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1 Introduction

We consider in this paper the problem of the existence of a ground state for a class of Hamil-
tonians used in physics to describe a confined quantum system (”matter”) interacting with a
massless bosonic field. These Hamiltonians were called Pauli-Fierz Hamiltonians in [DG]. Ex-
amples, like the spin-boson model or a simplified model of a confined atom interacting with a
bosonic field are given in [DG, Sect. 3.3].

Pauli-Fierz Hamiltonians can be described as follows: Let K and K be respectively the
Hilbert space and the Hamiltonian describing the matter. The assumption that the matter is
confined is expressed mathematically by the fact that (K + i)−1 is compact on K.

The bosonic field is described by the Fock space Γ(h) with the one-particle space h =
L2(IRd,dk), where IRd is the momentum space, and the free Hamiltonian

dΓ(ω(k)) =
∫
ω(k)a∗(k)a(k)dk.

The positive function ω(k) is called the dispersion relation. The constant m := inf ω can be
called the mass of the bosons, and we will consider here the case of massless bosons , ie we
assume that m = 0.

The interaction of the “matter” and the bosons is described by the operator

V =
∫
v(k)⊗ a∗(k) + v∗(k)⊗ a(k)dk,

where IRd 3 k → v(k) is a function with values in operators on K. Thus, the system is described
by the Hilbert space H := K ⊗ Γ(h) and the Hamiltonian

H = K ⊗ 1l + 1l⊗ dΓ(ω(k)) + gV,(1.1)

g being a coupling constant.
If K = C, the Hamiltonian H is solvable (see eg [Be, Sect. 7]) and H is defined as a selfadjoint

operator if ∫ 1
ω(k)

|v(k)|2dk <∞,
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and admits a ground state in H if and only if∫ 1
ω(k)2

|v(k)|2dk <∞.

In this paper we show that H admits a ground state in H for all values of the coupling constant
under corresponding assumptions in the general case.

The existence of a ground state of H in the Hilbert spaceH is an important physical property
of the system described by H. For example it has the following consequence for the scattering
theory of H: assume for example that ω ∈ C∞({k|ω(k) > 0}) and ∇ω(k) 6= 0 in {k|ω(k) > 0}.
Assume also that

IRd 3 k 7→ ‖v(k)(K + 1)−
1
2 ‖B(K)

is locally in the Sobolev space Hs in {k|ω(k > 0} for some s > 1 (a short-range condition on the
interaction). Then under the conditions (H0), (H1), (I1) below, it is easy to prove the existence
of the limits

W±(h) := s- lim
t→±∞

eitHeiφ(ht)e−itH

for h ∈ h0 := {h ∈ h|ω−
1
2h ∈ h} and ht = e−itωh. The operators W±(h) are called asymptotic

Weyl operators. They satisfy

W±(h)W±(g) = e−i 1
2
Im(h|g)W (h+ g), h, g ∈ h0,

and
eitHW±(h)e−itH = W±(h−t).

In particular they form two regular CCR representations over the preHilbert space h0. It is
easy to show that the space of bound states Hpp(H) of H is included into the space of vacua
for these representations (see for example [DG]). Hence the existence of a ground state for H
implies that the CCR representations defined by the asymptotic Weyl operators admit Fock
subrepresentations. As a consequence wave operators can be defined.

When the Hamiltonian H admits no ground state in the Hilbert space H, the ground state
of H has to be interpreted as a state ω on some C∗−algebra of field observables. Similarly the
scattering theory for H has to be significantly modified. These phenomena have been extensively
studied by Froehlich [Fr]. In particular the arguments in the proof of Lemma 4.5 are inspired
by [Fr, Sect. 2.3], where it is shown that the state ω is locally normal.

Let us end the introduction by making some comments on related works. In [AH], the
existence of a ground state is shown under rather similar conditions, if the coupling constant g is
sufficiently small. In [Sp], the same problem is considered in the case the small system described
by (K,K) is a confined atom, and the coupling function k 7→ v(k) is a real multiplication operator
in the atomic variables (ie v∗(k) = v(−k) is a multiplication operator on K). Using functional
integral methods and Perron-Frobenius arguments, the existence of a ground state is shown for
all values of the coupling constant.

Our result is hence a generalization of the results both of [AH] and [Sp].
If we drop the assumption that the small system is confined (mathematically this amounts

to drop the hypothesis (H0) below), then the only result is the one of [BFS], where the existence
of a ground state is shown for small coupling constant if K is an atomic Hamiltonian and
assumptions similar to (I1), (I2) are made.

Acknowledgements. We would like to thank J.M. Bony, J. Fröhlich and G.M. Graf for useful
discussions.
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2 Result

2.1 Introduction

In this section we introduce the class of Hamiltonians that we will study in this paper. We have
stated our result under rather general hypotheses, allowing for a mild UV divergency of the in-
teraction. Clearly the behavior of the interaction for large momenta should not be important for
the existence of a ground state, which essentially depends only on the low momentum behavior
of the interaction. Therefore the reader wishing to avoid some technicalities can for example
assume that the operator K is bounded and that the function IRd 3 k 7→ v(k) is compactly
supported.

