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Abstract

We construct interacting quantum fields in 1+1 space-time dimensions, represent-
ing char-ged or neutral scalar bosons at positive temperature and zero chemical
potential. Our work is based on prior work by Klein and Landau and Høegh-Krohn.
Generalized path space methods are used to add a spatially cut-off interaction to
the free system, which is described in the Araki-Woods representation. It is shown
that the interacting KMS state is normal w.r.t. the Araki-Woods representation.
The observable algebra and the modular conjugation of the interacting system are
shown to be identical to the ones of the free system and the interacting Liouvillean
is described in terms of the free Liouvillean and the interaction.
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1 Introduction

Thermal quantum field theory is supposed to unify both quantum statistical
mechanics and elementary particle physics. The formulation of the general
framework should be wide enough to allow a QED description of ordinary
matter. It should also provide the necessary tools for the QCD description of
several experiments currently envisaged with the new Large Hadron Collider
(LHC) at CERN. While the general theory of thermal quantum fields has made
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substantial progress in recent years, the actual construction of interacting
models, which fit into the axiomatic setting, has not yet started (with the
exception of the very early contributions by Høegh-Krohn [H-K1] and Fröhlich
[Fr2]).

Let us briefly recall the formal description of charged scalar fields in physics.
Examples of scalar particle-antiparticle pairs are the mesons π+, π−, K+, K−,
or K0, K0. (In the last case the ‘charge’ is strangeness). One starts with the
classical Lagrangian density

L = (∂νϕ)(∂νϕ∗)−m2ϕϕ∗ − λ

4
(ϕϕ∗)2.

Here ϕ(t, x) is a complex scalar field over space–time. The Lagrangian density
L(t, x) is invariant under the global gauge transformations ϕ 7→ eiαϕ, α ∈ IR.
By Noether’s theorem this invariance leads to a conserved current

jν = i(ϕ∗∂νϕ− ϕ∂νϕ
∗), ν = 0, . . . , 3,

and to a conserved charge

q =
∫

d3x j0(t, x).

The next step, according to the physics literature, is to setup real or imaginary
time perturbation theory.

The state of art of perturbative thermal field theory is covered in three re-
cent books by Kapusta [K], Le Bellac [L-B] and Umezawa [U]. The authors
concentrate on theoretical efforts to understand various hot quantum systems
(e.g., ultra-relativistic heavy-ion collisions or the phase transitions in the very
early universe) and various physical implications (e.g., spontaneous symmetry
breaking and restoration, deconfinement phase transition).

Constructive thermal field theory allows one to circumvent (at least in lower
space-time dimensions) the severe problems (see, e.g., Steinmann [St]) of ther-
mal perturbation theory, which can otherwise only be removed partially by
applying certain “resummation schemes”.

A class of models representing scalar neutral bosons with polynomial interac-
tions in 1+1 space–time dimensions was constructed by Høegh-Krohn [H-K1]
more than twenty years ago. As he could show, thermal equilibrium states
for these models exist at all positive temperatures. For neutral particles, the
particle density (and the energy density) adjust themselves to the given tem-
perature; contrary to the non-relativistic case, a chemical potential adjusting
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the particle density can not be introduced, since the mass is no longer a con-
served quantity. Shortly afterwards, several related results on the construction
and properties of self-interacting thermal fields in 1+1 space–time dimensions
were announced by Fröhlich [Fr2].

Our goal in this and a subsequent paper [GeJ] was twofold: first we wanted to
fully understand the neutral scalar thermal field with polynomial interaction as
constructed by Høegh-Krohn [H-K1], with the aim to study thermal scattering
theory, using the framework introduced by Bros and Buchholz in [BB1], [BB2].
Secondly we wanted to generalize this construction to charged fields. This
would allow us to study the system at different temperatures and chemical
potentials, i.e., different charge densities. A possibility to change the charge
density would put this model closer to non-relativistic models, where the mass
is a conserved quantity, giving rise to the existence of a chemical potential.

The construction of the full interacting thermal quantum field without cutoffs
in [GeJ] includes several of the original ideas of Høegh-Krohn [H-K1], but
instead of starting from the interacting system in a box we start from the
Araki-Woods representation for the free system in infinite volume. Using a
general method developed by Klein and Landau [KL1] to treat spatially cutoff
perturbations of the free system in infinite volume, we can eliminate some
cumbersome limiting procedures due to the introduction of boxes, when we
remove the spatial cutoff.

The present paper is devoted to the construction of neutral and charged ther-
mal fields with spatially cutoff interactions in 1+1 space–time dimensions,
using the method of Klein and Landau [KL1]. Although the excellent paper
[KL1] is rather self contained, it did not include the discussion of examples.
Twenty years ago it might have been evident for the experts in the field how
to apply their method to thermal quantum fields, but we find it worthwhile
to present this application in some detail.

A difference between this paper and [KL1] is the use of generalized path spaces
as in [K], instead of stochastic processes. This compact formulation is conve-
nient for our applications. In addition we prove several new results concerning
the interacting KMS systems obtained by perturbations of path spaces.

1.1 Content of this paper

Our paper can be divided into several parts. The first part, presented in Section
2, discusses the description of neutral and charged scalar fields in terms of
operator algebras. Its application to Klein-Gordon fields is discussed in Section
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8. As usual the starting point is a real symplectic space (X, σ), which allows
the construction of the Weyl algebra W(X, σ). The next step is to introduce on
(X, σ) a Kähler structure, i.e., a compatible Hermitian structure. For charged
scalar fields, the symplectic space (X, σ) possesses also a canonical ‘charge’
complex structure j and a ‘charge’ sesquilinear form q, such that σ = Imq. The
maps X 3 x 7→ e jαx for α ∈ IR generate the gauge transformations. Given a
regular CCR representation, complex quantum fields are defined.

This leads to the notion of a charged Kähler structure, corresponding to the
introduction of another complex structure i and of the charge operator q,
relating the two complex structures. Finally the notion of charge conjugation
is discussed in this abstract framework.

For Klein-Gordon fields, a conjugation inducing charge-time reflections is used
to distinguish an appropriate abelian sub-algebra of the Weyl algebra to which
the interaction terms considered later on will be affiliated.

Section 3 recalls the characterization of a thermal equilibrium state by the
KMS property. The GNS representation associated to a KMS state has a
number of interesting properties which are briefly recalled. For instance, the
GNS vector is cyclic and separating for the field algebra F (in our case the
weak closure of the Weyl algebra in the GNS representation), and therefore one
can always go over to the weak closure of the relevant operator algebras, and we
will do so in the sequel. Since a KMS state is invariant under time translations,
a Liouvillean implementing the time evolution is always available. As has been
shown by Araki, the KMS condition allows us to introduce Euclidean Green’s
functions. The notion of stochastically positive KMS systems due to Klein and
Landau is presented. This notion rests on the introduction of a distinguished
abelian subalgebra U of the field algebra F . In physics, this algebra is the
algebra generated by the time-zero fields. It is also shown that stochastically
positive KMS systems are invariant under a time reversal transformation.

In Section 4 we recall the notion of a quasi-free KMS system associated to a
positive selfadjoint operator acting on the one-particle space. The GNS repre-
sentation for a quasi-free KMS system has been analyzed by Araki and Woods.
We briefly recall this framework and its connection to the Fock representation
in a modern notation. It is shown that the field algebra F is generated by the
time-translates of the abelian algebra U . The observable algebra, consisting
of elements of the field algebra which are invariant under gauge transforma-
tions, is introduced. In Subsection 4.5 it is shown that the KMS system for
the (quasi-)free charged thermal field is indeed stochastically positive, if the
chemical potential vanishes. However, if the chemical potential is non-zero,
then the charge distinguishes a time direction, and consequently, the system
is no longer invariant under time reversal. Thus it fails to be stochastically
positive too, as we show in Subsection 8.3.
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Following Klein and Landau, a cyclicity property of the Araki-Woods repre-
sentation, which will imply the so-called Markov property for the free system
later on, is shown. The Markov property has the consequence that the physical
Hilbert space can naturally be considered as an L2-space.

Section 5 recalls the notion of a generalized path space, both for the 0-tempera-
ture case and the case of positive temperature. We follow here [K], [KL1]. Al-
though the 0-temperature case is not needed in this paper, it will be useful later
on in [GeJ]. A generalized path space consists of a probability space (Q,Σ, µ),
a distinguished σ-algebra Σ0, a one-parameter group t 7→ U(t) and a reflection
R. We recall the definition of OS-positivity and the Markov property for both
cases.

Section 6 is devoted to a discussion of the Osterwalder-Schrader reconstruc-
tion theorem in the framework of generalized path spaces. This reconstruction
theorem associates to a β-periodic, OS-positive path space a stochastically
positive β-KMS system.

In Section 7 we recall from [KL1] how to deal with of perturbations, which
are given in terms of Feynman-Kac-Nelson kernels. The main examples of
FKN kernels are those obtained from a selfadjoint operator V on the physical
Hilbert space H, where V is affiliated to U .

We show that for a class of perturbations V considered in [KL1], the perturbed
Hilbert space can be canonically identified with the free Hilbert space in such a
way that the interacting algebras F, U and the modular conjugation J coincide
with the free ones. Moreover, we prove that the perturbed Liouvillean LV is

equal to L+ V − JV J , if L is the free Liouvillean. Here H denotes the closure
of a linear operator H.

Finally we show that the Markov property of a generalized path space is
preserved by the perturbations associated to FKN kernels.

In Section 8 we apply the framework of Sections 2 and 4 to charged and
neutral Klein-Gordon fields at positive temperature. The case of the neutral
Klein-Gordon field is well known and reviewed only for completeness. We give
more details on the charged Klein-Gordon field which provides an example
of a charge symmetric Kähler structure. We also compare our setup with the
one used in physics textbooks. Using the results of Section 4, we present the
quasi-free KMS system describing a free charged or neutral Klein-Gordon field
at positive temperature. Note that the conjugation used in the definition of
the abelian algebra U corresponds to time reversal in the neutral case and
to the composition of time-reversal and charge conjugation in the charged
case. We show that the KMS system for the charged Klein-Gordon field is
not stochastically positive, if the chemical potential is unequal to zero. The
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physical reason is that the dynamics of charged particles is only invariant
under the combination of time reversal and charge conjugation. A non-zero
chemical potential introduces a disymmetry between particles of positive and
negative charge and hence breaks time reversal invariance, which itself is a
property shared by all stochastically positive KMS systems.

In Section 9 we consider Klein-Gordon fields at positive temperature with
spatially cutoff interactions in 1 + 1 space-time dimensions. In the neutral
case we will treat the P (φ)2 and the eαφ 2 interactions (the later being also
known as the Høegh-Krohn model). In the charged case we treat the (gauge
invariant) P (ϕϕ)2 interaction.

The UV divergences of the interactions are eliminated by Wick ordering, which
is discussed in some details in Subsections 9.1 and 9.2. As it turns out, the
leading order in the UV divergences is independent of the temperature. Thus
it is a matter of convenience whether one uses thermal Wick ordering or Wick
ordering w.r.t. the vacuum state.

The Lp-properties of the interactions needed to apply the abstract results of
Section 7 are shown in Subsections 9.3, 9.4 and 9.5.

Finally, the main results of this paper, namely the construction and description
of a KMS system representing a Klein-Gordon field at positive temperature
with spatially cutoff interactions, is given in Subsection 9.6.

In a forthcoming paper we will consider the translation invariant P (φ)2 model
at positive temperature. Following again ideas of Høegh-Krohn [H-K1], Nelson
symmetry will be used to establish the existence of the model in the thermo-
dynamic limit.

Acknowledgments. The second named author was supported under the FP5
TMR program of the European Union by the Marie Curie fellowship HPMF-
CT-2000-00881. Both authors benefited from the IHP network HPRN-CT-
2002-00277 of the European Union.

2 Real and complex quantum fields

In this section we present real and complex quantum fields in an abstract
framework. Usually in the physics literature complex quantum fields are de-
scribed in the case of Klein-Gordon fields. Although the results of this section
are probably known, we have not found them in the literature.
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2.1 Notation

Let X be a real vector space. If X is equipped with a complex structure i, then
we will denote by (X, i) the complex vector space X. If (X, i) is equipped with
a hermitian form ( . , . ), then we will denote by (X, i, ( . , . )) the Hermitian
space X. If it is clear from the context which complex or Hermitian structure
is used, (X, i) or (X, i, ( . , . )) will simply be denoted by X. As a rule the
complex structure of a Hermitian space X will be denoted by the letter i.
Sometimes another ‘charge’ complex structure appears; it will be denoted by
the letter j.

2.2 Real fields

We start by recalling the formalism of real quantum fields.

CCR Algebra

Let (X, σ) be a real symplectic space. Let W(X, σ) be the (uniquely deter-
mined) C∗-algebra generated by nonzero elements W (x), x ∈ X, satisfying

W (x1)W (x2) = e−iσ(x1,x2)/2W (x1 + x2),

W ∗(x) = W (−x), W (0) = 1l.

W(X, σ) is called the Weyl algebra associated to (X, σ).

Regular representations

Let H be a Hilbert space. We recall that a representation

π: W(X, σ) 3W (x) 7→ Wπ(x) ∈ U(H)

is called a regular CCR representation if

t 7→Wπ(tx) is strongly continuous for any x ∈ X.
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One can then define field operators

φπ(x) := −i
d

dt
Wπ(tx)

∣∣∣
t=0
, x ∈ X,

which satisfy in the sense of quadratic forms on D(φπ(x1)) ∩ D(φπ(x2)) the
commutation relations

[φπ(x1), φπ(x2)] = iσ(x1, x2), x1, x2 ∈ X. (2.1)

Kähler structures

Let (X, σ) be a real symplectic space and i a complex structure on X. The
space (X, i, σ) is called a Kähler space if

σ(ix1, x2) = −σ(x1, ix2) and σ(x, ix) is positive definite.

If (X, i, σ) is a Kähler space, then (X, i, ( . , . )) is a Hermitian space for

(x1, x2) := σ(x1, ix2) + iσ(x1, x2).

The typical example of a Kähler space is a Hermitian space (X, i, ( . , . )) with
its natural complex structure and symplectic form σ = Im( . , . ).

Creation and annihilation operators

If π is a regular CCR representation of the Weyl algebra W(X, σ), and (X, σ) is
equipped with a Kähler structure, then the creation and annihilation operators
are defined as follows:

a∗π(x) :=
1√
2
(φπ(x)− iφπ(ix)), aπ(x) :=

1√
2
(φπ(x) + iφπ(ix)).

Clearly,

φπ(x) =
1√
2
(a∗π(x) + aπ(x)), x ∈ X.

The operators a∗π(x) and aπ(x) with domain D(φπ(x)) ∩ D(φπ(ix)) are closed
and satisfy canonical commutation relations in the sense of quadratic forms:

[aπ(x1), a
∗
π(x2)] = (x1, x2)1l, [aπ(x2), aπ(x1)] = [a∗π(x2), a

∗(x1)] = 0.

8



2.3 Complex fields

Let (X, j) be a complex vector space. Let us assume that X is equipped with a
sesquilinear, symmetric non-degenerate form q. If a ∈ L(X), we say that a is
isometric (resp. symmetric, skew-symmetric) if [a, j] = 0 and q(ax1, ax2) =
q(x1, x2) (resp. q(ax1, x2) = q(x1, ax2), q(ax1, x2) = −q(x1, ax2)). Clearly
(X, Imq) is a real symplectic space. The quadratic form q is called the charge
quadratic form.

Gauge transformations

The maps X 3 x 7→ e jαx ∈ X for α ∈ IR are called gauge transformations.
They are symplectic on (X, Imq) and isometric on (X, q). We have

q(x1, x2) = Im q(x1, jx2) + iImq(x1, x2). (2.2)

Complex fields

Let now π be a regular CCR representation of W(X, Imq) on a Hilbert space
H and let φπ(x) be the associated field.

