A remark on the paper:
 "On the existence of ground states for massless Pauli-Fierz Hamiltonians"

Christian Gérard
Département de Mathématiques, , Bâtiment 425
Université de Paris-Sud Orsay
91405 Orsay Cedex France

1 Introduction

The purpose of this note is to correct an error in our paper [1] on the existence of ground states for massless Pauli-Fierz Hamiltonians. We will use the notation of [1]. The key point of [1] was the following lemma [1, Lemma IV.5]:

Lemma 1.1 Let $F \in C_{0}^{\infty}(\mathbb{R})$ be a cutoff function with $0 \leq F \leq 1, F(s)=1$ for $|s| \leq \frac{1}{2}$, $F(s)=0$ for $|s| \geq 1$. Let $F_{R}(x)=F\left(\frac{|x|}{R}\right)$. Then

$$
\begin{equation*}
\lim _{\sigma \rightarrow 0, R \rightarrow+\infty}\left(\psi_{\sigma}, \mathrm{d} \Gamma\left(1-F_{R}\right) \psi_{\sigma}\right)=0 \tag{1.1}
\end{equation*}
$$

This lemma is correct under the hypotheses in [1] but its proof was not. We explain the error in Sect. 2 and give the correct proof in Sect. 3.

2 The space $L^{2}\left(\mathbb{R}^{d} ; B(\mathcal{H})\right)$

Let \mathcal{H} be a separable Hilbert space. The space $\mathcal{F}:=L^{2}\left(\mathbb{R}^{d} ; B(\mathcal{H})\right)$ is the Banach space of weakly measurable maps:

$$
T: \mathbb{R}^{d} \ni k \mapsto T(k) \in B(\mathcal{H})
$$

such that:

$$
\|T\|_{\mathcal{F}}:=\left(\int_{\mathbb{R}^{d}}\|T(k)\|_{B(\mathcal{H})}^{2} \mathrm{~d} k\right)^{\frac{1}{2}}<\infty
$$

Note that such a T can be considered as an element of $B\left(\mathcal{H}, L^{2}\left(\mathbb{R}^{d}, \mathcal{H}\right)\right)$ by:

$$
(T \psi)(k):=T(k) \psi, \quad \psi \in \mathcal{H}
$$

or equivalently:

$$
(u, T \psi)_{L^{2}\left(\mathbb{R}^{d}, \mathcal{H}\right)}=\int_{\mathbb{R}^{d}}(u(k), T(k) \psi)_{\mathcal{H}} \mathrm{d} k, \quad u \in L^{2}\left(\mathbb{R}^{d}, \mathcal{H}\right), \quad \psi \in \mathcal{H}
$$

On $L^{2}\left(\mathbb{R}^{d} ; B(\mathcal{H})\right)$ we have the group $U(s)$ of isometries defined by:

$$
(U(s) T)(k):=T(k-s), \text { a.e. } k, \text { for } s \in \mathbb{R}^{d}
$$

so that:

$$
(u, U(s) T \psi)_{L^{2}\left(\mathbb{R}^{d}, \mathcal{H}\right)}=\int_{\mathbb{R}^{d}}(u(k), T(k-s) \psi)_{\mathcal{H}} \mathrm{d} k
$$

Note that the function $(k, s) \mapsto(u(k), T(k-s) \psi)_{\mathcal{H}}$ is measurable and L^{1} in k, so the function

$$
s \mapsto(u, U(s) T \psi)_{L^{2}\left(\mathbb{R}^{d}, \mathcal{H}\right)} \text { is measurable and bounded. }
$$

Hence for $F \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$, one can define:

$$
F\left(D_{k}\right) T:=(2 \pi)^{-d} \int_{\mathbb{R}^{d}} \widehat{F}(s) U(-s) T \mathrm{~d} s
$$

as a weak integral, and

$$
\left\|F\left(D_{k}\right) T\right\|_{\mathcal{F}} \leq(2 \pi)^{-d}\|T\| \int_{\mathbb{R}^{d}}|\widehat{F}|(s) \mathrm{d} s
$$