2.2 Hamiltonian

Let K be a separable Hilbert space representing the degrees of freedom of the atomic system.
The Hamiltonian describing the atomic system is denoted by K. We assume that K is selfadjoint
on D(K) ⊂ K and bounded below. Without loss of generality we can assume that K is positive.
We assume

(H0) (K + i)−1 is compact.

The physical interpretation is that the atomic system is confined.
Let h = L2(IRd,dk) be the 1−particle Hilbert space in the momentum representation and let

Γ(h) be the bosonic Fock space over h, representing the field degrees of freedom. We will denote
by k the momentum operator of multiplication by k on L2(IRd,dk), and by x = i∇k the position
operator on L2(IRd,dk). Let ω ∈ C(IRd, IR) be the boson dispersion relation. We assume

(H1)


∇ω ∈ L∞(IRd),

lim|k|→∞ ω(k) = +∞,

inf ω(k) = 0.

To stay close to the usual physical situation, we will also assume that ω(0) = 0, ω(k) 6= 0 for
k 6= 0, although the results below hold also in the general case. The typical example is of course
the massless relativistic dispersion relation ω(k) = |k|. The Hamiltonian describing the field is
equal to dΓ(ω). The Hilbert space of the interacting system is

H := K ⊗ Γ(h).

The Hamiltonian H0 := K ⊗ 1l + 1l⊗ dΓ(ω) of the non-interacting system is associated with the
quadratic form

Q0(u, u) := (K
1
2 ⊗ 1lu,K

1
2 ⊗ 1lu) +

∫
ω(k)(1l⊗ a(k)u, 1l⊗ a(k)u)dk,

with D(Q0) = D((K + dΓ(ω))
1
2 ).

The interaction between the atom and the boson field is described with a coupling function
v

IRd 3 k 7→ v(k),
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such that for a.e. k ∈ IRd, v(k) is a bounded operator from D(K
1
2 ) into K and from K into

D(K
1
2 )∗. We associate to the coupling function v the quadratic form

V (u, u) =
∫

(1l⊗ a(k)u, v(k)⊗ 1lu) + (v(k)⊗ 1lu, 1l⊗ a(k)u)dk,(2.1)

A rather minimal assumption under which the quadratic form Q = Q0 + V gives rise to a
selfadjoint operator is

(I1)

for a.e. k ∈ IRd v(k)(K + 1)−
1
2 , (K + 1)−

1
2 v(k) ∈ B(K),

∀u1, u2 ∈ K, k 7→ (u2, v(k)(K + 1)−
1
2u1), k 7→ (u2, (K + 1)−

1
2 v(k)u1) are measurable,

C(R) :=
∫ 1
ω(k)(‖v(k)(K +R)−

1
2 ‖2 + ‖(K +R)−

1
2 v(k)‖2)dk <∞,

limR→+∞C(R) = 0.

Note that it follows from the results quoted in the Appendix that the functions k 7→ ‖v(k)(K +
R)−

1
2 ‖, k 7→ ‖(K + R)−

1
2 v(k)‖ are measurable, and hence the last condition in (I1) has a

meaning.

Proposition 2.1 Assume hypothesis (I1). Then the quadratic form V is Q0−form bounded
with relative bound 0. Consequently one can associate with the quadratic form Q = Q0 + V a

unique bounded below selfadjoint operator H with D(H
1
2 ) = D(H

1
2
0 ).

The Hamiltonian H is called a Pauli-Fierz Hamiltonian.
Proof. We apply the estimate (A.1) in Lemma A.1 with B = K, m = ω. 2

2.3 Results

Under assumption (I1), one can associate a bounded below, selfadjoint Hamiltonian H to the
quadratic form Q. Let us introduce the following assumption on the behavior of v(k) near
{k|ω(k) = 0}:

(I2)
∫ 1
ω(k)2

‖v(k)(K + 1)−
1
2 ‖2dk <∞.

Theorem 1 Assume hypotheses (H0), (H1), (I1), (I2). Then inf spec(H) is an eigenvalue of
H. In other words H admits a ground state in H.

3 The cut-off Hamiltonians

3.1 Operator bounds

Let us introduce the following assumption:

(I1′)
C ′(R) :=

∫
(1 + 1

ω(k))(‖v(k)(K +R)−
1
2 ‖2 + ‖(K + 1)−

1
2 v(k)‖2)dk <∞,

limR→+∞C
′(R) = 0.
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Proposition 3.1 Assume (I1), (I1’). Then the operator

V = a∗(v) + a(v) =
∫
v(k)⊗ a∗(k) + v∗(k)⊗ a(k)d k

is H0−bounded with relative bound 0. Consequently H = H0 + V is a bounded below selfadjoint
operator with D(H) = D(H0).

