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Abstract

We construct interacting quantum fields in 141 dimensional Minkowski space, represent-
ing neutral scalar bosons at positive temperature. Our work is based on prior work by Klein
and Landau and Hgegh-Krohn.
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1 Introduction

Constructive thermal field theory allows one to circumvent (at least in 141 space-time di-
mensions) the severe infrared problems (see e.g. [St]) of thermal perturbation theory. A class
of models representing scalar neutral bosons with polynomial interactions was constructed by
Hgegh-Krohn [H-K] more than twenty years ago. Shortly afterwards, several related results
on the construction of self-interacting thermal fields were announced by Frohlich [Fr2].

Our first paper was devoted to the construction of neutral and charged thermal fields with
spatially cutoff interactions in 141 space-time dimensions, using the notion of stochastically
positive KMS systems due to Klein and Landau [KL1].

The construction of interacting thermal quantum fields without cutoffs presented here
includes several of the original ideas of Hgegh-Krohn [H-K]|, but instead of starting from
the interacting system in a box we start from the Araki- Woods representation for the free
thermal system in infinite volume. This ‘algebraic’ approach eliminates some cumbersome
limiting procedures present in Hgegh-Krohn’s work due to the introduction of boxes. We
provide complete proofs for a number of statements which where only touched upon in
Hgegh-Krohn’s work. The list of ‘new’ contributions contains the Wick (re-)ordering with
respect to different covariance functions, the existence of interacting sharp-time fields, the
identification of local algebras, the existence and uniqueness of the solution of Hgegh-Krohn’s
time dependent heat-equation, local normality of the interacting KMS state, uniqueness of
the weak* accumulation point of the sequence of approximating KMS states, and a number
of inequalities that enter into a rigorous construction at several points. Although some of our
results were probably already known by the experts (most of our work is based on results by
Glimm and Jaffe, Hpegh-Krohn, Frohlich, Klein and Landau, and Simon) more than twenty
years ago, we feel that it is worth while to present the arguments in full detail.

We will provide a detailed description of the content of this paper in the next subsection.
But before we do so, we give a rough outline of the main ideas.

Let h and € denote the one-particle Hilbert space and the one-particle energy for a single
neutral scalar boson. On the Weyl algebra W(h) we define a quasi-free (7°, 3)-KMS state wj
for the time evolution {7 }temr by

Wi (W(h)) == e~ 1200 o (W (R)) = W(elh), he b, t € R,

where p 1= (e’ —1)71, 3> 0.



A convenient realization of the GNS representation associated to the pair (W(h),ws) is
the Araki-Woods representation defined by:

Haw = F(h 3] E)a
Qaw = Q,

Taw (W(h)) = Waw (h) :== We((1 4+ p)*h ® p2h), heb.

Here b is the conjugate Hilbert space to h, Wr(.) denotes the Fock Weyl operator on I'(h @& h)
and Q € T(h@h) is the Fock vacuum. The von Neumann algebra generated by {74 (W (h)) |
h € b} is denoted by Rw. The local von Neumann algebra generated by {maw (W (h)) | h €
hr} is denoted by Raw (I). Here I C IR is an open and bounded interval and by will be
defined in (6.4).

Since wj is 7°-invariant, there exists a standard implementation (see [DJP]) of the time
evolution in the representation 74y :

elawin o (A)Quw = Taw (Tto(A))QAW and L ,wQuw = 0.

The generator L,y of the free time evolution is called the (free) Liouvillean.
Euclidean techniques were used in our first paper to define the operator sum

!
H; = Ly —l—/l :P(¢(0,2)):¢, dz

and to show that H; is essentially selfadjoint.
Using Trotter’s product formula as in [GJ2], a finite propagation speed argument shows
that
TtI(A) — eiHltAe—iHlt

is independent of [ for t € R and A € Raw(I) fixed, if I is bounded and [ is sufficiently
large. Thus there exists a limiting dynamics 7 such that

(1.1) Jim [|74(4) = ()| = 0

for all A € Raw(I), I bounded. This norm convergence extends to the norm closure

A= RAW(I)(*)

ICIR

of the local von Neumann algebras. The C*-algebra A is called the algebra of local observables.
It follows from general results of [KL1] that the vector €; € H vy,

(1.2) O =—>2""
||e_§HlQAW||

induces a (7!, 8)-KMS state w; for the W*-dynamical system (A, 7'). Equation (1.2) should
be compared with similar expressions which are well-known (see e.g. [BR, Theorem 5.4.4])
for bounded perturbations and which have recently been derived for a class of unbounded
perturbations in [DJP, Theorem 5.6].

The existence of weak limit points (which are states) of the net {w;};~¢ is a consequence
of the Banach-Alaoglu theorem (see [BR, Theorem 2.3.15]).

That fact that all limit states satisfy the KMS condition w.r.t. the pair (A, 7) follows
from (1.1), which itself is a consequence of finite propagation speed.



Since A is the norm closure of the weakly closed local algebras, all limit points are locally
normal KMS states w.r.t. the Araki-Woods representation [TW].

To prove that there is only one accumulation point is more delicate. Following Hgegh-
Krohn [H-K] we will use Nelson symmetry to relate the interacting vacuum theory on the
circle to the interacting thermal model on the real line.

1.1 Content of this paper

In Section 2 we recall the notions of stochastically positive KMS systems and associated
generalized path spaces, due to Klein and Landau [KL1]. The property corresponding to
stochastic positivity in the O-temperature case is called Nelson-Symanzik positivity.

In Subsection 2.1 we recall the characterization of the thermal equilibrium states of
a dynamical system (B,7) by the KMS condition and the definition of Fuclidean Green’s
functions. The notion of a stochastically positive KMS systems (B,U,T,w) rests on the
introduction of a distinguished abelian sub-algebra U/ of the observable algebra B. In our
case this algebra will be the algebra generated by the time-zero fields.

In Subsection 2.2 we recall the notion of a generalized path space (@, X%, X0, U(t), R, u). It
consists of a probability space (@, %, i), a distinguished sub o-algebra ¥, a one-parameter
group t — U(t) of automorphisms of L*>°(Q, %, u) such that ¥ = \/,.z U(t)X0 and a reflec-
tion R, acting as an automorphism on L*(Q, X, i) such that R? = 1, RU(t) = U(—t)R.

Klein and Landau (see [KL1]) have shown that for § > 0 there is a one to one corre-
spondence between stochastically positive S-KMS systems and [-periodic OS-positive path
spaces (for § = oo the object associated to an OS-positive path space is called a positive
semigroup structure, see [K]). The role of OS-positivity is to ensure the positivity of the
inner product in the Hilbert space H on which the real time quantum fields act. A similar
reconstruction theorem allowing to go from Euclidean Green’s functions to a KMS system
was also shown in a slightly different framework in [GJO1, GJO2]. The case of Euclidean
structures corresponding to quasi-free KMS states (which give rise to Gaussian path spaces)
was considered in [KL2, GJO3].

The reconstruction theorem provides a concrete realization of the GNS triple (H,,, 7w, Q)
associated to the pair (B,w). The Liouvillean L implements the time evolution in the GNS
representation .

In Subsection 2.3 we recall some results from [KL1] (with some improvements in [GeJ])
concerning perturbations of generalized path spaces obtained from Feynman-Kac-Nelson
kernels. The main examples of FKN kernels are those obtained from a selfadjoint operator V'
on the physical Hilbert space H,,, which is affiliated to U = L= (K, v,). If e ?V € L(K,v,,)
and

VeIl(K,u,), e 2 ell(K,v,) for pl4q = 2<p,q< oo,

1
2 )
then the operator sum L + V is essentially selfadjoint on D(L) N D(V) and the perturbed

time-evolution 7y on B is given by
Tvi(B) = otEHV Be—itl+V
The KMS state wy for the pair (B, 7y) is the vector state induced by

-5T¥VQ
QV = GZTW.
le= =24V, |



The Liouvillean Ly for the perturbed S-KMS system (By,7y,wy) equals L+V — JV.J.
(J denotes the modular conjugation associated to the pair (B,€)). It satisfies

eitLVAQV = Tv7t(A)QV and ngv =0.

In Section 3 we recall some standard facts about Gaussian measures on distribution spaces
and fix some notation. Gaussian measures are reviewed in Subsection 3.2. Sharp-time free
fields are introduced in Subsection 3.3. If the space dimension d is 1, then it is possible to
define similarly sharp-space free fields. This is done in Subsection 3.4.

In Section 4 we recall two well known path spaces supported by (Si(Sg x R),déc),
where Sg is the circle of length 8. In Subsection 4.1 we identify the generalized path space
on (SR(Ss x R),d¢c) corresponding to the free massive scalar field on the circle Sg at
temperature 0.

In Subsection 4.2 we identify the generalized path space on (S (S x R),d¢¢c) corre-
sponding to the free massive scalar field on the real line IR at temperature 3~!. The physical
Hilbert space associated to this path space can be unitarily identified with the Fock space
['(h@h). The KMS vector Q. is identified with the Fock vacuum vector  in T'(h&h). The
dynamics 7° can be unitarily implemented in 7,: The (free) Liouvillean L, is identified
with dI'(e ® —F€).

In Section 5 we describe perturbations of the two path spaces defined in Subsects. 4.1
and 4.2. The perturbed path spaces are obtained from FKN kernels corresponding to P(¢)s
interactions.

In Subsection 5.1 we recall some well known facts concerning the Wick ordering of Gaus-
sian random variables. In 141 space-time dimensions Wick ordering is sufficient to eliminate
the UV divergences of polynomial interactions. As it turns out, the leading order in the UV
divergences is independent of the temperature. Thus it is a matter of convenience whether
one uses the thermal covariance function Cy or the vacuum covariance function Cy,. to define
the Wick ordering.

In Subsection 5.2 the P(¢$)2 model on the circle Sg at temperature 0 is discussed. It is
specified by the formal interaction

Ve = :P(¢(,0)):c, dt.
Sp

Here P(\) is a real valued polynomial, which is bounded from below. The time-evolution
x> ™ is generated by HE" := He — E¢, where Fg := inf(o(Hc)) and

He = dU((D? +m?2)3) + V.

The operator Hg is bounded from below and has a unique vacuum state we( . ) = (¢, . )
such that (¢, Q) > 0 and H;™Q¢ = 0. The renormalized energy operator H™ is called
the P(¢)2 Hamiltonian on the circle Sga.

Some bounds are provided in Proposition 5.4, which are used in the sequel to prove the
existence of interacting sharp-time fields.

The spatially cutoff P(¢)a model on the real line R at temperature 3~ is discussed in
Subsection 5.3. It is specified by the formal interaction

!
Vi= /_l :P(¢(0,2)):¢, dz.

Here P()) is once again a real valued polynomial, which is bounded from below, and [ € R™
is a spatial cutoff parameter. The perturbed KMS state w; turns out to be normal w.r.t. the
Araki-Woods representation 7 ,y,. In fact, it is the vector state induced by

_By
e 20,

VS
le= 7 HiQ ||



where Hj is the selfadjoint operator H; := L, + V;. The perturbed time-evolution on B is
given by _ _
rl(B) := HiBe7 i B e B.

The following consequence of Lemma 5.3 will be important in Section 7:

A0 [ P(6(0,2)):cdzdt . filUc(w)fsﬁ:P(aﬁ(t»O)):chtdw

(1.3) oo

The analog of (1.3) in the zero temperature case is called Nelson symmetry (see e.g. [Si]).
The thermodynamic limit is discussed in Section 6. We prove that the limits

ziigloo mH(A) = 1(A) and liiinoo wi(A) =1 wg(A)
exist for A in the C*-algebra of local observables A and that (A, 7,wg) is a S-KMS system,
describing the translation invariant P(¢)2 model at temperature 371

In Subsection 6.1 we recall localization properties of the classical solutions of the Klein-
Gordon equation.

In Subsection 6.2 we introduce the net of local algebras I — R 4y (I) for the free thermal
field: for a bounded open interval I C IR, the symbol R,w (I) denotes the von Neumann
algebra generated by {W,w (h) | h € bhr}. By a result of Araki [Arl], the local von Neumann
algebras for the free thermal scalar field are regular from the inside and from the outside:

() Raw(]) = Raw(D) = \/ Raw(J).

JDoT JjcI

Moreover, if I is bounded, then the local algebra R, (I) is *-isomorphic to the unique
hyper-finite factor of type III;.
In Subsection 6.3 the existence of the limiting dynamics is discussed. For ¢ € IR fixed,
the norm limit
lim 7} (B) =: 7(B)

l—o0

exists for all B in

A= RAW(I)(*),

where the I'’s are open and bounded. Finite propagation speed is used to show that 7/(B),
for B € Raw(I) and |t| < T, is independent of [ for I > |I| + T. The proof uses Trotter’s
product formula, which requires that L,y + V] is essentially self-adjoint on D(L v ) N D(V)).

In order to apply the results of Section 7 to the C*-algebra A, it is necessary to identify
the local von Neumann algebra R .y (I) with the von Neumann algebra obtained by applying
the interacting dynamics 7 to the local abelian algebra of time-zero fields. This is done in
Subsection 6.4: for I C IR a bounded open interval, we denote by U,y (I) the abelian von
Neumann algebra generated by {Waw (k) | h € by, h real valued}. We denote by B, (I) the
von Neumann algebra generated by

{Tt(A) | A EUAW(I)7 |t| < a}.

We set B(I) := (),s0 Ba(I) and show that B(I) = Raw(I).

Taking the existence of the interacting path space (which we will construct in Section 7)
for granted, we show that the net {w;};~0 has a unique accumulation point. This is done
in Subsection 6.5, using the identification of algebras established in the previous subsection.
Thus

w— lim w; =: wg exists on A.
l—+4oc0



The state wg is a (7, 3)-KMS state on A. It follows from a result of Takesaki and Win-
nink [TW] that wpg is locally normal, i.e., if I is an open and bounded interval, then wg|z ., (1)
is normal w.r.t. the Araki-Woods representation; thus wg|r ,,, (1) is also normal with respect
to the Fock representation. Moreover, wg is invariant under spatial translations and satisfies
the space-clustering property:

wlln;owg(Aaz(B)) =wg(A)wp(B), A,B € A.

Finally, the main results of this paper, namely the explicit construction of the translation
invariant P(¢)2 model at positive temperature is given in Section 7. Following ideas of
Hgegh-Krohn [H-K], Nelson symmetry is used to establish the existence of the model in the
thermodynamic limit.

The first step is to construct the interacting path space supported by Sf; (S x IR) de-
scribing the translation invariant P(¢), model at temperature 371,

Following Hgegh-Krohn [H-K] we consider the operator Wi_. o)(f) solving the time-
dependent heat equation

d
7 Wia1(f) = Wia ()(=He™ +i6(fs)), a<b,

where fi(-) :== f(-,b) € Sr(Sg) for f € Sr(Ss x IR). We show that for f € C§r(Ss x IR)

lim ei“b(f)d,uz = (Qc, Wi—s0,00) (f)€2)

|—+4o00
exists and that the map

S]R(Sﬁ X]R) — IR+
f = (Qe, Wit o,00) (f)2)

is the generating functional of a Borel probability measure p on (Q,%). The measure p is
invariant under space translations, time translations and time-reflection.