However the group $U(s)$ is not strongly continuous on $L^{2}\left(\mathbb{R}^{d} ; B(\mathcal{H})\right)$ (for the same reason that the group of translations is not strongly continuous in $\left.L^{\infty}\left(\mathbb{R}^{d}\right)\right)$, so that if $F(0)=1$, it is not true that for an arbitrary element $T \in L^{2}\left(\mathbb{R}^{d} ; B(\mathcal{H})\right)$ one has:

$$
\begin{equation*}
\left\|T-F\left(R^{-1} D_{k}\right) T\right\|_{\mathcal{F}} \rightarrow 0 \text { when } R \rightarrow \infty \tag{2.2}
\end{equation*}
$$

We are indebted to I. Sasaki for this remark.
In the proof of Lemma IV.5, we considered the function:

$$
T: \mathbb{R}^{d} \ni k \mapsto T(k)=(E-H-\omega(k))^{-1} v(k) \in B(\mathcal{H})
$$

which is in $L^{2}\left(\mathbb{R}^{d} ; B(\mathcal{H})\right)$ by [1, Hyp. (I2)]. We claimed that (2.2) holds for T.
By the above discussion this does not follow from the fact that $T \in L^{2}\left(\mathbb{R}^{d} ; B(\mathcal{H})\right)$.

3 Proof of Lemma 1.1

As explained above, property (2.2) for $T(k)=(E-H-\omega(k))^{-1} v(k)$ does not follow from the fact that $T \in L^{2}\left(\mathbb{R}^{d} ; B(\mathcal{H})\right)$.

Going over the proof of [1, Lemma IV.5], we first see that instead of $T(k)$ we can consider $\tilde{T}(k)=T(k)(K+1)^{-\frac{1}{2}}$. We will check by a direct computation that $\mathbb{R} \ni s \mapsto U(s) \tilde{T} \in \mathcal{F}$ is strongly continuous. This is done in the next two lemmas. The corrected proof of [1, LemmaIV.5] is given at the end of this section.

Lemma 3.1 Let \mathcal{K} be a separable Hilbert space and $\mathcal{H}:=\Gamma\left(L^{2}\left(\mathbb{R}^{d}, \mathrm{~d} k\right)\right) \otimes \mathcal{K}$. Let $\mathbb{R}^{d} \ni k \mapsto$ $m(k) \in B(\mathcal{K})$ be a weakly measurable map such that:

$$
\int_{\mathbb{R}^{d}} \omega(k)^{-2}\|m(k)\|_{B(\mathcal{K})}^{2} \mathrm{~d} k<\infty
$$

and let $T \in L^{2}\left(\mathbb{R}^{d} ; B(\mathcal{H})\right)$ be the map:

$$
\mathbb{R}^{d} \ni k \mapsto(E-H-\omega(k))^{-1} \mathbb{1} \otimes m(k) .
$$

Assume that for all $0<C_{1}<C_{2}$, one has:

$$
\begin{equation*}
\lim _{s \rightarrow 0} \int_{C_{1} \leq|k| \leq C_{2}}\left\|(K+1)^{-\frac{1}{2}}(m(k-s)-m(k))\right\|_{B(\mathcal{K})}^{2} \mathrm{~d} k=0 . \tag{3.3}
\end{equation*}
$$

Then:

$$
\text { i) } \mathbb{R}^{d} \ni s \mapsto U(s) T \in L^{2}\left(\mathbb{R}^{d} ; B(\mathcal{H})\right) \text { is norm continuous. }
$$

ii) If $F \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ satisfies $F(0)=1$ and

$$
T_{R}=(2 \pi)^{-d} \int_{\mathbb{R}^{d}} \widehat{F}(s) U\left(-R^{-1} s\right) T \mathrm{~d} s,
$$

we have:

$$
\left\|T_{R}-T\right\|_{\mathcal{F}} \rightarrow 0 \text { when } R \rightarrow \infty .
$$

Proof. To simplfy notation, in the proof below we will simply write $m(k)$ for the operator $\mathbb{1} \otimes m(k)$. This should not create confusion since it will be clear from the context if $m(k)$ is considered as an operator on $\Gamma\left(L^{2}\left(\mathbb{R}^{d}, \mathrm{~d} k\right)\right) \otimes \mathcal{K}$ or on \mathcal{K}.

