On resonance free domains for semiclassical Schrödinger operators

C. Gérard Départment de Mathématiques, Université de Paris XI, 91405 Orsay Cedex France

January 2004

Abstract

We give a simple proof of a result of Martinez on resonance free domains for semiclassical Schrödinger operators

I. Resonances for semiclassical Schrödinger operators

Let $V : \mathbb{R}^n \to \mathbb{R}$ be a smooth potential satisfying the assumption (H1) V extends holomorphically to

 $D = \{z \in \mathbb{C}^n | |\operatorname{Re} z| > R, |\operatorname{Im} z| \le c |\operatorname{Re} z| \}, \text{ and satisfies}$ $|V(z)| \le C(1+|z|)^{-\rho}, \ z \in D,$

for some $R, c, \rho > 0$. We consider the semiclassical Schrödinger operator:

$$H = \frac{h^2}{2}D_x^2 + V(x),$$

which is selfadjoint on $H^2(\mathbb{R}^n)$. Let $p(x,\xi) = \frac{1}{2}\xi^2 + V(x)$ be the symbol of H. We recall that an energy level $\lambda > 0$ is *non-trapping* for p if

(H2)
$$|\exp tH_p(x,\xi)| \to \infty$$
 when $t \to \pm \infty$, $\forall (x,\xi) \in p^{-1}(\lambda)$,

where $\exp tH_p$ is the Hamiltonian flow of p.

The following result has been shown by Martinez in [M].

Theorem 1 Assume hypotheses (H1) and (H2). Then there exists $\delta > 0$ such that for any C > 0, there exists $h_0 > 0$ such that for $0 < h \le h_0$ H(h) has no resonances in $[\lambda - \delta, \lambda + \delta] + i[-Ch|\ln h|, 0]$.

The purpose of this note is to give a proof of Thm. 1 which uses only elementary pseudodifferential calculus.

Proof of Thm. 1.

We quickly recall Hunziker's method of analytic distortions, as described in [M]:

let $v : \mathbb{R}^n \to \mathbb{R}^n$ be a smooth vector field such that $v(x) \equiv 0$ in $|x| \leq R+1$, v(x) = x for $|x| \gg 1$. Let U_s for $s \in \mathbb{R}$, $|s| \ll 1$ be the unitary operator:

$$U_{s}u(x) = \det(1 + s\nabla v(x))^{\frac{1}{2}}u(x + sv(x)),$$

and $\tilde{H}_s := U_s H U_s^{-1}$. Then if $J_s(x) = \mathbb{1} + s \nabla v(x)$ and $|J_s| = \det J_s$, one has

$$\tilde{H}_s = \frac{h^2}{2} |J_s|^{-\frac{1}{2}} (D_x, {}^tJ_s^{-1}|J_s|J_s^{-1}D_x)|J_s|^{-\frac{1}{2}} + V(x + sv(x)).$$

The family $\tilde{H}_s : H^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ is an analytic family and one sets for $0 < t \ll 1$:

$$H_t := \tilde{H}_{\mathrm{i}t}.$$

Then $H_t = p_t(x, hD_x, h)$, where $p_t(x, \xi, h)$ is a second order polynomial in ξ with

(1)
$$p_t(x,\xi,h) = p(x + itv(x), (1 + it\nabla v(x))^{-1}\xi) + h^2 r_{1,t}(x,\xi,h),$$

where $r_{1,t} \in S^0$, uniformly in $|t| \ll 1$, $0 < h \le 1$. H_t is closed with domain $H^2(\mathbb{R}^n)$, $\sigma_{\text{ess}}(H_t) = (1 + it)^{-2}\mathbb{R}^+$ and by definition the resonances of H in

$$S_t = \{ z \in \mathbb{C} | \operatorname{Re} z > 0, \ -2\operatorname{arctan} t < \operatorname{Arg} z < 0 \}$$

are the eigenvalues of H_t in S_t .

We start with an elementary lemma.

Lemma 2 i) Let H be a selfadjoint operator on a Hilbert space \mathcal{H} and let $B \in \mathcal{B}(\mathcal{H})$. Assume that [H, B] (as a quadratic form on $\mathcal{D}(H)$) is bounded on \mathcal{H} . Then e^{tB} preserves $\mathcal{D}(H)$.

ii) Let H be a closed operator and $B \in \mathcal{B}(\mathcal{H})$ such that [H, B] (as a quadratic form on $\mathcal{D}(H)$) is bounded on \mathcal{H} and e^{tB} preserves $\mathcal{D}(H)$. Then:

$$e^{B}He^{-B} = \sum_{k=0}^{n} \frac{1}{k!} ad_{B}^{k}H + \frac{1}{n!} \int_{0}^{1} (1-s)^{n} e^{sB} ad_{B}^{n+1}He^{-sB} ds,$$

as an identity on $\mathcal{D}(H)$.

In Lemma 2 the multicommutators $ad_B^k H$ are defined inductively by $ad_B^0 H = H$, $ad_B^{k+1} H = [B, ad_B^k H]$.

