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ABSTRACT. We consider in this paper space-cutoff charged P(p)2 models arising from
the quantization of the non-linear charged Klein-Gordon equation:

(O +1V (2))*¢(t, @) + (=As +m?)p(t, ) + g(2)0zP((t, 2), $(t,z)) = O,

where V(x) is an electrostatic potential, g(z) > 0 a space-cutoff and P(\,\) a real
bounded below polynomial. We discuss various ways to quantize this equation, starting
from different CCR representations. After describing the construction of the interacting
Hamiltonian H we study its spectral and scattering theory. We describe the essential
spectrum of H, prove the existence of asymptotic fields and of wave operators, and finally
prove the asymptotic completeness of wave operators. These results are similar to the
case when V = 0.

1. INTRODUCTION
1.1. Charged Klein-Gordon equations. Let us consider the charged Klein-Gordon equa-
tion:
(1.1) (0 +iV(2))%0(t, ) + (—Ay + m?)d(t, ) =0,
where ¢ : R, — L?(R%C), m > 0 is the mass. The equation (1.1) describes a charged

field minimally coupled to a external electrostatic field given by the potential V. As is well
known, after introducing the ¢ and « fields by

o(t) = o(t), m(t) = 9eop(t) +1V (1),
one can interpret (1.1) as a Hamiltonian system on the symplectic space
Y={y=(mr¢) : mpel’R,C)}
equipped with the (complex) symplectic form

(m, @)l ) = / T(@)¢! (z) - Pla)r (x)de.

]Rd
for the classical Hamiltonian
hy (7, ¢)

= JraT@)m(@)dr + [z Vop() - Vap() + m*B(z)p(z)dz
Hi fpa P(@)V ()7 (2) — 7(2)V (2)p(x)da
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In order to obtain a stable quantization of (1.1), ie a CCR representation of (),w) in a
Hilbert space H with the property that the time evolution is implemented by a positive
Hamiltonian, it is necessary that the classical Hamiltonian hy (7, @) is positive. If this is the
case, one can equip Y with a Kdhler structure, ie a complex structure j such that

WY )ayn = ywiy’ + iywy/
is a scalar product on Y. The completion of the pre-Hilbert space (), j, (*|)dayn), denoted by
Z is called the one-particle space. The stable quantization is then the Fock representation
on the bosonic Fock space I's(Z), and the time evolution is unitarily implemented by the
group eV where Hy = dI'(hy) is a second quantized Hamiltonian.

An alternative quantization is obtained by considering first the Klein-Gordon equation
(1.1) for V(z) = 0. Let us denote by jo (resp. Zy) the associated complex structure (resp.
one-particle space). As is well known, Z, can be unitarily identified with L?(R%) @ L2(R?).

The dynamics for V' = 0 is unitarily implemented by e'*/° on the Fock space I'y,(Zy), for
Hy = dI'(w), where w = € @ € is the one-particle energy and e = (—A, + m?2)=.

One can then try to implement the dynamics for V' # 0 by considering the Fock repre-
sentation on I'y(Z)) and by giving a meaning to the formal expression:

H =dI'(w) —|—i/Rd B(z)V(x)m(z) — T(x)V(x)p(x)de,

where p(x), m(x) are the quantized ¢ and = fields. Note that the two CCR representations
above are in general not unitarily equivalent.

It turns out that it is possible to give a meaning to H,in one space dimension (d = 1),
provided the potential V is small enough as we will see in Sect. 4.

1.2. Non-linear perturbations. We assume now that d = 1. Let us fix a positive space
cutoff function g : R — R*, decreasing fast enough at infinity and a bounded below real
potential P(A, \). We consider now the non-linear charged Klein-Gordon equation:

(1.2) (0 +1V (@))*¢(t, @) + (=Ay +m?*)d(t, 2) + g(2)0=P(6(t, 7), $(t, 2)) = 0.
The usual procedure to quantize (1.2) is to start from a quantization of (1.1) (ie (1.2) for

g(z) = 0), leading to the Hamiltonians Hy or Hy (depending on the choice of the CCR
representation), and to implement the interacting dynamics by giving a meaning to either:

(13) Hy + / 9(2) P(p(x), B(x))dz,

(1.4) Ho+i/R¢(fﬂ)V(fv)7T($) *W(I)V(I)s&(x)dwrAQ(I)P(¢($)7¢($))d$-

The choice (1.3) seems difficult, because both the one-particle energy hy and the ¢, 7 fields
are not very explicit in the Fock representation for the complex structure j.

In this paper we will adopt the choice (1.4).

The associated Hamiltonian will be constructed in Sect. 4. We will show that if |A| <
Aquant; Where the constant Aquant is defined in (3.8), the formal expression

@)V (x)m(z) —7(2)V (2)p(z)de + / g(x) : P(p(x), p(x)): dz,

H::HO—H)\/
R

R
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is well defined as a bounded below selfadjoint operator.

The rest of the paper is devoted to the spectral and scattering theory of H, which is stud-
ied in Sect. 5. We will use the results of [GP], where an abstract class of QFT Hamiltonians
are considered, so most of our task is to prove that our Hamiltonian H satisfies the abstract
hypotheses of [GP]. This will be done in Subsect. 5.1.

