
LECTURE NOTES ON QFT ON CURVED SPACE-TIMES

1. Introduction

The purpose of these notes is to give an introduction to some recent aspects of Quantum
Field Theory on curved space-times, emphasizing its relations with partial differential
equations and microlocal analysis.

1.1. Quantum Field Theory. Quantum Field Theory arose from the need to unify
Quantum Mechanics with special relativity. However trying to treat the two basic rela-
tivistic field equations, the Klein-Gordon equation:

@2t �(t, x)��x�(t, x) +m2�(t, x) = 0,

and the Dirac equation:
�0@t (t, x) + �i@xi (t, x)�m (t, x) = 0,

(where the �i are the Dirac matrices) in a way parallel to the non-relativistic Schroedinger
equation:

@t (t, x)�
i

2m
�x (t, x) + iV (x) (t, x) = 0

leads to difficulties (see eg [BD]). For the Klein-Gordon equation, there exists a conserved
scalar product:

h�1|�2i = i

ˆ
R3

@t�1(t, x)�2(t, x)� �1(t, x)�2(t, x)dx

which is however not positive definite, hence cannot lead to a probabilistic interpretation.
However on has

h�|i@t�i � 0, (positivity of the energy).
For the Dirac equation the situation is the opposite: the conserved scalar product

h 1| 2i =
ˆ
R3

 1(t, x) ·  2(t, x)dx

is positive, but
h |i@t i is indefinite.

The reason behind these difficulties is that, although all these equations are partial
differential equations, their nature is very different: the Klein-Gordon and Dirac equations
are classical equations, while the Schroedinger equation is a quantum equation, obtained
by quantizing the classical Newton equation:

ẍ(t) = �rxV (x(t)), x 2 Rn.

or equivalently the Hamilton equations:
⇢

ẋ(t) = @⇠h(x(t), ⇠(t)),
˙⇠(t) = �@xh(x(t), ⇠(t))

1



2 LECTURE NOTES ON QFT ON CURVED SPACE-TIMES

for the classical Hamiltonian:

h(x, ⇠) =
1

2

⇠2 + V (x).

We denote by X = (x, ⇠) the points in T ⇤Rn and introduce the coordinate functions

q : X 7! x, p : X 7! ⇠.

If �(t) : T ⇤Rn ! T ⇤Rn is the flow of Hh and q(t) := q � �(t), p(t) := p � �(t) then:

@tq(t) = p(t),

@tp(t) = �rV (q(t)).

where {·, ·} is the Poisson bracket. Note that

{pj(t), qk(t)} = �jk, {pj(t), pk(t)} = {qj(t), qk(t)} = 0.

To quantize the Liouville equation means to find a Hilbert space H and functions R 3
t 7! p(t), q(t) with values in selfadjoint operators on H such that

[pj(t), iqk(t)] = �jk1l, [pj(t), ipk(t)] = [qj(t), iqk(t)] = 0, @tq(t) = p(t),

@tp(t) = �rV (q(t)).

The last two equations are called Heisenberg equations. The solution is as follows:
(1) Find operators p, q satisfying

[pj, iqk] = �jk1l, [pj, ipk] = [qj, iqk] = 0.

(2) Construct the selfadjoint operator on H

H =

1

2

p2 + V (q).

(3) Then
q(t) := e

itHqe�itH , p(t) := e

itHpe�itH

solve Heisenberg equations.
The Stone-von Neumann theorem says that there is no choice in step 1: modulo some

technical conditions and multiplicity one has only one choice, up to unitary equivalence:

H = L2
(Rn

), q = x, p = i

�1rx.

Then H = �1
2
�+ V (x) is the Schroedinger operator.

The Klein-Gordon equation is also a Hamiltonian equation, however with a infinite
dimensional phase space, which can be taken for example as C1

0 (Rd
) � C1

0 (Rd
). The

classical Hamiltonian is then

h(', ⇡) :=
1

2

ˆ
Rd

⇡2
(x) + |rx'(x)|2 +m2'2

(x)dx,

for the linear case, or

h(', ⇡) :=
1

2

ˆ
Rd

⇡2
(x) + |rx'(x)|2 +m2'2

(x) + 'n
(x)dx,
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for some non-linear version. Here the symbols '(x), ⇡(x) are (coordinate) functions,
parametrized by a point x 2 Rd, on the space of smooth solutions of the Klein-Gordon
equation, with compactly supported Cauchy data. If � is such a solution then

'(x)(�) := �(0, x), ⇡(x)(�) := @t�(0, x)

It is well-known that these are symplectic coordinates, i.e.

