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Abstract

Let p be a prime number, K a finite extension of Qp and n an integer ≥ 2. We
completely and explicitly describe the global sections Ω• of the de Rham complex of the
Drinfeld space over K in dimension n− 1 as a complex of (duals of) locally K-analytic
representations of GLn(K). Using this description, we construct an explicit section in
the derived category of (duals of) finite length admissible locally K-analytic represen-
tations of GLn(K) to the canonical morphism of complexes Ω• ↠ Hn−1(Ω•)[−(n−1)].
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1 Introduction
Let p be a prime number and K a finite field extension of the field of p-adic numbers Qp.
This monograph has to do with certain p-adic representations of GLn(K). One of its main
aims is to completely describe the complex of differential forms of the Drinfeld space of
dimension n − 1 as a complex of representations of GLn(K), where n ≥ 2. The Drinfeld
spaces are very important p-adic spaces over K introduced by Drinfeld in the seventies,
and there is one Drinfeld space (of dimension n − 1) for each integer n ≥ 2. The group
GLn(K) acts on the Drinfeld space of dimension n− 1, hence on its complex of differential
forms, yielding representations of GLn(K) that mathematicians have started studying in
the eighties. Understanding these representations was one of the main motivations for the
development of the theory of locally analytic representations of GLn(K) in the 2000’s, which
can be seen as a p-adic analogue of Harish-Chandra’s (gln, K)-modules where K here is not
the above field K but a maximal compact subgroup of GLn(R). One difference is that,
whereas GLn(R) does not act on (gln, K)-modules, the whole group GLn(K) acts on locally
analytic representations. We review below the history of that subject (which is intimately
related to the Drinfeld space), and then we explain the main results of this book.

1.1 Historical background
We fix n ≥ 2 an integer and we let Pn−1

rig/K be the rigid analytic projective space of dimension
n− 1 over K. Fifty years ago, Drinfeld introduced in [Dr74] what is now called the Drinfeld
space H/K over K of dimension n−1, which is the rigid analytic (admissible) open subspace
of Pn−1

rig defined as
H def= Pn−1

rig \
⋃
H
H (1)

where H runs through the K-rational hyperplanes inside Pn−1
rig . It has become such a familiar

space in p-adic arithmetic geometry that it is hard to imagine a time when it was not defined.
In [Dr76] Drinfeld gave a second definition of H as a moduli space of certain p-divisible
groups, and used this definition to define a tower of étale coverings of H. These coverings
have now been vastly generalized into the Rapoport-Zink spaces ([RZ96]), and more recently
the local Shimura varieties ([RV14], [SW20]). Their cohomology plays a fundamental role in
the Langlands program.

In this work, we only use the definition of H given in (1). The group G
def= GLn(K)

naturally acts on Pn−1
rig and preserves the open subspace H. By functoriality, it follows that

any cohomology group of H is naturally endowed with a left action of G. More than thirty
years ago, Schneider and Stuhler in [SS91] computed this action on any abstract cohomology
theory satisfying certain axioms (see [SS91, §2] for more details, we won’t need these axioms).
The first example of such a cohomology theory is the ℓ-adic étale cohomology

H•
ét

(
H×K K̂,Qℓ

)
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where K̂ is the p-adic completion of an algebraic closure K of K and ℓ is a prime number
distinct from p1. The second example is the de Rham cohomology

H•
dR(H).

We recall their result. For P ⊆ G the K-points of a lower standard parabolic subgroup of
GLn, we write IndGP (1) for the smooth parabolic induction of the trivial representation of
P . For k ∈ {0, . . . , n− 1} we let P[1,n−k−1] be the K-points of the lower standard parabolic
subgroup of G of Levi GLn−k × GL1 × · · · × GL1. Following our notation in the text (see
(64) and (30)), we define:

V ∞
[1,n−k−1],∆

def= (IndGP[1,n−k−1]
1)∞ /

∑
P[1,n−k−1]⊊P

(IndGP1)∞ (2)

(where (IndGP (−))∞ is the usual smooth parabolic induction and ∆ the set of simple roots of
GLn) which is called a smooth generalized Steinberg representation ofG. The representations
V ∞

[1,n−k−1],∆ are absolutely irreducible, and note that V ∞
[1,n−1],∆ = 1 (the trivial representation

of G) while V ∞
∅,∆ is the smooth Steinberg representation of G, that we also denote by St∞

n .

Theorem 1.1.1 ([SS91]). We have Hk
ét

(
H ×K K̂,Qℓ

)
= Hk

dR(H) = 0 for k ≥ n, and for
k ∈ {0, . . . , n− 1} we have G-equivariant isomorphisms

Hk
ét

(
H×K K̂,Qℓ

) ∼= (V ∞
[1,n−k−1],∆)∨ and Hk

dR(H) ∼= (V ∞
[1,n−k−1],∆)∨

where the first V ∞
[1,n−k−1],∆ is seen with Qℓ-coefficients, the second with K-coefficients, and

where (−)∨ is the corresponding algebraic dual.

More precisely the above theorem follows from [SS91, §3 Thm. 1] (with A = Qℓ or
A = K) together with [SS91, §4 Lemma 1]. In particular we see that the ℓ-adic and de Rham
cohomology groups of H are duals of smooth representations of G, which is not obvious a
priori.

By [SS91, §1 Prop. 4] the rigid analytic space H is quasi-Stein, by which we mean that
H admits an admissible covering given by the union of an ascending sequence U1 ⊆ U2 ⊆
· · · ⊆ Un ⊆ · · · of affinoid open subspaces such the restriction maps of Banach spaces
Γ(Un,OUn) → Γ(Un−1,OUn−1) have dense image. It follows that Hk(H,F) = 0 for k ≥ 1
and F any coherent sheaf on H ([Kie67, Satz 2.4]). In particular the de Rham cohomology
of H (which for an arbitrary rigid space is defined as the hypercohomology of its de Rham
complex) is just here the cohomology of the complex Ω• of its global sections, i.e.

Hk
dR(H) = Hk(Ω•)

where
Ω• def= [Ω0 −→ Ω1 −→ · · · −→ Ωn−1]

1The case ℓ = p was treated very recently in [CDN20].
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with
Ωk def= Γ(H,Ωk

H/K). (3)

By functoriality each Ωk is also a representation of G over K and the complex Ω• is G-
equivariant. Moreover, as we have seen in Theorem 1.1.1, Hk(Ω•) is the (algebraic) dual of
a smooth representation of G. However, the individual representations Ωi are far from being
(duals of) smooth representations of G.

Investigating which type of G-action they carry was one of the main motivations for
Schneider and Teitelbaum’s theory of (admissible) locally analytic representations of G, and
completely determining the representations Ωk of G and the differential maps in Ω• is one
of the main goals of this monograph. Indeed, motivated by the beginnings of the p-adic
Langlands program, the first author has been fascinated during years (in the early 2000’s)
by the idea of fully understanding the internal structure of Ω• as a complex of representations
of G, with the hope that it was may-be hiding “secrets”. In the end, this internal structure
is not that complicated and does not hide that many secrets, but completely unravelling Ω•

remains an interesting and challenging (though sometimes technical) task.

Writing H = ∪nUn for affinoids Un ⊆ Un+1 as above, one has Ωk ∼→ lim←−n Γ(Un,Ωk
H/K).

Since all Γ(Un,Ωk
H/K) are (p-adic) Banach spaces, the projective limit topology gives a natural

(p-adic) Fréchet topology on each Ωk (recall that a p-adic Fréchet space is a projective limit
of countably many p-adic Banach spaces), and it is not very hard to check that the map
G × Ωk → Ωk, (g, v) 7→ gv is continuous. In the eighties, Morita pioneered the study of
the continuous G-representations Ω0 and Ω1 when n = 2 ([Mor82], [Mor84], [Mor85]). In
particular in [Mor84, §5] he proved the following theorem:

Theorem 1.1.2 ([Mor84]). Let B ⊆ G = GL2(K) be the K-points of the lower Borel of
GL2, then one has G-equivariant topological isomorphisms

Ω0/1 ∼=
(
(IndGB t−1⊠ t)an

)∨
and Ω1 ∼=

(
(IndGB 1)an/1

)∨
.

Here ((IndGBχ1 ⊠ χ2)an)∨ is the topological dual of the locally K-analytic principal series
(IndGBχ1 ⊠ χ2)an where χi : K× → K are locally K-analytic characters and t is the identity
character K× → K, t 7→ t.

Recall that (IndGBχ1 ⊠ χ2)an is the K-vector space of locally K-analytic fonctions f :
G −→ K such that

f(gb) = b−1 · f(g) = (χ1(t1)χ2(t2))−1f(g), g ∈ G, b =
(
t1 0
∗ t2

)
∈ B

with the (left) action of G given by

(g(f))(g′) def= f(g−1g′), g, g′ ∈ G. (4)
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It is naturally endowed with a topology which makes it a locally convex K-vector space of
compact type for which the action of G is continuous (see [ST05, §6] and [ST102, Lemma
2.1]). The representation (IndGB1)an/1 is called the locally K-analytic Steinberg representa-
tion of G. Note that Morita more generally proves Theorem 1.1.2 for (what is now called)
Schneider’s holomorphic discrete series ([S92, §3]). In [Mor85, Thm. 1] and [Mor84, Thm. 2]
(see also [Mor84, Thm. 1] and [Mor84, Thm. 2]), Morita moreover proves that (IndGBt−1⊠t)an

is (topologically) irreducible as a G-representation and that (IndGB1)an/1 is an extension of
(IndGB t−1 ⊠ t)an by the (irreducible) smooth Steinberg representation of G.2

For many years, there was no progress on and (may-be) no interest in these p-adic ques-
tions (except [S92]) until Schneider and Teitelbaum, using Féaux de Lacroix’s thesis [Lac99],
decided to start the theory from scratch in [ST102], [ST202], [ST01], [ST03] and [ST05].
In particular in [ST03] they defined an important abelian category of admissible locally
K-analytic representations of G (more generally of a locally K-analytic group) on locally
convex K-vector spaces of compact type, or equivalently taking continuous duals an abelian
category of (so called) coadmissible D(G)-modules. Here D(G) is the K-algebra of locally
K-analytic distributions on G, i.e. the continuous dual of

Can(G) def= {f : G −→ K, f locally K-analytic}

endowed with its natural locally convex topology ([ST102, §2]). Shortly after, Emerton gave
his own account of the theory in [Em12] (which was published years later). All this work
ultimately lead, a decade or so later, to the beautiful theory of Orlik-Strauch representations
in [OS15], which can be seen as one of the key achievements of the theory.

Orlik-Strauch representations FGP (M,π∞) are now widely used and are, essentially, the
only admissible locally K-analytic representations of G which are so far well understood.
We briefly review their main properties in the text (see Proposition 4.3.7). Suffice it here to
say that, if P is the K-points of a (lower standard) parabolic subgroup of GLn, M a U(g)-
module in Bernstein-Gelfand-Gelfand category’s Op ([Hum08, §9.3]) such that all its weights
are integral (here g, p are the respective K-Lie algebras of G, P and U(−) the enveloping
algebra) and π∞ a smooth admissible representation of the Levi factor LP of P , then

FGP (M,π∞) def=
((

IndGP W∨⊗ π∞
)an
)ker=0

(5)

where W is any finite dimensional algebraic representation of P such that one has a surjection
of U(g)-modules U(g) ⊗p W ↠ M and where (−)ker=0 is the (closed) subrepresentation of
the locally K-analytic parabolic induction (IndGP W∨⊗ π∞)an of vectors cancelled by

ker def= ker
(
U(g)⊗p W ↠M

)
.

2Morita’s results are proven for SL2(K) instead of GL2(K). Moreover the proof of the irreducibility is
actually flawed, see [ST102, p.443-444].
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Here (IndGP W∨⊗π∞)an is defined similarly to (IndGBχ1⊠χ2)an above with left action (4) of G.
We refer the reader to [OS15] for more details on the admissible representations FGP (M,π∞).
In particular, when π∞ is of finite length, they are moreover (topologically) of finite length.

Going back to the G-representations Ωi of (3), the first result after Morita’s Theorem
1.1.2 came in [ST202] where the authors could describe explicitly the graded pieces of a
filtration on Ωn−1 (for any n ≥ 2). More precisely in [ST202, Thm. 8.6] they proved:

Theorem 1.1.3 ([ST202]). The D(G)-module Ωn−1 admits a filtration by closed D(G)-
submodules

Ωn−1 = Fil0(Ωn−1) ⊋ Fil1(Ωn−1) ⊋ · · · ⊋ Filn(Ωn−1) = 0
such that for 0 ≤ j ≤ n− 1:

grj(Ωn−1) def= Filj(Ωn−1)/Filj+1(Ωn−1) ∼= FGP
ĵ

(
L(sjsj−1 · · · s1 · 0), 1GLj

⊠ St∞
n−j

)∨3 (6)

where P
ĵ

is the K-points of the lower parabolic subgroup of GLn of Levi factor GLj×GLn−j,
s1, . . . , sn−1 are the simple reflections of GLn and L(sjsj−1 · · · s1 · 0) is the unique irreducible
U(g)-module in Op

ĵ of highest weight sjsj−1 · · · s1 · 0 (with P
ĵ

= G, sjsj−1 · · · s1 = 1 when
j = 0, and the dot action · being relative to the lower Borel subgroup of GLn).

Since all graded pieces in Theorem 1.1.3 are finite length coadmissible D(G)-modules,
and since coadmissibility and finite length are preserved under extensions (for coadmissibility
see for instance the proof of [Bre19, Lemme 2.1.1]), we see in particular that Ωn−1 is also
a finite length coadmissible D(G)-module. To prove some of the results of this monograph
(see §1.2 below), we use a weak variant of Theorem 1.1.3 as a key ingredient (see Theorem
5.4.14 in the text together with the comment before Theorem 5.4.16).

A few years later, Pohlkamp in [Po04] proved a result analogous to Theorem 1.1.3 but
where Ωn−1 is replaced by the global sections Ω0 of the structural sheaf of H. Finally, a few
more years later Orlik considerably generalized both statements to Ωk for all k in [Or08]
(see also [Or13] or Theorem 5.4.14 in the text). In particular all D(G)-modules Ωk are
coadmissible and (topologically) of finite length. Note that, when 0 < k < n− 1, Ωk is more
envolved because it has (essentially) twice as many irreducible constituents as Ωn−1 or Ω0.

Although the above theorems describe the graded pieces of a filtration on Ωk, and in
particular the irreducible constituents of Ωk, this does not give its full internal structure.
For instance we do not know the extensions between the graded pieces (some extensions as
subquotients could be split). Or it could be that there are several analogous finite length
coadmissible D(G)-modules with the same graded pieces but with different extensions as
subquotients. As an example, let us go back to the case n = 2 and Theorem 1.1.2, and
denote SP def= (IndGB t−1⊠ t)an. Although Ω1 is fully determined there, this is not the case

3The reference [OS15] was not available at the time of [ST202] but they directly used the description on
the right hand side of (5).
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of Ω0: we only know it is an extension of SP by the trivial representation 1. To obtain the
full structure of Ω0, we need to know that it is the unique such non-split extension4. In
particular for n = 2 we can make the complex Ω• = [Ω0 −→ Ω1] transparent by rewriting it

Ω• =
[
(1 SP∨ ) −→ (SP∨ (St∞

2 )∨ )
]

(7)

where as usual a line means a non-split extension between two irreducible constituents (with
the socle on the left and the cosocle on the right) and where we use that (IndGB 1)an/1 is the
(unique) non-split extension of SP by the smooth Steinberg St∞

2 . An analogous complete
description of Ω• for G = GL3(Qp) was given by Schraen in his thesis ([Schr11, §6.4]).

The history of Ω• (so far) did not quite stop there. By another result of Schraen ([Schr11,
Thm. 6.1]5) crucially based on results of Orlik ([Or05, Thm. 1]) and on a theorem of Dat
([Dat06, Cor. A.1.3]) which itself is an elaboration of Deligne’s splitting result ([De68]), the
complex Ω• splits in the bounded derived category of all (abstract) D(G)-modules, i.e. there
exists an isomorphism in this derived category:

Ω• ∼=
n−1⊕
k=0

(V ∞
[1,n−k−1],∆)∨[−k]. (8)

However, trying to unravel the abstract proofs of [Dat06, Cor. A.1.3] and [Schr11, Thm. 6.1]
to produce an explicit such isomorphism, say in the bounded derived category of finite length
coadmissible D(G)-modules (instead of all D(G)-modules), seems seriously challenging. Yet,
when n = 2, one can easily produce an explicit such isomorphism as follows. Choosing
a p-adic logarithm log : K× → K, one can “glue” Ω0 and Ω1 in (7) into one length 3
D(G)-module 1 SP∨ (St∞

2 )∨ (see for instance [Bre19, §3.2]). One then has an explicit
section in the derived category (St∞

2 )∨[−1] 99K Ω• to the canonical morphism of complexes
Ω• → H1(Ω•)[−1] ∼= (St∞

2 )∨[−1] provided by (see [Schr10, §5.1]):

(St∞
2 )∨[−1] ←−

[
(1 SP∨ )→ (1 SP∨ (St∞

2 )∨ )
]
−→ Ω• (9)

(where the morphisms of complexes are easily guessed and are quasi-isomorphisms). Adding
up the (trivial) morphism of complexes 1[0] → Ω•, we deduce an isomorphism as in (8)
1[0] ⊕ (St∞

2 )∨[−1] ∼
99K Ω•. In fact, there exists a slightly better variant which, in the case

K = Qp, is more directly related to the p-adic local Langlands correspondence for GL2(Qp).
Let ε : K× → K be the p-adic cyclotomic character (which factors as K× → Q×

p ↠ Z×
p ⊂ K

where the first map is the norm and the second the projection sending p to 1) and let
SP′ def= (IndGBε−1⊠ ε)an. Then one can add in a unique way the constituent SP′∨ to each
length 3 D(G)-module as above and obtain a length 4 D(G)-module

1 SP∨ (St∞
2 )∨SP′∨ .

4Curiously the authors could not find this classical result explicitly and clearly stated in the literature (it
follows for instance from the baby case n = 2, k = 0, µ0 = (0, 0) of Theorem 5.4.16 in the text).

5Although the result is stated there only for K = Qp, its proof works for arbitrary K using Lemma 4.2.3.
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The isomorphism classes of such D(G)-modules are in non-canonical bijection with A1(K)
(which corresponds to the choice of log(p) ∈ K in the p-adic logarithm). When K = Qp, such
length 4 representations precisely correspond to 2-dimensional semi-stable non-crystalline
representations of Gal(Qp/Qp) (over Qp) of Hodge-Tate weights (0, 1) (see [CDP14] or [Bre19,
§3.1]). One then has a section (in the derived category) similar to (9)

(St∞
2 )∨[−1]←−

[
( 1 SP∨SP′∨ )→ ( 1 SP∨ (St∞

2 )∨SP′∨ )
]
−→ Ω•. (10)

Following the notation of this text, the constituent SP∨ is denoted X1 and the constituent
SP′∨ is denoted Y1.

With an explicit description of Ω• at hand for n ≥ 2 (as we will soon have), it becomes
tempting to look for a generalization of (10) to n ≥ 3. We provide such explicit sections in
this work, which also apply to Schneider’s holomorphic discrete series.

1.2 The main results
The first aim of this monograph is to finish the work started by Schneider-Teitelbaum and
continued by Orlik (and Schraen) by giving a transparent description of Ω• for n ≥ 2
analogous to (7) when n = 2.

We first need a bit of notation. For j = (j0, j1, j2) such that

1 ≤ j0, j1 ≤ n− 1, 1 ≤ j2 ≤ n and 0 ≤ j2 − j1 ≤ n− 1 (11)

we set using the notation in (5) (see (443))

Cj = C(j0,j1,j2)
def= FGP

ĵ1
(L(wj1,j0 · 0), π∞

j1,j2) (12)

where P
ĵ1

is as in Theorem 1.1.3, wj1,j0
def=
{
sj1sj1−1 · · · sj0 if j1 ≥ j0
sj1sj1+1 · · · sj0 if j1 ≤ j0

, L(wj1,j0 · 0) is

as in Theorem 1.1.3 and where π∞
j1,j2 is an explicit irreducible smooth representation of

GLj1(K) × GLn−j1(K) defined in (95). The Cj are irreducible admissible locally analytic
representations of G over K. For k ∈ {1, . . . , n−1} one first proves that there exists a unique
finite length coadmissible D(G)-module Xk of the following form (see (510) with Theorem
5.3.6 and recall (−)∨ means the continuous dual):

Xk = C∨
(n−k,n−1,n−1) C∨

(n−k,n−2,n−2) · · · C∨
(n−k,2,2) C∨

(n−k,1,1) (13)

(we say that Xk is uniserial).

Theorem 1.2.1 (Theorem 5.4.16, (ii) of Corollary 5.4.3). For k ∈ {0, . . . , n− 1} Ωk is the
unique coadmissible D(G)-module of the form

Xk (V ∞
[1,n−k−1],∆)∨ Xk+1

9



with X0 = Xn
def= 0. It is indecomposable multiplicity free with an irreducible socle and

cosocle. Moreover the k-th differential map is the unique (up to non-zero scalar) non-zero
map of D(G)-modules Ωk → Ωk+1.

The first statement of Theorem 1.2.1 follows from Theorem 5.4.16 and (ii) of Corollary
5.4.3, while the second statement follows from (511) and (512). Note that the differential
map in Theorem 1.2.1 obviously factors as

Xk (V ∞
[1,n−k−1],∆)∨ Xk+1 ↠ Xk+1 ↪→ Xk+1 (V ∞

[1,n−k−2],∆)∨ Xk+2 .

In fact one exactly knows the form of Ωk → Ωk+1, which looks like (for 2 ≤ k ≤ n− 4):

•
•

•
•
•

•
•

•

•
•

•
•
•

•
•

•
•

•
•
•

•
•

•

•
•

•
•
•

•
•

(14)

where each bullet is an irreducible constituent, where the 4 long diagonals are (from left
to right) Xk, Xk+1, Xk+1, Xk+2, where the left (resp. right) red bullet is (V ∞

[1,n−k−1],∆)∨

(resp. (V ∞
[1,n−k−2],∆)∨) and where the socle (resp. cosocle) of Ωk or Ωk+1 is the leftmost

(resp. rightmost) bullet. All this follows from Theorem 5.4.16 and the description of Dk

in (512). See also the full complex Ω• for n = 5 in Figure 1 of Appendix B where we see
that the dual of the smooth constituent (i.e. the red bullet) goes up and up when moving
from left to right.

Theorem 1.2.1 is more generally proven for holomorphic discrete series ([S92]), where
for instance (V ∞

[1,n−k−1],∆)∨ is replaced by (V ∞
[1,n−k−1],∆)∨ ⊗K L(µ0) for an arbitrary dominant

weight µ0 (with respect to the lower Borel).

Let Stan
n

def= (IndGB1)an/
∑
B⊊P (IndGP1)an be the locally K-analytic Steinberg representation

of G (where B is the K-points of the lower Borel of GLn). Then Theorem 1.2.1 is used
in [Qi24] to show that the K-vector space of homomorphisms (Stan

n )∨[1 − n] 99K Ω• in the
derived category of D(G)-modules has a natural structure of an admissible filtered (φ,N)-
module in the sense of Fontaine ([Fon94]) corresponding to a certain explicit “universal”
semi-stable non-crystalline p-adic representation of Gal(K/K).
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The second aim of this monograph is to generalize the section (10) to n ≥ 2.

But there is a problem to fix. As soon as n > 2, it is impossible in general to “glue”
consecutive Ωk as was done to obtain (9). For instance, already for n = 3, one cannot “glue”
Ω0 and Ω1 as it turns out that the D(G)-module (using the notation of (14) for n = 3)

X1 (V ∞
{1},∆)∨ X21 ≃

•
••1 •

•

(where the red bullet is (V ∞
{1},∆)∨) does not exist. When K = Qp and n = 3, the first author

proved in 2019 that there exists a coadmissible length 2 D(G)-module Y ♭
2 such that there

exist a unique coadmissible D(G)-module of the form

Ω̃1♭ def= 1
X1

(V ∞
{1},∆)∨

Y ♭
2

X2, (15)

and non-unique coadmissible D(G)-modules of the form

Ω̃2♭ def= Y2
♭ (V ∞

{1},∆)∨ X2 (St∞
3 )∨

where the non-unicity is similar to the non-unicity of 1 X1 (St∞
2 )∨ in (9). Hence, using

Y2
♭ and remembering that Ω0 ≃ 1 X1 , one still has a surjection of complexes [Ω0 → Ω̃1♭ →

Ω̃2♭] ↠ (St∞
3 )∨[−2] which is a quasi-isomorphism and a natural morphism of complexes

[Ω0 → Ω̃1♭ → Ω̃2♭]→ Ω• which give an explicit section (St∞
3 )∨[−2] 99K Ω• to the morphism

Ω• → H2(Ω•)[−2] ∼= (St∞
3 )∨[−2] in the derived category of D(G)-modules:

(St∞
3 )∨[−2] ←− [Ω0 → Ω̃1♭ → Ω̃2♭] −→ Ω•.

