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Abstract. We consider in this paper space-cutoff charged P (ϕ)2 models arising from
the quantization of the non-linear charged Klein-Gordon equation:

(∂t + iV (x))2φ(t, x) + (−∆x +m2)φ(t, x) + g(x)∂zP (φ(t, x), φ(t, x)) = 0,

where V (x) is an electrostatic potential, g(x) ≥ 0 a space-cutoff and P (λ, λ) a real
bounded below polynomial. We discuss various ways to quantize this equation, starting

from different CCR representations. After describing the construction of the interacting

Hamiltonian H we study its spectral and scattering theory. We describe the essential
spectrum of H, prove the existence of asymptotic fields and of wave operators, and finally

prove the asymptotic completeness of wave operators. These results are similar to the
case when V = 0.

1. Introduction

1.1. Charged Klein-Gordon equations. Let us consider the charged Klein-Gordon equa-
tion:

(1.1) (∂t + iV (x))2φ(t, x) + (−∆x +m2)φ(t, x) = 0,

where φ : Rt → L2(Rd; C), m > 0 is the mass. The equation (1.1) describes a charged
field minimally coupled to a external electrostatic field given by the potential V . As is well
known, after introducing the ϕ and π fields by

ϕ(t) = φ(t), π(t) = ∂tφ(t) + iV φ(t),

one can interpret (1.1) as a Hamiltonian system on the symplectic space

Y = {y = (π, ϕ) : π, ϕ ∈ L2(Rd,C)}
equipped with the (complex) symplectic form

(π, ϕ)ω(π′, ϕ′) =
∫

Rd

π(x)ϕ′(x)− ϕ(x)π′(x)dx.

for the classical Hamiltonian
hV (π, ϕ)

=
∫

Rd π(x)π(x)dx+
∫

Rd ∇xϕ(x) · ∇xϕ(x) +m2ϕ(x)ϕ(x)dx

+i
∫

Rd ϕ(x)V (x)π(x)− π(x)V (x)ϕ(x)dx
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In order to obtain a stable quantization of (1.1), ie a CCR representation of (Y, ω) in a
Hilbert space H with the property that the time evolution is implemented by a positive
Hamiltonian, it is necessary that the classical Hamiltonian hV (π, ϕ) is positive. If this is the
case, one can equip Y with a Kähler structure, ie a complex structure j such that

(y|y′)dyn := yωjy′ + iyωy′

is a scalar product on Y. The completion of the pre-Hilbert space (Y, j, (·|·)dyn), denoted by
Z is called the one-particle space. The stable quantization is then the Fock representation
on the bosonic Fock space Γs(Z), and the time evolution is unitarily implemented by the
group eitHV , where HV = dΓ(hV ) is a second quantized Hamiltonian.

An alternative quantization is obtained by considering first the Klein-Gordon equation
(1.1) for V (x) ≡ 0. Let us denote by j0 (resp. Z0) the associated complex structure (resp.
one-particle space). As is well known, Z0 can be unitarily identified with L2(Rd)⊕L2(Rd).

The dynamics for V = 0 is unitarily implemented by eitH0 on the Fock space Γb(Z0), for
H0 = dΓ(ω), where ω = ε⊕ ε is the one-particle energy and ε = (−∆x +m2)

1
2 .

One can then try to implement the dynamics for V 6= 0 by considering the Fock repre-
sentation on Γs(Z0) and by giving a meaning to the formal expression:

H = dΓ(ω) + i
∫

Rd

ϕ(x)V (x)π(x)− π(x)V (x)ϕ(x)dx,

where ϕ(x), π(x) are the quantized ϕ and π fields. Note that the two CCR representations
above are in general not unitarily equivalent.

It turns out that it is possible to give a meaning to H,in one space dimension (d = 1),
provided the potential V is small enough as we will see in Sect. 4.

1.2. Non-linear perturbations. We assume now that d = 1. Let us fix a positive space
cutoff function g : R → R+, decreasing fast enough at infinity and a bounded below real
potential P (λ, λ). We consider now the non-linear charged Klein-Gordon equation:

(1.2) (∂t + iV (x))2φ(t, x) + (−∆x +m2)φ(t, x) + g(x)∂zP (φ(t, x), φ(t, x)) = 0.

The usual procedure to quantize (1.2) is to start from a quantization of (1.1) (ie (1.2) for
g(x) ≡ 0), leading to the Hamiltonians HV or H0 (depending on the choice of the CCR
representation), and to implement the interacting dynamics by giving a meaning to either:

(1.3) HV +
∫

R
g(x)P (ϕ(x), ϕ(x))dx,

or:

(1.4) H0 + i
∫

R
ϕ(x)V (x)π(x)− π(x)V (x)ϕ(x)dx+

∫
R
g(x)P (ϕ(x), ϕ(x))dx.

The choice (1.3) seems difficult, because both the one-particle energy hV and the ϕ, π fields
are not very explicit in the Fock representation for the complex structure j.

In this paper we will adopt the choice (1.4).
The associated Hamiltonian will be constructed in Sect. 4. We will show that if |λ| <

λquant, where the constant λquant is defined in (3.8), the formal expression

H := H0 + iλ
∫

R
ϕ(x)V (x)π(x)− π(x)V (x)ϕ(x)dx+

∫
R
g(x) :P (ϕ(x), ϕ(x)) : dx,
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is well defined as a bounded below selfadjoint operator.
The rest of the paper is devoted to the spectral and scattering theory of H, which is stud-

ied in Sect. 5. We will use the results of [GP], where an abstract class of QFT Hamiltonians
are considered, so most of our task is to prove that our Hamiltonian H satisfies the abstract
hypotheses of [GP]. This will be done in Subsect. 5.1.

The first result is the HVZ theorem, describing the essential spectrum of H. We obtain
that

σess(H) = [infσ(H) +m,+∞[,

which implies that H has a ground state.
The second results deal with the scattering theory of H, which is formulated in terms of

asymptotic fields. These are (formally) defined as the limits:

lim
t→±∞

eitHφ(eitωF )e−itH =: φ±(F ), F ∈ L2(R)⊕ L2(R).