Proof. We apply the estimates (A.2), (A.3) in Lemma A.1 with B = K, m = ω.2

3.2 Cut-off Hamiltonians

In the sequel we will need to introduce various cut-off Hamiltonians. For 0 < σ � 1 an infrared
cutoff parameter and τ � 1 an ultraviolet cutoff parameter, we denote by Vσ, Vσ,τ the quadratic
forms defined as V in (2.1) with the coupling function v replaced respectively by vσ, vσ,τ for

vσ = 1l{σ≤ω}(k)v, vσ,τ = 1l{σ≤ω≤τ}(k)v.

We denote by Hσ, Hσ,τ the selfadjoint operators associated with the quadratic forms Q0 +
Vσ, Q0 + Vσ,τ . Note that since vσ,τ satisfies (I1’), we have D(Hσ,τ ) = D(H0).

Applying Lemma A.2 in the Appendix and the fact that D(H
1
2 ) = D(H

1
2
0 ) we obtain

limτ→+∞(Hσ,τ − λ)−1 = (Hσ − λ)−1,

limσ→0(Hσ − λ)−1 = (H − λ)−1,
(3.1)

for λ ∈ IR, λ� −1, and

‖((Hσ,τ − z)−1 − (Hσ − z)−1)(H0 + 1)
1
2 ‖ ∈ o(1)|Imz|−1 τ → +∞,

‖((Hσ − z)−1 − (H − z)−1)(H0 + 1)
1
2 ‖ ∈ o(1)|Imz|−1 σ → 0,

(3.2)

for z ∈ C\IR.

3.3 Existence of ground states for the cut-off Hamiltonians

Let ω̃σ : IRd → IR be a dispersion relation satisfying
∇ω̃σ ∈ L∞(IRd),

ω̃σ(k) = ω(k) if ω(k) ≥ σ,

ω̃σ(k) ≥ σ/2.

(3.3)

Let H̃σ be the operator associated to the quadratic form ‖K
1
2u‖2+

∫
ω̃σ(k)‖a(k)u‖2dk+Vσ(u, u).

Lemma 3.2 Hσ admits a ground state in H if and only if H̃σ admits a ground state in H.

Proof. Let hσ := L2({k|ω(k) < σ},dk), h⊥σ = L2({k|ω(k) ≥ σ},dk). Let U be the canonical
unitary map

U : Γ(h)→ Γ(h⊥σ )⊗ Γ(hσ)
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(see for example [DG, Sect. 2.7 ]). Let us still denote by U the unitary map 1lK ⊗ U from
H = K ⊗ Γ(h) into K ⊗ Γ(h⊥σ )⊗ Γ(hσ). By [DG, Sect. 2.7], the operator UHσU

∗ is equal to

1lK⊗Γ(h⊥σ ) ⊗ dΓ(ωσ,1) +H2
σ ⊗ 1lΓ(hσ),

where ωσ,1 = ω|hσ and H2
σ is the operator associated with the quadratic form ‖K

1
2u‖2 +∫

{ω(k)≥σ} ωσ(k)‖a(k)u‖2dk + Vσ(u, u). Similarly UH̃σU
∗ is equal to

1lK⊗Γ(h⊥σ ) ⊗ dΓ(ω̃σ,1) +H2
σ ⊗ 1lΓ(hσ),

where ω̃σ,1 = ω̃σ|hσ . Now H2
σ has a ground state ψ if and only if UH̃σU

∗ or UHσU
∗ have a

ground state (equal to ψ ⊗ Ω, where Ω ∈ Γ(hσ) is the vacuum vector). This proves the lemma.
2

The following result is essentially well known (see [AH], [BFS]) and rather easy to show.

Proposition 3.3 Assume hypotheses (H0), (H1), (I1). Then for any σ > 0 Hσ admits a ground
state.

Proof. By Lemma 3.2 it suffices to show that H̃σ admits a ground state. Let for τ ∈ IN H̃σ,τ be
the Hamiltonian associated with the quadratic form ‖K

1
2u‖2 +

∫
ω̃σ(k)‖a(k)u‖2dk + Vσ,τ (u, u).

Let
Ẽσ,τ = inf spec(H̃σ,τ ), Ẽσ = inf spec(H̃σ).

Applying Lemma A.2, we have for z ∈ C\IR

(z − H̃σ)−1 = lim
n→+∞

(z − H̃σ,n)−1.(3.4)

On the other hand applying the bounds in Lemma A.1 we have D(H̃σ,τ ) = D(K + dΓ(ω̃σ)).
The Hamiltonian H̃σ,τ is very similar to the class of massive Pauli-Fierz Hamiltonians studied
in [DG]. It is easy to see that the arguments of [DG] extend to H̃σ,τ . In particular, following
the proofs of [DG, Lemma 3.4], [DG, Thm. 4.1], we obtain that χ(H̃σ,τ ) is compact if χ ∈
C∞0 (] − ∞, Ẽσ,τ + σ/2[). Using (3.4) and the fact that Ẽσ = limn→+∞ Ẽσ,τ , we obtain that
χ(H̃σ) is compact if χ ∈ C∞0 (] −∞, Ẽσ + σ/2[). This implies that H̃σ and hence Hσ admit a
ground state. 2

3.4 The pullthrough formula

As in [BFS], we shall use the pullthrough formula to get control on the ground states of Hσ.
Since the domain Hσ is not explicitely known under assumption (I1), some care is needed to
prove the pullthrough formula in our situation.