The first result is the HVZ theorem, describing the essential spectrum of H. We obtain
that

Oess(H) = [info(H) + m, 00|,
which implies that H has a ground state.

The second results deal with the scattering theory of H, which is formulated in terms of
asymptotic fields. These are (formally) defined as the limits:

Jim (el et = ¢ (F), F € L*(R) ® L*(R).

It follows then from the stability condition |A| < Aquans and abstract arguments that the
two asymptotic CCR representations

F— ¢*=(F)

are of Fock type, ie unitarily equivalent to a sum of Fock representations.

The main problem of scattering theory is now to identify the spaces of asymptotic vacua,
ie the spaces of vectors annihilated by all asymptotic annihilation operators a™®(F). Applying
the abstract results of [GP], we show that the asymptotic vacua coincide with the bound
states of H. This result, called the asymptotic completeness of wave operators, is the main
result of this paper.

1.3. Notation. In this subsection we collect some useful notation and results.

Scales of Hilbert spaces

If b is a Hilbert space and € a linear operator on b, its domain will be denoted by Dome.
The closure of a closeable operator a will be denoted by a.

If € is selfadjoint, we write € > 0 if € > 0 and Kere = {0}. If ¢ > 0 and s € R, €® is well
defined as a selfadjoint operator and we denote by €°h the completion of Dome™* for the
norm ||e~*h||. Clearly e*h are Hilbert spaces and €’ is isometric from €®h to e5Th.

Fourier transform
Let h = L?(R). We denote by F the unitary Fourier transform:
Fu(k) = (2r)1/2 / e Ry (z)de.
R

We denote also by fthe usual Fourier transform of f:

f (k) :/Re_ik'xu(aj)dx,

so that if V' is the operator of multiplication by the function V' one has

(1.5) FVF Yu(ky) = (27r)*1/x7(k1 — ky)u(ko)dks.
R
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If e = (—A, +m?2)2 for m > 0 then € L%(R) is equal to the Sobolev space H*(R) with the
norm

1712y = / (k2 + m2)~* | Fu(k)Pdk.

Pseudodifferential calculus
Set (z) = (1+ 22)2. For m € R we will denote by S™(R) the space
S™(R) ={f € C*(R) : |f(x)| < Cnfa)" ", o€ N}.
For m,p € R we denote by S™P(R?) the space
S™P(R?) = {f € C(R?) : |950 f(x,k)| < Capla)™ k)P, a,8 € N}.
If a € S™P(R?), we denote by Op"(a) = a%(z, D,) the Weyl quantization of a, defined as:

Op*(@)u(z) = (2m)* [ e a(* T2, byuly)dyd.

as an operator on S(R), where S(R) =, ,cp S™(R) is the Schwartz class.
The operator Op” (a) is bounded on L?(R) if a € S™P(R?) for m,p < 0, and belongs to
the Hilbert-Schmidt class iff a € L?(R?). One has then

1
(1.6) ||Opwa||%{s = —/ \a(w,k)|2dmdk.
271' R2

2. CHARGED KLEIN-GORDON EQUATION

In this section we detail the arguments given in Subsect. 1.1. The results of this section
are standard, they can be found for example in Palmer [Pa]. For simplicity we consider the
one dimensional case, although the results of Subsect. 2.1 hold in any space dimension.

2.1. Charged Klein-Gordon equation as a Hamilton equation. Let m > 0 and V :
R — R a real measurable potential such that

(2.1) V, V.,V € L*(R).
We consider the Cauchy problem for the charged Klein-Gordon equation:
(0 +1V(2))?d(t, 2) + (= Az +m?)g(t,z) =0,
(2.2) ¢(0,z) = o(),
99(0, ) +1V(2)¢(0, 2) = m(z),
where ¢ : R — L2?(R;C), describing a charged scalar field of mass m minimally coupled to
the electrostatic potential V.

Note that (2.2) is invariant under time-reversal, ie if ¢(t,z) is a solution, so is ¢(—t,x).
In terms of Cauchy data, time-reversal becomes the involution:

(2.3) k(@) — (=7, ).
Let us set
p(t) == ¢(t), m(t) = 0d(t) +1V(t),
and
Y={y=(m¢) : mpecl’R)}
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t

We transform (2.2) into the first order evolution equation on Y := L*(R) & L*(R):

iy

Formally we have,
@ ol )= ] H0):

for € == (—A, +m?2)2.
If we equip ) with the (sesquilinear) anti-symmetric form:

(my p)w(r’, ¢') = (ml¢) = (pln’),
and the Hamiltonian:
(2.5) hy (m, @) = |I7)|* + llegl® + i(e|Vr) — i(7[Ve),

we see that (2.4) are the associated Hamilton equations. If we prefer to forget the complex
structure of ), we write

(2.6) =11 +ipa, ™=:m + img,
and equip Y (as a real vector space) with the real symplectic form Rew and the Hamiltonian
hve(m, ) = 3h(m, )
(2.7) = gllmll? + 3lmll® + slleor]l? + llepell?
+(m1|[Vipz) = (m2|Vepr).

