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Abstract
In this article, we study the short- and long-range perturbations of periodic

Schrödinger operators. The asymptotic completeness is proved in the short-range
case by referring to known results on the stationary approach and more explicitly
with the time-dependent approach. In the long-range case, one is able to construct
modified wave operators. In both cases, the asymptotic observables can be defined
as elements of a commutative C∗algebra of which the spectrum equals or is contained
in the Bloch variety. Especially, the expression of the mean velocity as the gradient
of the Bloch eigenvalues is completely justified in this framework, even when the
Bloch variety presents singularities.

1 Introduction

This paper is devoted to the scattering theory for the perturbations of periodic Schrödinger
operators H0 = 1

2
D2 + VΓ(x), where VΓ is a real potential, Γ-periodic for some lattice Γ

in Rn. The physical phenomenon related to this mathematical problem is called impurity
scattering. The most basic result in this domain is the proof by Thomas [23] that the
spectrum of H0 is absolutely continuous if the potential VΓ is not too singular. On the
other hand stationary phase arguments using the Floquet-Bloch transformation show that
the motion of a particle in a periodic potential should be ballistic. These two facts indicate
that the scattering theory for perturbations H = H0 +V of H0 should be quite similar to
the scattering theory for the free Laplacian 1

2
D2. However up to now there are only partial

results to support this belief. We mention the work of Thomas [23] using the Kato-Birman
theory, Simon [21], using the Enss approach, and Bentosela [3] using the Kato-Kuroda
stationary approach. All these results either assume a decay of the interaction V that is
too strong or are valid only in a restricted range of energies.
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In this paper we reconsider this problem using the Mourre method, which is based
on the construction of a conjugate operator. This construction was made in our previous
paper [12]. We prove the existence and completeness of the wave operators for the correct
class of short-range perturbations. For long-range perturbations, we construct modified
wave operators and characterize their range. The range of the modified wave operators
is described using a C∗algebra U+ of asymptotic observables which correspond to the
energy and quasi-momentum for the free Hamiltonian H0. Using the algebra U+ we can
also justify the heuristic fact that the velocity of a particle in a periodic potential is
asymptotically given by the gradients of the Bloch functions.

2 Definitions, assumptions and results

2.1 The periodic free Hamiltonian

We shall consider the free Hamiltonian

H0 :=
1

2
D2 + VΓ(x), on L2(Rn),

where VΓ is a real valued potential, Γ−periodic for some lattice Γ in Rn:

VΓ(x+ γ) = VΓ(x), γ ∈ Γ.

We assume that

VΓ is ∆ bounded with bound stricly smaller than 1. (2.1)

It follows that H0 is self-adjoint with domain H2(Rn). As we mentioned in the Introduc-
tion, the first basic question about scattering theory for H0 is whether the spectrum of
H0 is absolutely continuous. Under the general assumption (2.1) this question is so far
unsolved. In [23], Thomas proved the absolute continuity of the spectrum if the Fourier
coefficients of VΓ are in some lp space (see [17, Thm. XII.100] for a precise statement).
The proof in [23] shows that if we replace (2.1) by the stronger condition:

VΓ is (−∆)
1
2 bounded with relative bound 0, (2.2)

then the spectrum of H0 is absolutely continuous. Our results will have a simpler expres-
sion in this case. We next specify our notations about the Floquet-Bloch transformation
and refer the reader for details to [17][22]. With the lattice Γ, we associate the torus
Tn = Rn/Γ, the fundamental cell

F := {x =
n∑
j=1

xjγj, 0 ≤ xj < 1},
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of which the volume for Lebesgue measure will be denoted by µΓ, the dual lattice

Γ∗ := {γ∗ ∈ Rn|〈γ, γ∗〉 ∈ 2πZ, ∀γ ∈ Γ}.

and symmetrically the sets Tn∗ = Rn/Γ∗, F ∗ and the volume µΓ∗ . For x ∈ Rn, we define
the integer part [x] of x as the unique γ ∈ Γ so that x − γ ∈ F . The Floquet-Bloch
transformation:

Uu(k, x) := µ
− 1

2
Γ∗

∑
γ∈Γ

e−i〈k,γ〉u(x+ γ), (2.3)

first defined for u ∈ S(Rn), extends as a unitary operator

U : L2(Rn, dx)→ L2
(
Tn∗, dk;L2(F, dx)

)
.

The Γ∗-periodicity w.r.t. k of Uu follows from its definition. The distinction between
the isomorphic spaces L2(F, dx) and L2(Tn, dx) avoids confusion when one works with
smooth functions. We shall use the notations

M := Tn∗, H′ := L2(F, dx)

and H := L2
(
Tn∗, dk;L2(F, dx)

)
=

∫ ⊕
M

H′dk ∼ L2(Rn, dx).

The inverse of U is given by:

U−1v(x+ γ) = µ
− 1

2
Γ

∫
M

ei〈k,γ〉v(k, x)dk, x ∈ F, γ ∈ Γ.

One easily deduce from (2.3) the identities

UxU−1 = x−Dk (2.4)

U [x]U−1 = −Dk. (2.5)

Conjugating H0 with U yields

UH0U
−1 =

∫ ⊕
M

H0(k)dk, (2.6)

with
H0(k) = 1

2
D2 + VΓ(x),

D(H0(k)) = {u = v
∣∣∣
F
, v ∈ H2

loc(Rn)|v(x+ γ) = ei〈k,γ〉v(x),∀γ ∈ Γ}.

In this representation, the Hamiltonian H0 satisfies the following properties (see [12]):

i) the map M 3 k → (H0(k) + i)−1 is analytic with values in L(H′);

ii) for all k ∈M , the self-adjoint operator H0(k) has purely discrete spectrum;
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iii) the Bloch variety Σ := {(λ, k) ∈ R×M,λ ∈ σ(H0(k))} is an analytic variety of M
and the projection pR : Σ 3 (λ, k)→ λ is proper.

As a consequence H0 belongs to the class of analytically fibered operators, introduced in
[12]. We have proved there the

Theorem 2.1. There exists a discrete set τ determined by H0 so that for any interval
I ⊂⊂ R\τ there exists an operator AI , essentially self-adjoint on D(AI) = C∞comp (M ;H′)
satisfying the following properties:

i) For all χ ∈ C∞comp(I), there exists a constant cχ > 0 so that

χ(H0) [H0, iAI ]χ(H0) ≥ cχχ(H0)2.

ii) The multi-commutators adkAI (H0) are bounded for all k ∈ N.

iii) The operator AI is a first order differential operator in k with coefficients which
belong to C∞(M ;L(H′)) and there exists χ ∈ C∞comp(R \ τ) so that AI = χ(H0)AI =
AIχ(H0).

Here are some other notations related to the free Hamiltonian which will be used in
our analysis. On the Bloch variety Σ which is locally compact with the topology induced
by R×M , we shall consider the open subset

Σreg := {(λ0, k0) ∈ Σ, ∃W ∈ VΣ(λ0, k0),∀(λ, k) ∈ W,
dim 1{λ}(H0(k))H = dim 1{λ0}(H0(k0))H

}
where VX(x) denotes the set of neighborhoods of x in the topological space X. When
(λ0, k0) belongs to Σreg, there exists I ∈ VR(λ0), W ∈ VM(k0) and a real analytic function
λ̃ on W so that

I ×W ∩ Σ =
{

(λ̃(k), k), k ∈ W
}
.

Besides 1Σreg , there is another useful Borel function defined on the Bloch variety.

Definition 2.2. The function v is defined on Σ by{
v(λ, k) = ∂kλ̃(k) if (λ = λ̃(k), k) ∈ Σreg

0 else.

The function v will be used in Subsection 2.3 to define the asymptotic velocity observ-
able. We close this review of properties of the free Hamiltonian by some remarks. First if
pM : Σ→M denotes the projection on M , then pM(Σ\Σreg) has zero Lebesgue measure.
Indeed this is a consequence of the stratification argument used in [12], which ensures that
pM(Σ \ Σreg) is covered by a countable (finite if one considers Σ ∩ p−1

R (K) with K ⊂ R
compact) family of real analytic submanifolds with non null codimension. Second, the
function v belongs to L∞loc(Σ, p

∗
Mdk).This follows from the local Lipschitz regularity of the

eigenvalues of H0(k), which can be proved by a minimax argument.
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2.2 The perturbations

We shall consider perturbed Hamiltonians of the form H = H0 + V (x) with

V (x) = Ṽs(x) + Vl(x),

and where Ṽs and Vl are real-valued functions and satisfy for some µ > 0 and µs > 0 the

Hypothesis 2.3. a) The operator Ṽs〈x〉1+µs(−∆ + 1)−1 is compact on L2(Rn).

b) The function Vl satisfies: |∂αxVl(x)| ≤ Cα 〈x〉−|α|−µ.

We set
Vs(x) := Ṽs + Vl(x)− Vl([x]).

The reason for decomposing V as Vs + Vl([x]) is that the functions of the integer part
[x] become after the Floquet-Bloch reduction scalar pseudo-differential operators (see the
discussion below). In the sequel we will use the following consequence of assumption a)

of Hypothesis 2.3. We denote by R the operator 〈[x]〉 = (1 + |[x]|2)
1
2 .

Lemma 2.4. Let χ ∈ C∞comp(R). The operator RαVsχ(H0)Rβ is compact on L2(Rn) if
α + β < 1 + inf(µ, µs) and bounded if α + β = 1 + inf(µ, µs).

Proof : We will use the functional calculus formula:

χ(H) =
1

2πi

∫
C
∂z̄χ̃(z)(z −H)−1dz ∧ dz̄ (2.7)

where χ̃ ∈ C∞comp(C) is an almost analytic extension of χ satisfying:

χ̃
∣∣
R = χ, |∂χ̃

∂z
(z)| ≤ CN | Im z|N , ∀N ∈ N. (2.8)

Since there exists a constant C > 0 so that

C−1 〈x〉 ≤ 〈[x]〉 ≤ C 〈x〉 ,

the operator R can be replaced by 〈x〉 in the lemma. By Hypothesis 2.3 b), the function

〈x〉1+µ (Vl(x)− Vl([x])) = 〈x〉1+µ

∫ 1

0

〈∇Vl([x] + s(x− [x])), x− [x]〉ds

is bounded. Hence the operator 〈x〉αVs(H0 − z)−1 is compact if α < 1 + inf(µ, µs) and
bounded if α = 1+inf(µ, µs) with an operator norm O(| Im z|−1) for Im z 6= 0. Commuting
inductively powers of 〈x〉 with (z −H0)−1, we see that for β ∈ Z, β ≤ 0,

‖(H0 + i)〈x〉−β(z −H0)−1〈x〉β‖ = O(
〈z〉Nβ

| Im z|Nβ
), | Im z| 6= 0.