Proposition 3.4 As an identity on L2
loc(IR

d\{0}, dk;H), we have:

(Hσ + ω(k)− z)−1a(k)ψ = a(k)(Hσ − z)−1ψ + (Hσ + ω(k)− z)−1vσ(k)(Hσ − z)−1ψ, ψ ∈ H.
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Proof. For u1, u2 ∈ D(H0), the following identity makes sense as an identity on L2
loc(IR

d\{0},dk):

(a∗(k)u1, (Hσ,τ − z)u2) = ((Hσ,τ + ω(k)− z)u1, a(k)u2) + (u1, vσ,τ (k)u2).

Setting u2 = (Hσ,τ − z)−1v2, we obtain that for v2 ∈ H, a(k)v2 ∈ L2
loc(IR

d\{0},dk;D(H0)∗) and

a(k)v2 = (Hσ,τ + ω(k)− z)a(k)(Hσ,τ − z)−1v2 + vσ,τ (k)(Hσ,τ − z)−1v2.

Hence for ψ ∈ H, (Hσ + ω(k)− z)−1a(k)ψ ∈ L2
loc(IR

d\{0}, dk;H) and

(Hσ,τ + ω(k)− z)−1a(k)ψ

= a(k)(Hσ,τ − z)−1ψ + (Hσ,τ + ω(k)− z)−1vσ,τ (k)(Hσ,τ − z)−1ψ,
(3.5)

holds as an identity in L2
loc(IR

d\{0},dk;H).
By (I1), (vσ,τ (k) − vσ(k))(H0 + 1)−

1
2 tends to 0 in L2(IRd\{0}, dk;B(K)) when τ → +∞.

Using also (3.2) and letting τ → +∞ we obtain

(Hσ + ω(k)− z)−1a(k)ψ = a(k)(Hσ − z)−1ψ + (Hσ + ω(k)− z)−1vσ(k)(Hσ − z)−1ψ,

as claimed. 2

4 Proof of Thm. 1

Let
Eσ := inf spec(Hσ), E := inf spec(H).

We denote by ψσ, σ > 0 a normalized ground state of Hσ. Applying the pullthrough formula to
ψσ, we obtain easily the following identity on L2(IRd,dk;H):

a(k)ψσ = (Eσ −Hσ − ω(k))−1vσ(k)ψσ.(4.1)

The first rather obvious bound on the family of ground states ψσ is the following.

Lemma 4.1 Assume hypotheses (H0), (H1), (I1). Then

(ψσ, H0ψσ) ≤ C, uniformly in σ > 0.(4.2)

The bound (4.2) follows immediately from the fact that the quadratic forms Qσ are equivalent
to Q0, uniformly in σ. The following lemma is also well-known (see eg [BFS, Thm. II.5], [AH,
Lemma 4.3]). We denote by N the number operator on Γ(h).

Lemma 4.2 Assume hypotheses (H0), (H1), (I1), (I2). Then

(ψσ, Nψσ) ≤ C, uniformly in σ > 0.(4.3)
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Proof. We have using (4.1)

(ψσ, Nψσ) =
∫
‖a(k)ψσ‖2dk

=
∫
‖(Eσ −Hσ(k)− ω(k))−1vσ(k)ψσ‖2dk

≤ ‖(H0 + 1)
1
2ψσ‖2

∫ 1
ω(k)2

‖vσ(k)(K + 1)−
1
2 ‖2dk

≤ C,

uniformly in σ > 0 using (I2) and (4.2). 2

Lemma 4.3 Assume hypotheses (H0), (H1), (I1), (I2). Then

E − Eσ ∈ o(σ).(4.4)

Proof. Let 0 < σ′ < σ. We have

Eσ′ − Eσ ≤ (Qσ′ −Qσ)(ψσ, ψσ) = (Vσ′ − Vσ)(ψσ, ψσ),

Eσ − Eσ′ ≤ (Qσ −Qσ′)(ψσ′ , ψσ′) = (Vσ − Vσ′)(ψσ′ , ψσ′),
(4.5)

Applying (A.1) with m(k) = 1, we obtain

|(Vσ′ − Vσ)(u, u)| ≤ C(σ′, σ)(u,Nu)
1
2 (u, (K + 1)u)

1
2 ,(4.6)

for
C(σ′, σ) = (

∫
{σ′<ω(k)≤σ}

‖v(k)(K +R)−
1
2 ‖2dk)

1
2

Using (4.6) for u = ψσ or ψσ′ , the right hand side of (4.5) is bounded by C0C(σ′, σ), uniformly
in σ, σ′, using (4.2) and (4.3). We note that by (3.1) E = limσ′→0Eσ′ . Hence letting σ′ tend to
0 we get |E − Eσ| ≤ C0C(0, σ) ∈ o(σ), using hypothesis (I2). 2

Proposition 4.4 Assume hypotheses (H0), (H1), (I1), (I2). Then

a(k)ψσ − (E −H − ω(k))−1v(k)ψσ → 0

when σ → 0 in L2(IRd, dk;H).