Proof. Let us first prove *i*). Clearly we can assume that t = 1. Let $\epsilon > 0$. We have

(2)
$$[H(\mathbb{1} + i\epsilon H)^{-1}, B] = -(i\epsilon)^{-1}[(\mathbb{1} + i\epsilon H)^{-1}, B]$$
$$= (\mathbb{1} + i\epsilon H)^{-1}[H, B](\mathbb{1} + i\epsilon H)^{-1} \in O(\epsilon^0).$$

Let now $u \in \mathcal{H}$ and set $f_{\epsilon}(t) = H(\mathbb{1} + i\epsilon H)^{-1} e^{tB}(H + i)^{-1}u$. Using (2) we see that $f'_{\epsilon}(t) = Bf_{\epsilon}(t) + r_{\epsilon}(t)$, where $||r_{\epsilon}(t)|| \leq C||u||$ uniformly in $0 < \epsilon \leq 1$, $0 \leq t \leq 1$. Applying then Gronwall's inequality, we obtain that $||f_{\epsilon}(1)|| \leq C||u||$, uniformly in ϵ , which proves *i*) by letting $\epsilon \to 0$. Part *ii*) is Taylor's formula applied to the C^{∞} function $f(t) = e^{tB}He^{-tB}u$ for $u \in \mathcal{D}(H)$. \Box

Proof of Thm. 1

It is well known (see eg [GM]) that if $\lambda > 0$ is non-trapping, then there exists $\delta, \epsilon > 0$ and a function $m \in C_0^{\infty}(\mathbb{R}^{2n})$ such that $\{p, x.\xi + m\} \ge \epsilon$ on $p^{-1}[\lambda - \delta, \lambda + \delta]$. Now we set

(3)
$$r(x,\xi) = m(x,\xi) + \chi \circ p(x,\xi)(x-v(x)).\xi,$$

where $\chi \in C_0^{\infty}(\mathbb{R}), \ \chi \equiv 1 \text{ near } [\lambda - \delta, \lambda + \delta]$. Then $r \in C_0^{\infty}(\mathbb{R}^{2n})$ and if $G_0(x, \xi) = v(x).\xi$, then

(4)
$$\{p, G_0 + r\} \ge \epsilon \text{ on } p^{-1}[\lambda - \delta, \lambda + \delta].$$

Let us now fix $C \gg 1$ and set $B = -Cr(x, hD_x) |\ln h|$, where $r \in C_0^{\infty}(\mathbb{R}^{2n})$ is defined in (3). Applying Lemma 2 *i*) to $H = D_x^2$, we obtain that e^{tB} preserves $\mathcal{D}(H_t)$. Moreover since $r \in C_0^{\infty}(\mathbb{R}^{2n})$, $[B, H_t]$ is bounded, hence we can apply Lemma 2 *ii*). This yields:

(5)
$$e^{B}H_{t}e^{-B} = \sum_{k=0}^{n} \frac{1}{k!} ad^{k}_{B}H_{t} + \frac{1}{n!} \int_{0}^{1} (1-s)^{n} e^{sB} ad^{n+1}_{B}H_{t}e^{-sB} ds$$

We note that by p.d.o. calculus $\operatorname{ad}_B^n H_t \in O((h \ln h)^n)$, and $e^{sB} \in O(e^{C_0 C |\ln h|})$, uniformly for $|s| \leq 1, 0 < h \leq 1$, for $C_0 = \sup_{0 < h < 1} ||r(x, hD_x)||$.

Hence picking n large enough in (5), we obtain

(6)
$$e^B H_t e^{-B} = H_t + [B, H_t] + O(h^{2-\epsilon}), \ \epsilon > 0.$$

Moreover

(7)
$$[B, H_t] = -iCh|\ln h|\{p_t, r\}(x, hD_x) + O(h^{2-\epsilon}).$$

Let S^p be the space of symbols $a(h, x, \xi)$ such that $|\partial_x^{\alpha} \partial_{\xi}^{\beta} a| \leq C_{\alpha, \beta} \langle \xi \rangle^{p-|\beta|}$, for all $\alpha, \beta \in \mathbb{R}^n$, uniformly for $0 < h \leq 1$.

It follows from (1) that

$$p_t = p - \mathrm{i}t\{p, G_0\} + h^2 s_{0,t} + t^2 s_{2,t},$$

where $s_{i,t} \in S^i$, uniformly for $|t| \ll 1$. This yields

(8)
$$\{p_t, r\} = \{p, r\} + tr_{1,t} + h^2 r_{2,t}$$

where $r_{i,t} \in S^0$, uniformly for $|t| \ll 1$. This implies

(9)
$$e^{B}H_{t}e^{-B} = p(x,hD_{x}) - it\{p,G_{0}\}(x,hD_{x}) - iCh|\ln h|\{p,r\}(x,hD_{x}) + t^{2}s_{2,t}(x,hD_{x}) + O(h^{2-\epsilon}) + O(th|\ln h|),$$

for $s_{2,t} \in S^2$ uniformly in $|t| \ll 1$.

