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1 I. Introduction

In the scattering theory for Schrödinger operators one considers the free Hamiltonian

H0 =
1

2
D2 acting on L2(X),

where X = Rn, and the full Hamiltonian

H =
1

2
D2 + V (x),

where V is a real potential tending in some weak sense to zero when x tends to ∞. As is
well known, potentials V fall naturally into two classes: the short-range potentials where
roughly speaking

|V (x)| ≤ C〈x〉−µ, µ > 1, (1.1)

and the long-range potentials, where:

|∂αxV (x)| ≤ C〈x〉−µ−|α|, 1 ≥ µ > 0, |α| = 0, 1, 2. (1.2)

For short-range potentials the wave operators

Ω±sr = s− lim
t→±∞

eitHe−itH0 (1.3)

exist and are complete
RanΩ±sr = Hc(H),

where Hc(H) denotes the continuous spectral subspace of the operator H. For long-range
potentials, the limits (1.3) typically do not exist and the definition of wave operators has
to be modified.

Several different constructions of wave operators in the long-range case can be found in
the literature. Probably the most popular approach is the so-called momentum approach.
It consists in replacing the free dynamics e−itH0 by a modified free dynamics of the form
e−iS(t,D), where R × X ′ 3 (t, ξ) 7→ S(t, ξ) is an exact or approximate solution of the
Hamilton-Jacobi equation (see [Hö], [DG]).

∂tS(t, ξ) =
1

2
ξ2 + V (∇ξS(t, ξ)). (1.4)

In [Hö], the existence of the modified wave operators

Ω±S = s− lim
t→±∞

eitHe−iS(t,D) (1.5)

and their completeness
RanΩ±S = Hc(H)
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is shown under condition (1.2) using the stationary approach. In [DG] the same result is
shown under slightly weaker conditions by the time-dependent approach.

Another approach to constructing modified wave operatrors, is that of Isozaki-Kitada
[IK], [DG].

This paper is devoted to yet another approach, which we call the “position approach”
and is due to Yafaev [Yaf1].

In order to describe Yafaev’s construction let us start with the short-range case. Let
us recall that

e−itH0u(x) = eiπn/4(2πt)−n/2
∫

ei
(x−y)2

2t u(y)dy. (1.6)

Let F be the Fourier transformation:

Fu(x) = (2π)−n/2
∫

e−ix·x
′
u(x′)dx′.

It follows directly from (1.6) that if we set

UΨ0(t)u(x) := eiπn/4t−n/2ei
x2

2t Fu
(
x

t

)
,

then
e−itH0u = UΨ0(t)u+ o(t0), (1.7)

in L2 norm when t tends to ∞. Let now V (x) be a short range potential satisfying
(1.1). It follows then from (1.7) that the wave operators in the short range case have an
alternative definition

Ω±sr = s− lim
t→∞

eitHUΨ0(t).

To handle long-range potentials, Yafaev proposed in [Yaf1] to replace the phase func-
tion Ψ0(t, x) = x2

2t
by a solution Ψ(t, x) of the eikonal equation

−∂tΨ(t, x) =
1

2
(∇xΨ(t, x))2 + V (t, x). (1.8)

This is analogous to the replacement of the function 1
2
tξ2 by a solution S(t, ξ) of the

Hamilton-Jacobi equation (1.4) in the momentum approach to the long-range scattering.
[Yaf1], [Yaf2] contain the proof of the existence of the limits

Ω±Ψ := s− lim
t→±∞

eitHUΨ(t), (1.9)

where
UΨ(t)u(x) := eiπn/4t−n/2eiΨ(t,x)Fu(

x

t
).

under rather strong conditions on V (x). In our paper we would like to give a direct proof
of the completeness of the operators Ω+

Ψ.
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The proof of existence and completeness of wave operators in the time-dependent
approach can be split in two independent steps.

In the first step one proves some rough propagation estimates which pinpoint the
difference between bound states and scattering states. The Mourre estimate [Mo] or the
RAGE theorem are two examples of tools used in this first step (see for example [E1],
[E2], [SS], [Gr], [DG]). In this step there is no essential difference between the short-range
and the long-range case and the choice of a wave operator does not play a role.

In the second step, one has to prove some sharper propagation estimates for scattering
states which are of a semiclassical nature. The technical details of the second step depend
crucially on which construction of wave operators we use. If we use the momentum
approach (1.5), then the pseudodifferential calculus enters in an essential way, for example
to estimate quantities like [V (x), iS(t,D)]. Under minimal regularity hypotheses on the
potentials this involves some rather delicate symbol classes (see [Hö] for the stationary
approach and [DG] for the time-dependent approach).

