On resonance free domains for semiclassical Schrödinger operators

C. Gérard
Départment de Mathématiques, Université de Paris XI, 91405 Orsay Cedex France

January 2004

Abstract

We give a simple proof of a result of Martinez on resonance free domains for semiclasssical Schrödinger operators

I. Resonances for semiclassical Schrödinger operators

Let $V: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a smooth potential satisfying the assumption (H1) V extends holomorphically to

$$
\begin{aligned}
& D=\left\{z \in \mathbb{C}^{n}| | \operatorname{Re} z|>R,|\operatorname{Im} z| \leq c| \operatorname{Re} z \mid\right\}, \text { and satisfies } \\
& |V(z)| \leq C(1+|z|)^{-\rho}, z \in D,
\end{aligned}
$$

for some $R, c, \rho>0$. We consider the semiclassical Schrödinger operator:

$$
H=\frac{h^{2}}{2} D_{x}^{2}+V(x)
$$

which is selfadjoint on $H^{2}\left(\mathbb{R}^{n}\right)$. Let $p(x, \xi)=\frac{1}{2} \xi^{2}+V(x)$ be the symbol of H. We recall that an energy level $\lambda>0$ is non-trapping for p if

$$
(H 2)\left|\exp t H_{p}(x, \xi)\right| \rightarrow \infty \text { when } t \rightarrow \pm \infty, \forall(x, \xi) \in p^{-1}(\lambda),
$$

where $\exp t H_{p}$ is the Hamiltonian flow of p.
The following result has been shown by Martinez in [M].
Theorem 1 Assume hypotheses (H1) and (H2). Then there exists $\delta>0$ such that for any $C>0$, there exists $h_{0}>0$ such that for $0<h \leq h_{0} H(h)$ has no resonances in $[\lambda-\delta, \lambda+\delta]+$ $\mathrm{i}[-C h|\ln h|, 0]$.

The purpose of this note is to give a proof of Thm. 1 which uses only elementary pseudodifferential calculus.

Proof of Thm. 1.

We quickly recall Hunziker's method of analytic distortions, as described in $[\mathrm{M}]$:
let $v: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a smooth vector field such that $v(x) \equiv 0$ in $|x| \leq R+1, v(x)=x$ for $|x| \gg 1$. Let U_{s} for $s \in \mathbb{R},|s| \ll 1$ be the unitary operator:

$$
U_{s} u(x)=\operatorname{det}(\mathbb{1}+s \nabla v(x))^{\frac{1}{2}} u(x+s v(x)),
$$

and $\tilde{H}_{s}:=U_{s} H U_{s}^{-1}$. Then if $J_{s}(x)=\mathbb{1}+s \nabla v(x)$ and $\left|J_{s}\right|=\operatorname{det} J_{s}$, one has

$$
\tilde{H}_{s}=\frac{h^{2}}{2}\left|J_{s}\right|^{-\frac{1}{2}}\left(D_{x}, J_{s}^{-1}\left|J_{s}\right| J_{s}^{-1} D_{x}\right)\left|J_{s}\right|^{-\frac{1}{2}}+V(x+s v(x))
$$

The family $\tilde{H}_{s}: H^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{2}\left(\mathbb{R}^{n}\right)$ is an analytic family and one sets for $0<t \ll 1$:

$$
H_{t}:=\tilde{H}_{\mathrm{i} t}
$$

Then $H_{t}=p_{t}\left(x, h D_{x}, h\right)$, where $p_{t}(x, \xi, h)$ is a second order polynomial in ξ with

$$
\begin{equation*}
p_{t}(x, \xi, h)=p\left(x+\mathrm{i} t v(x),(\mathbb{1}+\mathrm{i} t \nabla v(x))^{-1} \xi\right)+h^{2} r_{1, t}(x, \xi, h), \tag{1}
\end{equation*}
$$

where $r_{1, t} \in S^{0}$, uniformly in $|t| \ll 1,0<h \leq 1$. H_{t} is closed with domain $H^{2}\left(\mathbb{R}^{n}\right), \sigma_{\text {ess }}\left(H_{t}\right)=$ $(1+\mathrm{i} t)^{-2} \mathbb{R}^{+}$and by definition the resonances of H in

$$
S_{t}=\{z \in \mathbb{C} \mid \operatorname{Re} z>0,-2 \arctan t<\operatorname{Arg} z<0\}
$$