In Subsection 7.2 we prove the existence of interacting sharp-time fields. (Note that the
necessary bounds (5.9) depend on the dimension of space-time.) This result allows us to
equip the probability space (@, X, ) with an OS-positive 3-periodic path space structure:

— U(t) is the group of transformations generated by the time translations T, induced
on @ by the map (¢,z) — (t+ s,x);

— R is the transformation generated by the (euclidean) time reflection at ¢t = 0;

— Y is the sub—o-algebra of 3 generated by the functions {¢(0,h) | h € Sr(IR)}.

In Subsection 7.3 some properties of the associated interacting 3-KMS system (B,U, T, )
are discussed. We prove the convergence of sharp-time Schwinger functions and show that

(.D(az(WAW(h))) = J)(WAW(h))
for all z € IR and

mlggo w (WAW (h) o (Waw (9))) =w (WAW (h))@ (WAW (9))
for h,g € CR(IR).
In Appendix A we discuss the abstract time-dependent heat equation

(1.4)

{ LUt s) = —(H+iR@))U(t,s), s < t,
U(s,s) =1



Here H > 0 is a selfadjoint operator on a Hilbert space H and R(¢), t € IR, is a family of
closed operators with D(H?Y) C D(R(t)) for some 0 < v < 1. We show that there exists a
unique solution U (¢, s) such that U(s, s) = 1 and

U(t,r)U(r,s) =U(t,s) for s <r <t

In Subsection A.2 we consider the dissipative case when R(t) is selfadjoint for ¢t € IR.
We establish an approximation of U(¢, s) by time-ordered products and prove some bounds
on U(t,s), which are used in the main text to show the existence of interacting sharp-time
fields and the convergence of sharp-time Schwinger functions.

Finally we establish a lemma which is used in the main text to prove spatial clustering
for the translation invariant P(¢)2 model at temperature 37 1.
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2 Stochastically positive KMS systems and generalized
path spaces

In this section we briefly recall the notions of stochastically positive KMS systems and as-
sociated generalized path spaces, due to Klein and Landau [KL1]. We will also need the
corresponding notions at 0-temperature, which can be found in [K].

2.1 Stochastically positive KMS systems

Let B be a C*-algebra and let {7¢}+cr be a one parameter group of x-automorphisms of B.
We recall that a state w on B is a (1, 3)-KMS state or (B, T,w) is a B—KMS system, if for
each pair A, B € B there exists a function F4 p(z) holomorphic in the strip Ig ={zeC|

0 < Imz < B} and continuous on Ig such that
Fap(t)=w(An(B)) and Fap(t+i8) =w(n(B)A4) VieR.

For A; € Band t; € IR, 1 < i <n, the Green’s functions are defined as follows:
Gltr, .. tni Ar, o An) = w([ ] 7 (4)).
i=1

It is well known (see [Ar2, Ar3]) that the Green’s functions are holomorphic in

Ig+ ={(2z1,.-.,2n) € C" | Imz; < Imz;y1, Imz, — Imz; < S},

continuous on I3" and bounded there by [T} || 4;]|. Therefore one can define the Euclidean
Green’s functions:

EG(s1,...,8n;A1,..., Ap) = G(is1,...,isn; A1,..., A,) for 51 < -+ < 8, 8, — 51 < 3.

The following class of 3-KMS systems has been introduced by Klein and Landau [KL1].



Definition 2.1 Let (B, 7,w) be a 8-KMS system and let U C B be an abelian *-sub-algebra.
The KMS system (B,U,T,w) is stochastically positive if

(i) the C*-algebra generated by \J,cig 7¢(U) is equal to B;
(ii) the Buclidean Green’s functions PG(sy,...,sn; A1,--+, Ay) are positive for all
Ay, A inUT={AelU | A>0}.

In applications it is more convenient to use a version of stochastic positivity, which is adapted
to von Neumann algebras.

Definition 2.2 Let B C B(H) be a von Neumann algebra and let U C B(H) be a weakly
closed abelian sub-algebra of B. Assume that the dynamics T: B — B is given by

7(B) :=¢e"“Be 't B e B,

where L is a selfadjoint operator on H. Moreover, assume that w is a B-KMS state for the
W*-dynamical system (B, 7). Then the KMS system (B,U,T,w) is stochastically positive if

(i) the von Neumann algebra generated by \J,c 7e(U) is equal to B;
(ii) the Euclidean Green’s functions PG(s1,...,sn; A1,--+, Ay) are positive for all
A, A inUT={AelU ]| A>0}.

2.2 Generalized path spaces

Stochastically positive 3-KMS systems can be associated to generalized path spaces (see
[KL1], [K]). Let us first recall some terminology.

If Z;, for 7 in an index set I, is a family of subsets of a set @), we denote by \/
the o-algebra generated by all the =;, i € I.

=; 18

iel

Definition 2.3 A generalized path space (Q, X, X0, U(t), R, 1) consists of

(i)  a probability space (Q,%, u);

(ii) a distinguished sub o-algebra 3o C 3;

(iii) a one-parameter group R >t — U(t) of measure preserving automorphisms of
L>(Q, %, ), strongly continuous in measure, such that ¥ = \/,.r U(t)Xo;

(iv) a measure preserving automorphism R of L>(Q,¥,u) such that R? = 1,
RU(t) = U(—t)R and REy = EgR, where Ey is the conditional expectation
with respect to Xg.

A path space (Q, X, X0, U(t), R, ) is said to be supported by the probability space (Q, X, u).

It follows from (iii) and (iv) that U(t) extends to a strongly continuous group of isometries
of LP(Q, %, 1) and R extends to an isometry of LP(Q, %, u) for 1 < p < oo.

We say that the path space (@, X, X0, U(t), R, u) is S-periodic for § > 0 if U(B) = 1. On
a (-periodic path space one can consider the one-parameter group U (t) as being indexed by
the circle Sg = [-3/2, /2.

For I C IR, we denote by E; the conditional expectation with respect to the o-algebra
E] = VtEI Et.

Definition 2.4 (0-temperature case): A generalized path space (Q, %, X0, U(t), R, 1) is OS-
positive, if Ejg 1 oo[RE[9,+00[ = 0 as an operator on L2(Q, %, ).

(Positive temperature case): A B-periodic path space (Q,%, X0, U(t), R, u) is OS-positive,
if Ejg,/21RE0,3/2) > 0 as an operator on L2(Q,%, ).

For simplicity of notation we will consider 3 as a parameter in ]0, +00], the case § = 400
corresponding to the O-temperature case.



It is shown in [KL1] that for 5 > 0 there is a one to one correspondence between stochas-
tically positive -KMS systems and (-periodic OS-positive path spaces. For § = oo the
object associated to an OS-positive path space is called a positive semigroup structure (see

[K]).

Let us describe in more details one part of this correspondence, which is an example of a
reconstruction theorem. Let (Q,%, X, U(t), R, 1) be an OS-positive path space, S-periodic
if B < o0o. We set

Hos = L*(Q, X0,5/2), 1)-

Let N' C Hogs be the kernel of the positive quadratic form
(.0 = [ TRodp.
Q

Then the physical Hilbert space is
H := completion of Hog/N,

where the completion is done with respect to the positive definite scalar product (.,.). Let
us denote by V the canonical map V: Hos — Hos/N. Then in ‘H there is the distinguished
unit vector

Q:=V1,

where 1 € Hog is the constant function equal to 1 on Q.
For A € L*(Q, X, 1) one defines A € B(H) by

(2.1) AVip = VA

(Note that multiplication by A preserves N, since A is by assumption X measurable). One
denotes by U C B(H) the abelian von Neumann algebra U := {A | A € L°(Q, %o, p1)}. Tt
is shown in [KL1, K] that the map A — A is a weakly continuous *-isomorphism between
L>(Q, X, 1) and U.

Finally, setting M, = L?(Q, Y0,8/2—4], ) for 0 <t < 3/2 and Dy = V My, one can define
P(s):Dy — H for 0 < s<thby

P(s)Vy :=VU(s)¥Y, v € M,.

The triple (P(t), Dy, 3/2) forms a local symmetric semigroup (see [Frl, KL3]), and there exists
a unique selfadjoint operator L on H such that P(s)u = e *lu foru € Dy and 0 < s < t. The
selfadjoint operator constructed in this way is said to be associated to the local symmetric
semigroup (P(t),Ds, 5/2).

Next one defines:

~ B C B(H) as the von Neumann algebra generated by {e'** Ae™ " |t € IR, A € U};

— 7:t +— 7¢ as the weakly continuous group of *-automorphisms of B, which is given by
T (B) — eitLBe—itL
fort € R and B € B;
— w as the vector state on B given by w(B) = (2, BQ?) for B € B.

— the modular conjugation J associated to the KMS system (B, 7,wq) as the unique
extension of

JVip = V(Rg/q), € L*(Q,%, ),
where
Rg)s :=U(B/4)RU(-pB/4) = RU(-B/2) = U(B/2)R
is the reflection at t = 5/4 in Hos.
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It is shown in [KL1] that (B,U,T,w) is a stochastically positive 5-KMS system. The rela-
tionship between the two objects is fixed by the following identity:

(2.2) EGQ(sy, ... sn; A1, ..., Ap) = /Q(H U(si)A;)dp

=1

for A; € L>®°(Q, %0, 1), 1 <i<mn,and s1 < - < sy, s — 81 < .

2.3 Perturbations of generalized path spaces

We now describe perturbations of generalized path spaces obtained from a Feynman-Kac-
Nelson kernel. Unless stated otherwise, we will consider the case 3 < oco.

Let (Q, %, X0, U(t), R, 1) be an OS-positive S-periodic path space. Let V be a selfadjoint
operator on H, which is affiliated to ¢. Using the isomorphism between U and L>(Q, 3o, 1)
we can view V as a real ¥g-measurable function on @, which we still denote by V.

Assume that V € LY(Q, X0, ) and exp(—3V) € L(Q, 3o, ). Then (see [KL1] or [GelJ,

Proposition 6.2]) the function F := exp(— _%32 U(t)Vdt) belongs to L'(Q, X, ). One can
hence define the perturbed measure duy := (fQ Fdp)~'Fdu. The perturbed path space
(Q,%,%0,U(t), R, py) is OS-positive and S-periodic (see [KL1]). Hence we can associate to
this perturbed path space a stochastically positive 5-KMS system (By,Uy, Ty, wy ).

The following concrete realization of the perturbed S-KMS system (By,Uy, Ty, wy ) has

been obtained in [KL1] (with some improvements in [GelJ]):

— the physical Hilbert space Hy obtained from the reconstruction theorem outlined in
the previous subsection is equal to the physical Hilbert space H of the unperturbed
B-KMS system (B,U, 7, w);

— the von Neumann algebra By and the abelian algebra Uy are equal to B and U, re-
spectively;

— the operator sum L 4 V is essentially selfadjoint on D(L)ND(V) and if Hy := L+ V,
then the perturbed time-evolution 7 on B is given by

v,¢(B) = eV Be ™MV B e B;

— the distinguished vector 2 of the unperturbed KMS system belongs to D(e‘gH V) and
the perturbed KMS state wy is given by wy (B) = (Qy, BQy ), where

e~ 2Hv Q)
e e
The following result is shown in [GeJ, Theorem 6.12]: If e=#V € L}(Q, X, 1) and
1
VGLP(Q7EO7M)7 e_gv ELq(Qa 207/1‘) for p_1+q_1 = 55 2§paq§007

then the operator sum Hy — JVJ is essentially selfadjoint and the Liouvillean Ly (for a gen-
eral definition of Liouvilleans see, e.g., [DJP]) for the perturbed 5-KMS system (By, 7y, wv)
is equal to Hy — JVJ. Here J denotes the modular conjugation associated to the pair (5, ).

2.4 Perturbed dynamics associated to FKN kernels

Let us describe in more details the construction of Hy = L+ V given in [KL1] which is
based on the Feynman-Kac-Nelson formula. Note that the results of this subsection are also
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valid in the O-temperature case § = 4+oc0. Let V be a real ¥y-measurable function such that
Ve LYQ, %o, 1) and e~ TV € LY(Q, Xo, u) for some T > 0 if 8 = oo and for T = 3 if 3 < oo.
Set

Fog:i=¢e Js U(t)th, 0 < s <inf(T,3)/2,

which belongs to L?(Q, Y0,int(1,8) /2] 1) The family {Flo 5 }o<s<int (1,8)/2 is called a Feyn-
man-Kac-Nelson kernel.
For 0 <t < inf(T, 3)/2 we set

M, := linear span of U Fio,g) L>(Q, E(0,int(1,8) /2—1]» 1)
0<s<inf(T,8)/2—t

and

Uy(s): My —  L*Q,Z0.nt(T.8)/2)

(s) - (QF[O)[:,U((S),Z),/ > 14) 0<s<t.
Setting finally
(23) Dt = V(Mt)a
one can show that
Py(s): Dy — H
V) — V(FonUs)0)

is a well defined linear operator, and that (Py (t), D¢, inf(T, 8)/2) is a local symmetric semi-
group on ‘H. Now let Hy be the unique selfadjoint operator associated to the local symmetric
semigroup (D¢, Py (t),inf (T, 8)/2). It follows (see [KL1]) that Hy = L+ V.

In the sequel we will need the following result.

Proposition 2.5 Let V € L?(Q, %o, 1) be a real function such that eV € LY(Q, %o, 1)
for some T > 0 and V,, := Vv |<ny for n € IN. Denote by L the selfadjoint operator
on H associated to the OS-positive path space (Q,%, X0, U(t), R, u). Let H, be the closure
of L4+V —V,. Then

e il — g lim e

—itHn ¢ ¢ R.

Note that the selfadjoint operators H, are associated to local symmetric semigroups
(Pa(t), ’D,En), T/2) obtained from the FKN kernels

() . o= [y VBV =Va)d
F[O K fo ,

and the operator L is associated to the local symmetric semigroup (Pu(t), Dy, T/2) obtained

from the FKN kernels [(OOZ]) =1.

Proof. We first claim that

(2.4) sup H [Os =11z, — 0 for n — oo.
0<s<T/2

In order to prove (2.4), we recall the following bound from [KL4, Theorem 6.2 (i)]:

(2.5) He—fa (Ve (b—a)V

ez < lle l2r@sp), 1< p<oo.

Now let W be a real measurable function on ). Using 1 —e™% = afol e~%2d6 we find

l_efUSU(t)Wdt:/SU(t)Wdt/l AN MWt 4,
0 0
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This yields

= Jo VOWat e W e S e o YOWE g

IN

1 —Us
< sl W22 [y lle=®W|12d6
1 S —
< sHIW g2 (14 [y [le?™= | £2df)
< W2 (1 + [l 1),

where W_ = sup(0, —W) denotes the negative part of W. In the first line we have used the
Cauchy-Schwarz inequality and the fact that U(t) is unitary on L?(Q, 3, i), in the second
line the estimate (2.5).

