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Abstract

We give a simple proof of a result of Martinez on resonance free domains for semiclasssical
Schrödinger operators

I. Resonances for semiclassical Schrödinger operators

Let V : IRn → IR be a smooth potential satisfying the assumption
(H1) V extends holomorphically to

D = {z ∈ Cn||Rez| > R, |Imz| ≤ c|Rez|}, and satisfies

|V (z)| ≤ C(1 + |z|)−ρ, z ∈ D,

for some R, c, ρ > 0. We consider the semiclassical Schrödinger operator:

H =
h2

2
D2

x + V (x),

which is selfadjoint on H2(IRn). Let p(x, ξ) = 1
2ξ2 + V (x) be the symbol of H. We recall that

an energy level λ > 0 is non-trapping for p if

(H2) |exp tHp(x, ξ)| → ∞ when t → ±∞, ∀ (x, ξ) ∈ p−1(λ),

where exp tHp is the Hamiltonian flow of p.
The following result has been shown by Martinez in [M].

Theorem 1 Assume hypotheses (H1) and (H2). Then there exists δ > 0 such that for any
C > 0, there exists h0 > 0 such that for 0 < h ≤ h0 H(h) has no resonances in [λ− δ, λ + δ] +
i[−Ch| ln h|, 0].

The purpose of this note is to give a proof of Thm. 1 which uses only elementary pseudodiffer-
ential calculus.

Proof of Thm. 1.

We quickly recall Hunziker’s method of analytic distortions, as described in [M]:
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let v : IRn → IRn be a smooth vector field such that v(x) ≡ 0 in |x| ≤ R + 1, v(x) = x for
|x| � 1. Let Us for s ∈ IR, |s| � 1 be the unitary operator:

Usu(x) = det(1l + s∇v(x))
1
2 u(x + sv(x)),

and H̃s := UsHU−1
s . Then if Js(x) = 1l + s∇v(x) and |Js| = detJs, one has

H̃s =
h2

2
|Js|−

1
2 (Dx,tJ−1

s |Js|J−1
s Dx)|Js|−

1
2 + V (x + sv(x)).

The family H̃s : H2(IRn) → L2(IRn) is an analytic family and one sets for 0 < t � 1:

Ht := H̃it.

Then Ht = pt(x, hDx, h), where pt(x, ξ, h) is a second order polynomial in ξ with

pt(x, ξ, h) = p(x + itv(x), (1l + it∇v(x))−1ξ) + h2r1,t(x, ξ, h),(1)

where r1,t ∈ S0, uniformly in |t| � 1, 0 < h ≤ 1. Ht is closed with domain H2(IRn), σess(Ht) =
(1 + it)−2IR+ and by definition the resonances of H in

St = {z ∈ C|Rez > 0, −2arctant < Argz < 0}
are the eigenvalues of Ht in St.

We start with an elementary lemma.

Lemma 2 i) Let H be a selfadjoint operator on a Hilbert space H and let B ∈ B(H). Assume
that [H,B] (as a quadratic form on D(H)) is bounded on H. Then etB preserves D(H).

ii) Let H be a closed operator and B ∈ B(H) such that [H,B] (as a quadratic form on D(H))
is bounded on H and etB preserves D(H). Then:

eBHe−B =
n∑

k=0

1
k!

adk
BH +

1
n!

∫ 1

0
(1− s)nesBadn+1

B He−sBds,

as an identity on D(H).

In Lemma 2 the multicommutators adk
BH are defined inductively by ad0

BH = H, adk+1
B H =

[B, adk
BH].

Proof. Let us first prove i). Clearly we can assume that t = 1. Let ε > 0. We have

[H(1l + iεH)−1, B] = −(iε)−1[(1l + iεH)−1, B]

= (1l + iεH)−1[H,B](1l + iεH)−1 ∈ O(ε0).
(2)

Let now u ∈ H and set fε(t) = H(1l + iεH)−1etB(H + i)−1u. Using (2) we see that f ′ε(t) =
Bfε(t) + rε(t), where ‖rε(t)‖ ≤ C‖u‖ uniformly in 0 < ε ≤ 1, 0 ≤ t ≤ 1. Applying then
Gronwall’s inequality, we obtain that ‖fε(1)‖ ≤ C‖u‖, uniformly in ε, which proves i) by letting
ε → 0. Part ii) is Taylor’s formula applied to the C∞ function f(t) = etBHe−tBu for u ∈ D(H).
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It is well known (see eg [GM]) that if λ > 0 is non-trapping, then there exists δ, ε > 0 and a
function m ∈ C∞

0 (IR2n) such that {p, x.ξ + m} ≥ ε on p−1[λ− δ, λ + δ]. Now we set

r(x, ξ) = m(x, ξ) + χ ◦ p(x, ξ)(x− v(x)).ξ,(3)

where χ ∈ C∞
0 (IR), χ ≡ 1 near [λ− δ, λ + δ]. Then r ∈ C∞

0 (IR2n) and if G0(x, ξ) = v(x).ξ, then

{p,G0 + r} ≥ ε on p−1[λ− δ, λ + δ].(4)

Let us now fix C � 1 and set B = −Cr(x, hDx)| ln h|, where r ∈ C∞
0 (IR2n) is defined in

(3). Applying Lemma 2 i) to H = D2
x, we obtain that etB preserves D(Ht). Moreover since

r ∈ C∞
0 (IR2n), [B,Ht] is bounded, hence we can apply Lemma 2 ii). This yields:

eBHte−B =
n∑

k=0

1
k!

adk
BHt +

1
n!