5



By interpolation , this estimate extends to any real β ≤ 0. Writing

〈x〉αVs(z −H0)−1〈x〉β = 〈x〉α+βVs(H0 + i)−1(H0 + i)〈x〉−β(z −H0)−1〈x〉β

and using formula (2.7) and estimate (2.8), we get the result.
Now that the action of conjugating with the Floquet-Bloch transformation U is specified,

an operator B on L2(Rn, dx) and its image UBU−1 on H will both be denoted by B in
the sequel. Formula (2.4) indicates that multiplication operators on L2(Rn, dx) become
after conjugation by U pseudo-differential operators on M = Tn∗ with operator valued
symbols onH′. Actually pseudo-differential operators on M with operator valued symbols
of negative order is the natural class of pertubations of H0 for which a clean scattering
theory can be developed. A remarkable fact of the pseudo-differential calculus on Tn∗ is
that complete symbols can be associated with pseudo-differential operators like in Rn. We
refer to Appendix B for details. Moreover, the right-hand side of the two next identities
which are defined by functional calculus, are pseudo-differential operators (see Proposition
B.3 iv)):

URU−1 = U 〈[x]〉U−1 = 〈Dk〉 . (2.9)

and UV U−1 = UVsU
−1 + Vl(−Dk) (2.10)

Notation: We denote by OpSα(M) and OpSα(M ;L(H′)) the space of pseudo-differential
operators of order α ∈ R on M with respectively scalar and L(H′)-valued symbols. When
h ∈ (0, h0) is a small parameter , OpSh,α(M) and OpSh,α(M ;L(H′)) denote the semi-
classical version of these pseudo-differential classes.

The class of pseudo-differential operators that we consider is precisely defined in Def-
inition B.1. Complete symbols are well defined for this class and the operator valued are
defined like in [2]. The assertion iv) of Proposition B.3 gives

Rα ∈ OpSα(M), (2.11)

Vl(−Dk) ∈ OpS−µ(M) (2.12)

and AI ∈ OpS1(M ;L(H′)). (2.13)

We recall that the estimates of scalar pseudo-differential calculus carry over to the L(H′)-
valued case except the commutator estimate which holds only when the principal symbols
commute. This latter condition is trivially satisfied when one of the symbol is scalar. We
refer the reader to [2] for operator valued pseudo-differential operators. The next lemma
ensures that V enters in the class of perturbations considered in [12].

Lemma 2.5. The operator V is symmetric and satisfies for any compact energy interval
I included in R \ τ

i) V (H0 + i)−1 is compact;
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ii) [V, iAI ] is bounded;

iii) the function: s→ eisAIV e−isA−V belongs to C1+ε(R;L(H)) with 0 < ε < inf {1, µ, µs}.

Moreover for H = H0 +V ,the function s→ eisAI (H+ i)−1e−isAI belongs to C1+ε(R;L(H))
with 0 < ε < inf {1, µ, µs}.

Proof : The compactness of V (H0 + i)−1 follows at once from Hypothesis 2.3. We next
write V as Vs + Vl(−Dk). For Vl(−Dk), the pseudo-differential calculus yields

adjAI Vl(−Dk)R
µ ∈ L(H), ∀j ∈ N. (2.14)

For Vs, we recall that AI = χ(H0)AI = AIχ(H0). This gives by expanding the commuta-
tor:

AIVs − VsAI = AIR
−1Rχ(H0)Vs − Vsχ(H0)RR−1AI .

Using Lemma 2.4 we see that adAIVs is bounded. This implies ii) and also that s →
eisAIV e−isA

−V is Lipschitz continuous if inf(µ, µs) = 0. The same method of expanding the commu-
tator shows that ad2

AI
Vs is bounded if inf(µ, µs) ≥ 1. The assertion iii) is then derived for

general (µ, µs) by real interpolation between inf(µ, µs) = 0 and inf(µ, µs) = 1. It remains
to check the regularity of r(s) := eisAI (H + i)−1e−isAI . We have

r(s) = (H + i)−1 − i
∫ s

0

eiuAI (H + i)−1 [AI , H0 + V ] (H + i)−1e−iuAI du

= (H + i)−1 − i
∫ s

0

r(u)eiuAI [AI , H0 + V ] e−iuAIr(u) du. (2.15)

Using the first line of (2.15), we first deduce from iii) that r(s) is Lipschitz continuous,
and then using the second line of (2.15) that r(s) is C1+ε.

Remark 2.6. a) About the real interpolation result and the notation Cα with α 6∈ N for
the Hölder spaces, we refer the reader to [6].

b) The property iii) is indeed stronger than what is needed to develop Mourre theory (see
[1] for a sharper version). However, it is convenient while checking the last assertion
which is used in our propagation estimates.

By noting that 〈x〉sR−s and Rs (1 + |AI |)−s are bounded for any s ∈ R, standard
results for H = H0 + V reviewed in [12] can be written in the form

Theorem 2.7. Let AI be a conjugate operator for H0 associated with an arbitrary compact
interval I ⊂ R \ τ . Then the following results hold:
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i) For χ ∈ C∞comp(I), there exist a constant cχ > 0 and a compact operator Kχ so that

χ(H)[H, iAI ]χ(H) ≥ cχχ
2(H) +Kχ.

As a consequence σpp(H) is of finite multiplicity in R\τ and has no accumulation
points in R\τ .

ii) For each λ ∈ I\σpp(H), there exists ε > 0 and c > 0 so that

1[λ−ε,λ+ε](H)[H, iAI ]1[λ−ε,λ+ε](H) ≥ c1[λ−ε,λ+ε](H).

iii) The limiting absorption principle holds on I\σpp(H):

lim
ε→±0
〈x〉−s(H − λ+ iε)−1〈x〉−s exists and is bounded for all s >

1

2
.

As a consequence the singular continuous spectrum of H is empty.

iv) When Vl = 0, the wave operators

s-lim
t→±∞

eitHe−itH01c(H0) =: W±

exist and are asymptotically complete,

1c(H)H = W±H.

Moreover if the condition (2.1) is replaced by (2.2) then we have 1c(H0) = 1 and
W± = s-limt→±∞ e

itHe−itH0.

The result iv) for the short-range case will be recovered via the time-dependent ap-
proach as a byproduct of the long-range analysis. We close this paragraph with another
application of Lemma 2.5 to minimal velocity estimates essentially due to Sigal-Soffer
[19]. Its proof is given in Appendix A.1.

Proposition 2.8. Let χ ∈ C∞comp(R\(τ ∪ σpp(H))). For ε0 > 0 small enough, we have:∫ ∞
1

∥∥∥∥F (Rt ≤ ε0

)
χ(H)e−itHu

∥∥∥∥2
dt

t
≤ C ‖u‖2 , ∀u ∈ H

and s-lim
t→+∞

F

(
R

t
≤ ε0

)
χ(H)e−itH = 0.

Moreover the result also holds if R is replaced by 〈x〉.
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2.3 Results

Part of these results have natural expressions in terms of C∗algebras. We first specify
this framework. Remind that the energy-momentum space Σ is closed in R ×M and is
endowed with the induced topology.

Definition 2.9. The commutative C∗algebra of which the elements are the

g(H0, k) :=

∫ ⊕
M

g(H0(k), k)dk, with g ∈ C0
0(Σ),

is denoted by U0.

The mapping g → g(H0, k) defines a faithful representation of C0
0(Σ). Therefore U0 is

a C∗algebra with spectrum equal to Σ. Moreover, it is clear that the measure (pM)∗ (dk)
is basic for U0. Hence, the Proposition I.7.1 of [9] ensures that the mapping g → g(H0, k)
weakly or strongly extends as a C∗isomorphism from L∞(Σ, (pM)∗ (dk)) into the Von
Neumann algebra (U0)′′. The family (1Ω(H0, k)) for Ω Borel subset of Σ satisfies

1Ω1(H0, k)1Ω2(H0, k) = 1Ω1∩Ω2(H0, k)

so that the next definition makes sense.

Definition 2.10. The projection valued measure Ω → 1Ω(H0, k) will be denoted by µ0.
With any Borel function g on Σ, will be associated the operator

g(H0, k) :=

∫
Σ

g(λ, k)dµ0(λ, k), (2.16)

with D(g(H0, k)) =

{
ψ ∈ H,

∫
Σ

|g(λ, k)|2d(ψ, µ0(λ, k)ψ) <∞
}
. (2.17)

The first result is concerned with the asymptotic observables associated with a class
of continuous functions on Σ.

Theorem 2.11. For any g ∈ C0
0(Σ), the strong limit

s-lim
t→+∞

eitHg(H0, k)e−itH1c(H) =: g(H, k+)c (2.18)

exist. These limits form a commutative C∗algebra U+ with spectrum Σ\p−1
R (σpp(H0)).

Moreover the limit (2.18) equals gR(H)1c(H) if g(λ, k) = gR(λ) depends only on λ.

Remark 2.12. The index c recalls that our definition of g(H, k+)c includes the projection
on the continuous spectrum of H.
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Corollary 2.13. If condition (2.2) holds, then σpp(H0) is empty and the spectrum of U+

is equal to whole Σ.

The family of projections indexed by open subsets Ω of Σ and defined by

1Ω(H, k+)c = sup{g(H, k+)c, g ∈ C0
0(Σ), g ≤ 1Ω},

satisfies
1Ω1(H, k

+)c1Ω2(H, k
+)c = 1Ω1∩Ω2(H, k

+)c.

Hence we can introduce the

Definition 2.14. The projection valued measure Ω → 1Ω(H, k+)c, whose definition ex-
tends to any Borel set Ω ⊂ Σ, will be denoted by µ+. With any Borel function g on Σ,
will be associated the operator

g(H, k+)c :=

∫
Σ

g(λ, k)dµ+(λ, k), (2.19)

with D(g(H, k+)c) =

{
ψ ∈ H,

∫
Σ

|g(λ, k)|2d(ψ, µ+(λ, k)ψ) <∞
}
. (2.20)

Remark 2.15. One easily checks that this definition is compatible with the previous result,

that µ+ is null on Σ \ Σ\p−1
R (σpp(H0)) and that g(H, k+)c is 0 on 1pp(H)H.

The asymptotic projection 1Σreg(H, k+)c is of particular importance, especially in the
long range case. The states in its range have rather good propagation properties and
should be considered as ”regular” states. We next introduce the velocity observable asso-
ciated to the function v given by Definition 2.2.

Definition 2.16. The velocity observable associated with H0 is the vector of commuting
self-adjoint operators vH0 := v(H0, k). The asymptotic velocity observable (for positive
times) associated with H is the vector of commuting self-adjoint operators v+

H = v(H, k+)c.

Theorem 2.17. a) For any χ ∈ C∞comp(R), we have

χ(H)v+
H = s-lim

t→+∞
eitHχ(H0)vH0e

−itH1Σreg(H, k+)c.

b) For any function f ∈ C0
0(Rn), we have

s-lim
t→+∞

eitHf
(x
t

)
e−itH

[
1Σreg(H, k+)c + 1pp(H)

]
= f(v+

H).
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As we shall see in the proof, the first statement in Theorem 2.17 indeed comes at once
from the definition of vH0 while the second one is deeper. For the next two results, we
distinguish the short and long-range case. The main difference between these two cases
is: in short-range case, one is able to prove 1Σ\Σreg(H, k+)c = 0, or in other words that
all the states are regular; in the long-range case, this can be checked only in dimension
n = 1 or with artificial assumptions on the singularities of Σ.