Picking $t = Ch |\ln h|$, we obtain

(10)
$$e^{B}H_{t}e^{-B} = q(h, x, hD_{x}) + O(h^{2-\epsilon}),$$

for

$$q(h, x, \xi) = p(x, \xi) - iCh |\ln h| \{p, G\}(x, \xi) + (h \ln h)^2 s_2(x, \xi) + (h \ln h)^2 s_2(x,$$

where $G = G_0 + r$ and $s_2 \in S^2$. Let now $z \in [\lambda - \delta/4, \lambda + \delta/4] - i[-C\epsilon h |\ln h|/2, 0]$, where ϵ and δ are fixed in (4). Then it is easy to see that for $h \ll 1 |q(h, x, \xi) - z| \ge ch |\ln h|$. From

this degenerate ellipticity it should be easy to conclude, by contructing a parametrix, that for $h \ll 1 (q(h, x, hD_x) - z)^{-1}$ exists and has a norm $O(|h \ln h|^{-1})$. Using (10) this would imply that $e^B H_t e^{-B} - z$ and hence $H_t - z$ is invertible. For completeness we give below another argument:

let $z \in \mathbb{C}$ be as above and let us assume that $\operatorname{Ker}(H_t - z) \neq \{0\}$. Since e^B preserves $H^2(\mathbb{R}^n)$, this implies that $\operatorname{Ker}(e^B H_t e^{-B} - z) \neq \{0\}$. Let hence $u \in H^2(\mathbb{R}^n)$ with

$$(e^B H_t e^{-B} - z)u = 0, ||u|| = 1.$$

Let us pick $\chi_0 \in C_0^{\infty}(\mathbb{R}), \ \chi_+, \chi_- \in C^{\infty}(\mathbb{R})$ such that $\operatorname{supp}\chi_0 \subset [\lambda - \delta, \lambda + \delta], \ \chi_0 \equiv 1$ on $[\lambda - \delta/2, \lambda + \delta/2], \ \operatorname{supp}\chi_+ \subset [\lambda + \delta/2, +\infty[, \ \operatorname{supp}\chi_- \subset] -\infty, \lambda - \delta/2] \text{ and } \chi_-^2 + \chi_0^2 + \chi_+^2 \equiv 1.$ We set then $f_{\epsilon}(x,\xi) = \chi_{\epsilon} \circ p(x,\xi)$ and $F_{\epsilon} = f_{\epsilon}(x,hD_x)$ for $\epsilon = -, 0, +.$

By p.d.o. calculus, we deduce from (10) that

(11)
$$0 = (u, F_{\epsilon}^{2}(e^{B}H_{t}e^{-B} - z)u) = (u, F_{\epsilon}(q(h, x, hD_{x}) - z)F_{\epsilon}u) + O(h)||u||^{2}.$$

Recall that by (4) $\{p, G\} \ge \epsilon$ on supp f_0 , which implies that for $h \ll 1$ Im $q \ge \epsilon/2$ on supp f_0 . Using also that Im $z \in [-C\epsilon_0 h | \ln h | / 2, 0]$, we obtain from Gärding's inequality:

(12)
$$\operatorname{Im}(u, F_0(q(h, x, hD_x) - z)F_0u) \ge c_0 h \ln h(u, F_0^2u) + O(h) ||u||^2.$$

Similarly since $\operatorname{Re} z \in [\lambda - \delta/4, \lambda + \delta/4]$, we obtain that $\pm(\operatorname{Re}(q - z) \geq \pm \epsilon_1 > 0$ on $\operatorname{supp} f_{\pm}$, which again by Gärdings inequality gives:

(13)
$$\pm \operatorname{Re}(u, F_{\pm}(q(h, x, hD_x) - z)F_{\pm}u) \ge \pm c_1(u, F_{\pm}^2u) + O(h) ||u||^2.$$

Now by (11) the left hand sides in (12), (13) are of size $O(h) ||u||^2$, which yields

(14)
$$(u, F_0^2 u) \le c_0 |\ln h|^{-1} ||u||^2, \ (u, F_{\pm}^2 u) \le c_0 h ||u||^2.$$

But since $f_{-}^2 + f_0^2 + f_{+}^2 \equiv 1$, we have

$$||u||^{2} = (u, F_{-}^{2}u) + (u, F_{0}^{2}u) + (u, F_{+}^{2}u) + O(h)||u||^{2},$$

which by (14) yields contradicts the fact that ||u|| = 1. This completes the proof of the theorem.

References

- [GM] Gérard. C., Martinez, A.: Principe d'absorption limite pour des opérateurs de Schrödinger à longue portée, C.R.A.S. t.406 Série 1 (1988), 121–123.
- [M] Martinez, A.: Resonance free domains for non globally analytic potentials. Ann. Henri Poincaré 3 (2002), 739–756.