Just like (10) is better than (9) when n = 2, we can also define Ω̃0 def= Y1 1 X1 where Y1

is a certain finite length coadmissible D(G)-module Y1, and modify accordingly Y2
♭ and Ω̃1♭,

Ω̃2♭ into slightly larger (finite length coadmissible) D(G)-modules Y2 and

Ω̃1 def= Y1 1
X1

(V ∞
{1},∆)∨Y2

X2 , Ω̃2 def= Y2 (V ∞
{1},∆)∨ X2 (St∞

3 )∨ .

This has two advantages. The first is that, as for n = 2, the continuous dual of Ω̃2 is
then similar when K = Qp to the representations of GL3(Qp) appearing in the completed
cohomology for 3-dimensional semi-stable non-crystalline representations of Gal(Qp/Qp) with
Hodge-Tate weights (0, 1, 2) (for instance the dual of Ω̃2 is exactly like the “upper branch” of
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the representation in [BD20, (1.1)]). The second (which was discovered in the present work)
is that the D(G)-modules Ω̃0, Ω̃1, Ω̃2 behave remarkably well with respect to wall-crossing
functors (as will be explained in §1.3 below) contrary to the D(G)-modules Ω0, Ω̃1♭, Ω̃2♭.

The coadmissible D(G)-modules Yk and Ω̃k turn out to nicely generalize to any n ≥ 2.

Theorem 1.2.2. There exist indecomposable multiplicity free finite length coadmissibleD(G)-
modules Y1, . . . , Yn−1 with irreducible socle and cosocle satisfying the following properties.

(i) For k ∈ {0, . . . , n− 2} there exists a unique coadmissible D(G)-module Ω̃k of the form

Yk (V ∞
[1,n−k],∆)∨

Xk

(V ∞
[1,n−k−1],∆)∨

Yk+1

Xk+1

where Y0 = X0 = (V ∞
[1,n],∆)∨ def= 0. Moreover Ω̃k is indecomposable multiplicity free with

irreducible socle and cosocle.

(ii) The set of isomorphism classes of coadmissible D(G)-modules Ω̃n−1 of the form

Yn−1 (V ∞
{1},∆)∨ Xn−1 (St∞

n )∨

is in non-canonical bijection with An−1(K)6. Moreover any such Ω̃n−1 is indecompos-
able multiplicity free with irreducible socle and cosocle.

Contrary to the D(G)-modules Xk in (13), the D(G)-modules Yk are not uniserial, they
look like “triangles”, and contrary toXk they contain duals of smooth irreducible constituents
(when k > 1), see for instance Figure 2 in Appendix B when n = 5. To represent the D(G)-
modules Ω̃k one needs 3-dimensional drawings (at least when k ∈ {1, . . . , n − 2}), see for
instance Figure 3 to 7 in Appendix B when n = 5 (where Ω̃k is denoted D̃k).

The proof of Theorem 1.2.2 is dissiminated throughout the paper. The first statement
about the Yk follows from (510). The first statement of (i) of Theorem 1.2.2 follows from
(iv) of Theorem 5.3.10 with (i),(iii) of Corollary 5.4.3, while the second statement follows
from (512). The first statement of (ii) of Theorem 1.2.2 follows from (ii) of Theorem 5.3.11
with (ii) of Theorem 5.3.10 (for k = n−1) and the discussion around (523), while the second
statement follows from (ii) of Lemma 5.2.2, the definition of Xn−1 in (510) (or (13)) and the
definition and unicity of Zn−1 in (510) and (i) of Corollary 5.4.3. Moreover, like Theorem
1.2.1, Theorem 1.2.2 is also proved in the setting of holomorphic discrete series.

As for n = 2 and n = 3 when K = Qp, one can expect that, for all n ≥ 2 and all K, the
duals of some of the D(G)-modules Ω̃n−1 in (ii) of Theorem 1.2.2 (i.e. for some values of the

6One has dimK Ext1
D(G)

(
(Stalg

n )∨, Yn−1 (V ∞
{1},∆)∨ Xn−1

)
= n, see (ii) of Theorem 5.3.11.
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parameter in An−1(K)) occur in the completed cohomology for n-dimensional semi-stable
non-crystalline representations of Gal(K/K) with Hodge-Tate weights (0, 1, . . . , n − 1) in
all directions. More generally one can wonder if the duals of all the D(G)-modules Ω̃k for
k ∈ {0, . . . , n− 2} in (i) of Theorem 1.2.2 do not also occur as subquotients in the completed
cohomology for such Galois representations (for instance this is obvious for n = 2 and one
can check it for Ω̃1, and thus Ω̃0, when n = 3 and K = Qp).

Using Theorem 1.2.2 (and Theorem 1.2.1), we immediately obtain a section to Ω• →
Hn−1(Ω•)[−(n− 1)] ∼= (St∞

n )∨[−(n− 1)] as follows. There are unique (up to scalar) non-zero
D(G)-equivariant morphisms Ω̃k → Ω̃k+1 for k ∈ {0, . . . , n − 2}. We can thus define the
complex of finite length coadmissible D(G)-modules (fixing an arbitrary choice for Ω̃n−1)

Ω̃• def= [Ω̃0 → Ω̃1 → · · · → Ω̃n−2 → Ω̃n−1]
which is exact in degree < n− 1 and has cohomology (St∞

n )∨ in degree n− 1. In particular
there is a quasi-isomorphism Ω̃• → (St∞

n )∨[−(n− 1)]. Then are also unique (up to non-zero
scalar) non-zero D(G)-equivariant morphisms Ω̃k → Ωk for k ∈ {0, . . . , n − 1} (which are
surjections) which give a morphism of complexes Ω̃• → Ω•.
Corollary 1.2.3 (Theorem 5.3.13, Corollary 5.4.19). There is an explicit section

(St∞
n )∨[−(n− 1)] 99K Ω•

in the derived category of finite length coadmissible D(G)-modules to the canonical morphism
of complexes Ω• → (St∞

n )∨[−(n− 1)] given by
(St∞

n )∨[−(n− 1)]←− Ω̃• −→ Ω•.

We see that this explicit section exists in the derived category of finite length coad-
missible D(G)-modules with all irreducible constituents being (duals of) Orlik-Strauch rep-
resentations (5). Corollary 1.2.3 and (8) raise the question of the existence of analogous
explicit sections to the morphisms of complexes τ≤ℓΩ• ↠ Hℓ(Ω•)[−ℓ] ∼= (V ∞

[1,n−ℓ−1],∆)∨[−ℓ]
for ℓ ∈ {0, . . . , n− 2}. This is obvious for ℓ = 0 and not too difficult for ℓ = 1 (Proposition
5.3.14). In particular we obtain a full explicit splitting of Ω• when n = 3 (Corollary 5.3.15).
In a first version of this work, we thought we could use the D(G)-modules Ω̃k to also ob-
tain sections for all ℓ ∈ {2, . . . , n− 2} (in the derived category of finite length coadmissible
D(G)-modules with Orlik-Strauch irreducible constituents), but some of our D(G)-modules
actually did not exist. Nevertheless, we do expect such sections to exist:
Conjecture 1.2.4 (Conjecture 5.3.16). For ℓ ∈ {2, . . . , n− 2} the morphism of complexes

τ≤ℓΩ• ↠ Hℓ(Ω•)[−ℓ]
admits a section in the derived category of finite length coadmissible D(G)-modules with
Orlik-Strauch irreducible constituents.

We could prove the above conjecture for n = 4 and ℓ = 2, but the complex we construct
for that (analogous to Ω̃• when ℓ = 3 or to the complex in Proposition 5.3.14 when ℓ = 1)
looks more complicated. In particular it is not clear to us if the above complexes Ω̃• admit
nice generalizations to τ≤ℓΩ• and (V ∞

[1,n−ℓ−1],∆)∨[−ℓ] for ℓ ∈ {1, . . . , n− 2}.
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1.3 Some intermediate results and ideas of proofs
If V0, V1 are admissible locally K-analytic representations of G over K, it is not difficult
to check that ExtiG(V0, V1) ∼= ExtiD(G)(V ∨

1 , V
∨

0 ) for i = 0, 1 where the first Exti is computed
in the abelian category of admissible locally K-analytic representations of G (à la Yoneda
for i = 1) and the second Exti is computed in the category of all (abstract) D(G)-modules
(see [ST03, §6] when i = 0, [Bre19, Lemma 2.1.1] when i = 1). Hence, in order to prove
Theorem 1.2.1 and Theorem 1.2.2, it is enough to control the dimensions of the K-vector
spaces ExtiD(G)(V ∨

1 , V
∨

0 ) for i = 0, 1 and certain V0, V1. By dévissage, it is enough to control
ExtiD(G)(V ∨

1 , V
∨

0 ) for i = 0, 1, 2 where V0, V1 are Orlik-Strauch representations (5) such that
π∞ is of finite length. However, this is still a non-trivial task. For instance, when i ̸= 0 it is
not even clear that such K-vector spaces are finite dimensional.

To explain our method, we need some more notation. For i = 0, 1 write Vi = FGPIi
(Mi, π

∞
i )

where Ii ⊆ ∆, PIi
is the K-points of the associated lower parabolic subgroup of GLn, LIi

its Levi factor, Mi an object of OpIi with integral weights and π∞
i a smooth finite length

representation of LIi
. By dévissage, we can always reduce ourselves to the case where M1 is

a generalized Verma module, i.e. M1 ∼= U(g)⊗U(pI1 )L
I1(µ) where µ is an (integral) dominant

weight with respect to the lower Borel of LI1 and LI1(µ) the irreducible finite dimensional
algebraic representation of LI1 of highest weights µ. In this case V1 is the locally K-analytic
parabolic induction (IndGPI1

LI1(µ)∨⊗ π∞
1 )an.

By a result of Schneider-Teitelbaum when K = Qp completed by Schmidt when K is ar-
bitrary (proof of [ST05, Lemma 6.3(ii)] replacing [ST05, Lemma 6.2] by [Schm09, Prop. 2.6]),
we have in this case isomorphisms for i ≥ 0

ExtiD(G)(V ∨
1 , V

∨
0 ) ∼= ExtiD(PI1 )(LI1(µ)⊗E (π∞

1 )∨, V ∨
0 ) (16)

where D(PI1) is the K-algebra of locally K-analytic distributions on PI1 and ExtiD(PI1 ) is
computed in the category of D(PI1)-modules. So we are reduced to computing the (hopefully
finite) dimension of ExtiD(PI1 )(LI1(µ) ⊗E (π∞

1 )∨, V ∨
0 ). The method is then to use a spectral

sequence, but there are two possible choices.

The first choice is to write PI1 = NI1LI1 , where NI1 is the unipotent radical of PI1 , and
use the spectral sequence:

ExtiD(LI1 )

(
LI1(µ)⊗E (π∞

1 )∨,ExtiD(NI1 )(1, V ∨
0 )
)

=⇒ Exti+jD(PI1 )

(
LI1(µ)⊗E (π∞

1 )∨, V ∨
0

)
.

This is for instance the method used in [Schr11, §4] or in [Bre19, §5] when K = Qp and
n = 3. Though one can may-be proceed this way, it is not the spectral sequence that we
use in this work. One reason is that, already when K = Qp and n = 3, using this spectral
sequence proved quite laborious in loc. cit.

The second choice, which is ours, is to use the spectral sequence ([ST05, §3], see (306)):

ExtiD∞(PI1 )

(
(π∞

1 )∨,ExtjU(pI1 )(LI1(µ), V ∨
0 )
)

=⇒ Exti+jD(PI1 )

(
LI1(µ)⊗E (π∞

1 )∨, V ∨
0

)
(17)
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where D∞(PI1) is the (algebraic) dual of the locally constant K-valued functions on PI1 ,
ExtiD∞(PI1 ) is computed in the category of D∞(PI1)-modules and ExtjU(pI1 ) in the category
of U(pI1)-modules. This spectral sequence seems more suited to our dimension calculations
because (as we will see in (20) below) it turns out we can “separate” the smooth part and
the Lie part on the left hand side of (17), so that we are essentially reduced to computing
dimensions of extensions groups either in the world of smooth representations or in the world
of modules over Lie algebras, which is much easier (and where there is no more topology).

We thus need to compute the left hand side of (17). However, we do not compute it
directly. Rather we define a filtration on V ∨

0 and first compute

ExtiD∞(PI1 )

(
(π∞

1 )∨,ExtjU(pI1 )(LI1(µ), graded pieces)
)
.

Denote by W I0,I1 ⊆ W (G) the subset of minimal length representatives of the double coset
W (LI0)\W (G)/W (LI1) where W (−) are the respective (finite) Weyl groups. The Bruhat
decomposition G = ⊔

w∈W I0,I1 PI1w
−1PI0 induces a filtration indexed by W I0,I1 on V ∨

0 by
closed D(PI1)-submodules (see (292)), and we denote by grw(V ∨

0 ) its graded pieces. We first
prove the following key description of ExtjU(pI1 )(LI1(µ), grw(V ∨

0 )).

Theorem 1.3.1 (Theorem 4.5.10 with Lemma 4.2.13). For w ∈ W I0,I1 and j ≥ 0 there is a
D∞(PI1)-equivariant isomorphism of Fréchet spaces

ExtjU(pI1 )(LI1(µ), grw(V ∨
0 )) ∼= ExtjU(pI1 )(LI1(µ),Mw

0 )⊗K
(
(indPI1

PI1 ∩w−1PI0w
π∞,w

0 )∞
)∨

(18)

where the K-vector space ExtjU(pI1 )(LI1(µ),Mw
0 ) is finite dimensional and has trivial action

of D∞(PI1). Here (−)w means that x ∈ U(g) (resp. x ∈ PI1 ∩ w−1PI0w) acts by wxw−1

(resp. wxw−1) and (indPI1
PI1 ∩w−1PI0w

π∞,w
0 )∞ is the smooth induction with compact support.

The first main ingredient for the proof of Theorem 1.3.1 is an explicit description of the
continous dual grw(V ∨

0 ) (Proposition 4.4.3), where the canonical Fréchet completion M0 of
M0 defined in [Schm13] (see also Proposition 4.3.1) shows up, or more precisely its twist
Mw

0 . The second main ingredient is the following statement.

Theorem 1.3.2 (Lemma 4.5.1 and Lemma 4.5.2). For w ∈ W I0,I1 and j ≥ 0 the natural
morphism

ExtjU(pI1 )(LI1(µ),Mw
0 ) −→ ExtjU(pI1 )(LI1(µ),Mw

0 )

is an isomorphism of finite dimensional K-vector spaces. Moreover ExtjU(pI1 )(LI1(µ),Mw
0 ) is

separated for its natural topology (coming from the topology on Mw
0 and from the Chevalley-

Eilenberg complex).

We remark that, in the upcoming [BCGP], the authors prove a more general theorem
which implies in particular Theorem 1.3.2.
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Using these two key ingredients, the proof of Theorem 1.3.1 then consists in a careful
analysis of the Chevalley-Eilenberg complex of grw(V ∨

0 ). It is given in §4.5, and is quite
long and tedious because we give all the (topological) technical details. Note that, had the
topological vector space ExtjU(pI1 )(LI1(µ),Mw

0 ) been non-separated, the solid techniques of
[RR22] would probably have been necessary.

Plugging in (18) inside the left hand side of (17) with grw(V ∨
0 ) instead of V ∨

0 , we deduce
canonical isomorphisms for w ∈ W I0,I1 and i, j ≥ 0 (see Corollary 4.5.11)

ExtiD∞(PI1 )

(
(π∞

1 )∨,ExtjU(pI1 )(LI1(µ), grw(V ∨
0 ))

)
∼= ExtjU(pI1 )(LI1(µ),Mw

0 )⊗K ExtiLI1

((
(indPI1

PI1 ∩w−1PI0w
π∞,w

0 )∞
)
NI1
, π∞

1

)∞
(19)

where ExtiLI1
(−)∞ means extensions in the category of smooth representations of LI1 . More-

over the K-vector space on the right hand side of (19) is finite dimensional for all w, i, j
(using Theorem 1.3.2 for ExtjU(pI1 )(LI1(µ),Mw

0 ) and the finite length of π∞
0 , π∞

1 for the other
factor). Hence we obtain from the analogue of (17) with grw(V ∨

0 ) instead of V ∨
0 that the

K-vector space ExtiD(PI1 )(LI1(µ)⊗E (π∞
1 )∨, grw(V ∨

0 )) is also finite dimensional for all i ≥ 0.
By dévissage on the filtration on V ∨

0 and by (16), we deduce the following nice by-product
result, which is new.

Theorem 1.3.3 (Theorem 4.5.16). Let Π0, Π1 be finite length admissible locally K-analytic
representations of G over a finite extension of K with all (topological) irreducible constituents
being Orlik-Strauch representations (5). Then the K-vector space ExtiD(G)(Π∨

0 ,Π∨
1 ) is finite

dimensional for i ≥ 0.

We mention here another aside result, purely on the Lie algebra side, that we need in the
proofs and that we couldn’t find in the literature (it will also be proven in [BCGP]):

Proposition 1.3.4 (Proposition 3.1.5). Let I a subset of ∆. Denote by b the K-Lie algebra
of the lower Borel of G, nI , lI the K-Lie algebras of NI , LI , and bI the K-Lie algebra of
the lower Borel of LI . Then for any M in Ob with integral weights and any j ≥ 0 the
Lie algebra cohomology group Hj(nI ,M) is an object of the category ObI relative to lI (with
integral weights).

Going back to (19), in practice we only need to apply it with π∞
0 such that the smooth

LI1-representations ((indPI1
PI1 ∩w−1PI0w

π∞,w
0 )∞)NI1

lie in distinct Bernstein blocks when w varies
in W I0,I1 . Assuming that π∞

1 lies in a unique Bernstein block (which will be our case), we
thus deduce that there is at most one w ∈ W I0,I1 only depending on π∞

0 and π∞
1 such that

ExtiLI1

((
(indPI1

PI1 ∩w−1PI0w
π∞,w

0 )∞
)
NI1
, π∞

1

)∞
̸= 0

and hence such that (19) is possibly non-zero. By an obvious dévissage on the filtration
on V ∨

0 , we thus see that, in order to compute the left hand side of (17), it is sufficient (in
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our case) to compute (19) because there is at most one w for which (19) is non-zero! In
particular by (16) the spectral sequence (17) becomes

ExtjU(pI1 )(LI1(µ),Mw
0 )⊗K ExtiLI1

((
(indPI1

PI1 ∩w−1PI0w
π∞,w

0 )∞
)
NI1
, π∞

1

)∞

=⇒ Exti+jD(G)(V ∨
1 , V

∨
0 ) (20)

for this unique w (with possibly all vector spaces being 0).

Now, the big advantage of (20) is that the term on its left hand side is computable
because ExtjU(pI1 )(LI1(µ),Mw

0 ) is purely in the category of U(pI1)-modules while
ExtiLI1

(((indPI1
PI1 ∩w−1PI0w

π∞,w
0 )∞)NI1

, π∞
1 )∞ is purely in the category of smooth representa-

tions of LI1 (in other words we have “separated” the Lie part and the smooth part).
We give in §2 all the material needed to compute the dimensions of the K-vector spaces
Ext•

LI1
(((indPI1

PI1 ∩w−1PI0w
π∞,w

0 )∞)NI1
, π∞

1 )∞, at least for the π∞
i we need, and we give in §3 all

the material needed to compute the dimensions of Ext•
U(pI1 )(LI1(µ),Mw

0 ). Very often, either
all terms on the left hand side of (20) are 0, and we obtain the vanishing of ExtiD(G)(V ∨

1 , V
∨

0 ),
or only one of them is non-zero, and we obtain a useful description of ExtiD(G)(V ∨

1 , V
∨

0 ). Com-
bining this with some dévissage, we can compute the dimensions of lots of ExtiD(G)(V ∨

1 , V
∨

0 )
(for M1 in OpI1 not necessarily a generalized Verma module), see the various results in §§5.1,
5.2. As a sample, let us mention the following statement:

Corollary 1.3.5 (Proposition 5.1.14). Let j = (j0, j1, j2) and j′ = (j′
0, j

′
1, j

′
2) as in (11) and

assume (j0, j1) ̸= (j′
0, j

′
1), there is an isomorphism of (finite dimensional) K-vector spaces

Ext1
D(G)(C∨

j , C
∨
j′)

∼= Ext1
U(g)(L(wj1,j0 · 0), L(wj′

1,j
′
0
· 0))⊗K HomL

ĵ1

((
(ind

P
ĵ1
P

ĵ1
∩P

ĵ′
1

π∞
j′

1,j
′
2
)∞
)
N

ĵ1

, π∞
j1,j2

)
. (21)

One then deduces dimK Ext1
D(G)(C∨

j , C
∨
j′) by computing the dimension of the right hand

side of (21), see for instance Lemma 5.2.1.

Pushing further this kind of arguments, we prove the existence and unicity of the D(G)-
modules Xk in (13), of the D(G)-modules Xk (V ∞

[1,n−k−1],∆)∨ Xk+1 in Theorem 1.2.1,
and of all the D(G)-modules in Theorem 1.2.2. Note that, apart from the Xk, most of
these D(G)-modules are not uniserial: they involve subquotients which look like “squares”
or “cubes”. We call them Ext-squares or Ext-cubes and we construct them in §5.2 (and §3.4
for the Lie counterpart). For instance the Ext-squares involved in the D(G)-modules (14) are
computed in (ii) of Proposition 5.2.10, the Ext-squares involved in the D(G)-modules Yk of
Theorem 1.2.2 are computed in Proposition 5.2.18, while the D(G)-modules Ω̃k of Theorem
1.2.2 also involve Ext-cubes which are computed in Proposition 5.2.28. These computations

17



can be long and technical, but since we give all details they should not be hard to follow by
an interested reader.

(It is worth mentioning here that the smooth generalized Steinberg V ∞
[1,n−k−1],∆ of (2) and

the smooth representations π∞
j1,j2 in (12) are instances of more general smooth representations

that we call G-basic (see Definition 2.1.4) and that we completely study in §2 (see §2.3 for
the special case of the π∞

j1,j2). These G-basic representations are quite convenient because
one can easily compute explicitly everything that is needed for this work: Jacquet functors,
constituents of smooth parabolic inductions, smooth extension groups, etc.)

But this is still not the end of the proof of Theorem 1.2.1.

For k ∈ {0, . . . , n − 1} denote by Dk the unique coadmissible D(G)-module
Xk (V ∞

[1,n−k−1],∆)∨ Xk+1 of Theorem 1.2.1. The D(G)-modules Dk and all the D(G)-
modules of Theorem 1.2.2 are constructed (in §5.3) independently of the Drinfeld space. This
is enough for Theorem 1.2.2 where there is no mention of the Drinfeld space. But in order
to complete the proof of Theorem 1.2.1, we need to show Ωk ∼= Dk. This is non-trivial and
uses two more key ingredients that we explain now.

The first ingredient is a unicity statement which strengthens Schneider-Teitelbaum’s The-
orem 1.1.3.

Theorem 1.3.6.

(i) The coadmissible D(G)-module Dn−1 = Xn−1 (St∞
n )∨ of Theorem 1.2.1 (for k =

n − 1) is the unique coadmissible D(G)-module D which admits a filtration by closed
D(G)-submodules

D = Fil0(D) ⊋ Fil1(D) ⊋ · · · ⊋ Filn(D) = 0

satisfying (6) and such that H0(Nn̂−1, D) ∼= sn−1sn−2 · · · s1 ·0 (recall Nn̂−1 is the unipo-
tent radical of Pn̂−1).

(ii) We have H0(Nn̂−1,Ωn−1) ∼= sn−1sn−2 · · · s1 · 0.

Part (i) is proven in Theorem 5.4.4. Its proof is a bit long but it is remarkable that the
condition H0(Nn̂−1, D) ∼= sn−1sn−2 · · · s1 · 0 is enough to “rigidify everything” and ensure
unicity. In particular all extensions between the graded pieces of the filtration Fil•(D) are
then non-split. The easier part (ii) is proven in Lemma 5.4.15 for any k ∈ {0, . . . , n−1} (not
just k = n − 1). Note that both parts were already proven in [Schr11] when G = GL3(Qp)
(see [Schr11, Prop. 6.3] and [Schr11, §6.4]), and the strategy in loc. cit. actually inspired
Theorem 1.3.6.