By assumption V € L?(Q, %, p) and e~ TV € LY(Q, 3, ). Thus V—V,, — 0in L?(Q, %, u)
and eT(V=V2)- — 0 in LY(Q, %, ). Applying the above bound for W = V — V,,, we ob-
tain (2.4).

Before we finish the proof, we extract a Lemma.

Lemma 2.6 Let (P,(t), Dt"),T) forn € NU{oo} be a family of local symmetric semigroups
on a Hilbert space H. Let H,, n € INU {oo}, denote the associated selfadjoint operators.
Assume that there exists a family {L;} for 0 <t < T’ <T of subspaces of H with

(2.6) L C D,E"), U L dense in H.
0<t<T"

Assume moreover that

(2.7) lim (¥, P,(s)¥) = (U, P (5)¥), P € L4, 0< s <t < T,
(2.8) sup sup (¥, P,(s)¥) < oo, ¥ € Ly, 0 <t <T".
n 0<s<t

Then s-lim,_, o e”tHn =7t for gll t € R.

Proof. Let us fix 0 <t < T’ and ¥ € £;. From [KL3, Lemma 1], we know that there exist
positive measures {v,} on IR such that

(¥, Pu(s)¥) = |

2
P, (f) \IIH = / e *dvy(a), 0 < s <t
2 R

Moreover, one has (see [KL3, Lemma 1])
(U, e WHn ) = / e ey, (a).
R
Set
fu(z) = / e *dvy(a), z €]0,t[+ilR.
R
The family {f,} is uniformly bounded on |0, ¢[+iIR by (2.8) and converges pointwise to foo

on 0, T[ by (2.7). Applying Lemma B.3 we conclude that f,(z) converges to foo(z) for
all z € ilR. This implies that on L

w— lim e W = ¢7WH> vy ¢ IR,

n—oo

Since by hypothesis | )y, £¢ is dense in H and for unitary operators weak convergence
implies strong convergence, this completes the proof of the lemma O.
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Proof of Proposition 2.5 (second part). Let us now fix a convenient family of sub-
spaces L;. For 0 <t < T/4 we set Ly = VR, where Ry equals L>(Q, Xjo,5/2—4), ) if < 00
and R; equals L>(Q, X 1oc, #) if B = +00. Clearly £; is included in the spaces Dgn)
defined in (2.3) (with V replaced by V' —V,,). Moreover, Uy ;<74 Lt is dense in H, hence
hypothesis (2.6) of Lemma 2.6 is satisfied. Let us now fix some ¥ € L, i.e., ¥ = Vo for
some ¢ € R;. Using (2.4) we obtain that

lim (U, P,(s)¥) = (U, P (s)¥) for 0 < s <t

and sup,, supg<.<; (¥, Py(s)¥) < oo. Hence hypotheses (2.7) and (2.8) of Lemma 2.6 are
satisfied. Thus we can apply Lemma 2.6 and this completes the proof of Proposition 2.5 O.

3 Gaussian measures

In this Section we recall some standard facts about Gaussian measures on distribution spaces.

3.1 Distribution spaces

Let S = [—f(/2,3/2] (with end points identified) be the circle of length 5 > 0. Points
in S5 x R, d > 1, will be denoted by (¢, z).

The Fréchet space of Schwartz functions on IR¢ will be denoted by S(IR?). For coherence
of notation, the Fréchet space D(S3) of smooth periodic functions on Sz will also be denoted
by S(Ss).

In addition, we denote by S(S5 x R?) the Fréchet space of Schwartz functions on Sg x IR,
i.e., the space of smooth functions on Sz x R?, which are [-periodic in ¢ and such that for
all pe N and a € IN?

(1+ )07 o7 £ (¢ 2)| < Cpoa-

We will denote by S'(IR?), S'(Ss) and S'(Ss x R?) the duals of S(RY), S(S3) and
S(S5 x IR?). The spaces of real elements in these spaces will be denoted by S (R?), Sk (Ss)
and S (S5 x RY).

We set D; = i719; and D, = i719,, and we will denote by D? the selfadjoint operator
on L?(Sg) defined by

Df = -0}, D(D}):={u€ L*(Sg) | 9fu € L*(Ss), u(0) = u(B)}.
We denote by D? + D2 the selfadjoint operator on L?(Ss x IRY) with domain
D(D] + D2) := {u € L*(Ss x RY) | (D? + D?)u € L*(S5 x R?), u is B-periodic in t}.

We denote by S(Z x IR?) the Fréchet space of sequences {u, }nen with values in S(IR?) such
that

D [nP(DF + %) unll 2 sy < 00 Vp € N,

neZ
We now fix the notation concerning partial Fourier transforms. We first define the (unitary)
partial Fourier transform with respect to ¢:

Fii S8(S3xRY) — S(ZxRY)

)
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where 4, (z) = 372 f e~ Wnly(t,z)dt. (The coefficients v, = 2mn/B, n € IN, are called in
physics Matsubara frequenczes) Its inverse is

—33 Z et i, (x)
neZ

The (unitary) partial Fourier transform with respect to x is

Fo: 885 xRY — 8(S5 xRY)

u — i ’

where a(t,p) = (2m) =42 [, e7 " Pu(t, z)dx. Its inverse is

u(t,z) = (2m)~ 42 / e TPa(t, p)dp.
Rd
For later use we fix two approximations of the Dirac § functions in ¢ and x. We set, for k € IN|

Sr(s) =" Z e and  Op(x) := kx(kx),

In|<k

where x is a function in Cg%; (RY) with [ y(z)dz = 1.

3.2 Gaussian measures

We set
(3.1) C(f,g) = (f.(D} + D2 +m?)g), f.g€S(Ssx R,

where (.,.) is the scalar product on L?(Sz x R).
Let Q := Sk (S5 x RY) and let ¥ be the Borel o-algebra on Q. If f € Sr(Ss x IR?),
then ¢(f) denotes the coordinate function

o(f): Q C
q

-
= (¢, f)
Let F be a Borel function on IR. Then F(¢(f)) denotes the function

Fo(f): Q@ — C
g — F(qnhn)

We denote by d¢c the Gaussian measure on (Q, ) with covariance C' defined by

(3.2) / ?Ndpe = e U2 f € Sp(S5 x RY).
Q
We have
0, p odd,
(3.3) / of) doe = { (p— DNC(f, f)P/2, p even,

where n!! = n(n — 2)(n —4) --- 1. One easily deduces from (3.3) that /) € LY(Q, %, d¢c)
if f€Sr(Ssx RY).

The cylindrical functions F(¢(f1),...,¢(fa)), fi € Sm(IR x Sg), F a Borel function
on R" and n € IN, are dense in LP(Q, %, d¢¢) for 1 < p < oo.
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3.3 Sharp-time fields

We now recall some standard results about the existence of sharp-time fields. We will make
use of the following well known identity (see [KL2]):

iUp

1 e
(3.4) 3 > g

nezZ ™

e_‘tl6 _|_ e_(ﬁ_lt‘)e 27Tn
= fore >0, v, = 7

¢
L 0< |t < 8.
€2 2¢(1 — e=F¢) <l=<B

For hi,hy € SR(IR?), 0 < t1,ty < 3, and k € IN
C(6k(- —t1) ® hy, 0k (. — t2) ® ha)
= gt ngk eiun(tl—tz)(ﬁlm (V2 + D2 + m2)_1h2")L2(]Rd)'
Using (3.4) we see that

e~ ltz—tile 1 o= (B=lt2—t1])e

kli{go C k(- = 1) ® hu, k(. — t2) ® h2) = (hl’ 2¢(1 — e~ Pe) h2) L2(R4)’
where € := (D2 4+ m?)z.
Using (3.3) this implies that, for h € Sr(IR?) and t € S4 fixed, the sequence of func-
tions {¢(dx (- — ) ® h) }rew is Cauchy in (<, .o, LP(Q, %, déc).
We set
(3.5) B(t.h) = lim 6(5(.~ 1) @ )
and

e~ ltz—tile 1 o= (B—lt2—t1])e h
2¢(1 — e=Pe) 2)L2(1Rd)'
We note that ¢(t,h) belongs to (<, LP(Q, X, d¢c). For later use we define the temper-

ature 31 covariance on IR%:

(3.6) Co(t1,h1,ta, ha) == (hl,

. (1+ e‘ﬁé)
(3.7) Colhi, hs) = (hl, 5

—_ hi,h 4.
€(1 —eFe) 2)L?(le)7 1 he € SR

3.4 Sharp-space fields

If d = 1, then it is possible to define similarly sharp-space fields. We first recall another
well-known identity, which is analogous to (3.4):

. elpT e—b\m\
(3.8) (2m) /IR Z dp = 5% for b> 0, z € R.

For g1, 92 € Sr(Ss) and z1,z2 € IR one has

0(91 ®0k(- —x1),92 @ 0k (. — Iz))

(3.9) 02 (D) aip(en— -
_ fmxg(%)elp(zl mg)(gl7(D?+p2+m2) 192)L2(55)dp.

Using (3.8) and {(0) = (27)~2 we find
e—|m1—z2\b

(3.10) Jim C(g1 @ 0k(- = 21), 92 ® p(- — 2)) = <g1, TQQ) £2(Sp)’

where b := (D? +m?)z. Now we can use (3.3) again: for g € Sr(Ss) and z € IR fixed, the
sequence of functions {¢(g ® 0x(. — z)) }ke]N is Cauchy in ;... LP(Q, 2, doc).
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We set
6(g,x) = lim (g @ dx(- — x))

and

(3.11) Cs(g1,71, 92, T2) 1= (91,

e—|m1—m2|b
2b 92) L2(S)

We note that ¢(g,z) belongs to (.o LP(Q,%,déc). For later use we define the 0-
temperature covariance on Sg: -

1
A2 = — .
(3.12) Cs(g1,92) (917 2b92)L2(SB)’ 91,92 € S(5p)

3.5 Some elementary properties

From (3.3), (3.6) and (3.11) we deduce that the maps

Hi'(Ss x RY) = Nicpeno LP(Q, 2, d6c)

(313 / - o(f) ’

(3.14) S x Hy* (RY) — Mi<peoo LP(Q, X, déc)
(t,h) - ¢(t, h)

and .

(3.15) Hi?(Sp) xR = Nicpea LP(Q, 2, dé0)
(g,x) = ¢(g,x)

are continuous.
For f € Sr(Ss xR), t € Sg and = € IR we set

fir R — C fz: Sz — C
z = ftz)’ t o= fltx)”

We note that f; € Sgr(IR) and f, € Sr(53).
Lemma 3.1 If f € Sr(SpxIR), then the following identity holds on (<, LP(Q, %, dédc):

/ o(fom)de = [ 6(t, fi)dt = o).
R Ss

Proof. Let f € Sr(Ss x R) and k € IN. The map

R — H'(S3xR)
x — [r@0qk(—x)

is continuous. Since f € Sr(Ss x R), the bound || fo @ k(. — @) m-1(s,xm) € O(|2]7>)
holds true. Hence by (3.15) the map

]R - mlSp<oo LP(Q’ Evd¢c)

is continuous and ||¢( f2 @6 (.—z)) HLP(Q Sds0) € O(|z|~>°). Therefore [ ¢(fo®6(.—2))dx
is well defined as an element of ﬂ1§p<oo L?(Q,%,déc). Moreover,

/leb(fz ® 0x(. — 2))dz = ¢(/1R fo®0n(. — :z:)dx) — 6(f * 1),
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where the convolution product * acts only in the space variable z. Since limyg_,oo f * 0 = f
holds in H~1(Ss x IR), we obtain from (3.13)

Jim | o(fe @0 —2))dv=¢(f) in (] L"(Q.T,déc).

R 1<p<oo

It follows from (3.9) and (3.10) that
. N .
i sup ol [9(7= © 0ul. = 2)) = 6(F )1 . 3.000) =0

for f € Sr(Ss x R) and N € IN. Hence

klim O(fo ® 0p(. —a))dz = / &(fz, x)da.
- JRr R

This proves the first identity of the lemma. The second one can be shown by similar argu-
ments 0.

4 Path spaces supported by (Si(Ss x IR), >, do¢)

In this section we recall two well known path spaces supported by (Q, X, d¢¢c). The first is
associated to the free neutral scalar field of mass m on S3 at temperature 0; the second is
associated to the free neutral scalar field of mass m on IR at temperature 371.

We recall that (¢,x) denotes a point in Sg x IR, and refer to ¢ as the (euclidean) time and
to x as space variable. The time translation induced on @ by the map (¢, z) — (t+s, z) will be
denoted by 7,: Q — @ and the spatial translations induced on @ by the map (¢, z) — (¢, z+y)
will be denoted by a,: @ — @. Note that for the thermal model on the real line, ¢ is the
(euclidean) time and x is the space variable, while for the model on the circle ¢ has to
be interpreted as the ‘position variable on the circle’ and = has to be identified with the
‘euclidean time variable’.

4.1 The free massive euclidean field on the circle at 0-temperature

In this subsection we identify the generalized path space on (Q,X,d¢¢) corresponding to
the free massive scalar field on the circle Sg at temperature 0.

Let ¢ be the sub o-algebra of ¥ generated by the functions {¢(g,0) | g € Sr(Ss)}-

We denote by {Uc(x)}remr the l-parameter group generated by the spatial transla-
tions {a, }sem. More precisely, if F: Q — C is a function on Q, then Uc(z)F(q) := F(a_4(q))
for ¢ € Q. Applying (3.2) we see that & — Ug(z) is a strongly continuous unitary group
on L*(Q,¥,d¢c), and hence extends to a group of measure-preserving automorphisms of
L>(Q,%,d¢¢c) which is continuous in measure.

Let 7¢: @ — @ be the space reflection around x = 0. We denote by R¢ the measure
preserving transformation of (@, X, déc) generated by re.

For g € Sr(Sg) we have
(41) UC("E)QS(g?O) = ¢(g,$).

Using then Lemma 3.1, we see that ¥ = \/_ . Uc(z)X§.

Hence (Q, %, X5, Us(x), Re,d¢c) is a generalized path space. Moreover, it is OS-positive
(see e.g. [KL2]).

It describes the free neutral scalar euclidean field of mass m on the circle Sg at temper-
ature Q.

Let us now briefly describe a well-known concrete form of the physical objects asso-
ciated to this path space by the reconstruction theorem. Let H ‘%(Sﬁ) be the Sobolev
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space of order —% equipped with its canonical complex structure i and scalar product

(h1, (2b)"ha)12(s,), where b = (D? + m?)%. Then the physical Hilbert space can be uni-
tarily identified with the bosonic Fock space F(H_% (S3)) over H~2 (Ss). The distinguished

unit vector ¢ := V1 is identified with the Fock vacuum {2 in F(H_%(Sg)). The (free)
Hamiltonian is
HZ =dIr(b).

The abelian von Neumann algebra U obtained from the reconstruction theorem can be

identified with the von Neumann algebra generated by {Wg(g) | g € HI;{%(SB)}' In fact,
if A= ¢?90 for g € Sg(Ss), then the operator A defined in (2.1) is identified with the
Fock Weyl operator Wr(g) = €?#(9) on I‘(H_% (S3))-

4.2 The free massive euclidean field on IR at temperature 37!

We now identify the generalized path space on (S (Ss x IR), X, d¢¢) corresponding to the
free massive scalar euclidean field on IR at temperature 37 1.