It follows then from the stability condition |λ| < λquant and abstract arguments that the
two asymptotic CCR representations

F 7→ φ±(F )

are of Fock type, ie unitarily equivalent to a sum of Fock representations.
The main problem of scattering theory is now to identify the spaces of asymptotic vacua,

ie the spaces of vectors annihilated by all asymptotic annihilation operators a±(F ). Applying
the abstract results of [GP], we show that the asymptotic vacua coincide with the bound
states of H. This result, called the asymptotic completeness of wave operators, is the main
result of this paper.

1.3. Notation. In this subsection we collect some useful notation and results.

Scales of Hilbert spaces

If h is a Hilbert space and ε a linear operator on h, its domain will be denoted by Domε.
The closure of a closeable operator a will be denoted by acl.

If ε is selfadjoint, we write ε > 0 if ε ≥ 0 and Kerε = {0}. If ε > 0 and s ∈ R, εs is well
defined as a selfadjoint operator and we denote by εsh the completion of Domε−s for the
norm ‖ε−sh‖. Clearly εsh are Hilbert spaces and εt is isometric from εsh to εs+th.

Fourier transform

Let h = L2(R). We denote by F the unitary Fourier transform:

Fu(k) = (2π)−1/2

∫
R

e−ik·xu(x)dx.

We denote also by f̂ the usual Fourier transform of f :

f̂(k) =
∫

R
e−ik·xu(x)dx,

so that if V is the operator of multiplication by the function V one has

(1.5) FV F−1u(k1) = (2π)−1

∫
R
V̂ (k1 − k2)u(k2)dk2.
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If ε = (−∆x +m2)
1
2 for m > 0 then εsL2(R) is equal to the Sobolev space H−s(R) with the

norm
‖f‖2H−s(R) =

∫
R

(k2 +m2)−s|Fu(k)|2dk.

Pseudodifferential calculus

Set 〈x〉 = (1 + x2)
1
2 . For m ∈ R we will denote by Sm(R) the space

Sm(R) = {f ∈ C∞(R) : |f (α)(x)| ≤ Cn〈x〉m−α, α ∈ N}.
For m, p ∈ R we denote by Sm,p(R2) the space

Sm,p(R2) = {f ∈ C∞(R2) : |∂αx ∂
β
k f(x, k)| ≤ Cα,β〈x〉m−α〈k〉p−β , α, β ∈ N}.

If a ∈ Sm,p(R2), we denote by Opw(a) = aw(x,Dx) the Weyl quantization of a, defined as:

Opw(a)u(x) = (2π)−1

∫
ei(x−y)·ka(

x+ y

2
, k)u(y)dydk,

as an operator on S(R), where S(R) =
⋂
m∈R S

m(R) is the Schwartz class.
The operator Opw(a) is bounded on L2(R) if a ∈ Sm,p(R2) for m, p ≤ 0, and belongs to

the Hilbert-Schmidt class iff a ∈ L2(R2). One has then

(1.6) ‖Opwa‖2HS =
1

2π

∫
R2
|a(x, k)|2dxdk.

2. Charged Klein-Gordon equation

In this section we detail the arguments given in Subsect. 1.1. The results of this section
are standard, they can be found for example in Palmer [Pa]. For simplicity we consider the
one dimensional case, although the results of Subsect. 2.1 hold in any space dimension.

2.1. Charged Klein-Gordon equation as a Hamilton equation. Let m > 0 and V :
R→ R a real measurable potential such that

(2.1) V, ∇xV ∈ L∞(R).

We consider the Cauchy problem for the charged Klein-Gordon equation:

(2.2)


(∂t + iV (x))2φ(t, x) + (−∆x +m2)φ(t, x) = 0,

φ(0, x) = ϕ(x),

∂tφ(0, x) + iV (x)φ(0, x) = π(x),

where φ : R → L2(R; C), describing a charged scalar field of mass m minimally coupled to
the electrostatic potential V .

Note that (2.2) is invariant under time-reversal, ie if φ(t, x) is a solution, so is φ(−t, x).
In terms of Cauchy data, time-reversal becomes the involution:

(2.3) κ : (π, ϕ) 7→ (−π, ϕ).

Let us set
ϕ(t) := φ(t), π(t) = ∂tφ(t) + iV φ(t),

and
Y = {y = (π, ϕ) : π, ϕ ∈ L2(R)}.
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We transform (2.2) into the first order evolution equation on Y := L2(R)⊕ L2(R):[
π(t)
ϕ(t)

]
= rt

[
π(0)
ϕ(0)

]
Formally we have,

(2.4) ∂t

[
π(t)
ϕ(t)

]
=
[
−iV −ε2

1l −iV

] [
π(t)
ϕ(t)

]
,

for ε =:= (−∆x +m2)
1
2 .

If we equip Y with the (sesquilinear) anti-symmetric form:

(π, ϕ)ω(π′, ϕ′) = (π|ϕ′)− (ϕ|π′),

and the Hamiltonian:

(2.5) hV (π, ϕ) = ‖π‖2 + ‖εϕ‖2 + i(ϕ|V π)− i(π|V ϕ),

we see that (2.4) are the associated Hamilton equations. If we prefer to forget the complex
structure of Y, we write

(2.6) ϕ =: ϕ1 + iϕ2, π =: π1 + iπ2,

and equip Y (as a real vector space) with the real symplectic form Reω and the Hamiltonian

(2.7)

hV,R(π, ϕ) = 1
2h(π, ϕ)

= 1
2‖π1‖2 + 1

2‖π2‖2 + 1
2‖εϕ1‖2 + 1

2‖εϕ2‖2

+(π1|V ϕ2)− (π2|V ϕ1).

2.2. Stable quantization. A stable quantization of the symplectic dynamics rt is a CCR
representation of the symplectic space (Y, ω):

Y 3 y 7→W (y) ∈ U(H)

in some Hilbert space H such that there exists a positive selfadjoint operator H on H
implementing rt, ie:

eitHW (y)e−itH = W (rty), y ∈ Y, t ∈ R.

As is well known (see eg [BSZ]), in order for a stable quantization to exist, it is necessary that
the classical Hamiltonian hV (π, ϕ) is positive. The violation of the positivity of hV (π, ϕ) is
connected with the so called Klein paradox.