From Theorem 1.1.3 and Theorem 1.3.6 we immediately obtain Theorem 1.2.1 for k =
n− 1. We now need to go from k = n− 1 to smaller k, and this is where we use the second
ingredient: translation functors.
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Translation functors were first defined in the setting of representations of real Lie algebras
and of (g, K)7-modules in the late seventies. Together with wall-crossing functors, they
quickly became a major tool in the study of BGG’s category Op, see for instance [Hum08,
§7]. Strangely, it is only recently that these functors have been introduced in the framework
of locally analytic representations ([JLS21]), and they are only beginning to be used ([Di24]).
Let us quickly recall their definition.

Let Z(g) be the center of U(g), a D(G)-module D is said to be Z(g)-finite, if for any v ∈
M , the K-vector subspace ⟨Z(g)v⟩ of D generated by elements in Z(g)v is finite dimensional.
Let λ, µ be integral weights, ξλ, ξµ : Z(g)→ K the infinitesimal characters of the respective
Verma modules U(g)⊗U(b) λ, U(g)⊗U(b) µ, and λ− µ the unique highest weight (relative to
the lower Borel of GLn) in the W (G)-orbit of λ−µ for the standard action of W (G) (not the
dot action). We denote by L(λ− µ) the unique finite dimensional algebraic representation
of G over K with highest weight λ− µ. Then for any Z(g)-finite D(G)-module D we define
(following [JLS21])

T µλ (D) def= prµ
(
L(λ− µ)⊗K prλ(D)

)
(22)

where prλ, prµ is the projection onto the generalized eigenspace for the infinitesimal character
ξλ, ξµ (which is well-defined thanks to the Z(g)-finiteness). The D(G)-module T µλ (D) is
still Z(g)-finite and the functor D → T µλ (D) is exact on Z(g)-finite D(G)-modules. It is
called a translation functor. Moreover with the notation of (5) one has T µλ (FGP (M,π∞)) ∼=
FGP (T µλM,π∞) where T µλ is the usual translation functor on the category Op ([Hum08, §7.1],
in fact T µλ is defined exactly as in (22) replacing D by M).

Translation functors are already interesting. For instance one can use them to revisit the
construction of [S92] and show that Schneider’s holomorphic discrete series are translations
of Ω•, see Lemma 5.4.11. However, there exist even more interesting functors.

Let ρ be half the sum of the roots of the lower Borel of GLn and fix a simple reflection sk
of GLn for 1 ≤ k ≤ n− 1. Let µ be an integral weight such that ⟨µ + ρ, α∨⟩ ≥ 0 for α ∈ ∆
and the stabilizer of µ in the Weyl group W (G) for the dot action is {1, sk}. Then we define
the wall-crossing functor on Z(g)-finite D(G)-modules as

Θµ
8 def= T µw0·0 ◦ T w0·0

λ

where w0 is the longest element of W (G) and w0 · 0 = w0(ρ) − ρ. The terminology comes
from that fact that the stabilizer of w0 · 0 in W (G) (for the dot action) is trivial, which
is not the case for µ, see [Hum08, §7.15]. By the argument in [Hum08, §7.2] one has
canonical and functorial adjunction morphisms of (Z(g)-finite) D(G)-modules D → Θµ(D)
and Θµ(D)→ D which are non-zero when D and Θµ(D) are non-zero (see (482)).

7Here K is of course a maximal compact subgroup, not the field K!
8Experts on wall-crossing functors are more used to the notation Θsk

. However we do not know if the
functor Θµ defined on all Z(g)-finite D(G)-modules only depends on sk and not on the choice of µ (as it
does when defined on the category Ob), see Remark 5.2.11. This doesn’t affect this work.
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Although their definition may look puzzling at first, wall-crossing functors have remark-
able properties. For instance they behave very well on the D(G)-modules Dk and Ω̃k:

Theorem 1.3.7. Let 1 ≤ k ≤ n− 1 and let µ be an integral weight such that ⟨µ+ρ, α∨⟩ ≥ 0
for α ∈ ∆ and the stabilizer of µ in the Weyl group W (G) for the dot action is {1, sk}.

(i) We have non-split short exact sequences of coadmissible D(G)-modules 0 → Dk →
Θµ(Dk)→ Dk−1 → 0 where Dk → Θµ(Dk) is the canonical adjunction map.

(ii) We have short exact sequences of coadmissible D(G)-modules 0 → Ωk → Θµ(Ωk) →
Ωk−1 → 0.

(iii) If k ̸= n − 1 we have non-split short exact sequences of coadmissible D(G)-modules
0→ Ω̃k → Θµ(Ω̃k)→ Ω̃k−1 → 0 where Ω̃k → Θµ(Ω̃k) is the canonical adjunction map.

Part (i) of Theorem 1.3.7 is proven in (iii) of Theorem 5.4.1, part (ii) of Theorem 1.3.7 is
proven in Lemma 5.4.12 and part (iii) of Theorem 1.3.7 is proven in (iv) of Theorem 5.4.1.
When k = n− 1, (iii) of Theorem 1.3.7 is not true anymore, but it is almost true, see (v) of
Theorem 5.4.1. Note that, going back to n = 3 and Ω0, Ω̃1♭ in (15), we do not have a short
exact sequence 0→ Ω̃1♭ → Θµ(Ω̃1♭)→ Ω0 → 0 (some constituents are missing in Ω0).

Now, when k = n − 1, we know that Ωn−1 ∼= Dn−1. Using (ii) of Theorem 1.3.7 and (i)
of Theorem 1.3.7 for k = n − 1, we can deduce Ωn−2 ∼= Dn−2. Applying again loc. cit. for
k = n−2 we obtain Ωn−3 ∼= Dn−3 and so on, see Theorem 5.4.16. We finally obtain Ωk ∼= Dk

for all k, which finishes the proof of Theorem 1.2.1. Note that a posteriori the exact sequence
in (ii) of Theorem 1.3.7 is also non-split and the injection is also the adjunction map.

Other nice properties are satisfied. For instance, for 1 ≤ k ≤ n − 1, the composition
Θµ(Ωk) ↠ Ωk−1 → Ωk, where the surjection is in (ii) of Theorem 1.3.7 and the second
map is the differential map on Ω•, is nothing other than the other adjunction morphism
Θµ(Ωk)→ Ωk, and likewise with Ω̃k, see Remark 5.4.2. Moreover the wall-crossing functors
Θµ are important tools for constructing Ext-squares and Ext-cubes of D(G)-modules, see
for instance (among many other statements) Proposition 3.4.5, Lemma 3.4.7, Lemma 5.2.13,
Lemma 5.2.20, Proposition 5.3.5, etc.

We finally briefly give the contents of each section. In §2 we introduce (smooth) G-basic
representations, among which are the V ∞

[1,n−k−1],∆ and the π∞
j1,j2 , and we prove all the necessary

material on smooth representations for the later sections. In §3 we prove all results on U(g)-
modules and Ext groups of U(g)-modules needed in §4 and §5. In §4 we prove Theorem
1.3.1 and deduce many consequences (e.g. Theorem 1.3.3). Finally, in §5 we construct all
the relevant finite length coadmissible D(G)-modules and we prove the main results of §1.2.
Appendix A is devoted to technical combinatorial lemmas on certain elements of W (G) while
Appendix B gives pictures for most of the previous D(G)-modules when G = GL5(K), which
is fairly representative of the general case.
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1.4 Some general notation
We end up this introduction with general notation which will be used throughout this work.
More specialized notation will be gradually introduced within the text.

We fix E an arbitrary finite extension of K which can be K. If x ∈ K we let |x|K def=
q−eval(x) where q is the cardinality of the residue field of K, e the ramification index of K
and val is normalized by val(p) = 1.

We fix an integer n ≥ 2 and, unless otherwise stated, G is either the algebraic group
GLn/K or its K-points GLn(K) (the context being clear). We denote by T the diagonal
matrices in G, B the lower triangular matrices of G and U the lower unipotent matrices of
B (so B = UT ). We let g = gln, t the Lie algebra of T , b the one of B, u ⊆ b its radical,
b+ the upper Borel, u+ ⊆ b+ its radical and Z(g) the center of the enveloping algebra U(g).
By extension of scalars from K to E, all Lie algebras are considered as E-vector spaces.

We let Λ def= X(T ) ≃ Zn be the integral weights, Λdom the set of (integral) dominant
weights with respect to b, Φ+ the set of positive roots in u+ and ∆ ⊆ Φ+ the subset of
positive simple roots. We fix a bijection {1, · · · , n − 1} ∼= ∆ sending j to ej − ej+1 and we
use both notation α or j ∈ {1, . . . , n−1} for an element of ∆. We set ĵ def= ∆\{j} for j ∈ ∆.

For I ⊆ ∆ a subset, we let PI (resp. P+
I ) be the (K-points of) the lower (resp. upper)

standard parabolic subgroup of GLn associated to I, NI the unipotent radical of PI and
LI ∼= PI/NI its Levi factor (so PI = NILI). We denote by BI = B ∩ LI the lower Borel of
LI and UI ⊆ BI its unipotent radical. We let pI , p+

I , nI ⊆ pI , lI ∼= pI/nI , bI = b ∩ lI and
uI ⊆ bI be the respective Lie algebras of PI , P+

I , NI , LI , BI and UI . We let Z(lI) be the
center of the enveloping algebra U(lI), n+

I the radical of p+
I , b+

I = b+ ∩ lI the upper Borel of
lI and u+

I ⊆ b+
I the radical of b+

I . We denote by Λdom
I the set of (integral) dominant weights

with respect to bI and Φ+
I ⊆ Φ+ the roots of u+

I .

We let W (G) be Weyl group of G, W (LI) the Weyl group of the Levi LI corresponding
to I, ℓ(w) ∈ Z≥0 the length of w ∈ W (G) and W I0,I1(LI) for I0, I1 ⊆ I the set of minimal
length representatives of W (LI0)\W (LI)/W (LI1) (see [DM91, Lemma 5.4]). When LI = G
we write W I0,I1 . We let ρI be half the sum of the roots in bI (so ⟨ρI , α∨⟩ = −1 for α ∈ I
and ρI is dominant with respect to bI) and we define the dot action w · µ def= w(µ+ ρI)− ρI
for w ∈ W (LI) and µ ∈ X(T ). Note that, since ρ− ρI is invariant under W (LI), the choice
of ρ or ρI doesn’t change the above dot action. When I = ∅, we forget the index I in the
notation. We denote by wI the longest element in W (LI) and w0

def= w∆. We endow W (LI)
with the Bruhat order < and for w ∈ W (LI), we set

DL(w) def= {α ∈ I | sαw < w} = {α ∈ I | −w−1(α) ∈ Φ+
I } (23)

DR(w) def= {α ∈ I | wsα < w} = {α ∈ I | −w(α) ∈ Φ+
I } (24)

(so DL(1) = DR(1) = ∅). As x < w if and only if x−1 < w−1, we have DL(w) = DR(w−1).
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If C is an abelian category, we recall that a finite length object in C is an object M of C
such that there exists finitely many subobjects M1 ⊆ M2 ⊆ · · · ⊆ Mm = M in C such that
Mi/Mi−1 is a simple object of C. We then write JHC(M) for the (finite) set of isomorphism
classes of the simple subquotients of M . If M is multiplicity free, we equip JHC(M) with the
following partial order: given M1, M2 in JHC(M) we write M1 ≤ M2 if M1 is a subquotient
of the unique subobject of M with cosocle isomorphic to M2. If C is a full subcategory of
the category of left A-modules (for A any unital associative ring) or of representations of G
(for G any group), we write JHA(M), JHG(M) instead of JHC(M).

If A is a unital associative ring, we denote by ModA the (abelian) category of all abstract
left A-modules. If M is a finite length object in ModA, we write

· · · ⊆ Radk+1(M) ⊆ Radk(M) ⊆ · · · ⊆ Rad1(M) ⊆ Rad0(M) = M

for the radical filtration of M , where Radk+1(M) is the minimal submodule of Radk(M) such
that Radk(M) def= Radk(M)/Radk+1(M) is semi-simple. We also write rad(M) = Rad1(M)
(the radical of M). The Loewy length of M , written ℓℓ(M) is by definition the min-
imal integer k ≥ 0 such that Radk(M) = 0. Similarly we define the socle filtration
· · · ⊇ Sock(M) ⊇ · · · ⊇ Soc0(M) = 0 of M where Sock+1(M) is the maximal submodule
of M containing Sock(M) such that Sock+1(M)/Sock(M) is semi-simple. Note that ℓℓ(M)
is also the minimal integer k ≥ 0 such that Sock+1(M)/Sock(M) = M . The module M is
called rigid if Radk(M) = Socℓℓ(M)−k(M) for 0 ≤ k ≤ ℓℓ(M).

If π is a representation of a subgroup H ′ of some group H and h ∈ H, we denote by πh
the representation of h−1H ′h with same underlying space as π where h′ ∈ h−1H ′h acts by
hh′h−1. If H is a locally compact group, Ext•

H(−,−)∞ means extensions in the category of
smooth representations of H over E-vector spaces. If π is a smooth representation of LI (for
some I ⊆ ∆), we denote by π∼ its smooth contregredient.

This monograph is the culmination of a long-term work. At various stages of its gestation,
we benefited from discussions with several people. In particular we would like to thank
Laurent Clozel, Jean-François Dat, Yiwen Ding, Guy Henniart, Valentin Hernandez, Florian
Herzig, Joaqúın Rodrigues Jacinto, Stefano Morra, Vincent Pilloni and Benjamin Schraen.

22



2 Preliminaries on smooth representations
We prove all results on smooth representations of G needed in §4 and especially in §5. Most
results are not really new, but we provide complete proofs. In particular, using Bernstein-
Zelevinsky’s theory, we define and study the convenient notion of G-basic smooth represen-
tation of LI for some I ⊆ ∆ and we give several results on certain G-basic representations
which are crucially used afterwards.

2.1 G-basic representations and Bernstein-Zelevinsky’s theory
We defineG-basic representations (Definition 2.1.4) and use Bernstein-Zelevinsky’s geometric
lemma and segment theory ([BZ77], [Z80]) to prove several useful (and presumably well-
known) results on them.

LetG be a locally compact topological group with left Haar measure µG, recall its modulus
character δG : G → R>0 is the unique character satisfying µG(A) = δG(x)µG(A · x) for any
Borel subset A ⊆ G. When G is moreover p-adic analytic, δG is Q×-valued and we will see
δG as an E×-valued character.

Let G be a locally profinite group. We write Rep∞(G) for the abelian category of all
smooth representations of G over E and Rep∞

adm(G) for the full abelian subcategory of ad-
missible ones. Let H ⊆ G be a closed subgroup and π∞ ∈ Rep∞(H). We define (IndGHπ∞)∞

to be the E-vector space of uniformly locally constant functions f : G → π∞ such that
f(xh) = h−1 ·f(x) for x ∈ G and h ∈ H, which is naturally a (left) smooth G-representation
via (g(f))(x) def= f(g−1x) (g, x ∈ G, f ∈ (IndGHπ∞)∞). We also consider the subspace
(indGHπ∞)∞ ⊆ (IndGHπ∞)∞ consisting of those f for which there exists a compact open sub-
set Cf of G such that f(x) = 0 for x /∈ CfH. They give the so-called (unnormalized)
induction and compact induction functors

(IndGH)∞, (indGH)∞ : Rep∞(H)→ Rep∞(G)

which are both exact. Note that they do not send Rep∞
adm(H) to Rep∞

adm(G) in general.

Remark 2.1.1. We add (−)∞ as exponent to avoid possible confusion with locally analytic
inductions. Moreover our convention in the definition of (IndGH)∞ and (indGH)∞ (which is the
one used in [ST03], [ST05], [OS10], [OS15], etc.) is different from the more commonly one
used for instance in [Bu90] or [Re10, §III.2.2], where f ∈ (IndGHπ∞)∞ satisfies f(hx) = h·f(x)
and g ∈ G acts on (IndGHπ∞)∞ by (g(f))(x) def= f(xg). But the isomorphism f 7→ [g 7→ f(g−1)]
gives an isomorphism between our (IndGHπ∞)∞ and theirs, and we can freely use the results
of [Re10].

We start with a general lemma (which will be used in Lemma 2.1.8 below).
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Lemma 2.1.2. Let P be a locally profinite group and N ⊆ H ⊆ P be closed subgroups
such that N is normal in P . Assume that there exists a continuous section s : P/H ↪→ P
of the canonical surjection P ↠ P/H which induces a homeomorphism of locally profinite
topological spaces P/H × H

∼→ P . Then for each π∞ in Rep∞(H), we have a canonical
isomorphism in Rep∞(P/N)(

(indPHπ∞)∞
)
N

∼−→
(
indP/NH/N(π∞)N

)∞

where (−)N means the usual N-coinvariants.

Proof. As N acts trivially on π∞
N , we have a natural isomorphism (indP/NH/N(π∞)N)∞ ∼=

(indPH(π∞)N)∞. For a E-vector space M equipped with a smooth N -action, let V (M) ⊆M
be the subspace spanned by vectors n·v−v for v ∈M and n ∈ N . Then (π∞)N = π∞/V (π∞)
by definition, and thus (indPH(π∞)N)∞ = (indPHπ∞)∞/(indPHV (π∞))∞ by the exactness of
(indPH)∞. As ((indPHπ∞)∞)N = (indPHπ∞)∞/V ((indPHπ∞)∞) by definition, it suffices to show
that we have

V ((indPHπ∞)∞) = (indPHV (π∞))∞ (25)
as subspaces of (indPHπ∞)∞. Let f ∈ (indPHπ∞)∞, then for x ∈ P and n ∈ N , we have
x−1nx ∈ N ⊆ H and

(n · f)(x) = f(n−1x) = f(x(x−1n−1x)) = x−1nx · f(x). (26)

In particular, (n · f − f)(x) = x−1nx · f(x)− f(x) ∈ V (π∞), and thus we have an inclusion
V ((indPHπ∞)∞) ⊆ (indPHV (π∞))∞. Let us prove that it is a surjection. Write X def= s(P/H) ⊆
P and define C∞

c (X, π∞) as the E-vector space of locally constant function h : X → π∞

with compact support, and similarly with C∞
c (X, V (π∞)). By definition of (indPHπ∞)∞, the

map f 7→ f |X induces an isomorphism of E-vector spaces

(indPHπ∞)∞ ∼−→ C∞
c (X, π∞), (27)

which induces an isomorphism of E-vector spaces

(indPHV (π∞))∞ ∼−→ C∞
c (X, V (π∞)). (28)

Let n ∈ N , v ∈ π∞ and x ∈ X. As the N -action on π∞ is smooth and the P -action on N
by conjugation is continuous, there exists a compact open subset Cx ⊆ X such that x ∈ Cx
and (y−1ny) · v = (x−1nx) · v for each y ∈ Cx. Let hx,v ∈ C∞

c (X, π∞) be the function
defined by hx,v(y) = v for y ∈ Cx and hx,v(y) = 0 for y ∈ X \ Cx, and let fx,v ∈ (indPHπ∞)∞

correspond to hx,v under (27). Similarly to (26), we have (n · fx,v)(y) = (y−1ny) · fx,v(y) =
(y−1ny) ·hx,v(y) = (y−1ny) ·v = (x−1nx) ·v for y ∈ Cx and (n ·fx,v)(y) = (y−1ny) ·fx,v(y) = 0
for each y ∈ X \ Cx. Hence, we have (n · fx,v − fx,v)(y) = (x−1nx) · v − v for y ∈ Cx and
(n · fx,v− fx,v)(y) = 0 for y ∈ X \Cx. As n ∈ N , v ∈ π∞, x ∈ X are arbitrary and as Cx can
be an arbitrarily small neighborhood of x in X, elements of the form (n · fx,v − fx,v)|X span
C∞
c (X, V (π∞)) over E, and thus elements of the form n ·fx,v−fx,v span (indPHV (π∞))∞ over

E by (28). Since we clearly have n · fx,v − fx,v ∈ V ((indPHπ∞)∞), we see that (25) holds.
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Let G be the K-points of a p-adic reductive algebraic group over K. For (the K-points
of) a parabolic subgroup P = LPNP ⊆ G, the unnormalized parabolic induction functor
(IndGP )∞ : Rep∞(LP )→ Rep∞(G) restricts to a functor (IndGP )∞ : Rep∞

adm(LP )→ Rep∞
adm(G)

(see [Re10, §III.2.3]). The functor (IndGP )∞ admits a left adjoint functor JNP
: Rep∞(G)→

Rep∞(LP ) which is exact and restricts to a functor JNP
: Rep∞

adm(G) → Rep∞
adm(LP )

(cf.[Re10, §§VI.1.1, VI.6.1] but note that our JNP
is the unnormalized Jacquet functor).

Arguing as in the beginning of [Re10, §VI.9.6], the functor (IndGP )∞ also admits a right ad-
joint J ′

NP
: Rep∞(G) → Rep∞(LP ) which is also exact and restricts to J ′

NP
: Rep∞

adm(G) →
Rep∞

adm(LP ) (cf. [Re10, §VI.9.6] taking care again that we are unnormalized).

We also need the normalized parabolic induction functor iGP : Rep∞(LP ) → Rep∞(G)
defined by iGP (−) def= (IndGP ((−)⊗E δ−1/2

P ))∞, and the normalized parabolic restriction functor
rGP : Rep∞(G) → Rep∞(LP ) defined by rGP (−) def= JNP

(−) ⊗E δ1/2
P (cf. [Re10, §VI.1.2] and

recall that δP : P → E× factors through LP ). Note that, here, we might need to extend
scalars to E ′ = E(√q) so that δ1/2

P is E ′-valued. But these normalized functors will only
play a minor intermediate role in that paper, and everything is ultimately K-rational (see
for instance Remark 2.1.3 and Remark 2.1.10 below).

For parabolic subgroups Q = LQNQ ⊆ P = LPNP , Q∩LP is a parabolic subgroup of Lp
with reductive quotient LQ, and we have the formula

δQ = δQ∩LP
· (δP |LQ

) : LQ → E×. (29)

From now on G = GLn(K) as in §1.4. For I ⊆ I0 ⊆ ∆, we use the shortened notation

i∞I,I0

def=
(
IndLI0

PI∩LI0

)∞
, JI0,I

def= JNI∩LI0
, J ′

I0,I
def= J ′

NI∩LI0
. (30)

Then for each I ′ ⊆ I, we clearly have

i∞I′,I0
∼= i∞I,I0(i∞I′,I), JI0,I′ ∼= JI,I′(JI0,I), J ′

I0,I′
∼= J ′

I,I′(J ′
I0,I).

For π∞ in Rep∞
adm(LI) and π∞

0 in Rep∞
adm(LI0), we have canonical isomorphisms for k ≥ 0:

ExtkLI0
(π∞

0 , i
∞
I,I0(π∞))∞ ∼= ExtkLI

(JI0,I(π∞
0 ), π∞)∞ (31)

and
ExtkLI0

(i∞I,I0(π∞), π∞
0 )∞ ∼= ExtkLI

(π∞, J ′
I0,I(π

∞
0 ))∞. (32)

Recall that, for I, I ′ ⊆ I0, W I′,I(LI0) ⊆ W (LI0) is the set of minimal length representatives of
the double coset W (LI′)\W (LI0)/W (LI). Let wI0,I be the longest element inside W ∅,I(LI0),
we have wI0,I(I) ⊆ I0 and

w−1
I0,I(Φ

+
I0) ∩ Φ+

I0 = Φ+
I . (33)
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Note that P+
I ∩ LI0 is the parabolic of LI0 opposite to PI ∩ LI0 . It thus follows from [Re10,

(VI.9.6.1)], w−1
I0,ILwI0,I(I)wI0,I = LI and δP+

I ∩LI0
= δ−1

PI∩LI0
that

HomLI0
(i∞I,I0(π∞), π∞

0 ) = HomLI0
(iLI0
PI∩LI0

(π∞ ⊗E δ1/2
PI∩LI0

), π∞
0 )

∼= HomLI
(π∞ ⊗E δ1/2

PI∩LI0
, r
LI0
P+

I ∩LI0
(π∞

0 ))

∼= HomLI

(
π∞ ⊗E δ1/2

PI∩LI0
, JN+

I ∩LI0
(π∞

0 )⊗E δ1/2
P+

I ∩LI0

)
∼= HomLI

(
π∞, (JI0,wI0,I(I)(π∞

0 ))wI0,I ⊗E δ1/2
P+

I ∩LI0
⊗E δ−1/2

PI∩LI0

)
∼= HomLI

(
π∞, (JI0,wI0,I(I)(π∞

0 ))wI0,I ⊗E δ−1
PI∩LI0

)
.