Let %o be the sub o-algebra of ¥ generated by the functions {¢(0,h) | h € SR(IR)}. We
denote by {U(t)}tes, the one parameter group generated by {T;}ies,. If F:Q — Cis a
function on @, then U(t)F(q) := F(3_¢(q)) for ¢ € Q. Using (3.2) we see that t — U(t) is a
strongly continuous 3-periodic unitary group on L?(Q, ¥, d¢¢). Hence it extends to a group
of measure-preserving automorphisms of L*°(Q, %, d¢¢) which is continuous in measure.

Let r be the (euclidean) time reflection around ¢ = 0. We denote by R the measure
preserving transformation of (Q, X, dé¢c) generated by r.

For h € Sg(IR) we have
(4.2) U(t)p(0,h) = ¢(t, h).

Again by Lemma 3.1, we see that ¥ = \/,cg U(t)%0. Hence (Q,%,%0,U(t), R,d¢c) is
a generalized path space. Moreover, it is S-periodic and OS-positive (see e.g. [KL2]). It
describes the free neutral scalar field of mass m on IR at temperature 57 1.

We now describe a well known concrete form of the S-KMS system associated to the
generalized path space (Q, 3, 3o, U(t), R,d¢¢). Let b := H-3 (R) be the Sobolev space of
order —%, equipped with its canonical complex structure i and scalar product (hi,hs) =
(h1, (2€) " h2) 12(m), Where € = (D2 +m?)2. On h we consider the unitary dynamics e~

On the Weyl algebra W(h) we define a state wg and a one-parameter group of automor-
phisms {77 }ter by

(4.3) W (W(h)) := e” 12000 - 2o (W () .= W(e''R), h € b, t € R,

where p := (e#¢—1)71, 3 > 0. It can be easily seen that wj is a quasi-free (7°, 3)-KMS state
on W(h).

Let us now recall some terminology. If h is a complex vector space, then the conjugate
vector space B is the real vector space h equipped with the complex structure —i. We will
denote by h > h + h € b the (anti-linear) identity operator. If a € £(h), then we denote by
@ € L(h) the operator @h := ah. If b is a Hilbert space, then b is equipped with the Hilbert
space structure (hy, he) := (ha, hy).

We recall a convenient realization of the GNS representation associated to (W(b),w%),
which is called the right Araki-Woods representation. It is specified by setting

HAW = F(h 2] 6)7
Qaw = Q,

Taw(W(h)) = Waw(h) == We((1 + p)*h ®p2h), heb.
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Here Wr(.) denotes the Fock Weyl operator on I'(h@h) and © € T'(h@h) is the Fock vacuum.

The physical Hilbert space associated to the path space (Q, X, X, U(t), R,d¢¢) can be
unitarily identified with T'(h @ h). The distinguished vector V1 is identified with the Fock
vacuum vector €2 in T'(h @ b). The Liouvillean L,y satisfies

eiLAwtﬂ.AW(A)QAW = Taw (Tf(A))QAW and LawQaw = 0,

and can be identified with dI'(e & —€).

The abelian von Neumann algebra i, obtained by the reconstruction theorem can be
identified with the abelian von Neumann algebra generated by {W.w (h) | h € Hn_%% (R)}.
In fact, if A = &%) for h € Sk (IR), then the operator A defined in (2.1) is identified with
the Weyl operator Wy, (h) = e'®4w (™) on T'(h @ b).

The von Neumann algebra B,y generated by ;e 74 (Uaw) can be identified with the
von Neumann algebra R, generated by {W.y (h) | h € H-2(IR)}.

5 Perturbations of path spaces

In this section we describe perturbations of the two path spaces defined in Subsects. 4.1
and 4.2, obtained from FKN kernels corresponding to P(¢)s interactions.

5.1 Interaction terms

We recall some well known facts concerning the Wick ordering of Gaussian random variables.
Let (K, v) be a probability space and X a real vector space equipped with a positive quadratic
form f — c(f, f) called a covariance. Let f — ¢(f) be a IR-linear map from X into the
space of real measurable functions on K.

The Wick ordering :¢(f)™:. with respect to the covariance c is defined by the following
generating series:

(5.1) ) = i %T  D(f)" o= e T ),
n=0
Thus
[n/2] ! 1 .
(52) ¢(f)”c: Zom(b(f)n—2m(_§c(f7 f)) 7

where [.] denotes the integer part.

Lemma 5.1

(i) For f € LY (SgxIR)NL2(SsxIR) the following limit exists in (| LP(Q, %, déc):

1<p<oo

lim ft,2) :p(n(. — ) @ 0 (. — 7)) "2 dtda.
(k,k:’)—)()o SQXIR

It will be denoted by fsﬁxmf(t,:v) :(t, o)™ ¢ dtdz.
(i) For h € LY(IR) N L3(IR) the following limit exists in Ni<peoo LP(Q, 2, doc):

lim h(z) :(0,05(. — x))" : ¢, dx.
k—oo JIR

It will be denoted by [ h(z) :9(0,2)" ¢, dx.
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(ili) For g € L'(Sg) N L*(Sg) the following limit exists in Ni<peoe LP(Q, . doc):
lim g(t) : (0 (. —t),0)" oy di.

It will be denoted by fsﬁ g(t) :p(t,0)":c, dt.

We recall that the covariances C, Cy and Cg have been defined in (3.1), (3.7) and (3.12),
respectively. In Lemma 5.1 the probability space is (@, %, d¢¢) and the real vector spaces
are equal to Sg(Sg x R), Sr(IR) and Sr(Sg), respectively.

Proof. The proof is straightforward, adapting standard arguments (see e.g. [Si], [GelJ,
Section 9]) used for the spatially cutoff P(¢)2 model at O-temperature 0.

Remark 5.2 If P = P()\) is a polynomial, then the functions
F(t2) : P(6(t 7)) e didz, / hz) : P(6(0,2)):c, du and / o(t) : P(6(t,0)) ¢, dt
SQXIR R Sg

are well defined, by linearity. It can be easily shown (see [GeJ, Proposition 8.4]) using the so-
called Wick reordering identities that there exists a linear invertible map between polynomzials

P—P

with degP = degP, deg(P — P) < deg(P) — 1 such that

/ h(z) : P(6(0,2)) 0, da = / h(z) : P(6(0, ) e da
R

R

Here : :yae denotes Wick ordering with respect to the 0-temperature covariance (h, ih’)LQ(IR)'

Lemma 5.3 Let P be a polynomial, h € L*(IR) N L*(IR) and g € L*(Sg) N L?(Ss). Set
Vo(h) = [ (@) : P(6(0,2)) ¢, da,

(5.3)
Valg) = [, 9(t) :P(6(t,0)c, dt,

as functions on Q.
Then

(5.4) /S (U () Ve (h)dt = /S (9() ® h(2)) : P((t, 2)):c dide = /IR h(2)Ue(2) Vs (g)da

gXIR
as functions on Q.

Proof. Let W be a function in LP(Q,X,d¢¢) for some 1 < p < co. The one parame-
ter groups {U(t)}ies, and {Uc(z)}ser, defined in (4.2) and (4.1), are strongly continuous
groups of isometries of ;.. L?(Q, %, d¢c). Therefore the functions [, h(z)Uc(x)Wdzx
and fsﬁ g(®)U(t)Wdt belong to LP(Q, X, doc).

Together with Lemma 5.1 this implies that all three functions given in (5.4) belong
to LP(Q,X,d¢¢c). Let us now prove that they are identical. By linearity, we may assume
that P(A) = A". Using Lemma 5.1 and the Wick identity (5.2), it follows that

/ (9(t) @ h(x)) : P(¢p(t,x)):c dtde = lim  F(k,k') in LP(Q,%,d¢c),
SpxR (k,k")—o0
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L 0l (- 20k, )"

m!(n — 2m)!

/ (9(t) @ h(2)) $ (0 (. — 1) ® 61 (. — 2)) " dtda
SpxIR

and gk (¢, x) 1= 0k (t) ® ops (). Since
Jim C(Ok.kr, 0k k) = Co(Or, Okr),
the definition given in (3.5) of sharp-time fields implies that
klingo F(k,k") = /Sﬁ g(O)Vir (t, h)dt in LP(Q, X, doc),

where

[n/2) |
n:

Vi (£, h) = mZ::o Y (~5Co0w, 1)) /]Rh(x)qb(t, 5 (. — )" da.
Note that (4.2) implies Vi (¢, h) = U(t)Vie (0, h). By Lemma 5.1 (ii) we know that
Jim V(0. = [ 1@ :P(@(0.0)):c, do i £7(Q..ddc)
and hence

lim g(t)Vk/(t,h)dt:/ gOU@)Vo(R)dt in LP(Q, T, déc).

k—o0 Sg Sg

Applying Lemma B.1 with F = L?(Q,X,d¢c) we obtain the first identity in (5.4). The
second identity follows by the same argument, taking first the limit ¥’ — oo and using then
that

k’lgnoo O(5k,k',5k,k') e Oﬁ((sk, 5k> 0.

5.2 The P(¢); model on the circle S; at temperature 0

Let P(A) be a real valued polynomial, which is bounded from below. The P(¢)2 model on
the circle Sg is specified by the formal interaction term

Ve := Vi (Li-p/2,0/21) :/s 1P((t,0)):c, dt.
B

This expression can be given two equivalent meanings: first of all, as recalled in Lemma 5.1,
it can be viewed as a X measurable function Vo € (<), .o, LP(Q, X§, ddc). Secondly, V can

be considered as a selfadjoint operator on I‘(H ~2 (Sﬁ)) affiliated to the abelian algebra .
More precisely, for ¢t € Sg and A > 1 an UV cutoff parameter, we define an approximation

hay € H=2(Sg) of the Dirac delta-function 6(. —t) € H~2(Sgs) by
hae =T g (b)o(. —1t) € H_%(Sﬁ),

where b = (D2 + m?)2. Setting ¢, (¢,0) := ¢r(ha,) one obtains by well-known arguments
that

Ve = lim :P(¢pa(t,0)):c, dt
A—oo S5
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on a dense set of vectors in I‘(H_% (Sg)). Since hy ¢ € Hﬂ;ﬁ (Sg) is a real valued function, it
is easy to see that V4 is a selfadjoint operator affiliated to U.

It is then easy to verify, by adapting well-known results for the spatially cutoff P(¢)2
model on the real line IR at O-temperature (see [S-HLK]) that Vo € N, LP(Q, xS, doc)

and e~ TV € LY(Q, XS, d¢¢) for all T > 0. Now consider, for 0 < b —a < oo,

b
(5.5) Gy = ¢ o VelVede
as a function on Q. It follows from Jensen’s inequality (see [KL4, Theorem 6.2]) that

e—(b—a

(5.6) 1GlapllLr@.s.dec) < | Vel Lo (@zdoe)

and hence G, € ﬂ1<p<oo LP(Q,%,d¢¢). From the results recalled in Subsection 2.3, we
obtain a selfadjoint operator
He=dI'(b) + Ve

on F(H_%(Sﬁ)) associated to the FKN kernel {Gy4}. The Hamiltonian Hc is called
the P(¢)2 Hamiltonian on the circle Sg.

Proposition 5.4 The Hamiltonian Hc is bounded from below and has a unique normalized
ground state such that (e, Q) > 0. We set

wc( . ) = (Qc, . Qc)

Moreover, for ¢ > 1, )
(5.7) lor(9)(He +¢) 2| < Clgll

H™3(55)"
5.9 £6r(0) < Cllgl, 3., (o )
and
(5.9) +ér(9) < Cllglla-1(s,)(He +¢)

forallg e H=3(Sp). As before, Wr(g) = €'97(9) is the Fock Weyl operator on I‘(H_% (S3)).

Proof. The existence and uniqueness of the vacuum state can be shown by following
the proofs of the corresponding results for spatially cutoff P(¢)2 models. For example, one
easily obtains (see e.g. [Si, Theorem V.20] or [DG, Theorem 6.4 (ii)]) that

(5.10) (dI'(b) + 1) < C(Hc +¢) for ¢> 1.

Since dI'(b) has compact resolvent on I'(H —3 (S3)), it follows that H¢ is bounded from be-
low with a compact resolvent and hence has a ground state. The uniqueness of the vacuum
(i.e., the ground state of Hc) follows from a Perron-Frobenius argument (see e.g. [Si, The-
orem V.17]). Since b > m > 0, we see that it suffices to check (5.7) and (5.8), with Hc
replaced by the number operator N, which is immediate. To prove (5.9) we use (5.10) and
the well known bound (see e.g. [Ge, Appendix])

+or(g) < b7 7gll -3, (dT(B) + 1) O.

3(Sp)

23



Without proof we quote the following result (see [HOJ).

Theorem 5.5 Let H*™ := Hc—Eg, where E¢ := inf(o(Hc)) and let Pe denote the generator
of the translations along the circle Sg. The joint spectrum of HE*" and Fc is purely discrete
and is contained in the forward light cone.

Consequently the correlation function
(t,2) = (R, A"+ BOG) A B € B(T(H %(S5))),

allows an analytic continuation to the tube IR* 44V, , where V. := {(t,z) | |t| < z; = > 0}
denotes the forward light cone (with ¢ and x reversed, due to our conventions).

5.3 The spatially cutoff P(¢); model on IR at temperature 3!

Let P(A) be a real valued polynomial, which is bounded from below (as in Subsection 5.2),
and let I € IRT be a spatial cutoff parameter. The spatially cutoff P(¢)2 model on R is
specified by the formal interaction term (see (5.3))

l
Vi=Vo(liyy) = /l :P(¢(0,2)):¢, da.

Again this formal expression can be given two equivalent meanings: first of all, as recalled
in Lemma 5.1, it can be viewed as a Yp-measurable function V; € ﬂ1<p<oo LP(Q, X0, doc).

Secondly, V; can be considered as a selfadjoint operator on I'(h @ ) affiliated to the abelian
von Neumann algebra Uy, . As in Subsection 5.2 we define an approximation hy , € H~2 (IR)
of the Dirac delta-function 6(. — x) € H=2(IR). For 2 € R and A > 1 we set

hag =T a1 (€)0(. — ) € H 3 (R)
and introduce cutoff fields ¢a(0,2) = ¢aw(hay), where ¢daw (h) is the selfadjoint field

operator associated to Wy (h), h € b.