Let us assume the following stronger positivity:

(2.8) ±i ((ϕ|V π)− (π|V ϕ)) ≤ δ
(
‖π‖2 + ‖εϕ‖2

)
π ∈ L2(R), ϕ ∈ Domε, for 0 ≤ δ < 1.

Note that (2.8) implies that the energy norms h0(·) 1
2 and hV (·) 1

2 are equivalent.
The construction of the stable quantization is then as follows:

(1) one considers the energy space Yen which is the completion of L2(R) ⊕ H1(R) for
the norm hV (π, ϕ)

1
2 ;
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(2) clearly t→ rt is a strongly continuous group of isometries of Yen, and we denote by
a its generator ie rt =: eta. From (2.4) we see that

a =
[
−iV ∆x −m2

1l −iV

]
,

is anti-selfadjoint on Doma = H1(R) ⊕ H2(R). Moreover from (2.8) we see that
Kera = {0}.

(3) we consider now the polar decomposition of a:

hV := (−a2)
1
2 , a =: jhV = jhV ,

and we see that j is an anti-involution (a complex structure) on Yen, such that ωj is
a symmetric positive definite form.

(4) we equip Yen with the complex structure j and the scalar product

(y1|y2)dyn := y1ωjy2 + iy1ωy2.

(5) denoting by Z the completion of Yen for (·|·), we obtain a complex Hilbert space,
such that hV extends to Z as a positive selfadjoint operator. The stable quantization
of the charged Klein-Gordon equation is obtained by taking the Hilbert space:

H = Γs(Z),

where Γs(Z) is the bosonic Fock space over Z, the CCR representation

Z ⊃ Yen 3 y 7→W (y) ∈ U(H)

where W (y) are the Fock Weyl operators, and the physical Hamiltonian

H = dΓ(hV ),

where dΓ(hV ) is the second quantization of hV .

2.3. Alternative choice of the complex structure. Let us consider the charged Klein-
Gordon equation (2.2) for V = 0 and denote with the subscript 0 the associated objects.

By the same procedure as above we can equip Y with the free complex structure j0. A
very convenient feature of j0 is that if Z0 is the associated Hilbert space, then the map:

U : Z0 3 (π, ϕ) 7→ (ε−
1
2π + iε

1
2ϕ, ε−

1
2π + iε

1
2ϕ) ∈ L2(Rd)⊕ L2(Rd)

is unitary. This allows to identify Z0 with an explicit Hilbert space. In terms of neutral
fields πi, ϕi the map W becomes:

(2.9) (π, ϕ) 7→ (ε−
1
2π1 + iε

1
2ϕ1, ε

− 1
2π2 + iε

1
2ϕ2) ∈ L2(Rd)⊕ L2(Rd).

As is well known (see eg [Pa]), there exists an invertible symplectic transformation u on Y
such that

j0 = u−1ju.
(This actually holds for any pair of Kähler complex structures on a symplectic space).

Therefore u : Z → Z0 and its second quantization Γ(u) : Γs(Z) → Γs(Z0) are unitary.
The Fock representation of CCR on Γs(Z) is unitarily equivalent to the following Bogoliubov
representation on Γs(Z0):

(2.10) WV (f) := W0(uf), f ∈ Y,
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where W0(·) is the Fock representation on Γs(Z0). This allows to work on the more conve-
nient Fock space Γs(Z0). The positive Hamiltonian on Γs(Z0) implementing the dynamics
eta in the Bogoliubov representation WV (·) is then

dΓ(hV ),

where we still denote by hV acting on Z0 the operator uhV u−1.

2.4. Quantization of the non-linear charged Klein-Gordon equation. Let P (z1, z2)
be a polynomial on C2 such that C 3 z 7→ P (z, z) is real and bounded below. Let also g
a positive function (typically g ∈ C∞0 (R)). We consider now the non-linear Klein-Gordon
equation:

(2.11) (∂t + iV (x))2φ(t, x) + (−∆x +m2)φ(t, x) + g(x)∂zP (φ(t, x), φ(t, x)) = 0.

The quantization of (2.11) for g(x) ≡ 0, outlined in Subsect. 2.3 leads to the free Hamil-
tonian

dΓ(hV ), acting on Γs(Z0),
and to the Bogoliubov representation of CCR WV (·) defined in (2.10).

Denoting by φV (f) for f ∈ Y the Segal field operators associated to the CCR represen-
tation (2.10) , one sets:

ϕV (x) = φV (δx, 0), x ∈ R
which are the corresponding ϕ fields. The natural way to quantize (2.11) is now to try to
make sense of the Hamiltonian

(2.12) HV = dΓ(hV ) +
∫

R
g(x)P (ϕV (x), ϕV (x))dx.

If (possibly after some Wick ordering of the interaction term), the above Hamiltonian is well
defined, one can set

φV (t, f) = eitHV φV (f)e−itH ,

which leads to the quantization of (2.11) in the Bogoliubov representation (2.10).
The difficulty with this method is of course to make sense of HV , since neither the one-

particle Hamiltonian hV nor the ϕ fields ϕV (x) are explicitely known.
Actually if V decays fast enough at infinity, it is possible to find a symplectic transfor-

mation u such that uhV u−1 equals the free one-particle energy and additionally u is real, ie
commutes with the time-reversal operator κ in (2.3). This opens the possibility to rigorously
construct the Hamiltonian (2.12). We plan to come back to this problem in a subsequent
paper.

An alternative way, which we will follow in this paper, is as follows:
(1) one considers the stable quantization of (2.2) for V = 0, leading to the usual complex

structure j0. It is convenient to use the neutral fields πi, ϕi i = 1, 2 as in (2.6), and
to identify the one-particle space Z0 with L2(R)⊕ L2(R) as in (2.9).

(2) the free Hamiltonian is now

H0 = dΓ(ε⊕ ε), acting on H = Γs(L2(R)⊕ L2(R)),

which implements the dynamics eta0 in the Fock representation for the complex
structure j0.
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(3) one sets for x ∈ R:

(2.13)
ϕ1(x) := φ

(
ε−

1
2 δx ⊕ 0

)
, ϕ2(x) := φ

(
0⊕ ε− 1

2 δx

)
π1(x) := φ

(
iε

1
2 δx ⊕ 0

)
, π2(x) := φ

(
0⊕ iε

1
2 δx

)
,

where φ(f) are the Segal field operators. These operators are well defined as selfad-
joint operators after integration against test functions.