By (32) for k = 0 and since this holds for arbitrary π∞ in Rep∞
adm(LI) we deduce

J ′
I0,I(π

∞
0 ) ∼= (JI0,wI0,I(I)(π∞

0 ))wI0,I ⊗E δ−1
PI∩LI0

. (34)

We write T̂∞ for the set of smooth E-valued characters of T , which is naturally an abelian
group under multiplication. We let W (G) act on the left on T̂∞ via the following dot action

w · χ def= w(χ⊗E δ1/2
B )⊗E δ−1/2

B = (χ⊗E δ1/2
B )(w−1 · w)⊗E δ−1/2

B (35)

and recall that δB sends (t1, . . . , tn) ∈ T to ∏n
i=1 |ti|

−(n+1)+2i
K , which can be rewritten as

| − ∑
α∈Φ+ α|K = |2ρ|K . If w ∈ W (LI) for some I ⊆ ∆ one can check that w · χ =

w(χ⊗E δ1/2
BI

)⊗E δ−1/2
BI

(recall BI = B ∩ LI).

Remark 2.1.3. Note that the character δB is K×-valued but δ1/2
B is not in general. Nev-

ertheless, w(δ1/2
B ) ⊗E δ−1/2

B is K×-valued for any w ∈ W (G). Similarly, w(δ1/2
BI

) ⊗E δ−1/2
BI

is
K×-valued for I ⊆ ∆ and w ∈ W (LI). Consequently, χ ∈ T̂∞ is K×-valued if and only if
w · χ = w(χ)⊗E (w(δ1/2

B )⊗E δ−1/2
B ) is K×-valued for each w ∈ W (G).

Definition 2.1.4. Let I ⊆ ∆, π∞ a finite length representation in Rep∞
adm(LI) and recall

that JI,∅(π∞) has finite length (cf. [Re10, §VI.6.4]). We write J (π∞) ⊆ T̂∞ for the subset
of χ such that

HomLI
(π∞, i∞∅,I(χ)) ∼= HomT (JI,∅(π∞), χ) ̸= 0.

(i) A character χ ∈ T̂∞ is called G-regular if w · χ ̸= χ for 1 ̸= w ∈ W (G).

(ii) If π∞ is irreducible, it is called G-regular if J (π∞) contains a G-regular element. In
general, π∞ is called G-basic if there exists I1 ⊆ I and an irreducible G-regular π∞

1 in
Rep∞

adm(LI1) such that π∞ ∼= i∞I1,I(π∞
1 ).

(iii) For i = 0, 1 let Ii ⊆ I ⊆ ∆ and π∞
i in Rep∞

adm(LIi
), we define the LI-distance from π∞

0
to π∞

1 as

dI(π∞
0 , π

∞
1 ) def= inf{k | ExtkLI

(i∞I0,I(π
∞
0 ), i∞I1,I(π

∞
1 ))∞ ̸= 0} ≤ ∞.

We write d(π∞
0 , π

∞
1 ) def= d∆(π∞

0 , π
∞
1 ).
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Note that the trivial character 1T ∈ T̂∞ is G-regular. By (31) for k = 0 applied to π∞
1

as in (ii) of Definition 2.1.4 and the left-exactness of induction we see that π∞ ∼= i∞I1,I(π∞
1 )

embeds into i∞∅,I(χ) ∼= i∞I1,I(i∞∅,I1
(χ)) for χ ∈ J (π∞

1 ), and hence χ ∈ J (π∞). In particular
we have J (π∞

1 ) ⊆ J (π∞). Note also that any G-basic representation of LI is (admissible)
of finite length (as so is i∞I1,I(π∞

1 ), see [Re10, §VI.6.2]) and that i∞I,I′(π∞) ∈ Rep∞
adm(LI′) is

again G-basic for any I ⊆ I ′ ⊆ ∆.
Remark 2.1.5. In Definition 2.1.4, as JI,∅(π∞) is a finite length smooth representation of
T , we have JI,∅(π∞) ∼=

⊕
χ∈J (π∞) JI,∅(π∞)χ with JI,∅(π∞)χ having only χ as Jordan-Hölder

factor. In particular, the set J (π∞) equals JHT (JI,∅(π∞)) as well as the set of χ such that

HomT (χ, JI,∅(π∞)) ̸= 0.

Remark 2.1.6. For I ⊆ I0 ⊆ ∆, by an easy calculation using (33) one can check

δ−1
PI∩LI0

|T = δ
1/2
w−1

I0,IBI0wI0,I
⊗E δ−1/2

BI0
= δ

1/2
BI0

(wI0,I · w−1
I0,I)⊗E δ

−1/2
BI0

.

Using this and (34) we deduce isomorphisms of T -representations for π∞
0 in Rep∞

adm(LI0)

JI,∅(J ′
I0,I(π

∞
0 )) ∼= (JwI0,I(I),∅(JI0,wI0,I(I)(π∞

0 )))wI0,I ⊗E δ−1
PI∩LI0

|T
∼= JI0,∅(π∞

0 )wI0,I ⊗E δ−1
PI∩LI0

|T
∼= (JI0,∅(π∞

0 )⊗E δ1/2
BI0

)wI0,I ⊗E δ−1/2
BI0

.

From w−1
I0,I · χ = (χ⊗E δ1/2

BI0
)(wI0,I · w−1

I0,I)⊗E δ
−1/2
BI0

we finally obtain

J (J ′
I0,I(π

∞
0 )) = w−1

I0,I · J (π∞
0 ) (36)

where the set J (−) is as in Definition 2.1.4.
Let I ⊆ ∆. We refer to [Re10, §VI.5.2] for the definition of equivalence classes of cuspidal

data (for the group LI). We consider here equivalence classes of cuspidal data (T, χ⊗E δ1/2
BI

)
for χ ∈ T̂∞. Recall that it consists of the cuspidal data (gTg−1, (χ ⊗E δ1/2

BI
)(g−1 · g) for

g ∈ LI . In particular for χ′ ∈ W (LI) ·χ all cuspidal data (T, χ′⊗E δ1/2
BI

) are equivalent. To a
left W (LI)-coset Σ (under the dot action (35)) we can thus associate an element in the set
Ω(LI) of all equivalence classes of cuspidal data.

For each finite subset Σ ⊆ T̂∞ which is stable under the left dot action of W (LI),
we write BIΣ for the category of finite length representations π∞ in Rep∞

adm(LI) with each
σ∞ ∈ JHLI

(π∞) satisfying ∅ ≠ J (σ∞) ⊆ Σ. By [Re10, §VI.7.2] and Remark 2.1.7 below, we
know that BIΣ is the direct sum of the BIΣ′ for Σ′ running through the W (LI)-cosets contained
in Σ. In particular, for each object π∞ in BIΣ, we have a canonical decomposition

π∞ ∼=
⊕
Σ′
π∞

BI
Σ′

(37)

with π∞
BI

Σ′
∈ BIΣ′ and Σ′ running through W (LI)-cosets contained in Σ. The exactness of JI,∅

implies that J (π∞
BI

Σ′
) = J (π∞) ∩ Σ′. We say that Σ is G-regular if each χ ∈ Σ is G-regular.
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Remark 2.1.7. The coefficient field in [Re10, §VI.7.2] being algebraically closed, the decom-
position (37) deserves some justification. Let E an algebraic closure of E and Rep∞

adm(LI , E)
the abelian category of smooth admissible representations of LI over E-vector spaces. Let
I ⊆ ∆ and Σ ⊆ T̂∞ a finite subset which is stable under the left dot action of W (LI) (and
that we also see inside the smooth E-valued characters of T ). We write BIΣ,E for the category
of finite length representations π∞

E
in Rep∞

adm(LI , E) with each σ∞
E
∈ JHLI

(π∞
E

) satisfying
∅ ̸= J (σ∞

E
) ⊆ Σ. Now let π∞ in BIΣ ⊆ Rep∞

adm(LI) and π∞
E

def= π∞ ⊗E E. By [Re10, §VI.7.2]
we have a decomposition

π∞
E
∼=
⊕
Σ′

(π∞
E

)BI

Σ′,E

(38)

where (π∞
E

)BI

Σ′,E

∈ BIΣ′,E
and Σ′ runs through the W (LI)-cosets contained in Σ. There exists

an obvious E-linear action of Gal(E/E) on π∞
E

such that (π∞
E

)Gal(E/E) ∼= π∞, which induces
by (38) an E-linear action of Gal(E/E) on ⊕Σ′(π∞

E
)BI

Σ′,E

, and also by scalar extension from
E to E an E-linear action of Gal(E/E) on

(π∞
E

)⊗E E ∼=
⊕
Σ′

(
(π∞

E
)BI

Σ′,E

)
⊗E E.

But the smooth reducible representations
(
(π∞

E
)BI

Σ′,E

)
⊗E E do not share any irreducible

constituent over E for distinct Σ′ since the Σ′ consist of E-valued characters, hence the
action of Gal(E/E) on π∞

E
must stabilize each (π∞

E
)BI

Σ′,E

. Let π∞
BI

Σ′

def= ((π∞
E

)BI

Σ′,E

)Gal(E/E), we
deduce from (38)

π∞ ∼=
⊕
Σ′
π∞

BI
Σ′

and π∞
BI

Σ′
⊗E E ∼= (π∞

E
)BI

Σ′,E

in Rep∞
adm(LI , E) (extending scalars to E again). This is the

decomposition (37).

Let I0, I1 ⊆ I ⊆ ∆ and recall W I0,I1(LI) ⊆ W (LI) is the subset of minimal length
representatives of W (LI0)\W (LI)/W (LI1). Recall also the Bruhat decomposition ([DM91,
Lemma 5.5])⊔

w∈W I0,I1 (LI)
(PI0 ∩ LI)w(PI1 ∩ LI) = LI =

⊔
w∈W I0,I1 (LI)

(PI1 ∩ LI)w−1(PI0 ∩ LI).

For w ∈ W I0,I1(LI) we have

BI0 = B ∩ LI0 = wBw−1 ∩ LI0 ⊆ wPI1w
−1 ∩ LI0

BI1 = B ∩ LI1 = w−1Bw ∩ LI1 ⊆ w−1PI0w ∩ LI1 .
(39)

Hence wPI1w
−1 ∩ LI0 is a parabolic subgroup of LI0 with Levi quotient wLI1w

−1 ∩ LI0 =
Lw(I1)∩I0 , and w−1PI0w∩LI1 is a parabolic subgroup of LI1 with Levi quotient w−1LI0w∩LI1 =
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Lw−1(I0)∩I1 . By (39) and the equality Lw(I1)∩I0 = wLw−1(I0)∩I1w
−1 we have

Bw(I1)∩I0 = BI0 ∩ Lw(I1)∩I0 = wBw−1 ∩ LI0 ∩ Lw(I1)∩I0 = w(B ∩ Lw−1(I0)∩I1)w−1

= wBw−1(I0)∩I1w
−1. (40)

As w(I1) ∩ I0 ⊆ I0, we have Pw(I1)∩I0 ⊆ PI0 and thus we have the decomposition

Pw(I1)∩I0 ∩ LI = (NI0 ∩ LI) · (Pw(I1)∩I0 ∩ LI0) = (NI0 ∩ LI) · (wPI1w
−1 ∩ LI0),

which together with (29) (taking P = PI0 ∩ LI and Q = Pw(I1)∩I0 ∩ LI ⊆ P ) implies

δwPI1w
−1∩LI0

· (δPI0 ∩LI
|wLI1w

−1∩LI0
) = δPw(I1)∩I0 ∩LI

. (41)

Likewise, as w−1(I0) ∩ I1 ⊆ I1, we have Pw−1(I0)∩I1 ⊆ PI1 and thus the decomposition

Pw−1(I0)∩I1 ∩ LI = (NI1 ∩ LI) · (Pw−1(I0)∩I1 ∩ LI1) = (NI1 ∩ LI) · (w−1PI0w ∩ LI1),

which together with (29) (taking P = PI1 ∩ LI and Q = Pw−1(I0)∩I1 ∩ LI ⊆ P ) implies

δw−1PI0w∩LI1
· (δPI1 ∩LI

|LI1 ∩w−1LI0w
) = δPw−1(I0)∩I1

∩LI
. (42)

We now consider the two functors (see (30) for the notation)

JI0,I1,w(−) def= (JI0,w(I1)∩I0(−))w ⊗E δI0,I1,w : Rep∞
adm(LI0) −→ Rep∞

adm(Lw−1(I0)∩I1) (43)

where
δI0,I1,w

def= δ
1/2
w−1Pw(I1)∩I0w∩LI

· δ−1/2
Pw−1(I0)∩I1

∩LI
, (44)

(note that δI0,I1,1 = 1) and

i∞I0,I1,w(−) def= i∞w−1(I0)∩I1,I1(−) : Rep∞
adm(Lw−1(I0)∩I1) −→ Rep∞

adm(LI1). (45)

It follows from (40) (and (29)) that

δI0,I1,w|T = δ
1/2
w−1Pw(I1)∩I0w∩LI

|T · δ1/2
w−1Bw(I1)∩I0w

· δ−1/2
Bw−1(I0)∩I1

· δ−1/2
Pw−1(I0)∩I1

∩LI
|T

= δ
1/2
w−1BIw

⊗E δ−1/2
BI

. (46)

In particular δI0,I1,w is K×-valued (as in Remark 2.1.3). Moreover if I0 = ∅ (so that LI0 =
Lw−1(I0)∩I1 = T ), we have for χ ∈ T̂∞ and w ∈ W ∅,I1(LI)

J∅,I1,w(χ) = (w−1(χ)⊗E δ1/2
w−1BIw

)⊗E δ−1/2
BI

= w−1 · χ. (47)
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Lemma 2.1.8. Let I0, I1 ⊆ I ⊆ ∆, w ∈ W I0,I1(LI) and π∞
0 in Rep∞

adm(LI0). We have an
isomorphism in Rep∞

adm(LI1 ∩ w−1LI0w)

JI0,I1,w(π∞
0 ) ∼=

(
(indNI1

NI1 ∩w−1PI0w
π∞,w

0 )∞
)
NI1

(48)

and an isomorphism in Rep∞
adm(LI1)

i∞I0,I1,w(JI0,I1,w(π∞
0 )) ∼=

(
(indPI1

PI1 ∩w−1PI0w
π∞,w

0 )∞
)
NI1

(49)

(where we view π∞,w
0 ∈ Rep∞

adm(w−1LI0w) ⊆ Rep∞
adm(w−1PI0w) as a smooth representation

of PI1 ∩ w−1PI0w by restriction).

Proof. The isomorphism (48) easily follows from [Re10, (VI.5.1.3)] (applied with J = N =
NI1 and H = NI1 ∩ w−1PI0w) and from (JI0,w(I1)∩I0(π∞

0 ))w ∼= JNI1∩w−1(I0)∩Lw−1(I0)
(π∞,w

0 ),
noting that the action ofNI1∩w−1PI0w on π∞,w

0 factors throughNI1∩w−1LI0w = NI1∩w−1(I0)∩
Lw−1(I0). Note that NI1 is a normal subgroup of PI1 and thus NI1(PI1∩w−1PI0w) is a subgroup
of PI1 satisfying

NI1(PI1 ∩ w−1PI0w)/(PI1 ∩ w−1PI0w) ∼= NI1/(NI1 ∩ w−1PI0w) (50)

and
PI1/NI1(PI1 ∩ w−1PI0w) ∼= LI1/(LI1 ∩ w−1PI0w). (51)

The isomorphism (49) then follows from(
(indPI1

PI1 ∩w−1PI0w
π∞,w

0 )∞
)
NI1

∼=
(
(indPI1

NI1 (PI1 ∩w−1PI0w)(indNI1 (PI1 ∩w−1PI0w)
PI1 ∩w−1PI0w

π∞,w
0 )∞)∞

)
NI1

∼=
(
indPI1

NI1 (PI1 ∩w−1PI0w)((indNI1 (PI1 ∩w−1PI0w)
PI1 ∩w−1PI0w

π∞,w
0 )∞)NI1

)∞

∼=
(
IndLI1

LI1 ∩w−1PI0w
((indNI1

NI1 ∩w−1PI0w
π∞,w

0 )∞)NI1

)∞

∼= i∞I0,I1,w(JI0,I1,w(π∞
0 ))

where the second isomorphism follows from Lemma 2.1.2 applied with P = PI1 , H =
NI1(PI1 ∩ w−1PI0w), N = NI1 and π∞ = (indNI1 (PI1 ∩w−1PI0w)

PI1 ∩w−1PI0w
π∞,w

0 )∞ (using that PI1 ↠

PI1/NI1(PI1 ∩ w−1PI0w) admits a continuous section), the third isomorphism follows from
(50) and (51), and the last from (48).

Now we recall the classical Bernstein-Zelevinsky geometric lemma.

Lemma 2.1.9. Let I0, I1 ⊆ I ⊆ ∆ and π∞
0 in Rep∞

adm(LI0) of finite length. Then
JI,I1(i∞I0,I(π∞

0 )) ∈ Rep∞
adm(LI1) admits a canonical decreasing filtration with graded pieces

i∞I0,I1,w(JI0,I1,w(π∞
0 )) for w ∈ W I0,I1(LI).
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Proof. This is [BZ77, §2.12] (see also [Re10, §VI.5.1]), however since we use different nor-
malizations, we need to make a translation. It follows from [Re10, Thm. VI.5.1] that

JI,I1(i∞I0,I(π
∞
0 )) ∼= rLI

PI1 ∩LI
(iLI
PI0 ∩LI

(π∞
0 ⊗E δ

1/2
PI0 ∩LI

))⊗E δ−1/2
PI1 ∩LI

admits a decreasing filtration with graded pieces (w ∈ W I0,I1(LI)):(
i
LI1
w−1PI0w∩LI1

◦ w ◦ rLI0
wPI1w

−1∩LI0
(π∞

0 ⊗E δ
1/2
PI0 ∩LI

)
)
⊗E δ−1/2

PI1 ∩LI

∼= i∞I0,I1,w

((
JwPI1w

−1∩LI0
(π∞

0 ⊗E δ
1/2
PI0 ∩LI

)⊗E δ1/2
wPI1w

−1∩LI0

)w
⊗E δ−1/2

w−1PI0w∩LI1

)
⊗E δ−1/2

PI1 ∩LI

∼= i∞I0,I1,w

((
JwPI1w

−1∩LI0
(π∞

0 )⊗E δ1/2
Pw(I1)∩I0 ∩LI

)w
⊗E δ−1/2

Pw−1(I0)∩I1
∩LI

)
∼= i∞I0,I1,w

(
JwPI1w

−1∩LI0
(π∞

0 )w ⊗E
(
δ

1/2
w−1Pw(I1)∩I0w∩LI

· δ−1/2
Pw−1(I0)∩I1

∩LI

))
∼= i∞I0,I1,w(JI0,I1,w(π∞

0 ))

where the second isomorphism follows from (41) and (42) and the last from (44) in the
definition of JI0,I1,w.

Remark 2.1.10. We emphasize that the statement of Lemma 2.1.9 holds for E = K,
though we cannot take E = K in its proof because of characters such as δ1/2

PI0 ∩LI
and δ−1/2

PI1 ∩LI

which are not K×-valued in general. The usual formulation of the geometric lemma ([BZ77,
§2.12], see also [Re10, §VI.5.1]) uses normalized induction and restriction functors. But if
one reformulates the geometric lemma using unnormalized induction and restriction functors
(as we do in Lemma 2.1.9), one sees that its proof works for any E, including E = K.

Lemma 2.1.11. Let I0 ⊆ I ⊆ ∆ and π∞
0 in Rep∞

adm(LI0) of finite length. Then we have

J (i∞I0,I(π
∞
0 )) =

⋃
w∈W I0,∅(LI)

w−1 · J (π∞
0 ) ⊆ W (LI) · J (π∞

0 ). (52)

Proof. By Lemma 2.1.9, we know that JI,∅(i∞I0,I(π∞
0 )) admits a canonical filtration with

graded pieces JI0,∅,w(π∞
0 ) for w ∈ W I0,∅, which implies that

J (i∞I0,I(π
∞
0 )) =

⋃
w∈W I0,∅

J (JI0,∅,w(π∞
0 )). (53)

It follows from (43) and (46) that

J (JI0,∅,w(π∞
0 )) = w−1 · J (JI0,∅(π∞

0 )) = w−1 · J (π∞
0 ),

which together with (53) gives (52).

Remark 2.1.12. By taking I0 = ∅ and π∞
0 to be some χ ∈ T̂∞ in Lemma 2.1.11, we deduce

that J (i∞∅,I(χ)) = W (LI) ·χ. Suppose π∞ ∈ Rep∞
adm(LI) is irreducible with χ ∈ J (π∞), then

π∞ embeds into i∞∅,I(χ) (using (31)) and W (LI) · J (π∞) = W (LI) · χ.
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Lemma 2.1.13. Let I0, I1 ⊆ I ⊆ ∆, w ∈ W I0,I1(LI) and π∞
0 in Rep∞

adm(LI0) of finite length.
Then we have

J (JI0,I1,w(π∞
0 )) = w−1 · J (JI0,w(I1)∩I0(π∞

0 )) = w−1 · J (π∞
0 ) ⊆ w−1W (LI0) · J (π∞

0 ) (54)

and

J (i∞I0,I1,w(JI0,I1,w(π∞
0 ))) ⊆ W (LI1) · J (JI0,I1,w(π∞

0 )) ⊆ W (LI1)w−1W (LI0) · J (π∞
0 ). (55)

Proof. The first claim (54) follows directly from (43) and (46). The second claim (55)
follows from (54) together with (52) (replacing I0, I and π∞

0 there by w−1(I0) ∩ I1, I1 and
JI0,I1,w(π∞

0 )).

Lemma 2.1.14. For a G-regular χ ∈ T̂∞ (see (i) of Definition 2.1.4) and I ⊆ ∆, we have
a canonical isomorphism in Rep∞

adm(T )

JI,∅(i∞∅,I(χ)) ∼=
⊕

w∈W (LI)
w−1 · χ. (56)

Proof. By (47) we have i∞∅,∅,w(J∅,∅,w(χ)) = J∅,∅,w(χ) ∼= w−1 · χ. Then the statement follows
from Lemma 2.1.9 applied with I0 = I1 = ∅ and π∞

0 = χ, noting that, as χ is G-regular, the
w · χ are distinct for w ∈ W (LI), so the canonical filtration in Lemma 2.1.9 must split.

Lemma 2.1.15. Let I ⊆ ∆.

(i) Let π∞ in Rep∞
adm(LI) be G-basic, then the T -representation JI,∅(π∞) is semi-simple

and multiplicity free and W (LI) · J (π∞) is a single regular left W (LI)-coset.

(ii) Let π∞ in Rep∞
adm(LI) be irreducible and G-regular, then the LI-representation π∞ is

uniquely determined by the set J (π∞). Moreover non-isomorphic irreducible G-regular
π∞

0 , π
∞
1 ∈ Rep∞

adm(LI) satisfy J (π∞
0 ) ∩ J (π∞

1 ) = ∅.

(iii) Let χ ∈ T̂∞ be G-regular, then i∞∅,I(χ) is multiplicity free and any irreducible constituent
π∞ of i∞∅,I(χ) is such that J (π∞) ̸= 0. Moreover for w ∈ W (LI) the semi-simplification
of i∞∅,I(w · χ) doesn’t depend on w.

Proof. We prove (i). For a G-regular χ, Lemma 2.1.14 implies that JI,∅(i∞∅,I(χ)) is multiplicity
free and

W (LI) · χ = J (i∞∅,I(χ)) =
⊔
π∞
J (π∞) (57)

where π∞ runs through the Jordan-Hölder factors of i∞∅,I(χ). This implies (i) as each G-basic
π∞ embeds into i∞∅,I(χ) for some G-regular χ by (ii) of Definition 2.1.4. The first half of
(iii) follows from [Z80, Prop. 2.1(b),(c)]. We prove (ii). The first half of (iii) together with
(57) easily imply the first half of (ii). For the second half of (ii), any π∞

0 , π
∞
1 ∈ Rep∞

adm(LI)
satisfying χ ∈ J (π∞

0 )∩J (π∞
1 ) both inject into i∞∅,I(χ), again contradicting (57). Finally, the

second half of (iii) follows from (ii) and the fact that J (i∞∅,I(w · χ)) = W (LI) · χ (by (57)) is
independent of the choice of w ∈ W (LI).
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In particular it follows from Lemma 2.1.15 that if π∞ is a G-basic representation of LI
then π∞ is in BIΣ for Σ = W (LI) · J (π∞). We give below several other useful remarks on
G-basic representations.

Remark 2.1.16.