2.2. Stable quantization. A stable quantization of the symplectic dynamics r; is a CCR
representation of the symplectic space (), w):

Y3oy—W(y) €UH)
in some Hilbert space H such that there exists a positive selfadjoint operator H on H
implementing 7y, ie:
W (y)e ™ =W (ry), ye Y, teR.
As is well known (see eg [BSZ]), in order for a stable quantization to exist, it is necessary that
the classical Hamiltonian hy (m, ¢) is positive. The violation of the positivity of hy (7, ) is

connected with the so called Klein paradoz.
Let us assume the following stronger positivity:

(2.8)  i((p|Vm) = (7|Vp)) <6 (|Ix]* + llew]*) 7€ L*(R), ¢ € Dome, for 0 < § < 1.
Note that (2.8) implies that the energy norms hg(+)z and hy (-)2 are equivalent.

The construction of the stable quantization is then as follows:

(1) one considers the energy space Ve, which is the completion of L?(R) & H'(R) for
the norm hy (7, )2;
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(2) clearly t — ¢ is a strongly continuous group of isometries of Ven, and we denote by
a its generator ie 7; =: e'*. From (2.4) we see that

[ =iVooAy —m?
=l -
is anti-selfadjoint on Doma = H!(R) & H%(R). Moreover from (2.8) we see that

Kera = {0}.
(3) we consider now the polar decomposition of a:
hy = (—az)%, a =: jhy = jhy,
and we see that j is an anti-involution (a complex structure) on Ye,, such that wj is
a symmetric positive definite form.
(4) we equip Ve, with the complex structure j and the scalar product
(Y1]y2)dyn = y1wjye + iy1wys.

(5) denoting by Z the completion of YV, for (-|-), we obtain a complex Hilbert space,
such that hy extends to Z as a positive selfadjoint operator. The stable quantization
of the charged Klein-Gordon equation is obtained by taking the Hilbert space:

H=T5(2),
where I's(Z) is the bosonic Fock space over Z, the CCR representation
Z2Vm 2y — W(y) €eU(H)
where W (y) are the Fock Weyl operators, and the physical Hamiltonian
H = d(hy),

where dI'(hy) is the second quantization of hy .

2.3. Alternative choice of the complex structure. Let us consider the charged Klein-

Gordon equation (2.2) for V' = 0 and denote with the subscript 0 the associated objects.
By the same procedure as above we can equip ) with the free complex structure jo. A

very convenient feature of jy is that if Z; is the associated Hilbert space, then the map:

U:Zy3 (m @) (€ 3m+ie2p,e 77 +ie2p) € LA(RY) & L2(RY)

is unitary. This allows to identify Z; with an explicit Hilbert space. In terms of neutral
fields m;, ¢; the map W becomes:

(2.9) (m, ) — (67%71'1 Fie2gy, e iy + ie%gpg) € L2 (RY) @ L*(RY).

As is well known (see eg [Pa]), there exists an invertible symplectic transformation v on Y
such that
jo = uju.
(This actually holds for any pair of Kahler complex structures on a symplectic space).
Therefore u : Z — Z; and its second quantization I'(u) : T's(Z) — T's(2y) are unitary.
The Fock representation of CCR on I'y(Z) is unitarily equivalent to the following Bogoliubov
representation on I's(Zy):

(2.10) Wy (f) =Wo(uf), fe,
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where Wy(+) is the Fock representation on I's(Zy). This allows to work on the more conve-
nient Fock space I's(Zy). The positive Hamiltonian on T's(Zy) implementing the dynamics

e'® in the Bogoliubov representation Wy (+) is then

dr(hV)a

where we still denote by hy acting on Z, the operator uhyu'.

2.4. Quantization of the non-linear charged Klein-Gordon equation. Let P(z1, 22)
be a polynomial on C? such that C > z — P(z,%) is real and bounded below. Let also g
a positive function (typically g € C§°(R)). We consider now the non-linear Klein-Gordon
equation:

(2.11) (O +1V (2))*(t,2) + (= Ay +m?)(t,2) + 9(2)IzP(4(t, 2), d(t, x)) = 0.

The quantization of (2.11) for g(z) = 0, outlined in Subsect. 2.3 leads to the free Hamil-
tonian

dI'(hy ), acting on I's(Zy),

and to the Bogoliubov representation of CCR Wy (-) defined in (2.10).
Denoting by ¢y (f) for f € Y the Segal field operators associated to the CCR represen-
tation (2.10) , one sets:

ov(x) = ¢y (d:,0), x €R
which are the corresponding ¢ fields. The natural way to quantize (2.11) is now to try to
make sense of the Hamiltonian

(2.12) Hy = dT(hy) + / 9(2)Plov (x), By (2))dz.

If (possibly after some Wick ordering of the interaction term), the above Hamiltonian is well
defined, one can set

oy (t, ) = TV gy (fle M,
which leads to the quantization of (2.11) in the Bogoliubov representation (2.10).

The difficulty with this method is of course to make sense of Hy,, since neither the one-
particle Hamiltonian hy nor the ¢ fields ¢y (x) are explicitely known.

Actually if V' decays fast enough at infinity, it is possible to find a symplectic transfor-
mation u such that uhyu~! equals the free one-particle energy and additionally v is real, ie
commutes with the time-reversal operator & in (2.3). This opens the possibility to rigorously
construct the Hamiltonian (2.12). We plan to come back to this problem in a subsequent
paper.

An alternative way, which we will follow in this paper, is as follows:

(1) one considers the stable quantization of (2.2) for V = 0, leading to the usual complex
structure jo. It is convenient to use the neutral fields m;, p; ¢ = 1,2 as in (2.6), and
to identify the one-particle space Zq with L?(R) & L?(R) as in (2.9).