Set for $0<C_{1}<C_{2}, \chi>C_{1}=\mathbb{1}_{\left\{|k|<C_{1}\right\}}, \chi_{<C_{2}}=\mathbb{1}_{\left\{|k|>C_{2}\right\}}$,

$$
1=: \chi_{>C_{1}}+\chi_{<C_{2}}+\chi_{C_{1}, C_{2}},
$$

and $T_{<C_{1}}(k)=\chi<C_{1}(k) T(k), T_{>C_{2}}(k)=\chi>C_{2}(k) T(k)$,

$$
T=: T_{<C_{1}}+T_{>C_{2}}+R_{C_{1}, C_{2}} .
$$

Then:

$$
\begin{aligned}
\|U(s) T-T\|_{\mathcal{F}} & \leq\left\|U(s) T_{<C_{1}}-T_{<C_{1}}\right\|_{\mathcal{F}}+\left\|U(s) T_{>C_{2}}-T_{>C_{2}}\right\|_{\mathcal{F}}+\left\|U(s) R_{C_{1}, C_{2}}-R_{C_{1}, C_{2}}\right\|_{\mathcal{F}} \\
& \leq 2\left\|T_{<C_{1}}\right\|_{\mathcal{F}}+2\left\|T_{>C_{2}}\right\|_{\mathcal{F}}+\left\|U(s) R_{C_{1}, C_{2}}-R_{C_{1}, C_{2}}\right\|_{\mathcal{F}} .
\end{aligned}
$$

Since $\int\|T(k)\|_{B(\mathcal{H})}^{2} \mathrm{~d} k<\infty$, we have:

$$
\begin{equation*}
\lim _{C_{1} \rightarrow 0}\left\|T_{<C_{1}}\right\|_{\mathcal{F}}=\lim _{C_{2} \rightarrow+\infty}\left\|T_{>C_{2}}\right\|_{\mathcal{F}}=0 \tag{3.4}
\end{equation*}
$$

Let us now fix $0<C_{1}<C_{2}$. We have:

$$
U(s) R_{C_{1}, C_{2}}-R_{C_{1}, C_{2}}=\left(U(s) \chi_{C_{1}, C_{2}}-\chi_{C_{1}, C_{2}}\right) T+U(s) \chi_{C_{1}, C_{2}}(U(s) T-T),
$$

and

$$
\begin{align*}
& \left\|\left(U(s) \chi_{C_{1}, C_{2}}-\chi_{C_{1}, C_{2}}\right) T\right\|_{\mathcal{F}}^{2} \tag{3.5}\\
= & \int_{\mathbb{R}^{d}}\left|\chi_{C_{1}, C_{2}}(k-s)-\chi_{C_{1}, C_{2}}(k)\right|^{2}\|T(k)\|_{B(\mathcal{H})}^{2} \mathrm{~d} k \rightarrow 0 \text { when } s \rightarrow 0,
\end{align*}
$$

by dominated convergence. Now:

$$
\begin{align*}
\left\|U(s) \chi_{C_{1}, C_{2}}(U(s) T-T)\right\|_{\mathcal{F}}^{2} & =\int_{\mathbb{R}^{d}} \chi_{C_{1}, C_{2}}^{2}(k-s)\|T(k-s)-T(k)\|_{B(\mathcal{H})}^{2} \mathrm{~d} k \tag{3.6}\\
& \leq \int_{C_{1} / 2 \leq|k| \leq 2 C_{2}}\|T(k-s)-T(k)\|_{B(\mathcal{H})}^{2} \mathrm{~d} k,
\end{align*}
$$

if $|s|<C_{1} / 4$. Next we have:

$$
\begin{aligned}
T(k-s)-T(k)= & (E-H-\omega(k))^{-1}(m(k-s)-m(k)) \\
& +(E-H-\omega(k))^{-1}(E-H-\omega(k-s))^{-1} m(k-s)(\omega(k-s)-\omega(k)),
\end{aligned}
$$

so:

