 (iii), we see that c¢(z,£) € S(1, go)-
(1) follows by the same arguments, if we use the conjugation with the Fourier
transformation. a
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D.14 FIO’s Depending on a Parameter

This section is parallel to Sect. D.5. In particular, we refer the reader to that
section for the notation. The following proposition is a parameter-dependent
version of Theorem D.13.2 (7).

Proposition D.14.1
Suppose that c,(t)ce(t) < C,

0200 B(t,3,6)| < Capel ()1 (®), o +181>2, o] > 1,

(D.14.1)
IV.Ved(t, 2,6) — 1]| < Gy < 1.
Let a;(t,z,€) € S(fi(t),g(t)), i =1,2. Then

J(D(t),a1(2))J(D(2), a2(1))" € W(f1(1) f2(2), 9(2))-

Next let us state a parameter dependent version of Proposition D.13.3.

Proposition D.14.2
(i) Assume cy(t)ce(t) < C, and (D.14.1). Let a(t,z,§) € S(f2(t),g(t)) and
B(t) € ¥(f1(t),9(t)). Then

for some c(t,z,€) € S(f1(t)f2(t), 9(t))-
(i) If instead of (D.14.1) we assume that

0200 B(t, 2,6)| < Capde = (1) (1), o +181>2, (8 >1,

then

for some

d(t,z,&) € S(f1(t) f2(t), g(t)).

D.15 FIO’s Associated with the Metric g;

In this section we collect some results on Fourier integral operators associated
with phases satisfying V,V®(z, ) € S(1, g1). Most of them are well known (see
for example [IK4]).



428 D. Pseudo-differential and Fourier Integral Operators

Theorem D.15.1
(i) Assume that

020¢ (B(,€) — (2,6) € o((2)?), ol = 8] =1,

(D.15.1)
020¢ (B(,€) = (2,6)) | < Capla)' =, Ja| +18] =2, |a|>1.
Let a;(z,€) € S({x)™,q1), i = 1,2. Then
J(P,a1)J (D, az)* € T({x)™F ™ gy). (D.15.2)

(i1) Assume, in addition,

07 (8(x,€) — (2,€)) € o({2)"), o] = 1.

Let € > 0, and let I; C X x X' be conical sets. If a; € S({(x)™>) on I¥, then
J(@,a1)J (P, a9)* € U({x)~>®) on [1 U .
(iii) If a; are elliptic on If, then J(P,a1)J (P, az)* is elliptic on I N I5.

Remark. Applying Theorem D.15.1 with a = a1 = ao, we see that J(®,a) is a
bounded operator from (x) ™L?(X) to L*(X). In particular, if m = 0, it is a
bounded operator on L?(X).

Proof of Theorem D.15.1. Let us note that there exists Ry such that, for

|.Z‘| > Ro,
1

Let us distinguish 2 regions in the space X x X'.
Let 0 <oy <1/2, R = Ry(1 — 204) and

O, :={(r1,12) € X x X | |21 — x| < 0y (|z1| + |22]), |71] > R, |22| > R}.
Let o <oy <land R< R,

O_ = {(x1,22) € X X X | |21 — x2] > 0_(|21] + |22]), |21| > R, |22| > R}
U{(Jﬁ?l,l‘g) e X xX | |$1| < R; or |$2| < Rl}

We choose functions ps € S(1, (z1)"2dz? + (z9) ?dz3) such that suppps C
O and p4(z1,22) + p-(71,72) = 1.

Explicitly, let x; € C§°(IR) such that x.(s) = 0 for |s| < R, x4(s) =1 for
s> Ry and let x_ :=1—x,. Let fy € C*°(R) such that f, + f- =1, f1(s) =0
fort > o0y, f-(s) =0fort < o_. Set

21 — o

— |, p—(T1,22) =1 — T1,T9).
‘xl“l“xQ‘) p(l 2) p+(1 2)

pi(e1,22) = X (01) s (22) 1 (

The kernel of J(®, ay)J (P, az)* equals
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K(x1,29) = (2m)™" [ a1 (21, &) g (2, §)e (1O ~#(m20)dg, (D.15.3)
Let us split K (z1,22) = Ky (21,22) + K_(z1,29) as follows:

ci(x1,22,8) = pa(z1,22)a1 (1, §)az(x2, ),

Ki(z1,20) = (27)%fci(xlal’2;f)eidj(wl’g)f@(“’odf-

Let us consider first K, (1, x2). Set

n(x1, z2,€) := /01 V@(tx1 + (1 — 7)x2,£)dT.