Using the complex structure j, we can define the complex fields

ϕ∗π(x) := 1√
2
(φπ(x)− iφπ(jx)),

ϕπ(x) := 1√
2
(φπ(x) + iφπ(jx)),

with domains D(φπ(x)) ∩ D(φπ(jx)). The maps X 3 x 7→ ϕ∗π(x) (resp. x 7→
ϕπ(x)) are j-linear (resp. j-antilinear).

Lemma 2.1 The operators ϕ]π(x) are closed. In the sense of quadratic forms
on D(φπ(x)) ∩ D(φπ(jx)) they satisfy the commutation relations

[ϕπ(x1), ϕ
∗
π(x2)] = q(x1, x2)1l, [ϕπ(x1), ϕπ(x2)] = [ϕ∗π(x1), ϕ

∗(x2)] = 0.

Proof. The commutation relations are easily deduced from (2.1). Let u ∈
D(φπ(x)) ∩ D(φπ(jx)). To prove that ϕ]π(x) is closed, we write

2‖ϕπ(x)u‖2 = ‖φπ(x)u‖2 + ‖φπ(jx)u‖2 − q(x, jx)‖u‖2.
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This easily implies that ϕπ(x) is closed. The case of ϕ∗π(x) is treated similarly.
tu

2.4 Charge operator

Definition 2.2 Let (X, j, q) be as in Subsection 2.3 and i another complex
structure on X. Then (X, j, i, q) is called a charged Kähler space if [i, j] = 0
and (X, i, Imq) is a Kähler space.

Let (X, j, i, q) be a charged Kähler space. Then i is antisymmetric for q, i.e.,
q(x1, ix2) = −q(ix1, x2), and j is antisymmetric for ( . , . ).

We can introduce the charge operator :

q := −ij.

Note that [q, i] = [q, j] = 0, q2 = 1 and that q is symmetric and isometric both
for q and ( . , . ). Since i = jq we have e jα = eiαq and the gauge transformations
x 7→ e jαx, α ∈ IR, form a unitary group on (X, i, ( . , . )) with infinitesimal
generator q.

The typical example of a charged Kähler space is a Hermitian space (X, i, ( . , . ))
with a distinguished symmetric operator q such that q2 = 1. Let us denote
by X± := Ker(q ∓ 1l) the spaces of positive (resp. negative) charge and
by x± the orthogonal projection of x ∈ X onto X±. If we set q(x1, x2) =
(x+

1 , x
+
2 )− (x−2 , x

−
1 ), then (X, iq, i, q) is a charged Kähler space. Note that X+

or X− may be equal to {0}.

Using the fact that q is symmetric for ( . , . ) and q, we see that the spaces X±

are orthogonal both for ( . , . ) and q. If we set x± = 1
2
(x± qx), then the map

U : X → X+ ⊕X−

x 7→ x+ ⊕ x−

is unitary from (X, i, ( . , . )) to (X+, i, ( . , . )) ⊕ (X−, i, ( . , . )) and isometric
from (X, j, q) to (X+, i, ( . , . ))⊕ (X−,−i,−( . , . )).

If π: W(X, Imq) → U(H) is a regular CCR representation on a Hilbert space
H, then we can introduce, just as in Subsection 2.2, creation and annihilation
operators

a∗π(x) :=
1√
2
(φπ(x)− iφπ(ix)), aπ(x) :=

1√
2
(φπ(x) + iφπ(ix)),
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with domains D(φπ(x)) ∩ D(φπ(ix)). The maps X 3 x 7→ a∗π(x) (resp. aπ(x))
are i-linear (resp. i-antilinear). If x = x+ + x−, with x± ∈ X±, then

ϕπ(x) = aπ(x
+) + a∗π(x

−) and ϕ∗π(x) = a∗π(x
+) + aπ(x

−).

Note that this is consistent with fact that the maps X 3 x 7→ ϕ∗π(x)(resp. x 7→
ϕπ(x)) are j-linear (resp. j-antilinear).

2.5 Charge conjugation

Let (X, j, i, q) be a charged Kähler space. Assume that there exists some c ∈
L(X) such that

c2 = 1l, ci = ic, cq = −qc, (x1, cx2) = (cx1, x2), x1, x2 ∈ X. (2.3)

I.e., c is a symmetric involution for ( . , . ), which anticommutes with the
charge operator q. An operator c satisfying (2.3) is called a charge conju-
gation. Charge conjugations exist in charge-symmetric quantum field theories.
A charged Kähler space (X, j, i, q, c) equipped with a charge conjugation c will
be called a charge-symmetric Kähler space.

It follows from (2.3) that q(x1, cx2) = −q(cx1, x2), i.e., c is antisymmetric
for q. Since cq = −qc, we see that c is a unitary map from (X−, i, ( . , . )) to
(X+, i, ( . , . )).

3 Stochastically positive KMS systems

In this section we recall the notion of a stochastically positive KMS system
due to Klein and Landau [KL1]. We prove that stochastically positive KMS
systems are invariant under time-reversal.

3.1 KMS systems

Let F be a C∗-algebra and {τt}t∈IR a group of ∗-automorphisms of F. Let ω
be a (τ, β)-KMS state on F, i.e., a state such that for each A,B ∈ F there
exists a function FA,B(z) holomorphic in the strip {z ∈ C | 0 < Imz < β} and
continuous on its closure such that

FA,B(t) = ω(Aτt(B)), FA,B(t+ iβ) = ω(τt(B)A), t ∈ IR.
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A triple (F, τ, ω) such that ω is a (τ, β)-KMS state is called a β-KMS system.

Let us now recall some standard facts about KMS systems. By the GNS con-
struction, one associates to (F, τ, ω) a Hilbert space Hω, a representation πω
of F on Hω, a unit vector Ωω, cyclic for πω, and a strongly continuous unitary
group {e−itL}t∈IR such that

ω(A) = (Ωω, πω(A)Ωω), πω(τt(A)) = eitLπω(A)e−itL, LΩω = 0.

The KMS condition implies that Ωω is separating for the von Neumann algebra
πω(F)′′, i.e., AΩω = 0 ⇒ A = 0 for A ∈ πω(F)′′. Consequently, the image of
F under πω is isomorphic to F; it will therefore not be distinguished from F.
Moreover, we will identify an element A of F with its image πω(A).

The selfadjoint operator L is called the Liouvillean associated to the KMS
system (F, τ, ω). It is the unique selfadjoint operator whose associated unitary
group generates the dynamics τ and such that LΩω = 0 (see e.g. [DJP, Prop.
2.14]).

Proposition 3.1 Let F1 ⊂ F be the set of A ∈ F such that τ : t 7→ τt(A) is C1

for the strong topology on B(Hω). Then F1Ωω ⊂ D(L) is a core for L.

Proof. Note first that A ∈ F1 iff A is of class C1(L) (see [ABG, Def. 6.2.2]).
Clearly F1 is dense in F for the strong operator topology. In fact, if A ∈ F, then
the strong integral Aε = ε−1

∫ ε
0 τt(A)dt belongs to F1 and converges strongly

to A when ε→ 0.

Since Ωω is cyclic for F, this implies that F1Ωω is dense in Hω. Moreover, since
LΩω = 0, we have eitLF1Ωω = F1Ωω and F1Ωω ⊂ D(L). Thus Nelson’s theorem
implies that F1Ωω is a core for L.

Euclidean Green’s functions

Let

In+
β := {(z1, . . . , zn) ∈ Cn | Imzj < Imzj+1, Imzn − Imz1 < β}. (3.4)

It follows from a result of Araki [Ar1,?] that, for A1, . . . , An ∈ F, the Green’s
function

G(t1, . . . , tn;A1, . . . , An) := ω(
n∏
1

τti(Ai))
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extends to an holomorphic function in In+
β , continuous on In+

β . In particular,
one can uniquely define the Euclidean Green’s functions

EG(s1, . . . , sn;A1, . . . , An) := G(is1, . . . , isn;A1, . . . , An)

for all (s1, . . . , sn) such that s1 ≤ · · · ≤ sn and sn − s1 ≤ β. The correct way
to view such an n-tuple (s1, . . . , sn) is as an n-tuple of points on the circle of
length β, ordered counter-clockwise.

3.2 Stochastically positive KMS systems

In [KL1] Klein and Landau introduced a class of KMS systems which they
called stochastically positive KMS systems. To a stochastically positive KMS
system one can associate a (unique up to equivalence) generalized path space
(Q,Σ,Σ0, U(t), R, µ) (see Section 5) which has some special properties, the
most important being the β-periodicity in t and the Osterwalder-Schrader
(OS)-positivity.

Conversely Klein and Landau have shown in [KL1] that to a generalized path
space satisfying the properties in Definition 5.1 one can associate a (unique up
to unitary equivalence) stochastically positive KMS system. This is an example
of a reconstruction theorem; similar results are well-known in Euclidean QFT.
A reconstruction theorem allowing to go from Euclidean Green’s functions to
a KMS system has recently been proved in a general context by Birke and
Fröhlich in [BF].

The advantage of the Klein and Landau formalism is that it is relatively easy
to perturb the stochastic process associated to a KMS system, using functional
integral methods.

Definition 3.2 Let (F, τ, ω) be a KMS system and U ⊂ F an abelian ∗-
subalgebra. The KMS system (F,U, τ, ω) is called stochastically positive if

(i) the C∗-algebra generated by
⋃
t∈IR τt(U) is equal to F;

(ii) the Euclidean Green’s functions EG(s1, . . . , sn;A1, . . . , An) are pos-
itive for all A1, . . . , An ∈ U+ = {A ∈ U | A ≥ 0} and for all
(s1, . . . , sn) such that s1 ≤ · · · ≤ sn and sn − s1 ≤ β.

It is often more convenient to consider instead of the C∗-algebras F and U their
weak closures in the GNS representation, which we denote by F and U. We
denote by τ the group {τ t}t∈IR of ∗-automorphisms of F defined by τ t(A) :=
eitLAe−itL. The state ω extends to F by setting ω(A) := (Ωω, πω(A)Ωω). The
following fact has been shown in [KL1, Prop. 3.4].
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Proposition 3.3 Let (F,U, τ, ω) be a stochastically positive KMS system.
Then (F,U, τ , ω) is also a stochastically positive KMS system (in the W ∗-
sense). I.e.,

(i) the W ∗-algebra generated by
⋃
t∈IR τt(U) is equal to F;

(ii) the Euclidean Green’s functions EG(s1, . . . , sn;A1, . . . , An) are pos-

itive for all A1, . . . , An ∈ U
+

and for all n-tuples (s1, . . . , sn) such
that s1 ≤ · · · ≤ sn and sn − s1 ≤ β.

Now we show that stochastically positive KMS systems are invariant under
time reversal, a fact that is well known for 0-temperature field theories (see
for example [Si1]).

Proposition 3.4 Let (F,U, τ, ω) be a stochastically positive KMS system.
Then there exists an anti-unitary involution T on Hω such that

(i) TFT−1 = F, TAT−1 = A∗ for A ∈ U;

(ii) TΩω = Ωω, T τ t(A) = τ−t(A)T for A ∈ F, t ∈ IR.

From the properties of T we see that T implements the time reversal trans-
formation.

Proof. Let A1, A2 ∈ U. The map z 7→ ω(A1τt(A2))|t=iz is holomorphic in
{0 < Rez < β}. By stochastic positivity it is real on {Imz = 0} if Ai = A∗i .
The Schwarz’s reflection principle implies

ω(A1τt(A2))|t=iz = ω(A1τt(A2))|t=iz̄ for Ai ∈ U, Ai = A∗
i .

For z = −it this yields

ω(A1τt(A2)) = ω(A1τ−t(A2)) = ω(τ−t(A2)A1) for Ai ∈ U, Ai = A∗
i .(3.5)

By C-linearity this identity extends to all Ai ∈ U. We can now define the
antilinear operator

T :
n∑
j=1

eitjLAjΩω 7→
n∑
j=1

e−itjLA∗jΩω. (3.6)
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For u =
∑n
j=1 eitjLAjΩω identity (3.5) implies

‖u‖2 = (
∑n
j=1 eitjLAjΩω,

∑n
k=1 eitkLAkΩω)

=
∑
j,k(Ωω, A

∗
je

i(tk−tj)LAkΩω) =
∑
j,k ω(A∗jτtk−tj (Ak))

=
∑
j,k ω(τtj−tk(Ak)A

∗
j ) =

∑
j,k(Ωω, Ake

i(tk−tj)LA∗jΩω)

=
∑
j,k(e

−itkLA∗kΩω, e
−itjLA∗jΩω) = ‖Tu‖2.

Thus T is a well defined antilinear operator. Moreover, using property (i) of
Definition 3.2 and the fact that Ωω is cyclic for F, we conclude that T has a
dense domain and a dense range. Hence T extends uniquely to an anti-unitary
operator. Clearly T is an involution. The other properties of T follow directly
from (3.6). tu

4 Quasi-free KMS states

In this section we recall some well-known facts about quasi-free KMS states
and describe a class of quasi-free KMS states which generate stochastically
positive KMS systems (see [KL2], [GO]).

4.1 Quasi-free KMS states

Let X0 be a pre-Hilbert space, X the completion of X0. Then (X0, σ) is a real
symplectic space for σ = Im( . , . ), and we denote by W(X0) the Weyl algebra

W(X0, σ). Let a ≥ 0 be a selfadjoint operator on X such that X0 ⊂ D(a−
1
2 )

and e−ita preserves X0. Given a ≥ 0 the canonical choice for X0 is D(a−
1
2 ).

For β > 0 one defines a state ωβ on W(X0) by the functional

ωβ(W (x)) := e−
1
4
(x,(1+2ρ)x), x ∈ X0, (4.7)

where ρ := (eβa − 1)−1. Since 1 + 2ρ = 1+e−βa

1−e−βa and a ≥ 0 the form domain of

1 + 2ρ is equal to D(a−
1
2 ) ⊃ X0.

The state ωβ is a (τ ◦, β)-KMS state for the dynamics τ ◦: t 7→ τ ◦t defined by

τ ◦t : W(X0) → W(X0)
W (x) 7→ W (eitax).
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The state ωβ is quasi-free (see [BR]) and the KMS system (W(X0), τ
◦, ωβ)

defined above is called the quasi-free KMS system associated to a.

The standard example is the following one: let h ≥ 0 be a selfadjoint operator
representing the one particle energy. Assume that there exists a selfadjoint
operator q on X representing the one particle charge such that q2 = 1l, [h, q] =
0. Then we can associate a group of gauge transformations {αt}t∈[0,2π[,

αt: W(X0) → W(X0)
W (x) 7→ W (eitqx),

to the charge operator q. Let µ ∈ IR such that h − µq ≥ λ > 0. Thus the
range for the value of the chemical potential µ, which we consider, excludes
Bose-Einstein condensation. It follows that a := h − µq > 0 and hence X0 =
D(a−

1
2 ) = X. Therefore the unique quasi-free KMS state on W(X) at inverse

temperature β and chemical potential µ is the state ωβ defined by (4.7).

4.2 Araki-Woods representation

Let us consider a quasi-free KMS system associated to a selfadjoint operator a
as in Subsection 4.1. Let X be the conjugate Hilbert space to X. Elements
of X will be denoted by x. Equivalently, we denote by X 3 x 7→ x ∈ X the
identity operator, which is antilinear. If a is a linear operator on X, we denote
by a the linear operator on X defined by a x := ax. If h is a Hilbert space,
then

Γ(h) =
+∞⊕
n=0

⊗n
s h

denotes the bosonic Fock space over h.