(2) the free Hamiltonian is now

Hy = dT'(e @ €), acting on H = I'\(L*(R) @ L*(R)),

which implements the dynamics e*® in the Fock representation for the complex
structure jgo.
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(3) one sets for x € R:

p1(z) = ¢ (6_%51’ @0) , p2(z) =0 (0@ e_%éz>
m(x) = ¢ (ieéém @ O) , ma(x) = ¢ (0 @ ieéém) ,

where ¢(f) are the Segal field operators. These operators are well defined as selfad-
joint operators after integration against test functions.
(4) setting with a slight abuse of notation

P()\l, Ag) = P()\l + i)\g, )\1 — iA2)7

(2.13)

one tries to rigorously define as a selfadjoint operator the formal expression:

Q.14) H = dNew 0+ [ g@)P(er(e).eala)dat [ V) (m@)a(w) = mla)or (@) da.

R
corresponding to the hamiltonian hg (7, @) defined in (2.7). This will be done in Sect. 4.

3. LOCAL CHARGE OPERATOR
In the rest of the paper we set

h=L*(R)® L*(R), H =T(h).

The elements of h will be denoted by F' = (fi1, f2). The one-particle energy is
w = € P € acting on b,
and
Hy :=dl'(w)
The (total) number operator N is
N:=dI'(1e 1),
equal to Ny + No, where
N, :=dl'(1&0), N, :=dI'(0& 1).

We will also use the partial creation/annihilation operators
ai(f) = a}(f @0) a3(f) = a* (0 f), | € L*(R).

3.1. Local charge operator. Set
QV)i= [ V@) (m()eala) - ma()er(e) de,
R

where ¢;(z), m;(x) are defined in (2.13). For the moment it is only a formal expression.
We will call Q(V) a local charge operator.
To work with well defined objects, we introduce the UV cutoff fields, ¢f(x), nf(z), for
k > 1, obtained by replacing &, by F(k~1D,)d, where F € C§°(R) is a cutoff function with
F(0) = 1. We denote by @*(V) the cutoff charge operator, wich is for example well defined
on DomN.
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Lemma 3.1. Assume that V € L*®(R) and V' € L*(R) N L*(R). Then there exists a
constant C' such that:

(3.1) I Q)N +1)7H < C(IVlso + [V Il2 + 1V lloo)-

Proof. For ease of notation we will remove the UV cutoff. To get a rigorous proof, it
suffices to put back the UV cutoff, letting x — +o00 in the various estimates.
Introducing the creation/annihilation operators ag( f) for i = 1,2 we have:

~

m1(z)p2(7) — m2(7)P1(w

Il
|~
/N
S
— %
—~
a
|
(=%
8
S~—"
@
N}
—
a
Wl
(o9
8
S~—"
+
S
— %
—~
a
M
(o9
3]
N
Q
N}
—~
a
|
(o9
8

at(e28,)as(e726,) — at(e 20, )as(e2d,

)
as(e28,)ar(e726,) — ay (6%555)@(67%595))
= R %z)+ R* % () + R**(x).

+§(
w5

It is convenient to pass to the momentum representation using the unitary Fourier transform
F. It follows that

ar(e® = (27 7% €S efikxaﬁ
(3.2) 1(€0,) = (2m) 72 fpeo(k) * (k) dk,

Let us first consider the term
Qv (V) = / V(z)R® %(z)da.
R

Using the above transformation and (1.5) we see that

(33) @ rwy=ar o]
for
(3.4) b= %(e%ve*% e IVer),

Since V, V' € L*(R), V is a bounded operator on H*(R) hence by interpolation and duality
also on H2 (R) and H~2(R). This implies that b is bounded. Clearly this implies that (3.1)
holds for Q*" %(V). Let us now consider the term

Qv (V)= / V(z)R @ (z)dx.

R
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Using (3.2), we obtain that:

Qa* a* (V)
= Jpe R(k1, k2)ai(k1)as(ke)dkidks,
where:
(3.5) R(ki,k2) = ﬁf/(kl + k) (e(kl)%e<k2)—% - e<k1)—%€(k2)%) .

We note that: ) ) ) )
le(k1)2e(k) ™2 —e(k1) " 2¢€(ka)?|

1

= e(kjl)_%e(kg)_i (k1) — e(k2)|

_1 _1 ki—k3
= ell) 7 elka)™* | it
= |k + kol m E(kl)iée(kg)ié

< iy + kole(kr) " Ze(k) 2.
Hence
(3.6) R(ky, k2)| < C\V7(ky + ka)|e(k1) "2 e(ka) 2.
Arguing for example as in [DG], we obtain that
(3.7) IRllz2(r2) < ClIV'[lL2qw)-

Using now the N, estimates (see [GJ]), we obtain (3.1) for Q%" ¢ (V). The same estimate
holds also for Q* *(V). O

3.2. Coupling constant. Let us fix a potential V € L*°(R) with V’ € L>*(R)NL3(R). We
set:

1 1 1
(38) ()‘quant)_l = §||6_1V + V6—1||B(L2(R)) + EHE_E [‘/, 6]6_% ||HS
Lemma 3.2. Assume that |A| < Aquant- Then:
(1) there exists 0 <6 < 1 and C > 0 such that
+£2Q(V) < édl'(w) + C.
(2) there exists ¢ > 0 such that