Since on suppp.
|T1171 + (1 — 7—)-7/'2‘ 2 Ro,

we have
By Proposition A.7.1, this implies that the map

X'3 & n(wr, 22,8)
is invertible for (zq,z9,£) € suppe,. Let us denote its inverse by
n = &(z1, T2, ).
We note that on the support of ¢, there exist 0 < C; < () such that
Cil|z1] < |xo| < Cola1].

Using this, we obtain

08102 00E (21, 22,m)| < Clayans (1)1 (@2) 2L, o] + [aag] + 18] > 1.

We can rewrite K, as
K (21,12) = (27T)_n/b+($1,xz,ﬁ)ei(n’(wl_m))dﬁ, (D.15.4)

where
by (21, %2,m) = (@1, T2, &(21, 22, n))\detvnf(xl, T2,1M)|.

We easily see that b, € S({x1)™ (29)™2, (x1) ?d2? + (x5)"2dx3 + d&?). So,
by Proposition D.8.6, K (x1,z) is the kernel of a pseudo-differential operator
in ¥({x)™+m gy).

Next, let us consider K (z1,x2). We have

Ve(P(21,8) — P(22,6)) =14 fol Vo Ve®(Tx1,£)dT — 29 fol V. Ve®(T2s,€)dT

=11 — 29 + 0({x1)) + 0o({x2)).
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Moreover, on suppc_ we have

(z1 — 22) > Co({z1) + (22))

for some Cy > 0. Therefore
(Ve@(21,£) — VeP(22,€)) = Ci({m1) + (22) (D.15.5)

for some C; > 0. Therefore, by Proposition D.12.1, the operator with the kernel
K_(x1,x9) belongs to ¥({x) ).
To show (ii), we use (D.15.4) and the fact that on the support of b (z1,x2,7)

§(@1,m2,m) =1 € o(({m1) + (21))°).

|

Next we would like to consider the product of a Fourier integral operator and
a pseudo-differential operator. Note that the situation is somewhat different if
the pseudo-differential operator is on the left and on the right, therefore we will
have two separate propositions describing these two cases.

Proposition D.15.2
(i) Assume that ®(z,&) satisfies

9 (B(z,€) — (2,6) € o((z)),  [Bl=1,

5 (D.15.6)
|050g (B(x,€) — (2,€)) | < Capla) 1, o[ + (8] > 1,

and that a € S((z)™,¢1). Let B € ¥({x)™,gq1). Then there ezxists d €
S({x)y™*tm2_ g1} such that

J(®,0)B = J(®,d).
(i) If a € S({x)~>) on I'f and B € ¥({x)~*) on I'§, where I, I3 C X x X' are
conical sets, then d € S((z)~*°) on It U I}.

Proof. We can write B = b(x, D)* for some b € S({x)™2,g;). Then the kernel
of J(®,a)B is equal to

K(z1,72) = (2m)™ [ e®@ué)=i@80c(p) 3y, €)dE;

for B
c(x1,72,&1) = a(z1,61)b(22,&1)-
We choose 0 < 0_ < 0y < 1 and fi € C*®(R) such that f, + f_ = 1,
f-(t)=0fort <o_, fi(t) =0 for t > o, and we set
Ci($1,$2,§1) = fi(éﬁl‘))c(%,xm&),
Ki(z1,29) = (2m)™" [eP@nt)=e2bile (11, 3y, &)dE; .
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Let us study K, (z1,z2) first. We can write

K (x1,22) = (QW)_R/ei¢(ml’§2)_i<m2’&)d+(951,52)(152

for
d (x17§2)
" . , , (D.15.7)
= (27‘()_’” f elds(zlafl)_z(p(ml552)_1(1'2761_62)04_ ('/'EI) Ta, gl)dx2d§1_
Let
1
P, 6,6) = [ Veblo,mé+ (1 - D)E)dr — oy,
We have
D(r1,&) — D(1,&) = (21 +7(21,61,62), & — &),
and
T(J)l, 61) 52) € 0(('1‘1))7
102 081 0221 (21, €1, &)| < Coplm) ol
Making the change of variables
Ty =29 — 1(71, &1, &)
in (D.15.7), we obtain
d+($1,§2)
(D.15.8)

= (2m) " [ elmBbi-8c, (1), Ty + (31, &1, &), &o)dTadE,.