As before, the limit
1

(5.11) V= Alim :P(pa(0,2)):¢, dz
— 00 -1

exists on a dense set of vectors in I'(h @ h). Since hp . € Hﬂ;ﬁ (R), one obtains that V; is a
selfadjoint operator affiliated to U,y -

Adapting well known arguments (see [GeJ, Section 8.2]) it can be shown that e
LY(Q, %0, p) for all T > 0. Consequently, we can associate to V; the FKN kernel

—-TV, c

- [P U@vide
@ )

F[layb]::e Ogb_agﬁ,

and the measure l
PP = T Y
Jo F-py2,8/219%¢
The generalized path space (Q, X, Yo, U(t), R, ;) is G-periodic and OS-positive. The asso-

ciated 3-KMS system is called the spatially cutoff P(¢)2 model on IR at temperature 3~1.
Applying the abstract results recalled in Subsection 2.3, we obtain the following facts:

— the physical Hilbert space Hy; is equal to Hw = ['(h D b);

— the W*-algebra By, and the abelian algebra Uy, are equal to R.w and U,y , respec-
tively;
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— the operator sum L,y + V; is essentially selfadjoint on D(L,w) N D(V;) and if H; :=
L.w + Vi, then the perturbed time-evolution on B is given by 7/(B) := e!*t Be=1*H1
B € B;

— the GNS vector Q€ T'(h @ h) belongs to D(engz) and the perturbed KMS state w;
is given by wy(B) = (Q, BQ), where O := [e" 771 Q0 [ Lo~ 2H1Q .
The following consequence of Lemma 5.3 will be important in Section 7:

(512) F[l—ﬁ/QHB/Q] = G[—l,l]?

where G, ) was defined in (5.5). The analog identity in the temperature zero case is called
Nelson symmetry.

6 The thermodynamic limit

In this section we prove that the limits

lim 7/(A) =:7:(A) and lim w;(A) =: wz(A)

l—+4o0 l—+4o0

exist for A in the C*-algebra of local observables A and that (A, T,wg) is a S-KMS system,
describing the translation invariant P(¢)2 model at temperature 37 1.

6.1 Preparations

We first recall a well known relationship between e~ ¢ and the Klein-Gordon equation: let

(6.1) U: H73(R) — Hg"(R)+iHg(R).
h — f:= Reh +ie 'Imbh.

(Note that U is IR-linear but not C-linear). Then
(6.2) Ue ' = T(t)U, where T(t)f = fi,
and f; is the solution of the Klein-Gordon equation

{ (87 = 02 +m®) f; =0,
ft=0 =, (Btf)tzo = —e’ Imf + iRef.

Moreover if h; € H=2(IR) and Uh; = f; for i = 1,2, then

(6.3) o(ha, ha) = Tm(hs, ho) g = T /IR 7.(2)fo(2)da.

For I C IR a bounded open interval we define the real vector subspace by of f

(6.4) hr:={h e€b|suppUh C I}.

It follows from (6.2) that ie: D(€) N by — by, and hence (1 + ae?)~t:h; — by for a > 0. In

particular D(e) N b is dense in h;. Moreover (6.3) shows that h; and h; are orthogonal for
the symplectic form o if IN.J = (.
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6.2 The net of local algebras

We start by recalling a result of Araki [Arl, Thm. 1] which will be useful later on. Let us
recall a standard notation: If Hi, Ho are two vector subspaces of a Hilbert space H, then
H1 V Hz denotes Hy + Ha. If Ry, Ra are two *-sub-algebras of B(H), then Ry V Ry denotes
the von Neumann algebra generated by R U Rs.

Proposition 6.1 Let X be a Hilbert space and let Z be a real vector subspace of X. Let
W(Z) C W(X) denote the C*-algebra generated by {W(x) | x € Z} and let 7p : W(X) —
B(T'(X)) be the Fock representation. Then

65)  (rrW(Za)" =7r(W(NaZa))”’, \/ 71r(W(Za))" =7 (W (VaZa))”

and
(6.6) e (W(Z)) =me(W(Z1))",

where Zo is a family of real vector subspaces of X and Z=+ is the vector space orthogonal
to Z for the symplectic form o(x1,x2) = Im(z1,x2).

We now define the net of local von Neumann algebras I — R 4y (I) describing free thermal
scalar bosons. Let I C IR be a bounded open interval. We denote by Ry (I) the von
Neumann algebra generated by

{Waw(h) | h €br}.

Lemma 6.2
(i)  The local von Neumann algebras for the free thermal field are regular from the
inside and regular from the outside:

ﬂ RAW(J) = RAW(I) = \/ RAW(J);
JoT JcI

(ii) The net of local von Neumann algebras for the free thermal field is additive:

Raw () = \/ Raw (Ji) if I = Ui.J;;
Jz

(iii) For each open and bounded interval I, the local observable algebra Raw (I) is
x-isomorphic to the unique hyper-finite factor of type III;.

Proof. Recalling the definition of the Araki-Woods representation we see that, with the
notation introduced above, .
Raw(I) =m(W(Z1))",

where Z; C h @ b is the vector subspace
Zy={(1+p)*h&p>h|he b}

Clearly ;5747 = V5., %s = Zi, which using (6.5) implies (i). Part (ii) is a direct
consequence of (6.5). To prove (iii) we use (6.6) and (6.5) which implies that

RAW(I) N RAW(I)I =Tp (W(ZI N Zf‘)”,
where Z+ is the orthogonal space to Z in h @ b for the symplectic form o(f,g) = Im(f, g)

on h @& h. We claim that
(6.7) Z;1 N Z¢ = {0},
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which will imply that R,w(I) is a factor. To prove our claim we pick h € h; such that
(1+p)thepihe Z. This implies that Im(h, g) = 0 for all g € h;. Hence to prove (6.7) it
suffices to check that
(6.8) by Nh7 = {0}.
But if h € by N b, we have Im(h,ie(1 + ae®)*h) = 0 for a > 0, since ie(1 + ae®)~th € b
for h € hr. Letting o — 0 this yields Re(h,eh) = (h,ch) = 0, since € is selfadjoint. Using
that € > m > 0 this implies that = 0, which proves (6.8) and hence (6.7). Thus Rw (1)
is a factor, if I is bounded. Note that (6.8) shows that m#p(W(hs))"” is a factor, and it is
well known (see e.g. [BD’AF][L] and lit. cit.) that m(W(h1))" is *-isomorphic to the unique
hyper-finite factor of type III;. Thus Lemma 6.3 below completes the proof of the lemma O.
We now recall an easy fact about the restriction of the free KMS state wj to the local
algebras W(hy).

Lemma 6.3 Let I C IR be a bounded open interval. Then the representations 7,y and Tg
of W(b1) are quasi-equivalent.

Proof. Let h be a Hilbert space and let ¢ > m > 0 be a positive selfadjoint operator
on b. Let wg be the quasi free state on W(h) defined by wg (W (h)) = e~ 1 (h(1+20)h) where
p = (% —1)~1. Then it is well known that wg is normal with respect to the Fock represen-
tation 7 of W(X) iff Tre™”¢ < oo (see e.g. [BR, Prop. 5.2.27]).

This fact implies that if h; C b is a complex vector subspace, then the restriction of w3
to W(h1) is mp-normal iff Tr(Ee ?¢E) < oo, where E is the orthogonal projection onto ;.

We will apply this remark to h = H~2(IR), p = (¢’ —1)~! and h; = Ch;. Let E; denote
the orthogonal projection on Ch;. Let x € C§gg such that x = 1 near I and x = i0k. If
h € by, then Reh = x(x)Reh and Imh = ex(x)e~Imh. Using pseudodifferential calculus, we
see that the operators (1 + |#[)N y(z) and (1 4 |z|)Nex(z)e ! are bounded on H~=(IR) for
all N € IN. This implies that

(6.9) 11+ 2™l < Cllhll ;-3 gy € b1

H™3(R) R)’

Clearly (6.9) extends to Ch, which implies that (1 + |z|)V E; is bounded for all N € IN.
Since e7¢(1 + |z|) =" is trace class for N large enough we see that Ere %¢E; is trace class.
Using the arguments given above we obtain that wj restricted to W(Ch;) (and hence also
to W(bs)) is mp-normal.

Finally we have seen in the proof of Lemma 6.2 that 7z (W(bhr))” is a factor, hence 7p is
a factor representation of W(hy). It is shown in [KR, Prop. 10.3.14] that if R is a C*-algebra
and 7 is a factor representation of R, then 7 is quasi-equivalent to the GNS representation
of any m-normal state w. Since the restriction of 74y to W(hy) is the GNS representation
for the quasi-free state wg, this completes the proof of the lemma O.

6.3 Existence of the limiting dynamics

The C*-algebra of local observables A is defined as follows:

A= RAW(I)(*),

ICIR

where the union is over all open bounded intervals I C IR and the symbol | J; RAW(I)(*)

denotes the C*-inductive limit (see e.g. [KR, Proposition 11.4.1.]).
We denote by {a, }zemr the group of space translations on A, defined by
e (W (h)) = W (€7 5h), = € R,

where k is the momentum operator acting on h = H~2 (IR).
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Theorem 6.4 (Existence of limiting dynamics). Let I C IR be a bounded open interval.
Fort e R fized, the norm limit

llim 7H(B) =: 74(B)
exists for all B € Raw(I). The map 1:t — 7 defines a group of x-automorphisms of A such
that 7. 0o ay = iz o1y for all t,x € IR. Moreover,

(6.10) Tt:RAW(I)HRAW(I—i—]—t,t[).

Proof. The proof follows the well-known proof in the O-temperature case, which is based
on finite propagation speed (see [GJ2, Theorem 4.1.2]). To prove the existence of the limit
and the group property, it suffices to show that 7} (B), for B € Raw(I) and [t| < T, is
independent of [ for [ > |I| + T.

It follows from (6.2) and Huygens principle that

(6.11) 70 Raw (I) = Raw (I+] — t,t]).

Moreover (6.3) implies that R 4w (I1) C Raw (l2)’, if L N I3 = 0.

The dynamics 7} is unitarily implemented by e'*! where H; = L 4, + V] for

V= :P(¢(0,2)):¢, dz.
]_l)l[

Trotter’s formula yields e*t = s-lim,, . (et4w/meitVi/7)" and hence

(6.12) 71 (A) = s lim (75, 07;/,)" (A), A€ B(Haw),
where 7/ (A) := e*Vi Ae~*Vi. Note that for I’ > [
V=WV —i—/ :P(¢(0,2)):¢, dz.
1=\ =00

Since Vi — V; is affiliated to Raw (] — I,V'[\ [=,1]), we sce that 7} = A on Raw(I) for
1,I' > |I|. Using (6.11) and (6.12), this implies that 7/ = 7/ on Raw(I) for |t| < T and
1,I' > |I| + T. This proves our claim. The same argument using again (6.11) proves (6.10).

It remains to check that 7 and o commute. Let 7' > 0 and I a bounded interval.
For |[t| < T the time evolution is locally (i.e., applied to elements in R,y (I)) generated
by H, if | > |I| +t. Now a, is implemented by e!*f with P = dI'(k @ k). It follows that
az o1y 0a; ! is implemented by el with H; , = e®F Hje'*F . Tt is easy to see that

Hi,=Law +/ :P(¢(0,2)):¢, da.
]=l+z,l+z[

By the same argument as above, 7, is implemented by et for [t| < T if I > |I| +|T|+ |z,
which implies that a, o 0oa, ! =7 O.

6.4 An identification of local algebras

In order to apply the results of Section 7 to the algebra of local observables A, it is necessary
to identify the local Weyl algebra R ,w (I) with the von Neumann algebra B(I) obtained by
applying the interacting dynamics 7 to the local abelian algebra of time-zero fields U,y (I).
This is done in Proposition 6.5 below. Note that by similar arguments the corresponding
result holds also in the O-temperature case.
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For I C R a bounded open interval, we denote by U,y (I) the von Neumann algebra
generated by {Wy (h) | h € by, h real valued}. Note that U,y (I) C Raw (I) is abelian. We
denote by B, (I) the von Neumann algebra generated by

(6.13) {re(A) | A € Unw (D), [t] < a}.
Proposition 6.5 Set B(I) := (), Ba(I). Then

B(I) = Raw(I).

Proof. Let us first prove that B(I) C Raw(I). Using (6.10) and Uaw(I) C Raw (1),
we see that Bo(I) C Raw(I+] — a,af) for all @ > 0. According to Lemma 6.2 (i) this
implies B(I) C Raw (I).

Let us now prove that R,w (1) C B(I). Using Lemma 6.2 (i) it suffices to show that for
all J C I and o < 1 one has
(6.14) Raw (J) C Ba(I).

To this end we fix I and J with J C I and set § = &dist(J, I¢). We will first prove that
(6.15) eltbaw ge~ithaw ¢ B (1), A € Uy (J), |t| < o,

if & < §. The proof of Theorem 6.4 shows that for |t| < & the unitary group e'*#7 with
Hr:=L,w + V7 and

V= / :P(¢(0,2)): dz,
I
induces the correct dynamics 7 on R 4 (J). Applying then Proposition 2.5, we obtain

) . pr(n)
eltlaw — g lim &1 t e R,

n—oo

for H™ = L,y + V; — V™, where V™ = Vil{v,|<n}- Since V™ is bounded,
H" =Tow + Vi = V" = H; - V",
and hence by Trotter’s formula

oitH _ « lim (eitH,/pe—itV}")/p)g
p—00

This yields, for A € Raw (J),

i —i . . i _i (n) P z (n) s P
eltLAWAe itLaw —s- lim s lim (eltHI/pe itV; /p) A(eltVI /pe 1tH1/p) )

n—oo p—oo
Using again Theorem 6.4 we obtain, for [t| < «,

e A Y (1, o))

where v(™ is the dynamics implemented by the unitary group t — e Vi Since Vi is

affiliated to Uaw (1), emitVi" ¢ Uaw(I) and hence (74, o 7§7g)p(A) € Bu(I) for [t| < a.
Since B, (I) is weakly closed, we obtain (6.15).

Let us now prove (6.14). Clearly the operators W,y (h) for h € by and h real valued
belong to U,y (J) and hence to B (I). Let us now pick A € h;ND(e) and h real valued. (This
is possible; see the discussion presented at the end of Subsection 6.1). Applying (6.15) to
A =W, (h), we obtain that Wy (e'h) € B, (I) for [t| < . Hence Wy (t~1(ef'“h — h)) €
Bo(I) for |t| < «. Letting t — 0 and using the fact that the map h > h — Wy (h) is
continuous for the strong operator topology, we obtain that W,y (ieh) € B, (I). But any
vector h € by can be approximated in norm by vectors of the form hy + icho, with h; € b
real and hs € D(e). This implies that for all h € h; the operators Wy (k) belong to B, (1)
and hence R, (J) C Bo(I). This completes the proof of the proposition O.
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6.5 Existence of the limiting state

Theorem 6.6 (Existence of limiting state). Let {w;};>¢ be the family of (1!, 3)-KMS states
for the spatially cutoff P(¢)2 models constructed in Subsection 5.5.
Then
w— lim w; =:wg exists on A.

l—+4o0

The state wg on A has the following properties:

(i) wg is a (1,8)-KMS state on A;

(ii) wp is locally normal, i.e., if I is an open and bounded interval, then wgr 4y (1)
18 normal w.r.t. the Araki-Woods representation;

(iii) wg is invariant under spatial translations, i.e.,

wg(az(A)) =wg(4), z€R, Ac A

(iv) wg has the spatial clustering property, i.e.,

lim wg(Aag(B)) =wg(A)ws(B) VA,Bc A.