Ab
WHyY — |: )\Z* ¢ :| ZC]I

Proof. Set co = ||e 2be 2| = L[Vel + e V] Clearly
0 o e 0
:l: |: b* 0 :| S CO |: 0 € :| )

+Q% U(V) < ¢odlN(w).
From the N, estimates (see eg [GJ]) we get that
QY (V) +Q (V) < er(N +1) < eym ™ (AT (w) + m),

hence
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for
1 = 2[[R(, )| L2 (®2),
for R(ky,k2) defined in (3.5). Changing ko to —k2 and using (1.5), we see that
c1=le2Ve s — e 2Ve||us = [le [V, eJe # |lus.

These estimates clearly imply the lemma. O

4. CHARGED P(p)2 HAMILTONIANS

In this section we construct the charged P(y)2 Hamiltonians formally defined in (2.14).
We also prove some resolvent estimates known as higher order estimates.

4.1. Charged P(y)2 Hamiltonians. Let
degP
P A2) = Y aaAfAg?
|er|=0
be a real bounded below polynomial on R2. Clearly P is bounded below iff degP = 2m is
even and

inf E Qe €08 04t sin 0 > 0.
0€[0,27]
|a|=2n

Let also g € L?(R) be a real function. We consider the interaction term

Hy = / 9(2) : Pr(2), () do,

where ¢;(z) are defined in Subsect. 3.1 and : : denotes the Wick ordering.
By the usual arguments (see eg [GJ], [DG]) one can show that H; is a Wick polynomial,
ie a finite sum of terms of the form:

Wick(wyp 4) = /

Rp+a

P q
wyq(krs -k KK T ek (ko) T ] ar, () AKAK,
1 1
where s;,7; € {1,2} and the kernels w,, ;, are in L?(RPT9).
Using the N, estimates (see eg [GJ, DG]) one can prove that Hy is a symmetric operator
on DomN™.

Proposition 4.1. Assume that g € L*>(R) N L*(R) and g > 0. Then
(1) Ho+ Hy is essentially selfadjoint on DomHy N DomH|.

(2) the operator Hy = Ho + Hy is bounded below.

(3) for any 0 < € there exists C¢ such that

Hy < (1 + E)Hl + Ce-

Proof. The proof is an immediate modification of arguments in the standard P(¢)s model.
One introduces the Q—space representation associated to the canonical conjugation F +— F
on L?(R; C?), which allows to identify I's(h) with L?(Q, du) for a probability measure u. The
operator H; can be seen as a multiplication operator on L?(Q,du) such that H; € LP(Q)
for some p > 2 and e7*V € L1(Q) for some ¢t > 0. To obtain the second estimate one uses
the fact that ¢ > 0 and P is bounded below. Using then that e *H° is hypercontractive,
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one obtains (1) and (2). The same argument show that for any ¢ > 0 eHy + H; is bounded
below, which implies (3). O

The following higher order estimates are easily seen to hold for Hy, with the same proof
as in usual P(y)s Hamiltonians.

Proposition 4.2. Assume that g € L?(R) N L*(R) and g > 0. Then there exists b > 0 such
that for all o € N, the following higher order estimates hold:

[N“(Hy +b)%| < oo,
(4.1) | HoN®(Hy + b)~™|| < oo,
IN(Hy +b)~ (N +1)'2] < co.

Theorem 4.3. Assume that g € L>(R)NL*(R), g >0, V € L=(R), V' € L>®(R) N L3(R).

(1) for any X with |\| < Aquant, the quadratic form Ho+AQ(V)+ H with domain DomH,N
DomN™ is closeable and bounded below,

(2) the domain of the closure of the above quadratic form equals D0m|H1|%,

(3) The associated bounded below selfadjoint operator will be denoted by H and called a
charged P(y)> Hamiltonian.

Proof. From Lemma 3.2 we know that if |A| < Aquant then £AQ(V) < §Hy + C, for some
0 < d§ < 1. By (3) of Prop. 4.1, this implies that as quadratic form Q(V') is H;— bounded
with relative bound strictly less than 1. The theorem follows then from the KLMN theorem.
O

4.2. Higher order estimates and essential selfadjointness. In this subsection we check
that the higher order estimates of Prop. 4.2 extend to the full Hamiltonian H. As a
consequence we will find a suitable core for H.

Proposition 4.4. Assume that g € L>(R)NL*(R), g >0, V € L=®(R), V' € L=°(R)NL3*(R).
Let |A| < Aquant and H the charged P(p)2 Hamiltonian constructed in Thm. 4.3. Then there
exists b > 0 such that for all a € N, the following higher order estimates hold:

[N (H +b)7| < oo,
(4.2) [HoN®(H +b)~™ | < oo,
IN®(H +b)"Y(N + 1)1 < 0.

Corollary 4.5. The Hamiltonian H is essentially selfadjoint on DomHy N DomN™. Con-
sequently:

H = (Ho+ AQ(V) + Hp)® = (AT (way) + AQ* ¢ (V) + AQ* “(V) + Hp)*,

where we recall that:

(43) v = [ o ] .