(4) setting with a slight abuse of notation

P (λ1, λ2) := P (λ1 + iλ2, λ1 − iλ2),

one tries to rigorously define as a selfadjoint operator the formal expression:

(2.14) H = dΓ(ε⊕ ε) +
∫

R
g(x)P (ϕ1(x), ϕ2(x))dx+

∫
R
V (x) (π1(x)ϕ2(x)− π2(x)ϕ1(x)) dx,

corresponding to the hamiltonian hR(π, ϕ) defined in (2.7). This will be done in Sect. 4.

3. Local charge operator

In the rest of the paper we set

h = L2(R)⊕ L2(R), H = Γs(h).

The elements of h will be denoted by F = (f1, f2). The one-particle energy is

ω := ε⊕ ε acting on h,

and
H0 := dΓ(ω)

The (total) number operator N is

N := dΓ(1l⊕ 1l),

equal to N1 +N2, where

N1 := dΓ(1l⊕ 0), N2 := dΓ(0⊕ 1l).

We will also use the partial creation/annihilation operators

a]1(f) = a](f ⊕ 0) a]2(f) = a](0⊕ f), f ∈ L2(R).

3.1. Local charge operator. Set

Q(V ) :=
∫

R
V (x) (π1(x)ϕ2(x)− π2(x)ϕ1(x)) dx,

where ϕi(x), πi(x) are defined in (2.13). For the moment it is only a formal expression.
We will call Q(V ) a local charge operator.
To work with well defined objects, we introduce the UV cutoff fields, ϕκi (x), πκi (x), for

κ� 1, obtained by replacing δx by F (κ−1Dx)δx where F ∈ C∞0 (R) is a cutoff function with
F (0) = 1. We denote by Qκ(V ) the cutoff charge operator, wich is for example well defined
on DomN .
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Lemma 3.1. Assume that V ∈ L∞(R) and V ′ ∈ L∞(R) ∩ L2(R). Then there exists a
constant C such that:

(3.1) ‖ Q(V )(N + 1)−1‖ ≤ C(‖V ‖∞ + ‖V ‖2 + ‖V ′‖∞).

Proof. For ease of notation we will remove the UV cutoff. To get a rigorous proof, it
suffices to put back the UV cutoff, letting κ→ +∞ in the various estimates.

Introducing the creation/annihilation operators a]i(f) for i = 1, 2 we have:

π1(x)ϕ2(x)− π2(x)ϕ1(x)

= i
2

(
a∗1(ε

1
2 δx)− a1(ε

1
2 δx)

)(
a∗2(ε−

1
2 δx) + a2(ε−

1
2 δx)

)
− i

2

(
a∗2(ε

1
2 δx)− a2(ε

1
2 δx)

)(
a∗1(ε−

1
2 δx) + a1(ε−

1
2 δx)

)
= i

2

(
a∗1(ε

1
2 δx)a2(ε−

1
2 δx) + a∗1(ε−

1
2 δx)a2(ε

1
2 δx)

− a∗2(ε−
1
2 δx)a1(ε

1
2 δx)− a∗2(ε

1
2 δx)a1(ε−

1
2 δx)

)
+ i

2

(
a∗1(ε

1
2 δx)a∗2(ε−

1
2 δx)− a∗1(ε−

1
2 δx)a∗2(ε

1
2 δx)

)
+ i

2

(
a2(ε

1
2 δx)a1(ε−

1
2 δx)− a1(ε

1
2 δx)a2(ε−

1
2 δx)

)
=: Ra

∗,a(x) +Ra
∗,a∗(x) +Ra,a(x).

It is convenient to pass to the momentum representation using the unitary Fourier transform
F . It follows that

(3.2)
a∗i (ε

sδx) = (2π)−
1
2
∫

R ε
s(k)e−ikxa∗i (k)dk,

ai(εsδx) = (2π)−
1
2
∫

R ε
s(k)eikxai(k)dk.

Let us first consider the term

Qa
∗ a(V ) =

∫
R
V (x)Ra

∗ a(x)dx.

Using the above transformation and (1.5) we see that

(3.3) Qa
∗ a(V ) = dΓ(

[
0 b
b∗ 0

]
).

for

(3.4) b =
i
2

(ε
1
2V ε−

1
2 + ε−

1
2V ε

1
2 ).

Since V, V ′ ∈ L∞(R), V is a bounded operator on H1(R) hence by interpolation and duality
also on H

1
2 (R) and H−

1
2 (R). This implies that b is bounded. Clearly this implies that (3.1)

holds for Qa
∗ a(V ). Let us now consider the term

Qa
∗ a∗(V ) =

∫
R
V (x)Ra

∗ a∗(x)dx.
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Using (3.2), we obtain that:

Qa
∗ a∗(V )

=
∫

R2 R(k1, k2)a∗1(k1)a∗2(k2)dk1dk2,

where:

(3.5) R(k1, k2) =
i

4π
V̂ (k1 + k2)

(
ε(k1)

1
2 ε(k2)−

1
2 − ε(k1)−

1
2 ε(k2)

1
2

)
.

We note that:
|ε(k1)

1
2 ε(k2)−

1
2 − ε(k1)−

1
2 ε(k2)

1
2 |

= ε(k1)−
1
2 ε(k2)−

1
2 |ε(k1)− ε(k2)|

= ε(k1)−
1
2 ε(k2)−

1
2

∣∣∣ k2
1−k

2
2

ε(k1)+ε(k2)

∣∣∣
= |k1 + k2|

∣∣∣ k1−k2
ε(k1)+ε(k2)

∣∣∣ ε(k1)−
1
2 ε(k2)−

1
2

≤ |k1 + k2|ε(k1)−
1
2 ε(k2)−

1
2 .

Hence

(3.6) |R(k1, k2)| ≤ C|V̂ ′(k1 + k2)|ε(k1)−
1
2 ε(k2)−

1
2 .

Arguing for example as in [DG], we obtain that

(3.7) ‖R‖L2(R2) ≤ C‖V ′‖L2(R).