Tr— 00

Remark 6.7 Let R be a C*-algebra, m;: R — B(H;), i = 1,2, two quasi-equivalent represen-
tations of R. Then there exists a x-isomorphism T between w1 (R)" and ma(R)" intertwining
the two representations. This isomorphism is automatically weakly continuous. Therefore the
representation mo extends uniquely from R to w1 (R)” and is quasi-equivalent to the concrete
representation of w1 (R)" in B(H1).

Applying this easy observation to the representations waw and wp of W(hr), which are
quasi-equivalent by Lemma 6.3, we see that the Fock representation mp extends by weak
continuity from waw W(Br1)) to Raw(I) and is quasi-equivalent to the Araki-Woods repre-
sentation. Since two quasi-equivalent representations have the same set of normal states, we
obtain that wgR 4y (1) 18 also normal with respect to the Fock representation.

Proof. The family {w;};>0 of states on A is weak* compact by the Banach-Alaoglu
theorem. Let w; be one of the limit points of {w;};~0. Then we can find a subnet! {w"},cr
such that wy = w — lim,.cpw”.

We claim that wy is a (7, 8)-KMS state. Let A, B € A. Writing

w1 (A (B)) — wT(ATéT (B)) = (w1 — w")(A1(B)) + w" (ATt(B) - ATéT (B))
and using that lim; ., ||[7'(A) — 7:(A)|| =0 for A € A and t € IR fixed, we find

(6.16) w1 (A (B)) = lienll%wT(ATtlT (B)), teR.

The same argument shows

(6.17) wi(r(B)A) = lim " (ri"(B)A), t € R.

re
Since the w"’s are (7', 3)-KMS states there exist functions £ (z), which are holomorphic in
Ig = {0 < Imz < A} and continuous in IE, such that F"(t) = w"(A7{" B) and F"(t +i8) =
w (g7 (B)A). Moreover, one has sup.ep, [F7(2)] < [|A[l[|B]|- Applying Vitali’s theorem and

'A net {ys}sep is a subnet of a net {za }aca if there exists amap B > 8 — «(B) € A such that: 1.) ys = za(s)
for all 8 € B; ii.) for all ag € A there exists some (o such that a(8) > ao whenever 8 > (o.
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possibly extracting a subnet, we know that lim, .. F'"(z) = F(2) exists and is holomorphic
and bounded in I;. By Lemma B.3, we obtain that F' is continuous on I; and

F(t)= Tlgg) Fr(t), F{t+ip) = TIHEOFT(t +1ip).
Using (6.16) and (6.17) this implies that w; is a (7, 3)-KMS state.

We now apply a result of Takesaki and Winnink [TW]: clearly I — {R.w(I)} is a
net of von Neumann algebras (see [TW, Section 2]). The algebras R, (I) are o-finite,
since the Hilbert space I'(h @ h) on which they act is separable. The algebras R .y (I) have
separable preduals since there exists a faithful normal representation (namely the defining
Araki-Woods representation maw ) of Raw () on a separable Hilbert space (namely the
Araki-Woods Hilbert space Haw ). Moreover, as factors on a separable infinite dimensional
Hilbert space they are properly infinite. Applying the following theorem [TW, Theorem 1],
we obtain that the KMS state w; is normal on R 4w (1)

Theorem 6.8 Let A be a C*-algebra, R > t — 7 a one-parameter group of *—autom-
orphisms of A and w a (7,8)—KMS state on A. If there exists a net of o-finite, properly
infinite von Neumann algebras M, with separable preduals such that

(i)  to all pairs Mo, Mg in {Mqa}acr there exists M., with the property
My U ./\/lﬁ C ./\/ly;

(ii) every M, contains the unit of A;
(iii) A is the norm closure of the von Neumann algebras M, i.e.,

(S
A= Mo

ael’

then w is locally normal, i.e. the restriction of w to each von Neumann algebra M, is a
normal state.

Let us now show that all limit states are identical. Let us denote by Uy(I) the abelian
C*-algebra generated by

{F(¢aw(h) | h e Cig(), F € C°(R)}

and by 7, (I) the -algebra generated by {r(A) | A € Up(I), |t| < a}.
From Theorem 6.4 and Proposition 7.6 we deduce that

ll_i,I&wl(HTti(Ai)) = &(Hﬁ% (Al)) = w1 (H Tt; (Al)), A; € Z/{Q(I), ti € R,

where @ and 7 are defined in Subsection 7.2. Therefore all weak accumulation points
of {wi}i>0 coincide on the algebras 7o (I) C Raw (I+] — a, ). We note that o (I) is
weakly dense in the von Neumann algebra B, (I) defined in (6.13). Moreover, we have seen
that all limit states are normal on the local algebras R 4w (I), I open and bounded. Therefore
they coincide on the von Neumann algebras B, (1), and hence by Proposition 6.5 on R 4y (I).
Consequently, they also coincide on the norm closure A. Thus the weak* compact family
{wi}1>0 has a unique accumulation point, which implies that

wg :=w — lim w; exists on A.

l—o0

We have already seen that wg is a locally normal (7, 3)-KMS state on A, which completes
the proof of (i) and (ii). Property (iii) follows from the invariance of the state & under
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space translations shown in Lemma 7.7 and the same density argument as above. It re-
mains to prove (iv). Let (Hg,m3,3) denote the GNS objects associated to (A,wg). The
group {ay}zer is implemented in Hg by a strongly continuous group of unitary operators
{e*Ps},cr with P3Qg = 0. Lemma 7.7 (ii) implies that, for A, B € 7,(I),

(6.18) Jim (m5(A)Qs, P mp(B)2g) = (mp(A4)2s, Up) (s, m5(B)25).

Since Raw (1) is a factor, the representation g provides a weakly continuous *-isomorphism
between R,w (I) and Rg(I) = mg(Raw(I)) = m(Raw(I))”. Hence, by the same weak
density argument as above, (6.18) extends to all A, B € R, (I). Thus the space clustering
property holds on R 4y (I) for all I, I open and bounded, and extends to A by norm density.

7 Construction of the interacting path space

In this section we construct the interacting path space supported by S (Ss x R) describing
the translation invariant P(¢)s model at temperature 5! and study some of its properties.

7.1 Construction of the interacting measure

Let H*" = H{*™— E¢ be the renormalized P(¢), Hamiltonian on S3 defined in Subsection 5.2.
Let f € Sr(SsxIR). For z € IR the function f, defined in Subsection 3.5 belongs to Sr(Sg).
We will apply the results of Appendix A to the selfadjoint operator H = HE®, R(x) = ¢r(fz)
(replacing the variable ¢ in Appendix A by the variable x).

It follows from the bound (5.7) in Proposition 5.4 and the fact that the map

R —  B(L(H"2(55))
v O(f)(HE +1)73
is infinitely differentiable that the hypothesis (A.3) in Subsection A.1 is satisfied. Similarly,
using the bound (5.8) and the fact that the map z +— Hf””HH*%(S ) is in L*(IR) N L>°(IR), we
0

see that hypotheses (A.7) and (A.8) in Subsection A.2 is satisfied. Therefore we can apply
all the abstract results from Subsections A.1 and A.2. In particular there exists a solution
U(b,a) of the time-dependent heat equation:

%U(a 0) = (—HE™ + 16w (f3))U (b, a), Ula,a) = 1.

We will set for —oco < a < b < +o0:

W[a,b] (.f) = U(ba Cl)*.
Proposition 7.1 Let f € Sr(Sg x IR) and assume that supp f C Sz x [—a,a]. Then

/ NGy pdoe = e 2 (em =T Q8 Wi, o (F)e” (T HTQg),
Q

where QF is the free vacuum on I‘(H_%(Sg)).

Proof. Let us first introduce a notation which we will use throughout the proof. If A is

a Y-measurable function on @, the image of A under Ug(z) for € IR will be denoted by

Uc(z)(A). On the other hand, the expression Ug(z)A will denote the operator product of

the operator Ug(z) and the operator of multiplication by A, acting on L?(Q, ¥, d¢¢).
Using Lemma 3.1 we find

Qo) = [°, ¢fem)de _ o I Ue(@)(9(2,0))dz

We will approximate the above integral using Riemann sums. Let n,p € IN and 0 < j < 2np.
We set x; = —a+ j;& and z; = —a + [j/p]§;, where [] denotes the integer part.
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It follows from (3.15) that the map z — ¢(fs,2) € (<)o LP(Q, X, d¢c) is continuous.
Therefore -

a 2np—1
/ Us()(¢(f,0))de = lim Y (@1 —;)Uo() (4(f2,,0))
a : =

in mlgpgoo LP(Q, %, d¢¢) and hence

o JoL U@ @(f,0)de 20p=1 (1 —2)Ue(2;) (6 (f+;,0))

1manOOH

=lim,, p—oo H2"p 1 Uc(xj)(ei(zj+1—1j)¢(fzj,0))

(7.1)

in ﬂ1<p<oo L?(Q,X,d¢c), where in the last line we use the fact that Ug(z;) is an automor-
phism of L>(Q, X, d¢¢). Since Gy, is a FKN kernel,

Gy =Gli-a {H%p Y Gl :|G[a 1
= Gt [T Uel@) (Glory-21) | Gl
Therefore
Gy H2 P! Uo( )(ei(xjﬂfrj)ab(fzj ,0))
= G [TE2 Vel (25 0G0 0 )] Gl
Next let A;, 0 < j < 2np—1, be the multiplication operators by Y-measurable functions. Us-

ing the identity Uc(z;)(A4;) = Uc(z;)A;Uc(—2;) and the fact that Ue(x) is an automorphism
of L>(Q, X, d¢c), we obtain as an operator identity on L?(Q, %, d¢c):

2np—1 2np—1
H Uc(z;)( = Ug(zo) H AiUc(zjr1 — 2;)Uc(—x2np)-
7=0

In the above identity the product on the Lh.s. is the operator of multiplication by the product
of the functions Ug(z;)(A;) and the product on the r.h.s. is an operator product. Using that
xo = —Zapp = —a and that Ug(—a)* = Uc(a) we get

Jo Groun T8 Uslay) (11— #0)¢U=:9) dg
= fQ Gi—t,—aqUc(—a) [H?Z%_l ei(z”l_zj)qb(fzf"O)UC(%‘H - xj)G[o,a;Hl—mj]} Uc(—a)Glq,ndoéc
= JoGl-tta0) [H Ppe i) O (2 _xj):|G[0,l—a]d¢C
for Uy (s) = Glo,5)Uc(s).
Let us now set for 0 < k < 2n, yp = —a + k5. We note that z; = y[;,,] and that

(@j+1 — ;) = 75 = (Ye+1 — y&)/p. We obtain that

fQ Gy H?ZP—l Uc(xj)(ei(zj+1_zj)¢(f2jvo))d¢c
= fQ G[ I+a,0] Hk o ( (Yr41— yk)¢(fykx0)/PU (W))pG[O,lfa]d¢C

= fQ RC(G[O,lfa]) iigl (ei(yk+1—yk)¢(fyk 70)/pUV(W))pG[O,l7a]d¢C-
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Taking into account the construction of H¢ recalled in Subsection 5.2 we find

Jo G-y [0 Ue(xy) (elrrrr =)oz 0 gy,

- (ef(lfa)HcQS7 i’;al (ei(yk+l—yk)¢(fyk )/Pe*(ykﬂ7yk)Hc/p)pef(lfa)HcQS)

— e 2Ec (e—(l—a)ng“ g, iigl (ei(yk+1—yk)¢(fyk)/Pe—(yk+1—yk)Héen/P)pe—(l—a)Héen QS)

Letting now n and p tend to co and using Proposition A.5, we obtain the proposition O.
Theorem 7.2

(i) Let f € C§r(Ss xR). Then

l li_r:l eiqb(f)d,ul = (Qc, W[—oo,oo] (f)€%),
where Q¢ is the unique vacuum state of Hg.
(i) The map
SIR(SB X IR) = f = (QC7 W[foo,oo](f)QC)

is the generating functional of a Borel probability measure p on (Q,X).

(iii) The measure p is invariant under space translations {az}zem, time transla-
tions {%t}ies, and the time reflection r.

(iv) The functions ¢(f) belong to (;<pcoo LP(Q, 5, p) for f € Sr(Ss x R). More-

over,

n—1

/Q o(prdp=nt [ (0o, [T] o(fu)e oo Jo(f,, )0e) da .. da.

—oo<x1 < <xpy <00 1

(v) Let f; € C§3r(Sp x R) for 1 <i<n. Then

n

Jim [ [ ot = [ TTotmae

Q=1

Proof. Note first that applying Proposition 7.1 for f = 0, we obtain W|_, 4(0) = e 20 H:™,

[ Grrdoo = e 2B (o g om0 g,
Q

Let f € C§R(Ss x IR) with supp f C S x [—a, a] for some a € IR. Using Proposition 7.1 we

find I—a)Hzen I—a)Hzen
/el¢(f)dul _ (e (I—a)Hg QC7W[7a1a](f)? (I—a)Hg QC) '
(eleé““Qg, eleé““Qg)

Now lim;_, 4 o e_(l_“)Hcang = (Qc, 28)Qc, where Q¢ is the eigenvector for the simple eigen-
value {0} of H*™. Thus

lim [ e“Pdpy = (Qc, Wi_aa () Q).

l—+o0o
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Because supp f C Sg X [—a, a], we see that (Qc, W5 4(f)Sk) is constant for s < —a, t > a,
which proves (i).

To prove (ii) we apply Minlos theorem (see e.g. [GV]). As a limit of functionals of Borel
probability measures on (@, X) the functional f +— (Qc, Wi s6,00] (f)Qc) is of positive type.
It remains to show that the map

5(85 xR) — C
f = (Q07 W[—oo,oo] (f)QC)

is continuous. Using the bound (5.8) we obtain

+(¢r(fon) — r(fia)) < Or(a)(HE™ +1)% for fi, f2 € S(Ss x R),

where C' > 0 is some constant and

r(@) = (foe = fra)ll ;-1

2(Sp)"

Clearly |7 z2r) < C’||f1 fa2llp, where |||, is a Schwartz semi-norm on S(Ss xIR). Applying
Lemma A.7 for § = 5, we obtain

HW[—OO7+OO] (f2) = Witoo 1o (1)]| € Cllf2 = fillp,

which proves the desired continuity result.

Let us now verify (iii). The measure p is invariant under time translations and time
reflection as the weak limit of the time translation and time reflection invariant measures p;.
The fact that p is invariant under space translations follows directly from (i) and Remark A.9.

To prove (iv) we apply Lemma B.2, using the estimates in Proposition A.6 (ii). We obtain
that ¢(f) € MNy<pcoo LP(Q, %, pt). The formula in (iv) follows from Proposition A.6 (iii).

It remains to prove (v). Let f € C§%(Ss x R) with supp f C Sg x [—a,a]. We consider
the family of functions

u(A) = /eim(f)dul for X € C.