Theorem 2.18. Assume Vl = 0. Then the following properties hold:

a) Asymptotic completeness : the wave operator

W+ = s-lim
t→+∞

eitHe−itH01c(H0)

exists and the system is asymptotically complete:

W+H = 1c(H)H.

Moreover we have

(W+)∗ = s-lim
t→+∞

eitH0e−itH1c(H)

and W+g(H0, k) = g(H, k+)cW
+, ∀g ∈ C0

0(Σ).

b) Existence and properties of the asymptotic velocity: for f ∈ C0
0(Rn), we have

s-lim
t→+∞

eitHf(
x

t
)e−itH = f(v+

H). (2.21)

c) If moreover the condition (2.2) holds, then the wave operator equals

W+ = s-lim
t→+∞

eitHe−itH0 .

Part b) in Theorem 2.18 is the justification of the common idea that the velocity of a
particle in a periodic potential is given by the gradient of the eigenvalues of H0(k). Note
that this results holds in the presence of perturbations. In the long-range case one has
to introduce modifiers e−iS(t,H0,k) commuting with H0 in order to define modified wave
operators. Their construction, which will be completely done in Section 4, is local on Σ
and involves solutions of Hamilton-Jacobi equations. The asymptotic velocity result is
the one given in Theorem 2.17.

Theorem 2.19. The limit

W+ := s-lim
t→+∞

eitHe−iS(t,H0,k)1c(H0)
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exists and its range coincide with the range of 1Σreg(H, k+)c. Moreover we have

(W+)∗ = s-lim
t→+∞

eiS(t,H0,k)e−itH1Σreg(H, k+)c,

and W+g(H0, k)(W+)∗ = g(H, k+)c, ∀g ∈ C0
0(Σ\p−1

R (σpp(H0)) ∩ Σreg).

Finally, if the condition (2.2) holds, then the modified wave operator equals

W+ = s-lim
t→+∞

eitHe−iS(t,H0,k).

In the sequel, we shall prove these results in a more general case where the operator
Vl(−Dk) is replaced by a general self-adjoint element Vl(k,Dk) ∈ OpS−µ(M). With this,
the reader will be convinced that the important condition is not that the symbol Vl(−η)
(the complete symbol is well defined on the torus) does not depend on k but rather that it
is fiberwise scalar. All the proofs and the previous results carry over to the more general
framework proposed in [12] with M equal to a compact real analytic manifold or to Rn.
In this general situation, the manifold M has to be endowed with a Riemannian structure,
the operator R is nothing but the square root of 1−∆M , with ∆M equal to the Laplace-
Beltrami operator, and the operator Dk has to be replaced at some points by −i times
the gradient. Due to the lack of applications of this general framework, we prefer to stick
to the case where M = Tn∗ and to avoid additional definitions.

3 Effective time-dependent dynamic

and asymptotic observables

As we said just above, the perturbation V is the sum of the short-range part Vs and
a self-adjoint scalar pseudo-differential operator Vl(k,Dk). The first step of the time-
dependent approach consists in introducing an effective dynamic associated with some
time-dependent Hamiltonian. We set

Vl(t, k,Dk) := F (
R

t
log t ≥ 1)Vl(k,Dk)F (

R

t
log t ≥ 1), for t ≥ 1.

One easily checks that such an operator belongs to OpS
1
t
, −µ′(M), for any µ′ < µ, so that

the estimates below follow at once from pseudo-differential calculus

adA Vl(t, k,Dk) = Oµ′(t
−µ′),

and ad(H0+i)−1 Vl(t, k,Dk) = Oµ′(t
−1−µ′), ∀µ′, 0 < µ′ < µ.

Here and in the sequel, we drop the index I and the operator A has to be understood as
any AI . The effective Hamiltonian is defined by

H(t) := H0 + Vl(t, k,Dk)

12



Definition 3.1. The unitary propagator U(t, 0) associated with H(t) will be denoted by
U1(t)

Proposition 3.2. For all g ∈ C0
0(Σ) the norm-limit

lim
t→+∞

U1(t)∗g(H0, k)U1(t) (3.1)

exists. Moreover we have:

a) There exist a unique densely defined self-adjoint operator H+
1 on H so that the limit

(3.1) equals gR(H+
1 ) for g(λ, k) = gR(λ) ∈ C0

0(R).

b) The set of limits (3.1) defines a commutative C∗algebra with spectrum Σ, denoted by
U+

1 .

Proof : By density, the function g can be chosen as the restriction to Σ of some element
of C∞comp(R×M), still denoted by g. Then it is clear using (2.7) that g(H0, k) belongs to
C∞comp(M ;L(H′)) and pseudo-differential calculus yields∥∥∥[g(H0, k), Vl(t, k,Dk)]

∥∥∥ = O(t−1−µ′).

Hence, the derivative of (3.1) is norm-integrable and the limit exists. The construction
of H+

1 is standard (see for example [8]) and the density of its domain is a consequence of
the norm convergence. For b), we note that the representation of C0

0(Σ) given by (3.1) is
faithful again due to the norm convergence.
¿From this result, we can construct a projection valued measure by the standard process

recalled in Paragraph 2.3 (definition of µ+).

Definition 3.3. The projection valued measure derived from the limits (3.1) will be de-
noted by µ+

1 and we set for any Borel function on Σ

g(H+
1 , k

+
1 ) :=

∫
Σ

g(λ, k)dµ+
1 (λ, k), (3.2)

with D(g(H1, k
+
1 ))) =

{
ψ ∈ H,

∫
Σ

|g(λ, k)|2d(ψ, µ+
1 (λ, k)ψ) <∞

}
. (3.3)

Propagation estimates given in Proposition 2.8 are also valid for U1(t) (see Appendix
A.1): for any χ ∈ C∞comp(R \ τ), we have∫ ∞

1

∥∥∥∥F (Rt ≤ ε0

)
χ(H0)U1(t)u

∥∥∥∥2
dt

t
≤ C ‖u‖2 , ∀u ∈ H (3.4)

and s-lim
t→+∞

F

(
R

t
≤ ε0

)
χ(H0)U1(t) = 0. (3.5)

For the next result, we will also need the

13



Lemma 3.4. For all χ ∈ C∞comp(R), the following estimates hold.

i)
[
χ(H), F

(
R
t
≥ ε0

)]
= O(t−1).

ii) (χ(H)− χ(H0))F
(
R
t
≥ ε0

)
= O(t− inf{1,µ,µs}).

Proof : Using formula (2.7), the problem is reduced to getting estimates with χ(H)
(resp. χ(H0)) replaced by the resolvent (z −H)−1 (resp. (z −H0)−1). We have[

(z −H)−1, F

(
R

t
≥ ε0

)]
= (z −H)−1

[
H0, F

(
R

t
≥ ε0

)]
(z −H)−1

+ (z −H)−1

[
Vl, F

(
R

t
≥ ε0

)]
(z −H)−1

+ (z −H)−1

[
Vs, F

(
R

t
≥ ε0

)]
(z −H)−1.

The first term writes

−(z −H)−1(H0 + i)

[
(H0 + i)−1, F

(
R

t
≥ ε0

)]
(H0 + i)(z −H)−1

and its norm is estimated via pseudo-differential calculus by O(t−1) 〈z〉
2

| Im z|2 . If F1 is a
function like F with F1 ≡ 1 on suppF , then the commutator in the second term equals[

Vl, F

(
R

t
≥ ε0

)]
F1

(
R

t
≥ ε0

)
+ F

(
R

t
≥ ε0

)[
Vl, F1

(
R

t
≥ ε0

)]
and pseudo-differential calculus ensures that its norm is O(t−1−µ). For the third one, we
simply use∥∥∥∥F (Rt ≥ ε0

)
Vs(z −H)−1

∥∥∥∥ ≤ Ct−1−µ ∥∥R1+µVs(H + i)−1
∥∥ ‖(H + i)(z −H)−1‖.

The statement ii) relies on the same arguments applied to

[
(z −H)−1 − (H0 + i)−1

]
F

(
R

t
≥ ε0

)
=

− (z −H)−1

(
(Vs + Vl)(H0 + i)−1F

(
R

t
≥ ε0

))
.
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Proposition 3.5. The limits

s-lim
t→+∞

eitHU1(t)1R\τ (H
+
1 ) =: W+

1 (3.6)

and s-lim
t→+∞

U1(t)∗e−itH1c(H) (3.7)

exist. Moreover the limit (3.7) equals (W+
1 )∗. Finally, the wave operator W+

1 defines a
unitary transformation from 1R\τ (H

+
1 )H onto 1c(H)H and we have

W+
1 H

+
1 (W+

1 )∗ = H1c(H). (3.8)

Proof : The existence of the limits (3.6) and (3.7) rely on the same argument and we
shall only consider the existence of (3.7). We choose u ∈ 1c(H)H. By density, we can
assume u = χ2(H)u with χ ∈ C∞comp(R\σpp(H) ∪ τ). We have

U1(t)∗e−itHu = U1(t)∗χ2(H)e−itHu = U1(t)∗F

(
R

t
≥ ε0

)
χ2(H)e−itHu+ o(1),

owing to Proposition 2.8. Lemma 3.4 then implies

U1(t)∗e−itHu = U1(t)∗χ(H0)F

(
R

t
≥ ε0

)
χ(H)e−itHu+ o(1).

We introduce the Heisenberg derivative

D1B =
∂

∂t
+ iH(t)B − iBH

and we get

D1

[
χ(H0)F

(
R

t
≥ ε0

)
χ(H)

]
=

− χ(H0)
R

t2
F ′
(
R

t
≥ ε0

)
χ(H) + χ(H0)

[
H0, iF

(
R

t
≥ ε0

)]
χ(H)

+ [χ(H0), iVl(t, k,Dk)]F

(
R

t
≥ ε0

)
χ(H)

+ χ(H0)

[
iVl(t, k,Dk), iF

(
R

t
≥ ε0

)]
χ(H)

+ χ(H0)F

(
R

t
≥ ε0

)
(iVl(t, k,Dk)− iV )χ(H).
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By pseudo-differential calculus, the third and fourth terms are O(t−1−µ′), with 0 < µ′ < µ.
The last term equals for large enough t

χ(H0)iF

(
R

t
≥ ε0

)[
Vs + Vl

(
F

(
R

t
log(t) ≥ ε0

)
− 1

)]
χ(H)

= χ(H0)iF

(
R

t
≥ ε0

)
VlF

(
R

t
log(t) ≤ ε0

)
χ(H) +O(t−1−µs)

= χ(H0)

[
F

(
R

t
≥ ε0

)
, Vl

]
F

(
R

t
log(t) ≤ ε0

)
χ(H) +O(t−1−µs)

= O(t−1−inf(µ′,µs)).