In the Isozaki-Kitada approach one has to estimate some Fourier integral operators.
The main advantage of the position approach (1.9) is that we can make use of the fact

that the Schrödinger operator is a partial differential operator and we do not use neither
Fourier integral nor pseudodifferential calculus. Our goal in this paper is to show that
the position approach can be used to prove the asymptotic completeness for long-range
potentials, under the same conditions as the one used in [DG, Chapter 4], using rather
elementary differential calculus.

In the short-range case wave operators are uniquely defined by (1.3). In the long-range
case modified wave operators are no longer unique. A quantity, which is uniquely defined,
is the asymptotic velocity

P± := s−C∞ − lim
t→±∞

eitH x
t
e−itH

= s−C∞ − lim
t→±∞

eitHDe−itH1c(H),

where s−C∞ − lim denotes the so called “strong C∞ limit” (see [DG] and Theorem 5.1).
One expects that modified wave operators Ω± have the following properties:

Ω±Ω±∗ = 1c(H), Ω±Ω±∗ = 1,

Ω±D = P±Ω±, Ω±H0 = HΩ±.
(1.10)

Note that if two operators Ω±1 , Ω±2 satisfy (1.10), then

Ω±1 = Ω±2 α(D)

for some α ∈ L∞(X) such that |α| = 1. So in some sense, the non-uniqueness of Ω± is
quite weak (in particular, it does not influence the value of scattering cross-sections).

It is shown in [DG] that under the assumption (1.2) the operators Ω±S satisfy (1.10).
In this paper we will give an independent proof of (1.10) for the operators Ω±Ψ.
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To a function S(t, ξ) satisfying the Hamilton-Jacobi equation (1.4) we can naturally
associate a solution Ψ(t, x) of the eikonal equation (1.8) by setting

Ψ(t, x) = vcξ(〈x, ξ〉 − S(t, ξ)),

where vc means the critical value. It is tempting to conjecture that for such a pair of
functions S(t, ξ) and Ψ(t, x) we have

Ω±S = Ω±Ψ, (1.11)

It is not difficult to show that (1.11) is true for potential satisfying

|∂αxV (x)| ≤ Cα〈x〉−µ−|α|, 1 ≥ µ > 0. |α| ≥ 0. (1.12)

However, both Ω±S and Ω±Ψ can be constructed under the condition (1.2), which is much
weaker than (1.12). We conjecture, that (1.11) is true under condition (1.2), although we
have not been able to prove it.

In our proof we follow the general philosophy of [DG]. First we consider time-decaying
potentials, which roughly satisfy

|∂αxV (t, x)| ≤ C〈t〉−µ−|α|, |α| = 0, 1, 2, µ > 0.

We prove that for such potentials position-type modified wave operators exist and are
complete (unitary). This is the subject of Sections 2 and 3. In Sections 4 and 5 we apply
those results to time-independent potentials.

2 II. Eikonal equation I

This section is devoted to the construction of solutions of the eikonal equation for long-
range time-dependent potentials.

Proposition 2.1 Let V (t, x) be a time-dependent potential such that

∫ +∞

0
〈t〉|α|−1‖∂αxV (t, ·)‖∞dt <∞, |α| = 1, 2. (2.1)

Then for sufficiently big T1 there exists a real function Ψ(t, x) such that:

−∂tΨ(t, x) =
1

2
(∇xΨ(t, x))2 + V (t, x), x ∈ X, t ≥ T1, (2.2)

5



satisfying:

∂αx (Ψ(t, x)− x2

2t
) ∈ o(t1−|α|) ∩ 〈t〉2−|α|L1(dt), |α| = 1, 2. (2.3)

Proof. In [DG, Sect. 1.7] we constructed a function S(t, ξ) that solves of the following
Hamilton-Jacobi equation: ∂tS(t, ξ) = 1

2
ξ2 + V (t,∇ξS(t, ξ)), x ∈ X, t ≥ T,

S(T, ξ) = 0,
(2.4)

and satisfies the estimates

∂αξ

(
S(t, ξ)− 1

2
tξ2
)
∈ o(t), |α| = 1, 2. (2.5)

We will define the function Ψ(t, x) by:

Ψ(t, x) = vcξ(〈x, ξ〉 − S(t, ξ)), (2.6)

where vc means the critical value. In fact if the critical point equation:

x = ∇ξS(t, ξ), (2.7)

has a unique solution ξ = ξ(t, x) for t large enough, then Ψ(t, x) solves the eikonal equation
(2.2).