$$
\begin{aligned}
& \|T(k-s)-T(k)\|_{B(\mathcal{H})} \\
\leq & \left\|(E-H-\omega(k))^{-1}(K+1)^{\frac{1}{2}}\right\|_{B(\mathcal{H})}\left\|(K+1)^{-\frac{1}{2}}(m(k-s)-m(k))\right\|_{B(\mathcal{K})} \\
& +\frac{1}{\omega(k-s)}\left\|(E-H-\omega(k))^{-1}(K+1)^{\frac{1}{2}}\right\|_{B(\mathcal{H})}\left\|(K+1)^{-\frac{1}{2}} m(k-s)\right\|_{B(\mathcal{K})}|s| \\
\leq & \left.C_{C_{1}, C_{2}}\left\|(K+1)^{-\frac{1}{2}}(m(k-s)-m(k))\right\|_{B(\mathcal{K})}+C_{C_{1}, C_{2}} \right\rvert\, s\left\|(K+1)^{-\frac{1}{2}} m(k-s)\right\|_{B(\mathcal{K})},
\end{aligned}
$$

uniformly for $C_{1} / 2 \leq|k| \leq 2 C_{2}$ and $|s|<C_{1} / 4$.
By (3.3), we obtain:

$$
\begin{equation*}
\lim _{s \rightarrow 0} \int_{C_{1} / 2 \leq|k| \leq 2 C_{2}}\|T(k-s)-T(k)\|_{B(\mathcal{H})}^{2} \mathrm{~d} k=0 . \tag{3.7}
\end{equation*}
$$

To prove i) we first fix $C_{1} \ll 1$ and $C_{2} \gg 1$ and then let $s \rightarrow 0$ using (3.5) and (3.7).
Statement ii) follows from i, using:

$$
\left\|T_{R}-T\right\|_{\mathcal{F}} \leq(2 \pi)^{-d} \int|\widehat{F}|(s)\left\|U\left(-R^{-1} s\right) T-T\right\|_{\mathcal{F}} \mathrm{d} s
$$

Lemma 3.2 Let $\mathbb{R}^{d} \ni k \mapsto m(k) \in B(\mathcal{K})$ be a weakly measurable map such that for all $0<$ $C_{1}<C_{2}$ one has:

$$
\int_{C_{1} \leq|k| \leq C_{2}}\|m(k)\|_{B(\mathcal{K})}^{2} \mathrm{~d} k<\infty .
$$

Let $R \geq 0$ be a compact selfadjoint operator on \mathcal{K}. Then for all $0<C_{1}<C_{2}$ one has:

$$
\lim _{s \rightarrow 0} \int_{C_{1} \leq|k| \leq C_{2}}\|R(m(k-s)-m(k))\|_{B(\mathcal{K})}^{2} \mathrm{~d} k=0 .
$$

Proof. Let us fix $0<C_{1}<C_{2}$ and let $\chi=\mathbb{1}_{\left\{C_{1} / 2 \leq|k| \leq 2 C_{2}\right\}}, \tilde{m}(k):=\chi(k) m(k)$. We have:

$$
\tilde{m}(k-s)-\tilde{m}(k)=\chi(k-s)(m(k-s)-m(k))+(\chi(k-s)-\chi(k)) m(k) .
$$

If $C_{1} \leq|k| \leq C_{2}$ and $|s| \leq C_{1} / 2$, we have $C_{1} / 2 \leq|k-s| \leq 2 C_{2}$ and hence:

$$
\begin{align*}
& \|R(m(k-s)-m(k))\| \\
= & \|\chi(k-s) R(m(k-s)-m(k))\| \tag{3.8}\\
\leq & \|R(\tilde{m}(k-s)-\tilde{m}(k))\|+|\chi(k-s)-\chi(k)|\|R m(k)\| .
\end{align*}
$$

By dominated convergence we have:

$$
\lim _{s \rightarrow 0} \int_{C_{1} \leq|k| \leq C_{2}}|\chi(k-s)-\chi(k)|^{2}\|R m(k)\|^{2} \mathrm{~d} k=0,
$$

so using (3.8) it suffices to prove:

$$
\begin{equation*}
\lim _{s \rightarrow 0} \int\|R(\tilde{m}(k-s)-\tilde{m}(k))\|_{B(\mathcal{K})}^{2} \mathrm{~d} k=0 . \tag{3.9}
\end{equation*}
$$