€
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Proof. It follows from Prop. 4.4 that for p large enough DomH? C Dom(Hy) N DomN™.
This implies the corollary since DomHP? is a core for H. O

In the rest of this subsection we will explain the proof of Prop. 4.4, which is a rather easy
adaptation of the standard proof by Rosen [Ro]. We will only give the main steps, referring
the reader for example to [DG, Sect. 7] for details.

Lattices

The proof in [Ro] relies on the introduction of a family H,, of (volume and ultra-violet)
cutoff Hamiltonians. These Hamiltonians are obtained by considering an increasing sequence
bn C b of finite dimensional subspaces of h such that | J,cy b» is dense in h. Moreover one

assumes that the isometric projections m, : h — b,, commute with the conjugation F — F
on h = L*(R; C?).
The subspaces b, are defined as follows: for v > 1, consider the lattice v='Z and let

Rk [k], €v'Z

be the integer part mod v~'Z. For v € v™'Z, let e (k) = 7}%11]_(21})71,(27])71](k—")/). Set also
for 6 > 1Tw, ={y€v'Z : |y| <k}, and let
B, = Span{e, 0,0 ey, 1y €Ty}

We choose then a sequence (ky,v,) tending to (0o,00) in such a way that 'y, ., C

T and set by, := bk, v, -

Kn+4+1,Vn+1

Cutoff Hamiltonians

Let us explain how to define the associated cutoff Hamiltonians. Since h = b,, @ b+,
there exists by the exponential law a unitary map U, : ['s(h,,) ® Ts(h;) — Ts(h). If W is a
bounded operator on I's(h), one can define its projection to I's(hy,):

(4.4) I, W := U, (I'(r,)WT(7,)* @ 1) U, *.
This definition extends to Wick polynomials, for example if W = []} a*(F;) []{ a(G;), then:
P q
I, w = H o (m)mn Fy) H a(m)m,G;).
1 1
We set now:
HO,n = dF(En S en)y Hl,n =11, Hy, Qn(v) = HnQ(V)v
where II,, W is defined in (4.4) and
eall) = e(Fl,).

in the momentum space representation. Note that €, @ €, commutes with =} m,. The
construction of the cutoff Hamiltonians H,, is done in the next proposition.

Proposition 4.6. (1) Let |A| < Aquant- Then there exists 0 < 6 < 1 and C > 0 such that
uniformly for n large enough:

+AQu(V) < 6Ho,p + C.
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(2) the Hamiltonian Hy ,, = Hon + Hj , is essentially selfadjoint on DomdI'(w) NDomN™
and there exists b > 0 such that

0<Hyn,+b VneN.
(3) there exists 0 < § <1 and b > 0 such that
EAQ, (V) <6(Hyp+0b), VneN.

(4) Let H,, the bounded below selfadjoint operator associated to the quadratic form Hy . +
AQ, (V) with domain Dom|H ,|%. Then

s— lim (H, +b)"'=(H+b) 1,
where H 1is the charged P(p)a Hamiltonian defined in Thm. 4.5.

To prove (1) we note that (modulo the trivial factors U, ):
(4.5) IL,W =T(m)m, )W (7} my,).
Since |A| < Aguant there exists 0 < 6 < 1 and C' > 0 such that AQ(V) < édI'(e D €) + C.
Using (4.5) we get that
AQn (V) < oT(mpmp )AL (e ® )T (m)my,) + C < 6dT (e @ €) + C,
since 7, m, commutes with € ® e. Clearly for any a > 0 one has
(14 a) te, <e<(1+a)e,, if nis large enough.

This implies (1). Statement (2) is standard (see eg [DG, Sect. 7]). It follows also that for
any € > 0 there exists C¢ such that uniformly in n:

HO,n < (1 + E)I_Il,n + Cea

which implies (3). It remains to prove (4). Since @, (V') are uniformly H; ,,— form bounded
with relative bound strictly less than 1, there exists b 3> 1 such that (Hy ,,+b) =2 AQp (V) (Hyn+
b)~2 has norm less than some § < 1 uniformly in n, and:

(Hy +b)" = (Hy o +0) "2 (1+ (Hyp + )" 2AQn(V)(Hy,p + )" 2) " (Hyp 4 b) 2,

It follows that
+oo
(Ho+0)7" = (Hin+b) " (=AQu(V)(Hipn + b))
k=0

as a norm convergent series. The same formula holds for (H + b)~!. Therefore it suffices to
prove that for all £ € N:

(4.6) 5= lim (Hypn +0) 7 (Qu(V)(Hin +0) 7" = (Hi +5) " (Q(V)(H1 + b)),
The arguments in [SHK, Prop. 4.8] easily extend to yield that

(4.7 (Hy, +0)"' — (Hy +b)~" in norm.