We set:

Hω := Γ(X ⊕X),

Ωω := Ω,

Wω,l(x) := WF((1 + ρ)
1
2x⊕ ρ

1
2x), x ∈ X0,

Wω,r(x) := WF(ρ
1
2x⊕ (1 + ρ)

1
2x), x ∈ X0,
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where WF (.) denotes the Fock space Weyl operator on Γ(X ⊕ X) and Ω ∈
Γ(X ⊕X) denotes the Fock vacuum.

The following facts are well known:

(i) The map W (x) 7→Wω,l/r(x) ∈ U(Hω) defines a regular CCR repre-
sentations;

(ii) [Wω,l(x),Wω,r(y)] = 0 for x, y ∈ X0;
(iii) (Ωω,Wω,l(x)Ωω) = ω(W (x)) for x ∈ X0;
(iv) Let L := dΓ(a⊕−a) act on Hω. Then

e−itLΩω = Ωω, eitLWω,l(x)e
−itL = Wω,l(e

itax), x ∈ X0;

(v) The vector Ω is cyclic for the representations Wω,l/r(.).

In particular, the Araki-Woods representation is the GNS representation for
the KMS system (W(X, σ), τ ◦, ω) and L is the associated Liouvillean.

We will only consider the left Araki-Woods representation, thus will forget
the subscript l and write Wω(x) := Wω,l(x), x ∈ X. The creation-annihilation
operators associated to Wω(.) are

a∗ω(x) = a∗F ((1 + ρ)
1
2x⊕ 0) + aF (0⊕ ρ

1
2x),

aω(x) = aF ((1 + ρ)
1
2x⊕ 0) + a∗F (0⊕ ρ

1
2x).

4.3 Field algebras

We recall that a conjugation on a Hilbert space X is an anti-unitary involution
on X. Let us assume that X is equipped with a conjugation κ. To κ we
associate the real vector space Xκ := {x ∈ X | κx = x}. Let ω be the quasi-
free state associated to a selfadjoint operator a, as defined in Subsection 4.1,
and let Hω be the Araki-Woods space introduced in Subsection 4.2.

We will denote by W ⊂ B(Hω) the field algebra, i.e., the von Neumann algebra
generated by the {Wω(x) | x ∈ X} and by Wκ ⊂ B(Hω) the von Neumann
algebra generated by {Wω(x) | x ∈ Xκ}. Since the symplectic form σ vanishes
on Xκ, the algebra Wκ is abelian.

Lemma 4.1 Assume that a = h−µq, where h and q are selfadjoint operators
such that [h, q] = 0, q2 = 1, h ≥ m > 0 and |µ| < m. Let κ be a conjugation
on X such that [h, κ] = 0. Then W is the von Neumann algebra generated by
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{eitLAe−itL | t ∈ IR, A ∈ Wκ}.

Proof. Clearly {eitLAe−itL | t ∈ IR, A ∈ Wκ} ⊂ W, so it suffices to prove

the converse inclusion. Using the CCR, the facts that (1 + ρ)
1
2 and ρ

1
2 are

bounded, and the fact that the map

X ⊕X 3 x1 ⊕ x2 7→ WF (x1 ⊕ x2) ∈ B(Hω)

is continuous for the strong topology, it suffices to verify that

E = VectIR{eit(h−µq)x, t ∈ IR, x ∈ Xκ} is dense in X. (4.8)

Clearly E contains Xκ, and by differentiating with respect to t, we see that E
contains also {i(h−µq)x | x ∈ Xκ∩D(h)}. We now claim that for each x ∈ X
there exists x1 ∈ Xκ and x2 ∈ Xκ ∩ D(h) such that

x = x1 + i(h− µq)x2.

This will imply (4.8). In fact, the IR-linear map r = 1
2
µqh−1(1− κ) has norm

less than |µ|m−1 < 1, so for x ∈ X we can find y ∈ X such that y− ry = x. If
x1 = 1

2
(y+ κy) and x2 = 1

2
(ih)−1(y− κy), then both are elements of Xκ, since

[h, κ] = 0. Now

x1 + i(h− µq)x2 = y − i

2
µqh−1(y − κy) = y − ry = x�.

4.4 Observable algebras

The gauge transformations αt on W(X0, σ) can be unitarily implemented in
the Araki-Woods representation:

αt(Wω(x)) = eitQWω(x)e
−itQ,

where Q := dΓ(q ⊕−q).

We denote by A the observable algebra

A := {A ∈ W | eitQAe−itQ = A, t ∈ [0, 2π[}

and by Aκ the abelian observable algebra Aκ := A∩Wκ.
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Lemma 4.2 Assume that h ≥ m > 0 and |µ| < m. Let κ be a conjugation
on X such that [h, κ] = 0. Then A is the von Neumann algebra generated by
{eitLAe−itL | t ∈ IR, A ∈ Aκ}.

Proof. Clearly eitLAe−itL ∈ A, if A ∈ Aκ, since [L,Q] = 0. Conversely, let
A ∈ A. By Lemma 4.1 there exists a net {Ai}i∈I in the algebra generated
by {eitLAe−itL, t ∈ IR, A ∈ Aκ} such that A = s- limAi. For R ∈ B(Hω),
let Rav := (2π)−1

∫ 2π
0 eitQRe−itQdt be the average of R with respect to the

gauge group. Then by dominated convergence s- limAav
i = Aav = A. Since

[L,Q] = 0, we have (eitLRe−itL)av = eitLRave−itL, which implies the lemma tu.

Lemma 4.3 We have AΩω = {u ∈ Hω | Qu = 0}.

Proof. Since QΩω = 0 we have AΩω ⊂ KerQ. Let now u ∈ KerQ. If {Ai ∈
W}i∈I is a net such that limAiΩω = u, then

u =
1

2π

2π∫
0

eitQu dt = lim
1

2π

2π∫
0

eitQAie
−itQΩω dt = lim

n→∞A
av
i Ωω,

which proves the lemma since Aav
i ∈ A tu.

4.5 Stochastic positivity

In this subsection we give a criterion for the stochastic positivity of a quasi-free
KMS system.

The following lemma is due to Klein and Landau [KL2].

Lemma 4.4 Let a ≥ 0 be a selfadjoint operator on a Hilbert space X. Let
IR 3 s→ r(s) ∈ B(X) be the β-periodic operator-valued function defined by

r(s) =
e−sa + e(s−β)a

1− e−βa
, 0 ≤ s < β.

Then, for xi ∈ X and si ∈ IR, one has∑
i,j

(xi, r(sj − si)xj) ≥ 0.

Proof. Using the spectral decomposition of a, we can assume that xi ∈ C
and a ≥ 0 is a positive real number. Hence it is sufficient to verify that r(s)
is a distribution of positive type. But this follows from Bochner’s theorem
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and the fact that the Fourier transform of r is
∑
n∈ZZ rnδ(. − 2π/n), where

rn = 2a
a2+(2πn/β)2

≥ 0 tu.

Theorem 4.5 Let X be a Hilbert space equipped with a conjugation κ and
a ≥ m > 0 a selfadjoint operator on X such that [a, κ] = 0. Let Xκ ⊂ X be
the real vector space associated to κ.

Let (W, τ ◦, ω) be the quasi-free KMS system associated to a and let Wκ ⊂ W
be the abelian von Neumann algebra generated by {Wω(x) | x ∈ Xκ}. Then the
KMS system (W,Wκ, τ

◦, ω) is stochastically positive.

Proof. We start by computing the Euclidean Green’s functions. Using the
CCR we get, for xj ∈ X and 1 ≤ j ≤ n,

n∏
1

W (xj) =
∏

1≤i≤j≤n
e−

i
2
σ(xi,xj)W (

n∑
1

xj).

We denote by

G(t1, . . . , tn;W (x1), . . . ,W (xn)) = ω(
n∏
j=1

W (eitjaxj))

the Green’s functions for the Weyl operators W (xj), 1 ≤ j ≤ n. Now

G(t1, . . . , tn;W (x1), . . . ,W (xn))

=
∏

1≤i<j≤n
e−iIm(xi,e

i(tj−ti)axj)e−
1
4
(
∑n

1
eitjaxj ,(1+2ρ)

∑n

1
eitjaxj)

=
∏n

1 e−
1
4
(xi,(1+2ρ)xi)

∏
1≤i<j≤n

e−
1
2
R(tj−ti)(xi,xj),

where

R(t)(x, y) = (x, (1− e−βa)−1eitay) + (y, e−βa(1− e−βa)−1eitax).

For x, y ∈ X the function t 7→ R(t)(x, y) has an holomorphic extension to 0 <
Imz < β such that the function (t1, . . . , tn) 7→ G(t1, . . . , tn;W (x1), . . . ,W (xn))

is holomorphic in the set In+
β defined in (3.4) and continuous on In+

β with
holomorphic extension

(ζ1, . . . , ζn) 7→
n∏
1

e−
1
4
(xi,(1+2ρ)xi)

∏
1≤i<j≤n

e−
1
2
R(ζj−ζi)(xi,xj).
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Hence the euclidean Green’s functions

EG(s1, . . . , sn;W (x1), . . . ,W (xn)) =
n∏
1

e−
1
2
C(0)(xi,xi)

∏
1≤i<j≤n

e−C(sj−si)(xi,xj),

where

C(s)(x, y) :=
1

2
(x, (1− e−βa)−1e−say) +

1

2
(y, (1− e−βa)−1e(s−β)ax).

Using the fact that κa = aκ we get

C(s)(x, y) =
1

2

(
x,

e−sa + e(s−β)a

1− e−βa
y
)
, for x, y ∈ Xκ.

Thus, for xj ∈ Xκ and 1 ≤ j ≤ n,

EG(s1, . . . , sn;W (x1), . . . ,W (xn)) =
∏

1≤i,j≤n
e−

1
2
C(|si−sj |)(xi,xj). (4.9)

We will now prove the stochastic positivity. We will use the Araki-Woods rep-
resentation described in Subsection 4.2. The operators of the form
F (φω(x1), . . . , φω(xn)) for xi ∈ Xκ and F ∈ C∞

0 (IRn) (resp. F ∈ C∞
0 (IRn)

and F ≥ 0) are strongly dense in Wκ (resp. in W+
κ ). We have to show that if

(s1, . . . , sn) is a n-tuple such that s1 ≤ · · · ≤ sn and sn−s1 ≤ β, and Ai ∈ W+
κ ,

then

EG(s1, . . . , sn;A1, . . . , An) ≥ 0. (4.10)

By [KL1, Thm. 2.2] and a density argument it suffices to prove (4.10) for Ai
of the form given above.

Let now m ∈ IN, m ≥ 1, ki ∈ IN with ki ≥ 1 for 1 ≤ i ≤ n and
∑n

1 ki = m, li :=∑
j≤i−1 kj. For t = (t1, . . . , tm) ∈ IRm, x1, . . . , xm ∈ Xκ, and Fi ∈ C∞

0 (IRki)

with Fi ≥ 0 we set ti = (tli , . . . , tli+1
) ∈ IRki and take

Ai = Fi(φω(xli), . . . , φω(xli+1
))

= (2π)−ki
∫
F̂i(tli , . . . , tli+1

)Wω(
∑li+1

li
tjxj) dtli . . .dtli+1

.
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Now set fi(ti) =
∑li+1

li
tjxj . It follows that

EG(s1, . . . , sn;A1, . . . , An)

= (2π)−m
∫ ∏n

1 dti F̂i(ti)G(is1, . . . , isn;W (f1(t1)), . . . ,W (fn(tn))).

We recall that by (4.9)

EG(s1, . . . , sn;W (f1(t1)), . . . ,W (fn(tn)))

=
∏

1≤i,j≤n e−
1
2
C(|si−sj |)(fi(ti),fj(tj)) =: e−Q(t1,...,tm),

where Q(t1, . . . , tm) is a quadratic form. Applying Lemma 4.4, we see that Q is
a positive quadratic form, and hence the inverse Fourier transformF−1(e−Q(...))
is a positive function. This implies that

EG(s1, . . . , sn;A1, . . . , An) = (F1 ⊗ · · · ⊗ Fn) ∗ F−1(e−Q)(0)

is positive as the value at 0 of the convolution of two positive functions tu.

4.6 Markov property

In this subsection we show a result which implies that the generalized path
space associated to the quasi-free KMS system (W,Wκ, τ

◦, ω) considered in
Subsection 4.1 has the Markov property (see Subsection 6.5).

Lemma 4.6 Let X be a Hilbert space equipped with a conjugation κ and a ≥
m > 0 a selfadjoint operator on X such that [a, κ] = 0. Let Xκ ⊂ X be the
real vector space associated to κ.

Let (W(X), τ ◦, ω) be the quasi-free KMS system associated to a and let Wκ ⊂
W be the abelian von Neumann algebra generated by {Wω(x) | x ∈ Xκ}. Let
(Hω, L,Ωω) be the Araki-Woods objects defined in Subsection 4.2. Then the

space {Ae−
β
2
LBΩ, A,B ∈ Wκ} is dense in Hω.

Proof. The function

eitLWω,l(y)Ωω = Wω,l(e
itay)Ωω

= WF ((1 + ρ)
1
2 eitay ⊕ (ρ)

1
2 e−itay)

= eia∗F ((1+ρ)
1
2 eitay⊕(ρ)

1
2 e−itay)e−

1
2
(y,(1+2ρ)y)Ωω
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is analytic in {0 < Imz < β
2
} and continuous on {0 ≤ Imz ≤ β

2
}, and

e−βL/2Wω,l(y)Ωω = eia
∗
F ((1+ρ)

1
2 e−βa/2y⊕(ρ)

1
2 eβa/2y)e−

1
2
(y,(1+2ρ)y)Ωω

= Wω,r(y)Ωω.

Hence, for A = Wω,l(x) and B = Wω,r(y), one has

Ae−
β
2
LBΩ

= Wω,l(x)Wω,r(y)Ω = WF ((1 + ρ)
1
2x⊕ ρx)WF (ρ

1
2 y ⊕ (1 + ρ)

1
2 y)Ω.

(4.11)

Let M be the von Neumann algebra generated by {Wω,l(x),Wω,r(y) | x, y ∈
Xκ}. By (4.11) the von Neumann algebra generated by {WF ((1+ρ)

1
2x+ρ

1
2y⊕

ρ
1
2x+ (1 + ρ)

1
2y) | x, y ∈ Xκ} is equal to M. Since [a, κ] = 0, the operator (1 + ρ)
1
2 ρ

1
2

ρ
1
2 (1 + ρ)

1
2

 : X ⊕X → X ⊕X

sends Xκ ⊕Xκ into itself. It is invertible with inverse (1 + ρ)
1
2 −ρ 1

2

−ρ 1
2 (1 + ρ)

1
2

 .

Thus M is equal to the von Neumann algebra generated by {WF (x⊕y), x, y ∈
Xκ}. It is well known that if h is a Hilbert space and c is a conjugation on
h, then the vacuum vector Ω is cyclic in the Fock space Γ(h) for the algebra
generated by {WF (h)|ch = h} (see e.g. [DG, Sect. 5.2] and references therein).
We apply this result to h = X ⊕X, c = κ⊕ κ and obtain the lemma. tu

5 Generalized path spaces

In [KL1] a canonical isomorphism is constructed between a stochastically
positive β-KMS system (W,Wκ, τ

◦, ω) and a β-periodic stochastic process
(Q,Σ, µ,Xt) indexed by the circle Sβ of length β, with values in the com-
pact Hausdorff space K = Sp (Wκ), the spectrum of Wκ.

We recall that a stochastic process (Q,Σ, µ,Xt) indexed by an interval I ⊂ IR
with values in a topological space K consists of
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(i) a probability space (Q,Σ, µ);
(ii) a family {Xt}t∈I of measurable functions Xt:Q→ K.

Typically it is required that the map I ∈ t 7→ Xt is continuous in measure.