Let us prove that (2.7) has a unique solution for t ≥ T1. If we set

r(t, ξ) := t−1(∇S(t, ξ)− tξ), (2.8)

we can rewrite (2.7) as

ξ + r(t, ξ) =
x

t
, (2.9)

where using (2.5), we have:

r(t, ξ) ∈ o(t0), ∇ξr(t, ξ) ∈ o(t0).

Applying the fixed point theorem we obtain a unique solution ξ(t, x) to (2.9) for t ≥ T1.
Note that if Ψ(t, x) is defined by (2.6), one has:

∇xΨ(t, x) = ξ(t, x), (2.10)

which shows that ∇xΨ(t, x)− x
t
∈ o(t0). Next we have

∇2
xΨ(t, x) = ∇xξ(t, x),
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and

∇xξ(t, x) +∇ξr(t, ξ)∇xξ(t, x) =
1

t
,

which shows that

∇2
xΨ(t, x)− 1

t
∈ o(t−1).

To complete the proof of (2.3), we will use the notation of [DG, Sect. 1.4 ]. We
denoted there by

[t1, t2] 3 s 7→ ỹ(s, t1, t2, x, ξ)

the trajectory for the force −∇xV (t, x) having position x at s = t1 and momentum ξ at
s = t2. We also put:

z̃(s, t1, t2, x, ξ) := ỹ(s, t1, t2, x, ξ)− x− (s− t1)ξ.

It is easy to check that z̃(s) satisfies the following integral equation:

z̃(s) =
∫ t2

t1
ζt1,s(u)∇V (u, x+ (u− t1)ξ + z̃(u))du, (2.11)

for

ζt1,s(u) :=


0 for u ≤ t1,
u− t1 for t1 ≤ u ≤ s,
s− t1 for s ≤ u.

It follows from standard Hamilton-Jacobi theory (see eg [DG, Prop. 1.8.1]) that:

ỹ(t, T, t, 0, ξ) = ∇ξS(t, ξ).

Hence
∇xΨ(t, x)− x

t
= t−1(Tξ − z̃(t, T, t, 0, ξ)).

It follows then from hypothesis (2.1) that:

|z̃(t, T, t, 0, ξ)| ≤
∫ t

T
sf(s)ds, for f ∈ L1(ds). (2.12)

Hence
z̃(t) ∈ 〈t〉2L1(dt) ∩ o(t).

which ends the poof of (2.3) for |α| = 1.
To finish the proof of (2.3) for |α| = 2, we compute:

∇ξx(t, ξ) = ∇ξỹ(t, T, t, 0, ξ)

= (t− T )
(
1 + 1

t−T∇ξz̃(t, T, t, 0, ξ)
)
,
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so that
∇2
xΨ(t, x) = ∇xξ(t, x)

= (t− T )−1
(
1 + 1

t−T∇ξz̃(t, T, t, 0, ξ)
)−1

.
(2.13)

It follows again from the equation (2.11) that

|∇ξz̃(t)| ≤
∫ t

T
sf(s)ds, for f ∈ L1(ds). (2.14)

Hence,
∇ξz̃(t) ∈ 〈t〉2L1(dt) ∩ o(t).

Note that since ∇ξz̃(t) = o(t), (1 + 1
t−T∇ξz̃)−1 exists for t ≥ T1 and

∇2
xΨ(t, x)− 1

t
= (t− T )−1

(
1 + 1

t−T∇ξz̃(t, T, t, 0, ξ)
)−1
− 1

t

= 〈t〉−2O(|∇ξz̃(t)|) +O(t−2).

This implies (2.3) for |α| = 2. 2

We will also need the following lemma.

Lemma 2.2 Assume in addition to (2.1) that

∫ ∞
0
〈t〉3/2‖∂αxV (t, ·)‖∞dt <∞, |α| = 3. (2.15)

Then the function Ψ(t, x) satisfies

∂αxΨ(t, x) ∈ o(t−3/2), |α| = 3.

Proof. ¿From [DG, Prop. 3.4.3] and its proof, we obtain that under assumptions (2.15),
one has:

∂αξ z̃(t) ∈ o(t3/2), |α| = 2.

So we obtain

∇ξ

(
1 +

1

t− T
∇ξz̃(t)

)−1

∈ o(t1/2).

¿From (2.13), we deduce that we have:

∇3
xΨ(t, x) =

1

t− T
∇xξ(t, x)∇ξ

(
1 +

1

t− T
∇ξz̃(t)

)−1

∈ o(t−3/2),

which proves the lemma. 2
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3 III. Position-type wave operators for time-decaying

potentials

In this section we consider the case of time-dependent potentials. For a real function
(t, x) ∈ R+ ×X 7→ Ψ(t, x) we define the unitary operator UΨ(t) by

UΨ(t)u(x) := eiπn/4t−n/2eiΨ(t,x)Fu
(
x

t

)
,

where the Fourier transformation F is defined by

Fu(x) := (2π)−n/2
∫

eix·x
′
u(x′)dx′.