(Note that H; is a essentially a standard P(y); Hamiltonian). Moreover

(4.8) ilég"N(Hl’"+b)_1” < 0.
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This implies using Lemma 3.1 that Q,,(V)(H1,, + b)~! is uniformly bounded. Hence (4.6)
will follow from

(4.9)  s= lim (Hy +0)7H(Qu(V)(Hy +b) ™) = (H +6)"H(Q(V)(Hy + b))
Now Q. (V)(H; + b)~! is uniformly bounded and converges strongly to Q(V)(H; + b)~ !,
which implies (4.9). This completes the proof of the proposition.O
Proof of Prop. 4.4. The key point of the proof of the higher order estimates is to
consider the multicommutators:
Ri,n(k17 R kp) = adai(kl) . adai(k?p)(HI,n + Qn(V)), k‘l, ey kip € R,

for i = 1,2 where ad4 B = [A, B]. The key step is then to prove that there exists b > 0 such
that for all A1, Aa > b one has:

p
(4.10) [(Hy + M) 72 Ry (s k) (H + A2) 72| < Cp [ [ Fu(Ra),
1
where
(4.11) sup/ |Fo () Pe(k) P dk < 00, ¥ § > 0.
neNJR

Note that it is only necessary to bound multicommutators with a,;(k) for a fized i = 1, 2.
Indeed this follows from the fact that it suffices to prove the higher order estimates with N,
Hy replaced by N;, Hy,; for:

Ni:/Raf(k)ai(k)dk, Ho,; Z/Rﬁ(k)a:(k)ai(k)dk'

We first note that since Hy,, < C(H, + b) uniformly in n, it suffices to prove (4.10) with
(Ho,n + M)~z instead of (H, + \)~z.

Clearly the multicommutator R;(---) is the sum of the two multicommutators with Hy ,,
and @, (V). The multicommutators with Hy , are estimated as in [Ro], [DG], yielding:

p
(4.12) [(Ho + A1)~ 2adq, (k) - - 8da, () Hrn(Ho + A2) 2| < Cp [ [ e(ki) 7,
1

so that (4.11) is satisfied.

Let us now estimate the multicommutators with Q% (V). Abusing notation, we will still
denote by 7, the projection from L?(R) onto Span{e, : v € L'y, ., }. Let b, = mimpbrim,,
where b is the operator defined in (3.4) and denote also by b, (k1,ks) its kernel in the
momentum representation. Then

ada1(k)QZ* a(V) = a2(bn<k’ ))a
and the similar formula with the indices 1 and 2 exchanged. Using the well known estimate
1 _1
(4.13) la(F)(AT () + )72 < [[b72 f]],
for b > 0, we get

a* a -1 _1
lada, (@5 “(V)(Hon +b) 72| < [len(-)2bn(k, )l L2@w) =: Fu(k),
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hence to prove (4.11) it suffices to show that (k1 )~%/2¢(ky)~2by, (k1, ko) € L2(R2) uniformly
in n. This is equivalent to the fact that ¢ 9/2b, e~ is Hilbert-Schmidt uniformly in n.
Clearly this is true if ¢=9/ 2pe~2 is Hilbert-Schmidt. Working in the momentum representa-
tion we need to consider the integrals:

I = /e(k)*1*5|x7|2(k’ — k)dkdk',

I = /e(k)l"se(k’)’2|K7|2(k’ — k)dkdk'.
I is clearly convergent since V € L?(R). To estimate I3, we use the Peetre inequality:
(4.14) L+ |z <2(1+ |z —y))(L+ Jy)), =,y €R,

and obtain that I is convergent. In fact e(k)*=9/2V € L2(R) since V' € L2(R).
Let us now consider the multicommutators with Q% @ (V). Recall that the kernel
R(k1, k2) of Q%" @ (V) was defined in (3.5) and set R,, = I'(7m,)R. Then:

ada, ()@ “ (V) = a3(Ra(k, ).
Using again (4.13), we get that

I(Hon +b) " 2ada, (1)@ * (V)| < len(-) ™2 Ru(k, )2 () = Fu(k).

Now(4.11) follows from the fact that R(ki1, ko) € L?(R?),shown in (3.7).

The proof of the higher order estimates can now be completed as in [Ro], [DG]. In
particular the strong resolvent convergence in Prop. 4.6 (4) is needed to apply the principle
of cutoff independence in [Ro]. O

5. SPECTRAL AND SCATTERING THEORY FOR CHARGED P(¢)s HAMILTONIANS

In this section we study the spectral and scattering theory of charged P(p)2 Hamilto-
nians. We will use the results of [GP]. In [GP], we introduced an abstract class of QFT
Hamiltonians formally given by

H = dI'(w) + Wick(w),

on a bosonic Fock space T's(h), where w > 0 is a selfadjoint operator on the one-particle
space h and Wick(w) is a Wick polynomial associated to a kernel w.

Our main task in this section will be to explain how to fit charged P(y)2 Hamiltonians
into the abstract framework of [GP] and to check the various abstract hypotheses there.
The results on spectral and scattering theory are then obtained as simple applications of
the generals results of [GP].

5.1. Charged P(y); Hamiltonians as abstract QFT Hamiltonians. The class of ab-
stract QFT Hamiltonians in [GP] is described in terms of three types of hypotheses, which
will be briefly explained below.

Hypotheses on the Hamiltonian

One first requires (see [GP, Subsect. 3.1]) that the Hamiltonian H is the closure of
dl'(w) + Wick(w) where Wick(w) is a Wick polynomial with L? kernels and is bounded
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below. This follows from Corollary 4.5. In our case we take for w the operator wyy defined
in (4.3).

One also requires that w > my > 0, which follows from Lemma 3.2.

Moreover one asks that any power of the number operator should be controlled by a
sufficiently high power of the resolvent of H (see [GP, Subsect. 3.1]). This follows from the
higher order estimates, which were proved in Prop. 4.4.