The stochastic process (Q,Σ, µ,Xt) associated to a stochastically positive β-
KMS system in [KL1] satisfies four important properties: stationarity, sym-
metry, β-periodicity and Osterwalder-Schrader positivity (see [KL1, Sect. 4]).

It turns out that the only really important feature of such a stochastic process
is the underlying generalized path space, which consists of the sub σ-algebra
Σ0 generated by the functions F (X0) for F ∈ C(K), the automorphism group
U(t) of L∞(Q,Σ, µ) generated by the time translations U(t):F (Xt1 , . . . , Xtt) 7→
F (Xt1+t, . . . , Xtn+t) for F ∈ C(Kn) and the automorphism R of L∞(Q,Σ, µ)
generated by R:F (Xt1 , . . . , Xtt) 7→ F (X−t1 , . . . , X−tn).

In particular the detailed knowledge of the random variables Xt and of the
topological space K is not necessary.

(Note that time translations on the path space will correspond to imaginary
time translations on the physical Hilbert space).

The analog of the constructions of [KL1] for β = ∞ done by Klein in [K] is for-
mulated in terms of generalized path spaces. Using this essentially equivalent
formulation turns out to be more convenient in applications. We now proceed
to a more precise description of this structure, taken from [KL1] and [K].

If Ξi, for i in an index set I, is a family of subsets of a set Q, we denote by∨
i∈I Ξi the σ-algebra generated by

⋃
i∈J Ui, where Ui ∈ Ξi and J are countable

subsets of I.

Definition 5.1 A generalized path space (Q,Σ,Σ0, U(t), R, µ) consists of

(i) a probability space (Q,Σ, µ);
(ii) a distinguished sub σ-algebra Σ0;
(iii) a one-parameter group IR 3 t 7→ U(t) of measure preserving ∗-

automorphisms of L∞(Q,Σ, µ), which is strongly continuous in mea-
sure;

(iv) a measure preserving ∗-automorphism R of L∞(Q,Σ, µ) such that
RU(t) = U(−t)R, R2 = 1l, RE0 = E0R, where E0 is the conditional
expectation w.r.t. the σ-algebra Σ0.

Moreover one requires that
(v) Σ =

∨
t∈IR U(t)Σ0.

It follows from (iii) and (iv) that U(t) extends to a strongly continuous group
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of isometries of Lp(Q,Σ, µ), and R extends to an isometry of Lp(Q,Σ, µ), for
1 ≤ p <∞.

We say that the path space (Q,Σ,Σ0, U(t), R, µ) is β-periodic for β > 0 if
U(β) = 1l. On a β-periodic path space we can consider the one-parameter
group U(t) as indexed by the circle Sβ = [−β/2, β/2].

For I ⊂ IR we denote by EI the conditional expectation with respect to the
σ-algebra ΣI :=

∨
t∈I U(t)Σ0.

Definition 5.2 (0-temperature case): A path space (Q,Σ,Σ0, U(t), R, µ) is
OS-positive if E[0,+∞[RE[0,+∞[ ≥ 0 as an operator on L2(Q,Σ, µ).

(Positive temperature case:) A β-periodic path space (Q,Σ,Σ0, U(t), R, µ) is
OS-positive if E[0,β/2]RE[0,β/2] ≥ 0 as an operator on L2(Q,Σ, µ).

In order to simplify the notation we set E0 = E{0}, Σ+ = Σ[0,+∞[, E+ =
E[0,+∞[, Σ− = Σ]−∞,0] and E− = E]−∞,0]. If the path space (Q,Σ,Σ0, U(t), R, µ)
is β-periodic, we set Σ+ = Σ[0,β/2], E+ = E[0,β/2], Σ− = Σ[−β/2,0] and E− =
E[−β/2,0].

Definition 5.3 A path space (Q,Σ,Σ0, U(t), R, µ) is a Markov path space if
it has the

(i) reflection property: RE0 = E0 (resp. RE{0,β/2} = E{0,β/2});
(ii) Markov property: E+E− = E+E0E− (resp. E+E− = E+E{0,β/2}E−).

It follows that E+RE+ = E−E+ = E+E− = E0 (resp. E+RE+ = E−E+ =
E+E− = E{0,β/2}) .

A Markov path space is OS-positive because E0 (resp. E{0,β/2}) is positive as
an orthonormal projection. An OS-positive path space satisfies the reflection
property (see [K, Prop. 1.6]).

Let (F ,U , τ, ω) be a stochastically positive β-KMS system. Let K := Sp(U)
be the spectrum of the abelian C∗-algebra U , which equipped with the weak
topology is a compact Hausdorff space. Let Q := K [−β/2,β/2] be equipped with
the product topology and let Σ be the Baire σ-algebra on Q.

Theorem 5.4 [KL1]. Let (F ,U , τ, ω) be a stochastically positive β-KMS sys-
tem. Then there exists a Baire probability measure µ on Q, a sub σ-algebra
Σ0 ⊂ Σ, a measure preserving group U(t) of ∗-automorphisms of L∞(Q,Σ, µ)
and a measure preserving automorphism R of L∞(Q,Σ, µ) such that
(Q,Σ,Σ0, U(t), R, µ) is an OS-positive β-periodic generalized path space.

A more precise relationship between the β-KMS system and the generalized
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path space will be given in Theorem 6.7.

6 Reconstruction theorems

In this section we recall reconstruction theorems of Klein [K] and Klein and
Landau [KL1] which associate a stochastically positive β-KMS system to an
OS-positive generalized path space (Q,Σ,Σ0, U(t), R, µ).

To simplify notation, we allow the parameter β to take values in ]0,+∞]. The
case β = +∞ corresponds to the 0-temperature case. If β < ∞, then the
OS-positive path spaces will be assumed to be β-periodic.

6.1 Physical Hilbert space

Set HOS := L2(Q,Σ+, µ) and

(F,G) :=
∫
Q

R(F )Gdµ, F,G ∈ HOS.

By OS-positivity

0 ≤ (F, F ) ≤ ‖F‖2
HOS

.

If we set N := KerE+RE+, then (·, ·) is a positive definite sesquilinear form
on HOS/N .

The physical Hilbert space, denoted by Hphys (or simply by H) is

H := completion of HOS/N for (·, ·).

If we denote by V:HOS → HOS/N the canonical projection, then V extends
uniquely to a contraction with dense range: HOS → H. In fact

(VF,VF ) = (F, F ) ≤ ‖F‖2
HOS

.

In the physical Hilbert space H we find a distinguished vector :

Ω := V(1).
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6.2 Selfadjoint operator

The 0-temperature case

Proposition 6.1 [K, Thm. 1.7]. Let (Q,Σ,Σ0, U(t), R, µ) be an OS-positive
generalized path space. For t ≥ 0 the time evolution U(t) maps N → N . Hence
the linear operator

P (t):HOS/N 3 V(F ) 7→ V(U(t)F ) ∈ HOS/N

is well defined for t ≥ 0.

The family {P (t)}t≥0 uniquely extends to a strongly continuous selfadjoint
semigroup of contractions {e−tH}t≥0 on H, where H is a positive selfadjoint
operator such that HΩ = 0.

The positive temperature case

We first recall the definition of a local symmetric semigroup ([KL3], [Fr1]):

Definition 6.2 Let H be a Hilbert space and T > 0. A local symmetric semi-
group (P (t),Dt, T ) is a family {P (t),Dt}t∈[0,T ] of linear operators P (t) and
vector subspaces Dt of H such that

(i) D0 = H, Dt ⊃ Ds if 0 ≤ t ≤ s ≤ T and D = ∪0<t≤TDt is dense in
H;

(ii) P (t):Dt → H is a symmetric linear operator with P (0) = 1l,
P (s)Dt ⊂ Dt−s for 0 ≤ s ≤ t ≤ T and P (t)P (s) = P (t + s)
on Dt+s for t, s, t+ s ∈ [0, T ].

(iii) t 7→ P (t) is weakly continuous, i.e., for u ∈ Ds and 0 ≤ t ≤ s the
map t 7→ (u, P (t)u) is continuous.

The following theorem was shown in [KL3] and [Fr1].

Theorem 6.3 Let (P (t),Dt, T ) be a local symmetric semigroup on H. Then
there exists a unique selfadjoint operator L on H such that

(i) Dt ⊂ D(e−tL), e−tL|Dt
= P (t) for 0 ≤ t ≤ T ;

(ii) D]0,T ′] := ∪0<t≤T ′ ∪0<s<t P (s)Dt is a core for L for 0 < T ′ ≤ T .

Proposition 6.4 [KL1, Lemma 8.3]. Let (Q,Σ,Σ0, U(t), R, µ) be a β-periodic
OS-positive path space. Set Mt := L2(Q,Σ[0,β/2−t], µ) for 0 ≤ t ≤ β/2. Then
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(i) U(s):Mt ∩ N →Mt−s ∩ N for 0 ≤ s ≤ t ≤ β/2. If Dt := V(Mt),
then the linear operator

P (s): Dt → Dt−s,
V(F ) 7→ V(U(s)F )

is well defined;

(ii) (P (t),Dt, β/2) is a local symmetric semigroup.

By Theorem 6.3 there exists a unique selfadjoint operator L such that P (t)|Dt =
e−tL. Moreover LΩ = 0.

6.3 Algebras of operators

Abelian C∗-algebra U

Let f ∈ L∞(Q,Σ0, µ). Since Σ0 ⊂ Σ+, f acts as a multiplication operator on
HOS, which we will still denoted by f .

Proposition 6.5 [KL1, Lemma 2.2]. For f ∈ L∞(Q,Σ0, µ) the multiplication
operator f preserves N . Hence

f̃V(F ) := V(fF )

defines a unique element of B(H) with ‖f̃‖ = ‖f‖∞. Let U ⊂ B(H) be defined
by

U := {f̃ | f ∈ L∞(Q,Σ0, µ)}.

Then U is a von Neumann algebra isomorphic to L∞(Q,Σ0, µ) and Ω is a
separating vector for U .

We will denote by U+ the set of positive elements in U .

Full algebra F and automorphism group

Definition 6.6 Let F ⊂ B(H) denote the von Neumann algebra generated by
{eitHAe−itH | A ∈ U , t ∈ IR} for β = ∞ (resp. {eitLAe−itL | A ∈ U , t ∈ IR}
for β <∞). We denote by {τt}t∈IR the strongly continuous group of automor-
phisms of F defined by τt(B) = eitHBe−itH for B ∈ F , t ∈ IR and β = ∞
(resp. τt(B) = eitLBe−itL for B ∈ F , t ∈ IR and β <∞).
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6.4 β-KMS system associated to a β-periodic path space

In case β < ∞ one can associate to a β-periodic OS positive path space a
stochastically positive β-KMS system (see [KL1]). (The analog object in case
β = ∞ is called a positive semigroup structure [K]). Let, for n ∈ IN and β > 0,

Jn+
β := {(t1, . . . , tn) ∈ IRn | ti ≥ 0, t1 + · · ·+ tn ≤ β/2}.

Theorem 6.7 [KL1]. Let L be the selfadjoint operator associated to the local
symmetric semigroup (P (t),Dt, β/2). It follows that

(i) Ω ∈ D(L) and LΩ = 0;
(ii) if n ∈ IN, (t1, . . . , tn) ∈ Jn+

β and A1, . . . , An ∈ U , then

An(
∏1
n−1 e−tjLAj)Ω ∈ D(e−tnL). The vector span of these vectors

is dense in H;

(iii) if f1, . . . , fn ∈ L∞(Q,Σ0, µ) and 0 ≤ s1 ≤ · · · ≤ sn ≤ β/2, then

V(
n∏
1

U(sj)fj) = e−s1Lf̃1(
n∏
2

e−(sj−sj−1)Lf̃j)Ω,

where f̃j is defined in Proposition 6.5.

(iv) if n ∈ IN, (t1, . . . , tn) ∈ Jn+
β and A1, . . . , An, B1, . . . , Bn ∈ U+, then

(
An(

1∏
n−1

e−tjLAj)Ω , Bn(
1∏

n−1

e−tjLBj)Ω
)
≥ 0;

(v) ‖e−β/2LAΩ‖ = ‖A∗Ω‖ for all A ∈ U .

Theorem 6.8 [KL1]. Let ωΩ be the state on F defined by ωΩ(B) = (Ω, BΩ).
Then (F ,U , τ, ωΩ) is a stochastically positive β-KMS system.

Finally let J be the modular conjugation associated to the KMS system
(F , τ, ωΩ).

Proposition 6.9 [KL1]. The modular conjugation J is the unique extension
of

JV(F ) = V(Rβ/4F ), (6.12)

where

Rβ/4 := U(β/4)RU(−β/4) = RU(−β/2) = U(β/2)R
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is the reflection at t = β/4 in HOS.

6.5 Markov property for β-periodic path spaces

We recall a characterization of the Markov property for a β-periodic path
space in terms of the associated stochastically positive β-KMS system due to
Klein and Landau [KL1].

Theorem 6.10 A β-periodic OS-positive path space (Q,Σ,Σ0, U(t), R, µ) sat-

isfies the Markov property iff the vectors Ae−
β
2
LBΩ for A,B ∈ U are dense in

H. In this case

H = L2(Q,Σ{0,β/2}, µ).

Proof. The first statement of the theorem is shown in [KL1, Thm. 11.2].
The second statement is obvious: it follows from the Markov property that
E[0,β/2]RE[0,β/2] = E{0,β/2} is a projection, hence HOS/N is canonically iden-
tified with E{0,β/2}HOS = L2(Q,Σ{0,β/2}, µ).

Theorem 6.11 Let (W,Wκ, τ
◦, ωβ) be the quasi-free KMS system associ-

ated to a selfadjoint operator a ≥ 0 and a conjugation κ with [a, κ] = 0.
Then the OS-positive generalized path space (Q,Σ,Σ0, U(t), R, µ) associated
to (W(X),Wκ(X), τ ◦, ωβ) satisfies the Markov property.

Proof. Stochastic positivity of the quasi-free KMS system (W,Wκ, τ
◦, ωβ)

was shown in Theorem 4.5. The Markov property follows from Lemma 4.6
and Theorem 6.10 tu.

7 Perturbations of generalized path spaces

In this section we recall some results concerning perturbations of OS-positive
path spaces.

7.1 FKN kernels

Let (Q,Σ,Σ0, U(t), R, µ) be an OS-positive path space.

Definition 7.1 A Feynman-Kac-Nelson (FKN) kernel is a family {F[a,b]} of
real measurable functions on (Q,Σ, µ) such that, for 0 ≤ b− a ≤ β,
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(i) F[a,b] > 0 µ-a.e.;
(ii) F[a,b] ∈ L1(Q,Σ, µ) and F[a,b] is continuous in L1(Q,Σ, µ) as a func-

tion of b;

(iii) F[a,b]F[b,c] = F[a,c] for a ≤ b ≤ c, c− a ≤ β;
(iv) U(s)F[a,b] = F[a+s,b+s] for s ∈ IR;
(v) RF[a,b] = F[−b,−a].

The main examples of FKN kernels are those associated to a selfadjoint op-
erator V affiliated to U . In [KL1] and [K] perturbations associated to more
general FKN kernels are considered. However, the present case is sufficient for
our applications.

Let V be a selfadjoint operator affiliated to U . Since by Proposition 6.5 the
algebra U is isomorphic to L∞(Q,Σ0, µ), we can uniquely associate to V a real
function on Q, measurable with respect to Σ0, which we will still denote by
V .

Proposition 7.2 Let (Q,Σ,Σ0, U(t), R, µ) be a β-periodic OS-positive path
space and let V be a selfadjoint operator affiliated to U such that V ∈ L1(Q,Σ0, µ),
and e−TV ∈ L1(Q,Σ0, µ) for some T > 0 if β = ∞ or e−βV ∈ L1(Q,Σ0, µ) if
β <∞. Then

(i) the family of functions F[a,b] := e−
∫ b

a
U(t)V dt for 0 ≤ b−a ≤ inf(T, β)/2

is a FKN kernel;

(ii) F[0,s] ∈ L2(Q,Σ[0,s], µ) for 0 ≤ s ≤ inf(T, β)/2 and the map s 7→
F[0,s] is continuous in L2(Q,Σ[0,β/2], µ).