Let the time-dependent Hamiltonian be defined as

H(t) := −1

2
D2 + V (t, x).

Let U(t, s) denote the unitary dynamics generated by H(t) in the sense described in [DG,
Sect. B.3].

We first recall the existence of the asymptotic momentum observable for time-dependent
potentials (cf [DG, Sect. 3.2]).

Theorem 3.1 Assume that

V (t, x) = Vs(t, x) + Vl(t, x)

with ∫ ∞
0
‖Vs(t, ·)‖∞dt <∞,

∫ ∞
0
‖∇xVl(t, ·)‖∞dt <∞.

Then there exist the limit

s− lim
t→+∞

U(0, t)f(D)U(t, 0), f ∈ C∞(X). (3.1)
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There exists a vector D+ of commuting self-adjoint operators with a dense domain such

that (3.1) equals f(D+).

Moreover one has:

s− lim
t→+∞

U(0, t)f
(
x

t

)
U(t, 0) = f(D+), f ∈ C∞(X).

The observable D+ is called the asymptotic momentum.
The main result of this section is the following theorem.

Theorem 3.2 Assume that

V (t, x) = Vs(t, x) + Vl(t, x)

with ∫ ∞
0
‖Vs(t, ·)‖∞dt <∞,

∫ ∞
0
〈t〉|α|−1‖∂αxVl(t, ·)‖∞dt <∞, |α| = 1, 2. (3.2)

Then there exists a function Ψ(t, x) ∈ C1,1(X) satisfying

∂αx

(
Ψ(t, x)− x2

2t

)
∈ o(t1−|α|) ∩ 〈t〉2−|α|L1(dt), |α| = 1, 2.

such that the limits

Ω+
Ψ := s− lim

t→∞
U(0, t)UΨ(t) (3.3)

Ω+∗
Ψ = s− lim

t→∞
UΨ(t)∗U(t, 0) (3.4)

exist. Moreover, Ω+
Ψ is unitary and

D+ = Ω+
ΨDΩ+∗

Ψ . (3.5)
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We will start the proof of Theorem 3.2 with the proof of the existence of the limit
(3.3), which is easy.

Proof of the existence of (3.3).
By the chain rule of the wave operators, it suffices to prove that the limit

s− lim
t→∞

Ul(0, t)UΨ(t)

exists, where Ul(t, s) is the dynamics generated by 1
2
D2 + Vl(t, x). We can rewrite UΨ(t)

as:
UΨ(t) = eiπn/4eiΨt−iAF , (3.6)

where Ψ is the operator of multiplication by Ψ(t, x), and A = 1
2
(〈x,D〉 + 〈D, x〉) is the

generator of dilations. This shows that:

i∂tUΨ(t)φ = eiπn/4eiΨ
(
−∂tΨ +

A

t

)
t−iAFφ.

We recall from Proposition 2.1 that Ψ(t, x) satisfies the following estimates:

∂αx

(
Ψ− x2

2t

)
∈ o(t1−|α|) ∩ 〈t〉2−|α|L1(dt), |α| = 1, 2. (3.7)

Using the eikonal equation (1.8), we compute for φ ∈ H2(X):

(i∂t − 1
2
D2 − Vl(t, x))UΨ(t)φ

= eiπn/4eiΨ
(
−∂tΨ + A

t
− 1

2
(D +∇Ψ)2 − Vl

)
t−iAφ

= eiπn/4eiΨ
(
−∂tΨ− 1

2
(∇Ψ)2 − Vl + A

t
− 1

2
D2 −∇ΨD − i

2
∆Ψ

)
t−iAφ

= eiπn/4eiΨ
(
−1

2
D2 + (x

t
−∇Ψ)D + i

2
(n
t
−∆Ψ)

)
t−iAφ

= eiπn/4
(
t−2eiΨt−iA 1

2
D2 + t−1eiΨ(x

t
−∇Ψ)t−iAD + eiΨ i

2
(n
t
−∆Ψ)t−iA

)
φ ∈ L1(dt),

using the estimates (3.7). This proves the existence of the limit (3.3). 2

To prove the unitarity of the wave operator Ω+
Ψ, we will need more elaborate arguments

which are close to those of [DG, Sect.3.4]. In particular, we will split the potential into a
long-range and short-range part. To this end we recall the following result from [DG].