∫ 1

0
(1− s)nesBadn+1

B Hte−sBds.(5)

We note that by p.d.o. calculus adn
BHt ∈ O((h ln h)n), and esB ∈ O(eC0C| ln h|), uniformly for

|s| ≤ 1, 0 < h ≤ 1, for C0 = sup0<h≤1 ‖r(x, hDx)‖.
Hence picking n large enough in (5), we obtain

eBHte−B = Ht + [B,Ht] + O(h2−ε), ε > 0.(6)

Moreover
[B,Ht] = −iCh| ln h|{pt, r}(x, hDx) + O(h2−ε).(7)

Let Sp be the space of symbols a(h, x, ξ) such that |∂α
x ∂β

ξ a| ≤ Cα,β〈ξ〉p−|β|, for all α, β ∈ IRn,
uniformly for 0 < h ≤ 1.

It follows from (1) that

pt = p− it{p,G0}+ h2s0,t + t2s2,t,

where si,t ∈ Si, uniformly for |t| � 1. This yields

{pt, r} = {p, r}+ tr1,t + h2r2,t,(8)

where ri,t ∈ S0, uniformly for |t| � 1. This implies

eBHte−B = p(x, hDx)− it{p,G0}(x, hDx)− iCh| ln h|{p, r}(x, hDx) + t2s2,t(x, hDx)

+O(h2−ε) + O(th| ln h|),
(9)

for s2,t ∈ S2 uniformly in |t| � 1.
Picking t = Ch| ln h|, we obtain

eBHte−B = q(h, x, hDx) + O(h2−ε),(10)

for
q(h, x, ξ) = p(x, ξ)− iCh| ln h|{p,G}(x, ξ) + (h ln h)2s2(x, ξ),

where G = G0 + r and s2 ∈ S2. Let now z ∈ [λ − δ/4, λ + δ/4] − i[−Cεh| ln h|/2, 0], where ε
and δ are fixed in (4). Then it is easy to see that for h � 1 |q(h, x, ξ) − z| ≥ ch| ln h|. From
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this degenerate ellipticity it should be easy to conclude, by contructing a parametrix, that for
h � 1 (q(h, x, hDx)−z)−1 exists and has a norm O(|h ln h|−1). Using (10) this would imply that
eBHte−B − z and hence Ht− z is invertible. For completeness we give below another argument:

let z ∈ C be as above and let us assume that Ker(Ht−z) 6= {0}. Since eB preserves H2(IRn),
this implies that Ker(eBHte−B − z) 6= {0}. Let hence u ∈ H2(IRn) with

(eBHte−B − z)u = 0, ‖u‖ = 1.

Let us pick χ0 ∈ C∞
0 (IR), χ+, χ− ∈ C∞(IR) such that suppχ0 ⊂ [λ − δ, λ + δ], χ0 ≡ 1 on

[λ − δ/2, λ + δ/2], suppχ+ ⊂ [λ + δ/2,+∞[, suppχ− ⊂] −∞, λ − δ/2] and χ2− + χ2
0 + χ2

+ ≡ 1.
We set then fε(x, ξ) = χε ◦ p(x, ξ) and Fε = fε(x, hDx) for ε = −, 0,+.

By p.d.o. calculus, we deduce from (10) that

0 = (u, F 2
ε (eBHte−B − z)u) = (u, Fε(q(h, x, hDx)− z)Fεu) + O(h)‖u‖2.(11)

Recall that by (4) {p,G} ≥ ε on suppf0, which implies that for h � 1 Imq ≥ ε/2 on suppf0.
Using also that Imz ∈ [−Cε0h| ln h|/2, 0], we obtain from Gärding’s inequality:

Im(u, F0(q(h, x, hDx)− z)F0u) ≥ c0h ln h(u, F 2
0 u) + O(h)‖u‖2.(12)

Similarly since Rez ∈ [λ − δ/4, λ + δ/4], we obtain that ±(Re(q − z) ≥ ±ε1 > 0 on suppf±,
which again by Gärdings inequality gives:

±Re(u, F±(q(h, x, hDx)− z)F±u) ≥ ±c1(u, F 2
±u) + O(h)‖u‖2.(13)

Now by (11) the left hand sides in (12), (13) are of size O(h)‖u‖2, which yields

(u, F 2
0 u) ≤ c0| ln h|−1‖u‖2, (u, F 2

±u) ≤ c0h‖u‖2.(14)

But since f2− + f2
0 + f2

+ ≡ 1, we have

‖u‖2 = (u, F 2
−u) + (u, F 2

0 u) + (u, F 2
+u) + O(h)‖u‖2,

which by (14) yields contradicts the fact that ‖u‖ = 1. This completes the proof of the theorem.
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à longue portée, C.R.A.S. t.406 Série 1 (1988), 121–123.

[M] Martinez, A.: Resonance free domains for non globally analytic potentials. Ann. Henri
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