Since $k \mapsto \tilde{m}(k)$ is weakly measurable, so is $k \rightarrow \tilde{m}^{*}(k)$. So we can consider the map $M \in$ $B\left(\mathcal{K}, L^{2}\left(\mathbb{R}^{d} ; \mathcal{K}\right)\right)$ defined by:

$$
(M \psi)(k):=\tilde{m}^{*}(k) \psi, \quad \psi \in \mathcal{K},
$$

and

$$
\|M \psi\|^{2}=\int\left\|\tilde{m}^{*}(k) \psi\right\|_{\mathcal{K}}^{2} \mathrm{~d} k \leq\|\psi\|^{2} \int\|\tilde{m}(k)\|_{B(\mathcal{K})}^{2} \mathrm{~d} k .
$$

The group $U(s)$ of translations on $L^{2}\left(\mathbb{R}^{d} ; \mathcal{K}\right)$ defined by:

$$
U(s) u(k):=u(k-s), \quad u \in L^{2}\left(\mathbb{R}^{d} ; \mathcal{K}\right)
$$

is strongly continuous. Hence for each $\psi \in \mathcal{K}$, we have:

$$
\begin{equation*}
\lim _{s \rightarrow 0}\|U(s) M \psi-M \psi\|^{2}=\lim _{s \rightarrow 0} \int\left\|\left(\tilde{m}^{*}(k-s)-\tilde{m}^{*}(k)\right) \psi\right\|_{\mathcal{K}}^{2} \mathrm{~d} k=0 . \tag{3.10}
\end{equation*}
$$

Let us fix $\epsilon>0$. Since R is compact, we can write:

$$
R=\sum_{i=1}^{N} \lambda_{i}\left|e_{i}\right\rangle\left\langle e_{i}\right|+R_{\epsilon},
$$

where $\lambda_{i} \geq 0,\left\{e_{i}\right\}_{i \in \mathbb{N}}$ is an o.n. basis of \mathcal{K} and $\left\|R_{\epsilon}\right\|_{B(\mathcal{K})} \leq \epsilon$. This yields:

$$
\begin{aligned}
& \|R(\tilde{m}(k-s)-\tilde{m}(k))\|_{B(\mathcal{K})} \\
\leq & \sum_{i=1}^{N} \lambda_{i}\left\|\left(\tilde{m}^{*}(k-s)-\tilde{m}^{*}(k)\right) e_{i}\right\|_{\mathcal{K}}+\left\|R_{\epsilon}\right\|_{B(\mathcal{K})}\left(\|\tilde{m}(k-s)\|_{B(\mathcal{K})}+\|\tilde{m}(k)\|_{B(\mathcal{K})}\right) .
\end{aligned}
$$

Fixing first $\epsilon>0$ and letting then $s \rightarrow 0$ using (3.10) we obtain (3.9). This completes the proof of the lemma.

Proof of Lemma 1.1 Recall that if B is a bounded operator on \mathfrak{h} with distribution kernel $b\left(k, k^{\prime}\right)$, we have

$$
(u, \mathrm{~d} \Gamma(B) u)=\iint b\left(k, k^{\prime}\right)\left(a(k) u, a\left(k^{\prime}\right) u\right) \mathrm{d} k \mathrm{~d} k^{\prime}, u \in D\left(N^{\frac{1}{2}}\right) .
$$

Using this identity, we obtain

$$
\left(\psi_{\sigma}, \mathrm{d} \Gamma\left(1-F_{R}\right) \psi_{\sigma}\right)=\left(a(\cdot) \psi_{\sigma},\left(1-F\left(\frac{\left|D_{k}\right|}{R}\right)\right) a(\cdot) \psi_{\sigma}\right)_{L^{2}\left(\mathbb{R}^{d}, \mathrm{~d} k ; \mathcal{H}\right)} .
$$