Lemma 3.3 i) Suppose that Vl(t, x) satisfies

∫ ∞
0
〈t〉|α|−1‖∂αxVl(t, ·)‖∞dt <∞, |α| = 1, 2.
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Let j ∈ C∞0 (X) be a cutoff function such that

∫
j(y)dy = 1,

∫
yj(y)dy = 0,

and let

Ṽl(t, x) :=
∫
Vl(x+ t

1
2y)j(y)dy.

Then one has: ∫ ∞
0
‖Ṽ (t, ·)− Vl(t, ·)‖∞dt <∞,

∫ ∞
0
‖∂αx Ṽl(t, ·)‖∞〈t〉|α|−1dt <∞, |α| = 1, 2,

∫ ∞
0
‖∂αx Ṽl(t, ·)‖∞〈t〉

1
2
|α|dt <∞, |α| ≥ 2.

So by replacing Vs by Vs + Ṽs we may assume in the rest of the section that Vl satisfies:∫∞
0 ‖∂αxVl(t, ·)‖∞〈t〉|α|−1dt <∞, |α| = 1, 2,∫∞
0 ‖∂αxVl(t, ·)‖∞〈t〉

1
2
|α|dt <∞, |α| ≥ 2.

(3.8)

We choose for Ψ(t, x) the solution of the eikonal equation constructed in Proposition 2.1.
¿From Lemma 2.2, it follows that Ψ satisfies in addition to (3.7), the estimate:

‖∂αxΨ(t, ·)‖∞ ∈ o(t−3/2), |α| = 3. (3.9)

Using the estimates (3.7), we obtain the following identity:

1
2
D2 + Vl(t, x) = 1

2
(∇xΨ)2 + Vl(t, x) + i

2
∆Ψ + 1

2
(D +∇xΨ|D −∇xΨ)

= −∂tΨ + 1
2
(D +∇xΨ|D −∇xΨ) + ni

2t
+ L1(dt).

Here (.|.) denotes the Euclidean scalar product on X ′. We define:

H1(t) := −∂tΨ +
1

2
(D +∇xΨ|D −∇xΨ) +

ni

2t
,

so that
‖H(t)−H1(t)‖ ∈ L1(dt). (3.10)
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and denote by U1(t, s) the (non-unitary) dynamics generated by H1(t). It is easy to see
that this dynamics exists and is uniformly bounded using (3.10). We will first prove some
propagation estimates for the dynamics U1(t, s). We denote by D1 = ∂t + [H1(t), i·] the
Heisenberg derivative associated with U1(t, s).

Proposition 3.4 The following estimates hold:

i) ‖(D −∇Ψ(t, x))U1(t, 0)〈D〉−1〈x〉−1‖ ∈ O(t−1),

ii) ‖(D −∇Ψ(t, x))2U1(t, 0)〈D〉−2〈x〉−2‖ ∈ O(t−3/2).

Proof. Let us first prove i). We compute

D1(D −∇Ψ) = −∂t∇xΨ + [H1(t), i(D −∇Ψ)]

= 1
2
[D +∇Ψ, i(D −∇Ψ)](D −∇Ψ)

= −∇2
xΨ(D −∇Ψ).

Since ∇2
xΨ = 1 +R(t), where R(t) ∈ L1(dt), we have:

D1(D −∇Ψ) = −1

t
(D −∇Ψ) +R(t)(D −∇Ψ).

We introduce the observable

C1(t) := t(D −∇Ψ(t, x)),

and we have
D1C1(t) = R(t)C1(t). (3.11)

If we put
f1(t) := ‖U1(0, t)C1(t)U1(t, 0)〈D〉−1〈x〉−1‖,

we deduce from (3.11) that
d

dt
f1(t) ≤ g(t)f1(t),

for
g(t) = ‖U1(0, t)R(t)U1(t, 0)‖ ∈ L1(dt).

By the Gronwall inequality, we obtain

f(t) ≤ Cf(T ),
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which proves i).
Let us now prove ii). We compute for 1 ≤ i ≤ j ≤ n

D1(D −∇Ψ)i(D −∇Ψ)j = −2
t
(D −∇Ψ)i(D −∇Ψ)j

+
∑
k

(D −∇Ψ)irjk(t)(D −∇Ψ)k

+
∑
k
rik(t)(D −∇Ψ)k(D −∇Ψ)j

= −2
t
(D −∇Ψ)i(D −∇Ψ)j

+
∑
k
rik(t)(D −∇Ψ)i(D −∇Ψ)k

+
∑
k
rik(t)(D −∇Ψ)k(D −∇Ψ)j

+
∑
k
bijk(t)(D −∇Ψ)k,

where
rij(t) := ∇2

ijΨ(t, x)− δij 1
t
∈ L1(dt),

bijk(t) := ∇xrij(t) ∈ o(t−3/2),

using (3.9). Introducing the matrix valued observable

C2(t) = t2 ((D −∇Ψ)i(D −∇Ψ)j) ,

we obtain:
D1C2(t) = R2(t)C2(t) +R1(t)C1(t), (3.12)