For the second term we set χ̃(u) = (u+ i)χ(u) and we choose some cut-off F (u = ε0) ∈
C∞comp((C−1ε0, Cε0)) with C > 1 chosen so that F (u = ε0) ≡ 1 on suppF ′(u ≥ ε0). We
have

χ(H0)

[
H0, iF

(
R

t
≥ ε0

)]
χ(H)

= −iχ̃(H0)

[
(H0 + i)−1, F

(
R

t
≥ ε0

)]
(H0 + i)χ(H)

= −iχ̃(H0)

[
(H0 + i)−1, F

(
R

t
≥ ε0

)]
[χ̃(H)− V χ(H)]

= −iχ̃(H0)F

(
R

t
= ε0

)
1

t
∇k

[
(H0(k) + i)−1

] Dk

R
F ′
(
R

t
≥ ε0

)
F

(
R

t
= ε0

)
◦ [χ̃(H)− V χ(H)] +O(t−2)

= −iχ̃(H0)F

(
R

t
= ε0

)
1

t
∇k

[
(H0(k) + i)−1

] Dk

R
F ′
(
R

t
≥ ε0

)
F

(
R

t
= ε0

)
χ̃(H)

+O(t−1−inf(µ′,µs)).

Hence the complete Heisenberg derivative writes

D1

[
χ(H0)F

(
R

t
≥ ε0

)
χ(H)

]
= χ̃(H0)F

(
R

t
= ε0

)
B(t)

t
F

(
R

t
= ε0

)
χ̃(H)

+O(t−1−inf(µ′,µs))

with ‖B(t)‖ = O(1). By referring to Proposition 2.8, to the propagation estimate (3.4)
for U1 and to the version of the Cook method recalled in Lemma A.2 b), we conclude
that the observable χ(H0)F

(
R
t
≥ ε0

)
χ(H) is integrable along the evolution. Thus the

limit of U1(t)e−itHu as t → +∞ exists. Let W̃+
1 denote the limit (3.7). The fact that

W̃+
1 = (W+

1 )∗ will follow from the properties:

W+
1 H ⊂ 1c(H)H (3.9)

and W̃+
1 H ⊂ 1R\τ (H

+
1 )H. (3.10)
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For E ∈ σpp(H), ψE ∈ H so that HψE = EψE and u ∈ 1R\τ (H
+
1 )H, we have

(ψE,W
+
1 u) = lim

t→+∞
e−itE(ψE, U1(t)u).

As a consequence of the minimal velocity estimate (3.5) for U1(t), U1(t)u weakly converges
to 0 and this yields (3.9). Let us consider (3.10). We first check that the convergence

s-lim
t→+∞

U1(t)∗ (χ(H0)− χ(H)) e−itH1c(H) = 0, (3.11)

holds for any function χ ∈ C∞comp(R\(τ ∪σpp(H))). Indeed for χ̃ ∈ C∞comp(R\(τ ∪σpp(H))),
we infer from the minimal velocity bound for H stated in Proposition 2.8 and from Lemma
3.4 ii) that

s-lim
t→+∞

U1(t)∗ (χ(H0)− χ(H)) e−itH χ̃(H)

= s-lim
t→+∞

U1(t)∗ (χ(H0)− χ(H))F

(
R

t
≥ ε0

)
e−itH χ̃(H) = 0.

This yields the strong convergence of (3.11). This and the definition of H+
1 ensure that

W̃+
1 χ(H) = χ(H+

1 )W̃+
1 , χ ∈ C∞comp(R). (3.12)

Since 1c(H) = 1R\τ (H)1c(H), we get that

W̃+
1 = W̃+

1 1c(H) = 1R\τ (H
+
1 )W̃+

1 ,

and therefore (3.10). The unitarity of W̃+
1 now follows at once: It is one to one as an

isometry and the surjectivity is a consequence of (3.6) and (3.7). This also gives W̃1 = W ∗
1

and the identity (3.8) comes from (3.12).

Next we shall prove Theorems 2.11 and 2.17 about asymptotic observables. Beside
the information that they bring about observables, these results are important for the
long-range problem. With them, one is able to develop a local analysis on Σ. We begin
with a Lemma which in the end allows the identification of the spectrum of U+.

Lemma 3.6. Let E be a countable subset of R, then the closure in Σ of Σ \ p−1
R (E ∪ τ)

equals Σ\p−1
R (σpp(H0)).

Proof : We first note that Σ \ p−1
R (E ∪ τ) ⊂ Σ\p−1

R (σpp(H0)) because σpp(H0) ⊂ τ .

If (λ0, k0) ∈ Σ does not belong to Σ \ p−1
R (E ∪ τ), then there exist I ∈ VR(λ0) and

W ∈ VM(k0) so that pR (I ×W ∩ Σ) is included in E ∪ τ . Since pR is continuous and
E ∪ τ is countable, we have necessarily pR (I ×W ∩ Σ) = {λ0}. Hence λ0 belongs to
σpp(H0). We have proved

Σ \ p−1
R (σpp(H0) ⊂ Σ \ p−1

R (E ∪ τ)
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and we conclude by taking the closure in Σ.

Proof of Theorem 2.11: The existence of (2.18) with g ∈ C0
0

(
Σ\p−1

R (τ ∪ σpp(H))
)

is a
direct consequence of Proposition 3.2 and Proposition 3.5. This limit equals

W+
1 g(H+

1 , k
+
1 )(W+

1 )∗. (3.13)

This result extends to any g ∈ C0
0(Σ) by noticing that

s-lim
n→∞

χn(H) = 1c(H),

for some sequence of functions χn ∈ C0
0 (R \ (σpp(H) ∪ τ)), 0 ≤ χn ≤ 1, which a.e. con-

verges to 1.Then we have

g(H, k+)c = s-lim
n→∞

g(H, k+)cχn(H).

Thus, the last statement of the Theorem is a consequence of (3.8). We next verify that
the C∗morphism

C0
0(Σ\p−1

R (σpp(H) ∪ τ)) 3 g → g(H, k+)c ∈ L(H)

defines a faithful representation of C0
0(Σ\p−1

R (σpp(H) ∪ τ)). This will imply that the

spectrum of U+ equals Σ\p−1
R (σpp(H) ∪ τ) = Σ\p−1

R (σpp(H0)), according to Lemma 3.6.
Indeed it is enough to check that this morphism is one to one, or∥∥g(H, k+)c

∥∥ ≥ sup
Σ\p−1

R (σpp(H)∪τ)

|g|, ∀g ∈ C0
0(Σ\p−1

R (σpp(H) ∪ τ)). (3.14)

By taking a sequence of functions χn as above, we get∥∥g(H, k+)c

∥∥ ≥ sup
n

∥∥χn(H)g(H, k+)c

∥∥ .
We refer to (3.13) while replacing g by χng and we recall that W+

1 is unitary from
1R\τ (H

+
1 )H onto 1c(H)H. We obtain∥∥χn(H)g(H, k+)c

∥∥ =
∥∥χn(H+

1 )g(H+
1 , k

+
1 )
∥∥ = sup

Σ\p−1
R (σpp(H)∪τ)

|χng|.

By combining the two previous inequalities and by taking the sup-limit as n → ∞, we
deduce (3.14).
Proof of Theorem 2.17: Let us first prove a). Since χ(H0)vH0 is a bounded operator,

since we have
1Σreg(H, k+)c = 1Σreg(H, k+)c1R\τ (H)1c(H)
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and since 1Σreg\p−1
R (σpp(H)∪τ) is the pointwise limit of a sequence in C0

0

(
Σreg\p−1

R (σpp(H) ∪ τ)
)
,

the quantity 1Σreg(H, k+)c can be replaced by g(H, k+)c with g ∈ C0
0

(
Σreg\p−1

R (σpp(H) ∪ τ)
)
.

With Theorem 2.11, we get

s-lim
t→+∞

eitHχ(H0)vH0e
−itHg(H, k+)c = s-lim

t→+∞
eitHχ(H0)v(H0, k)g(H0, k)e−itH

= χ(H)v(H, k+)cg(H, k+)c

because v is smooth on Σreg.
Let us now prove b). By the density of C∞comp(Rn) in C0

0(Rn), we can assume f ∈
C∞comp(Rn). Then we note that we have, for such a function, the estimate

sup
x∈Rn

∣∣∣∣f (xt )− f
(

[x]

t

)∣∣∣∣ = Of (
1

t
).

As a consequence, the time-dependent observable f(x
t
) can be replaced by f( [x]

t
), which

becomes f
(
−Dk

t

)
after conjugating with the Floquet-Bloch transformation. One easily

checks

s-lim
t→+∞

eitHf

(
−Dk

t

)
e−itH1pp(H) = f(0)1pp(H).

By its definition, v+
H satisfies

v+
H1pp(H) = 0,

which shows that

s-lim
t→+∞

eitHf

(
−Dk

t

)
e−itH1pp(H) = f(v+

H)1pp(H).

It remains to check that

s-lim
t→+∞

eitHf

(
−Dk

t

)
e−itH1Σreg(H, k+)c = f(v+

H)1c(H).

For the same reason as in the proof of a), 1Σreg(H, k+)c can be replaced by g4(H, k+)c with
g ∈ C0

0(Σreg\p−1
R (τ ∪σpp(H))). Since pR (supp g)∩ τ = ∅, we deduce from the construction

of the set τ given in [12] that |v(λ, k)| is bounded from below by a positive constant on
supp g. This implies

f(v+
H) = 0, for f ∈ C∞comp(B(0, ε0)), ε0 � 1.

Using the minimal velocity estimate in Proposition 2.8 leads to

s-lim
t→+∞

f

(
−Dk

t

)
e−itHg(H, k+)c = 0, f ∈ C∞comp(B(0, ε0)),
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for ε0 > 0 small enough. Thus it suffices to prove b) for f ∈ C∞comp(Rn\{0}). Proposition
3.5 and (3.13) reduce the problem to the existence of

s-lim
t→+∞

U1(t)∗f

(
−Dk

t

)
U1(t)g4(H+

1 , k
+
1 ). (3.15)

By taking a locally finite partition of unity on Σreg\p−1
R (τ ∪ σpp(H)), we can assume that

g is supported in some small enough neighborhood I0 × V0 of (λ0, k0) so that π(k) =
1I0(H0(k)) = 1{λ̃(k)}(k) and λ̃(k) are real analytic w.r.t. k ∈ V0. We introduce the

unitary propagator U2(t) generated by the time-dependent Hamiltonian

H2(t) = χ(k)λ̃(k)π(k) + Vl(t, k,Dk), (3.16)

with χ ∈ C∞comp(V0), χ ≡ 1 on supp g. Note that

H0g(H0, k) = χ(k)λ̃(k)π(k)g(H0, k). (3.17)

Moreover by pseudo-differential calculus, we have∥∥∥∥[g2(H0, k), f

(
−Dk

t

)]∥∥∥∥ = O(t−1) (3.18)

and
∥∥[g2(H0, k), Vl (t, k,Dk)

]∥∥ = O(t−1−µ′). (3.19)

We next apply Proposition 3.2 and estimate (3.18) so that the existence of the limit (3.15)
is equivalent to the one of

s-lim
t→+∞

U1(t)∗g2(H0, k)f

(
−Dk

t

)
g2(H0, k)U1(t).

Then we infer from (3.17),(3.19) the existence of

s-lim
t→+∞

U1(t)∗g(H0, k)U2(t) and s-lim
t→+∞

U2(t)∗g(H0, k)U1(t).

Hence, it suffices to check the existence of

s-lim
t→+∞

U2(t)∗g(H0, k)f

(
−Dk

t

)
g(H0, k)U2(t).

