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If � 2 Ls(X ,X#
), we denote by O(X , �) the linear (pseudo-)orthogonal group on X .

Similarly if � 2 La(X ,X#
) is non-degenerate, i.e. (X , �) is a symplectic space, we denote

by Sp(X , �) the linear symplectic group on X .
If X is a complex vector space, we denote by XR its real form, i.e. X considered as a

real vector space. We denote by X a conjugate vector space to X , i.e. a complex vector
space X with an anti-linear isomorphism X 3 x 7! x 2 X . The canonical conjugate
vector space to X is simply the real vector space XR equipped with the complex structure
�i, if i is the complex structure of X . In this case the map x ! x is the identity. If
a 2 L(X1,X2), we denote by a 2 L(X 1,X 2) the linear map defined by:

(3.1) ax1 := ax1, x1 2 X 1.

We denote by X ⇤ the anti-dual of X , i.e. the space of anti-linear forms on X . Clearly
X ⇤ can be identified with X# ⇠ X#.

Sesquilinear forms on X are identified with elements of L(X ,X ⇤
), and we use the

notation (x1|bx2) or sometimes x1 ·bx2 for b 2 L(X ,X ⇤
), x1, x2 2 X .

The space of hermitian (resp. anti-hermitian) sesquilinear forms on X is denoted by
Ls(X ,X ⇤

) (resp. La(X ,X ⇤
)).

If q 2 Ls(X ,X ⇤
) is non-degenerate, i.e. (X , q) is a pseudo-unitary space, we denote by

U(X , q) the linear pseudo-unitary group on X .
If b is a bilinear form on the real vector space X , its canonical sesquilinear extension

to CX is by definition the sesquilinear form bC on CX given by

(w1|bCw2) := x1 ·bx2 + y1 ·by2 + ix1 ·by2 � iy1 ·bx2, wi = xi + iyi

for xi, yi 2 X , i = 1, 2. This extension maps (anti-)symmetric forms on X onto (anti-
)hermitian forms on CX .

Conversely if X is a complex vector space and XR is its real form, i.e. X considered as
a real vector space, then for b 2 Ls/a(X ,X ⇤

) the form Reb belongs to Ls/a(XR,X#

R ).

4. Tensor algebras and Fock spaces

4.1. Introduction. Quantum field theory in most physics textbooks starts with the in-
trodution of Fock spaces. These are Hilbert spaces describing systems with a finite, but not
fixed number of particles. The possibility of creation and annihilation of particles is one
of the essential new features of QFT, compared to non-relativistic quantum mechanics.

The particles can be either bosons or fermions, which leads to the bosonic/fermionic
Fock spaces. Fock spaces are very useful to introduce some basic notions, however they
are not really central objects in QFT. Relying too much on them can lead to some mis-
conceptions.

4.2. Tensor algebras. We start by defining the tensor algebra over a vector space, which
could also be called the Fock space without statistics. Let Y be a vector space over K = R
or C. Vectors in Y correspond to one-particle states.



LECTURE NOTES ON QFT ON CURVED SPACE-TIMES 7

Definition 4.1. Let al⌦nY (or Y
al⌦n) denote the n-th algebraic tensor power of Y. We will

write al⌦0 Y := K. The algebraic tensor algebra over Y is defined as
al⌦Y :=

al�
0n<1

al⌦nY .

The element 1 2 al⌦0 Y is called the vacuum and denoted by ⌦.

If Y is a Hilbert space, we will write ⌦nY (or Y⌦n) for the n-th tensor power of Y in
the sense of Hilbert spaces. We set

⌦Y := �
0n<1

⌦nY =

⇣
al⌦Y

⌘cpl

.

⌦Y is called the complete tensor algebra or the full Fock space.
Elements of al⌦n Y or of ⌦nY are called n particle vectors. We set also:

⌦finY :=

al�
0n<1

⌦nY ,

which is the space of finite particle vectors.
The vector spaces al⌦Y and ⌦Y are associative algebras, when equipped with the tensor

product ⌦ and identity ⌦.

4.3. Some operators on ⌦Y.

Definition 4.2. Let p be a linear operator from Y1 to Y2. Then we define �

n
(p) := p⌦n

with domain al⌦n
Dom p, and the operator �(p) from ⌦Y1 to ⌦Y2

�(p) :=
1�
n=0

�

n
(p)

with domain al⌦Dom p.

It is easy to see that �(p) is closable, (resp. essentially selfadjoint, unitary) iff p is so.
�(p) is bounded iff kpk  1.

Definition 4.3. If h is a linear operator on Y, we set

d�

n
(h) :=

nX

j=1

1l

⌦j�1
Y ⌦ h⌦ 1l

⌦(n�j)
Y

with domain al⌦n
Domh, and

d�(h) :=
1�
n=0

d�

n
(h)

with domain al⌦Domh.