Proof. We have, using (4.1)

a(k)ψσ − (E −H − ω(k))−1v(k)ψσ

= (Eσ −Hσ − ω(k))−1vσ(k)ψσ − (E −H − ω(k))−1v(k)ψσ

= −1l{ω(k)≤σ}(k)(E −H − ω(k))−1v(k)ψσ

+(E −H − ω(k))−1(H −Hσ)(Eσ −Hσ − ω(k))−1vσ(k)ψσ

+(Eσ − E)(E −H − ω(k))−1(Eσ −Hσ − ω(k))−1vσ(k)ψσ

=: Rσ,1(k) +Rσ,2(k) +Rσ,3(k).
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We will estimate separately Rσ,i, 1 ≤ i ≤ 3. First

‖Rσ,1(k)‖H ≤ 1l{ω(k)≤σ}(k)
1

ω(k)
‖v(k)(K + 1)−

1
2 ‖B(K)‖(K + 1)

1
2ψσ‖H,

which shows using hypothesis (I2) and (4.2) that

Rσ,1 ∈ o(σ0) in L2(IRd,dk;H).(4.7)

Let us next estimate Rσ,2. Using the fact that (v − vσ)(k)(K + 1)−
1
2 belongs to L2(IRd, dk;H),

it is easy to verify that

(E −H − ω(k))−1(H −Hσ)(Eσ −Hσ − ω(k))−1vσ(k)ψσ

= (E −H − ω(k))−1(a∗(v − vσ) + a(v − vσ))(Eσ −Hσ − ω(k))−1vσ(k)ψσ.

Note that it follows from functional calculus that

‖(E −H − ω(k))−1(H + b)
1
2 ‖ ≤ C sup(ω(k)−1, ω(k)−

1
2 ).(4.8)

Using also the fact that (K + 1)
1
2 (H + b)−

1
2 is bounded, we have:

‖(E −H − ω(k))−1(a∗(v − vσ) + a(v − vσ))(Eσ −Hσ − ω(k))−1vσ(k)ψσ‖

≤ C sup(ω(k)−1, ω(k)−
1
2 )‖(K + 1)−

1
2 (a∗(v − vσ) + a(v − vσ))(Eσ −Hσ − ω(k))−1vσ(k)ψσ‖

≤ C sup(ω(k)−1, ω(k)−
1
2 )(

∫
{ω(k)≤σ} ‖v(k)(K + 1)−

1
2 ‖2 + ‖(K + 1)−

1
2 v(k)‖2dk)

1
2×

‖(N + 1)
1
2 (Eσ −Hσ − ω(k))−1vσ(k)ψσ‖,

applying the estimates (A.2), (A.3) in Lemma A.1 to B = 1l, m = 1, v(k) = (K+1)−
1
2 (v−vσ)(k).

To bound ‖(N + 1)
1
2 (Eσ − Hσ − ω(k))−1vσ(k)ψσ‖, we write using again the pullthrough

formula (4.1):

a(k′)(Eσ −Hσ − ω(k))−1vσ(k)ψσ

= (Eσ −Hσ − ω(k)− ω(k′))−1a(k′)vσ(k)ψσ

+(Eσ −Hσ − ω(k′))−1vσ(k′)(Eσ −Hσ − ω(k))−1vσ(k)ψσ

= (Eσ −Hσ − ω(k)− ω(k′))−1vσ(k)(Eσ −Hσ − ω(k′))−1vσ(k′)ψσ

+(Eσ −Hσ − ω(k′))−1vσ(k′)(Eσ −Hσ − ω(k))−1vσ(k)ψσ.
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This gives

‖N
1
2 (Eσ −Hσ − ω(k))−1vσ(k)ψσ‖2

=
∫
‖a(k′)(Eσ −Hσ − ω(k))−1vσ(k)ψσ‖2dk′

≤ 2
∫
‖(Eσ −Hσ − ω(k)− ω(k′))−1vσ(k)(Eσ −Hσ − ω(k′))−1vσ(k′)ψσ‖2dk′

+2
∫
‖(Eσ −Hσ − ω(k′))−1vσ(k′)(Eσ −Hσ − ω(k))−1vσ(k)ψσ‖2dk′

≤ C
∫ 1
ω(k)2

‖vσ(k)(K + 1)−
1
2 ‖2‖(K + 1)

1
2 (Eσ −Hσ − ω(k′))−1‖2×

‖vσ(k′)(K + 1)−
1
2 ‖2‖(K + 1)

1
2ψσ‖2dk′

+C
∫ 1
ω(k′)2 ‖vσ(k′)(K + 1)−

1
2 ‖2‖(K + 1)

1
2 (Eσ −Hσ − ω(k))−1‖2×

‖vσ(k)(K + 1)−
1
2 ‖2‖(K + 1)

1
2ψσ‖2dk′.