Hypotheses on the one-particle Hamiltonian

On requires that the one-particle energy w has a sufficiently nice spectral and scattering
theory. The precise statements can be found in [GP, Subsect. 3.2]. They are formulated in
terms of two additional selfadjoint operators on the one-particle Hilbert space §.

The first one, denoted by (X) is called a weight operator, used to measure the propagation
of one-particle states to infinity. The second, denoted by a is a conjugate operator, used in the
Mourre commutator method. Moreover one introduces a dense subspace S of h, preserved
by the operators w, a, (X} on which (multi)-commutators between these three operators can
be unambiguously defined.

To verify them in our case it is convenient to assume that the electrostatic potential is
smooth. More precisely we will assume that V' € S7#(R), for some p > 0, where the classes
S™(R) are defined in Subsect. 1.3.

The one-particle Hamiltonian in our case is wyy defined in (4.3). For the weight operator,
we choose:

and for the conjugate operator

c 0 1 D, D,
{O c}’ _5( .e(Dx)—Fe(Dm) z).
For the subspace S we choose S(R) ® S(R) where S(R) is the Schwartz class.

Assuming that V' € S™#(R) for some p > 0, it is a tedious but straightforward exercise in
pseudodifferential calculus to check that the hypotheses in [GP, Subsect. 3.2] are satisfied.

Hypotheses on the interaction

The final set of hypotheses concerns the kernel w of the interaction Wick(w) (see [GP,
Subsect. 3.3]). In our case they correspond to the fact that each kernel wy, 4, considered as
an element of ®”T9L2(R; C?) should be in the domain of d['({x)*) for some s > 1.

The interaction term Wick(w) is the sum of the P(p), interaction [, : P(¢1(x), po(x)): da
and A\Q* @ (V) + AQ* *(V).

For the first term, the hypotheses above are satisfied if (z)*g € L?(R) (see [DG, Subsect.
6.3]).

Lemma 5.1. Assume that V € S™(R) for some p > 5. Let R(ky, ko) be the kernel of

QY (V) and Q* “(V) defined in (3.5). Then |Dy,|*R € L*(R?) fori=1,2.
Proof. Using (1.5), we see that R(k1, —ks) is the distribution kernel of
LF(e(D2)2Ve(D,) % — e(D,) 2 Ve(Dy)?)F!
= 5F(e(Da) "2 [e(Da),1V]e(Dy) "2 F 1.
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We need to prove that |Dy, |*R(k1, —k2) € L?(R?) or equivalently that the operator C' =
(z)%e(Dy)"2[e(Dy), V]e(Dy) ™2 is Hilbert Schmidt on L2(R).

From the pseudodifferential calculus, we obtain that C' = Op™(c), where c(z, k) is a
symbol satisfying:

0507 c(a, k)| < Capla) o (k) 7170, a, B EN,

and Op™(a) denotes the Weyl quantization of a. Using (1.6) we see the conclusion of the
lemma holds if p > % m|

5.2. Spectrum of charged P(y); Hamiltonians. In the rest of this section we assume:
(z%)g € L*(R),, g € L*(R), g >0, V € S*(R), for some s > 1.
Moreover we assume as before that:
IAl < Aquant-
Theorem 5.2 (HVZ Theorem). One has
Oess(H) = [inf o(H) + m, +o0o].
Consequently H has a ground state.

The theorem follows from [GP, Thm. 7.1] and the fact that gess(wry) = [m, +00].

5.3. Asymptotic fields. For F € h we set F; := e~ " h. The results of this subsection
follow from [GP, Thm. 4.1}, taking into account [GP, Remark 4.2]. The fact that wyy
restricted to its continuous spectral subspace is unitarily equivalent to w follow easily from
standard two-body scattering theory, using that V € S™¢(R) for s > 1.

Theorem 5.3. (1) for all F € b the strong limits

(5.1) WE(F) = s— lim W (Fy)e 1H
exist. They are called the asymptotic Weyl operators.

(2) the map

(5.2) hsF— WHF)

is strongly continuous.
(3) the operators W*(F) satisfy the Weyl commutation relations:

WEFYWE(G) = e 2mFIOWE(F 4+ @).
(4) the Hamiltonian preserves the asymptotic Weyl operators:

(5.3) HWE(F)e 1t = WH(F_,).
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5.4. Wave operators and asymptotic completeness. For F' € b, let aﬂ(F) the as-
ymptotic creation/annihilation operators associated to the asymptotic Weyl operators (see
eg [GP, Subsect. 8.1]). The following theorem describes the construction of wave operators
and their main property, the asymptotic completeness.

Theorem 5.4. Set:
0F: Hpp(H) @ I's(h) — T's(h)
U} a*(F)Q - [} a™*(F) 0.
The operators QF are called the wave operators. Set also
H* = Hyy, () @ 14+ 1@ dT(w), acting on Hpp(H) @ Ts(h).

The operators H* are called the asymptotic Hamiltonians. Then:
(1) QF are unitary operators;
(2) QF intertwine the asymptotic Weyl operators with the Fock Weyl operators:

Q1@ W(F)=W*(F)Q*, V F cb,
(3) QF intertwine the asymptotic Hamiltonians with the Hamiltonian H :
Q*H* = HQF.
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