Using now the Nτ estimates (see [GJ]), we obtain (3.1) for Qa
∗ a∗(V ). The same estimate

holds also for Qa a(V ). 2

3.2. Coupling constant. Let us fix a potential V ∈ L∞(R) with V ′ ∈ L∞(R)∩L2(R). We
set:

(3.8) (λquant)−1 :=
1
2
‖ε−1V + V ε−1‖B(L2(R)) +

1
m
‖ε− 1

2 [V, ε]ε−
1
2 ‖HS.

Lemma 3.2. Assume that |λ| < λquant. Then:
(1) there exists 0 ≤ δ < 1 and C ≥ 0 such that

±λQ(V ) ≤ δdΓ(ω) + C.

(2) there exists c > 0 such that

ωλV :=
[

ε λb
λb∗ ε

]
≥ c1l.

Proof. Set c0 = ‖ε− 1
2 bε−

1
2 ‖ = 1

2‖V ε
−1 + ε−1V ‖. Clearly

±
[

0 b
b∗ 0

]
≤ c0

[
ε 0
0 ε

]
,

hence
±Qa

∗ a(V ) ≤ c0dΓ(ω).
From the Nτ estimates (see eg [GJ]) we get that

±(Qa
∗ a∗(V ) +Qa a(V )) ≤ c1(N + 1) ≤ c1m−1(dΓ(ω) +m),
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for
c1 = 2‖R(·, ·)‖L2(R2),

for R(k1, k2) defined in (3.5). Changing k2 to −k2 and using (1.5), we see that

c1 = ‖ε 1
2V ε−

1
2 − ε− 1

2V ε
1
2 ‖HS = ‖ε− 1

2 [V, ε]ε−
1
2 ‖HS.

These estimates clearly imply the lemma. 2

4. Charged P (ϕ)2 Hamiltonians

In this section we construct the charged P (ϕ)2 Hamiltonians formally defined in (2.14).
We also prove some resolvent estimates known as higher order estimates.

4.1. Charged P (ϕ)2 Hamiltonians. Let

P (λ1, λ2) =
degP∑
|α|=0

aαλ
α1
1 λα2

2

be a real bounded below polynomial on R2. Clearly P is bounded below iff degP = 2m is
even and

inf
θ∈[0,2π[

∑
|α|=2n

aα cos θα1 sin θα2 > 0.

Let also g ∈ L2(R) be a real function. We consider the interaction term

HI =
∫

R
g(x) :P (ϕ1(x), ϕ2(x)) : dx,

where ϕi(x) are defined in Subsect. 3.1 and : : denotes the Wick ordering.
By the usual arguments (see eg [GJ], [DG]) one can show that HI is a Wick polynomial,

ie a finite sum of terms of the form:

Wick(wp,q) =
∫

Rp+q

wp,q(k1, . . . , kp, k
′
1, . . . , k

′
q)

p∏
1

a∗si
(ki)

q∏
1

arj (k′j)dKdK ′,

where si, rj ∈ {1, 2} and the kernels wp,q are in L2(Rp+q).
Using the Nτ estimates (see eg [GJ, DG]) one can prove that HI is a symmetric operator

on DomNm.

Proposition 4.1. Assume that g ∈ L2(R) ∩ L1(R) and g ≥ 0. Then
(1) H0 +HI is essentially selfadjoint on DomH0 ∩DomHI .
(2) the operator H1 = H0 +HI is bounded below.
(3) for any 0 < ε there exists Cε such that

H0 ≤ (1 + ε)H1 + Cε.

Proof. The proof is an immediate modification of arguments in the standard P (ϕ)2 model.
One introduces the Q−space representation associated to the canonical conjugation F 7→ F
on L2(R; C2), which allows to identify Γs(h) with L2(Q,dµ) for a probability measure µ. The
operator HI can be seen as a multiplication operator on L2(Q,dµ) such that HI ∈ Lp(Q)
for some p > 2 and e−tV ∈ L1(Q) for some t > 0. To obtain the second estimate one uses
the fact that g ≥ 0 and P is bounded below. Using then that e−tH0 is hypercontractive,
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one obtains (1) and (2). The same argument show that for any ε > 0 εH0 +HI is bounded
below, which implies (3). 2

The following higher order estimates are easily seen to hold for H1, with the same proof
as in usual P (ϕ)2 Hamiltonians.

Proposition 4.2. Assume that g ∈ L2(R)∩L1(R) and g ≥ 0. Then there exists b > 0 such
that for all α ∈ N, the following higher order estimates hold:

(4.1)

‖Nα(H1 + b)−α‖ <∞,

‖H0N
α(H1 + b)−m−α‖ <∞,

‖Nα(H1 + b)−1(N + 1)1−α‖ <∞.

Theorem 4.3. Assume that g ∈ L2(R)∩L1(R), g ≥ 0, V ∈ L∞(R), V ′ ∈ L∞(R)∩L2(R).
(1) for any λ with |λ| < λquant, the quadratic form H0+λQ(V )+HI with domain DomH0∩

DomNm is closeable and bounded below,
(2) the domain of the closure of the above quadratic form equals Dom|H1|

1
2 ,

(3) The associated bounded below selfadjoint operator will be denoted by H and called a
charged P (ϕ)2 Hamiltonian.

Proof. From Lemma 3.2 we know that if |λ| < λquant then ±λQ(V ) ≤ δH0 + C, for some
0 < δ < 1. By (3) of Prop. 4.1, this implies that as quadratic form Q(V ) is H1− bounded
with relative bound strictly less than 1. The theorem follows then from the KLMN theorem.
2

4.2. Higher order estimates and essential selfadjointness. In this subsection we check
that the higher order estimates of Prop. 4.2 extend to the full Hamiltonian H. As a
consequence we will find a suitable core for H.

Proposition 4.4. Assume that g ∈ L2(R)∩L1(R), g ≥ 0, V ∈ L∞(R), V ′ ∈ L∞(R)∩L2(R).
Let |λ| < λquant and H the charged P (ϕ)2 Hamiltonian constructed in Thm. 4.3. Then there
exists b > 0 such that for all α ∈ N, the following higher order estimates hold:

(4.2)

‖Nα(H + b)−α‖ <∞,

‖H0N
α(H + b)−m−α‖ <∞,

‖Nα(H + b)−1(N + 1)1−α‖ <∞.