(i) Let I ⊆ ∆ and π∞ ∈ Rep∞
adm(LI) be G-basic, then by (ii) of Definition 2.1.4 there exist

I1 ⊆ I and an irreducible G-regular π∞
1 ∈ Rep∞

adm(LI1) such that π∞ ∼= i∞I1,I(π∞
1 ). As

JI1,∅(π∞
1 ) is semi-simple and multiplicity free by (i) of Lemma 2.1.15, we deduce from

(34) that J ′
I1,∅(π

∞
1 ) is also semi-simple and multiplicity free with

JHT (J ′
I1,∅(π

∞
1 )) = wI1 · JHT (JI1,∅(π∞

1 )) (58)

where we recall from §1.4 that wI1 is the longest element of W (LI1) (so that wI1(δBI1
) =

w−1
I1 (δBI1

) = δ−1
BI1

) and JHT (−) the set of irreducible constituents. Hence, by combining
(58) with (31) and (32) for k = 0, we see that π∞

1 embeds into i∞∅,I1
(χ) if and only if

π∞
1 is a quotient of i∞∅,I1

(wI1 · χ). In particular, we deduce that π∞ ∼= i∞I1,I(π∞
1 ) is a

quotient of i∞∅,I(wI1 · χ) for any χ ∈ J (π∞
1 ).

(ii) Let I ⊆ ∆, π∞ ∈ Rep∞
adm(LI) be irreducible and G-regular, and χ ∈ T̂∞ be G-regular.

By (31) for k = 0 (resp. by (32) for k = 0 with (58)) π∞ is in the socle (resp. cosocle)
of i∞∅,I(χ) if and only if χ ∈ J (π∞) (resp. χ ∈ wI · J (π∞)). The second half of (ii) of
Lemma 2.1.15 then implies that i∞∅,I(χ) has simple socle and cosocle.

(iii) For G-regular χ, χ′ ∈ T̂∞ such that W (LI) ·χ = W (LI) ·χ′, we have canonical isomor-
phisms by (31) (for k = 0) and Lemma 2.1.14:

HomLI
(i∞∅,I(χ′), i∞∅,I(χ)) ∼= HomT (JI,∅(i∞∅,I(χ′)), χ) ∼= HomT

( ⊕
w∈W (LI)

w−1 · χ′, χ

)

of one dimensional spaces. In particular, there exists a unique (up to scalar) non-zero
map i∞∅,I(χ′)→ i∞∅,I(χ) for such χ, χ′.

(iv) Let I ⊆ ∆ and π∞ ∈ Rep∞
adm(LI) be G-basic. By (ii) of Definition 2.1.4 and (i)

above there exist G-regular χ, χ′ ∈ T̂∞ such that π∞ is a subrepresentation of i∞∅,I(χ)
and a quotient of i∞∅,I(χ′). As both i∞∅,I(χ) and i∞∅,I(χ′) are multiplicity free by (iii) of
Lemma 2.1.15, we deduce from (iii) above that π∞ is the image of the unique (up to
scalar) non-zero map i∞∅,I(χ′) → i∞∅,I(χ), is multiplicity free and (using (ii) above) has
simple socle and cosocle.

Lemma 2.1.17. Let I ⊆ ∆, w ∈ W (G) such that w−1(I) ⊆ ∆, δ : Lw−1(I) → E× a smooth
character and π∞ ∈ Rep∞

adm(LI) a G-basic representation. Assume that J ((π∞)w ⊗E δ) ⊆
W (G) · J (π∞). Then (π∞)w ⊗E δ ∈ Rep∞

adm(Lw−1(I)) is again G-basic.
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Proof. By (ii) of Definition 2.1.4 there exist I1 ⊆ I and an irreducible G-regular π∞
1 ∈

Rep∞
adm(LI1) such that π∞ ∼= i∞I1,I(π∞

1 ), which implies that

(π∞)w ⊗E δ ∼= i∞w−1(I1),w−1(I)((π∞
1 )w ⊗E δ|Lw−1(I1)

). (59)

As W (LI) · J (π∞) is a G-regular left W (LI)-coset by (i) of Lemma 2.1.15, the sets

J ((π∞
1 )w ⊗E δ|Lw−1(I1)

) ⊆ J ((π∞)w ⊗E δ) ⊆ W (G) · J (π∞)

consist of G-regular elements. This forces (π∞
1 )w ⊗E δ|LI1

to be G-regular (irreducible) and
thus (59) implies that (π∞)w ⊗E δ is G-basic.

Lemma 2.1.18. Let I0, I1 ⊆ I ⊆ ∆, Σ0 ⊆ T̂∞ be a left W (LI0)-stable finite subset which is
G-regular, and π∞

0 ∈ B
I0
Σ0.

(i) We have a canonical decomposition in Rep∞
adm(LI1)

JI,I1(i∞I0,I(π
∞
0 )) ∼=

⊕
w∈W I0,I1 (LI)

i∞I0,I1,w(JI0,I1,w(π∞
0 )). (60)

(ii) If Σ0 is a G-regular left W (LI0)-coset, we have a canonical decomposition for w ∈
W I0,I1(LI) induced by (37)

i∞I0,I1,w(JI0,I1,w(π∞
0 )) ∼=

⊕
Σ
i∞I0,I1,w(JI0,I1,w(π∞

0 ))BI1
Σ

(61)

where Σ runs through the (G-regular) left W (LI1)-cosets contained in

W (LI1)w−1W (LI0) · J (π∞
0 ).

In particular JI,I1(i∞I0,I(π∞
0 ))BI1

Σ

∼= i∞I0,I1,w(JI0,I1,w(π∞
0 ))BI1

Σ
.

Proof. Using (37), it suffices to treat (π∞
0 )BI0

Σ′
0

separately for each left W (LI0)-coset Σ′
0 con-

tained in Σ0. Hence, we assume from now that Σ0 is a single G-regular left W (LI0)-coset,
namely Σ0 = W (LI0) · J (π∞

0 ) = W (LI0) · χ for an arbitrary χ ∈ J (π∞
0 ). As χ ∈ J (π∞

0 ) is
G-regular, we know that

W (LI) · J (π∞
0 ) = W (LI) · χ =

⊔
w∈W I0,I1 (LI)

W (LI1)w−1W (LI0) · χ

=
⊔

w∈W I0,I1 (LI)
W (LI1)w−1W (LI0) · J (π∞

0 ),

which together with (55) and (37) forces the canonical filtration on JI,I1(i∞I0,I(π∞
0 )) described

in Lemma 2.1.9 to be split, and thus (i) follows. (ii) follows directly from (i), (55) and
(37).
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Remark 2.1.19. If we take I0 = ∅ and π∞
0 = χ in Lemma 2.1.18, then by (47) we deduce

a canonical isomorphism in Rep∞
adm(LI1)

JI,I1(i∞∅,I(χ)) ∼=
⊕

w∈W ∅,I1 (LI)

i∞∅,I1(w−1 · χ).

Let I ⊆ ∆ and Σ ⊆ T̂∞ be a G-regular left W (LI)-coset. We now attach an undirected
graph ΓΣ to Σ following [Z80, §2.2]. We choose an arbitrary χ ∈ Σ and write

χ⊗E δ1/2
B = ρ1 ⊠ · · ·⊠ ρn (62)

where the ρk, 1 ≤ k ≤ n, are smooth distinct characters of K× (as χ is G-regular). We define
the set of vertices of ΓΣ as V (ΓΣ) def= {ρ1, . . . , ρn} and note that the set V (ΓΣ) is independent
of the choice of χ ∈ Σ. Two vertices ρ, ρ′ ∈ V (ΓΣ) are connected by one edge if and only if
ρ′ρ−1 ∈ {| · |K , | · |−1

K } and ρ = ρk, ρ′ = ρk′ for k, k′ in the same Levi block of LI . So each
connected component of ΓΣ (there are at least as many as the number of blocks in LI) has
its vertices of the form {ρ, | · |Kρ, . . . , | · |ℓ−1

K ρ} for some ℓ ≥ 1, which is called a segment
[ρ, | · |ℓ−1

K ρ] of length ℓ. An orientation Γ⃗Σ (on ΓΣ) is a directed graph whose underlying
undirected graph is ΓΣ. Each χ ∈ Σ as above determines an orientation denoted Γ⃗Σ(χ) by
requiring that an edge connecting ρ and ρ′ has direction ρ → ρ′ if and only if ρ = ρk and
ρ′ = ρk′ for some k < k′.

Recall from the last statement in (iii) of Lemma 2.1.15 that the set of irreducible con-
stituents of i∞∅,I(χ) is independent of χ ∈ Σ, and we denote it by JHΣ.

Theorem 2.1.20 ([Z80], Thm. 2.2). There exists a unique bijection Γ⃗Σ 7→ ω(Γ⃗Σ) between
the set of all orientations on ΓΣ and the set JHΣ such that

J (ω(Γ⃗Σ)) = {χ | Γ⃗Σ(χ) = Γ⃗Σ}. (63)

Remark 2.1.21. Note that (63) differs from the statement in [Z80, Thm. 2.2] by a twist δ1/2
B ,

and that the unicity of ω in Theorem 2.1.20 follows from (ii) of Lemma 2.1.15.

Remark 2.1.22. Let I ⊆ ∆ and Σ ⊆ T̂∞ be a G-regular left W (LI)-coset. We say that two
elements of Σ are equivalent if they correspond to the same orientation on ΓΣ. As δ1/2

B might
not be K×-valued, ΓΣ might not be defined as in (62) in general. However, the equivalence
relation on Σ discussed above is always well-defined regardless of whether δ1/2

B is K×-valued
or not. In particular, Theorem 2.1.20 still makes sense when E = K. We also observe
that the equivalence relation on Σ remains unchanged if we view Σ as a set of (E ′)×-valued
characters for some finite extension E ′ of E. This together with Theorem 2.1.20 implies that
each constituents in JHΣ is absolutely irreducible.

Given I ⊆ ∆ and a multiplicity free finite length representation π∞ in Rep∞
adm(LI), recall

that we have defined in §1.4 a partial order on the set JHLI
(π∞) of constituents of π∞. We

slightly reformulate [Z80, Thm. 2.8] as follows.
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Theorem 2.1.23 ([Z80], Thm. 2.8). Let χ ∈ Σ. The partial order on the set of orientations
on ΓΣ given via the bijection in Theorem 2.1.20 by the partial order on JHLI

(i∞∅,I(χ)) is the
following: two orientations Γ⃗Σ, Γ⃗Σ

′
satisfy Γ⃗Σ ≤ Γ⃗Σ

′
if and only if each edge of ΓΣ which

has the same direction in Γ⃗Σ
′

and Γ⃗Σ(χ) also has the same direction in Γ⃗Σ.

Concretely, Γ⃗Σ(χ) is the orientation on ΓΣ corresponding to the socle ω(Γ⃗Σ(χ)) of i∞∅,I(χ)
(which is irreducible by (iv) of Remark 2.1.16), and one gets the orientations corresponding to
the Jordan-Hölder factors in higher layers by successively reversing (more and more) arrows
in Γ⃗Σ(χ), until all arrows of Γ⃗Σ(χ) are reversed which gives the orientation corresponding to
the (irreducible by loc. cit.) cosocle of i∞∅,I(χ).

For I1 ⊆ I ⊆ ∆ we define

V ∞
I1,I

def= i∞I1,I(1LI1
)/

∑
I1⊊I′

1

i∞I′
1,I

(1LI′
1
) (64)

which is an (absolutely irreducible) smooth generalized Steinberg representation of LI (the
smooth Steinberg being V ∞

∅,I). Note that it is G-regular (for instance by (iii) of Lemma 2.1.15
and (56)). The following corollary is classical, we provide a short proof for the reader’s
convenience.

Corollary 2.1.24. Let I ⊆ ∆ and w ∈ W (LI).

(i) For I1 ⊆ I we have

J (V ∞
I1,I) = {x · 1T | x ∈ W (LI), I1 = I \DR(x)}. (65)

(ii) The representation i∞∅,I(w·1T ) is multiplicity free with socle V ∞
I\DR(w),I , cosocle V ∞

I∩DR(w),I
and constituents

JHLI
(i∞∅,I(w · 1T )) = {V ∞

I1,I | I1 ⊆ I}. (66)

(iii) The partial order ≤w on {V ∞
I1,I | I1 ⊆ I} induced from the one on JHLI

(i∞∅,I(w · 1T ))
via (66) is: V ∞

I1,I ≤w V ∞
I2,I (with I1, I2 ⊆ I) if and only if I2 ∩ (I \ DR(w)) ⊆ I1 ⊆

I2 ∪ (I \DR(w)).

Proof. We only prove the case I = ∆, the general case follows by treating each Levi block
of LI separately. The graph Γ def= ΓW (G)·1T

attached to 1T (or equivalently to any w · 1T with
w ∈ W (G)) has vertices {1, | · |K , . . . , | · |n−1

K }. The set of orientations Γ⃗ is in natural bijection
to the set of subsets of ∆ by sending Γ⃗ to the subset IΓ⃗ of j ∈ ∆ such that Γ⃗ contains an
arrow | · |n−j

K → | · |n−j−1
K . For w ∈ W (G), the attached orientation Γ⃗(w) def= Γ⃗(w · 1T ) is

characterized as follows: for j ∈ ∆, there exists an arrow | · |n−j
K → | · |n−j−1

K if j /∈ DR(w),
and an arrow | · |n−j−1

K → | · |n−j
K if j ∈ DR(w), i.e. IΓ⃗(w) = ∆ \DR(w). This together with

(63) and the discussion after Theorem 2.1.23 imply

J (socG(i∞∅,∆(w · 1T ))) = {x · 1T | x ∈ W (G), DR(x) = DR(w)}
J (cosocG(i∞∅,∆(w · 1T ))) = {x · 1T | x ∈ W (G), DR(x) = ∆ \DR(w)}. (67)
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We now prove (i). By (52) with I0, I, π∞
0 there being I1, ∆, 1LI1

, we have for I1 ⊆ ∆

J (i∞I1,∆(1LI1
)) = {x−1 · 1T | x ∈ W I1,∅} = {x · 1T | I1 ⊆ ∆ \DR(x)}.

Together with V ∞
I1,∆ = i∞I1,∆(1LI1

)/∑I1⊊I′
1
i∞I′

1,∆
(1LI′

1
) this implies

J (V ∞
I1,∆) = {x · 1T | I1 ⊆ ∆ \DR(x)} \ {x · 1T | I1 ⊊ ∆ \DR(x)}

= {x · 1T | I1 = ∆ \DR(x)} (68)

which is (i). Then (ii) follows from (68), (67) and

{x · 1T | x ∈ W (G)} =
⊔
I1⊆∆
{x · 1T | ∆ \DR(x) = I1}.

We prove (iii). We write Γ⃗i for the orientation on Γ with IΓ⃗i
= Ii, i = 1, 2. It follows from

Theorem 2.1.23 that V ∞
I1,∆ ≤w V

∞
I2,∆ if and only if each edge of Γ which has the same direction

in Γ⃗2 and Γ⃗(w) also has this direction in Γ⃗1. Using the above definition of IΓ⃗i
and IΓ⃗(w) =

∆\DR(w), this can be easily translated to I2∩(∆\DR(w)) ⊆ I1 and (∆\I2)∩DR(w) ⊆ ∆\I1,
or equivalently I2 ∩ (I \DR(w)) ⊆ I1 ⊆ I2 ∪ (I \DR(w)) which is (iii).

Corollary 2.1.25. Let I ⊆ ∆, π∞ in Rep∞
adm(LI) irreducible G-regular and ΓΣ the undirected

graph attached to Σ def= W (LI) ·J (π∞) above Theorem 2.1.20 (recall that Σ is a single regular
left W (LI)-coset by (i) of Lemma 2.1.15). If ΓΣ has one connected component for each
Levi block of LI , then there exists I1 ⊆ I and a smooth character δ : LI → E× such that
π∞ ∼= V ∞

I1,I ⊗E δ.

Proof. It is harmless to treat each Levi block of LI separately, so we may assume I = ∆
and ΓΣ connected. By definition of ΓΣ, it is connected if and only if its set of vertices has
the form {ρ, ρ ⊗E | · |K , . . . , ρ ⊗E | · |n−1

K } for some smooth character ρ : K× → E×. Let
δ

def= ρ ◦ det where det : G→ E× is the determinant character. Then the graph ΓΣ′ attached
to Σ′ def= W (G) · J (π∞ ⊗E δ−1) has vertices {1, | · |K , . . . , | · |n−1

K }, which forces π∞ ⊗E δ−1 to
be a Jordan-Hölder factor of i∞∅,∆(1T ), and thus to be V ∞

I1,∆ for some I1 ⊆ ∆ by (66).

Corollary 2.1.26. Let I ⊆ ∆ and χ ∈ T̂∞ G-regular. Let π∞ be a subquotient of i∞∅,I(χ)
with simple socle and cosocle. Then π∞ is G-basic and there exist I0 ⊆ I and an irreducible
G-regular σ∞ ∈ Rep∞

adm(LI0) such that π∞ ∼= i∞I0,I(σ∞).

Proof. Write σ∞
1 (resp. σ∞

2 ) for the socle (resp. cosocle) of π∞. For χ′ ∈ J (σ∞
1 ), the image

of the unique (up to scalar) non-zero map i∞∅,I(χ)→ i∞∅,I(χ′) between multiplicity free objects
(see (iii) of Lemma 2.1.15 and (iii) of Remark 2.1.16) is the unique quotient of i∞∅,I(χ) with
socle σ∞

1 , and thus contains π∞ (as π∞ has simple socle σ∞
1 ). Upon replacing χ with χ′, we

assume from on that π∞ is a subrepresentation of i∞∅,I(χ), hence σ∞
1 is the socle of i∞∅,I(χ).

Let ΓΣ be the undirected graph attached to Σ def= W (LI) · χ (see before Theorem 2.1.20),
Γ⃗Σ,i

def= ω−1(σ∞
i ), i = 1, 2 (see (63)), and recall that ⃗ΓΣ,1 = Γ⃗Σ(χ). Write χ ⊗E δ1/2

B =
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ρ1 ⊠ · · · ⊠ ρn, modifying χ within W (LI) · χ without changing Γ⃗Σ(χ), we can assume that
each pair of vertices ρk, ρk′ that are connected by an edge of ΓΣ are such that |k − k′| = 1.
For such a χ, the set of edges of ΓΣ having the same orientation in ⃗ΓΣ,1 and ⃗ΓΣ,2 naturally
determines a subset I0 ⊆ I. Let ΓΣ0 be the undirected graph attached to Σ0

def= W (LI0)·χ, and
note that ΓΣ0 is obtained from ΓΣ by exactly deleting the edges corresponding to elements
not in I0. Each orientation on ΓΣ induces one on ΓΣ0 , and by definition of I0 ⃗ΓΣ,1 and ⃗ΓΣ,2

induce the same orientation Γ⃗Σ0(χ) on ΓΣ0 , hence a well-defined Jordan-Hölder factor σ∞ of
i∞∅,I0

(χ) by Theorem 2.1.20, which is actually its socle. Note that χ ∈ J (σ∞) from (31) (for
k = 0), hence σ∞ is G-regular.

We claim that i∞I0,I(σ∞) ∼= π∞. As i∞I0,I(σ∞) is a subrepresentation of i∞∅,I(χ), it suffices
to show that i∞I0,I(σ∞) has cosocle σ∞

2 . Let wI,I0 be the longest element inside W ∅,I0(LI), by
(36) we have

J (J ′
I,I0(σ∞

2 )) = w−1
I,I0 · J (σ∞

2 ). (69)
The orientation on ΓΣ associated to wI,I0 · χ is easily checked to be obtained from the one
associated to χ by reversing the orientation of the edges of ΓΣ corresponding to I \ I0, which
is ⃗ΓΣ,2 = ω−1(σ∞

2 ) by definition of I0. In particular we have wI,I0 ·χ ∈ J (σ∞
2 ), which together

with (69) implies χ ∈ J (J ′
I,I0(σ∞

2 )). By (32) for k = 0 we have for τ∞ def= cosocLI
(i∞I0,I(σ∞))

0 ̸= HomLI
(i∞I0,I(σ

∞), τ∞) ∼= HomLI0
(σ∞, J ′

I,I0(τ∞)).

Thus the irreducible σ∞ injects into J ′
I,I0(τ∞) and J (σ∞) ⊆ J (J ′

I,I0(τ∞)), which implies
χ ∈ J (J ′

I,I0(τ∞)) since χ ∈ J (σ∞). But it follows from (34) and Lemma 2.1.14, and the
exactness of J ′

I,I0 and JwI,I0 (I0),∅, that σ∞
2 is the only Jordan-Hölder factor of i∞∅,I(χ) satisfying

χ ∈ J (J ′
I,I0(σ∞

2 )). Hence we must have σ∞
2 = τ∞.

Corollary 2.1.27. Let I ⊆ ∆ and π∞ in Rep∞
adm(LI) G-basic and reducible. Then there

exists G-basic π∞
i in Rep∞

adm(LI) for i = 0, 1 such that π∞ fits into 0→ π∞
1 → π∞ → π∞

0 → 0
which is non-split.

Proof. We continue to use the notation from the proof of Corollary 2.1.26 and write σ∞
1

(resp. σ∞
2 ) for the socle (resp. cosocle) of π∞, with Γ⃗Σ,i

def= ω−1(σ∞
i ) for i = 1, 2. Since π∞

is reducible, we have σ∞
1 ̸= σ∞

2 and thus ⃗ΓΣ,1 ̸= ⃗ΓΣ,2. We fix an arbitrary edge e of ΓΣ

on which ⃗ΓΣ,1 and ⃗ΓΣ,2 have opposite direction. Let τ∞
i be the Jordan-Hölder factor of π∞

whose attached orientation on ΓΣ differs from Γ⃗Σ,i by changing only the direction of the
fixed edge e. We define π∞

1 (resp. π∞
0 ) as the unique sub (resp. quotient) of π∞ with socle

σ∞
1 and cosocle τ∞

2 (resp. with socle τ∞
1 and cosocle σ∞

2 ). By applying Theorem 2.1.23 to
i∞∅,I(χ) for some χ ∈ J (σ∞

1 ) (with π∞ being the unique sub of i∞∅,I(χ) with cosocle σ∞
2 as in

the proof of Corollary 2.1.26), we see that JHLI
(π∞

1 ) (resp. JHLI
(π∞

0 )) consists of exactly
those Jordan-Hölder factors whose attached orientation on ΓΣ have the same direction as
⃗ΓΣ,1 (resp. ⃗ΓΣ,2) on the fixed edge e, and in particular, π∞ fits into a non-split short exact

sequence 0→ π∞
1 → π∞ → π∞

0 → 0.
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Lemma 2.1.28. Let I ⊆ ∆ and π∞ in Rep∞
adm(LI) G-basic. Then there exist I1 ⊆ I0 ⊆ I

and a smooth character δ : LI0 → E× such that V ∞
I1,I0 ⊗E δ is irreducible G-regular and

π∞ ∼= i∞I0,I(V ∞
I1,I0 ⊗E δ).

Proof. By the definition of G-basic ((ii) of Definition 2.1.4), we can assume π∞ irreducible
G-regular. Recall that Σ def= W (LI)·J (π∞) is a single left W (LI)-coset ((i) of Lemma 2.1.15).
As in the proof of Corollary 2.1.26, we fix an arbitrary G-regular χ ∈ Σ such that two vertices
ρk, ρk′ of the graph ΓΣ that are connected by an edge are adjacent, i.e. such that |k−k′| = 1.
Then there exists I0 ⊆ I such that there is a bijection between the Levi blocks of LI0 and the
connected components of ΓΣ, hence also a bijection between the set of orientations on ΓΣ0 (def=
the graph of Σ0

def= W (LI0) ·χ) and on ΓΣ. Using Theorem 2.1.20 applied to both ΓΣ and ΓΣ0 ,
we deduce a bijection between the set of constituents of i∞∅,I(χ) and of i∞∅,I0

(χ). In particular
they have same length, and the exactness of i∞I0,I(−) then implies that σ∞

0 7→ i∞I0,I(σ∞
0 )

induces a bijection between both sets of constituents. Using (iii) of Lemma 2.1.15, we see
that π∞ is a constituent of i∞∅,I(χ), hence π∞ ∼= i∞I0,I(π∞

0 ) for a (unique) constituent π∞
0 of

i∞∅,I0
(χ). Applying Corollary 2.1.25 to π∞

0 , we deduce π∞
0
∼= V ∞

I1,I0⊗E δ for a smooth character
δ : LI0 → E× and I1 ⊆ I0, and thus π∞ ∼= i∞I0,I(V ∞

I1,I0 ⊗E δ).