We first check the estimate∥∥∥(Dk + t∂k(χλ̃)(k)π(k)
)
U2(t)R−1

∥∥∥ = O(t1−µ
′
). (3.20)
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Let D2 denote the derivation ∂
∂t

+ i [H2(t), ] and let χ̃ belong to C∞comp(V0) so that χ̃ ≡ 1
on suppχ. We have

D2

(
Dk + t∂k(χλ̃)(k)π(k) + χ̃ [∂kπ(k), iπ(k)]

)
=

∂k(χλ̃)(k)π(k)− ∂k
(
χ(k)λ̃(k)π(k)

)
− ∂kVl(t, k,Dk)

− χ(k)λ̃(k)
[
π(k), [∂kπ(k), π(k)]

]
+ i
[
Vl(t, k,Dk), t∂k(χλ̃)(k)π(k) + χ̃ [∂kπ(k), iπ(k)]

]
.

By pseudo-differential calculus, the last term and ∂kVl(t, k,Dk) are O(t−µ
′
). The remain-

der equals

−χ(k)λ̃(k)
(
∂kπ(k) +

[
π(k), [∂kπ(k), π(k)]

])
= 0.

Indeed the relation π2(k) = π(k) yields

∂kπ(k) = ∂kπ
2(k) = ∂kπ(k)π(k) + π(k)∂kπ(k)

and π(k)∂kπ(k)π(k) = 0.

The estimate (3.20) is then derived by integrating from 0 to t. The assertion iii) of
Proposition B.3 provides the decomposition

f

(
−Dk

t

)
− f

(
∂k(χλ̃)(k)

)
= R1(t)

(
Dk

t
+ ∂k(χλ̃)(k)

)
+R2(t), (3.21)

with R1(t) = O(1), R2(t) = O(t−1) and therefore R1(t)Dk
t

= O(1). Since f(0) = 0 and
π(k)g(H0, k) = g(H0, k), we have

g(H0, k)

[
f

(
−Dk

t

)
− f

(
∂k(χλ̃)(k)π(k)

)]
g(H0, k)

= g(H0, k)

[
f

(
−Dk

t

)
− f

(
∂k(χλ̃)(k)

)
π(k)

]
g(H0, k)

= g(H0, k)R1(t)

[
Dk

t
+ ∂k(χλ̃)(k)π(k)

]
g(H0, k) +O(t−1).

The estimate (3.19) (with g2 replaced by g) provide the existence of

s-lim
t→+∞

U2(t)∗g(H0, k)U2(t).

Moreover we deduce from (3.20)∥∥∥∥g(H0, k)R1(t)

(
Dk

t
+ ∂k(χλ̃)(k)π(k)

)
U2(t)u

∥∥∥∥ = O(t−µ
′
), ∀u ∈ D(R).

21



By using (3.21), we get

s-lim
t→+∞

g(H0, k)

(
f

(
−Dk

t

)
− f

(
∂k(χλ̃)(k)π(k)

))
U2(t) = 0

and, going back to the evolution U1(t),

s-lim
t→+∞

U1(t)∗g(H0, k)

(
f

(
−Dk

t

)
− f

(
∂k(χλ̃)(k)π(k)

))
g(H0, k)U1(t)

= s-lim
t→+∞

U1(t)∗
(
f

(
−Dk

t

)
− f

(
∂k(χλ̃)(k)π(k)

))
g2(H0, k)U1(t) = 0.

Then Proposition 3.2 implies

s-lim
t→+∞

U1(t)∗g2(H0, k)f
(
∂k(χλ̃)(k)π(k)

)
g2(H0, k)U1(t)

= f(∂k(χλ̃)(k+
1 ))π(k+

1 )g4(H+
1 , k

+
1 )

and provides the existence and the expression of (3.15). Finally, this one is nothing but
f
(
v(H+

1 , k
+
1 )
)
g4(H+

1 , k
+
1 ) because χ ≡ 1 on supp g.

We close this section with the proof of the short-range result.
Proof of Theorem 2.18: Proposition 3.5 implies part a) of Theorem 2.18 because when
Vl = 0 we have U1(t) = e−itH0 and H+

1 = H0. Moreover it follows from part a) that:

g(H, k+)c = W+g(H0, k)(W+)∗ for all Borel functions g on Σ.

By the remark after Definition 2.2, we have 1Σ\Σreg(H0, k) = 0 and therefore 1Σ\Σreg(H, k+)c

= 0. Thus, part b) of Theorem 2.18 is a consequence of Theorem 2.17.

4 Existence of modified wave operators in the long-

range case

The first step of this analysis is the construction of local (on Σ) modified wave operators.
Let (λ0, k0) ∈ Σreg. We consider small neighborhoods Ω0 ∈ VΣreg(λ0, k0), I0 ∈ VR(λ0),

V0 ∈ VM(k0) and Ṽ0 ∈ VM(k0), so that Ω0 ⊂⊂ I0×V0 and V0 ⊂⊂ Ṽ0. Indeed I0 and Ṽ0 are
chosen so that π(k) = 1I0(H0(k)) = 1λ̃(k)(H0(k)) and λ̃(k) are real analytic w.r.t. k ∈ Ṽ0.

We take χ ∈ C∞comp(Ṽ0), χ ≡ 1 on V0. When Ṽ0 is small enough, it can be identified with
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some open subset of Rn and the construction of Appendix A.2 provides a solution to the
Hamilton-Jacobi equation{

∂tS0(t, k) = χ(k)λ̃(k) + χ(k) [ReVl] (t, k,−∂kS0(t, k)), k ∈ Ṽ0.
S0(T, k) = 0,

(4.1)

with the estimates for µ′ < µ

∂αk

(
S0(t, k)− tχ(k)λ̃(k)

)
= Oα(t1−µ

′
), ∀k ∈ Ṽ0, ∀α ∈ Nn. (4.2)

Note that we introduced the cut-off χ in order to have a global definition of S0(t, k): This
solution S0(t, .) belongs to C∞comp(M ; R) and is supported in Ṽ0 for all t ≥ T . If the variable
k is restricted to V0, then one can drop the cut-off χ in the estimates (4.2) in equation
(4.1) and all relations locally derived from this equation.

We will need some other propagation estimates. The expression U2(t) again denotes
the unitary propagator associated with the time-dependent Hamiltonian H2(t) given by
(3.16). For the sake of simplicity we assume T = 0, which can be done after changing the
time origin.

Lemma 4.1. Let g belong to C∞comp(I0 × V0) with supp g
∣∣∣
Σ
⊂ Ω0. Then we have∥∥(Dk + ∂kS0(t, k)) g(H0, k)U2(t)R−1
∥∥ = O(1), (4.3)

and
∥∥(Dk + ∂kS0(t, k)) g(H0, k)e−iS0(t,k)R−1

∥∥ = O(1). (4.4)

Proof : The estimate (4.4) is rather easy. Indeed the identity

Dke
−iS0(t,k) = e−iS0(t,k) (Dk − ∂kS0(t, k)) ,

implies

(Dk + ∂kS0(t, k)) g(H0, k)e−iS0(t,k) = g(H0, k)e−iS0(t,k)Dk

+ [Dk, g(H0, k)] e−iS0(t,k).

But since g ∈ C∞comp(I0 × V0), the commutator is bounded. This implies (4.4).
The proof of (4.3) is more involved. For g̃ ∈ C∞comp(I0× V0), with g̃ ≡ 1 on supp g, and

for p ∈ N we set
Gp := g̃2p(H0, k).

Pseudo-differential calculus yields

(Dk + ∂kS0(t, k)) g(H0, k) = g(H0, k)Gp (Dk + ∂kS0(t, k))Gp.
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Hence the problem is reduced to checking that

Fp(t) = U2(t)∗Gp (Dk + ∂kS0(t, k))GpU2(t)R−1

is uniformly bounded with respect to t ≥ 0 for some p ∈ N. It is clear that Fp(0) is
bounded. Meanwhile its derivative equals

F ′p(t) = U2(t)∗D2 [Gp (Dk + ∂kS0(t, k))Gp]U2(t)R−1,

where D2 is the Heisenberg derivative associated with H2(t). In the next calculation, the
expression Br(t) will generically denote a bounded operator of which the norm is O(t−r)
and µ′ will be some positive number smaller than µ. By notincing that Gpχ(k)π(k) = Gp

because supp g̃ ⊂ I0 × V0, we get

D2 (Gp (Dk + ∂kS0(t, k))Gp)
= i [Vl(t, k,Dk), Gp]

(
Dk + ∂kS0(t, k)

)
Gp + h. c.

+Gp

(
−∂kλ̃(k) + i [Vl(t, k,Dk), Dk + ∂kS0(t, k)] + ∂2

tkS0(t, k)
)
Gp

=: I1(t) + I2(t).

Pseudo-differential calculus combined with estimate (4.2) leads to

I1(t) = B1+µ′(t)Gp−1

(
Dk + ∂kS0(t, k)

)
Gp−1 +B1+µ′(t), for p ≥ 1 (4.5)

and I1(t) = Bµ′(t), for p = 0. (4.6)

For the second term I2(t), we first recall that the principal symbol of Vl(t, k,Dk) is real
so that

i [Vl(t, k,Dk), Dk + ∂kS0(t, k)] = −∂k ReVl(t, k,Dk) + ∂η ReVl(t, k,Dk)∂
2
kS0(t, k)

+B1+µ′(t).

By differentiating the Hamilton-Jacobi equation (4.1) with respect to k ∈ V0, we obtain:

∂2
tkS0(t, k) = ∂kλ̃(k) + ∂k ReVl(t, k,−∂kS0(t, k))− ∂η ReVl(t, k,−∂kS0(t, k))∂2

kS0(t, k).

The two previous identities imply

I2(t) = −Gp [∂k ReVl(t, k,Dk)− ∂k ReVl(t, k, ∂aS0(t, k))]Gp

+Gp [∂η ReVl(t, k,Dk)− ∂η ReVl(t, k,−∂kS0(t, k))] .∂2
kS0(t, k)Gp +B1+µ′(t).

By Proposition B.3, we have

(∂k ReVl(t, k,Dk)− ∂k ReVl(t, k, ∂aS0(t, k))) =

B1+µ′(t)(Dk + ∂kS0(t, k,Dk)) +B1+µ′(t),

(∂η ReVl(t, k,Dk)− ∂η ReVl(t, k,−∂kS0(t, k))) =

B2+µ′(t)(Dk + ∂kS0(t, k,Dk)) +B2+µ′(t),
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while (4.2) says that the norm of ∂2
kS0(t, k) is O(t). Hence the term I2(t) admits the same

decomposition as I1(t) in (4.5)(4.6). By going back to the definition of Fp(t), we obtain

F ′p(t) = B1+µ′(t)Fp−1(t) +B1+µ′(t) for p ≥ 1

and F ′0(t) = Bµ′(t).

By integrating and by induction, this yields

‖Fp(t)‖ ≤ Cpt
− inf{0,1−(p+1)µ′}.

We conclude by taking p ≥ [µ−1].