{'(x),'(x0
)} = {⇡(x), ⇡(x0

)} = 0, {⇡(x),�(x0
)} = �(x, x0

), 8 x, x0 2 Rd.

One would like to follow the same path and consider families of operators on a Hilbert
space H, '(x), ⇡(x), x 2 Rd such that

[⇡(x), i'(x0
)] = �(x� x0

)1l, ['(x), i'(x0
)] = [⇡(x), i⇡(x0

)] = 0, 8 x, x0 2 Rd.

The fundamental difference with non-relativistic Quantum Mechanics is that, since the
phase space is infinite dimensional, the Stone von Neumann theorem cannot be applied
anymore: there exists an infinite number of inequivalent representations of commutation
relations.

In other words, when one tries to quantize a classical field equation, the Hilbert space
has to be constructed together with the quantum Hamiltonian: one cannot work on our
familiar Hilbert space and then use tools from operator theory to construct the quantum
Hamiltonian.

This is the reason why the rigorous construction of Quantum Field Theory models is so
difficult, except for non-interacting theories. For interacting theories it has been achieved
only in 2 and 3 spacetime dimensions, and one has to rely instead on perturbative methods.

Another lesson learned from Quantum Field Theory (and also from Quantum Statistical
Mechanics), is that Hilbert spaces do not play such a central role anymore. Instead one
focuses on algebras and states.

Let us finish this discussion by recalling a well-known anecdote: at the Solvay conference
in 1927, Dirac told Bohr that he was trying to find a relativistic quantum theory of the
electron (i.e. the Dirac equation). Bohr replied that this problem had already been
solved by Klein, who had found the Klein-Gordon equation. We know now that these
two equations are of a different nature, the first describing fermionic fields, the second
bosonic ones, and that they can be intepreted as quantum equations only via Quantum
Field Theory.

1.2. QFT on curved space-times. Given the difficulties with the construction of inter-
acting field theories on Minkowski space-time, one may wonder why one should consider
quantum field theories on curved space-times, which have no reason to be simpler.

One reason comes from attempts to quantize gravitation, where one starts by linearizing
Einstein equations around a curved background metric g. Another argument is that there
are several interesting quantum effects appearing in presence of strong gravitational fields.
The most famous one is the Hawking effect, which predicts that a black hole can emit
quantum particles.

There are several new challenges one has to face when moving from flat Minkowski
space-time to an arbitrary curved space-time.
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On the computational side, one cannot rely anymore on the Fourier transform and
related analyticity arguments, which are natural and useful on Minkowski space, since
the Klein-Gordon equation has then constant coefficients.

On a more conceptual side, a curved space-time does not have the large group of
isometries (the Poincaré group) of the Minkowski space. It follows that on a curved
space-time there seems to be no natural notion of a vacuum state, which is defined on
Minkowski space as the unique state which is invariant under space-time translations, and
has an additional positive energy condition.

In the eigthies, physicists managed to define a class of states, the so-called Hadamard
states, which were caracterized by properties of their two-point functions, which had to
have a specific asymptotic expansion near the diagonal, connected with the well-known
Hadamard parametrix construction for the Klein-Gordon equation on a curved space-
time. Later in 1995, in a seminal paper, Radzikowski reformulated the old Hadamard
condition in terms of the wave front set of the two-point function. The wave front set
of a distribution, introduced in 1970 by Hörmander, is one of the important notions of
microlocal analysis, a theory which was precisely developped to extend Fourier analysis,
in the study of general partial differential equations.

The introduction of tools from microlocal analysis had a great influence on the field,
leading for example to the proof of renormalizability of scalar interacting field theories by
Brunetti and Fredenhagen.

The goal of these notes is to give an introduction to the modern notion of Hadamard
states, for a mathematically oriented audience.

2. A quick introduction to Quantum Mechanics

This section is supposed to give a very quick introduction to the mathematical formalism
of Quantum Mechanics, which is (or is expected to be) still relevant to Quantum Field
Theory.

2.1. Hilbert space approach. In ordinary Quantum Mechanics, the description of a
physical system starts with a Hilbert space H, whose scalar product is denoted by (u|v).
The states of the system are described by unit vectors  2 H with k k = 1.

