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MOTIVATION

Community detection is a fundamental task in graph
analysis, with methods often relying on fitting mod-
els like the Stochastic Block Model (SBM) [1] to ob-
served networks. While many algorithms can ac-
curately estimate SBM parameters and communities
when the input graph is a perfect sample from the
model, real-world graphs rarely conform to such ide-
alized assumptions. Therefore, robust algorithms, ca-
pable of recovering model parameters even when the
data deviates from the assumed distribution, are cru-
cial. Wepropose SUBSEARCH, an algorithm for robustly
estimating SBM parameters by exploring the space of
subgraphs in search of one that closely aligns with
the model’s assumptions. Our approach also works
as an outlier detection method, properly identifying
nodes responsible for the graph’s deviation from the
model and going beyond simple techniques like prun-
ing high-degree nodes.

Fig. 1: Spectral clustering applied to the jazz collaboration dataset [2]. Nodes

represent jazz musicians, with edges being collaborations during 1912 - 1940.

This algorithm, which has guarantees under the SBM, fails to separate the

graph into its three main collaboration groups.

MODEL

The adjacency matrix of a graph G = (V,E) is de-
fined as Aij = 1 if (i, j) ∈ E, zero otherwise. A
graph with communities has a partition of V into K
communities (Ωk)k=1,...,K that can be represented by
z ∈ {1, . . . , K}n or Z ∈ {0, 1}n×K such that

∑
j Zij = 1

for every i ∈ {1, . . . , n}. The Stochastic Block Model
(SBM) is a popular model for graphs with communi-
ties. Given size parameters Π = (π1, . . . , πK) such that
∀k, 0 < πk < 1 and

∑
k πk = 1, and connectivity pa-

rameters Γ ∈ [0, 1]K×K, the SBM poses

P(Z) =
K∏
k=1

π
|Ωk|
k ,

P(A|Z) =
∏
i 6=j

ΓAij
zizj

(1− Γzizj)
1−Aij.

If S1, . . . , SK are disjoint subsets of {1, . . . , n}, we can
estimate the connectivity parameters associated to
them, for k, l ∈ {1, . . . , K}, by

Γ̂kl =
1

|Sk||Sl|

|Sk|∑
i=1

|Sl|∑
j=1

(ASk×Sl
)ij,

defining a K × K matrix Γ̂. This can be extended to
an n × nmatrix Q̂(S) := SΓ̂St, where S is the |S| × K
matrix such that Sij = 1 if S(i) ∈ Sj and 0 otherwise.

PROBLEM STATEMENT

We consider the node adversary perturbation
model, where an adversary receives a sample
(Z,A0) of an SBM and is allowed to arbitrarily
modify the adjacency of up to γn nodes, where
γ ∈ [0, 1/2) is a known parameter representing the
amount of corruption. This leads to the observa-
tion of a corrupted adjacency matrix A. The nodes
whose adjacencies were directly modified by the
adversary are called outlier nodes, while the rest
are called inlier nodes. We denote the set of inlier
nodes as F . The goal is to accurately estimate the
connectivity parametersΓ of the original SBM from
A, in the sense ofminimizing the empirical estima-
tion error

∑
kl|Γkl − Γ̂kl|.

ERROR BOUND

We prove the following bound on the estimation
error, extending the proof in [3] forK = 1.

Theorem. Let A be an adjacency matrix sam-
pled from a γ-corrupt SBM with K commu-
nities (Ωk)k=1,...,K, connectivity parameters Γ,
and inlier nodes F . Furthermore, let S1, . . . , SK

be non-empty disjoint subsets of {1, . . . , n}, S
be their union, and Q̂(S) be the estimation of
the expected adjacency matrix restricted to S.
Then,
K∑
k=1

K∑
l=k

|Γkl − Γ̂kl| ≤
K2

mink |Ωk ∩ Sk ∩ F |

×
(
max

k
Γkk + ‖AF − E[A]F‖ + ‖AS − Q̂(S)‖

)

Minimizing the right-hand side of this bound gives
us an idea for an algorithm.

ALGORITHM

We propose using Simulated Annealing (S.A.) to
minimize the cost function c(S) = ‖AS − Q̂(S)‖.

Algorithm 1 SUBSEARCH
Require: A,K , γ, c, (lt)t=0,...,tmax, tmax, ttol, ε.

Scurrent← connected subgraph with |S| = (1− γ)n
Sbest← Scurrent
T0← set_initial_temp(Scurrent)
for t = 1, . . . , tmax do

for l = 1, . . . , lt do
Scandidate← neighbor(Scurrent)
∆← c(Scurrent)− c(Scandidate)
u ∼ U([0, 1])
accept_prob← min (1, exp (∆/Tt))
if u < accept_prob then

Scurrent← Scandidate
if c(Scurrent) < c(Sbest) then

Sbest← Scurrent
Tt+1← cTt
if stopping_conditions(ε, ttol) then

break
return Sbest

Intuitively, this explores the space of subgraphs in
search of onewell explained by themodel, and this
implies removing “bad” outliers.

EXPERIMENTS

Fig. 2: Filtering decreases the cost (operator norm) and the number of

outliers by considering smaller subgraphs at each step, but fails to

decrease the error due to the lack of exploration.

Fig. 3: Our method (S.A.) decreases the cost (operator norm) and the

number of outliers by exploring subgraph space and finding good

solutions, while keeping subgraph size constant.

Fig. 4: Estimation error of different methods as the amount of

perturbation increases. Our method stays close to the inlier baseline.

Fig. 5: Community partition of the jazz collaboration graph using our

method (S.A.). It identifies outlier nodes to be ignored, allowing Spectral

Clustering to find the three main collaboration groups (corresponding to

bands in New York, Chicago, and other cities), something it had not been

capable in Figure 1.

CONCLUSION

We argue that exploring the subgraph-space in
search of one that can be well-explained by the
model allows for robust estimation of the model’s
parameters. Future research directions include
finding stronger theoretical robustness guarantees
and considering the use of other optimization algo-
rithms over S.A..
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