Proof. All properties required in Definition 7.1 except from property (ii)
follow directly from the definition of U(t) and the properties of the path space
(Q,Σ,Σ0, U(t), R, µ). Let us now verify (ii). Writing V = V+ − V−, where
V± is the positive/negative part of V , we have F[a,b] ≤ exp(

∫ b
a U(t)V−dt), and

hence F 2
[0,s] ≤ exp(2

∫ β/2
0 U(t)V−dt). Since µ is a probability measure, we have

V−, eβV− ∈ L1(Q,Σ0, µ). We recall the following bound from [KL4, Thm. 6.2
(i)]:

‖e−
∫ b

a
U(t)V dt‖Lp(Q,Σ,µ) ≤ ‖e−(b−a)V ‖Lp(Q,Σ,µ), 1 ≤ p <∞. (7.13)

This yields

‖F 2
[0,s]‖L1(Q,Σ,µ) ≤ ‖e2

∫ β/2

0
U(t)V−dt‖L1(Q,Σ,µ) ≤ ‖eβV−‖L1(Q,Σ,µ) <∞.

Hence F[0,s] ∈ L2(Q,Σ[0,β/2], µ) for 0 ≤ s ≤ inf(T, β)/2. The continuity w.r.t.
to s follows from the dominated convergence theorem. This completes the
proof of (ii).
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The proof of property (ii) from Definition 7.1 for 0 ≤ a follows from (ii) and
the fact that L2(Q,Σ, µ) ⊂ L1(Q,Σ, µ). The case b ≤ 0 is reduced to the case
a ≥ 0 using property (v). Finally the case a < 0 < b follows from the identity
F[a,b] = F[a,0]F[0,b] tu.

7.2 Selfadjoint operator associated to a FKN kernel

In this subsection we recall a result of Klein and Landau [KL1], allowing us
to construct a selfadjoint operator starting from a FKN kernel associated to a
selfadjoint operator V , which is affiliated to U . To keep the exposition compact,
we will use the convention for the parameter β explained at the beginning of
Section 6.

Let (Q,Σ,Σ0, U(t), R, µ) be an OS positive path space and V a selfadjoint
operator affiliated to U such that V ∈ L1(Q,Σ, µ) and e−TV ∈ L1(Q,Σ0, µ)
for some T > 0. Let F[a,b] be the associated FKN kernel.

Let, for 0 < t < T/2,Mt be the linear span
⋃

0≤s≤T/2−t F[0,s]L
∞(Q,Σ[0,T/2−t], µ).

Set

UV (s): Mt → L2(Q,Σ+, µ)
ψ 7→ F[0,s]U(s)ψ,

0 ≤ s ≤ t.

Lemma 7.3

(i) For ψ ∈ Mt the map

[0, t] 3 s 7→ UV (s)ψ ∈ L2(Q,Σ+, µ)

is continuous on [0, t].

(ii) UV (s):Mt ∩ N → N for 0 ≤ s ≤ t < T/2.

Proof. Using the definition of Mt and the properties of the FKN kernel F[a,b]

it suffices to show that for ψ ∈ L∞(Q,Σ[0,T/2−t], µ) the map s → UV (s)ψ is
continuous at s = s′, 0 < s′ ≤ t < T/2. For 0 ≤ s, s′ ≤ t < T/2 we have

UV (s′)ψ − UV (s)ψ = F[0,s′](U(s′)ψ − U(s)ψ) + (F[0,s′] − F[0,s])U(s)ψ.
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Hence

‖UV (s′)ψ − UV (s)ψ‖2
2

≤ ∫
Q F

2
[0,s′]|U(s′)ψ − U(s)ψ|2dµ+

∫
Q(F[0,s] − F[0,s′])

2|U(s)ψ|2dµ
≤ ∫

{|U(s′)ψ−U(s)ψ|(q)>ε} F
2
[0,s′]|U(s′)ψ − U(s)ψ|2dµ

+
∫
{|U(s′)ψ−U(s)ψ|(q)≤ε} F

2
[0,s′]|U(s′)ψ − U(s)ψ|2dµ

+‖F[0,s′] − F[0,s]‖2
2‖ψ‖2

∞.

The last term on the r.h.s. tends to 0 if s→ s′ as a consequence of Proposition
7.2. The second term on the r.h.s. is less than ε2‖F[0,s′]‖2

2. To estimate the first
term, we write the function f := F 2

[0,s′] as f1l{|f(q)|≤M} + f1l{|f(q)|>M}. It follows
that

∫
{|U(s′)ψ−U(s)ψ|(q)>ε} f |U(s′)ψ − U(s)ψ|2dµ

≤ 4M‖ψ‖2
∞

∫
1l{|U(s′)ψ−U(s)ψ|(q)>ε}dµ+ 4‖f1l{|f(q)|>M}‖1‖ψ‖2

∞.

Since f ∈ L1(Q,Σ+, µ), the second term tends to 0 as M →∞. Since U(t) is
strongly continuous in measure, the first term tends to 0 as s → s′. Picking
first ε� 1, then M � 1 and finally |s− s′| � 1 we obtain (i).

Let us now prove (ii). Let 0 ≤ s ≤ t < T/2. Note that UV (s) sends Ms

into L2(Q,Σ+, µ). Let us fix ψ ∈ Mt. First we consider the case s < t. For
0 < r ≤ s and s+ r ≤ t we have

(UV (s)ψ, UV (s)ψ) =
∫
Q F[0,s]U(s)ψRF[0,s]U(s)ψdµ

=
∫
Q F[−r,s−r]U(s− r)ψU(−r)RF[0,s]U(s)ψ dµ

=
∫
Q F[−r,s−r]U(s− r)ψRF[r,s+r]U(s + r)ψ dµ

=
∫
Q F[0,s−r]U(s− r)ψRF[0,s+r]U(s + r)ψ dµ

= (UV (s− r)ψ, UV (s+ r)ψ).

Since ( . , . ) is positive, the Cauchy-Schwartz inequality implies

(UV (s)ψ, UV (s)ψ)

≤ (UV (s− r)ψ, UV (s− r)ψ)
1
2 (UV (s+ r)ψ, UV (s+ r)ψ)

1
2 .
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Thus, by induction,

(UV (s)ψ, UV (s)ψ)

≤ ‖UV (s− nr)ψ‖∏n−1
j=0 (UV (s− (j − 1)r)ψ, UV (s− (j − 1)r)ψ)

1
2 .

If we pick 0 < r < s, s = nr, such that s + r ≤ t, then (ψ, ψ) = 0 implies
(U(s)ψ, U(s)ψ) = 0. Finally, (ii) for s = t follows from (ii) for s < t and (i) tu.

Theorem 7.4 Let 0 < t < T/2, Dt = V(Mt) and 0 ≤ s ≤ t. Then

PV (s): Dt → H
V(ψ) 7→ V(F[0,s]U(s)ψ)

is a well defined linear operator, and (Dt, PV (t), T/2) is a local symmetric
semigroup on H. We denote by HV the associated selfadjoint operator.

Proof. The fact that PV (s) is well defined follows from Lemma 7.3 (ii).
Property (ii) of Definition 6.2 follows from the properties of the FKN ker-
nel F[a,b]. Monotonicity of the family {Dt} w.r.t. inclusions is immediate.
That D = ∪0<t≤TDt is dense in H follows from the fact that D contains
V(L∞(Q,Σ+, µ)). Finally property (iii) follows from the continuity property
stated in Lemma 7.3 tu.

Theorem 7.5 [KL1, Thm. 16.4]. Let V be a selfadjoint operator affiliated
to U such that V ∈ L1(Q,Σ0, µ) and e−TV ∈ L1(Q,Σ0, µ) for some T > 0.
Assume in addition that either V ∈ L2+ε(Q,Σ0, µ) for ε > 0 or that V ∈
L2(Q,Σ0, µ) and V ≥ 0. Let, for β = ∞, H (resp. L for β < ∞) denote the
selfadjoint generator of the unperturbed semi-group t 7→ P (t). Then H + V
(resp. L + V ) is essentially selfadjoint and the operator HV (for both cases)
constructed in Theorem 7.4 is equal to H + V (resp. L+ V ).

7.3 Perturbations in the positive temperature case

The following theorem is shown in [KL1]:

Theorem 7.6 [KL1]. Let (Q,Σ,Σ0, U(t), R, µ) be a β-periodic OS-positive
path space, V a selfadjoint operator on H affiliated to U , which satisfies the
hypotheses of Proposition 7.2. Let F = {F[a,b]} be the associated β-periodic
FKN kernel. Then the path space (Q,Σ,Σ0, U(t), R, µV ), where

dµV :=
F[−β/2,β/2]dµ∫
Q F[−β/2,β/2]dµ ,
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is a β-periodic OS-positive path space.

By the reconstruction theorem recalled in Section 6.5, one can associate to
the perturbed path space (Q,Σ,Σ0, U(t), R, µV ) a physical Hilbert space HV ,
a distinguished vector ΩV , an abelian von Neumann algebra UV , a selfadjoint
operator LV and a von Neumann algebra FV . If ωV and τV are the state and
W ∗-dynamics associated to ΩV and LV , then (FV ,UV , τV , ωV ) is a stochasti-
cally positive β-KMS system.

Our next aim is to construct canonical identifications between the perturbed
objects and perturbations of the original objects associated to the path space
(Q,Σ,Σ0, U(t), R, µ).

Identification of the physical Hilbert spaces

We first show that there is a canonical unitary operator between HV and H.

Proposition 7.7 Assume that V, e−βV ∈ L1(Q,Σ0, µ). Set

Î: L∞(Q,Σ+, µ)/NV → HOS/N

VV (ψ) 7→ V(F[0,β/2]ψ)

(
∫

Q
F[−β/2,β/2]dµ)

1
2
.

Then Î is a well defined isometry from HOS,V /NV into HOS/N with dense

range and domain. Hence Î uniquely extends to a unitary map Î:HV → H.

Proof. Note that µV is absolutely continuous w.r.t. µ. Thus L∞(Q,Σ, µV ) =
L∞(Q,Σ, µ). If ψ ∈ L∞(Q,Σ, µ)∩NV , then

∫
Q RψψdµV =

∫
Q dµRF[0,β/2]ψF[0,β/2]ψ =

0. Hence F[0,β/2]ψ ∈ N . Consequently Î is well defined. Î is clearly isometric
since

(VV ψ,VV ψ)V =

∫
QRψψdµV∫

Q F[−β/2,β/2]dµ
=

∫
QRF[0,β/2]ψF[0,β/2]ψdµ∫

Q F[−β/2,β/2]dµ
= (ÎVV ψ, ÎVV ψ).

Î is densely defined since L∞(Q,Σ+, µ) is dense in HOS,V . Since VV is a con-
traction, L∞(Q,Σ+, µ)/NV is dense in HOS,V /NV and hence in HV . Finally,

we note that RanÎ contains V(F[0,β/2]L
∞(Q,Σ+, µ)). Since F[0,β/2] > 0 a.e.,

F[0,β/2]L
∞(Q,Σ, µ) is dense in HOS and hence its image under V is dense in

H tu.

Identification of the abelian algebra
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Proposition 7.8 For f ∈ L∞(Q,Σ0, µ) one has

Î f̃ψ = f̃ Îψ, ψ ∈ HV ,

and, consequently, ÎUV = U Î.

Proof. This follows immediately from the definitions of f̃ in Proposition 6.5
and Î in Proposition 7.7 tu.

Identification of the C∗-dynamics

Applying Theorem 7.4 we obtain a selfadjoint operator HV from the FKN
kernel associated to V . It will be called the pseudo-Liouvillean generated by
V .

Proposition 7.9 One has

(i) ÎΩV = ‖e−βHV /2Ω‖−1e−βHV /2Ω;
(ii) for 0 ≤ s1 ≤ · · · ≤ sn ≤ β/2 and A1, . . . , An ∈ U

Îe−s1LV A1(
∏n

2 e(sj−1−sj)LV Aj)ΩV

=
e−s1HV A1(

∏n

2
e(sj−1−sj)HV Aj)e(sn−β/2)HV Ω

‖e−βHV /2Ω‖ ;

(iii) for t1, . . . , tn ∈ IR, A1, . . . , An ∈ U and ψ ∈ HV

Î(
n∏
1

eitjLV Aje
−itjLV )ψ = (

n∏
1

eitjHV Aje
−itjHV )Îψ ;

(iv) ÎJV = JÎ.

Note that in (ii) and (iii) we identify U with L∞(Q,Σ0, µ).

Identification of the observable algebras

We recall that the observable algebra and the dynamics associated to the
perturbed path space (Q,Σ,Σ0, U(t), R, µV ) are the von Neumann algebra
FV generated by {eitLV Ae−itLV | A ∈ UV , t ∈ IR} and the automorphism
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group τV : t 7→ τV (t), t ∈ IR, where

τV (t)(B) = eitLV Be−itLV , B ∈ FV .

Proposition 7.10

(i) ÎτV (t)(B)Î−1 = eitHV ÎBÎ−1e−itHV for B ∈ FV and t ∈ IR;
(ii) Assume that either V ∈ L2+ε(Q,Σ0, µ) for ε > 0 or that V ∈

L2(Q,Σ0, µ) and V ≥ 0. It follows that ÎFV Î−1 = F .

Proof. (i) follows from Proposition 7.9 (iii). To prove (ii) we recall from The-
orem 7.5 that, under the assumptions of the proposition, L+ V is essentially
selfadjoint on D(L) ∩ D(V ) and HV = L+ V . Hence, by Trotter’s formula,

eitHV = s- lim
n→∞(eitL/neitV/n)n.

Thus

eitHV Ae−itHV = w − lim
n→+∞(eitL/neitV/n)nA(e−itV/ne−itL/n)n.

Since eisV ∈ U ⊂ F ,A ∈ F implies that eisVAe−isV ∈ F . Moreover, eisLAe−isL ∈
F by definition. So eitHV Ae−itHV ∈ F , if A ∈ U , and hence

ÎFV Î−1 ⊂ F .

According to Tomita’s theorem (see, e.g., [BR]) F ′ = JFJ and F ′
V = JVFV JV .

Thus using Proposition 7.9(iv):

(ÎFV Î−1)′ = ÎF ′
V Î

−1 = ÎJVFV JV Î−1 = JÎFV Î−1J ⊂ JFJ = F ′.

Taking commutants we obtain

F = F ′′ ⊂ (ÎFV Î−1)′′ = ÎFV Î−1.

Hence F = ÎFV Î−1tu.

The results in this section are summarized in the following theorem.

Theorem 7.11 Let (F ,U , τ, ω) be a stochastically positive β-KMS system.
Let H,Ω, L be the associated GNS Hilbert spaces, GNS vector and Liouvillean.
Let V be a selfadjoint operator on H, affiliated to U , such that

V, e−βV ∈ L1(Q,Σ0, µ) and either V ∈ L2+ε(Q,Σ0, µ), ε > 0,
or V ∈ L2(Q,Σ0, µ) and V ≥ 0.
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Then

(i) L+ V is essentially selfadjoint on D(L) ∩ D(V );

(ii) Ω ∈ D(e−
β
2
HV ), where HV = L+ V ;

(iii) (F ,U , τV , ωV ) is a stochastically positive β-KMS system for

τV,t(A) = eitHV Ae−itHV , ωV (A) = ‖e−β
2
HV Ω‖−2(e−

β
2
HV Ω, Ae−

β
2
HV Ω),

A ∈ F .