Proposition 4.2. The limits

s-lim
t→+∞

eitHe−iS0(t,k)1Ω0(H0, k)1c(H0) (4.7)

and s-lim
t→+∞

eiS0(t,k)e−itH1Ω0(H, k
+)c (4.8)

exist. If W+
Ω0

denotes the limit (4.7) then (4.8) equals (W+
Ω0

)∗. Moreover, we have:

W+
Ω0
g(H0, k)(W+

Ω0
)∗ = g(H, k+)c, g ∈ C0

0(Ω0).

Proof : By introducing some locally finite partition of unity on (I0 \ (τ ∪ σpp(H)))×V0,∑
j∈N g

2
j = 1, with gj ∈ C∞comp ((I0 \ (τ ∪ σpp(H)))× V0), we have

s-lim
N→∞

∑
j≤N

g2
j (H0, k)1Ω0(H0, k) = 1Ω0(H0, k)1c(H0)

and s-lim
N→∞

∑
j≤N

g2
j (H, k

+)c1Ω0(H, k
+)c = 1Ω0(H, k

+)c. (4.9)

Hence, it suffices to prove the existence of the limits

s-lim
t→+∞

eitHe−iS0(t,k)g2(H0, k)

and s-lim
t→+∞

eiS0(t,k)e−itHg2(H, k+)c = s-lim
t→+∞

eiS0(t,k)g2(H0, k)e−itH .

By the same method as in the proof of Theorem 2.17, the problem is reduced to the
existence of the limits

s-lim
t→+∞

U2(t)∗g(H0, k)e−iS0(t,k) (4.10)

and s-lim
t→+∞

eiS0(t,k)g(H0, k)U2(t). (4.11)
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We calculate

d

dt

(
eiS0(t,k)g(H0, k)U2(t)u

)
=

eiS0(t,k)
[
i∂tS0(t, k)g(H0, k)− ig(H0, k)

(
(χλ̃)(k)π(k) + Vl(t, k,Dk)

)]
U2(t)u

= ieiS0(t,k) [ReVl(t, k,−∂kS0(t, k))− ReVl(t, k,Dk)] g
2(H0, k)U2(t)u+O(t−1−µ′). (4.12)

We refer again to Proposition B.3 and write

(ReVl(t, k,−∂kS0(t, k))− ReVl(t, k,Dk)) = R1(t)(Dk + ∂kS0(t, k)) +R2(t)

with R1(t) = O(t−1−µ′) and R2(t) = O(t−2−µ′). By density we can take u ∈ D(R) and
Lemma 4.1 gives ∥∥ d

dt
eiS0(t,k)g(H0, k)U2(t)u

∥∥
≤ Ct−1−µ′ [‖u‖+ ‖(Dk + ∂kS0(t, k)) g(H0, k)U2(t)u‖]
≤ Ct−1−µ′ .

Thus we get the existence of the limit (4.11). We do the same for (4.10). The identification
of (4.11) as the adjoint of (4.10) and the last statement rely on the same arguments as the
one used for Proposition 3.5. Their proof is even simpler by referring to Theorem 2.11.

In order to construct a global modified dynamic, we take a locally finite covering of
Σreg = ∪j Ωj where the sets Ωj are “smooth enough” open subsets of Σreg which satisfy
the same properties as Ω0 introduced in the beginning of this Section and Ωj ∩ Ωj′ = ∅
for j 6= j′. The expression “smooth enough” means that the boundary ∂Ωj of Ωj is the
finite union of submanifolds of R×M with codimension 2. Such a covering can be done
with a triangulation each stratum of Σreg (which is a semi-analytic set of R ×M locally
diffeomorphic to M by projection). With every Ωj, we associate the solution Sj(t, k),
t ≥ Tj, of the Hamilton-Jacobi equation (4.1) where a suitable cut-off χj replaces χ.

Definition 4.3. The modifiers S(t,H0, k) is the self-adjoint operator defined by

S(t,H0, k) :=
∑
j

1[Tj ,+∞)(t)Sj(t, k)1Ωj(H0, k). (4.13)

Remark 4.4. We recall that the estimate (4.2) be made uniform with respect to j for
α = 0. This combined with

∑
j 1Ωj(H0, k) = 1 ensures that the domain of S(t,H0, k)

contains D(H0) (and equals D(H0) if Tj = T for all j).
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The Theorem 2.19 is now easily derived from its local form given in Proposition 4.2.
Proof of Theorem 2.19: We have

e−iS(t,H0,k) =
∑
j

e−iSj(t,k)1Ωj(H0, k).

The limit which defines the wave operator W+ exists because
∑

j 1Ωj(H0, k) = 1. For the
converse limit, we first note that for all j, we have 1∂Ωj(H0, k) = 0. By applying Proposi-
tion 4.2 with finitely many Ω0 which cover ∂Ωj, we deduce from this that 1∂Ωj(H, k

+)c = 0.
This implies ∑

j

1Ωj(H, k
+)c = 1Σreg(H, k+)c

and the existence of the second limit in Theorem 2.19 becomes a consequence its local
form (4.8).

A Some topics in scattering theory

In this appendix, we shall prove the minimal velocity estimates required in our analysis.
Then, we will detail the construction of the Hamilton-Jacobi equation (4.1).

A.1 Minimal velocity estimates

These abstract propagation estimates are due to Sigal-Soffer. We will follow the presen-
tation given in [8] and [11], and give a sharper version which we is needed here.

Proposition A.1. Let H and A be two self-adjoint operators on a separable Hilbert space
H. Let V (t) be a bounded time-dependent self-adjoint perturbation so that the unitary
propagator U(t) = U(t, 0), associated with the hamiltonian H(t) = H + V (t), is well-
defined.We suppose that:

i) The function s→ eisA(H + i)−1e−isA belongs to C1+ε(R,L(H)),

ii) ‖adA V (t)‖ = O(t−ε) and
∥∥ad(H+i)−1 V (t)

∥∥ = O(t−1−ε) as t→∞,

for some ε > 0. If ∆ denotes some interval so that

1∆(H) [H, iA] 1∆(H) ≥ c0E∆(H),

then we have for any g ∈ C∞comp(R), supp g ⊂ (−∞, c0) and any f ∈ C∞comp(∆)∫ +∞

1

∥∥g (A
t

)
f(H)U(t)u

∥∥2 dt

t
≤ C ‖u‖2 , ∀u ∈ H (A.1)

and s-lim
t→+∞

g
(
A
t

)
f(H)U(t) = 0. (A.2)
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The Heisenberg derivative d
dt

+ [H(t), i.] will be denoted D. We will use the next versions
of Putnam-Kato inequality and Cook method. The proof can be found in [8].

Lemma A.2. Let Φ be a uniformly bounded L(H)-valued C1-function on R+.

a) If there exist measurable L(H)-valued functions B(t) and Bi(t), i = 1 . . . n, so that

DΦ(t) = B∗(t)B(t)−
n∑
i=1

Bi(t)
∗Bi(t).

with for all i ∈ {1, . . . , n}∫ ∞
1

‖Bi(t)U(t)u‖2 dt ≤ C ‖u‖2 , ∀u ∈ H,

then there is a constant C1 > 0 so that∫ ∞
1

‖B(t)U(t)u‖2 dt ≤ C1 ‖u‖2 , ∀u ∈ H.

b) Let us assume that the function Φ satisfies

|(ψ2,DΦ(t)ψ1)| ≤
n∑
i=1

‖B2i(t)ψ2‖ ‖B1i(t)ψ1(t)‖ ,

with

∫ +∞

1

‖B2i(t)U(t)u‖2 dt ≤ C ‖u‖2 , ∀u ∈ H

and

∫ +∞

1

‖B1i(t)U(t)u‖2 dt ≤ C ‖u‖2 , ∀u ∈ D,

where D is a dense subset of H. Then, the limit

s-lim
t→+∞

U(t)∗Φ(t)U(t)

exists.

Proof of Proposition A.1: Let g ∈ C∞comp((−∞, c1)) with c1 < c0. We set

F (t) =

∫ +∞

s

g2(s1)ds1

and we consider the observable

Φ(t) = f(H)F
(
A
t

)
f(H).
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We next calculate DΦ(t). We have

DΦ(t) = f(H)
([
H, iF

(
A
t

)]
− A

t2
g2
(
A
t

))
f(H) +

[
V (t), if(H)F

(
A
t

)
f(H)

]
= f(H)

([
H, iF

(
A
t

)]
+
[
V (t), iF

(
A
t

)]
− A

t2
g2
(
A
t

))
f(H)

+ [V (t), if(H)]F
(
A
t

)
f(H) + h. c.

In order to estimate the last term, we use Helffer-Sjöstrand functional calculus (2.7) and
we reduce the problem to the estimate of commutators of V (t) with the resolvent (H+i)−1.
Our assumptions on V (t), imply that the norm of this commutator is O(t−1−ε). By using
supp g ⊂ (−∞, c1), we get

DΦ(t) ≥ f(H)
[
H, iF

(
A
t

)]
f(H) + f(H)

[
V (t), iF

(
A
t

)]
f(H)− c1

1

t
g2
(
A
t

)
+O(t−1−ε).

For the commutators with F
(
A
t

)
, it is convenient to introduce the Fourier transform of

F : [
C, iF

(
A
t

)]
=

1

2π

∫
R
F̂ (σ)

[
C, ieiσ

A
t

]
dσ

=
1

2πt

∫
R
F̂ (σ)σeiσ

A
t

∫ 1

0

e−iσθ
A
t [C, iA] eiσθ

A
t dθdσ

=
1

2πt

∫∫∫
R2×[0,1]

[ĝ(σ − σ′)ĝ(σ′)] eiσ(1−θ)A
t [C, iA] eiσθ

A
t dθdσdσ′

=
1

2πt

∫∫∫
R2×[0,1]

[ĝ(σ)ĝ(σ′)] ei(σ+σ′)(1−θ)A
t [C, iA] ei(σ+σ′)θ

A
t dθdσdσ′. (A.3)

By taking C = V (t), we get [
V (t), iF

(
A
t

)]
= O(t−1−ε).

For C = (H + i)−1, our assumptions says that

R 3 s→ B(s) = eisA
[
(H + i)−1, iA

]
e−isA ∈ L(H)

is Hölder contiunous with order ε > 0. Hence we have the identity

ei(σ+σ′)(1−θ)A
t B(0)ei(σ+σ′)θ

A
t = eiσ

A
t B
(
σθ+(1−θ)σ′

t

)
eiσ
′A
t

= eiσ
A
t B(0)eiσ

′A
t +O

((
σθ+(1−θ)σ′

t

)−ε)
and we deduce from (A.3)

(H+ i)−1[H, iF A
t
](H+ i)−1 =

1

t
g
(
A
t

)
(H+ i)−1 [H, iA] (H+ i)−1g

(
A
t

)
+O(t−1−ε). (A.4)
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Further, one easily checks, with Helffer-Sjöstrand formula and the equality (A.3), the
estimate [

g
(
A
t

)
, h(H)

]
= O(t−1), ∀h ∈ C∞comp(R). (A.5)

By left- and right- multiplying (A.4) with h(H) = f(H)(H + i) the previous estimate
(A.5) leads to

f(H)
[
H, iF (A

t
)
]
f(H) =

1

t
f(H)g

(
A
t

)
[H, iA] g

(
A
t

)
f(H) +O(t−1−ε).