are the eigenvalues of H_{t} in S_{t}.
We start with an elementary lemma.
Lemma 2 i) Let H be a selfadjoint operator on a Hilbert space \mathcal{H} and let $B \in \mathcal{B}(\mathcal{H})$. Assume that $[H, B]$ (as a quadratic form on $\mathcal{D}(H)$) is bounded on \mathcal{H}. Then $\mathrm{e}^{t B}$ preserves $\mathcal{D}(H)$.
ii) Let H be a closed operator and $B \in \mathcal{B}(\mathcal{H})$ such that $[H, B]$ (as a quadratic form on $\mathcal{D}(H)$) is bounded on \mathcal{H} and $\mathrm{e}^{t B}$ preserves $\mathcal{D}(H)$. Then:

$$
\mathrm{e}^{B} H \mathrm{e}^{-B}=\sum_{k=0}^{n} \frac{1}{k!} \operatorname{ad}_{B}^{k} H+\frac{1}{n!} \int_{0}^{1}(1-s)^{n} \mathrm{e}^{s B} \mathrm{ad}_{B}^{n+1} H \mathrm{e}^{-s B} \mathrm{~d} s
$$

as an identity on $\mathcal{D}(H)$.
In Lemma 2 the multicommutators $\operatorname{ad}_{B}^{k} H$ are defined inductively by $\operatorname{ad}_{B}^{0} H=H, \operatorname{ad}_{B}^{k+1} H=$ $\left[B, a d_{B}^{k} H\right]$.
Proof. Let us first prove i). Clearly we can assume that $t=1$. Let $\epsilon>0$. We have

$$
\begin{align*}
{\left[H(\mathbb{1}+\mathrm{i} \epsilon H)^{-1}, B\right] } & =-(\mathrm{i} \epsilon)^{-1}\left[(\mathbb{1}+\mathrm{i} \epsilon H)^{-1}, B\right] \\
& =(\mathbb{1}+\mathrm{i} \epsilon H)^{-1}[H, B](\mathbb{1}+\mathrm{i} \epsilon H)^{-1} \in O\left(\epsilon^{0}\right) . \tag{2}
\end{align*}
$$

Let now $u \in \mathcal{H}$ and set $f_{\epsilon}(t)=H(\mathbb{1}+\mathrm{i} \epsilon H)^{-1} \mathrm{e}^{t B}(H+\mathrm{i})^{-1} u$. Using (2) we see that $f_{\epsilon}^{\prime}(t)=$ $B f_{\epsilon}(t)+r_{\epsilon}(t)$, where $\left\|r_{\epsilon}(t)\right\| \leq C\|u\|$ uniformly in $0<\epsilon \leq 1,0 \leq t \leq 1$. Applying then Gronwall's inequality, we obtain that $\left\|f_{\epsilon}(1)\right\| \leq C\|u\|$, uniformly in ϵ, which proves i) by letting $\epsilon \rightarrow 0$. Part ii) is Taylor's formula applied to the C^{∞} function $f(t)=\mathrm{e}^{t B} H \mathrm{e}^{-t B} u$ for $u \in \mathcal{D}(H)$.

Proof of Thm. 1

It is well known (see eg [GM]) that if $\lambda>0$ is non-trapping, then there exists $\delta, \epsilon>0$ and a function $m \in C_{0}^{\infty}\left(\mathbb{R}^{2 n}\right)$ such that $\{p, x . \xi+m\} \geq \epsilon$ on $p^{-1}[\lambda-\delta, \lambda+\delta]$. Now we set

$$
\begin{equation*}
r(x, \xi)=m(x, \xi)+\chi \circ p(x, \xi)(x-v(x)) \cdot \xi \tag{3}
\end{equation*}
$$

where $\chi \in C_{0}^{\infty}(\mathbb{R}), \chi \equiv 1$ near $[\lambda-\delta, \lambda+\delta]$. Then $r \in C_{0}^{\infty}\left(\mathbb{R}^{2 n}\right)$ and if $G_{0}(x, \xi)=v(x) . \xi$, then

$$
\begin{equation*}
\left\{p, G_{0}+r\right\} \geq \epsilon \text { on } p^{-1}[\lambda-\delta, \lambda+\delta] \tag{4}
\end{equation*}
$$