We use the bound (4.8) and we obtain

‖N
1
2 (Eσ −Hσ − ω(k))−1vσ(k)ψσ‖2

≤ C(sup(ω(k)−1, ω(k)−
1
2 ))2‖vσ(k)(K + 1)−

1
2 ‖2×∫

(sup(ω(k′)−1, ω(k′)−
1
2 ))2‖vσ(k′)(K + 1)−

1
2 ‖2dk′×

‖(K + 1)
1
2ψσ‖2

≤ C(sup(ω(k)−1, ω(k)−
1
2 ))2‖vσ(k)(K + 1)−

1
2 ‖2,

using (4.2) and hypothesis (I2). Hence

‖Rσ,2(k)‖H ≤ C(sup(ω(k)−1, ω(k)−
1
2 ))2‖vσ(k)(K + 1)−

1
2 ‖(

∫
{ω(k)≤σ}

‖(K + 1)−
1
2 v(k)‖2dk)

1
2 .

By (I2),

(
∫
{ω(k)≤σ}

‖(K + 1)−
1
2 v(k)‖2dk)

1
2 ∈ o(σ),

and since suppvσ ⊂ {ω(k) ≥ σ}, we obtain

‖Rσ,2(k)‖ ≤ o(σ0) sup(ω(k)−1, ω(k)−
1
2 )‖v(k)(K + 1)−

1
2 ‖.(4.9)

Finally using Lemma 4.3, (4.2) and the fact that suppvσ ⊂ {ω(k) ≥ σ}, we obtain

‖R3,σ(k)‖ ≤ o(σ0) sup(ω(k)−1, ω(k)−
1
2 )‖v(k)(K + 1)−

1
2 ‖.(4.10)

Combining (4.7), (4.9), (4.10) and using (I2) we obtain the proposition. 2

As a consequence of Prop. 4.4, we have the following lemma, which is the main part of the
proof of Thm. 1. We recall that x := i∇k is the position operator on L2(IRd, dk).
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Lemma 4.5 Let F ∈ C∞0 (IR) be a cutoff function with 0 ≤ F ≤ 1, F (s) = 1 for |s| ≤ 1
2 ,

F (s) = 0 for |s| ≥ 1. Let FR(x) = F ( |x|R ). Then

lim
σ→0,R→+∞

(ψσ,dΓ(1− FR)ψσ) = 0.(4.11)

Proof. Recall that if B is a bounded operator on h with distribution kernel b(k, k′), we have

(u,dΓ(B)u) =
∫ ∫

b(k, k′)(a(k)u, a(k′)u)dkdk′, u ∈ D(N
1
2 ).

Using this identity, we obtain

(ψσ,dΓ(1− FR)ψσ) = (a(·)ψσ, (1− F (
|Dk|
R

))a(·)ψσ)L2(IRd,dk;H).

By Prop. 4.4, we have

(ψσ, dΓ(1− FR)ψσ) = ((E −H − ω(·))−1v(·)ψσ, (1− F ( |Dk|R ))(E −H − ω(·))−1v(·)ψσ) + o(σ0),

uniformly in R. This yields

(ψσ, dΓ(1− FR)ψσ) ≤ ‖(E −H − ω(·))−1v(·)‖L2(IRd,dk,B(H))×

‖(1− F ( |Dk|R ))(E −H − ω(·))−1v(·)‖L2(IRd,dk,B(H)) + o(σ0).

Now it follows from hypothesis (I2) and (4.8) that (E−H−ω(·))−1v(·) belongs to L2(IRd,dk,B(H)),
and hence

‖(1− F (
|Dk|
R

))(E −H − ω(·))−1v(·)‖L2(IRd,dk,B(H)) ∈ o(R
0).

This proves (4.11). 2

We can now prove Thm. 1.
Proof of Thm. 1
Let us first recall the a priori bounds on the family of ground states {ψσ}. From (4.2), (4.3),

we have
‖N

1
2ψσ‖ ≤ C, ‖H

1
2
0 ψσ‖ ≤ C, uniformly in σ.(4.12)

Let also F be a cutoff function as in Lemma 4.5. Then it is easy to verify, using the fact that
0 ≤ F ≤ 1, that

(1− Γ(FR))2 ≤ (1− Γ(FR)) ≤ dΓ(1− FR).