Since e?(f) ¢ Ni<p<oo LP(Q, 2, ddc) and F[lfﬁ/Qﬁ/Q] € L'(Q, %, d¢c), the functions wu;(\)
are entire and

d’ﬂ
(12) S =i [ o1 da.
Using Proposition 7.1 and A¢(f) = ¢(Af) for A € IR we find

(Wi—aq(Af)e” m0H 08 e~ (-0l He™ g

ren ~o ) for A S R
[le=He gl

ul()\) -

The r.h.s. is an entire function by Lemma A.3. Therefore this identity extends to A € C.
Applying (5.8) and Proposition A.6 (i) with 6 = 1/2 we obtain

(7.3) lu(N)] < €I 1 e RT, X e C.
We have seen above that

lim w(A) = / e dy for A € R.
Q

l—o00

By Vitali’s theorem we obtain

&%K *1/¢’ dp.

Using (7.2) and multi-linearity, this proves (v) O
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7.2 [Existence and properties of sharp-time fields

Proposition 7.3 Let h € Sg(IR) and t € Sg. Then the sequence ¢(5x(. —t) ® h) is Cauchy
in ﬂ1§p<oo LP(Q, %, 1) and hence

o(t,h) := lim $(dx(.—t)@h) € [ LP(Q.%,p).

1<p<oo

Moreover, the map
Sﬁ - ml§p<oo LP(Q7E5/’L)
t - o(t, h)

is continuous for each h € Sp(IR).

Proof. For p > 1 we have

Jo(@@k(. = ) @ ) = 961 (- — 1) @ b)) "'dp
= (127 (U Wi 1ol (AOR( = D) @ b — G (. — 1) @ 1) )

A=
If f =0r(.—1t)®h, then for z € IR the function f, € Sr(S3) is equal to §ix(. — t)h(z). It
follows then from the estimate (5.9) in Proposition 5.4 that

£(0r(0k(. = t)h(2)) = oF (O (. = )h(2))) < cllor(. =) = 0 (- = )llar-1(s,) |2(@)| (H™ +1).
Applying now Lemma A.8 we obtain that

|20 W o toe] Al = 8) @ b — b1 (. — t) @ 1)) |

(7:4) 2p 2p SRl Al

< Gl =) = Sl — O s, B2 IR
Since 85 (. — t) converges to (. — t) in H~'(Ss), we see that ¢(d;(. — t) ® h) is Cauchy
in L?(Q, 3, ). A similar argument shows that t — ¢(t,h) € L?P(Q, %, n) is continuous,
using the fact that ¢ — §(. —t) € H=1(Sp) is continuous O.

Using the existence of sharp-time fields, we can equip the probability space (Q, %, i)
with an OS-positive 8-periodic path space structure: We recall that U(t) is the group of
transformations generated by the (euclidean) time translations T; and R is the transfor-
mation generated by time reflection, and X is the sub—o-algebra of ¥ generated by the
functions {¢(0,h) | h € Sr(IR)}.

Theorem 7.4 (Q,%,%0,U(t), R, 1) is an OS-positive B-periodic generalized path space.

Proof. Since the measure p is invariant under time translations and time reflection, we
see that U(t) and R are measure preserving automorphisms of L>°(Q, X, u). Proposition 7.3
implies that the map Sz >t +— e ?bh) ¢ [2(Q, %, 1) is continuous. Hence U(t) is a strongly
continuous group on L2(Q, Y, ). This implies that U(t) is strongly continuous in measure
on L>(Q, 3, u). Clearly it is S-periodic.

The generalized path space (Q, X, Yo, U(t), R, 1) is OS-positive, since y is the weak limit
of the measures p;, which are associated to OS-positive path spaces. Finally we have already
seen that > = vtESﬁ ¥;. This completes the proof of the theorem O.

By the reconstruction theorem, we obtain a stochastically positive 5-KMS system
(B~7 Z:l’ 7:’ "D)
P

which describes the translation invariant P(¢)2 model at temperature 371,
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7.3 Properties of the interacting /-KMS system

We first prove the convergence of sharp-time Schwinger functions.

Proposition 7.5 Let h; € CgOR(]R) and t; € Sg for1 <i<n. Then

lim / Hemﬁ(tph D = / Helqﬁ(t],h V.
Q

l—o0

Proof. Let a > 0 such that supp h; C [—a,a]. By Proposition 7.3, we know that

6(tj hyj) = lim ¢(x(. —t;) @ hy) in LN(Q, 3, ).
After extracting a subsequence, this implies that

G(tj, hy) = klingo ¢(6k(. — t;) @ h;) pointwise p a.e. on @,
and hence
fQ Hfll e?thi)dy = limp_ oo fQ H? 1?0k (-—1)®hj) 4y
= limp—oo (Qc, Wi—a,a) (7 k(- — t5) @ hy)Qc),

by Theorem 7.2 (i). Note that for all [ > 0

6(tj hj) = lim @(6k(. —t;) @ hy) in LN(Q, 3, ),

(7.5)

because this convergence holds in L?(Q, Y, d¢c) and
G-, ydoc
fQ Gi_iydoc’

where G_; ) € L?(Q,%,d¢c) as a consequence of (5.6). By the same arguments as above,
we obtain

duy =

H i6(t5.h5) . (e OH 08 Wi_aa) (7 k(- — 15) ® hy)e” ("HT0R)
e Ddyy = hm e .
Q [[e= ™ Qg2

Let us denote by F(k,l) the quantity on the r.h.s.. Applying (7.4) we obtain

hm F(k,1) / He‘“b (t3:25) dyy uniformly w.r.t. I.
Q

As we have seen, Theorem 7.2 (i) implies

Jim F(k, 1) /Hel¢5k (=t)®hs)qy,,.
Q

Applying now Lemma B.1 (ii) and using (7.5) we obtain the proposition O.
Let us denote by Uy C B(T'(h @ b)) the C*-algebra generated by

{F(¢aw(hn)s. ... baw (b)) | hi € C5(IR), F € C3°(IR™), n € N}.

The isomorphism between L™>(Q, ¥o,d¢¢c) and Uy, which we recalled in Subsection 2.3,
maps the operator F(¢aw(h1),...,¢aw(hn)) onto the function F(¢(0,h1),...,3(0,hy)).
This function is Yg-measurable. We will still denote by A the image of such a function A in
the abelian algebra U/ provided by the reconstruction theorem for the translation invariant

P(¢)2 model.
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Proposition 7.6 Let A; €c Uy and t; € IR, 1 <i<n. Then

i (1] (40) = (][ 7 (40).

l—+o0

Proof. Let us fix A; € Uy and set
Gl(tl,...,tn) = wl(HTéi(Ai)) and G(tl,...,tn) :‘I)(H%tl(Az)>
1 1

Due to the KMS condition, the functions G' and G are holomorphic in

Ig+ = {(zl, cooyzn) € C" | Imz; < Imziqq, Imz, — Imz; < ﬂ},

continuous on IZ}—JF and bounded by 7 [|4:]|-
We first claim that

(7.6) llim Gl(isl, ooy i8,) = G(isy, ..., isp) for 51 <o < sy 8 — 81 < .

Using Proposition 7.5 and the identity (2.2) we see that (7.6) holds for A; = el®aw (ki)
h; € C3w(R). Using functional calculus we can extend (7.6) to arbitrary A; € Up.
Let us now consider, for s < --- < s, and s, — s < 3, the functions

u(z) == G (z,isq, ... ,isn),

which are holomorphic in {0 < Imz < s2} and continuous on {0 < Imz < s3}. Since the
family {u;} is uniformly bounded, we can apply Lemma B.3. It follows that

lim GY(t1,is9,...,is,) = G(t1,is0, .. .,is,)
l——+o0

for s <--- < sy, s, — 82 < B and t; € IR. Iterating this argument, we obtain

lim G'(t1,...,tn) = G(t1,. .., t).

l—+o0

This completes the proof of the proposition 0.
Let us denote by {a }zer the group of space translations on Uy defined by a, (WAW (h)) =

Waw (h(. —z)) for h € C§R(R).

Lemma 7.7 Let A; € Up and t; € IR, 1 < j < n. Set A = H?Zl 7, (A;) and B =
[l i1 7, (Aj). It follows that

(i) @(az(A)) =@ (A) for all x € R;
(i) limg— oo @(Aag(B)) = 0(A)o(B).

Proof. Property (i) follows directly from the invariance of the measure p under the space
translations {@; },em shown in Theorem 7.2 (iii). It remains to prove (ii). We set

Gu(tr,- - tn) = &(TTimy 7, (A) [T}y 0w 071, (4;)),
Goo(tr, - tn) =& ([Tjmy 7, (A7) - S (TT)—ray 7, (4))).

Due to the KMS condition, the functions G, and G, are holomorphic in Ig+ and bounded
by H?Zl |A;]]. We claim that, for sy <--- <'s, and s, — 51 < 3,

(7.7) lim G.(is1,...,18n) = Goo(i81,. . .,18p).

xTr— 00
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Let us prove (7.7). Let us first assume that A; = ¢!?(%%) for h; € O§% (IR). Then
Gy (ist,...,i8,) = fQ Hé‘:l el®(6(.—5;)®h;) H?:H—l el®(6(.—s5;)®h; (. *I))dlu,
GOO (i317 e 7isn) = fQ H_l]:]_ el¢(6(_5])®h1)dﬂ X fQ H;l:l-i—l el¢(5(_s])®h1)dﬂ
By Proposition 7.3 we have
Go(is1,...,i8,) = limg_ oo fQ Hé-:l o180k (.—5;)®h;) H;'l:l—H ei®(0r(-—5;)®h; (. —m))du’
Gooist, ..., isn) = limp_oo fQ Hé‘:l ei¢(5k(»—5j)®hj)du x fQ H;‘l:l-i-l ei¢(5k(»—sj)®hj)dlu,
From Theorem 7.2 we get
fQ H;:1 el#(0k(-—5;)®hy) H?:l-rl el P(0k(-=55)®h; (- =) q
= (%, Wi—oo,+o0) (R1k + 82 (R2,1)) )
and l _ _
fQ Hj:l el P0k(-=55)@h5) fQ Hj:l+1 elP0k(-—55)®hs)q,
= (6, Wi—oo,400] (R1,6)) Qs W—oo 400 (R2,k)€2)

where
l

Rl,k = ¢(Z 5k( — Sj) X hj) and Rzyk = (b( Z 5k( — Sj) ® hj).
j=1 j=l+1
As before (see Section 4.1), the group of spatial translations induced on @ by the map
(t,y) — (t,y + ) has been denoted by {a;}rem. Applying Lemma A.10 we find

‘(Qc , W(R1k + az(R21)) Q) — (e, W(Rl)k)Qc)(QC7W(R27,€)QC)‘ < e~ (Iz1-C)a.

where a > 0 is the spectral gap of Hg® and W (.) := W|_s 40](.). Letting & — oo and using
Proposition 7.3 we obtain

‘Gm(isl, oy i8,) — Goolisy, - .,isn)‘ < e (21=C)a,

Using functional calculus, we conclude that (7.7) holds for all A; € Uy. To complete the
proof of the lemma, we can now argue as in the proof of Proposition 7.6, using Lemma B.3
0.

A A time-dependent heat equation

Let H > 0 be a selfadjoint operator on a Hilbert space H and let R(t), t € IR, be a family
of closed operators with D(H") C D(R(t)) for some 0 < v < 1. We consider the following
time-dependent heat equation:

{ LUt s) = —(H+iAR@))U(t, ), s < t,

(A1) U(s,s) =1

This equation is (formally) equivalent to the following integral equation:

¢
(A.2) Ult,s) = e (t=9H _ i)\/ e~ CDHR(NU (7, 5)dr.
In the main text we only use the results of this section in the dissipative case, i.e., when R(t)
is selfadjoint for all ¢ € IR. However, part of the results are valid and will be proved in the
general case.

The solution of (A.1) will be denoted by U(t,s) or Ux(t,s). If we want to display its
dependence on the family R(t), then the solution of (A.1) will be denoted by U(t, s; R).
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A.1 Existence of solutions

We assume that the maps

(A-3) H;{ - R(t)(l:jy—{i—)l)_W and Ht:{ = mﬂﬁﬁ 1)~
are Holder continuous of some order € > 0.
In the sequel we will use the following result.
Lemma A.1 Assume (A.3). Then
(A.4) le”“"PHR()| < ey |R(D)*(H +1) 77| (Jt =777 +1) vr<t.

Proof. We have |[e= " HR(7)|| < ||R(7)*(H + 1)~7||||(H 4 1)Ye~*=7H||. This proves the
lemma, using
(A.5) (A +1)7e™ | < e (s77+1) for s, A>00.

The following result is shown in [H, Theorem 7.1.3].
Proposition A.2 There exists a unique solution U(t,s) of (A.1) such that

(i) U(s,s) =1 and U(t,r)U(r,s) =U(t,s) for s <r <t;
(ii) ¢t — U(t,s) € B(H) is strongly continuous in [s,+oo[ and strongly differentiable
in]s, +ool.

Lemma A.3 The map A — U,(.,s)¥ € C([s, +oo[,’H) is entire analytic for each ¥ € H.
Proof. Let U € H. For s <T < oo, set V()T = e~ =51 and

U, s)¥] := sup] U, )| 5.

tels, T
If we define a map

K: O([SaT]vH) - C([S,T],H)
w() = =i Ve CIHEREW(r)dr,

then the integral equation (A.2) can be rewritten as (1 —K)(U(.,s)¥) = V(.)¥. Now (A.4)
implies
¢
KU, s)¥] < U(.,s)¥] sup 1R (7)(H + 1)_”||/ (It =77 + 1)dr,
TE(S, s

and hence

IKU(.,s)¥| <c sup [R*(r)(H + 1) 7T = s U (., 5)¥]],
TE|S,

which shows that K € B(C([s,T],H)). Then U,(.,s)¥ solves (1—=AK)(Ux(.,s)¥) = V(.)¥,
which implies that A — Uy( ., s)V is entire analytic O.
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A.2 The dissipative case

We now consider the dissipative case when R(t) is selfadjoint for ¢ € IR. We first prove a
result about approximation by time-ordered products. We will make use of an extension of
Gronwall’s inequality to integral equations, shown in [H, Lemma 7.1.1].

Lemma A.4 Let b > 0 and v > 0. Let a(t) and u(t) be non negative locally integrable
functions on s <t <T < oo such that

u(t) < a(t) + b/t(t —7) Yu(r)dr for s <t <T.

Then )
u(t) < a(t) + b= / E(t — T)a(r)dr fors <t <T,
where |E(r)] < cr(Jr]™7) on [0,T — s].

Proposition A.5 Assume that R(t) is selfadjoint and that (A.3) holds.
Then for s <t there exists a sequence {pn}new with lim, oo pn = +00 such that

0
U(t,s)=s lim [] (e%tmftj>H/pnefi<tj+1—tj>R<tj>/pn)”"7

n—o00
n—1

wheretjzs—k@forogjgn.