The operator
N := d�(1l)

is called the number operator. Note that N = n1l on ⌦nY , which explains its name.
The following identity is often useful:

�(e

a
) = e

d�(a),

for a a linear operator on Y .
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4.4. Bosonic and fermionic Fock spaces. Let Sn the permutation group. Clearly Sn

acts on al⌦n Y by
⇥(�)y1 ⌦ · · ·⌦ yn := y�(1) ⌦ · · ·⌦ y�(n), � 2 Sn.

We define the following operators on al⌦nY :

⇥

n
s :=

1

n!

X

�2S
n

⇥(�),

⇥

n
a :=

1

n!

X

�2S
n

sgn�⇥(�).

and
⇥s/a := �

0n<1
⇥

n
s/a.

The operators ⇥s/a are projections on the subspaces of symmetric/anti-symmetric tensors.
If Y is a Hilbert space, then ⇥s/a are orthogonal projections.

Definition 4.4. The space
�s/a(Y) := ⇥s/a ⌦ Y

is called the bosonic resp. fermionic Fock space over Y.

The operators �(p), d�(h) commute with ⇥s/a, hence act also on �s/a(Y).

Definition 4.5. Let  ,� 2 al

�s/a(Y). We define the symmetric, resp. anti-symmetric
tensor product of � and  :

 ⌦s/a � := ⇥s/a ⌦ �.
Note that⇥a is slightly different from the wedge product ^ often used for anti-symmetric

tensors. In fact one has: The wedge product of vectors � and  is defined as

(4.1)  ^ � :=

(p+ q)!

p!q!
 ⌦a �, for  2 al

�

p

a(Y), � 2 al

�

q

a(Y).

4.5. Creation-annihilation operators. The creation-annihilation operators are oper-
ators acting on �s/a(Y) describing the operation of creating or annihilating one particle
in Y .

Definition 4.6. Let y 2 Y. The creation operator of y, resp. the annihilation operator
of y, are defined as operators on �fin

s/a(Y) by

a⇤(y) :=

p
n+ 1y ⌦s/a  ,

a(y) :=

p
n(y|⌦1l

⌦(n�1)
Y  ,  2 �n

s/a(Y).

We use here the standard practice of denoting creation operators by the symbol a⇤(y),
which suggests that it is the adjoint of the annihilation operator a(y). This is always true
in the fermionic case, and becomes true in the bosonic case when appropriate domains
are introduced.

Note that the map
Y 37! a⇤(y) resp. a(y) 2 L(�fin

s/a(Y))
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is C�linear, resp. C�anti-linear.
Note the following identity, valid in both the bosonic and fermionic case:

�(u)a(⇤)(y)�(u�1
) = a(⇤)(uy), u 2 U(Y).

In particular if ✏ is a selfadjoint operator on Y we have:

(4.2) e

itd�(✏)a(⇤)(y)e�itd�(✏)
= a(⇤)(eit✏y), y 2 Y .

4.5.1. Bosonic case. In the bosonic case, the creation-annihilation operators are un-
bounded operators. In fact one has:

(4.3) ka(y) k  kykkN 1
2
 k, ka⇤(y) k  kykk(N + 1l)

1
2
 k,  2 �s(Y), y 2 Y .

This follows easily from:

a⇤(y)a(y) = d�(|y)(y|)  d�(kyk21l) = kyk2N.

The most important property are the CCR or canonical commutation relations. The
following relations are valid on �fin

s (Y):

(4.4)

( 1|a(y) 2) = (a⇤(y) 1| 2)

( 1|a⇤(y) 2) = (a(y) 1| 2),

[a⇤(y1), a⇤(y2)] = [a(y1), a(y2)] = 0,

[a(y1), a⇤(y2)] = (y1|y2)1l,
where [A,B] = AB � BA denotes the commutator of A and B.

4.5.2. Fermionic case. In the fermionic case, the creation-annihilation operators are bounded.
In fact one has:

ka(y)k = ka⇤(y)k = kyk,
which follows easily from the identity:

a⇤(y)a(y)a⇤(y)a(y) = kyk2a⇤(y)a(y),
which in turns follows from the CAR just below:

( 1|a(y) 2) = (a⇤(y) 1| 2)

( 1|a⇤(y) 2) = (a(y) 1| 2),

[a⇤(y1), a⇤(y2)]+ = [a(y1), a(y2)]+ = 0,

[a(y1), a⇤(y2)]+ = (y1|y2)1l,
where [A,B]+ = AB +BA denotes the anti-commutator of A and B.
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4.6. Fields operators. It is convenient to introduce selfadjoint operators, called the
fields, which generate the same algebra as the creation-annihilation operators. We use
the same notation in the bosonic or fermionic case.