Perturbed Liouvillean

In the next theorem, we identify the Liouvillean for the perturbed system.

Theorem 7.12 Assume that V is a selfadjoint operator affiliated to U such
that

e−βV ∈ L1(Q,Σ0, µ) (7.14)

and

V ∈ Lp(Q,Σ0, µ), e−
β
2
V ∈ Lq(Q,Σ0, µ) for p−1 + q−1 = 1

2
, 2 < p, q <∞,

or V ∈ L2(Q,Σ0, µ) and V ≥ 0.
(7.15)

Let LV be the Liouvillean associated to the β-KMS system (F , τV , ωV ). Then
HV−JV J is essentially selfadjoint on D(HV )∩D(JV J) and LV = HV − JV J .

Lemma 7.13 For A ∈ U one has JAΩV = ‖e−β
2
HV Ω‖−1e−

β
2
HV A∗Ω.

Proof. Let us set c = ‖e−β
2
HV Ω‖−1. Then AΩV = cV(AF[0,β/2]). Moreover,

JAΩV = cV(U(β/2)A∗F[0,β/2]), since F[0,β/2] is invariant under Rβ/4. Since A∗

belongs to the space Mβ/2 = L∞(Q,Σ0, µ) defined in Section 7.2, V(A∗) =

AΩ ∈ D(e−
β
2
HV ) and

ce−
β
2
HV A∗Ω = cV(U(β/2)A∗F[0,β/2]) = JAΩV tu.

Lemma 7.14 Let f1 be a real function in L2(Q,Σ0, µ) such that f1F[0,β/2] ∈
L2(Q,Σ[0,β/2], µ). Then ΩV and Ω are vectors in D(f1). The vector f1Ω is in

D(e−
β
2
HV ) and satisfies Jf1ΩV = ‖e−β

2
HV Ω‖−1e−

β
2
HV f1Ω.

Proof. Since f1 ∈ L2(Q,Σ0, µ), we have Ω ∈ D(f1). Now f1F[0,β/2] ∈ L2(Q,Σ[0,β/2], µ),
thus ΩV ∈ D(f1). Let fn = f11l{|f1|≤n}. By dominated convergence fnF[0,β/2] →
f1F[0,β/2] in L2(Q,Σ[0,β/2], µ), i.e.,

f1ΩV = V(f1F[0,β/2]) = lim
n→∞V(fnF[0,β/2]) = lim

n→∞ fnΩV .
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Applying Lemma 7.13 to A = fn we obtain, for u ∈ D(e−
β
2
HV ),

(e−
β
2
HV u, f1Ω) = limn→∞(e−

β
2
HV u, fnΩ)

= limn→∞(u, e−
β
2
HV fnΩ) = limn→∞(u, JfnΩV ) = (u, Jf1ΩV ).

This shows that f1Ω ∈ D(e−
β
2
HV ) and e−

β
2
HV f1Ω = Jf1ΩV tu.

Lemma 7.15 Assume that V is a selfadjoint operator, affiliated to U , which
satisfies (7.15). Then

ΩV ∈ D(HV ) ∩ D(V ) and (HV − JV J)ΩV = (HV − JV )ΩV = 0.

Proof. We first verify that V satisfies the hypotheses of Lemma 7.14, i.e.,
that

V e−
∫ β/2

0
U(t)V dt ∈ L2(Q,Σ[0,β/2], µ). (7.16)

Let 2 ≤ p, q ≤ ∞ be as in (7.15). If p = 2, then V ≥ 0 a.e., thus (7.16) is
clearly satisfied. If q < ∞, then, applying Hölder’s inequality, it suffices to
prove that

V ∈ Lp(Q,Σ, µ) and e−
∫ β/2

0
U(t)V dt ∈ Lq(Q,Σ, µ).

Applying (7.13) we find

‖e−
∫ β/2

0
U(t)V dt‖Lq(Q,Σ,µ) ≤ ‖e−

β
2
V ‖q <∞.

Let u ∈ D(e−
β
2
HV ) ∩ D(HV ) ∩ D(HV e−

β
2
HV ) and set c := ‖e−β

2
HV Ω‖−1. Then

(HV u,ΩV ) = c(e−
β
2
HV HV u,Ω) = c(e−

β
2
HV u,HVΩ) = c(e−

β
2
HV u, VΩ),

since Ω ∈ D(V ) ∩ D(L) and HV Ω = LΩ + V Ω = V Ω. Applying Lemma 7.14
to f1 = V we obtain

c(e−
β
2
HV u, VΩ) = c(u, e−

β
2
HV VΩ) = (u, JVΩV ).

This implies, together with JΩV = ΩV , that ΩV ∈ D(HV ) and HV ΩV =
JV ΩV = JV JΩV tu.
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Proof of Theorem 7.12. Let F1 be the set of A ∈ F such that t 7→ τV,t(A) is
C1 for the strong topology and let A ∈ F1. Since HV implements the dynamics
τV,t, we see that A ∈ C1(HV ). By [ABG], this implies that A:D(HV ) →
D(HV ). Since ΩV ∈ D(HV ), the vector AΩV ∈ D(HV ). Since JV J is affiliated
to F ′, Lemma 7.15 implies

LVAΩV = i−1 d
dt
τV,t(A)ΩV |t=0 = HVAΩV −AHV ΩV

= HVAΩV − AJV JΩV = HVAΩV − JV JAΩV .

This yields LV u = HV u− JV Ju for u ∈ F1ΩV . By Proposition 3.1, we know
that F1ΩV is a core for LV . This implies that LV is the closure of HV − JV J
on F1ΩV and hence also the closure of HV − JV J on D(HV ) ∩ D(JV J) tu.

7.4 Markov property for perturbed of path spaces

In this subsection we show that the Markov property of a path space is pre-
served by the perturbations described in Subsection 7.1.

Proposition 7.16 Let (Q,Σ,Σ0, U(t), R, µ) be a generalized path space sat-
isfying the Mar-kov property and let {F[a,b]} be a FKN kernel. Then the path
space (Q,Σ,Σ0, U(t), R, µF ) satisfies the Markov property.

Proof. Let (Q,Σ, µ) be a probability space, F ∈ L1(Q,Σ, µ) with F > 0
µ-a.e. and set dµF = (

∫
Fdµ)−1Fdµ.

If B ⊂ Σ is a σ-algebra and f is Σ-measurable, then we denote by EB(f),
(resp. EF

B(f)) the conditional expectation of f w.r.t. B for the measure µ
(resp. µF ). Then (see [Lo, Sect. 2.4])

EB(fg) = EB(f)g, EF
B(fg) = EF

B (f)g µ-a.e. if g is B-measurable (7.17)

and

EF
B (f) =

EB(Ff)

EB(F )
µ-a.e. (7.18)

To simplify the notation, let us set E0 = E{0} if β = +∞ and E0 = E{0,β/2}
if β < ∞. Set F+ = F[0,β/2] and F− = F[−β/2,0], so that F = F−F+. Set

E
(F )
+ = E

(F )
[0,β/2] and E

(F )
− = E

(F )
[−β/2,0]. Finally set E

(F )
0 = E

(F )
{0} if β = +∞ and

E
(F )
0 = E

(F )
{0,β/2} if β <∞.
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Let now f be Σ-measurable. Then

EF
+(f) =

E+(Ff)

E+(F )
=
E+(F−F+f)

E+(F−F+)
=
E+(F−f)

E+(F−)
,

using (7.18), (7.17) and the fact that F+ is Σ[0,β/2]-measurable. Next

E+(F−f)

E+(F−)
=

E+(F−f)

E+E−(F−)
=
E+(F−f)

E0(F−)
,

by the Markov property for (Q,Σ, µ) and the fact that F− is Σ[−β/2,0]-measurable.
Since E0(F−) is Σ[−β/2,0]-measurable, we have, by (7.18) and (7.17),

EF
−E

F
+(f) =

E−(FE+(F−f))

E0(F−)E−(F )
=
E−(F−F+E+(F−f))

E0(F−)E−(F−F+)
=
E−(F+E+(F−f))

E0(F−)E−(F+)
,

since F− is Σ[−β/2,0]-measurable.

Now

E−(F+E+(F−f))

E0(F−)E−(F+)
=

E0(Ff)

E0(F+)E0(F−)
,

by the Markov property for (Q,Σ, µ) and the fact that F+ is Σ[0,β/2]-measurable.
Finally

E0(F−)E0(F+) = E+E−(F−)E0(F+) = E+(F−E0(F+))

= E+(F−E−(F+)) = E+E−(F−F+) = E0(F ).

This yields EF
−E

F
+(f) = EF

0 (f) µ-a.e. and completes the proof tu.

8 Free Klein-Gordon fields at positive temperature

In this section we recall some results about the complex Klein-Gordon field
and show that it provides an example of a charge symmetric Kähler structure.

The classical Klein-Gordon equation describing a charged particle of mass m
is

∂2
tΦ− ∂2

xΦ +m2Φ = 0, (t, x) ∈ IRd+1,
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where Φ: IRd+1 → C is a complex valued function. For later use we recall the
discrete symmetries of the Klein-Gordon equation, namely the parity p, time
reversal θ and charge conjugation c:

pΦ(t, x) := Φ(t,−x), θΦ(t, x) = Φ(−t, x) and cΦ(t, x) = Φ(t, x).

In particular, real solutions of the Klein-Gordon equation without external
field describe neutral scalar particles. In the sequel only time-reversal and
charge conjugation will play a role.

8.1 The complex Klein-Gordon field

Let us now describe the abstract Klein-Gordon equation that we will consider
in the sequel.

Abstract Klein-Gordon equation

Let h be a Hilbert space. We denote by i the complex structure on h and
by ( . , . )h the scalar product on h. We assume that h is equipped with a

conjugation denoted by Φ → Φ.

Let

ε ≥ m > 0 (8.19)

be a real selfadjoint operator on h, i.e., such that εΦ = εΦ.

For 0 ≤ s ≤ 1 we denote by hs the Hilbert space D(εs) with complex structure
i and scalar product v, u 7→ (v, ε2su)h and by h−s the completion of (h, i) for
the norm (v, ε−2sv)h. The space h−s can be identified with the anti-dual of hs
using the sesquilinear form 〈v, u〉 = (v, u)h for v ∈ h−s and u ∈ hs.

We consider the abstract Klein-Gordon equation

(KG) (∂2
tΦ)(t) + ε2Φ(t) = 0,

where Φ(t) is a function of t ∈ IR with values in h. This (complex) KG equation
describes a classical field of scalar charged particles.

The complex structure on h yields a complex structure on the space of solutions
of (KG), associated to the U(1) gauge group. Following the convention of
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Subsection 2.1 this ‘charge’ complex structure will be denoted by j. It is defined
by

(jΦ)(t) := iΦ(t) for Φ a solution of (KG) and t ∈ IR.

The following quantity does not depend on t:

q(Ψ,Φ) := i(Ψ(t), (∂tΦ)(t))h− i((∂tΨ)(t),Φ(t))h.

Hence it defines a symmetric sesquilinear form on the space of solutions of
(KG). The following transformations preserve the solutions of (KG):

– gauge transformations Φ(t) 7→ e iαΦ(t) = (e jαΦ)(t), α ∈ [0, 2π];

– time-reversal θ: Φ(t) 7→ Φ(−t);

– charge conjugation c: Φ(t) 7→ Φ(t).

Energy space

It is convenient to identify a solution of (KG) with its Cauchy data at t = 0,

f := (Φ(0), (∂tΦ)(0)) ∈ h× h.

To do so one introduces the energy space E := h1⊕h equipped with the norm

(f, f)E = (f1, ε
2f1)h + (f2, f2)h,

where we set f = (f1, f2). Note that the complex structure j becomes i⊕ i on
E . Setting ft = (Φ(t), (∂tΦ)(t)) one can rewrite the Klein-Gordon equation as
the first order system:

j(∂tf)t = Lft for L =

 0 i

−iε2 0

 .

It is convenient to diagonalize L using the unitary map

U0: E → h⊕ h
f 7→ u = (u1, u2),
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where

U0 :=
1√
2

 ε i

ε −i

 and U−1
0 =

1√
2

 ε−1 ε−1

−i i

 .

It follows that

U0LU
∗
0 =

 ε 0

0 −ε

 .

In particular, L is selfadjoint on E with domain U−1(h1×h1) and the evolution
IR 3 t 7→ e−jtL is a strongly continuous unitary group. Therefore the space of
solutions of (KG) can be identified with E . On E the symmetric form q is

q(g, f) = i(g1, f2)h− i(g2, f1)h.

Charged Kähler space structure

On E we put the ‘energy’ complex structure i := j L|L| .

Proposition 8.1 The space (E , j, i, q) is a charged Kähler space.

Proof. Clearly [i, j] = 0. We have to prove that

(g, f) := Imq(g, if) + iImq(g, f)

is a positive definite symmetric sesquilinear form on (E , i). If U0f = (u1, u2)
and U0g = (v1, v2), then

q(g, f) = −(v2, ε
−1u2)h + (v1, ε

−1u1)h,

q(g, if) = −(v2,−iε−1u2)h + (v1, iε
−1u1)h = i(v1, ε

−1u1)h + i(v2, ε
−1u2)h,

and consequently

(g, f) = (v1, ε
−1u1)h + (v2, ε−1u2)h. (8.20)

tu

Definition 8.2 We denote by (Eq, i, ( . , . )) the completion of (E , i) for the
scalar product ( . , . ).
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Proposition 8.3 The space Eq is equal to the space h 1
2
⊕ h− 1

2
equipped with

the complex structure

i =

 0 −ε−1

ε 0



and the scalar product (g, f) = Re(g1, εf1)h + Re(g2, ε
−1f2)h + i(Re(g1, f2)h−

Re(g2, f1)h).

Standard form of the complex Klein-Gordon field

It is convenient to introduce the map

Uq(f1, f2) := 1√
2
(ε

1
2f1 + iε−

1
2 f2, ε

1
2 f 1 + iε−

1
2f 2) =: (u1, u2).

Using (8.20) we obtain that Uq extends to a unitary map

Uq: (Eq, i, (·, ·)) → (h, i)⊕ (h, i).

Let us describe the various objects after conjugation by Uq. We will denote
by the same letter an object acting on Eq and its conjugation by Uq acting on
h⊕ h.

– symmetric form: after conjugation by Uq the symmetric form q(g, f)
becomes

q((v1, v2), (u1, u2)) = (v1, u1)− (u2, v2).

– ‘charge’ complex structure: after conjugation by Uq the complex
structure j becomes

j =

 i 0

0 −i

 .
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– Hamiltonian: the infinitesimal generator of IR 3 t 7→ e−jtL on
(Eq, i, ( . , . )) is the Hamiltonian, denoted by h. After conjugation
by Uq,

h =

 ε 0

0 ε

 .

In particular h is positive.

– Gauge transformations: the infinitesimal generator of [0, 2π] 3 α 7→
e−jα on (Eq, i, ( . , . )) is the charge operator q. After conjugation by
Uq,

q =

 1 0

0 −1

 .

We have q = −ij. Hence q is a charge operator in the sense of
Subsection 2.4.

– Time reversal: we have θ(f1, f2) = (f 1,−f 2), and after conjugation
by Uq,

θ(u1, u2) = (u1, u2).

– charge conjugation: we have c(f1, f2) = (f 1, f2), and after conjuga-
tion by Uq,

c(u1, u2) = (u2, u1).

We see that (Eq, j, i, q, c) is a charge-symmetric Kähler space.

From now on we will set X := h⊕ h with elements x = (x+, x−) and equip X
with the complex structures

i =

 i 0

0 i

 and j =

 i 0

0 −i

 ,
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with the symmetric form and the scalar product

q(y, x) = (y+, x+)− (x−, y−) and (y, x) := (y+, x+) + (y−, x−),

the Hamiltonian and the charge operator

h =

 ε 0

0 ε

 and q =

 1l 0

0 −1l

 ,

and the time-reversal and the charge conjugation

θ(x+, x−) = (x+, x−) and c(x+, x−) = (x−, x+).

