Exercice 1. We recall the formulas for the Christoffel symbols: One has then:

$$
\Gamma_{a b}^{c}=\frac{1}{2} g^{c d}\left(\partial_{a} g_{b d}+\partial_{b} g_{a d}-\partial_{d} g_{a b}\right)
$$

and

$$
\begin{aligned}
\nabla_{a} T^{b} & =\partial_{a} T^{b}+\Gamma_{a c}^{b} T^{c} \\
\nabla_{a} T_{b} & =\partial_{a} T_{b}-\Gamma_{a b}^{c} T_{c}
\end{aligned}
$$

Check that if X^{a} is a vector field then

$$
\nabla_{a} X^{a}=|g|^{-\frac{1}{2}} \partial_{a}\left(|g|^{\frac{1}{2}} X^{a}\right)
$$

Exercice 2. Prove that if $u \in C_{0}^{\infty}(M)$ (and P is the Klein-Gordon operator), solves $P u=0$ then $u=0$.