Let us now fix $C \gg 1$ and set $B=-C r\left(x, h D_{x}\right)|\ln h|$, where $r \in C_{0}^{\infty}\left(\mathbb{R}^{2 n}\right)$ is defined in (3). Applying Lemma 2 i) to $H=D_{x}^{2}$, we obtain that $\mathrm{e}^{t B}$ preserves $\mathcal{D}\left(H_{t}\right)$. Moreover since $r \in C_{0}^{\infty}\left(\mathbb{R}^{2 n}\right),\left[B, H_{t}\right]$ is bounded, hence we can apply Lemma $\left.2 i i\right)$. This yields:

$$
\begin{equation*}
\mathrm{e}^{B} H_{t} \mathrm{e}^{-B}=\sum_{k=0}^{n} \frac{1}{k!} \operatorname{ad}_{B}^{k} H_{t}+\frac{1}{n!} \int_{0}^{1}(1-s)^{n} \mathrm{e}^{s B} \operatorname{ad}_{B}^{n+1} H_{t} \mathrm{e}^{-s B} \mathrm{~d} s \tag{5}
\end{equation*}
$$

We note that by p.d.o. calculus $\operatorname{ad}_{B}^{n} H_{t} \in O\left((h \ln h)^{n}\right)$, and $\mathrm{e}^{s B} \in O\left(\mathrm{e}^{C_{0} C|\ln h|}\right)$, uniformly for $|s| \leq 1,0<h \leq 1$, for $C_{0}=\sup _{0<h \leq 1}\left\|r\left(x, h D_{x}\right)\right\|$.

Hence picking n large enough in (5), we obtain

$$
\begin{equation*}
\mathrm{e}^{B} H_{t} \mathrm{e}^{-B}=H_{t}+\left[B, H_{t}\right]+O\left(h^{2-\epsilon}\right), \epsilon>0 \tag{6}
\end{equation*}
$$

Moreover

$$
\begin{equation*}
\left[B, H_{t}\right]=-\mathrm{i} C h|\ln h|\left\{p_{t}, r\right\}\left(x, h D_{x}\right)+O\left(h^{2-\epsilon}\right) \tag{7}
\end{equation*}
$$

Let S^{p} be the space of symbols $a(h, x, \xi)$ such that $\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a\right| \leq C_{\alpha, \beta}\langle\xi\rangle^{p-|\beta|}$, for all $\alpha, \beta \in \mathbb{R}^{n}$, uniformly for $0<h \leq 1$.

It follows from (1) that

$$
p_{t}=p-\mathrm{i} t\left\{p, G_{0}\right\}+h^{2} s_{0, t}+t^{2} s_{2, t}
$$

where $s_{i, t} \in S^{i}$, uniformly for $|t| \ll 1$. This yields

$$
\begin{equation*}
\left\{p_{t}, r\right\}=\{p, r\}+t r_{1, t}+h^{2} r_{2, t} \tag{8}
\end{equation*}
$$

where $r_{i, t} \in S^{0}$, uniformly for $|t| \ll 1$. This implies

$$
\begin{align*}
\mathrm{e}^{B} H_{t} \mathrm{e}^{-B}= & p\left(x, h D_{x}\right)-\mathrm{i} t\left\{p, G_{0}\right\}\left(x, h D_{x}\right)-\mathrm{i} C h|\ln h|\{p, r\}\left(x, h D_{x}\right)+t^{2} s_{2, t}\left(x, h D_{x}\right) \tag{9}\\
& +O\left(h^{2-\epsilon}\right)+O(t h|\ln h|)
\end{align*}
$$

for $s_{2, t} \in S^{2}$ uniformly in $|t| \ll 1$.
Picking $t=C h|\ln h|$, we obtain

$$
\begin{equation*}
\mathrm{e}^{B} H_{t} \mathrm{e}^{-B}=q\left(h, x, h D_{x}\right)+O\left(h^{2-\epsilon}\right) \tag{10}
\end{equation*}
$$

for

$$
q(h, x, \xi)=p(x, \xi)-\mathrm{i} C h|\ln h|\{p, G\}(x, \xi)+(h \ln h)^{2} s_{2}(x, \xi)
$$

where $G=G_{0}+r$ and $s_{2} \in S^{2}$. Let now $z \in[\lambda-\delta / 4, \lambda+\delta / 4]-\mathrm{i}[-C \epsilon h|\ln h| / 2,0]$, where ϵ and δ are fixed in (4). Then it is easy to see that for $h \ll 1|q(h, x, \xi)-z| \geq c h|\ln h|$. From
this degenerate ellipticity it should be easy to conclude, by contructing a parametrix, that for $h \ll 1\left(q\left(h, x, h D_{x}\right)-z\right)^{-1}$ exists and has a norm $O\left(|h \ln h|^{-1}\right)$. Using (10) this would imply that $\mathrm{e}^{B} H_{t} \mathrm{e}^{-B}-z$ and hence $H_{t}-z$ is invertible. For completeness we give below another argument:
let $z \in \mathbb{C}$ be as above and let us assume that $\operatorname{Ker}\left(H_{t}-z\right) \neq\{0\}$. Since e^{B} preserves $H^{2}\left(\mathbb{R}^{n}\right)$, this implies that $\operatorname{Ker}\left(\mathrm{e}^{B} H_{t} \mathrm{e}^{-B}-z\right) \neq\{0\}$. Let hence $u \in H^{2}\left(\mathbb{R}^{n}\right)$ with