where R1(t) ∈ o(t−1/2) and R2(t) ∈ L1(dt). We define now:

f2(t) := ‖U1(0, t)C2(t)U1(t, 0)〈D〉−2〈x〉−2‖,

and we obtain using (3.12):

d

dt
f2(t) ≤ o(t−1/2)f1(t) + g(t)f2(t), (3.13)

where g(t) = ‖R2(t)‖ ∈ L2(dt). Therefore by the Gronwall inequality, we obtain:

f2(t) ≤ Ct1/2,

which proves ii). 2

End of the proof of Theorem 3.2.
Let us first prove the existence of the limit (3.4). By the chain rule of the wave

operators, it suffices to prove the existence of

s− lim
t→∞

U∗Ψ(t)U1(t, 0). (3.14)
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We compute

i−1∂tU
∗
Ψ(t) = e−iπn/4F∗tiA A

t
e−iΨ − e−iπn/4F∗tiAe−iΨ∂tΨ

= U∗Ψ(t)
(
x(D −∇Ψ)− ni

2t
− ∂tΨ

)
.

Let us now pick φ ∈ D(D2) ∩ D(x2) and compute:

i−1∂tU
∗
Ψ(t)U1(t, 0)φ

= U∗Ψ(t)
(
x
t
− 1

2
(D +∇Ψ)

)
(D −∇Ψ)U1(t, 0)φ.

(3.15)

Using (3.7), we have: (
x

t
− 1

2
(D +∇Ψ)

)
= −1

2
(D −∇Ψ) +R(t),

where R(t) ∈ 〈t〉L1(dt). So we obtain:

‖∂tU∗Ψ(t)U1(t, 0)φ‖

≤ ‖R(t)‖‖(D −∇Ψ)U1(t, 0)φ‖+ ‖(D −∇Ψ)2U1(t, 0)φ‖ ∈ L1(dt),

using Proposition 3.4. This proves the existence of the limit (3.15).
The identity (3.5) follows from

UΨ(t)f(D)U∗Ψ(t) = f
(
x

t

)
.

This completes the proof of the theorem. 2

4 IV. Eikonal equation II

In this section we prove some additional results on solutions of the eikonal equation.
Although, strictly speaking, these results involve time-dependent potentials, they will be
used in our construction of position-type wave operators for time-independent potentials.

Let us start with the following extension of Proposition 2.1.

Proposition 4.1 Let V (t, x) be a time-dependent potential such that for any ε > 0

∫ +∞

0
t|α|−1 sup

|x|≥εt
|∂αxV (t, x)|dt <∞, |α| = 1, 2. (4.16)

15



Then there exists a real function Ψ(t, x) such that for any ε > 0:

−∂tΨ(t, x) =
1

2
(∇xΨ(t, x))2 + V (t, x), in |x| ≥ εt, t ≥ Tε, (4.17)

satisfying in |x| ≥ εt:

∂αx (Ψ(t, x)− x2

2t
) = o(t1−|α|) ∩ 〈t〉2−|α|L1(dt), |α| = 1, 2. (4.18)

Proof. In [DG, Prop. 4.7.3], we proved under the hypotheses (4.16) the existence of a
function S(t, ξ) satisfying for any ε > 0 the Hamilton-Jacobi equation

∂tS(t, ξ) =
1

2
ξ2 + V (t,∇ξS(t, ξ)), in |ξ| ≥ ε, t ≥ Tε, (4.19)

and the estimates

∂αξ

(
S(t, ξ)− 1

2
tξ2
)

= o(t), |α| = 1, 2 in |ξ| ≥ ε. (4.20)

As above we will define Ψ(t, x) as:

Ψ(t, x) = vcξ(〈x, ξ〉 − S(t, ξ)).

Let us check that for |x| ≥ εt, t ≥ Tε, there exists a unique solution ξ of (2.9) with |ξ| ≥ ε.
In fact if |x| ≥ εt, the map ξ 7→ x− r(t, ξ) sends the set {ξ||ξ| ≥ ε/2} into itself for t ≥ Tε
and is a contraction there. The estimates (4.18) can then be proved as in Proposition 2.1.
2

The following proposition will be needed to compare two solutions of the same eikonal
equation.