From the discussion above we obtain the following theorem.

Theorem 8.4 The map Uq: (Eq, j, i, q, c) → (X, j, i, q, c) is unitary between
(Eq, i, ( . , . )) and (X, i, ( . , . )), and isometric between (Eq, j, q) and (X, j, q). It
satisfies

UqaU
−1
q = a for a = h, q, t, c.

For later use we set κ := θc and Xκ := {x ∈ X|κx = x} = {(x+, x+), x+ ∈ h}.
Note that in terms of solutions of (KG) we have κΦ(t, x) = Φ(−t, x) and an
element of Xκ corresponds to a solution of (KG) with Cauchy data (u, 0),
where u ∈ h 1

2
.

We see that κ is a conjugation on (X, i, ( . , . )) and hence Im( . , . ) vanishes
on Xκ. Since [κ, j] = 0, the vector space Xκ is a complex vector space for the
complex structure j.

For comparison with the physics literature, let us consider the case h =
L2(IRd, dx) and ε = (−∆x +m2)

1
2 . Then h− 1

2
is the Sobolev space H− 1

2 (IRd).

In the physics literature one defines for u ∈ C∞
0 (IRd) the time-zero field φp(u)

to be the Hermitian field associated with the solution of (KG) with Cauchy
data ( 1

2π
ε−1u, 0).

After the unitary transformation Uq, ( 1
2π
ε−1u, 0) becomes the element

1√
22π

(ε−
1
2u, ε−

1
2u) ∈ L2(IRd)⊕ L2(IRd),

47



i.e.,

φp(u) =
1√
22π

φ(ε−
1
2u, ε−

1
2u).

In the physics litterature one also considers the complex time-zero field ϕp(u)
defined as φp(u) + iφp(iu), i.e.,

ϕp(u) =
1

2π
ϕ(ε−

1
2u, ε−

1
2u).

8.2 The real Klein-Gordon field

We now quickly discuss the real Klein-Gordon field.

Abstract real Klein-Gordon equation

Let hIR be a real Hilbert space. Let ε ≥ m > 0 be a selfadjoint operator on
hIR. We consider the Klein-Gordon equation:

∂2
tΦ(t) + ε2Φ(t) = 0,

where Φ is a function of t ∈ IR with values in hIR. The real Klein-Gordon
equation describes a classical field of scalar neutral particles.

Let us denote by h := ChIR the complexification of hIR with its canonical
scalar product (·, ·)h. The space h is equipped with the canonical conjugation
h 3 Φ 7→ Φ, Φ ∈ h.

On the space of real solutions of the Klein-Gordon equation, the charge con-
jugation c acts as identity and the time-reversal θ takes the form θ: Φ(t) 7→
Φ(−t). We will still denote by ε the complexification of ε acting on h. We can
now apply the results of Subsection 8.1 to the Hilbert space h.

The real energy space is EIR := E ∩ hIR × hIR. The image of EIR under the
transformation U is

UEIR =: SIR = {(u1, u2) ∈ h⊕ h|u2 = u1}.

Note that e−jtL preserves EIR. More general, if F : IR → C is a bounded measur-
able function such that F (λ) = F (−λ) then F (L) preserves EIR. Therefore i
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preserves EIR and hence defines a complex structure on EIR. The space (EIR, i, q)
is a Kähler space.

Definition 8.5 We denote by (Eq,IR, i, ( . , . )) the closure of (EIR, i) for the
scalar product ( . , . ).

Proposition 8.6 The space Eq,IR is equal to h 1
2
,IR ⊕ h− 1

2
,IR equipped with the

complex structure

i =

 0 −ε−1

ε 0



and the scalar product (g, f) = (g1, εf1)h +(g2, ε
−1f2)h + i((g1, f2)h− (g2, f1)h).

Standard form of the real Klein-Gordon field

We set

UIR: EIR → h
f 7→ (ε

1
2f1 + iε−

1
2 f2).

Then UIR extends to a unitary map between (Eq,IR, i, ( . , . )) and h. Let us
describe the various objects after conjugation by UIR:

- Hamiltonian: The infinitesimal generator of IR 3 t 7→ e−jtL on
(Eq,IR, i, (·, ·)) is the Hamiltonian denoted by h. After conjugation
by UIR,

h = ε.

In particular, h is positive.

- Time reversal: We have θ(f1, f2) = (f1,−f2). After conjugation by
UIR, one finds θu1 = u1.

From the discussion above we obtain the following theorem.

Theorem 8.7 There exist a map UIR between (Eq,IR, i, q, θ) and (h, j, q, θ)
which is unitary between (Eq,IR, i, ( . , . )) and (h, j, ( . , . )), and satisfies

Uq,IRaU
−1
q,IR = a for a = h, t.

For later use we set κ := θ and hκ := {h ∈ h | h = h}.
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8.3 Free Klein-Gordon fields at positive temperature

We can now apply the results of Section 4 to the real and complex Klein-
Gordon fields.

In the complex case we set X = h⊕ h, h = ε ⊕ ε, q = 1l⊕ −1l and introduce
for |µ| < m the state ωβ,µ on W(X) defined by the functional

ωβ,µ(W (x)) := e−
1
4
(x,(1+2ρ)x), x ∈ X,

where ρ = (eβa − 1)−1 and a = h − µq. As recalled in Section 4, ωβ,µ is a
(τ, β)-KMS state for the dynamics τt(W (x)) = W (eitax), which is invariant
under the gauge transformations αt(W (x)) = W (eitqx). For µ = 0 the state
ωβ,µ will be denoted by ωβ.

In the real case we set X = h, h = ε and consider the state on W(X) defined
by the functional

ωβ(W (x)) := e−
1
4
(x,(1+2ρ)x), x ∈ X,

where ρ = (e−βε− 1)−1. It is a (τ, β)-KMS state for the dynamics τt(W (x)) =
W (eitεx).

In both cases we denote by F and U the algebras defined in Subsection 4.3;
note that U is defined w.r.t. the appropriate conjugation κ.

Applying Theorem 4.5 we obtain that the KMS system (F ,U , τ, ωβ) is stochas-
tically positive both for real and complex Klein-Gordon fields. Moreover, by
Lemma 4.6 and Theorem 6.10, the stochastic process associated to (F ,U , τ, ωβ)
satisfies the Markov property.

In the next lemma we show that for µ 6= 0, the KMS system (F ,U , τ, ωβ,µ) is
not stochastically positive. The same is true, if we restrict the KMS state ωβ,µ
to gauge invariant observables (see Subsection 4.4).

The physical reason for this fact is that a system of charged particles is only
invariant under the combination of time reversal and charge conjugation. A
nonzero chemical potential introduces a disymmetry between particles of pos-
itive and negative charge and hences breaks time reversal invariance, which is
a necessary property shared by all stochastically positive KMS systems, as we
have seen in Proposition 3.4.

Lemma 8.8 For µ 6= 0 the KMS systems (F ,U , τ, ωβ,µ)and (A,Aκ, τ, ωβ,µ)
are not stochastically positive.
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Proof. Using the results of Subsection 2.4 we have:

ϕω(x) = aω(x
+) + a∗ω(x

−), ϕ∗ω(x) = a∗ω(x
+) + aω(x

−),

which, by an easy computation using the results recalled in Subsection 4.2,
implies

ϕ∗ω(x)ϕω(x)Ωβ,µ = a∗F ((1 + ρ)
1
2x+ ⊕ ρ

1
2x−)a∗F ((1 + ρ)

1
2x− ⊕ ρ

1
2x+)Ωβ,µ

+((x−, (1 + ρ)x−) + (x+, ρx+))Ωβ,µ.

Set H = dΓ(h⊕−h) and Q = dΓ(q⊕−q), so that L = H − µQ. Then

e−sLϕ∗ω(x)ϕω(x)Ωβ,µ = e−sHϕ∗ω(x)ϕω(x)Ωβ,µ

= a∗F ((1 + ρ)
1
2 e−shx+ ⊕ ρ

1
2 eshx−)a∗F ((1 + ρ)

1
2 e−shx− ⊕ ρ

1
2 eshx+)Ωβ,µ

+((x−, (1 + ρ)x−) + (x+, ρx+))Ωβ,µ.

Thus, for x, y ∈ X,

(ϕ∗(y)ϕ(y)Ωβ,µ, e
−sLϕ∗(x)ϕ(x)Ωβ,µ)

=((1 + ρ)
1
2y+ ⊕ ρ

1
2 y−, (1 + ρ)

1
2 e−shx+ ⊕ ρ

1
2 eshx−)

× ((1 + ρ)
1
2 y− ⊕ ρ

1
2 y+, (1 + ρ)

1
2 e−shx− ⊕ ρ

1
2 eshx+)

+ ((x−, (1 + ρ)x−) + (x+, ρx+))((y−, (1 + ρ)y−) + (y+, ρy+)).

Let us now restrict ourselves to x, y ∈ Xκ, i.e., x = (u, u), y = (v, v), u, v ∈ h.
We obtain x+ = u, x− = u, y+ = v and y− = v. If we set ρ± = (eβ(ε∓µ)− 1)−1,
then

(ϕ∗(y)ϕ(y)Ωβ,µ , τt(ϕ
∗(x)ϕ(x))Ωβ,µ)|t=is

= (v, (e−sε(1 + ρ+) + esερ−)u)× (u, (e−sε(1 + ρ−) + esερ+)v)

+(u, (1 + ρ+ + ρ−)u)(v, (1 + ρ+ + ρ−)v)).

This quantity is not real if s 6= 0 and µ 6= 0. Since ϕ∗ω(x)ϕω(x) is a positive
operator affiliated to Aκ this shows that the KMS systems (F ,U , τ, ωβ,µ) and
(A,Aκ, τ, ωβ,µ) are not stochastically positive tu.
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9 Scalar quantum fields at positive temperature with spatially cut-
off interactions

In this section we present the main results of this paper, namely the construc-
tion of scalar quantum fields at positive temperature in one space dimension
with spatially cutoff interactions. For the real scalar quantum field the two
kinds of interactions that we will consider are the spatially cutoff P (φ)2 and
eαφ2 models (the later one is known as the Høegh-Krohn model). The first
model is specified by the formal interaction

∫
g(x)P (φ(x))dx, where P (λ) is

a real polynomial, which is bounded from below. The second model is speci-
fied by

∫
g(x)eαφ(x)dx for |α| < √2π. In both cases g is a positive function in

L1(IR) ∩ L2(IR).

For the complex scalar field we will consider the spatially cutoff P (ϕ∗ϕ)2

interaction, specified by the formal interaction term
∫
g(x)P (ϕ∗(x)ϕ(x))dx.

9.1 Some preparations

In this subsection we prove some auxiliary results, which we will need to prove
some properties of the interaction terms later on. We first recall a result of
Klein and Landau [KL1].

Lemma 9.1 Let (F ,U , τ, ω) be a stochastically positive KMS system and let
H1 be the closure of UΩ. Let U1 := U|H1

. Then Ω is a cyclic and separating
vector for U1, and U1 and U are isomorphic as C∗-algebras.

Lemma 9.2 Let (F ,U , τ, ω) be the stochastically positive KMS system intro-
duced in Section 4.5. Let Xρ be the vector space X equipped with the scalar
product (x, x)ρ = (x, (1 + 2ρ)x) and set

j: Xρ → X ⊕X

x 7→ (1 + ρ)
1
2x⊕ ρ

1
2κx.

Then

(i) Γ(j) is an isometry from Γ(Xρ) into Γ(X ⊕X) such that

Γ(j)eiφ(x) = Wω(x)Γ(j), x ∈ Xκ;

(ii) H1 = Γ(j)Γ(Xρ) ≡ L2(Q,Σ0, µ).
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Proof. The map x→ κx is C-linear from X to X, hence j is C-linear. From
the results recalled in Subsection 4.2 and the functional properties of Γ(j) we
obtain that Γ(j)eiφ(x) = WF (jx)Γ(j). Now WF (jx) = Wω(x) for x ∈ Xκ, and
this proves (i).

Let us now prove (ii). The fact that H1 is isomorphic to L2(Q,Σ0, µ) follows
from the definition of U in Subsection 6.3. To prove the second equality, we
note that κ extends to a conjugation on Xρ, since [κ, ρ] = 0. By a well-known
result on Fock spaces, which we already recalled in the proof of Lemma 4.6,
the vacuum vector Ω ∈ Γ(Xρ) is cyclic for {W (x) | x ∈ Xρ, κx = x}.

Let now u ∈ Γ(Xρ). Because of the result recalled above we find

u = lim
n→∞un, un =

N∑
1

λjW (xj)Ω, xj ∈ Xρ, κxj = xj .

It follows that

Γ(j)u = lim
n→∞ vn, vn =

N∑
1

λjWω(xj)Ω.

Since vn ∈ UΩ we have Γ(j)u ∈ H1 and hence Γ(j)Γ(Xρ) ⊂ H1. Let us now
prove the converse inclusion: let v ∈ H1 with

v = lim
n→∞ vn, vn =

N∑
1

λjWω(xj)Ω, xj ∈ X, κxj = xj .

Then

vn = Γ(j)un for un =
N∑
1

λjW (xj)Ω.

Since Γ(j) is isometric, un → u ∈ Γ(Xρ) and v = Γ(j)u. This shows that
H1 ⊂ Γ(j)Γ(Xρ) tu.

9.2 Wick ordering

We recall some well known facts concerning the Wick ordering of Gaussian
random variables. Let (Q,Σ0, µ) be a probability space, F a real vector space
equipped with a positive quadratic form f 7→ c(f, f), called a covariance. Let
F 3 f 7→ φ(f) be a IR-linear map from F to the space of real measurable
functions on Q.
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The Wick ordering : φ(f)n : with respect to the covariance c is defined using
a generating series:

:eαφ(f) :c :=
∞∑
0

αn

n!
:φ(f)n :c= eαφ(f)e−

α2

2
c(f,f). (9.21)

Thus

:φ(f)n :c=
[n/2]∑
m=0

n!

m!(n− 2m!)
φ(f)n−2m

(
−1

2
c(f, f)

)m
. (9.22)

If now c1, c2 are two covariances on F , then

:eαφ(f) :c2=:eαφ(f) :c1 e−
α2

2
(c2−c1)(f,f). (9.23)

This implies the following Wick reordering identities (see e.g. [GJ]):

:φ(f)n :c2=
[n/2]∑
m=0

n!

m!(n− 2m!)
:φ(f)n−2m :c1

(
−1

2
(c2 − c1)(f, f)

)m
. (9.24)

9.3 The spatially cutoff P (φ)2 interaction

We recall from Section 8.2 that the real Klein-Gordon field in one space di-
mension is described by the Weyl algebra W(h), where h = L2(IR, dk). Let
χ ∈ C∞

0 (IR) be a real cutoff function with
∫
IR χ(x)dx = 1. For x ∈ IR and

Λ ∈ [1,+∞[ an ultraviolet cutoff parameter, we define fΛ,x ∈ h by

fΛ,x(k) :=
1

(4π)
1
2

e−ik.xχ̂
( k
Λ

)
ε(k)−

1
2 .

We set

φΛ(x) :=
√

2φω(fΛ,x) = a∗ω(fΛ,x) + aω(fΛ,x), x ∈ IR.

Note that fΛ,x ∈ hκ, so φΛ(x) is affiliated to U ; i.e., φΛ(x) can be considered
as a measurable function on (Q,Σ0, µ).

In order to define the spatially cut-off P (φ)2 interaction we fix a real polyno-
mial of degree 2n, which is bounded from below, namely

P (λ) =
2n∑
j=0

ajλ
j with a2n > 0, (9.25)
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and a real function g ∈ L1
IR(IR, dx) ∩ L2(IR, dx) with g ≥ 0.