Definition 4.7. We set:
�(y) := 1p

2
(a⇤(y) + a(y)), acting on �

fin
s (Y) in the bosonic case,

�(y) := a⇤(y) + a(y), acting on �a(Y) in the fermionic case.

In the bosonic case the operators �(y) are often called Segal field operators. Note that
the map

Y 3 y 7! �(y) 2 L(�fin
s/a(Y))

is now only R�linear on Y . This means that when considering field operators the complex
structure of Y is lost.

Recall that the space Y considered as a real vector space is denoted by YR.The space
YR inherits two natural structures from the Hilbertian scalar product on Y :
(1) if we set:

y1 · �y2 := Im(y1|y2),
then � 2 La(YR,Y#

R ) is non-degenerate, i.e. (YR, �) is a symplectic space.
(2) if we set:

y1 · ⌫y2 := Re(y1|y2),
then ⌫ 2 Ls(YR,Y#

R ) is non-degenerate and positive, i.e. (YR, ⌫) is an Euclidean
space.

We will come back to this later when we will discuss the notion of a Kähler structure.

4.6.1. Bosonic case. In the bosonic case the operators �(y) are unbounded, hence need a
domain to be properly defined. From (11.1) we see that we can take Dom�(y) = DomN

1
2 .

However with this domain �(y) are not selfadjoint , but only hermitian, i.e. �(y) ⇢ �⇤
(y).

However it is easy to prove, using Nelson’s commutator theorem that �(y) are essentially
selfadjoint, i.e. their closure is selfadjoint. By abuse of notation we will still denote the
closure of �(y) by �(y).

Proposition 4.8. We have:
�(y) = �⇤

(y), y 2 Y
�(�y) = ��(y), �(y1) + �(y2) ⇢ �(y1 + y2), � 2 R, yi 2 Y ,

[�(y1),�(y2)] = iy1 · �y21l, as quadratic form on Dom�(y1) \Dom�(y2).

The second line expresses the R�linearity of y 7! �(y) (with domain problems taken
into account). The third line is also called the Heisenberg form of the CCR.

Note that we can recover the creation-annihilation operators from the field operators.
In fact if we set:

a(y) := �(y) + i�(iy), a⇤(y) := �(y)� i�(iy), y 2 Y ,

with domain Dom�(y)\Dom�(iy), then a(y), a⇤(y) are closed, densely defined and adjoint
from one another. Moreover they satisfy the CCR (4.4) in quadratic form sense.
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4.6.2. Fermionic case. The situation is much simpler in the fermionic case, since �(y) is
clearly bounded and selfadjoint.

Proposition 4.9. We have:

�(y) = �⇤
(y), y 2 Y

�(�y) = ��(y), �(y1) + �(y2) = �(y1 + y2), � 2 R, yi 2 Y ,

[�(y1),�(y2)]+ = 2y1 · ⌫y21l.
The last line is called the (euclidean) Clifford relations.
Again one can recover the creation-annihilation operators from the fields. One has:

a(y) =
1

2

(�(y) + i�(iy)), a⇤(y) =
1

2

(�(y)� i�(iy)), y 2 Y .

4.7. Weyl operators. In the bosonic case ,it is inconvenient to work with the unbounded
field operators. To avoid this problem one can introduce the Weyl operators.

Definition 4.10. We set

W (y) := e

i�(y) 2 U(�s(Y)), y 2 Y ,

which are called the Weyl operators. They satisfy:

W (0) = 1l, W (y)⇤ = W (�y), y 2 Y ,

W (y1)W (y2) = e

�iy1·�y2W (y1 + y2), yi 2 Y .

The second line above are called the Weyl form of the CCR. Again one can recover the
fields from the Weyl operators. In fact the map

R 3 t 7! W (ty) = e

it�(y)

is a strongly continuous unitary group and:

�(y) := i

�1 d

dt
W (ty)|t=0.

5. Quantization of field equations in Minkowski space

5.1. Introduction. In this section we will explain the quantization of the two main
field equations on Minkowski space, the Klein-Gordon equation, describing scalar neutral
bosons, and the Dirac equation describing charged fermions.

5.2. The Minkowski space. We recall that the Minkowski space R1,d is the space R1+d

equipped with the pseudo-euclidean quadratic form

hx|xi = �(x0
)

2
+

dX

i=1

(xi
)

2.

Definition 5.1. (1) a point x 2 R1,d is called time-like resp. light-like, causal , space-
like if hx|xi < 0 resp. hx|xi = 0, hx|xi  0, hx|xi > 0.