Proposition 4.2 Let V (t, x) be a time-dependent potential such that for any ε > 0

∫ +∞

0
t|α|−1 sup

|x|≥εt
|∂αxV (t, x)|dt <∞, |α| = 1, 2. (4.21)

Let Θ ⊂ X\{0} be a compact set. Suppose that for ξ in a certain neighborhood of Θ and

t ≥ T0 the functions Si(t, ξ), i = 1, 2 are two solutions of the Hamilton-Jacobi equation

∂tSi(t, ξ) =
1

2
ξ2 + V (t,∇xSi(t, ξ))

16



such that

∂αξ

(
Si(t, ξ)−

1

2
tξ2
)
∈ o(t), |α| = 1, 2.

Let Ψi(t, x), i = 1, 2 the two solutions of the eikonal equation (4.17) given for x
t

in a

certain (maybe smaller) neighborhood of Θ and t ≥ T1 by

Ψi(t, x) = vcξ(〈x, ξ〉 − Si(t, ξ)).

Then the limit

lim
t→+∞

(Ψ1(t, ty)−Ψ2(t, ty))

exist uniformly for y ∈ Θ.

Proof. As in (2.8) set

ri(t, ξ) :=
∇ξSi(t, ξ)− tξ

t
.

Recall that ri(t, ξ),∇ri(t, ξ) ∈ o(t0). Let ξi(t, x) be the solution of

∇ξSi(t, ξi) = ty,

or equivalently:
ξi + ri(t, ξi) = y.

Such a solution exists for a sufficiently small neighborhood of Θ for t sufficiently big.
Recall that if we set

Ψi(t, x) := xξi(t,
x
t
)− Si(t, ξi(t, xt )),

then
∇xΨi(t, x) = ξi(t,

x
t
).

It follows from [DG, Thm. 1.9.6] that ∇ξS1(t, ξ) − ∇ξS2(t, ξ) ∈ O(1), which implies
that r1(t, ξ)− r2(t, ξ) ∈ O(t−1). We deduce then from

|ξ1 − ξ2| ≤ |r1(t, ξ1)− r1(t, ξ2)|+ |r1(t, ξ2)− r2(t, ξ2)|. (4.22)

that
ξ1(t, y)− ξ2(t, y) ∈ O(t−1), y ∈ Θ. (4.23)
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Now we compute for y ∈ Θ and t big enough:

∂t (Ψ1(t, ty)−Ψ2(t, ty))

= ∂tΨ1(t, ty)− ∂tΨ2(t, ty) + y∇xΨ1(t, ty)− y∇xΨ2(t, ty)

= (∇xΨ1(t, ty)−∇xΨ2(t, ty))
(
y − 1

2
(∇xΨ1(t, ty) +∇xΨ2(t, ty))

)
.

(4.24)

By the estimates (4.18) we have:

y − ∂xΨi(t, ty) ∈ 〈t〉L1(dt),

which using (4.23) implies that the rhs of (4.24) is in L1(dt). This completes the proof of
the proposition. 2

5 V. Position-type wave operators for time-independent

potentials

In this section we prove the existence and completeness of position-type wave operators
for long-range time-independent potentials.

Theorem 5.1 Assume that

V (x)(1−∆)−1 is compact, (5.1)

and

∫∞
1

∥∥∥(1−∆)−1∇xV (x)1[1,∞[(
|x|
R

)(1−∆)−1
∥∥∥ dR <∞. (5.2)

and that V (x) can be written as

V (x) = Vs(x) + Vl(x), (5.3)

such that ∫ ∞
0

∥∥∥∥∥(1−∆)−1Vs(x)1[1,∞[

(
|x|
R

)
(1−∆)−

1
2

∥∥∥∥∥ dR <∞,
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∫ ∞
0

sup
|x|>R

|∂αxVl(x)|〈R〉|α|−1dR <∞, |α| = 1, 2. (5.4)

Then there exists a real function Ψ(t, x) such that the limits

s− lim
t→∞

eitHUΨ(t) (5.5)

and

s− lim
t→∞

UΨ(t)∗e−itH1c(H) (5.6)

exist. If we denote (5.5) by Ω+
Ψ then (5.6) equals Ω+∗

Ψ . Moreover one has

Ω+
ΨΩ+∗

Ψ = 1c(H), Ω+∗
Ψ Ω+

Ψ = 1,

P+ = Ω+
ΨDΩ+∗

Ψ , 1c(H)H = Ω+
ΨH0Ω+∗

Ψ .

(5.7)

Before starting the proof of Theorem 5.1, let us first recall some results from [DG]. In
[DG, Chap. 4] we proved under hypotheses (5.1) and (5.2) the existence of the asymptotic
velocity observable. Its definition and properties are recalled in the following theorem.