We set

VΛ =
∫
g(x) :P (φΛ(x)) :0 dx,

where : :0 denotes the Wick ordering with respect to the covariance at tem-
perature 0 given by c0(f, f) = 1

2
(f, f)h.

For technical reasons we will also need to consider similar UV cutoff interac-
tions with the Wick ordering done with respect to the covariance at inverse
temperature β given by cβ(f, f) = 1

2
(f, f)ρ = 1

2
(f, (1 + 2ρ)f), f ∈ h. We set

VΛ,β =
∫
g(x) :P (φΛ(x)) :β dx,

where : :β denotes Wick ordering with respect to cβ. Note that VΛ and VΛ,β are
affiliated to U . We first collect some properties of these auxiliary interactions.

Lemma 9.3 The family {VΛ,β} is Cauchy in all spaces Lp(Q,Σ0, µ) for 1 ≤
p <∞ and converges when Λ →∞ to a function Vβ ∈ Lp(Q,Σ0, µ), 1 ≤ p <
∞, which satisfies e−tVβ ∈ L1(Q,Σ0, µ) for all t > 0. We set

Vβ =:
∫
g(x) :P (φ(x)) :β dx.

Proof. We use the identification of L2(Q,Σ0, µ) with Γ(hρ) presented in
Lemma 9.2. Then Wick ordering with respect to cβ coincides with Wick order-
ing with respect to the Fock vacuum on Γ(hρ). By exactly the same arguments
as those used in the 0-temperature case (see e.g. [S-H.K] or [DG, Sect. 6] for
a recent survey) we obtain that, for 0 ≤ p ≤ 2n, the cuttoff interaction VΛ,β

is a linear combination of Wick monomials of the form

p∑
r=0

 p

r

 ∫
wp,Λ(k1, . . . , kr, kr+1, . . . , kp)a

∗(k1) · · ·a∗(kr)a(−kr+1) · · ·a(−kp)dk1 · · ·dkp,

where

wp,Λ(k1, · · · , kp) = ĝ(
p∑
1

ki)
p∏
1

χ̂
(ki

Λ

)
ε(ki)

− 1
2 .
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Recalling that 1 + 2ρ = 1+e−βε

1−e−βε we see that

wp,Λ ∈ ⊗phρ = L2
(
IRp,

p∏
1

1 + e−βε(ki)

1− e−βε(ki)
dk1 . . . , dkp

)
.

The sequence {wp,Λ} is Cauchy in this space. Consequently wp,Λ → wp,∞ when
Λ →∞, where

wp,∞(k1, · · · , kp) = ĝ(
p∑
1

ki)
p∏
1

ε(ki)
− 1

2 .

We can now apply these Wick monomials to the Fock vacuum and conclude
that VΛ,βΩ converges to a vector VβΩ in Γ(hρ), or equivalently that VΛ,β con-
verges to Vβ in L2(Q,Σ0, µ). Since Vλ,βΩ is a finite particle vector, it follows
from a standard argument (see e.g. [Si2, Thm. 1.22] or [DG, Lemma 5.12])
that VΛ,β → Vβ ∈ Lp(Q,Σ0, µ) for all 1 ≤ p <∞.

We will now prove that e−tVβ ∈ L1(Q,Σ0, µ). We argue as in the 0-temperature
case: we first verify that ‖wp,Λ−wp,∞‖ ≤ CΛ−ε0 for some ε0 > 0 and therefore
‖VΛ,β − Vβ‖L2(Q,Σ0,µ) ≤ CΛ−ε0. Applying again [DG, Lemma 5.12] we find

‖VΛ,β − Vβ‖Lp(Q,Σ0,µ) ≤ C(p− 1)nΛ−ε0, p > 1. (9.26)

Using the Wick ordering identities (9.22) we obtain as identities between func-
tions on K (see, e.g., [DG, Lemma 6.6]):

: P (φΛ(x)) :β≥ −C(‖φΛ(x)Ω‖2n + 1).

Now ‖φΛ(x)Ω‖ = C‖ε−1χ̂
( ·

Λ

)
‖hρ ≤ C(ln(Λ))

1
2 . This yields

VΛ,β ≥ −C ln(Λ)n. (9.27)

Applying now [Si2, Lemma V.5] we deduce from (9.26) and (9.27) that e−tVβ ∈
L1(Q,Σ0, µ) for all t > 0 tu.

Proposition 9.4 The family {VΛ} is Cauchy in all spaces Lp(Q,Σ0, µ) for
1 ≤ p < ∞ and converges when Λ → ∞ to a function V ∈ Lp(Q,Σ0, µ),
1 ≤ p <∞, which satisfies e−tV ∈ L1(Q,Σ0, µ) for all t > 0. We set

V =:
∫
g(x) :P (φ(x)) :0 dx.
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Proof. With the help of the Wick reordering identity (9.24) we find, for
f ∈ hκ,

:P (φω(f)) :0 =
∑2n
j=0 aj :φω(f)n :0

=
∑2n
j=0

∑[j/2]
m=0 aj

j!
m!(j−2m!)

:φ(f)j−2m :β (−1
2
(c0 − cβ)(f, f))m.

For f = fΛ,x

rΛ := (cβ − c0)(fΛ,x, fΛ,x) = (fΛ,0, ρfΛ,0)

=
∫

e−βε(k)χ̂( k
Λ
)dk = r∞ +O(Λ−∞),

where r∞ =
∫

e−βε(k)dk.

On the other hand,∫
Q

|φω(fΛ,x)|pdµ ∈ O(|cβ(fΛ,x, fΛ,x)|p) ∈ O(ln(Λ)p).

Therefore

:P (φΛ(x)) :0=: P̃ (φΛ(x)) :β +O(ln(Λ)2nΛ−∞) uniformly for x ∈ supp g,

where

P̃ (λ) =
2n∑
j=0

[j/2]∑
m=0

aj
j!

m!(j − 2m!)
λj−2m(

1

2
r∞)m.

We see that P̃ (λ)− P (λ) is of degree less than 2n− 1. Applying Lemma 9.3
to P̃ this yields

lim
Λ→∞

∫
g(x) :P (φΛ(x)) :0 dx = lim

Λ→∞

∫
g(x) : P̃ (φΛ(x)) :β dx =

∫
g(x) : P̃ (φ(x)) :β dx,

which completes the proof of the proposition tu.

9.4 The spatially cutoff eαφ2 interaction

As in Subsection 9.3 we set, for |α| < √2π,

VΛ =
∫
g(x) :eαφΛ(x) :0 dx
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and

VΛ,β =
∫
g(x) :eαφΛ(x) :β dx.

Note that, as above, VΛ and VΛ,β are affiliated to U .

Lemma 9.5 For |α| < √2π the family {VΛ,β} is Cauchy in L2(Q,Σ0, µ) and
converges when Λ →∞ to a positive function Vβ ∈ L2(Q,Σ0, µ). We set

Vβ =:
∫
g(x) :eαφ(x) :β dx.

Proof. The proof is completely similar to the 0-temperature case where ρ = 0
(see e.g. [Si2], [H-K2]). For completeness we will give an outline. Note first
that by (9.21) :eαφΛ(x) :β is a positive function on Q, hence the same holds for
VΛ,β as g ≥ 0. We now show that VΛ,β converges in L2(Q,Σ0, µ), and we will
identify VΛ,β with VΛ,βΩ. We have

1l{n}(N)VΛ,β =
αn

n!

∫
g(x) :φnΛ(x) : Ωdx =

αn

(4π)n/2
√
n!
ĝ(

n∑
1

ki)
n∏
1

χ̂
(ki

Λ

) 1

ε(ki)
1
2

.

Hence

‖1l{n}(N)VΛ,β‖2 = 1
n!

(α
2

4π
)n

∫ |ĝ(∑n
1 ki)|2

∏n
1 |χ̂(ki

Λ
)|2 1+2ρ(ki)

ε(ki)
dk1 . . .dkn

≤ 1
n!

(α
2

4π
)n

∫ |ĝ(∑n
1 ki)|2

∏n
1

1+2ρ(ki)
ε(ki)

dk1 . . .dkn =: εn.

Next we find

εn =
1

n!

(α2

2π

)n ∫
g(x)g(y)Kβ(x− y)ndxdy

for

Kβ(x) =
1

2

∫
eikx1 + 2ρ(k)

ε(k)
dk.

We claim now that

e
α2

2π
|Kβ(x)| ∈ L1(IR) + L∞(IR) for |α| <

√
2π. (9.28)

This implies that

∞∑
n=0

εn ≤
∫
g(x)g(y)e

α2

2π
|Kβ|(x−y)dxdy <∞. (9.29)
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If we set

K0(x) =
1

2

∫
eikx 1

ε(k)
dk,

then because of the rapid decay of ρ(k) when |k| → ∞, we have K0 −Kβ ∈
L∞(IR), and (see [H-K2, equ. (2.4)]) K0(x) ∈ O(1) in |x| ≥ 1, K0(x) =
− ln(x) +O(1) in |x| ≤ 1. This implies (9.28).

Now by the arguments in the proof of Lemma 9.3, we see that

lim
Λ→∞

1l{n}(N)VΛ,β =
αn

n!

∫
g(x) :φ(x)n : Ωdx.

Since 1l{n}(N)VΛ,β → Vn in L2(Q,Σ0, µ) for each n and supΛ ‖1l{n}(N)VΛ,β‖2 ≤
εn with

∑
εn <∞, we see that VΛ,β converges to some element V ∈ L2(Q,Σ0, µ),

which is a.e. positive as a limit of positive functions tu.

Proposition 9.6 For |α| < √
2π, the family {VΛ} is Cauchy in L2(Q,Σ0, µ)

and converges to a positive function V ∈ L2(Q,Σ0, µ). We set

V =:
∫
g(x) :eαφ(x) :0 dx.

Proof. By the Wick reordering identity (9.23) we have

:eαφΛ,x :0=:eαφΛ,x :β e
α2

2
rΛ ,

Hence VΛ = e
α2

2
rΛVΛ,β, which implies, using Lemma 9.5, that VΛ converges

in L2(Q,Σ0, µ) to the positive function e
α2

2
r∞Vβ tu.

9.5 The spatially cutoff P (ϕ∗ϕ)2 interaction

We consider now the complex Klein-Gordon field in one space dimension which
is described by the Weyl algebra W(X) for X = h ⊕ h, h = L2(IR, dk). We
recall that the Gibbs state at inverse temperature β is given by ω(W (x)) =

e
1
4
(x,(1+2ρx)), where ρ = (eβh − 1)−1 and h = ε⊕ ε.

We set

ϕΛ(x) = ϕω(fΛ,x ⊕ fΛ,x), ϕ
∗
Λ(x) = ϕ∗ω(fΛ,x ⊕ fΛ,x), x ∈ IR.
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Note that fΛ,x is invariant under the conjugation h → h. This implies that
ϕΛ(x) is affiliated to U , since fΛ,x ⊕ fΛ,x ∈ Xκ. Moreover, ϕ∗Λ(x)ϕΛ(x) =
1
2
(φ2

ω(fΛ,x ⊕ fΛ,x) + φ2
ω(ifΛ,x ⊕−ifΛ,x)).

For P a real polynomial of degree 2n, which is bounded from below, and g a
positive function in L1(IR) ∩ L2(IR), we set

VΛ =
∫
g(x) :P (ϕ∗Λ(x)ϕΛ(x)) :0 dx,

where : :0 denotes Wick ordering with respect to the 0-temperature covariance
c0(x, x) = 1

2
(x, x), and

VΛ,β =
∫
g(x) :P (ϕ∗Λ(x)ϕΛ(x)) :β dx,

where : :β denotes Wick ordering with respect to the covariance at inverse
temperature β specified by cβ(x, x) = 1

2
(x, (1+2ρ)x). The following two results

can be shown by exactly the same methods as in Subsection 9.3.

Lemma 9.7 The family {VΛ,β} is Cauchy in all Lp(Q,Σ0, µ) spaces and con-
verges, when Λ → ∞, to a function Vβ ∈ Lp(Q,Σ0, µ), 1 ≤ p < ∞, which
satisfies e−tVβ ∈ L1(Q,Σ0, µ) for all t > 0. We set

Vβ =:
∫
g(x) :P (ϕ∗(x)ϕ(x)) :β dx.

Proposition 9.8 The family {VΛ} is Cauchy in all spaces Lp(Q,Σ0, µ) and
converges, when Λ → ∞, to a function V ∈ Lp(Q,Σ0, µ), 1 ≤ p < ∞, which
satisfies e−tV ∈ L1(Q,Σ0, µ) for all t > 0. We set

V =:
∫
g(x) :P (ϕ∗(x)ϕ(x)) :0 dx.

9.6 Scalar quantum fields at positive temperature with spatially cutoff inter-
actions

To construct the space-cutoff P (φ)2 and eαφ2 models at positive tempera-
ture, we apply the general results of Subsection 7.3. Note that by Subsec-
tions 9.3 and 9.4, the interactions terms V =

∫
g(x) : P (φ(x)) :0 dx and

V =
∫
g(x) :eαφ(x) :0 dx for |α| < √2π satisfy all the hypotheses of Subsection

7.3. Consequently we obtain the following theorem:

Theorem 9.9 Let (W,Wκ, τ
◦, ω) be the quasi-free β-KMS system describing

the free neutral Klein-Gordon field in one space dimension at temperature β−1,
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described in Subsection 8.3. LetH, L,Ω be the associated GNS objects described
in Subsection 4.2. Let V be the selfadjoint operator on H affiliated to Wκ equal
either to

∫
g(x) : P (φ(x)) :0 dx or to

∫
g(x) : eαφ(x) :0 dx. Then the following

statements hold true:

(i) L + V is essentially selfadjoint and Ω ∈ D(e−
β
2
HV ), where HV :=

L+ V .

(ii) Let τV (t) be the W ∗-dynamics generated by HV and ωV be the vec-

tor state induced by ΩV = ‖e−β
2
HV Ω‖−1e−

β
2
HV Ω. Then τV is a group

of ∗-automorphisms of W, continuous for the strong operator topol-
ogy such that (W,Wκ, τV , ωV ) is a stochastically positive β-KMS
system.

(iii) The generalized path space associated to (W,Wκ, τV , ωV ) satisfies
the Markov property.

(iv) Let LV , JV be the perturbed Liouvillean and modular conjugation

associated to (W,Wκ, τV , ωV ). Then JV = J and LV = HV − JV J .

Finally we state the corresponding result for the charged Klein-Gordon field:

Theorem 9.10 Let (W,Wκ, τ
◦, ω) be the quasi-free β-KMS system describ-

ing the free charged Klein-Gordon field in one space dimension at temperature
β−1 and zero chemical potential, described in Subsection 8.3. Let H, L,Ω be
the associated GNS objects described in Subsection 4.2. Let V be the selfadjoint
operator on H affiliated to Wκ equal to∫
g(x) :P (ϕ(x)ϕ(x)) :0 dx. Then the following statements hold true:

(i) L + V is essentially selfadjoint and Ω ∈ D(e−
β
2
HV ), where HV :=

L+ V .

(ii) Let τV (t) be the W ∗-dynamics generated by HV and ωV be the vec-

tor state induced by ΩV = ‖e−β
2
HV Ω‖−1e−

β
2
HV Ω. Then τV is a group

of ∗-automorphisms of W, continuous for the strong operator topol-
ogy such that (W,Wκ, τV , ωV ) is a stochastically positive β-KMS
system.

(iii) The generalized path space associated to (W,Wκ, τV , ωV ) satisfies
the Markov property.

(iv) Let LV , JV be the perturbed Liouvillean and modular conjugation

associated to (W,Wκ, τV , ωV ). Then JV = J and LV = HV − JV J .
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