Using Lemma 4.5, we obtain

lim
σ→0,R→∞

‖1− Γ(FR)ψσ‖ = 0.(4.13)

Let us denote by χ(s ≤ s0) a cutoff function supported in {|s| ≤ s0}, equal to 1 in {|s| ≤ s0/2}.
Since the unit ball in H is compact for the weak topology, there exist a sequence σn → 0 and

a vector ψ ∈ H such that ψσn tends weakly to ψ. By Lemma A.3 in the Appendix, it suffices to
show that ψ 6= 0 to prove the theorem.
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Assume that ψ = 0. Note using hypotheses (H0), (H1), that for any λ,R the operator
χ(N ≤ λ)χ(H0 ≤ λ)Γ(FR) is compact on H. Then

lim
n→∞

χ(N ≤ λ)χ(H0 ≤ λ)Γ(FR)ψσn = 0,(4.14)

for any λ,R. By (4.13), we can pick R large enough such that for n ≥ n0

‖(1− Γ(FR))ψσn‖ ≤ 10−1.(4.15)

Since (1− χ(s ≤ s0)) ≤ s−
1
2

0 s
1
2 , we can using (4.12) pick λ large enough such that

‖(1− χ(N ≤ λ))ψσn‖ ≤ 10−1, ‖(1− χ(H0 ≤ λ))ψσn‖ ≤ 10−1.(4.16)

But (4.15), (4.16) and (4.14) imply that for n large enough ‖ψσn‖ ≤ 10−1 which is a contradic-
tion. Hence ψ 6= 0 and the theorem is proved.

A Appendix

We use the notations of Sect. 2. The following lemma is well known if the coupling function
v(k) is of the form vλ(k) for v a fixed linear operator on K and k 7→ λ(k) a scalar function. In
our general setting it seems not to be in the literature.

Let us first recall some terminology and results about measurability of vector and operator-
valued functions. Let K be a Hilbert space. A map k 7→ ψ(k) ∈ K is said measurable if it
is measurable if we equip K with the norm topology. Let now IRd 3 k 7→ T (k) ∈ B(K) be
defined for a.e. k. The map k 7→ T (k) is said weakly measurable if for all ψ1, ψ2 ∈ K the map
k 7→ (ψ2, T (k)ψ1) is measurable. If K is separable the following facts are true (see eg [Di, Chap.
II §2]):

i) the function k 7→ ‖T (k)‖ is measurable,
ii) for any k 7→ ψ(k) ∈ K measurable, the function k 7→ T (k)ψ(k) is measurable.
In particular for ψ ∈ K the function k 7→ T (k)ψ is measurable. These facts will be used in

the proof of Lemma A.1 below.

Lemma A.1 Let B ≥ 0 be a selfadjoint operator on the separable Hilbert space K, v : IRd 3 k 7→
v(k) a function such that for a.e. k ∈ IRd, v(k)(B + 1)−

1
2 ∈ B(K), IRd 3 k 7→ v(k)(B + 1)−

1
2 ∈

B(K) is weakly measurable and m : IRd 3 k 7→ m(k) ∈ IR+ be a measurable function. Then

|
∫

(v(k)u, a(k)u)dk| ≤ C(R)(u,dΓ(m)u)
1
2 (u, (B +R)u)

1
2 ,(A.1)

for

C(R) = (
∫ 1
m(k)

‖v(k)(B +R)−
1
2 ‖2dk)

1
2 .

If moreover for a.e. k ∈ IRd, (B + 1)−
1
2 v(k) ∈ B(K) and IRd 3 k 7→ (B + 1)−

1
2 v(k) ∈ B(K) is

weakly measurable

‖
∫
v∗(k)⊗ a(k)u dk‖ ≤ C1(R)‖(B +R)

1
2 ⊗ dΓ(m)

1
2u‖,(A.2)
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for

C1(R) = (
∫ 1
m(k)

‖(B +R)−
1
2 v(k)‖2dk)

1
2 ,

and
‖

∫
v(k)⊗ a∗(k)u dk‖ ≤ C2(R)‖(B +R)

1
2 ⊗ dΓ(m)

1
2u‖+ C3(R)‖u‖,(A.3)

for

C2(R) = (
∫ 1
m(k)

‖v(k)(B +R)−
1
2 ‖2dk)

1
2 ,

C3(R) = (
∫
‖v(k)(B +R)−

1
2 ‖2dk)

1
2 .

Proof. The estimate (A.1) follows directly from Cauchy-Schwarz inequality. (We use the fact
that for u ∈ K⊗D(N

1
2 )∩D(dΓ(m)

1
2 ) the map k 7→ a(k)u ∈ H is measurable). To prove (A.2),

we consider the operator

wR : K 3 u 7→ wR(k)u := m(k)−
1
2 (B +R)−

1
2 v(k)u ∈ L2(IRd, dk;K) = K ⊗ h.

Clearly ‖wR‖B(K,K⊗h) ≤ C1(R) and hence ‖wRw∗R‖B(K⊗h) ≤ C1(R)2. This gives

|
∫ ∫

(w∗R(k)ψ(k), w∗R(k′)ψ(k′))Kdkdk′| ≤ C1(R)2
∫
‖ψ(k)‖2Kdk,(A.4)

for ψ ∈ L2(IRd,dk;K). The bound (A.4) still holds for ψ ∈ L2(IRd, dk;H) if we replace the
scalar product (., .)K by the scalar product (., .)H. We have:

‖a(v)u‖2 = ‖
∫
v∗(k)a(k)u dk‖2

=
∫ ∫

(v∗(k)a(k)u, v∗(k′)a(k′)u)Hdkdk′

=
∫ ∫

(w∗R(k)ψ(k), w∗R(k′)ψ(k′))Hdkdk,′

for ψ(k) = m(k)
1
2a(k)(B +R)

1
2u. Using (A.4) we obtain

‖a(v)u‖2 ≤ C1(R)2
∫
ω(k)‖a(k)(B +R)

1
2u‖2dk

= C1(R)2‖(B +R)
1
2 ⊗ dΓ(m)

1
2u‖2.