Theorem 5.2 Assume (5.1) and (5.2). Then for all f ∈ C∞(X) there exist the limit

s− lim
t→+∞

eitHf
(
x

t

)
e−itH . (5.8)

Moreover there exist a vector of commuting self-adjoint operators P+ with a dense domain

called the asymptotic velocity such that (5.8) equals f(P+).

One has:

H1X\{0}(P
+) =

1

2
(P+)2, (5.9)

1{0}(P
+) = 1pp(H). (5.10)
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The proof of Theorem 5.1 consists in introducing an effective time-dependent potential
and applying then the results of Section 3.

Let Θ ⊂ X be compact such that 0 6∈ Θ. Fix J ∈ C∞0 (X) such that 0 6∈ suppJ and
J = 1 on a neighborhood of Θ. Fix also x0 ∈ X such that |x0| 6= 0. We introduce now
the following effective time-dependent potential:

VJ(t, x) := (Vl(x)− Vl(tx0))J
(
x

t

)
+ Vl(tx0). (5.11)

Obviously, for y in a neighborhood of Θ

Vl(ty)− VJ(t, ty) = 0. (5.12)

¿From [DG, Prop. 4.7.5], we obtain that∫ ∞
0
〈t〉|α|−1‖∂αxVJ(t, ·)‖∞dt <∞, |α| = 1, 2. (5.13)

We denote by UJ(t, s) the unitary dynamics generated by 1
2
D2 + VJ(t, x) and by D+

J the
asymptotic velocity associated with UJ(t, s) (see [DG, Thm. 3.2.2]):

f(D+
J ) = s− lim

t→+∞
UJ(0, t)f

(
x

t

)
UJ(t, 0), f ∈ C∞(X).

The following result has been proved in [DG, Sect. 4.7]. It shows that on Ran1θ(D
+) one

can replace asymptotically the dynamics e−itH by the effective dynamics UJ(t, 0).

Lemma 5.3 There exist the limits

s− lim
t→∞

eitHUJ(t, 0)1Θ(D+
J ). (5.14)

and

s− lim
t→∞

UJ(0, t)e−itH1Θ(P+) (5.15)

If we denote (5.14) by ω+
J,Θ, then (5.15) equals ω+∗

J,Θ. Moreover,

ω+
J,Θω

+∗
J,Θ = 1Θ(P+), ω+∗

J,Θω
+
J,Θ = 1Θ(D+

J ),

ω+
J,ΘD

+
J = P+ω+

J,Θ.

(5.16)
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Proof of Theorem 5.1. Let Θn ⊂ X be a sequence of compact sets such that 0 6∈ Θn

and Θn ↗ X\{0}. Since 1{0}(P
+) = 1pp(H), we have:

1c(H) = s− lim
n→∞

1Θn(P+).

Consequently to prove the existence of the limit (5.6), it suffices to prove the existence of

s− lim
t→+∞

UΨ(t)∗e−itH1Θn(P+),

for all n.
Let us fix one such compact set Θ. We define VJ(t, x) as in (5.11). It follows from

(5.13) that VJ(t, x) satisfies the hypotheses of Theorem 3.2. Consequently for the function
ΨJ(t, x) described in Theorem 3.2 the limits:

s− lim
t→∞

UJ(0, t)UΨJ
(t),

s− lim
t→∞

UΨJ
(t)∗UJ(t, 0).

exists.
We define then as in Lemma 3.3:

Ṽ (t, x) :=
∫
Vl(x+ t

1
2y)j(y)dy. (5.17)

It is easy to see that Ṽ (t, x) satisfies for all ε > 0:∫∞
0 sup|x|≥εt |∂αx Ṽ(t, x)|〈t〉|α|−1dt <∞, |α| = 1, 2,

Let Ψ(t, x) be a solution of the eikonal equation described in Proposition 4.1. It remains
to show that the limits

s− lim
t→+∞

UΨ(t)∗UΨJ
(t)1Θ(D+

J ),

s− lim
t→+∞

UΨJ
(t)∗UΨ(t)1Θ(P+)

(5.18)

exist.
To do this we recall from Section 3 that ΨJ(t, x) is the solution of the eikonal equation

for the potential

ṼJ(t, x) =
∫
VJ(t, x+ t

1
2y)j(y)dy,

constructed in Proposition 2.1. It is easy to show that and that Ṽ (t, ty) and ṼJ(t, ty)
coincide for y in a neighborhood of Θ for t big enough. Using then Proposition 4.2 we
obtain the existence of

lim
t→+∞

(Ψ(t, ty)−ΨJ(t, ty)) , for y ∈ Θ.

Using then the chain rule, we obtain the existence of the limits (5.5) and (5.6). The
identities (5.7) follow then from (5.16) and (3.5).2
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