The various physical quantities which can be measured (like position, momentum, en-
ergy, spin) are represented by selfadjoint operators on H, i.e. (forgetting about important
issues with unbounded operators), linear operators A on H, assumed to be bounded for
simplicity, such that A = A⇤, (where A⇤ is the adjoint of A), called observables.

If  2 H , k k = 1 is a state vector, then the map:

A 7! ! (A) = ( |A )

computes the expectation value of A in the state  represent the average value of actual
measurements of the physical quantity represented by A.

Rather quickly people were led to consider also mixed states, where the state of the
system is only incompletely known. For example if  i, i 2 N is an orthonormal family
and 0  ⇢i  1 are real numbers with

P1
i=0 ⇢i = 1, then we can consider the trace-class
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operator:

⇢ =
1X

i=0

⇢i| i)( i|, Tr⇢ = 1,

called a density matrix and the map

A 7! !⇢(A) := Tr(⇢A)

is called a mixed state. Vector states are also called pure states.

2.2. Algebraic approach. The framework above is sufficient to cover all of non-relativistic
Quantum Mechanics, i.e. in practice quantum systems consisting of a finite number of
non-relativistic particles. However when one considers systems with an infinite number
of particles, like in statistical mechanics, or quantum field theory, where the notion of
particles is dubious, an algebraic framework is more relevant. It starts with the following
observation about the space B(H) of bounded operators on H:

if we equip it with the operator norm, it is a Banach space, and a Banach algebra,
i.e. an algebra with the property that kABk  kAkkBk. It is also an involutive Banach
algebra, i.e. the adjoint operation A 7! A⇤ has the properties that

(AB)

⇤
= B⇤A⇤, kA⇤k = kAk.

Finally one can easily check that:

kA⇤Ak = kAk2, A 2 B(H).

This last property has very important consequences, for example one can deduce from it
the functional calculus and spectral theorem for selfadjoint operators.

An abstract algebra A equipped with a norm and an involution with these properties,
which is moreover complete is called a C⇤algebra. The typical example of a C⇤ algebra is
of course the algebra B(H) of bounded operators on a Hilbert space.

If H is a Hilbert space, a ⇤�homomorphism

A 3 A 7! ⇡(A) 2 B(H)

is callled a representation of A in H. An injective representation is called faithful.
The need for such change of point of view comes from the fact that a physical system,

like a gas of electrons, can exist in many different physical realizations, for example at
different temperatures. In other words it does not come equiped with a canonical Hilbert
space.

Observables, like for example the electron density, have a meaning irrelevant of the
realizations, and are described by selfadjoint elements in some C⇤ algebra A. However
the various Hilbert spaces and the representations of the observables on them are very
different from one temperature to another.

One can also describe the possible physical realizations of a system with the language
of states. A state ! on A is a linear map:

! : A 7! C
such that

!(A⇤A) � 0, A 2 A.
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Assuming that A has a unit (which can always be assumed by adjoining one), one also
requires that

!(1l) = 1.

The set of states on a C⇤ algebra is a convex set, its extremal points are called pure states.
If A ⇢ B(H) and  is a unit vector, or if ⇢ is a density matrix, then

! (A) := ( |A ), !⇢(A) := Tr(⇢A)

are states on A. If A = B(H), then ! is a pure state. It is important to be aware of the
fact that if A is only a C⇤ subalgebra of B(H), then ! may not be a pure state on A.

2.3. The GNS construction. After being told that one should use C⇤ algebras and
states, one can wonder where the Hilbert spaces have gone. Actually given a C⇤ algebra
A and a state ! on it, it is quite easy to construct a canonical Hilbert space and a
representation of A on it, as proved by Gelfand, Naimark and Segal. There exist a triple
(H!, ⇡!,⌦!) where H! is a Hilbert space, ⇡! : A 7! B(H!) is a faithful representation,
⌦! 2 H! is a unit vector such that:

!(A) = (⌦!|⇡!(A)⌦!), A 2 A.

3. Notation

In this section we collect some notation that will be used in these notes. If X is
a real or complex vector space we denote by X# its dual. Bilinear forms on X are
identified with elements of L(X ,X#

), which leads to the notation x1·bx2 for b 2 L(X ,X#
),

x1, x2 2 X . The space of symmetric (resp. anti-symmetric) bilinear forms on X is denoted
by Ls(X ,X#

) (resp. La(X ,X#
)).