Lemma 2.1.29. Let I0 ⊆ I ⊆ ∆ and π∞ in Rep∞
adm(LI) G-basic. Then we have a canonical

decomposition in Rep∞
adm(LI0) induced by (37)

JI,I0(π∞) ∼=
⊕

Σ
JI,I0(π∞)BI0

Σ
(70)

where Σ runs through left W (LI0)-cosets in W (LI) · J (π∞) and JI,I0(π∞)BI0
Σ

is G-basic if
non-zero. Moreover, if π∞ is simple, then JI,I0(π∞)BI0

Σ
is simple if non-zero.

Proof. Note first that we can indeed apply (37) to JI,I0(π∞) since J (JI,I0(π∞)) = J (π∞)
consists of G-regular weights by the last assertion in (i) of Lemma 2.1.15. By (iv) of Re-
mark 2.1.16 there exist G-regular χ, χ′ ∈ T̂∞ such that π∞ is the image of the unique (up
to scalar) non-zero map i∞∅,I(χ′) → i∞∅,I(χ). By the exactness of JI,I0(−) we deduce that
JI,I0(π∞) is the image of the induced map JI,I0(i∞∅,I(χ′)) → JI,I0(i∞∅,I(χ)), which by Remark
2.1.19 is the same as the map⊕

w′∈W ∅,I0 (LI)

i∞∅,I0((w′)−1 · χ′) −→
⊕

w∈W ∅,I0 (LI)

i∞∅,I0(w−1 · χ).

Consequently, for any left W (LI0)-coset Σ in W (LI) · J (π∞), JI,I0(π∞)BI0
Σ

is necessarily the
image of a (possibly zero) map

i∞∅,I0((w′)−1 · χ′) −→ i∞∅,I0(w−1 · χ) (71)

for some w,w′ ∈ W ∅,I0(LI) such that Σ = W (LI0)(w′)−1 ·χ′ = W (LI0)w−1 ·χ. But the image
of (71) is either zero or has simple socle and cosocle (since both representations in (71) have
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simple socle and cosocle by the last assertion in (ii) of Remark 2.1.16), hence is either zero
or G-basic by Corollary 2.1.26. It follows that JI,I0(π∞)BI0

Σ
is either zero or G-basic.

Now we assume that π∞ is simple and prove that JI,I0(π∞)BI0
Σ

is either zero or simple. We
can assume σ∞

0
def= JI,I0(π∞)BI0

Σ
̸= 0, and we write σ∞ for its cosocle. The natural surjections

JI,I0(π∞) ↠ σ∞
0 ↠ σ∞ induce by (31) (for k = 0) maps π∞ → i∞I,I0(σ∞

0 ) ↠ i∞I,I0(σ∞) the
composition of which is non-zero. Hence π∞ (which is simple) appears in the socle of both
i∞I,I0(σ∞

0 ) and i∞I,I0(σ∞). As σ∞
0 is G-basic, so is i∞I,I0(σ∞

0 ). Moreover i∞I,I0(σ∞) is clearly G-
basic. Hence by the end of (iv) of Remark 2.1.16 both i∞I,I0(σ∞

0 ) and i∞I,I0(σ∞) have simple
socle and cosocle, and thus have same socle π∞. As i∞I,I0(σ∞) is a quotient of i∞I,I0(σ∞

0 )
this forces i∞I,I0(σ∞) = i∞I,I0(σ∞

0 ) and thus σ∞ = σ∞
0 . In particular σ∞

0 = JI,I0(π∞)BI0
Σ

is
simple.

Remark 2.1.30. Let I0 ⊆ I ⊆ ∆ and π∞ in Rep∞
adm(LI) G-basic. As JI,wI,I0 (I0)(π∞)

is a direct sum of G-basic objects in distinct Bernstein blocks by Lemma 2.1.29, we de-
duce from (34), (36) and Lemma 2.1.17 that an analogous statement as Lemma 2.1.29
holds for J ′

I,I0(π∞). Similarly, for I0, I1 ⊆ ∆, w ∈ W I0,I1 and π∞
0 in Rep∞

adm(LI0) G-
basic, as JI0,w(I1)∩I0(π∞

0 ) is a direct sum of G-basic objects in distinct Bernstein blocks by
Lemma 2.1.29, we deduce from (43), (44), (46) and Lemma 2.1.17 that the statement of
Lemma 2.1.29 holds for JI0,I1,w(π∞

0 ). All these statements remain true if we replace every-
where G-basic by irreducible G-regular.

Lemma 2.1.31. Let I1 ⊆ I ⊆ ∆, w ∈ W (LI) and π∞ def= cosocLI1
(i∞∅,I1

(w · 1T )). Then
i∞I1,I(π∞) is isomorphic to the unique quotient of i∞∅,I(w · 1T ) with socle V ∞

I2,I (and cosocle
V ∞
DR(w),I) where I2

def= I \DR(wI1w).

Proof. Note first that i∞I1,I(π∞) is clearly a quotient of i∞∅,I(w · 1T ). As i∞I1,I(π∞) is G-basic
(recall π∞ is irreducible by (ii) of Remark 2.1.16), it has simple socle by (iv) of Remark 2.1.16.
By (66) this socle has the form V ∞

I2,I for some I2 ⊆ I. It follows from (i) of Remark 2.1.16
that π∞ ∼= socLI1

(i∞∅,I1
(wI1w · 1T )), and hence wI1w · 1T ∈ J (π∞) ((31) with k = 0). Since

by loc. cit.
HomLI1

(JI,I1(V ∞
I2,I), π

∞) ∼= HomLI
(V ∞

I2,I , i
∞
I1,I(π

∞)) ̸= 0
we see that J (π∞) ⊆ J (JI,I1(V ∞

I2,I)) = J (V ∞
I2,I) as π∞ is irreducible and thus wI1w · 1T ∈

J (V ∞
I2,I). In particular (65) implies I2 = I \DR(wI1w).

Lemma 2.1.32. Let I ⊆ ∆ and π∞
0 , π

∞
1 in Rep∞

adm(LI) both G-basic with JHLI
(π∞

0 ) ∩
JHLI

(π∞
1 ) = ∅. Let π∞ in Rep∞

adm(LI) which fits into a non-split short exact sequence

0→ π∞
1 → π∞ → π∞

0 → 0. (72)

Then π∞ admits a unique subquotient σ∞ which is G-basic with simple socle socLI
(π∞

1 ) and
simple cosocle cosocLI

(π∞
0 ).
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Proof. As π∞
i is G-basic, by (iv) of Remark 2.1.16 it is multiplicity free with simple socle and

cosocle. In particular, π∞ is multiplicity free and we write π∞
2 for its unique subrepresentation

with cosocle cosocLI
(π∞

0 ). In particular the composition of π∞
2 → π∞ → π∞

0 is a surjection.
If π∞

2 ∩π∞
1 = 0 inside π∞, then (72) induces an isomorphism π∞

2
∼→ π∞

0 and thus (72) splits,
a contradiction to our assumption. If π∞

2 ∩ π∞
1 ̸= 0, as π∞

1 has simple socle, we must have
socLI

(π∞
1 ) ⊆ π∞

2 , so we can define σ∞ as the unique quotient of π∞
2 with socle socLI

(π∞
1 ).

Since π∞
0 and π∞

1 are G-basic with JHLI
(π∞

0 )∩JHLI
(π∞

1 ) = ∅, by (i) and (iii) of Lemma 2.1.15
we know that JI,∅(π∞

0 ) and JI,∅(π∞
1 ) are multiplicity free, semi-simple and share no common

constituent. Since we have a short exact sequence 0→ JI,∅(π∞
1 )→ JI,∅(π∞)→ JI,∅(π∞

0 )→ 0
(as JI,∅ is exact), it follows that JI,∅(π∞) is also semi-simple and multiplicity free, and
thus so is JI,∅(σ∞). Now we choose an arbitrary χ ∈ J (socLI

(π∞
1 )) ⊆ J (σ∞), which by

(31) (with k = 0) gives a non-zero map σ∞ → i∞∅,I(χ). Since i∞∅,I(χ) is multiplicity free
with socle socLI

(π∞
1 ) ∼= socLI

(σ∞) by (iii) of Lemma 2.1.15 and (ii) of Remark 2.1.16, the
map σ∞ → i∞∅,I(χ) is an injection. Since σ∞ has simple socle and cosocle by definition,
Corollary 2.1.26 finally implies that σ∞ is G-basic.

2.2 Results on smooth Ext groups
We prove several useful results on smooth Ext groups of G-basic representations.

We start with some preliminaries. For I0, I1 ⊆ ∆, we define

d(I0, I1) def= #(I0 \ I1) + #(I1 \ I0) (73)

and [I0, I1] def= {I ⊆ ∆ | d(I0, I1) = d(I0, I) + d(I, I1)}. One easily checks d(I0, I1) =
d(I0, I) + d(I, I1) if and only if

(I0 \ I1) ⊔ (I1 \ I0) = (I0 \ I) ⊔ (I \ I1) ⊔ (I1 \ I) ⊔ (I \ I0),

if and only if (I0 \I)∩(I1 \I) = ∅ and (I \I0)∩(I \I1) = ∅, if and only if I0∩I1 ⊆ I ⊆ I0∪I1.
In other words, we have

[I0, I1] = {I ⊆ ∆ | I0 ∩ I1 ⊆ I ⊆ I0 ∪ I1}. (74)

Given another I ′
1 ⊆ ∆, it is clear that we have

[I0, I1] ∩ [I0, I
′
1] = [I0, I

′′
1 ] (75)

with I ′′
1

def= (I0 \ (I1 ∪ I ′
1)) ⊔ ((I1 ∩ I ′

1) \ I0).

Lemma 2.2.1. Let I ⊆ ∆.

(i) For I0, I1 ⊆ I, there exists a unique G-basic QI(I0, I1) ∈ Rep∞
adm(LI) with socle V ∞

I0,I

and cosocle V ∞
I1,I , and it has set of Jordan-Hölder factors {V ∞

I′,I | I ′ ∈ [I0, I1]}.
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(ii) For I0, I1, I
′
0, I

′
1 ⊆ I, there exists a non-zero map QI(I ′

0, I
′
1)→ QI(I0, I1) if and only if

I ′
1 ∈ [I0, I1] and I0 ∈ [I ′

0, I
′
1], in which case the map is unique (up to scalar) with image

isomorphic to QI(I0, I
′
1).

(iii) For I0, I1 ⊆ I and I ′
0, I

′
1 ∈ [I0, I1], QI(I ′

0, I
′
1) is a subquotient of QI(I0, I1) if and only

if I ′
0 ∈ [I0, I

′
1] if and only if I ′

1 ∈ [I ′
0, I1].

Proof. We prove (i). By (ii) and (iv) of Remark 2.1.16 any G-basic representation of LI
with socle V ∞

I0,I and cosocle V ∞
I1,I must be the image of the unique (up to scalar) non-zero

map i∞∅,I(χ′) → i∞∅,I(χ) for any χ ∈ J (V ∞
I0,I) and χ′ ∈ wI · J (V ∞

I1,I). This implies the unicity
of such a representation. For its existence, note that by (iii) of Remark 2.1.16 and (65)
there is a non-zero map i∞∅,I(χ′) → i∞∅,I(χ) for any χ ∈ J (V ∞

I0,I) and χ′ ∈ wI · J (V ∞
I1,I).

Its image, which has socle V ∞
I0,I and cosocle V ∞

I1,I , is G-basic by Corollary 2.1.26. For the
last statement of (i), choose w ∈ W (LI) such that I0 = I \ DR(w). One can check that
QI(I0, I \ I0) ∼= i∞∅,I(w · 1T ) and (using (ii) of Corollary 2.1.24) that QI(I0, I1) is the unique
subrepresentation of i∞∅,I(w · 1T ) with cosocle V ∞

I1,I . By loc. cit. the constituents of QI(I0, I1)
are the V ∞

I′,I such that V ∞
I′,I ≤w V ∞

I1,I (where ≤w is the partial order defined by i∞∅,I(w · 1T )).
The last statement in (i) follows then from (iii) of Corollary 2.1.24 and (74).

We prove (ii). By (ii) and (iv) of Remark 2.1.16 again, we can choose χ ∈ J (V ∞
I0,I) and

χ′ ∈ wI ·J (V ∞
I′

1,I
) such that QI(I0, I1) ↪→ i∞∅,I(χ) and i∞∅,I(χ′) ↠ QI(I ′

0, I
′
1). Assume that there

is a non-zero map QI(I ′
0, I

′
1)→ QI(I0, I1), then the composition

i∞∅,I(χ′) ↠ QI(I ′
0, I

′
1)→ QI(I0, I1) ↪→ i∞∅,I(χ)

is also non-zero and has same image. By the existence part in (i) there is a unique (up
to scalar) non-zero map i∞∅,I(χ′) → i∞∅,I(χ) with image QI(I0, I

′
1). Hence QI(I0, I

′
1) must

be a quotient of QI(I ′
0, I

′
1) and a subrepresentation of QI(I0, I1), forcing I ′

1 ∈ [I0, I1] and
I0 ∈ [I ′

0, I
′
1] by the last statement in (i). Conversely, if I ′

1 ∈ [I0, I1], then V ∞
I′

1,I
shows up in

QI(I0, I1) by (i), hence QI(I0, I
′
1) is a subrepresentation of QI(I0, I1) (by unicity of QI(I0, I

′
1)).

Similarly, I0 ∈ [I ′
0, I

′
1] implies that QI(I0, I

′
1) is a quotient of QI(I ′

0, I
′
1). So if I ′

1 ∈ [I0, I1] and
I0 ∈ [I ′

0, I
′
1] there is a non-zero map QI(I ′

0, I
′
1)→ QI(I0, I1) (with image QI(I0, I

′
1)).

Finally, (iii) follows from (ii) and the observation that QI(I ′
0, I

′
1) for I ′

0, I
′
1 ∈ [I0, I1] is a

subquotient of QI(I0, I1) if and only if it is a subrepresentation of QI(I ′
0, I1) if and only it is

a quotient of QI(I0, I
′
1).

Remark 2.2.2. Let I ⊆ ∆ and w ∈ W (LI). It follows from [Re10, Thm. III.2.7] (with W

there being (w·1T )∼ ∼= δ
1/2
BI
·w(δBI

)−1/2 and recalling that (−)∼ is the smooth contragredient):

i∞∅,I(w · 1T ) ∼= i∞∅,I((w · 1T )∼ · δ−1
BI

)∼ ∼= i∞∅,I(w(δBI
)−1/2 · δ−1/2

BI
)

∼= i∞∅,I(w(δ−1/2
BI

) · δ−1/2
BI

) ∼= i∞∅,I(wwI(δ
1/2
BI

) · δ−1/2
BI

) = i∞∅,I(wwI · 1T ).

Together with (the proof of) (i) of Lemma 2.2.1 this implies for I0, I1 ⊆ I

QI(I0, I1)∼ ∼= QI(I1, I0). (76)
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By [Vig97, Prop. 5] and (76) we have for k ≥ 0

ExtkLI
(QI(I0, I1), QI(I ′

0, I
′
1))∞ ∼= ExtkLI

(QI(I ′
0, I

′
1)∼, QI(I0, I1)∼)∞

∼= ExtkLI
(QI(I ′

1, I
′
0), QI(I1, I0))∞ (77)

and in particular for I0, I1, I
′
0, I

′
1 ⊆ I

dI(QI(I0, I1), QI(I ′
0, I

′
1)) = dI(QI(I ′

1, I
′
0), QI(I1, I0)).

We now recall the following classical result (see (iii) of Definition 2.1.4 for d(−,−)).

Lemma 2.2.3. Let I0, I1 ⊆ I ⊆ ∆. Then we have d(V ∞
I0,I , V

∞
I1,I) = d(I0, I1) and

dimE Extd(I0,I1)
LI

(V ∞
I0,I , V

∞
I1,I)

∞ = 1.

Proof. This follows directly from [Or05, Cor. 2] or [Dat06, Thm. 1.3].

Lemma 2.2.4. Let Ii ⊆ I ⊆ ∆ and π∞
i in Rep∞

adm(LIi
) G-basic for i = 0, 1. Assume that

dI(π∞
0 , π

∞
1 ) <∞. Then dI′(π∞

0 , π
∞
1 ) = dI(π∞

0 , π
∞
1 ) for I ′ ⊇ I and

ExtdI(π∞
0 ,π∞

1 )
LI

(i∞I0,I(π
∞
0 ), i∞I1,I(π

∞
1 ))∞ (78)

is one dimensional.

Proof. Let Σ def= W (LI) · J (π∞
1 ) = W (LI) · J (i∞I1,I(π∞

1 )) (see Lemma 2.1.11), then
dI(π∞

0 , π
∞
1 )<∞ implies in particular

i∞I0,I(π
∞
0 ) ∈ BIΣ.

Consequently, for I ′ ⊇ I, we have by the last assertion in (ii) of Lemma 2.1.18 applied with
π∞

0 there being i∞I0,I(π∞
0 ) and with w = 1

JI′,I(i∞I,I′(i∞I0,I(π
∞
0 )))BI

Σ
∼= i∞I,I,1(JI,I,1(i∞I0,I(π

∞
0 ))) ∼= i∞I0,I(π

∞
0 ).

Together with (31) this implies canonical isomorphisms for k ≥ 0

ExtkLI′ (i
∞
I0,I′(π∞

0 ), i∞I1,I′(π∞
1 ))∞ ∼= ExtkLI

(JI′,I(i∞I0,I′(π∞
0 )), i∞I1,I(π

∞
1 ))∞

∼= ExtkLI
(i∞I0,I(π

∞
0 ), i∞I1,I(π

∞
1 ))∞,

and thus dI′(π∞
0 , π

∞
1 ) = dI(π∞

0 , π
∞
1 ) for I ′ ⊇ I.

Now we prove the second assertion by induction on I. We assume inductively that

dimE ExtdI′ (σ∞
0 ,σ∞

1 )
LI′ (i∞I′

0,I
′(σ∞

0 ), i∞I′
1,I

′(σ∞
1 ))∞ = 1

for any I ′
0, I

′
1 ⊆ I ′ ⊊ I and G-basic σ∞

i in Rep∞
adm(LI′

i
), i = 0, 1, such that dI′(σ∞

0 , σ
∞
1 ) <∞.

Note that the induction hypothesis trivially holds when I = I0 = I1 = ∅ since we only have
smooth characters then.
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Case 1: If there exist I2 ⊊ I and an irreducible G-regular π∞
2 in Rep∞

adm(LI2) such that
i∞I1,I(π∞

1 ) ∼= i∞I2,I(π∞
2 ), then by (31) we have isomorphisms for k ≥ 0

ExtkLI
(i∞I0,I(π

∞
0 ), i∞I1,I(π

∞
1 ))∞ ∼= ExtkLI

(i∞I0,I(π
∞
0 ), i∞I2,I(π

∞
2 ))∞

∼= ExtkLI2
(JI,I2(i∞I0,I(π

∞
0 )), π∞

2 )∞ ∼= ExtkLI2
(π∞

3 , π
∞
2 )∞ (79)

where Σ def= W (LI2) ·J (π∞
2 ) and π∞

3
def= JI,I2(i∞I0,I(π∞

0 ))BI2
Σ

. By Lemma 2.1.29 π∞
3 is either zero

or G-basic. The assumption dI(π∞
0 , π

∞
1 ) < ∞ forces π∞

3 ̸= 0, and thus π∞
3 is G-basic with

dI2(π∞
3 , π

∞
2 ) = dI(π∞

0 , π
∞
1 ) by (79). Hence, (78) is isomorphic to ExtdI2 (π∞

3 ,π∞
2 )

LI2
(π∞

3 , π
∞
2 )∞

which is one dimensional by our induction hypothesis as I2 ⊊ I.

Case 2: If there exist I2 ⊊ I and an irreducible G-regular π∞
2 in Rep∞

adm(LI2) such that
i∞I0,I(π∞

0 ) ∼= i∞I2,I(π∞
2 ), then by (32) we have isomorphisms for k ≥ 0

ExtkLI
(i∞I0,I(π

∞
0 ), i∞I1,I(π

∞
1 ))∞ ∼= ExtkLI

(i∞I2,I(π
∞
2 ), i∞I1,I(π

∞
1 ))∞

∼= ExtkLI2
(π∞

2 , J
′
I,I2(i∞I1,I(π

∞
1 )))∞ ∼= ExtkLI2

(π∞
2 , π

∞
3 )∞

where Σ def= W (LI2) · J (π∞
2 ) and π∞

3
def= J ′

I,I2(i∞I1,I(π∞
1 ))BI2

Σ
. We deduce from Remark 2.1.30

that π∞
3 is either zero or G-basic. We conclude by induction as in Case 1 since I2 ⊊ I.

Case 3: If we are in none of the above two cases, then we must have I0 = I1 = I and,
using Lemma 2.1.28, subsets I2, I3 ⊆ I and smooth characters δ2, δ3 : LI → E× such that
π∞

0
∼= V ∞

I2,I ⊗E δ2 and π∞
1
∼= V ∞

I3,I ⊗E δ3. Our assumption dI(π∞
0 , π

∞
1 ) <∞ forces π∞

0 and π∞
1

to lie in the same Bernstein block and thus

W (LI) · δ2|T = W (LI) · J (V ∞
I2,I ⊗E δ2) = W (LI) · J (V ∞

I3,I ⊗E δ3) = W (LI) · δ3|T ,

which implies δ2 = δ3 as δ2|T is the unique element in W (LI) · δ2|T which extends to a
smooth character LI → E×. Consequently, we obtain isomorphisms ExtkLI

(π∞
0 , π

∞
1 )∞ ∼=

ExtkLI
(V ∞

I2,I , V
∞
I3,I) for k ≥ 0 which by Lemma 2.2.3 forces (78) to be one dimensional.

We write ĵ def= ∆ \ {j} for j ∈ ∆.

Lemma 2.2.5. Let I1, I2 ⊆ ∆ with d(I1, I2) = 1, then there exists a unique non-split exten-
sion 0→ V ∞

I1,∆ → π∞ → V ∞
I2,∆ → 0 in Rep∞

adm(G). More precisely π∞ ∼= i∞
ĵ,∆(τ∞) (hence π∞

is G-basic) for j ∈ ∆ and τ∞ ∈ Rep∞
adm(L

ĵ
) irreducible G-regular which are as follows:

(i) if I2 = I1 \ {j1}, then j = j1 and τ∞ = V ∞
I2 ,̂j

;

(ii) if I2 = I1⊔{j2}, then j = n−j2 and τ∞ = V ∞
wĵ(I1),̂j

⊗E δ where wĵ is the longest element

of W ĵ,∅ and δ : L
ĵ
→ E× is the unique character such that δ|T ∼= wĵ · 1T (see (35)).
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Proof. As d(I0, I1) = 1, by Lemma 2.2.3 there exists a unique (up to isomorphism) length
two π∞ in Rep∞

adm(G) with socle V ∞
I1,I and cosocle V ∞

I2,I .

Case 1: If I2 = I1\{j1}, set j def= j1 and τ∞ def= V ∞
I2 ,̂j

. It follows from (ii) of Corollary 2.1.24
that τ∞ ∼= cosocL

ĵ
(i∅,̂j(w1 · 1T )∞) for any w1 ∈ W (L

ĵ
) such that DR(w1) = I1 \ {j} = I2.

Let w
ĵ
∈ W (L

ĵ
) be the longest element, we have DR(w

ĵ
w1) = ĵ \ DR(w1) = ∆ \ I1, hence

∆ \ DR(w
ĵ
w1) = I1. Lemma 2.1.31 then implies that i∞

ĵ,∆(τ∞) is the unique quotient of
i∞∅,∆(w1 ·1T ) with socle V ∞

I1,∆ and cosocle V ∞
I2,∆, which has length 2 by (iii) of Corollary 2.1.24

and is thus isomorphic to π∞.