Corollary 4.5. The Hamiltonian H is essentially selfadjoint on DomH0 ∩DomNm. Con-
sequently:

H = (H0 + λQ(V ) +HI)cl = (dΓ(ωλV ) + λQa
∗ a∗(V ) + λQa a(V ) +HI)cl,

where we recall that:

(4.3) ωλV :=
[

ε λb
λb∗ ε

]
.



SPECTRAL AND SCATTERING THEORY OF CHARGED P (ϕ)2 MODELS 13

Proof. It follows from Prop. 4.4 that for p large enough DomHp ⊂ Dom(H0) ∩ DomNm.
This implies the corollary since DomHp is a core for H. 2

In the rest of this subsection we will explain the proof of Prop. 4.4, which is a rather easy
adaptation of the standard proof by Rosen [Ro]. We will only give the main steps, referring
the reader for example to [DG, Sect. 7] for details.

Lattices

The proof in [Ro] relies on the introduction of a family Hn of (volume and ultra-violet)
cutoff Hamiltonians. These Hamiltonians are obtained by considering an increasing sequence
hn ⊂ h of finite dimensional subspaces of h such that

⋃
n∈N hn is dense in h. Moreover one

assumes that the isometric projections πn : h → hn commute with the conjugation F 7→ F
on h = L2(R; C2).

The subspaces hn are defined as follows: for v � 1, consider the lattice v−1Z and let

R 3 k 7→ [k]v ∈ v−1Z

be the integer part mod v−1Z. For γ ∈ v−1Z, let eγ(k) = v
1
2 1l]−(2v)−1,(2v)−1](k−γ). Set also

for κ� 1 Γκ,v = {γ ∈ v−1Z : |γ| ≤ κ}, and let

hκ,v := Span{eγ ⊕ 0, 0⊕ eγ : γ ∈ Γκ,v}.

We choose then a sequence (κn, vn) tending to (∞,∞) in such a way that Γκn,vn
⊂

Γκn+1,vn+1 and set hn := hκn,vn .

Cutoff Hamiltonians

Let us explain how to define the associated cutoff Hamiltonians. Since h = hn ⊕ h⊥n ,
there exists by the exponential law a unitary map Un : Γs(hn)⊗ Γs(h⊥n )→ Γs(h). If W is a
bounded operator on Γs(h), one can define its projection to Γs(hn):

(4.4) ΠnW := Un (Γ(πn)WΓ(πn)∗ ⊗ 1l)U−1
n .

This definition extends to Wick polynomials, for example if W =
∏p

1 a
∗(Fi)

∏q
1 a(Gi), then:

ΠnW =
p∏
1

a∗(π∗nπnFi)
q∏
1

a(π∗nπnGi).

We set now:
H0,n := dΓ(εn ⊕ εn), HI,n := ΠnHI , Qn(V ) := ΠnQ(V ),

where ΠnW is defined in (4.4) and

εn(k) = ε([k]vn),

in the momentum space representation. Note that εn ⊕ εn commutes with π∗nπn. The
construction of the cutoff Hamiltonians Hn is done in the next proposition.

Proposition 4.6. (1) Let |λ| < λquant. Then there exists 0 < δ < 1 and C > 0 such that
uniformly for n large enough:

±λQn(V ) ≤ δH0,n + C.



14 C. GÉRARD

(2) the Hamiltonian H1,n = H0,n +HI,n is essentially selfadjoint on DomdΓ(ω)∩DomNm

and there exists b > 0 such that

0 ≤ H1,n + b, ∀ n ∈ N.

(3) there exists 0 < δ < 1 and b > 0 such that

±λQn(V ) ≤ δ(H1,n + b), ∀ n ∈ N.

(4) Let Hn the bounded below selfadjoint operator associated to the quadratic form H1,n +
λQn(V ) with domain Dom|H1,n|

1
2 . Then

s− lim
n→∞

(Hn + b)−1 = (H + b)−1,

where H is the charged P (ϕ)2 Hamiltonian defined in Thm. 4.3.

To prove (1) we note that (modulo the trivial factors Un):

(4.5) ΠnW = Γ(π∗nπn)WΓ(π∗nπn).

Since |λ| < λquant there exists 0 < δ < 1 and C > 0 such that λQ(V ) ≤ δdΓ(ε ⊕ ε) + C.
Using (4.5) we get that

λQn(V ) ≤ δΓ(π∗nπn)dΓ(ε⊕ ε)Γ(π∗nπn) + C ≤ δdΓ(ε⊕ ε) + C,

since π∗nπn commutes with ε⊕ ε. Clearly for any α > 0 one has

(1 + α)−1εn ≤ ε ≤ (1 + α)εn, if n is large enough.

This implies (1). Statement (2) is standard (see eg [DG, Sect. 7]). It follows also that for
any ε > 0 there exists Cε such that uniformly in n:

H0,n ≤ (1 + ε)H1,n + Cε,

which implies (3). It remains to prove (4). Since Qn(V ) are uniformly H1,n− form bounded
with relative bound strictly less than 1, there exists b� 1 such that (H1,n+b)−

1
2λQn(V )(H1,n+

b)−
1
2 has norm less than some δ < 1 uniformly in n, and:

(Hn + b)−1 = (H1,n + b)−
1
2 (1l + (H1,n + b)−

1
2λQn(V )(H1,n + b)−

1
2 )−1(H1,n + b)−

1
2 ,

It follows that

(Hn + b)−1 =
+∞∑
k=0

(H1,n + b)−1(−λQn(V )(H1,n + b)−1)k

as a norm convergent series. The same formula holds for (H + b)−1. Therefore it suffices to
prove that for all k ∈ N:

(4.6) s− lim
n→∞

(H1,n + b)−1(Qn(V )(H1,n + b)−1)k = (H1 + b)−1(Q(V )(H1 + b)−1)k.

The arguments in [SHK, Prop. 4.8] easily extend to yield that

(4.7) (H1,n + b)−1 → (H1 + b)−1 in norm.

(Note that H1 is a essentially a standard P (ϕ)2 Hamiltonian). Moreover

(4.8) sup
n∈N
‖N(H1,n + b)−1‖ <∞.
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This implies using Lemma 3.1 that Qn(V )(H1,n + b)−1 is uniformly bounded. Hence (4.6)
will follow from

(4.9) s− lim
n→∞

(H1 + b)−1(Qn(V )(H1 + b)−1)k = (H1 + b)−1(Q(V )(H1 + b)−1)k.