We use again (A.5) with h = f1, f1 ∈ C∞comp(∆) and f1f ≡ f :

f(H)
[
H, iF

(
A
t

)]
f(H) =

1

t
f(H)g

(
A
t

)
f1(H) [H, iA] f1(H)g

(
A
t

)
f(H) +O(t−1−ε)

≥ c0
1

t
f(H)g2

(
A
t

)
f(H) +O(t−1−ε).

We have proved

DΦ(t) ≥ (c0 − c1)
1

t
f(H)g2

(
A
t

)
f(H) +O(t−1−ε).

This and Lemma A.2 a) yields (A.1). The existence and the value of the strong limit (A.2)
comes from the previous result: We calculate the Heisenberg derivative of f(H)g2

(
A
t

)
f(H).

With the inequality (A.1) and Lemma A.2 b), we obtain the existence of the strong limit

s-lim
t→+∞

U(t)∗f(H)g2
(
A
t

)
f(H)U(t).

Finally, this one has to be zero because the integral (A.1) is convergent.

Indeed, the estimates (A.1) and (A.2) are not very satisfactory because the conjugate
operator is not explicit, by its construction given in [12]. However, it can be estimated
by more familiar observables. This point of view is the reason for the next statements.

Lemma A.3. Let A and B be two self-adjoint operators on a separable Hilbert space H
so that

D(B) ⊂ D(A),

A ≤ cB and 1 ≤ B,

[A,B]B−1 ∈ L(H).

Then there exist small enough constants c0 > 0 and ε0 > 0 so that∥∥∥∥F (Bt ≤ ε0

)
F

(
A

t
≥ c0

)∥∥∥∥ = O(t−1).
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Proposition A.1 and the above Lemma A.3, lead to

Proposition A.4. If H, A and B are three self-adjoint operators on H which satisfy the
assumptions of Proposition A.1 and Lemma A.3, then we have for any f ∈ C∞comp(∆) and
for ε0 > 0 small enough,∫ +∞

1

∥∥F (B
t
≤ ε0

)
f(H)U(t)u

∥∥2 dt

t
≤ C ‖u‖2 , ∀u ∈ H (A.6)

et s-lim
t→+∞

F
(
B
t
≤ ε0

)
f(H)U(t) = 0. (A.7)

Proof of Lemma A.3: Let us first verify[
G
(
B
t

)
, A
]

= O(1) (A.8)

for G ∈ C∞comp(R). We use again Helffer-Sjöstrand formula (2.7) which gives

[
G
(
B
t

)
, A
]

=
1

2πi

∫
C
∂z̄G̃(z)

[(
z − B

t

)−1

, A

]
dz ∧ dz̄

=
1

2πi

∫
C
∂z̄G̃(z)

(
z − B

t

)−1 [
B

t
,A

]
B−1B

(
z − B

t

)−1

dz ∧ dz̄

where G̃ is an almost analytic extension of G which satisfies

|∂αz̄,z∂z̄G̃(z)| ≤ CN,α| Im z|N 〈z〉−N , ∀N ∈ N, α ∈ N2.

We have
∥∥(z − B

t
)−1
∥∥ = O(Im z) while

∥∥B(z − B
t
)−1
∥∥ = O

(
t 〈z〉
| Im z|

)
.

The estimate (A.8) now comes at once. Let R(t) and R1(t) respectively denote F
(
B
t
≤ ε0

)
and F

(
B
t
≤ 2ε0). We have R(t)R1(t) = R(t). Let A1(t) = R1(t)AR1(t)∗. For ε0 small

enough,

A1(t) ≤ cR1(t)BR1(t) ≤ 1

2
c0t

which yields F
(
A1(t)
t
≥ c0

)
= 0. It remains to check that

R

[
F

(
A

t
≥ c0

)
− F

(
A1(t)

t
≥ c0

)]
∈ O(t−1).
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We write F (s ≥ c0) = (s+ i)F−1(s) where F−1 satisfies |∂αs F−1(s)| ≤ Cα〈s〉−1−α. We take
some almost analytic extension F̃−1(z) of F−1 satisfying

|∂αz,z̄∂z̄F̃−1(z)| ≤ Cα,N | Im z|N 〈z〉−2−α−N N ∈ N, α ∈ N2,

and we write

R(t)

[
F

(
A

t
≥ c0

)
− F

(
A1(t)

t
≥ c0

)]
= R(t)

(
A

t
− A1(t)

t

)
F−1(

A

t
)

+R(t)

(
A1(t)

t
+ i

)[
F−1

(
A

t

)
− F−1

(
A1(t)

t

)]
.

By (A.8) with G
(
B
t

)
= F1

(
B
t
≤ ε0

)
, we estimate the first term by

R(t)

(
A

t
− A1(t)

t

)
= R(t)R1(t)

A

t
− R(t)R1(t)

A

t
R1(t) = R(t)

[
R1(t),

A

t

]
∈ O(t−1).

(A.9)

For the second term, we combine the above estimate with (A.8) and we get

R(t)

(
A1(t)

t
+ i

)[
F−1

(
A

t

)
− F−1

(
A1(t)

t

)]
=

(
A1(t)

t
+ i

)
R(t)

[
F−1

(
A

t

)
− F−1

(
A1(t)

t

)]
+O(t−1). (A.10)

By recalling that A1(t)
t

is uniformly bounded by 1
2
c0, we are lead to consider

R(t)

[
F−1

(
A

t

)
− F−1

(
A1(t)

t

)]
=

1

2πi

∫
C
∂z̄F̃−1(z)R(t)

[(
z − A

t

)−1

−
(
z − A1(t)

t

)−1
]
dz ∧ dz̄

=
1

2πi

∫
C
∂z̄F̃−1(z)R(t)

(
z − A

t

)−1(
A

t
− A1(t)

t

)(
z − A1(t)

t

)−1

dz ∧ dz̄.

We commute R(t) and the resolvent
(
z − A

t

)−1
:

R(t)

(
z − A

t

)−1

=

(
z − A

t

)−1

R(t)−
(
z − A

t

)−1 [
R(t),

A

t

](
z − A

t

)−1

and we conclude with (A.8) and (A.9).
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A.2 About the Hamilton-Jacobi equation

In order to construct modified wave operators in the long-range case, we need solutions
of Hamilton-Jacobi equations with Hamiltonians having the form

h(t, x, ξ) = E(ξ) + V (t, x, ξ)

where E belongs to C∞comp(Rn) et V ∈ C∞(R× T ∗Rn) satisfies∣∣∂αt ∂βx∂γξ V (t, x, ξ)
∣∣ ≤ Cαβγ 〈|ξ|+ |t|〉−µ+ε−|α|−|β| .

Theorem A.5. There exists T > 0 large enough so that the equation{
∂tS(t, ξ) = E(ξ) + V (t, ∂ξS(t, ξ), ξ)
S(T, ξ) = 0

(A.11)

admits a unique solution under the condition ∂2
ξS(t, ξ) ∈ L∞loc(Rn). This solution is then

infinitely differentiable with respect to ξ ∈ Rn and satisfies

∂αξ [S(t, ξ)− tE(ξ)] = O(t1−µ+ε), for |α| ≥ 0. (A.12)

In order to prove this result, we shall use the Theorem A.3.1 of [8] which says that
the solution are given by

S(t, ξ) = Q(t, η(t, ξ)) (A.13)

with Q(t, η) =

∫ t

T

h (u, x(u, η), ξ(u, η)) + 〈x(u, η), ∂uξ(u, η)〉 du, (A.14)

where (x(t, η), ξ(t, η)) is the solution to the Hamilton equations with the initial data
(x(T, η), ξ(T, η))
= (0, η). In order to define ξ → η(t, ξ), we have to study the Hamilton equation with
prescribed initial position and final momentum.

Proposition A.6. There exists T > 0 large enough so that there is a unique trajectory
in T ∗Rn which solves 

∂ty(t) = ∂ξh(t, y(t), η(t))
∂tη(t) = −∂xh(t, y(t), η(t))
y(t1) = x1, η(t2) = ξ2,

(A.15)

quand T ≤ t1 ≤ t2 ≤ +∞ et (x1, ξ2) ∈ T ∗Rn. This solution denoted by

(y(t; t1, t2, x1, ξ2), η(t; t1, t2, x1, ξ2))

is indeed infinitely differentiable with respect to ξ2 ∈ Rn and satisfies∣∣∂αξ2 (y(t; t1, t2, x1, ξ2)− x1 − (t− t1)∂ξE(ξ2))
∣∣ ≤ O(t−µ+ε

1 )|t− t1| (A.16)

and
∣∣∂αξ2 (η(t; t1, t2, x1, ξ2)∂ξE(ξ2))

∣∣ ≤ O(t−µ+ε
1 ), for α ≥ 0. (A.17)
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Proof : The local existence and uniqueness of a solution to the initial value problem
for the considered Hamilton equations makes no problem. For such a solution, we get by
differentiation {

∂2
t y(t) = Φ(t, y(t), η(t))
∂tη(t) = Ψ(t, y(t), η(t))

with Φ = ∂2
tξV + ∂ξxV ∂ξE + ∂ξxV ∂ξV − ∂2

ξE∂xV − ∂2
ξV ∂xV

and Ψ = −∂xV.

These functions actually satisfy∣∣∂αt ∂βx∂γξ Φ(t, x, ξ)
∣∣ ≤ Cαβγ 〈|ξ|+ |t|〉−1−µ+ε−|α|−|β|∣∣∂αt ∂βx∂γξ Ψ(t, x, ξ)
∣∣ ≤ Cαβγ 〈|ξ|+ |t|〉−1−µ+ε−|α|−|β| .

We set

Y (t) = y(t)− x1 − (t− t1)∂ξE(ξ2)

and Θ(t) = η(t)− ∂ξE(ξ2).

The system (A.15) is then equivalent to the fixed point problem(
Y
Θ

)
= P

(
Y
Θ

)
, (A.18)

where the mapping P is given by

P
(
Y
Θ

)
(t) =

(
−
∫ t
t1

(s− t1)Φ(s, y(s), η(s))ds− (t− t1)
∫ t2
t

Φ(s, y(s), η(s))ds

−
∫ t2
t

Ψ(s, y(s), η(s))ds

)
.

We introduce the functions ζ0
t,t2

and ζ1
t,t1

defined by

ζ0
t,t2

(s) =


0 if s ≤ t
1 if t < s ≤ t2
0 if t2 < s

and ζ1
t,t1

(s) =


0 if s ≤ t1
(s− t1) if t1 < s ≤ t
(t− t1) if t < s

.

The mapping P then writes

P
(
Y
Θ

)
(t) =

(
−
∫ +∞
t1

ζ1
t,t1

(s)Φ(s, x1 + (s− t1)∂ξE(ξ2) + Y (s), ∂ξE(ξ2) + Θ(s))ds

−
∫ +∞
t1

ζ0
t,t2

(s)Ψ(s, x1 + (s− t1)∂ξE(ξ2) + Y (s), ∂ξE(ξ2) + Θ(s))ds

)
.