Case 2: If I2 = I1⊔{j2}, set j def= n− j2 and wĵ def= w
ĵ
w0 = w0wĵ2 . Then wĵ is the longest

element in W ∅,ĵ2 and we have wĵ(∆ \ {j2}) = ∆ \ {j}, or equivalently wĵL
ĵ2
wĵ

−1
= L

ĵ
(note

then that wĵ is also the longest element in W ĵ,∅). In particular wĵ(I1) ⊆ ∆ \ {j} since
j2 /∈ I1 and there exists w2 ∈ W (L

ĵ
) such that DR(w2) = wĵ(I1). We choose any such w2

and define τ∞ def= cosocL
ĵ
(i∅,̂j(w2w

ĵ ·1T )∞) ∼= V ∞
wĵ(I1),̂j

⊗E δ (using (ii) of Corollary 2.1.24). By

Lemma 2.1.31 i∞
ĵ,∆(τ∞) is the unique quotient of i∞∅,∆(w2w

ĵ ·1T ) with socle V ∞
∆\DR(w

ĵ
w2wĵ),∆

and

cosocle V ∞
DR(w2wĵ),∆

. Let us first compute ∆ \DR(w
ĵ
w2w

ĵ). Let w′
2

def= (wĵ)−1w2w
ĵ ∈ W (L

ĵ2
),

we have DR(w′
2) = (wĵ)−1(DR(w2)) = (wĵ)−1wĵ(I1) = I1 and hence DR(w0w

′
2) = ∆ \ I1 by

(24). This implies ∆ \DR(w
ĵ
w2w

ĵ) = ∆ \DR(w0w
′
2) = I1. Let us now compute DR(w2w

ĵ).
Let j′ ∈ ∆ \ {j2}, then wĵ(j′) ∈ ∆ \ {j} and we have ℓ(w2w

ĵsj′) = ℓ(w2swĵ(j′)w
ĵ) =

ℓ(w2swĵ(j′)) + ℓ(wĵ) as wĵ ∈ W ĵ,∅ and w2swĵ(j′) ∈ W (L
ĵ
). By (24) we see that j′ ∈ DR(w2w

ĵ)
if and only if wĵ(j′) ∈ DR(w2). If j′ = j2, then as wĵ > wĵsj2 (using that wĵsj2 ∈ W ĵ,∅ and
that wĵ ∈ W ĵ,∅ has the longest possible length) we have ℓ(w2w

ĵsj′) = ℓ(w2) + ℓ(wĵsj′) =
ℓ(w2w

ĵ)−1, hence j′ ∈ DR(w2w
ĵ). ThusDR(w2w

ĵ) = (wĵ)−1(DR(w2))⊔{j2} = I1⊔{j2} = I2.
We deduce that i∞

ĵ,∆(τ∞) is the (unique) quotient of i∞∅,∆(w2w
ĵ ·1T ) with socle V ∞

I1,∆ and cosocle
V ∞
I2,∆. It has length 2 by (iii) of Corollary 2.1.24 and is thus isomorphic to π∞.

Lemma 2.2.6. Let I ⊆ I ′ ⊆ ∆ and I0, I1 ⊆ I. Then we have the following isomorphism in
Rep∞

adm(LI′)
i∞I,I′(QI(I0, I1)) ∼= QI′(I0 ⊔ (I ′ \ I), I1).

Proof. By choosing a sequence of subsets I ′ = J0 ⊋ J1 ⊋ · · · ⊋ Jt = I with t = #I ′ \ I
(and thus #Jt′−1 \ Jt′ = 1 for 1 ≤ t′ ≤ t), we easily reduce to the case when I ′ \ I = {j}
for some j ∈ ∆. As QI(I0, I1) is G-basic, so is i∞I,I′(QI(I0, I1)). By (iv) of Remark 2.1.16
we know that i∞I,I′(QI(I0, I1)) is multiplicity free with simple socle and cosocle. As i∞I,I′(−)
is exact and QI(I0, I1) has socle V ∞

I0,I and cosocle V ∞
I1,I , by (i) of Lemma 2.2.5 we know that

V ∞
I0⊔{j},I′ (resp. V ∞

I1,I′) occurs in the socle (resp. cosocle) of i∞I,I′(QI(I0, I1)), which forces the
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latter to have socle V ∞
I0⊔{j},I′ (resp. cosocle V ∞

I1,I′). By (i) of Lemma 2.2.1 we conclude that
i∞I,I′(QI(I0, I1)) ∼= QI′(I0 ⊔ (I ′ \ I), I ′

1).

Lemma 2.2.7. Let I0, I1 ⊆ I ⊆ ∆ with I0 ̸= I1, and I2 ⊆ I such that d(I0, I2) = d(I0, I1)−1
and d(I2, I1) = 1. Let π∞ in Rep∞

adm(LI) the unique non-split extension 0→ V ∞
I1,I → π∞ →

V ∞
I2,I → 0 (Lemma 2.2.3). We have dI(V ∞

I0,I , V
∞
I2,I) = dI(V ∞

I0,I , V
∞
I1,I)−1 and dI(V ∞

I0,I , π
∞) =∞.

Proof. Note first that dI(V ∞
I0,I , π

∞) = ∞ and the short exact sequence 0 → V ∞
I1,I → π∞ →

V ∞
I2,I → 0 imply Extk−1

LI
(V ∞

I0,I , V
∞
I2,I)∞ ∼= ExtkLI

(V ∞
I0,I , V

∞
I1,I)∞ for k ≥ 1, and in particu-

lar dI(V ∞
I0,I , V

∞
I2,I) = dI(V ∞

I0,I , V
∞
I1,I) − 1. Hence it is enough to prove dI(V ∞

I0,I , π
∞) = ∞,

i.e. ExtkLI
(V ∞

I0,I , π
∞)∞ = 0 for k ≥ 0.

Case 1: If I2 = I1 \ {j1} for some j1 ∈ I1 \ I0, then we have π∞ ∼= i∞I\{j1},I(V ∞
I2,I\{j1})

by (i) of Lemma 2.2.5 (which extends verbatim with ∆ replaced by I and G by LI when
I0, I1 ⊆ I). Let I− def= I \ {j1}, Σ def= W (LI−) · 1T and recall that V ∞

I2,I− ∈ BI
−

Σ by (65). By
(31) and (70) we deduce for k ≥ 0

ExtkLI
(V ∞

I0,I , π
∞)∞ ∼= ExtkLI− (JI,I−(V ∞

I0,I)BI−
Σ
, V ∞

I2,I−)∞.

Hence, to prove dI(V ∞
I0,I , π

∞) =∞, it suffices to show that JI,I−(V ∞
I0,I)BI−

Σ
= 0, or equivalently

J (V ∞
I0,I)∩Σ = ∅ (see the discussion below (37)). Let w · 1T ∈ J (V ∞

I0,I)∩Σ (using (65)), then
w ∈ W (LI−) by definition of Σ and I0 = I \DR(w) by (65). However, w ∈ W (LI−) implies
w(j1) ∈ Φ+ and thus j1 /∈ DR(w) by (24). Hence j1 ∈ I \ DR(w) = I0 which contradicts
j1 ∈ I1 \ I0. Consequently we have J (V ∞

I0,I) ∩ Σ = ∅.

Case 2: If I2 = I1 ⊔ {j2} for some j2 ∈ I0 \ I1, then we deduce from (ii) of Lemma 2.2.5
(applied with LI instead of G) that π∞ ∼= i∞I\{j},I(V ∞

wJ− (I1),I\{j} ⊗E δ) where J ⊆ I is the
subset corresponding to the Levi block of LI containing j2, j is the unique element of J such
that, for J− def= J \ {j} and wJ

− the longest element of W J−,∅(LJ), we have j2 ∈ DR(wJ−),
and δ : LI → E× is the unique smooth character such that δ|T ∼= wJ

−· 1T . Let I− def=
I \ {j}, Σ def= W (LI−)wJ−· 1T , and note that W J−,∅(LJ) ⊆ W I−,∅(LI). As in Case 1 we have
V ∞
wJ− (I1),I− ⊗E δ ∈ BI

−
Σ and for k ≥ 0:

ExtkLI
(V ∞

I0,I , π
∞)∞ ∼= ExtkLI− (JI,I−(V ∞

I0,I)BI−
Σ
, V ∞

wJ− (I1),I− ⊗E δ)∞.

Again it is enough to prove J (V ∞
I0,I)∩Σ = ∅. Let w ·1T ∈ J (V ∞

I0,I)∩Σ, then w ∈ W (LI−)wJ−

and I0 = I \DR(w) as in Case 1. However, since w ∈ W (LI−)wJ− and wJ− ∈ W I−,∅(LI) we
have DR(wJ−) ⊆ DR(w). As j2 ∈ DR(wJ−), we have j2 ∈ DR(w) and thus j2 /∈ I \DR(w) =
I0, which contradicts j2 ∈ I0 \ I1. Hence, we must have J (V ∞

I0,I) ∩ Σ = ∅.

For I0, I1, I2 ⊆ ∆, we define d(I2, [I0, I1]) def= min{d(I2, I
′
1) | I ′

1 ∈ [I0, I1]}.

Lemma 2.2.8. For I0, I1, I2 ⊆ ∆, there exists a unique I3 ∈ [I0, I1] such that

d(I2, I3) = d(I2, [I0, I1]). (80)
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Proof. Let us first prove that

I3
def= (I0 ∩ I1) ∪ (I2 ∩ (I0 ∪ I1)) (81)

satisfies (80). In fact, we prove that it satisfies the stronger statement: for all I ′
1 ∈ [I0, I1]

d(I2, I3) = d(I2, I
′
1)− d(I3, I

′
1). (82)

Recall from (74) that I ′
1 ∈ [I0, I1] if and only if

I0 ∩ I1 ⊆ I ′
1 ⊆ I0 ∪ I1. (83)

It follows from (83) and (81) that, for any I ′
1 ∈ [I0, I1], I3 \ I2 = (I0 ∩ I1) \ I2 ⊆ I ′

1 \ I2
and I ′

1 \ I3 ⊆ I ′
1 \ I2, which implies I ′

1 \ I2 = I ′
1 \ I3 ⊔ I3 \ I2. Likewise we have I2 \ I3 =

I2 \ (I0 ∪ I1) ⊆ I2 \ I ′
1 and I3 \ I ′

1 ⊆ I2 \ I ′
1, hence I2 \ I ′

1 = I2 \ I3 ⊔ I3 \ I ′
1. This implies

d(I2, I
′
1) = d(I2, I3) + d(I3, I

′
1), i.e. (82), and therefore (80).

Now we prove unicity. Let I ′
3 ∈ [I0, I1] satisfying (80), which implies d(I2, I

′
3) = d(I2, I3).

By the previous paragraph we have I3 \ I2 ⊆ I ′
3 \ I2 and I2 \ I3 ⊆ I2 \ I ′

3, hence we must have
I3 \ I2 = I ′

3 \ I2 and I2 \ I3 = I2 \ I ′
3. Assume there is x ∈ I ′

3 \ I3, then necessarily x /∈ I2 by
(81), hence x ∈ I ′

3 \ I2 but x /∈ I3 \ I2, which is a contradiction. Assume there is x ∈ I3 \ I ′
3,

then necessarily x /∈ I0 ∩ I1, hence x ∈ I2. Thus x ∈ I2 \ I ′
3 but x /∈ I2 \ I3, which is again a

contradiction. We therefore must have I3 = I ′
3.

Lemma 2.2.9. Let I ⊆ ∆ and I0, I1, I2 ⊆ I. We have dI(QI(I0, I1), V ∞
I2,I) <∞ if and only if

d(I2, I1) = d(I2, [I0, I1]), (84)

in which case dI(QI(I0, I1), V ∞
I2,I) = d(I2, I1).

Proof. Let I3 as in Lemma 2.2.8, so (84) is equivalent to I3 = I1. If I3 = I1, then by (82) we
have d(I2, I

′
1) = d(I2, I1) + d(I1, I

′
1) > d(I2, I1) for I ′

1 ∈ [I0, I1] \ {I1}. By (i) of Lemma 2.2.1,
Lemma 2.2.3 and an obvious dévissage we have ExtkLI

(ker(QI(I0, I1) → V ∞
I1,I), V ∞

I2,I)∞ = 0
for k ≤ d(I2, I1). Hence, the surjection QI(I0, I1) ↠ V ∞

I1,I induces an isomorphism for
k ≤ d(I2, I1)

ExtkLI
(V ∞

I1,I , V
∞
I2,I)

∞ ∼−→ ExtkLI
(QI(I0, I1), V ∞

I2,I)
∞.

As dI(V ∞
I1,I , V

∞
I2,I) = d(I1, I2) = d(I2, I1) (Lemma 2.2.3) we deduce dI(QI(I0, I1), V ∞

I2,I) =
d(I2, I1).

We assume from now I3 ̸= I1 and prove that dI(QI(I0, I1), V ∞
I2,I) = ∞. As I3 ̸= I1, one

easily sees that there exists I4 ∈ [I3, I1] such that d(I3, I4) = 1 and d(I3, I1) = d(I4, I1) + 1
(I4 is obtained by either adding to I3 an element of I1 \I3 or withdrawing from I3 an element
of I3 \ I1 (which is hence in I3 ∩ I0)). By applying (82) (with I4 replacing I ′

1 there) we
deduce d(I4, I2) = d(I3, I2) + 1, and thus we have either ∅ ≠ I3 \ I4 ⊆ I2, or I4 \ I3 ̸= ∅ with
(I4\I3)∩I2 = ∅. Now consider any I ′

3, I
′
4 ∈ [I0, I1] such that I3\I4 = I ′

3\I ′
4 and I4\I3 = I ′

4\I ′
3.

This implies d(I ′
3, I

′
4) = 1 and one easily checks that one still has d(I ′

3, I1) = d(I ′
4, I1) + 1,

47



and that we have either ∅ ̸= I ′
4 \ I ′

3 ⊆ I1, or I ′
3 \ I ′

4 ̸= ∅ with (I ′
3 \ I ′

4) ∩ I1 = ∅. In all
cases I ′

4 ∈ [I ′
3, I1] and by (iii) of Lemma 2.2.1 we deduce that QI(I ′

3, I
′
4) is a subquotient of

QI(I0, I1). Moreover we also have either ∅ ≠ I ′
3 \ I ′

4 ⊆ I2, or I ′
4 \ I ′

3 ̸= ∅ with (I ′
4 \ I ′

3)∩ I2 = ∅,
and in both cases d(I2, I

′
4) = d(I2, I

′
3) + 1. We then deduce by (77) for k ≥ 0:

ExtkLI
(QI(I ′

3, I
′
4), V ∞

I2,I)
∞∼=ExtkLI

((V ∞
I2,I)

∼, QI(I ′
3, I

′
4)∼)∞∼=ExtkLI

(V ∞
I2,I , QI(I ′

4, I
′
3))∞ =0 (85)

where the last equality follows from the last assertion in Lemma 2.2.7 together with (i) of
Lemma 2.2.1. Now, for a given j ∈ I1\I0 (resp. j ∈ I0\I1), one can write [I0, I1] as a disjoint
union of [I ′

0, I
′
1] for I ′

0, I
′
1 ∈ [I0, I1] such that I ′

1 = I ′
0 ⊔ {j} (resp. I ′

0 = I ′
1 ⊔ {j}). It follows

that [I0, I1] is the disjoint union of [I ′
3, I

′
4] for some I ′

3, I
′
4 ∈ [I0, I1] as discussed above, and

hence that QI(I0, I1) admits a filtration whose graded pieces are the QI(I ′
3, I

′
4) (using (iii)

of Lemma 2.2.1). By (85) and an obvious dévissage we deduce ExtkLI
(QI(I0, I1), V ∞

I2,I)∞ = 0
for k ≥ 0, i.e. dI(QI(I0, I1), V ∞

I2,I) =∞.

Lemma 2.2.10. Let I ⊆ ∆ and I0, I1, I
′
0, I

′
1 ⊆ I with [I0, I1] ∩ [I ′

0, I
′
1] = ∅. Then we have

Ext1
LI

(QI(I ′
0, I

′
1), QI(I0, I1))∞ ̸= 0 (86)

if and only if [I0, I
′
1] ⊆ [I0, I1] ⊔ [I ′

0, I
′
1], in which case (86) is one dimensional.

Proof. It follows from (75) that we have [I0, I
′
1]∩ [I0, I1] = [I0, I

′′
1 ] with I ′′

1
def= (I0∩ (I1∪ I ′

1))⊔
((I1∩I ′

1)\I0), and similarly [I0, I
′
1]∩ [I ′

0, I
′
1] = [I ′′

0 , I
′
1] with I ′′

0
def= (I ′

1∩(I0∪I ′
0))⊔((I0∩I ′

0)\I ′
1).

Assume first that [I0, I
′
1] ⊆ [I0, I1] ⊔ [I ′

0, I
′
1], which together with [I0, I1] ∩ [I ′

0, I
′
1] = ∅

implies that

[I0, I
′
1] = ([I0, I

′
1] ∩ [I0, I1]) ⊔ ([I0, I

′
1] ∩ [I ′

0, I
′
1]) = [I0, I

′′
1 ] ⊔ [I ′′

0 , I
′
1]. (87)

By (i) and (ii) of Lemma 2.2.1 and since I ′′
0 ∈ [I0, I

′
1] (resp. I ′′

1 ∈ [I0, I
′
1]), there exists a (unique

up to scalar) surjection QI(I0, I
′
1) ↠ QI(I ′′

0 , I
′
1) (resp. injection QI(I0, I

′′
1 ) ↪→ QI(I0, I

′
1)). By

(i) of Lemma 2.2.1 and (87), we deduce a short exact sequence

0→ QI(I0, I
′′
1 )→ QI(I0, I

′
1)→ QI(I ′′

0 , I
′
1)→ 0

which has to be non-split as QI(I0, I
′
1) has simple socle and cosocle. In particular, we have

Ext1
G(QI(I ′′

0 , I
′
1), QI(I0, I

′′
1 )) ̸= 0. (88)

Our assumption [I0, I1] ∩ [I ′
0, I

′
1] = ∅ implies that QI(I ′

0, I
′
1) and QI(I0, I1) have no com-

mon Jordan-Hölder factor. Thus the surjection QI(I ′
0, I

′
1) ↠ QI(I ′′

0 , I
′
1) and the injection

QI(I0, I
′′
1 ) ↪→ QI(I0, I1)) from (ii) of Lemma 2.2.1 induce an injection

Ext1
G(QI(I ′′

0 , I
′
1), QI(I0, I

′′
1 )) ↪→ Ext1

G(QI(I ′
0, I

′
1), QI(I0, I1)),

which together with (88) gives (86). It is clear from [I0, I1] ∩ [I ′
0, I

′
1] = ∅ and (86) that

d(QI(I ′
0, I

′
1), QI(I0, I1)) = 1, which by Lemma 2.2.4 implies that (86) is one dimensional.
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Now we assume that (86) holds and let V be a representationt which fits into a non-split
extension

0→ QI(I0, I1)→ V → QI(I ′
0, I

′
1)→ 0.

By Lemma 2.1.32 we know that V admits unique subquotient V ′ which is G-basic with socle
socLI

(QI(I0, I1)) ∼= V ∞
I0,I and cosocle cosocLI

(QI(I ′
0, I

′
1)) ∼= V ∞

I′
1,I

. By (i) of Lemma 2.2.1 we
must have V ′ ∼= QI(I0, I

′
1) and in particular

JHLI
(QI(I0, I

′
1)) ⊆ JHLI

(V ) = JHLI
(QI(I0, I1)) ⊔ JHLI

(QI(I ′
0, I

′
1))

which (again by loc. cit.) gives [I0, I
′
1] ⊆ [I0, I1] ⊔ [I ′

0, I
′
1].

Lemma 2.2.11. For i = 0, 1 let Ii ⊆ ∆ and π∞
i in Rep∞

adm(LIi
) irreducible G-regular with

Σi
def= W (LIi

) · J (π∞
i ). Let w ∈ W I0,I1.

(i) We have
HomLI1

(i∞I0,I1,w(JI0,I1,w(π∞
0 )), π∞

1 ) ̸= 0 (89)
if and only if we have an isomorphism of irreducible G-regular representations

JI0,I1,w(π∞
0 )

Bw−1(I0)∩I1
w−1·Σ0∩Σ1

∼= J ′
I1,w−1(I0)∩I1(π∞

1 )
Bw−1(I0)∩I1

w−1·Σ0∩Σ1

, (90)

in which case (89) is one dimensional. If we denote by π∞ the representation in (90),
we have π∞

1
∼= cosocLI1

(i∞w−1(I0)∩I1,I1
(π∞)) and

π∞
0
∼= socLI0

(i∞w−1(I0)∩I1,w−1(I0)(π∞ ⊗E δ−1
I0,I1,w)w−1)
∼= socLI0

(i∞I0∩w(I1),I0((π∞ ⊗E δ−1
I0,I1,w)w−1)).

(ii) Assume (89) and let σ∞
0 be an irreducible constituent of i∞I0∩w(I1),I0

((π∞⊗E δ−1
I0,I1,w)w−1)

and σ∞
1 an irreducible constituent of i∞w−1(I0)∩I1,I1

(π∞). Then we have

JI0,I1,w(σ∞
0 )

Bw−1(I0)∩I1
w−1·Σ0∩Σ1

= 0 if σ∞
0 ̸= π∞

0 , J ′
I1,w−1(I0)∩I1(σ∞

1 )
Bw−1(I0)∩I1

w−1·Σ0∩Σ1

= 0 if σ∞
1 ̸= π∞

1 ,

and we also have

ExtkLI1
(i∞I0,I1,w(JI0,I1,w(σ∞

0 )), σ∞
1 ) ̸= 0 for some k ≥ 0 (91)

if and only if σ∞
0 = π∞

0 and σ∞
1 = π∞

1 .

Proof. Recall that by (32) and (45) we have canonical isomorphisms for k ≥ 0

ExtkLI1
(JI0,I1,w(π∞

0 ), J ′
I1,w−1(I0)∩I1(π∞

1 )) ∼= ExtkLI1
(i∞I0,I1,w(JI0,I1,w(π∞

0 )), π∞
1 ) (92)

and that any G-regular left W (Lw−1(I0)∩I1)-coset Σ ⊆ T̂∞ gives a block Bw
−1(I0)∩I1

Σ (see the
discussion around (37)). We write I def= w−1(I0) ∩ I1 and δ

def= δI0,I1,w.
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We prove (i). Assume that (89) holds, thus the vector spaces in (92) are non-zero for
k = 0. Then by Lemma 2.1.29 and Remark 2.1.30 there exists a left W (LI)-coset Σ such
that

JI0,I1,w(π∞
0 )BI

Σ
̸= 0 ̸= J ′

I1,I(π
∞
1 )BI

Σ
. (93)

Recall that Σi = W (LIi
) · J (π∞

i ) are single left regular W (LIi
)-cosets for i = 0, 1 by (the

last statement in) (i) of Lemma 2.1.15. An easy exercise using that all characters here are
G-regular shows that w−1 ·Σ0∩Σ1 is again a single (regular) left W (Lw−1(I0)∩I1)-coset. As we
have J (JI0,I1,w(π∞

0 )) ⊆ w−1·Σ0 and J (J ′
I1,I(π∞

1 )) ⊆ Σ1, we necessarily have Σ = w−1·Σ0∩Σ1.
In other words, Σ as in (93) is uniquely determined by π∞

0 , π∞
1 and w, and thus we have a

canonical isomorphism

0 ̸= HomLI1
(JI0,I1,w(π∞

0 ), J ′
I1,I(π

∞
1 )) ∼= HomLI1

(JI0,I1,w(π∞
0 )BI

Σ
, J ′

I1,I(π
∞
1 )BI

Σ
). (94)

As π∞
0 and π∞

1 are irreducible G-regular, both JI0,I1,w(π∞
0 )BI

Σ
and J ′

I1,I(π∞
1 )BI

Σ
are irreducible

G-regular by (the last statement in) Lemma 2.1.29 and Remark 2.1.30. Hence they must
be isomorphic by (94) and we denote them by π∞. Note in particular that (94) is one
dimensional and thus (89) is one dimensional. We have by (32)

HomLI1
(i∞I,I1(π∞), π∞

1 ) ∼= HomLI
(π∞, J ′

I1,I(π
∞
1 )) ̸= 0

and by (31) (together with (43))

HomLI0
((π∞

0 )w, i∞I,w−1(I0)(π∞ ⊗E δ−1)) ∼= HomLI
(JI0,I1,w(π∞

0 ), π∞) ̸= 0.