$$
\left(\mathrm{e}^{B} H_{t} \mathrm{e}^{-B}-z\right) u=0,\|u\|=1 .
$$

Let us pick $\chi_{0} \in C_{0}^{\infty}(\mathbb{R}), \chi_{+}, \chi_{-} \in C^{\infty}(\mathbb{R})$ such that $\operatorname{supp} \chi_{0} \subset[\lambda-\delta, \lambda+\delta], \chi_{0} \equiv 1$ on $[\lambda-\delta / 2, \lambda+\delta / 2], \operatorname{supp} \chi_{+} \subset\left[\lambda+\delta / 2,+\infty\left[, \operatorname{supp} \chi_{-} \subset\right]-\infty, \lambda-\delta / 2\right]$ and $\chi_{-}^{2}+\chi_{0}^{2}+\chi_{+}^{2} \equiv 1$. We set then $f_{\epsilon}(x, \xi)=\chi_{\epsilon} \circ p(x, \xi)$ and $F_{\epsilon}=f_{\epsilon}\left(x, h D_{x}\right)$ for $\epsilon=-, 0,+$.

By p.d.o. calculus, we deduce from (10) that

$$
\begin{equation*}
0=\left(u, F_{\epsilon}^{2}\left(\mathrm{e}^{B} H_{t} \mathrm{e}^{-B}-z\right) u\right)=\left(u, F_{\epsilon}\left(q\left(h, x, h D_{x}\right)-z\right) F_{\epsilon} u\right)+O(h)\|u\|^{2} . \tag{11}
\end{equation*}
$$

Recall that by (4) $\{p, G\} \geq \epsilon$ on $\operatorname{supp} f_{0}$, which implies that for $h \ll 1 \operatorname{Im} q \geq \epsilon / 2$ on $\operatorname{supp} f_{0}$. Using also that $\operatorname{Im} z \in\left[-C \epsilon_{0} h|\ln h| / 2,0\right]$, we obtain from Gärding's inequality:

$$
\begin{equation*}
\operatorname{Im}\left(u, F_{0}\left(q\left(h, x, h D_{x}\right)-z\right) F_{0} u\right) \geq c_{0} h \ln h\left(u, F_{0}^{2} u\right)+O(h)\|u\|^{2} . \tag{12}
\end{equation*}
$$

Similarly since $\operatorname{Re} z \in[\lambda-\delta / 4, \lambda+\delta / 4]$, we obtain that $\pm\left(\operatorname{Re}(q-z) \geq \pm \epsilon_{1}>0\right.$ on $\operatorname{supp} f_{ \pm}$, which again by Gärdings inequality gives:

$$
\begin{equation*}
\pm \operatorname{Re}\left(u, F_{ \pm}\left(q\left(h, x, h D_{x}\right)-z\right) F_{ \pm} u\right) \geq \pm c_{1}\left(u, F_{ \pm}^{2} u\right)+O(h)\|u\|^{2} \tag{13}
\end{equation*}
$$

Now by (11) the left hand sides in (12), (13) are of size $O(h)\|u\|^{2}$, which yields

$$
\begin{equation*}
\left(u, F_{0}^{2} u\right) \leq c_{0}|\ln h|^{-1}\|u\|^{2},\left(u, F_{ \pm}^{2} u\right) \leq c_{0} h\|u\|^{2} \tag{14}
\end{equation*}
$$

But since $f_{-}^{2}+f_{0}^{2}+f_{+}^{2} \equiv 1$, we have

$$
\|u\|^{2}=\left(u, F_{-}^{2} u\right)+\left(u, F_{0}^{2} u\right)+\left(u, F_{+}^{2} u\right)+O(h)\|u\|^{2},
$$

which by (14) yields contradicts the fact that $\|u\|=1$. This completes the proof of the theorem.

References

[GM] Gérard. C., Martinez, A.: Principe d'absorption limite pour des opérateurs de Schrödinger à longue portée, C.R.A.S. t. 406 Série 1 (1988), 121-123.
[M] Martinez, A.: Resonance free domains for non globally analytic potentials. Ann. Henri Poincaré 3 (2002), 739-756.