We shall solve the fixed point problem in the vector space Z1
t1
× Z0

t1
where

Zi
t1

:=

{
f ∈ C0([t1,+∞), Rn), sup

t∈[T,∞

|f(t)|
|t− t1|i

<∞

}
, i = 0, 1,
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is endowed with its natural norm. The functions ζ0
t,t2

(s) et ζ1
t,t1

(s) satisfy

0 ≤ ζ0
t,t2
≤ 1 and 0 ≤

ζ1
t,t1

|t− t1|
≤ 1,

so that P is an endomorphism of Z1
t1
× Z0

t1
. Moreover the estimates on Φ and Ψ ensure

that P is infinitely Fréchet-differentiable with a derivative estimated by

‖∂Y,ΘP(Y,Θ)‖L(Z1
t1
×Z0

t1
) ≤ Ct−µ+ε

1 .

By taking t1 large enough, the mapping P is a contraction on Z1
t1
×Z0

t1
and the fixed point

problem (A.18) admits a unique solution. Indeed, P is parametrized by (x1, ξ2) and the
derivative of the solution (Ỹ (x1, ξ2), Θ̃(x1, ξ2)) of (A.18) with respect to ξ2 ∈ Rn equals[

− (1− ∂Y,ΘP)−1 ∂ξ2P
]

(Ỹ (x1, ξ2), Θ̃(x1, ξ2)).

By referring again to the estimates for Φ and Ψ we deduce that ∂ξ2P is of order O(t−µ+ε
1 )

and the estimates (A.16)(A.17) come at once for |α| ≤ 1. The estimates for any α follow
by differentiating with respect to ξ2 ∈ Rn the above relation.

Proof of Theorem A.5: The function η(t, ξ) involved in (A.13) is constructed by consid-
ering the solution to (A.15) with t1 = T large enough, t2 = t, x1 = 0 and ξ2 = ξ. We then
take η(t, ξ) = η(t;T, t, 0, ξ), where the estimate (A.17) ensures that η(t, ξ) is Lipschitz con-
tinuous with respect to ξ ∈ Rn. The Theorem A.3.1 of [8] states that the function S(t, ξ)
given by (A.13) and (A.14) is the unique solution to (A.11) with ∂2

ξS(t, ξ) ∈ L∞loc(Rn).
Moreover this result provides the identity

∂ξS(t, ξ) = x(t, η(t, ξ)) = y(t;T, t, 0, ξ).

The estimate (A.12) is then easily derived by integration

∂t∂
α
ξ [S(t, ξ)− tE(ξ)] = ∂αξ [V (t, ∂ξS(t, ξ), ξ)]

from t to +∞, by using the estimates on V and (A.16).

B Pseudo-differential calculus on the torus

There are several ways of considering pseudo-differential calculus on the torus. The one
which we point out consists in going back to Rn and using Weyl-Hörmander calculus. This
method presents two advantages:1) this procedure associates a complete symbol with any
pseudo-differential operator; 2) the precise estimates of Weyl-Hörmander calculus provides
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estimates for parameter dependent pseudo-differential operators (semi-classical calculus).
The final remark reviews other approaches and relationships between them. Let Γ denote
the lattice Zn in Rn and Γ∗ = (2πZn) its dual lattice. The distribution on Tn = Rn/Γ
will be identified with the Γ-periodic elements u(k) of S ′(Rn),

u(k + γ) = u(k), ∀γ ∈ Γ.

Then we have

Hs(Tn) := {u(k) ∈ Hs
loc(Rn), u(k + γ) = u(k), ∀γ ∈ Γ} ,

and the scalar product on L2(Tn, dk) is given by

(u, v)L2(Tn) =

∫
F

ū(k)v(k)dk,

where F is any fixed fundamental cell of Γ.
The pseudo-differential operators are defined by

a(k,Dk)u(k) =

∫∫
R2n

e−i(k−k
′)ηa(k, η)u(k′)d̄ηdk′

with a ∈ S
(
〈η〉m, gη = dk2 + dη2

〈η〉2

)
and

[τγ, a(k,Dk)] = 0, ∀γ ∈ Γ.

Note that the last condition is equivalent to a(k+γ, η) = a(k, η), ∀γ ∈ Γ. These operators
send S ′(Rn) into itself and preserve periodicity. Thus they can be considered as continuous
operators on D′(Tn).

Definition B.1. i) The expression OpSm(Tn) denotes the space of operators a(k,Dk)
where the symbol a belongs to C∞(T ∗Tn) and satisfies∣∣∣∂αx∂βξ a(x, ξ)

∣∣∣ ≤ Cα,β 〈ξ〉m−|β| , ∀(x, ξ) ∈ T ∗Tn,∀(α, β) ∈ N2n.

ii) The expression OpSh,m(Tn) denotes the space of families (a(k,Dk;h))h∈(0,1 where the
symbols a(h) satisfy the estimates∣∣∣∂αx∂βξ a(x, ξ)

∣∣∣ ≤ Cα,βh
|β|−m 〈ξ〉m−|β| , ∀(x, ξ) ∈ T ∗Tn,∀(α, β) ∈ N2n,

uniformly with respect to h ∈ (0, 1).
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The symbols of these operators are defined on T ∗Rn as Γ periodic elements of

S
(
〈η〉m, gη = dk2 + dη2

〈η〉2

)
and the # operation defined by (a#b)(k,Dk) = a(k,Dk)b(k,Dk)

inherits all the properties of the same operation defined for general symbols on T ∗Rn (see
[14]).

We next check the L2 continuity on Tn.

Lemma B.2. If a ∈ S(〈η〉m, gη), then the operator a(k,Dk) is continuous from Hs(Tn)
into Hs−m(Tn) for any s ∈ R. Moreover its norm is estimated by some fixed semi-norm
of the symbol a.

Proof : It suffices to consider the case m = s = 0. A fixed fundamental cell of Γ is still
denoted by F and we choose χ ∈ C∞comp(Rn) a cut-off function so that χ ≡ 1 on F .

Then we have the norm equivalence

C−1 ‖u‖L2(Tn) ≤ ‖χu‖L2(Rn) ≤ C ‖u‖L2(Tn)

and it remains to find an estimate for ‖χa(k,Dk)u‖L2(Rn). We take χ0 ∈ C∞comp(Rn) so

that
∑

γ∈Γ χ0(k − γ) = 1 and χ̃0 ∈ C∞comp(Rn) so that χ̃0 ≡ 1 on suppχ0. By using the
periodicity of u, we get

[χa(k,Dk)u] (k) =
∑
|γ|≤γ0

[χ(k)a(k,Dk)χ0(k − γ)u] (k)

+
∑
|γ|>γ0

∫∫
R2n

ei(k−k
′+γ)ηχ(k)a(k, η)χ0(k′)χ̃0(k′)u(k′)d̄ηdk′.

(B.1)

For |γ| ≤ γ0, we refer to the continuity of a(k,Dk) on L2(Rn). For |γ| > γ0, integration
by parts applied to

Kγ(k, k
′) =

∫
Rn
ei(k−k

′+γ)ηχ(k)a(k, η)χ0(k′)d̄η

shows that Kγ is bounded, with some fixed compact support and the estimate

‖Kγ‖L∞(R2n) ≤ CN ‖a‖N 〈γ〉
−N

where ‖‖N is some seminorm on S(1, gη) depending on N . Schur’s Lemma then provides
the estimate for the second term of (B.1),

CN ‖a‖N
∑
|γ|>γ0

〈γ〉−N ≤ CN ‖a‖N

by taking N large enough.
¿From the definition that we took, we already know that the pseudo-differential operators
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form an algebra of continuous operators on D′(Tn). The above Lemma B.2 also ensures
that pseudo-differential operators are continuous on C∞(Tn). Moreover this yields that
the operator A = a(k,Dk) defined on L2(Tn) with domain {u ∈ L2(Tn), Au ∈ L2(Tn)} is
closed and that C∞(Tn) is a core for A.

Proposition B.3. i) If Ai belongs to OpSh,m1(Tn), i = 1, 2, with m1 +m2 ≤ 1, then we
have

‖[A1, A2]‖L(L2(Tn)) = O(h1−m1−m2).

ii) If A = (a(k,Dk;h))h∈(0,1) belongs to OpSh,m(Tn), then the family of adjoint operators

A∗ belongs to OpSh,m(Tn) and

A+ A∗

2
− (Re a(k,Dk;h))h∈(0,1) ∈ OpSh,m−1(Tn).

iii) If A = (a(k,Dk;h))h∈(0,1) belongs to OpSh,m(Tn) and if (hϕ(k;h))h∈(0,h0) is a bounded
family in C∞(Tn), then we have

a(k,Dk;h)− a(k, ϕ(k;h);h) = R1(h) (Dk − ϕ(k;h)) +R2(h) (B.2)

with ‖R1(h)‖L(L2(Tn)) = O(h1−m) et ‖R2(h)‖L(L2(Tn)) = O(h1−m).

iv) The operator V (Dk) defined as the closure on L2(Rn) of an element of OpSm(Tn), is
the same as the operator defined by functional calculus.

Proof : If u and v taken in C∞(Tn) are considered as Γ-periodic elements of C∞(Rn)
and A = a(k,Dk) as an element of OpSm(Rn), the periodicity condition ensures that∫

F

u(k)[Av](k)dk =

∫
F

[A†u](k)v(k)dk,

where A† is the formal adjoint of A on L2(Rn). Hence, the assertions i) and ii) are
byproducts of pseudo-differential calculus on Rn combined with Lemma B.2.

The assertion iii) is also derived from a result on Rn which may be found in [8] (use a
Taylor expansion).

Let us now consider iv). We first by Vpd(Dk) the closure of the pseudo-differential
operator and V (Dk) the function of the vector of commuting self-adjoint operators Dk.
For u ∈ C∞(Tn) considered as a Γ-periodic element of C∞(Rn), the Fourier tranform
equals

û(η)(η) = (2π)n
∑
γ∗∈Γ∗

ûγ∗δ(η − γ∗),

where ûγ∗ , γ
∗ ∈ Γ∗, are the Fourier coefficients of u. Hence, we have

[Vpd(Dk)u] (k) =

∫
Rn
eikηV (η)(̂u)(η)d̄η =

∑
γ∗∈Γ∗

eikγ
∗
V (γ∗)ûγ∗ = [V (Dk)u] (k).
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We conclude by recalling that C∞(Tn) is a core for Vpd(Dk) and V (Dk).

We close this appendix by recalling two other approaches to pseudo-differential calculus
on the torus.

Remark B.4. i) The standard pseudo-differential calculus on compact manifolds applies
to the torus. Indeed, it is rather easy to check that the pseudo-differentital opera-
tors defined in this appendix are classical pseudo-differential operators and by using
charts that classical pseudo-differential operators are of this form up to negligible
remainders.

ii) Another approach to pseudo-differential calculus on the torus, consists in replacing
Fourier transform by Fourier series and derivatives with respect to η by discrete
derivatives with respect to γ∗. Here again, by introducing the right interpolation,
one can show that this pseudo-differential calculus coincides with the two previous
ones modulo negligible remainders.

References

[1] W. Amrein, A. Boutet de Monvel, and V. Georgescu. C0-Groups, Commutator Meth-
ods and Spectral Theory of N-Body Hamiltonians, volume 135 of Progress in Mathe-
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