This proves (A.2).
Similarly, introducing the operator

w̃R : K 3 u 7→ w̃R(k)u = m(k)−
1
2 v(k)(B +R)−

1
2 ∈ L2(IRd,dk;K) = K ⊗ h,

we have ‖w̃R‖B(K,K⊗h) ≤ C2(R) and hence ‖w̃∗Rw̃R‖B(K) ≤ C2(R)2. This yields

‖
∫
w̃∗R(k)w̃R(k)dk‖B(K) ≤ C2(R)2.(A.5)
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(The integral in (A.5) should be considered in the weak sense on B(K), ie as a quadratic form
on K). We have

‖a∗(v)u‖2 =
∫ ∫

(v(k)a∗(k)u, v(k′)a∗(k′)u)Hdkdk′

=
∫ ∫

(v(k)a(k′)u, v(k′)a(k)u)Hdkdk′

+
∫

(v(k)u, v(k)u)dk.

The second term in the r.h.s. is bounded by∫
‖v(k)(B +R)−

1
2 ‖2‖(B +R)

1
2u‖2dk

≤ C2
3 (R)‖(B +R)

1
2u‖2.

We write then the first term as∫ ∫
(w̃R(k)ψ(k′), w̃R(k′)ψ(k))Hdkdk′

≤
∫ ∫
‖w̃R(k)ψ(k′)‖2Hdkdk′

≤ ‖
∫
w̃∗R(k)w̃R(k)dk‖

∫
‖ψ(k′)‖2Hdk′

≤ C2(R)2‖(B +R)
1
2 ⊗ dΓ(m)

1
2u‖2,

which proves (A.3). 2

Lemma A.2 Let Q be a closed, positive quadratic form, Qn be closed quadratic forms on D(Q)
such that Qn converges to Q when n→ +∞ in the topology of D(Q). Let H,Hn be the associated
selfadjoint operators. Then for z in a bounded set U ⊂ C\IR , we have:

‖((H − z)−1 − (Hn − z)−1)(H + 1)−
1
2 ‖ ∈ o(1)|Imz|−1, when n→ +∞.

and for λ ∈ IR, λ� −1

‖((H − λ)−1 − (Hn − λ)−1)(H + 1)−
1
2 ‖ ∈ o(1) when n→ +∞.

Proof. Let for z ∈ C, u ∈ H, Rn(z) = (Hn − z)−1, R(z) = (H − z)−1, r = Rn(z)u−R(z)u. We
have for v ∈ D(Q):

(v, u) = Q(v,R(z)u)− z(v,R(z)u)

= Qn(v,Rn(z)u)− z(v,Rn(z)u).

Hence for v = r we obtain

Q(r,R(z)u)−Qn(r,Rn(z)u) + z‖r‖2 = 0,

or
Q(r, r)− z‖r‖2 = (Q−Qn)(r,R(z)u).(A.6)

If λ ∈ IR, λ� −1, we deduce from (A.6) that

(Q+ 1)(r, r) ∈ o(1)(Q+ 1)(r, r)
1
2 (Q+ 1)(R(λ)u,R(λ)u)

1
2 .
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This implies that (Q+ 1)(r, r)1
2 is o(1)‖u‖, as claimed.

Let now z ∈ U ⊂ C\IR. Taking the imaginary part of (A.6) we obtain

‖r‖2 ∈ o(1)|Imz|−1(Q+ 1)(r, r)
1
2 (Q+ 1)(R(z)u,R(z)u)

1
2

∈ o(1)|Imz|−2(Q+ 1)(r, r)
1
2 ‖u‖2,

since (Q0 + 1)(R(z)u,R(z)u) is bounded by |Imz|−2‖u‖2 for z ∈ U . Taking then the real part
of (A.6) we obtain

|Q(r, r)| ∈ o(1)(Q0 + 1)(r, r)
1
2 (Q+ 1)(R(z)u,R(z)u)

1
2 + o(1)|Imz|−2(Q+ 1)(r, r)

1
2 ‖u‖2

∈ o(1)|Imz|−2(Q+ 1)
1
2 (r, r)‖u‖2.

This implies that (Q+ 1)(r, r)
1
2 ∈ o(1)|Imz|−1‖u‖ as claimed. 2

The following result is shown in [AH, Lemma 4.9]

Lemma A.3 Let H,Hn for n ∈ IN be selfadjoint operators on a Hilbert space H. Let ψn be a
normalized eigenvector of Hn with eigenvalue En. Assume that

i)Hn → H when n→∞ in strong resolvent sense,

ii) limn→∞En = E,

iii) w− limn→∞ ψn = ψ 6= 0.

Then ψ is an eigenvector of H with eigenvalue E.
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