By [1, Prop. IV.4], we have:

$$
a(\cdot) \psi_{\sigma}=(E-H-\omega(\cdot))^{-1} v(\cdot) \psi_{\sigma}+o\left(\sigma^{0}\right) \text { in } L^{2}\left(\mathbb{R}^{d} ; \mathcal{H}\right)
$$

hence:
$\left(\psi_{\sigma}, \mathrm{d} \Gamma\left(1-F_{R}\right) \psi_{\sigma}\right)=\left((E-H-\omega(\cdot))^{-1} v(\cdot) \psi_{\sigma},\left(1-F\left(\frac{\left|D_{k}\right|}{R}\right)\right)(E-H-\omega(\cdot))^{-1} v(\cdot) \psi_{\sigma}\right)+o\left(\sigma^{0}\right)$,
uniformly in R. This yields:

$$
\begin{aligned}
& \left(\psi_{\sigma}, \mathrm{d} \Gamma\left(1-F_{R}\right) \psi_{\sigma}\right) \\
\leq & \left\|(E-H-\omega(\cdot))^{-1} v(\cdot)\right\|_{L^{2}\left(\mathbb{R}^{d}, B(\mathcal{H})\right.} \times \\
& \left\|\left(1-F\left(\frac{\left|D_{k}\right|}{R}\right)\right)(E-H-\omega(\cdot))^{-1} v(\cdot)(K+1)^{-\frac{1}{2}}\right\|_{L^{2}\left(\mathbb{R}^{d}, B(\mathcal{H})\right)} \times\left\|(K+1)^{\frac{1}{2}} \psi_{\sigma}\right\|_{\mathcal{H}}+o\left(\sigma^{0}\right) .
\end{aligned}
$$

By [1, Lemma IV.1], we have:

$$
\left\|(K+1)^{\frac{1}{2}} \psi_{\sigma}\right\|_{\mathcal{H}} \leq\left(\psi_{\sigma}, H_{0} \psi_{\sigma}\right)^{\frac{1}{2}} \leq C, \text { uniformly in } \sigma>0
$$

hence:

$$
\left(\psi_{\sigma}, \mathrm{d} \Gamma\left(1-F_{R}\right) \psi_{\sigma}\right) \leq C\left\|\left(1-F\left(\frac{\left|D_{k}\right|}{R}\right)\right)(E-H-\omega(\cdot))^{-1} v(\cdot)(K+1)^{-\frac{1}{2}}\right\|_{L^{2}\left(\mathbb{R}^{d}, B(\mathcal{H})\right)}+o\left(\sigma^{0}\right),
$$

uniformly in σ, R.
We apply now Lemma 3.1 to $m(k)=v(k)(K+1)^{-\frac{1}{2}}$, checking its hypotheses: first by [1, Hyp. (I1)], the map $k \mapsto m(k) \in B(\mathcal{K})$ is weakly measurable, and by [1, Hyp. (I3)], we have

$$
\int \omega(k)^{-2}\|m(k)\|_{B(\mathcal{K})}^{2} \mathrm{~d} k<\infty
$$

Moreover again by [1, Hyp. (I1)], we have:

$$
\int_{C_{1} \leq|k| \leq C_{2}}\|m(k)\|_{B(\mathcal{K})}^{2} \mathrm{~d} k<\infty, \quad \forall 0<C_{1}<C_{2}
$$

By [1, Hyp. (H0)], we can hence apply Lemma 3.2 to $m(k)$ for $R=(K+1)^{-\frac{1}{2}}$. It follows from Lemma 3.2 that hypothesis (3.3) of Lemma 3.1 is satisfied. Applying then Lemma 3.1, we obtain that:

$$
\lim _{R \rightarrow \infty}\left\|\left(1-F\left(\frac{\left|D_{k}\right|}{R}\right)\right)(E-H-\omega(\cdot))^{-1} v(\cdot)(K+1)^{-\frac{1}{2}}\right\|_{L^{2}\left(\mathbb{R}^{d}, B(\mathcal{H})\right)}=0
$$

which completes the proof of Lemma 1.1.

References

[1] On the existence of ground states for massless Pauli-Fierz Hamiltonians. Ann. Henri Poincaré 1 (2000), no. 3, p 443-45.