If � 2 Ls(X ,X#
) is non-degenerate, we denote by O(X , �) the linear (pseudo-)orthogonal

group on X . Similarly if � 2 La(X ,X#
) is non-degenerate, i.e. (X , �) is a symplectic

space, we denote by Sp(X , �) the linear symplectic group on X .
If Y is a complex vector space, we denote by YR its realification, i.e. Y considered as a

real vector space. We denote by Y a conjugate vector space to Y , i.e. a complex vector
space Y with an anti-linear isomorphism Y 3 y 7! y 2 Y . The canonical conjugate vector
space to Y is simply the real vector space YR equipped with the complex structure �i, if
i is the complex structure of Y . In this case the map y ! y is chosen as the identity. If
a 2 L(Y1,Y2), we denote by a 2 L(Y1,Y2) the linear map defined by:

(3.1) ay1 := ay1, y1 2 Y1.

We denote by Y⇤ the anti-dual of Y , i.e. the space of anti-linear forms on Y . Clearly
Y⇤ can be identified with Y# ⇠ Y#.

Sesquilinear forms on Y are identified with elements of L(Y ,Y⇤
), and we use the nota-

tion (y1|by2) or y1 ·by2 for b 2 L(Y ,Y⇤
), y1, y2 2 Y .

The space of hermitian (resp. anti-hermitian) sesquilinear forms on Y is denoted by
Ls(Y ,Y⇤

) (resp. La(Y ,Y⇤
)).

If q 2 Lh(Y ,Y⇤
) is non-degenerate, i.e. (Y , q) is a pseudo-unitary space, we denote by

U(Y , q) the linear pseudo-unitary group on Y .
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If b is a bilinear form on the real vector space X , its canonical sesquilinear extension
to CX is by definition the sesquilinear form bC on CX given by

(w1|bCw2) := x1 ·bx2 + y1 ·by2 + ix1 ·by2 � iy1 ·bx2, wi = xi + iyi

for xi, yi 2 X , i = 1, 2. This extension maps (anti-)symmetric forms on X onto (anti-
)hermitian forms on CX .

Conversely if Y is a complex vector space and YR is its realification, i.e. Y considered
as a real vector space, then for b 2 Lh/a(Y ,Y⇤

) the form Reb belongs to Ls/a(YR,Y#

R ).

4. CCR and CAR algebras

4.1. Introduction. It is useful to discuss the CCR and CAR without making reference
to a Fock space. There are some mathematical subtleties with CCR algebras, coming
from the fact that the field operators are ’unbounded’. These subtleties can mostly be
ignored for our purposes.

4.2. Algebras generated by symbols and relations. In physics many algebras are
defined by specifying a set of generators and the relations they satisfy. This is completely
sufficient to do computations, but mathematicians may feel unconfortable with such an
approach. However it is easy (and actually rather useless) to give a rigorous definition.

Assume that A is a set. We denote by cc(A,K) the vector space of functions A ! K
with finite support (usually K = C). If for A 2 A, we denote the indicator function 1l{A}
simply by A, we see that any element of cc(A,K) can be written as

P
A2B �AA, B ⇢ A

finite, �A 2 K.
Then cc(A,K) can be seen as the vector space of finite linear combinations of elements

of A. We set
A(A, 1l) :=

al⌦ cc(A,K),

called the universal unital algebra over K with generators A. Usually one write A1 · · ·An

instead of A1 ⌦ · · ·⌦ An for Ai 2 A.
Let us denote by A another copy of A. We denote by a the element a 2 A. We set

then ⇤a := a, ⇤a := a and etend ⇤ to A(A tA, 1l) by setting

(b1b2 · · · bn)⇤ = b⇤n · · · b⇤2b⇤1, bi 2 A tA, 1l = 1l

⇤.

The algebra A(A t A, 1l) equipped with the involution ⇤ is called the universal unital
⇤�algebra over K with generators A.

Let now R ⇢ A(A, 1l) (the set of ’relations’). We denote by I(R) the ideal of A(A,K)

generated by R. Then the quotient

A(A, 1l)/I(R)

is called the unital algebra with generators A and relations R = 0, R 2 R.
Similarly if R ⇢ A(A[A, 1l) is ⇤-invariant, then A(AtA, 1l)/I(R) is called the unital

⇤-algebra with generators A tA and relations R = 0, R 2 R.