Using the fact that on suppf; we have (z1) < C(z,), we obtain

Cy (21,29 +1(21,61,62), &2)
€ S ({x1)™ (T2)™, (x1) 2dat + (To) >daj + d&} +dE7).

Using then Proposition D.7.2, we obtain that d (z,&) € S({x)™t™2 ¢).

By Proposition D.12.1, the operator with the kernel K_(z1,z2) belongs to
U ((x)~°). This ends the proof of (7).

(i) follows from (D.15.8) and the fact that r(z1,&1, &) € o({x1)). O

Proposition D.15.3
(i) Assume that ®(x,&) satisfies
020¢ (B(,€) — (2,6)) | < Casla)' ™, || +18] > 1, (D.15.9)

and that a € S({z)™,¢g1). Let B € W¥({x)™,g1). Then there exists d €
S({x)m™+m2 g1) such that
BJ(®,a) = J(,d).
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(ii) Assume in addition
0% (®(z,€) — (r,€)) € o({x)?), |af =1. (D.15.10)

Ife>0,a € S({x) ) on If and B € ¥({(z)"*) on I3, where [,15 C X x X'
are conical sets, then d € S({(x)=>) on I'1 U 5.

Proof. Let B = b(z, D). The kernel of BJ(®, a) is equal to
K(z1,y) = (2m)7n [ elmrabi)ei®@me) il e(g,, 1y, &, £)dEydaadéy,

where
(1,22, &1, &2) = b(x1, &1)a(z2, &2)-
We choose fi as in the proof of Proposition D.15.2 and we set

Ki(zy,y) = (2m) 20 [ ellor-a2b0ei®@&) il e (3, 29, &), &)dE daads,

where
|1 —z2]

Ci($1,$2,§1,§2) = fi(m)c(ﬂﬁ,@,&,&)-

We can write
K (z1,25) = (27T)_n/eiqj(zl’&)_i(y’&)di(xl,52)d§2,
where

do (371, 62) — (27_‘_)—n /ez’(wl—z2,§1>+i¢(w2,§2)—i¢(w1,§2)ci_ (-Tla Z9, &1, 52)d§1dx2_

We change the variables ~
§1 =& — q(71,12,6),
where

q(z1,22,&) = /01 Ve®(121 + (1 = 7)39, &)dT — &3,

and get

di(1,&2) = (27T)7n//ei@rm’érwci,o(ﬂfl,332;gl;fz)d@dgb (D.15.11)

where 5 5
c+0(21, 72,61, 82) 1= cx (@1, 72,81 + (71, 72, 62), §2).
Let us consider first K, (21, x2). Note that
cro(z1,22,61,6) € S (<$1>m1 (@)™, (1) ?dat + (x5) *da3 + dE + df%) :
By Proposition D.7.2, this implies

dy € S(()™T™, g1).
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To handle the kernel K_(z1,z2), we first note that
c_o(T1,22,81,6) € S (<$1>m1<$2>m2,d$% + daj + déf + dfg) :

Next we use the proposition D.12.1 to see that d_(z1, &) € S({z)~>). Therefore
K _(z1,y) is the kernel of an operator in ¥ ({z)~>).
This ends the proof of (7).

Using (D.15.10), we see that on the support of c; o(1, T2, &1, &)

q(z1, 22, &2) € o(((1) + (22))°).
Using this and (D.15.11), we obtain (%i). O

Let us state certain useful properties of Fourier integral operators.

Proposition D.15.4
Assume

N —{z o({z)t~le al = =
030 (B(x,€) — (,€)) € o((x)' =), |a[=0,1, |8]=1, (D.15.12)
0007 (B(x,€) — (2,€)) | < Capla)' 71, [a] +(8] > 1.

and a € S(1,¢91). Then the following holds:

(i) The following “Beals criterion” is satisfied:
ad%ad?J(®,a)(z)7l¢ € B(L*(X)).
(z)~1elad$ad? J (@, a) € B(L*(X)).

(ii) For any m,k € R, the operator (x)™(D)*J(®,a)(z)"™(D)~* is bounded,
(i11) If 0 < 69 < 01, then

]1[0,50](%[)‘](¢: a)]l[tfl,oo](%) € O(tioo)

Proof. (i) follows by the direct calculation and it implies (%) by Lemma D.6.1.
(#13) follows from Proposition D.12.1. O
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