Now Qn(V )(H1 + b)−1 is uniformly bounded and converges strongly to Q(V )(H1 + b)−1,
which implies (4.9). This completes the proof of the proposition.2

Proof of Prop. 4.4. The key point of the proof of the higher order estimates is to
consider the multicommutators:

Ri,n(k1, . . . , kp) := adai(k1) · · · adai(kp)(HI,n +Qn(V )), k1, . . . , kp ∈ R,

for i = 1, 2 where adAB = [A,B]. The key step is then to prove that there exists b > 0 such
that for all λ1, λ2 ≥ b one has:

(4.10) ‖(Hn + λ1)−
1
2Ri,n(k1, . . . , kp)(Hn + λ2)−

1
2 ‖ ≤ Cp

p∏
1

Fn(ki),

where

(4.11) sup
n∈N

∫
R
|Fn(k)|2ε(k)−δdk <∞, ∀ δ > 0.

Note that it is only necessary to bound multicommutators with ai(k) for a fixed i = 1, 2.
Indeed this follows from the fact that it suffices to prove the higher order estimates with N ,
H0 replaced by Ni, H0,i for:

Ni =
∫

R
a∗i (k)ai(k)dk, H0,i =

∫
R
ε(k)a∗i (k)ai(k)dk.

We first note that since H0,n ≤ C(Hn + b) uniformly in n, it suffices to prove (4.10) with
(H0,n + λ)−

1
2 instead of (Hn + λ)−

1
2 .

Clearly the multicommutator Ri(· · · ) is the sum of the two multicommutators with HI,n

and Qn(V ). The multicommutators with HI,n are estimated as in [Ro], [DG], yielding:

(4.12) ‖(H0 + λ1)−
1
2 adai(k1) · · · adai(kp)HI,n(H0 + λ2)−

1
2 ‖ ≤ Cp

p∏
1

ε(ki)−
1
2 ,

so that (4.11) is satisfied.
Let us now estimate the multicommutators with Qa

∗ a
n (V ). Abusing notation, we will still

denote by πn the projection from L2(R) onto Span{eγ : γ ∈ Γκn,vn}. Let bn = π∗nπnbπ
∗
nπn,

where b is the operator defined in (3.4) and denote also by bn(k1, k2) its kernel in the
momentum representation. Then

ada1(k)Q
a∗ a
n (V ) = a2(bn(k, ·)),

and the similar formula with the indices 1 and 2 exchanged. Using the well known estimate

(4.13) ‖a(f)(dΓ(b) + 1)−
1
2 ‖ ≤ ‖b− 1

2 f‖,
for b ≥ 0, we get

‖ada1(k)Q
a∗ a
n (V )(H0,n + b)−

1
2 ‖ ≤ ‖εn(·)− 1

2 bn(k, ·)‖L2(R) =: Fn(k),



16 C. GÉRARD

hence to prove (4.11) it suffices to show that ε(k1)−δ/2ε(k2)−
1
2 bn(k1, k2) ∈ L2(R2) uniformly

in n. This is equivalent to the fact that ε−δ/2bnε−
1
2 is Hilbert-Schmidt uniformly in n.

Clearly this is true if ε−δ/2bε−
1
2 is Hilbert-Schmidt. Working in the momentum representa-

tion we need to consider the integrals:

I1 =
∫
ε(k)−1−δ|V̂ |2(k′ − k)dkdk′,

I2 =
∫
ε(k)1−δε(k′)−2|V̂ |2(k′ − k)dkdk′.

I1 is clearly convergent since V ∈ L2(R). To estimate I2, we use the Peetre inequality:

(4.14) 1 + |x| ≤ 2(1 + |x− y|)(1 + |y|), x, y ∈ R,

and obtain that I2 is convergent. In fact ε(k)(1−δ)/2V̂ ∈ L2(R) since V ′ ∈ L2(R).
Let us now consider the multicommutators with Qa

∗ a∗

n (V ). Recall that the kernel
R(k1, k2) of Qa

∗ a∗(V ) was defined in (3.5) and set Rn = Γ(π∗nπn)R. Then:

ada1(k)Q
a∗ a∗

n (V ) = a∗2(Rn(k, ·)).

Using again (4.13), we get that

‖(H0,n + b)−
1
2 ada1(k)Q

a∗ a∗

n (V )‖ ≤ ‖εn(·)− 1
2Rn(k, ·)‖L2(R) =: Fn(k).

Now(4.11) follows from the fact that R(k1, k2) ∈ L2(R2),shown in (3.7).
The proof of the higher order estimates can now be completed as in [Ro], [DG]. In

particular the strong resolvent convergence in Prop. 4.6 (4) is needed to apply the principle
of cutoff independence in [Ro]. 2

5. Spectral and scattering theory for charged P (ϕ)2 Hamiltonians

In this section we study the spectral and scattering theory of charged P (ϕ)2 Hamilto-
nians. We will use the results of [GP]. In [GP], we introduced an abstract class of QFT
Hamiltonians formally given by

H = dΓ(ω) + Wick(w),

on a bosonic Fock space Γs(h), where ω ≥ 0 is a selfadjoint operator on the one-particle
space h and Wick(w) is a Wick polynomial associated to a kernel w.

Our main task in this section will be to explain how to fit charged P (ϕ)2 Hamiltonians
into the abstract framework of [GP] and to check the various abstract hypotheses there.
The results on spectral and scattering theory are then obtained as simple applications of
the generals results of [GP].

5.1. Charged P (ϕ)2 Hamiltonians as abstract QFT Hamiltonians. The class of ab-
stract QFT Hamiltonians in [GP] is described in terms of three types of hypotheses, which
will be briefly explained below.

Hypotheses on the Hamiltonian

One first requires (see [GP, Subsect. 3.1]) that the Hamiltonian H is the closure of
dΓ(ω) + Wick(w) where Wick(w) is a Wick polynomial with L2 kernels and is bounded
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below. This follows from Corollary 4.5. In our case we take for ω the operator ωλV defined
in (4.3).