Proof. Let R;, i = 1,2, be two families of closed operators satisfying (A.3) and let U (¢, s)
be the associated propagators. Then

UD(t,s) U (t,s) = —i[le CDHR (1) (U (1,5) — UR) (1, 5))dr
—ifst e =DH (R (1) — Ro(7)) U7, 5)dT.
This implies, using Lemma A.1, that
UM, 5) = UB(t, )|
< o Si(E=TTTH D (H + )R [UD (7, 8) = U (7, 5)|dr
ey LIt =717+ D [[(H + 1) 7 (Ba(r) = Bo(0) || [UP (7, 9) [
We now apply Gronwall’s inequality, as given in Lemma A.4, with
b=sup,<i<r [|(H+1)" 7R ()],
a(t) = a = cpsup,cop||(H + 1)77 (Ri(t) — Ra(t)) || X sup,<;<r U@ (¢, s)]|.
We obtain
SUPs<i<T [UM(t,s) = U (L, s)||
(A6) < ersupgcier [(H+1) 7 Ri(®)] 0
x sup,<;<p||(H +1)77 (R1(t) — Ra(t)) || X sup,cpcr U@ (¢, )]

Let us now prove the proposition. For s < t fixed, n € IN, we set

i n—1
t—s)J .
t; ;:ﬁ%, 0<j<n, Ru(r)=3 Ui (NR(E).

n=0
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Note that H +iR(t;) with domain D(H) is the generator of a Cy-semigroup of contractions,
since it is closed and maximal accretive, using (A.3).

If U™ (t, 5) is the solution of (A.1) for the piecewise constant family of operators { R, (t)},
then one can easily verify that:

0
UM™(t,s) = H e~ (i1 —t;) (H+iRn (£5))

n—1
Since R >t +— (H + 1) "R(t) € B(H) is continuous, we conclude that

lim sup [|(H + 1)~ (R(t) = Ra(t))|| = 0.
n—00 g4 T
Using (A.6) we get
lim sup ||U(t,s)— U™ (t,s)| = 0.

N—00 g4 T

Applying next [Ch] we obtain

e~ WGir1—t)(HHR()) — o lim (e—(t]‘+1—tj)H/Pe—i(tj+1—tj)R(tj)/:D)p_
p—oo

Using the fact that e~ "(HHEE) o=7H and e~ 17E(%) are all contractions, we conclude that
there exists a sequence p,, — oo such that

0
Ult,s) = lim [] (e—w—tf>H/pne—i<tf+l—tanpn)p".

n—oo
n—1

This completes the proof of the proposition O.

Proposition A.6 Assume that R(t) is selfadjoint and satisfies (A.3). Assume moreover
that the function

(A7) ts ||(H+1)""R(t)| is in L*(R) N L*°(IR)
and
(A.8) +R(t) <r(t)(H+1)°, 0<6§<1,

for some r € L'(IR)NL>(R). Then the limit Ux(+00, —00) := w —lm; s) . (400, —00) Ua(t, 5)
ezists for all A € C.
(i) the function € 3 X +— Ux(400, —00) is entire and satisfies

_sy—1
|Ux (400, —00)| < eclmA| 7 Y\ € C;
(ii) the derivatives w.r.t. X are uniformly bounded:

sup |03 Ux(+00, —0)| < oo Vn € IN;
A€ERR

(iii) forn € IN and X € R the derivatives at A = 0 are given by the following formula:

ddTnnU}\(‘i‘OO, _OQ)M:O

= (=) [l (H) (HiR(tk)e_(tk_t’cfl)H) R(t) oy (H)dty ... dt,.

—oo<ty <+ <tp <oo
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Proof. Let ¥ € H. Using Proposition A.2 and the fact that R(¢) is selfadjoint we obtain
LNUA(t, 5)V[|> = —2Re(Ux(t,s)V, (H +iAR(t))Ux(t, 5)V)
= —2(Ux(t, s)¥, (H — ImAR(t))U(t, 5)¥).

Now
—1
H = TmAR(t) > H — [lmA| r())(H +1)° > e([imA| (1) "™,

since infs>g s —t(s+1)° = —ct(=9"" for t > 0. This yields
d _s\—1 _s\—1
IO ) < e[mA| U= () UA(E, 5) P

and hence . .
a-&~1 [t (1-8)~
U, s)w| < N L@ gy

Since r € L'(IR) N L (IR) we have r(1=9"" € L1(IR), which yields

(A.9) sup [[UA (£, s)]| < ™M™ wa e @
s<t

Let us now prove that

(A.10) w— lim Ux(t, s) exists for all A € IR.

(t,8)—(+00,—00)

For ¥ € H, ® € D(H) and 0 <y < 1 we find
¢
(8, W(t,9) — e~ CM)) = ix [ (O 4+ 100, (H + 1) ROV (7,50 )dr,

Using dominated convergence and hypothesis (A.7) we obtain the existence of

) %im )(@,U,\(t,s)\ll) for ¥ € H and ® € D(H").
t,s)—(+o00,—00

Applying a density argument and the uniform bound (A.9) this proves (A.10).

Now {\ — Ux(t,s) | s < t} is a locally uniformly bounded family of entire functions.
Applying Lemma B.3 and (A.10) we obtain that

U (400, —00) = w — lim Ua(t, s)
(t,8)—(+00,—00)

exists for all A € C. Moreover, the map A\ — U (+o0, —00) is entire and

|-~

|U (400, —00)]|| < ecllm? VA€ C.

If f(2) is a bounded holomorphic function in a strip {|Imz| < a}, then it follows easily from
Cauchy’s formula that sup,c |04 f(x)| < oo for all n € IN. This completes the proof of (ii).
Let us now prove (iii). Set, as in Subsection A.1,

K: C([s,T,H) — C([s,T), H)
w() = =i [Ye CIHER@W(r)r,

and V(1)U = e~ =" ¥, From the integral equation (1—AK)Ux(.,s)¥ = V(.)¥ we deduce
that
AZUAE ) pmo P =KV (1T

= nl(—i)" [ et [Hi R(tk)e_(tk_tkfl)H} Udt, ... db.

to<t1<-<tn<t

43



The function € > A — Ux(t,s)¥ is entire and uniformly bounded in {|ImA| < a} for
—00 < s <t < +o00. Therefore

dn n
—Ux (400, —00)¥ = lim d

~_Uy(t,s)V.
an (t,5)— (-+00,—00) A A(t:)

Setting t,+1 =t we find

1
< e[ (thsr = tel ™ + DIIH + 1) R(ts)|-

n

1
e—(t—tn)H H R(tk)e—(tk —tkfl)H

From Lebesgue dominated convergence we deduce that

n 1

. d “n _ —t)H
im = Un(t8)pmo = nl(—) / [He (b1 —ti) R(tk)} oy (H)dt ... dt,.
—oo<t; <<ty <t

A similar argument yields
hmtiph)o hmsi,foo %U)\ (t, S)|)\:O

= nl(=i)" i Tgoy (H) |12 R(ty)e™ =t H I R(t1) T goy (H)dt . . . dty.

—oo<t1 <<ty <+00

Applying Lemma B.1 we obtain (iii) O.
We will use the following lemma to show that the limiting functional obtained in Theo-
rem 7.2 defines a Borel measure on §'(S3 x RR).

Lemma A.7 Let R;(t), i = 1,2, be selfadjoint families satisfying (A.3) and (A.7). Assume
that
+(Ru(t) — Ro(t)) < r(t)(H +1)°,0<6 < 1,

forr e L(l";)il(]R). Then
|U (00, —00; Rp) — U(+00, —00; Ra)|| < cl|r[1—5)-1-

Proof. Let us denote by Z,(¢,s) the operator U(t,s; Ry + A(R2 — R1)). By the same
arguments as used in the proof of Proposition A.6, we see that A — Zy(t,s) is an entire
analytic function, which satisfies the bound

[ Zx(t, s)|| < A5 for X e @ and y = (1 — )~

As in Proposition A.6, the limit of Zy(t, s) when (t,s) — (400, —00) exists for A € IR fixed.
Applying again Vitali’s theorem, we obtain the existence of Zy (400, —c0) for all A € C, and
the bound

| Z (400, —00)|| < eHmAIITIE vy € .

Applying Cauchy’s formula on the circle of radius R centered around A € IR yields

d Y Yy
ﬁZ,\(—i—oo,—oo)’ < R1eeR I,

Optimizing this bound w.r.t. R we get

d
2400, o0)| < lrl

Integrating in A from 0 to 1 we obtain the lemma O.
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A.3 Some additional results

We now prove some bounds on U(t, s), which we use in the main text to show the existence
of sharp-time fields and the convergence of sharp-time Schwinger functions.

Lemma A.8 Let R;(t), i = 1,2, be two families of selfadjoint operators satisfying (A.3)
and (A.7). Assume that

(A.11) +(Ra(t) — R1(t)) < r(t)(H + 1) for r € L*(IR) N L' (R).
Set Zx(t,s) := U(t, s; Ry + AM(Ra — Rl)) for —oo < s <t < +4oo. Then

H dr <l eIl

WZ)\ (t, S)

Proof. Since R;(t) satisfy (A.3) and (A.7), the function A\ — Z\(¢,s) is entire. We still
denote by Zx(t, s) its extension to A € C. As in the proof of Proposition A.6, we find

At ) = ~2(Za(0, ), (H ~ A (Ra(t) — Ba(1) 21, 5)1 ).

Now
H —ImA(Rs(t) — Ri(t)) > H —r(t) ImA| (H 4+ 1) > —r(t) [ImA|

for [ImA| < ||r||<!. This yields
d 2 2 —1
3122 (8 8) " < 2 [ImA[ ()] T for [ImA] <l

Hence
1Zx(t, s)|| < e!™™ Il for [TmA] < ||| 2}

We apply Cauchy’s formula on a circle of radius ||| and obtain

H—Z,\ (t,s)|| <nlr|% eIl for \ € R.

dan

This completes the proof of the lemma 0.

Finally we prove a lemma which is used in the main text to prove spatial clustering.

Remark A.9 Let tg € R and define the time-translated family by &, (R(t)) := R(t — to).
Then clearly

Ul(t,s;&,(R)) =U(t —to, s — to; R) for —oo < s <t < +oo0.
Letting (s,t) — (—00,+00) we obtain that U (+00, —00; &, (R)) = U(+00, —o0; R).
Lemma A.10 Assume that 0 is a simple eigenvalue of H and that H has a spectral gap,

i.e.,
10,a]No(H) =0 for some a > 0.

Let {R1(t)}, {R2(t)} be two selfadjoint families of operators satisfying (A.3) and (A.7)
with R;(t) =0 for |t| > T. If Q is a normalized ground state of H, then

(.U (B + 6(R)Q) — (.U (R)9) (2, U(Ry)02)| < o (120

for |t| > 2T, where U (R) := U(+00, —o0; R).
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Proof. It suffices to consider the case ¢t > 0. Using the group property and considering the
supports of R;(.), we find

A12) U(t,s; Ry + &, (Ra)) = Ut to — T &, (Ro))e~ 0= 2DHU(T, 5, Ry)
' = U(t—to,—T; Ry)e~t0"2DH(T s: Ry)

for s < =T, tg > 2T and t >ty + 1. Since H has a spectral gap of length a,
(A.13) e~ (to=2DH _ 0y (0 || < e a2,
Moreover, since H) = 0 and supp R;(.) C [-T,T],
(A.14) (Q, U(t—to,—T; RQ)Q) = (Q, U(t — to, s; RQ)Q),
(Q, U(T,s; RQ)Q) = (Q, U(t,s; RQ)Q).

Combining (A.12), (A.13), (A.14) and letting (¢, s) — (400, —c0) we obtain the lemma O.

B Miscellaneous results

Lemma B.1 Let F:IR?> — E be a map with value in a metric space E.

(i) Assume that
limy, g/ oo FI(k, k') = Foo exists,

limy oo F'(k, k') = G(k) exists Vk € IN,
limg_o0o G(k) = Goo exists.
Then Fy = Go.
(ii) Assume that
limy 00 F'(k, k') = G(k) exists,
limg oo F(k, k") = F(k') exists and the convergence is uniform w.r.t. k',

(
limg o0 G(k) = Goo exists.
Then limy oo F(k') = G-
The proof is easy and left to the reader.

Lemma B.2 Let (Q,X, 1) be a probability space. Let f be a real measurable function on Q
and set

C(t) ::/eitfdu.
Q

Then f € (1<peoo LP(Q. X2, 1) if and only if sup,cg |0;'C(t)| < oo for all n € IN. If this is
the case, then

arc(t) =i" / freitfdp.
Q

Proof. The = part and the formula for 97 C(t) is obvious by differentiating under the

integral sign. It remains to prove the < part. Let x(r) = e ™ /2 and let p > 1. By
monotone convergence it suffices to prove that

sup / f*x (i) dp < oo
nelNJQ n
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in order to show that f € L?P(Q, %, u). We have

n2p+1

2Py (I) = /eitf (077%(nt))dt.

n

Hence ' -
Jo £ () du = 252 [y fyy e (9272 (nt)) e

=2 [ O@)(97PR(nt))dt

= —%ﬁf”nfR(achu»xw)dt,

using Fubini’s theorem and integrating by parts 2p times. Since § € L'(IR) and 9/7C is
uniformly bounded, we obtain that sup,cp fQ F?Px(n=1f)du < oo, which completes the
proof of the lemma O.

Lemma B.3 Let I be a directed set and {uq}acr a net of functions which are holomorphic
in an open set 2 C C.

(i) Assume that the family {uq} is locally uniformly bounded in Q0 and that there
exists a set I' C Q having an accumulation point in Q such that

lim uq(2) exists for z € T.
acl
Then limger uq = u exists in the compact-open topology on 2 and u is a holo-
morphic function in Q.” (We recall that the compact-open topology on C () is
the topology of uniform convergence on all compact subsets of 2.)
(ii) Assume moreover that ) is bounded with a smooth boundary and that

sup sup |uq(2)| < co.
acl zeQ2

Then u is continuous on @ and limaer SUP,coq |ua(z) — u(z)| = 0.

Proof. Let us first prove (i). By Vitali’s theorem the family {u,} is compact for the
compact-open topology. Let {ug}ges be a subnet converging to a continuous function wu.
Assume that the net {uq}aecr does not converge to u. Then there exists a bounded open
set 1 C Q and a subnet {u,},cs, such that sup,cq, [uy(2) —u(z)| > g > 0 for v € J;.
Applying again Vitali’s theorem to the net {u,}c s, , we obtain another subnet {us}se.s, such
that limse j, us = v, with v # u. But v and v are holomorphic in €2, as limits of holomorphic
functions for the compact-open topology and coincide on I' by hypothesis. Since I' has an
accumulation point in 2, we have u = v which gives a contradiction.
Let us now prove (ii). Assume the contrary and let {ug}ges be a subnet such that

inf sup |u u(z)| > e > 0.
inf sup fus(z) —u(2)| >

Since Au = 0 in ©, we see that u belongs to the Sobolev space H%(Q). Using that Aug =0
in © and the fact that the family {ug}ge s is uniformly bounded in €2, we obtain similarly that
{ug}pes is a bounded family in H?(2). Hence (i) implies limge s ug = w in D’'(Q2). Finally we
note that the injection H?(Q) — H?3/2(Q) is compact. Extracting again a subnet, we obtain
limyes, uy = win H3/2(Q). Together with the trace theorem this implies that lim.e s, Uy = U
in H(0€2) and hence in C(99). This gives a contradiction O.
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