One also requires that ω ≥ m1 > 0, which follows from Lemma 3.2.
Moreover one asks that any power of the number operator should be controlled by a

sufficiently high power of the resolvent of H (see [GP, Subsect. 3.1]). This follows from the
higher order estimates, which were proved in Prop. 4.4.

Hypotheses on the one-particle Hamiltonian

On requires that the one-particle energy ω has a sufficiently nice spectral and scattering
theory. The precise statements can be found in [GP, Subsect. 3.2]. They are formulated in
terms of two additional selfadjoint operators on the one-particle Hilbert space h.

The first one, denoted by 〈X〉 is called a weight operator, used to measure the propagation
of one-particle states to infinity. The second, denoted by a is a conjugate operator, used in the
Mourre commutator method. Moreover one introduces a dense subspace S of h, preserved
by the operators ω, a, 〈X〉 on which (multi)-commutators between these three operators can
be unambiguously defined.

To verify them in our case it is convenient to assume that the electrostatic potential is
smooth. More precisely we will assume that V ∈ S−µ(R), for some µ > 0, where the classes
Sm(R) are defined in Subsect. 1.3.

The one-particle Hamiltonian in our case is ωλV defined in (4.3). For the weight operator,
we choose:

〈X〉 :=
[
〈x〉 0
0 〈x〉

]
,

and for the conjugate operator

a =
[
c 0
0 c

]
, c =

1
2

(x · Dx

ε(Dx)
+

Dx

ε(Dx)
· x).

For the subspace S we choose S(R)⊕ S(R) where S(R) is the Schwartz class.
Assuming that V ∈ S−µ(R) for some µ > 0, it is a tedious but straightforward exercise in

pseudodifferential calculus to check that the hypotheses in [GP, Subsect. 3.2] are satisfied.

Hypotheses on the interaction

The final set of hypotheses concerns the kernel w of the interaction Wick(w) (see [GP,
Subsect. 3.3]). In our case they correspond to the fact that each kernel wp,q, considered as
an element of ⊗p+qL2(R; C2) should be in the domain of dΓ(〈x〉s) for some s > 1.

The interaction term Wick(w) is the sum of the P (ϕ)2 interaction
∫

R :P (ϕ1(x), ϕ2(x)) : dx
and λQa

∗ a∗(V ) + λQa a(V ).
For the first term, the hypotheses above are satisfied if 〈x〉sg ∈ L2(R) (see [DG, Subsect.

6.3]).

Lemma 5.1. Assume that V ∈ S−µ(R) for some µ > 1
2 . Let R(k1, k2) be the kernel of

Qa
∗ a∗(V ) and Qa a(V ) defined in (3.5). Then |Dki |sR ∈ L2(R2) for i = 1, 2.

Proof. Using (1.5), we see that R(k1,−k2) is the distribution kernel of
i
2F(ε(Dx)

1
2V ε(Dx)−

1
2 − ε(Dx)−

1
2V ε(Dx)

1
2 )F−1

= 1
2F(ε(Dx)−

1
2 [ε(Dx), iV ]ε(Dx)−

1
2F−1.
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We need to prove that |Dk1 |sR(k1,−k2) ∈ L2(R2) or equivalently that the operator C =
〈x〉sε(Dx)−

1
2 [ε(Dx), V ]ε(Dx)−

1
2 is Hilbert Schmidt on L2(R).

From the pseudodifferential calculus, we obtain that C = Opw(c), where c(x, k) is a
symbol satisfying:

|∂αx ∂
β
k c(x, k)| ≤ Cα,β〈x〉−µ−1+s〈k〉−1−β , α, β ∈ N,

and Opw(a) denotes the Weyl quantization of a. Using (1.6) we see the conclusion of the
lemma holds if µ > 1

2 . 2

5.2. Spectrum of charged P (ϕ)2 Hamiltonians. In the rest of this section we assume:

〈xs〉g ∈ L2(R), , g ∈ L1(R), g ≥ 0, V ∈ S−s(R), for some s > 1.

Moreover we assume as before that:

|λ| < λquant.

Theorem 5.2 (HVZ Theorem). One has

σess(H) = [inf σ(H) +m,+∞[.

Consequently H has a ground state.

The theorem follows from [GP, Thm. 7.1] and the fact that σess(ωλV ) = [m,+∞[.

5.3. Asymptotic fields. For F ∈ h we set Ft := e−itωh. The results of this subsection
follow from [GP, Thm. 4.1], taking into account [GP, Remark 4.2]. The fact that ωλV
restricted to its continuous spectral subspace is unitarily equivalent to ω follow easily from
standard two-body scattering theory, using that V ∈ S−s(R) for s > 1.

Theorem 5.3. (1) for all F ∈ h the strong limits

(5.1) W±(F ) := s− lim
t→±∞

eitHW (Ft)e−itH

exist. They are called the asymptotic Weyl operators.
(2) the map

(5.2) h 3 F 7→W±(F )

is strongly continuous.
(3) the operators W±(F ) satisfy the Weyl commutation relations:

W±(F )W±(G) = e−i 12 Im(F |G)W±(F +G).

(4) the Hamiltonian preserves the asymptotic Weyl operators:

(5.3) eitHW±(F )e−itH = W±(F−t).
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5.4. Wave operators and asymptotic completeness. For F ∈ h, let a±](F ) the as-
ymptotic creation/annihilation operators associated to the asymptotic Weyl operators (see
eg [GP, Subsect. 8.1]). The following theorem describes the construction of wave operators
and their main property, the asymptotic completeness.

Theorem 5.4. Set:
Ω± : Hpp(H)⊗ Γs(h)→ Γs(h)

Ψ⊗
∏n

1 a
∗(Fi)Ω 7→

∏n
1 a
±∗(Fi)Ψ.

The operators Ω± are called the wave operators. Set also

H± = H|Hpp(H) ⊗ 1l + 1l⊗ dΓ(ω), acting on Hpp(H)⊗ Γs(h).

The operators H± are called the asymptotic Hamiltonians. Then:
(1) Ω± are unitary operators;
(2) Ω± intertwine the asymptotic Weyl operators with the Fock Weyl operators:

Ω±1l⊗W (F ) = W±(F )Ω±, ∀ F ∈ h,

(3) Ω± intertwine the asymptotic Hamiltonians with the Hamiltonian H:

Ω±H± = HΩ±.
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