As π∞
0 and π∞

1 are irreducible G-regular, we deduce π∞
0
∼= socLI0

(i∞w(I),I0
(π∞⊗E δ−1)w−1) and

π∞
1
∼= cosocLI1

(i∞I,I1(π∞)).
We prove (ii). We borrow Σ and π∞ from (i) and we fix σ∞

0 ∈ JHLI0
(i∞w(I),I0

((π∞ ⊗E
δ−1)w−1)) and σ∞

1 ∈ JHLI1
(i∞I,I1(π∞)). It follows from Lemma 2.1.18 that the natural injection

JI0,I1,w(π∞
0 )BI

Σ
∼= π∞ ∼= i∞I,I,1(JI,I,1(π∞ ⊗E δ−1))⊗E δ

↪→ (Jw−1(I0),I(i∞I,w−1(I0)(π∞ ⊗E δ−1))⊗E δ)BI
Σ

is an isomorphism, and hence that JI0,I1,w(i∞I,w−1(I0)(π∞⊗Eδ−1)w−1
/π∞

0 )BI
Σ

= 0, or equivalently
JI0,I1,w(σ∞

0 )BI
Σ

= 0, for σ∞
0 ̸= π∞

0 . Similarly, for w1 the longest element of W ∅,I(LI1), it follows
from (34) and Lemma 2.1.18 that

J ′
I1,I(i

∞
I,I1(π∞))BI

Σ
∼= (JI1,w1(I)(i∞I,I1(π∞))w1 ⊗E δ−1

PI∩LI1
)BI

Σ

∼= (i∞I,w1(I),w1(JI,w1(I),w1(π∞))w1 ⊗E δ−1
PI∩LI1

)BI
Σ

∼= ((π∞)w
−1
1 ⊗E δPw1(I)∩LI1

)w1 ⊗E δ−1
PI∩LI1

∼= π∞ ∼= J ′
I1,I(π

∞
1 )BI

Σ
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which implies J ′
I1,I(σ∞

1 )BI
Σ

= 0 for σ∞
1 ̸= π∞

1 . Furthermore, arguing as in (i) with σ∞
i instead

of π∞
i (and ExtkLI

instead of HomLI
), we have seen that (91) forces

JI0,I1,w(σ∞
0 )BI

Σ′
̸= 0 ̸= J ′

I1,I(σ
∞
1 )BI

Σ′

where Σ′ def= w−1 · W (LI0) · J (σ∞
0 ) ∩ W (LI1) · J (σ∞

1 ). But it easily follows from (i) of
Lemma 2.1.15 that

W (LI1) · J (σ∞
1 ) = W (LI1) · J (i∞I,I1(π∞)) = W (LI1) · J (π∞

1 ) = Σ1

and similarly W (LI0) · J (σ∞
0 ) = Σ0, which forces Σ′ = Σ. By what we have proven before

on JI0,I1,w(σ∞
0 )BI

Σ
and J ′

I1,I(σ∞
1 )BI

Σ
, we deduce that (91) forces σ∞

0 = π∞
0 and σ∞

1 = π∞
1 .

2.3 Examples of G-basic representations
We study specific G-basic representations: the representations π∞

j1,j2 below. We prove several
technical lemmas on these representations which will be mainly used in §5.2 below.

Given j, j′ ∈ Z, we write [j, j′] def= {j′′ ∈ Z | j ≤ j′′ ≤ j′} (hence [j, j′] = ∅ if j′ < j).
Recall that ĵ = ∆ \ {j} for j ∈ ∆. We also use the convenient notation n̂

def= ∆. We define

J∞ def= {(j1, j2) | 1 ≤ j1 ≤ j2 ≤ n, j1 ≤ n− 1}

equipped with the partial order (j1, j2) ≤ (j′
1, j

′
2) if and only if j2 ≤ j′

2 and j2 − j1 ≤ j′
2 − j′

1.
If j ≥ 1, we write St∞

j (resp. 1j) for the smooth Steinberg (resp. the trivial representation)
of GLj(K). For (j1, j2) ∈ J∞, we set

σ∞
j1,j2

def= |detj1|
j2−j1
K ⊠E

(
|detj2−j1|

−j1
K ⊗E St∞

j2−j1

)
⊠E St∞

n−j2 ∈ Rep∞
adm(L

ĵ1∩ĵ2),

which is irreducible G-regular, and we define the G-basic representation π∞
j1,j2

def= i∞
ĵ1∩ĵ2 ,̂j1

(σ∞
j1,j2) if 1 ≤ j1 < j2 ≤ n− 1

π∞
j1,j2

def= σ∞
j1,j2 if j1 = j2 or j2 = n.

(95)

In particular, we have π∞
j1,j1 = σ∞

j1,j1 = 1j1 ⊠E St∞
n−j1 = V ∞

[1,j1−1],̂j1
when j2 = j1, and π∞

j1,n =
σ∞
j1,n = |detj1|

n−j1
K ⊠E

(
|detn−j1|

−j1
K ⊗E St∞

n−j1

)
when j2 = n. Recall that

Σj1,j2
def= W (L

ĵ1
) · J (σ∞

j1,j2) = W (L
ĵ1

) · J (π∞
j1,j2) (96)

and Σ′
j1,j2

def= W (L
ĵ1∩ĵ2) · J (σ∞

j1,j2) are single (regular) left cosets by (i) of Lemma 2.1.15.
Let ΓΣj1,j2

and ΓΣ′
j1,j2

be their respective associated undirected graphs (see above Theorem
2.1.20). They have the same vertices but ΓΣj1,j2

possibly has more edges. However, when
j1 < j2 < n or equivalently when L

ĵ1∩ĵ2 has 3 Levi blocks, one can explicitly check that both
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ΓΣ′
j1,j2

and ΓΣj1,j2
have 3 connected components, which implies ΓΣj1,j2

= ΓΣ′
j1,j2

. Thus any
orientation on ΓΣ′

j1,j2
defines a unique orientation on ΓΣj1,j2

, which means by Theorem 2.1.20
that, for any χ ∈ J (σ∞

j1,j2), the two principal series i∞∅,̂j1∩ĵ2
(χ) and i∞∅,̂j1(χ) have the same num-

ber of constituents. This implies in particular that π∞
j1,j2 = i∞

ĵ1∩ĵ2 ,̂j1
(σ∞

j1,j2) remains irreducible
(G-regular).

For (j1, j2) ∈ J∞, let xj1,j2 be the longest element in

{x ∈ W (G) | DL(x) = {j1}, Supp(x) ⊆ [1, j2 − 1]} (97)

with xj1,j2
def= 1 if j1 = j2. Recall that the condition DL(x) = {j1} is equivalent to x ∈ W ĵ1,∅

(use for instance (23)). The following lemma gives the structure of i∞
ĵ1∩ĵ2,∆

(σ∞
j1,j2).

Lemma 2.3.1. For (j1, j2) ∈ J∞, we have Σj1,j2 = W (L
ĵ1

)xj1,j2 ·1T and the explicit structure
of i∞

ĵ1,∆
(π∞

j1,j2) ∼= i∞
ĵ1∩ĵ2,∆

(σ∞
j1,j2) is given as follows.

(i) If 1 ≤ j1 < j2 ≤ n− 1, then i∞
ĵ1∩ĵ2,∆

(σ∞
j1,j2) has Loewy length 3, with socle V ∞

[j2−j1+1,j2],∆,
cosocle V ∞

[j2−j1,j2−1],∆, and middle layer V ∞
[j2−j1+1,j2−1],∆ ⊕ V ∞

[j2−j1,j2],∆.

(ii) If 1 ≤ j1 = j2 ≤ n− 1, then i∞
ĵ1∩ĵ2,∆

(σ∞
j1,j2) has Loewy length 2, with socle V ∞

[1,j1],∆ and
cosocle V ∞

[1,j1−1],∆.

(iii) If 1 ≤ j1 < j2 = n, then i∞
ĵ1∩ĵ2,∆

(σ∞
j1,j2) has Loewy length 2, with socle V ∞

[n−j1+1,n−1],∆
and cosocle V ∞

[n−j1,n−1],∆.

Proof. Let z′
j1,j2 ∈ W (L

ĵ1∩ĵ2) ⊆ W (G) such that z′
j1,j2 · 1T ∈ J (σ∞

j1,j2), w
ĵ1∩ĵ2 ∈ W (L

ĵ1∩ĵ2)
the longest element and zj1,j2

def= w
ĵ1∩ĵ2z

′
j1,j2 , then by (ii) of Remark 2.1.16 we have

σ∞
j1,j2
∼= socL

ĵ1∩̂j2
(i∞∅,̂j1∩ĵ2

(z′
j1,j2 · 1T )) ∼= cosocL

ĵ1∩̂j2
(i∞∅,̂j1∩ĵ2

(zj1,j2 · 1T )).

By Lemma 2.1.31 this implies that i∞
ĵ1∩ĵ2,∆

(σ∞
j1,j2) is the unique quotient of i∞∅,∆(zj1,j2 · 1T )

with socle V ∞
∆\DR(z′

j1,j2
),∆ (and cosocle V ∞

DR(zj1,j2 ),∆). Using (iii) of Corollary 2.1.24, we only
need to find an explicit z′

j1,j2 as above and compute DR(zj1,j2) and ∆ \DR(z′
j1,j2).

Let yj1,j2 be the longest element in {x ∈ W (G) | Supp(x) ⊆ [1, j1 − 1]}. Note that
yj1,j2 ∈ W (L[1,j1−1]) ∼= W (GLj1) ⊆ W (L

ĵ1∩ĵ2) and that DR(yj1,j2) = [1, j1 − 1]. We set

δj1,j2
def= |detj1|

j2−j1
K ⊠E |detj2−j1|

−j1
K ⊠E 1GLn−j2

: L
ĵ1∩ĵ2 → E×.

We observe that xj1,j2 · 1T = δj1,j2|T and that yj1,j2xj1,j2 · 1T = (yj1,j2 · 1T ) ⊗E (δj1,j2|T ) (use
yj1,j2 ∈ W (L

ĵ1∩ĵ2)). This implies

i∞∅,̂j1∩ĵ2
(yj1,j2xj1,j2 · 1T ) ∼= i∞∅,̂j1∩ĵ2

((yj1,j2 · 1T )⊗E δj1,j2|T ) ∼= i∞∅,̂j1∩ĵ2
(yj1,j2 · 1T )⊗E δj1,j2 . (98)
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It follows from (ii) of Lemma 2.1.24 that

cosocL
ĵ1∩̂j2

(i∞∅,̂j1∩ĵ2
(yj1,j2 · 1T )) ∼= 1GLj1

⊠E St∞
j2−j1 ⊠E St∞

n−j2 ,

which together with (98) implies

cosocL
ĵ1∩̂j2

(i∞∅,̂j1∩ĵ2
(yj1,j2xj1,j2 · 1T )) ∼= σ∞

j1,j2 . (99)

Hence we may take zj1,j2 = yj1,j2xj1,j2 . Note that (99) and (i) of Lemma 2.1.15 imply

Σj1,j2 = W (L
ĵ1

) · J (σ∞
j1,j2) = W (L

ĵ1
)yj1,j2xj1,j2 · 1T = W (L

ĵ1
)xj1,j2 · 1T .

Let y′
j1,j2

def= w
ĵ1∩ĵ2yj1,j2 , it is the longest element of W (GLj2−j1 × GLn−j2) (with GLj2−j1 ×

GLn−j1 seen as Levi blocks of L
ĵ1∩ĵ2), and we have DR(y′

j1,j2) = [j1 + 1, j2 − 1] ⊔ [j2 + 1, n].
We have the following two cases.

Case 1: If j1 = j2, then zj1,j2 = yj1,j2 and we have DR(zj1,j2) = DR(yj1,j2) = [1, j1 − 1]
and ∆ \DR(z′

j1,j2) = ∆ \DR(y′
j1,j2) = ∆ \ [j1 + 1, n] = [1, j1]. This gives (ii).

Case 2: We assume j2 > j1 and write x, y, y′, z = yx, z′ = y′x for xj1,j2 , yj1,j2 , y′
j1,j2 ,

zj1,j2 , z′
j1,j2 . As x ∈ W ĵ1,∅, we have ℓ(ux) = ℓ(u) + ℓ(x) for each u ∈ W (L

ĵ1
). In particular,

as y, y′ ∈ W (L
ĵ1

), we have ℓ(z) = ℓ(y) + ℓ(x) and ℓ(z′) = ℓ(y′) + ℓ(x). We also have
DR(z) ⊆ Supp(yx) ⊆ [1, j2−1] and DR(z′) ⊆ Supp(y′x) ⊆ ĵ2. If 1 ≤ j ≤ j2− j1−1, we have
j + j1 > j1 and thus ysj+j1 , y′sj+j1 ∈ W (L

ĵ1
). This together with ysj+j1 > y and y′sj+j1 < y

gives yxsj = ysj+j1x > yx and y′xsj = y′sj+j1x < yx, and thus j ∈ DR(z′) \ DR(z). If
j2− j1 + 1 ≤ j ≤ j2− 1, we have j− (j2− j1) < j1 and thus ysj−(j2−j1), y

′sj−(j2−j1) ∈ W (L
ĵ1

).
This together with ysj−(j2−j1) < y and y′sj−(j2−j1) > y′ gives yxsj = ysj−(j2−j1)x < yx
and y′xsj = y′sj−(j2−j1)x > y′x, and thus j ∈ DR(z) \ DR(z′). If j2 + 1 ≤ j ≤ n − 1,
we have y′xsj = y′sjx < y′x and j /∈ Supp(z), and thus j ∈ DR(z′) \ DR(z). To finish,
it suffices to prove that j2 − j1 ∈ DR(x), which implies j2 − j1 ∈ DR(z) ∩ DR(z′). Let
I

def= [1, j2−1], I ′ def= [1, j2−1]\{j1} and recall that wI , wI′ is the longest element of respectively
W (LI), W (LI′). By definition of x we have x = wI′wI (with DR(x) ⊆ Supp(x) ⊆ I) and
thus xsj′ = wI′sj2−j′wI for j′ ∈ I. Note that u < u′ if and only if uwI > u′wI for each
u, u′ ∈ W (LI). It follows that j′ ∈ DR(x) ⊆ I if and only if xsj′ < x (see (24)) if and only if
wI′sn−j′ > wI′ if and only if j′ ∈ I \ wI(DR(wI′)) = I \ wI(I ′) = {j2 − j1}.

To sum up, we have proven DR(z) = [j2− j1, j2− 1], DR(z′) = [1, j2− j1]⊔ [j2 + 1, n− 1]
and ∆ \DR(z′) = [j2 − j1 + 1, j2] ∩∆. This gives (i) and (iii).

For (j1, j2) ∈ J∞, we define subsets I+
j1,j2 , I

−
j1,j2 ⊆ ∆ by

socG(i∞
ĵ1,∆

(π∞
j1,j2)) ∼= V ∞

I+
j1,j2

,∆, cosocG(i∞
ĵ1,∆

(π∞
j1,j2)) ∼= V ∞

I−
j1,j2

,∆ (100)

and we note that I+
j1,j2 , I

−
j1,j2 are explicitly given in Lemma 2.3.1. We have i∞

ĵ1,∆
(π∞

j1,j2) ∼=
Q∆(I+

j1,j2 , I
−
j1,j2) by (i) of Lemma 2.2.1. The following lemma will be used in §5.2 to study

extensions between (certain) non-locally algebraic Orlik-Strauch representations.
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Lemma 2.3.2. Let (j1, j2), (j′
1, j

′
2) ∈ J∞ with (j1, j2) < (j′

1, j
′
2). Then we have

(i) d(π∞
j′

1,j
′
2
, π∞

j1,j2) = 0 if and only if (j′
1, j

′
2) ∈ {(j1 + 1, j2 + 1), (j1 − 1, j2), (j1, j2 + 1)};

(ii) d(π∞
j′

1,j
′
2
, π∞

j1,j2) = 1 if and only if (j′
1, j

′
2) ∈ {(j1 + 2, j2 + 2), (j1 − 2, j2)};

(iii) J (i∞
ĵ′

1,∆
(π∞

j′
1,j

′
2
)) ∩ J (π∞

j1,j2) = ∅ if (j′
1, j

′
2) /∈ {(j1 + 1, j2 + 1), (j1 − 1, j2), (j1, j2 + 1)}.

Proof. We prove (i). By (i) of Lemma 2.2.1, it suffices to check the conditions I−
j′

1,j
′
2
∈

[I+
j1,j2 , I

−
j1,j2 ] and I+

j1,j2 ∈ [I+
j′

1,j
′
2
, I−
j′

1,j
′
2
]. This is a straightforward check using Lemma 2.3.1:

• If (j′
1, j

′
2) /∈ {(j1+1, j2+1), (j1−1, j2), (j1, j2+1)}, then one can check that [I+

j1,j2 , I
−
j1,j2 ]∩

[I+
j′

1,j
′
2
, I−
j′

1,j
′
2
] ̸= ∅ only when j1 = j′

1 = 1 and j′
2 > j2 + 1, in which case [I+

j1,j2 , I
−
j1,j2 ] ∩

[I+
j′

1,j
′
2
, I−
j′

1,j
′
2
] = {∅} (i.e. the empty set is the only subset of ∆ in this intersection). Since

I+
j1,j2 , I

−
j′

1,j
′
2
̸= ∅, the conditions I−

j′
1,j

′
2
∈ [I+

j1,j2 , I
−
j1,j2 ] and I+

j1,j2 ∈ [I+
j′

1,j
′
2
, I−
j′

1,j
′
2
] are never

satisfied.

• If (j′
1, j

′
2) ∈ {(j1+1, j2+1), (j1−1, j2), (j1, j2+1)}, then one can check that [I+

j1,j2 , I
−
j1,j2 ]∩

[I+
j′

1,j
′
2
, I−
j′

1,j
′
2
] = [I+

j1,j2 , I
−
j′

1,j
′
2
], more precisely [I+

j1,j2 , I
−
j1,j2 ] ∩ [I+

j′
1,j

′
2
, I−
j′

1,j
′
2
] = {[j2 − j1 +

1, j2], [j2 − j1, j2]} if (j′
1, j

′
2) = (j1 + 1, j2 + 1), [I+

j1,j2 , I
−
j1,j2 ] ∩ [I+

j′
1,j

′
2
, I−
j′

1,j
′
2
] = {[j2 − j1 +

1, j2], [j2 − j1 + 1, j2 − 1]} if (j′
1, j

′
2) = (j1 − 1, j2), and I+

j1,j2 = I−
j′

1,j
′
2

= [j2 − j1 + 1, j2] if
(j′

1, j
′
2) = (j1, j2 + 1).

We prove (ii). By (i) it suffices to find all (j1, j2), (j′
1, j

′
2) ∈ J∞ satisfying (j1, j2) < (j′

1, j
′
2),

(j′
1, j

′
2) /∈ {(j1 + 1, j2 + 1), (j1 − 1, j2), (j1, j2 + 1)} and

Ext1
G(i∞

ĵ′
1,∆

(π∞
j′

1,j
′
2
), i∞

ĵ1,∆
(π∞

j1,j2))∞ (101)

is non-zero. We have two cases.

Case 1: If [I+
j1,j2 , I

−
j1,j2 ]∩ [I+

j′
1,j

′
2
, I−
j′

1,j
′
2
] ̸= ∅, as (j′

1, j
′
2) /∈ {(j1 +1, j2 +1), (j1−1, j2), (j1, j2 +

1)}, we must have j1 = j′
1 = 1, j′

2 > j2 +1 and [I+
j1,j2 , I

−
j1,j2 ]∩ [I+

j′
1,j

′
2
, I−
j′

1,j
′
2
] = {∅} (see the proof

of (i)). Then i∞
ĵ1,∆

(π∞
j1,j2) contains a length two subrepresentation σ∞ with socle V ∞

{j2},∆ and
socle St∞

n = V ∞
∅,∆. It follows from Lemma 2.2.7 that Ext1

G(V ∞
I,∆, σ

∞)∞ = 0 for each I ⊆ ∆
satisfying d(I, {j2}) = d(I, ∅) + 1, or equivalently j2 /∈ I. As any I ∈ [I+

j′
1,j

′
2
, I−
j′

1,j
′
2
] satisfies

j2 /∈ I, we deduce by dévissage

Ext1
G(i∞

ĵ′
1,∆

(π∞
j′

1,j
′
2
), σ∞)∞ = 0. (102)

If i∞
ĵ1,∆

(π∞
j1,j2)/σ∞ ̸= 0, then it has length two with socle V ∞

[j2−1,j2],∆ and cosocle V ∞
{j2−1},∆, and

it follows from Lemma 2.2.7 that

Ext1
G(V ∞

∅,∆, i
∞
ĵ1,∆

(π∞
j1,j2)/σ∞)∞ = 0. (103)
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As any ∅ ̸= I ∈ [I+
j′

1,j
′
2
, I−
j′

1,j
′
2
] satisfies d(I, [j2 − 1, j2]) ≥ 3 and d(I, {j2 − 1}) ≥ 2, we deduce

from the first statement of Lemma 2.2.3 that Ext1
G(V ∞

I,∆, i
∞
ĵ1,∆

(π∞
j1,j2)/σ∞)∞ = 0 for such I,

which together with (103) implies Ext1
G(i∞

ĵ′
1,∆

(π∞
j′

1,j
′
2
), i∞

ĵ1,∆
(π∞

j1,j2)/σ∞)∞ = 0. With (102) we
deduce that (101) is zero.

Case 2: We assume [I+
j1,j2 , I

−
j1,j2 ] ∩ [I+

j′
1,j

′
2
, I−
j′

1,j
′
2
] = ∅, then we must have max{j1, j

′
1} ≥ 2.

If (101) is non-zero, then i∞
ĵ1,∆

(π∞
j1,j2) (resp. i∞

ĵ′
1,∆

(π∞
j′

1,j
′
2
)) must contain a Jordan-Hölder factor

V ∞
I0,∆ (resp. V ∞

I1,∆) such that I0 ̸= I1 and

Ext1
G(V ∞

I0,∆, V
∞
I1,∆)∞ ̸= 0, (104)

which by Lemma 2.2.3 implies d(I0, I1) = 1. We have the possibilities.

• If (j′
1, j

′
2) ∈ {(j1 + 2, j2 + 2), (j1 − 2, j2)}, then one can check that [I+

j1,j2 , I
−
j1,j2 ] ⊔

[I+
j′

1,j
′
2
, I−
j′

1,j
′
2
] = [I+

j1,j2 , I
−
j′

1,j
′
2
], and thus Q∆(I+

j1,j2 , I
−
j′

1,j
′
2
) gives a non-zero element of (101).

• If (j′
1, j

′
2) ∈ {(j1 + 1, j2 + 2), (j1 − 1, j2 + 1)}, then the only possible choice of I0, I1 for

(104) to hold is I0 = I+
j′

1,j
′
2

and I1 = I−
j1,j2 , and there always exists I2 ∈ [I+

j1,j2 , I
−
j1,j2 ]\{I1}

such that d(I1, I2) = 1 and d(I0, I2) = 2. Write π∞ for the unique length two quotient
of i∞

ĵ1,∆
(π∞

j1,j2) with socle V ∞
I2,∆ and cosocle V ∞

I1,∆, then it follows from Lemma 2.2.7
that Ext1

G(V ∞
I0,∆, π

∞) = 0. By a dévissage on both i∞
ĵ′

1,∆
(π∞

j′
1,j

′
2
) and i∞

ĵ1,∆
(π∞

j1,j2) (using a
filtration on i∞

ĵ′
1,∆

(π∞
j′

1,j
′
2
) with simple graded pieces and a filtration on i∞

ĵ1,∆
(π∞

j1,j2) with
π∞ being the unique non-simple graded piece), we deduce that (101) is zero.

• If (j′
1, j

′
2) /∈ {(j1 + 2, j2 + 2), (j1 − 2, j2), (j1 + 1, j2 + 2), (j1 − 1, j2 + 1)}, then a pair

I0, I1 as in (104) does not exist since we have d(I0, I1) ≥ 2 for any I0 ∈ [I+
j1,j2 , I

−
j1,j2 ]

and I1 ∈ [I+
j′

1,j
′
2
, I−
j′

1,j
′
2
]. Hence (101) is zero by dévissage.

Finally we prove (iii). By (31) we have

HomL
ĵ1

(J∆,̂j1(V ∞
I+

j1,j2
,∆), π∞

j1,j2) ∼= HomG(V ∞
I+

j1,j2
,∆, i

∞
ĵ1,∆

(π∞
j1,j2)) ̸= 0

and thus J (π∞
j1,j2) ⊆ J (J∆,̂j1(V ∞

I+
j1,j2

,∆)) = J (V ∞
I+

j1,j2
,∆) since π∞

j1,j2 is irreducible. Hence, to
prove (iii), it suffices to show that J (i∞

ĵ′
1,∆

(π∞
j′

1,j
′
2
))∩J (V ∞

I+
j1,j2

,∆) = ∅, or equivalently by (ii) of
Lemma 2.1.15 that V ∞

I+
j1,j2

,∆ is not a constituent of i∞
ĵ′

1,∆
(π∞

j′
1,j

′
2
) ∼= Q∆(I+

j′
1,j

′
2
, I−
j′

1,j
′
2
), i.e. I+

j1,j2 /∈
[I+
j′

1,j
′
2
, I−
j′

1,j
′
2
] by (i) of Lemma 2.2.1. By the proof of (i), we already see that (j1, j2) < (j′

1, j
′
2),

(j′
1, j

′
2) /∈ {(j1 + 1, j2 + 1), (j1− 1, j2), (j1, j2 + 1)} and [I+

j1,j2 , I
−
j1,j2 ]∩ [I+

j′
1,j

′
2
, I−
j′

1,j
′
2
] ̸= ∅ happens

only when j1 = j′
1 = 1 and j′

2 > j2 + 1, in which case [I+
j1,j2 , I

−
j1,j2 ] ∩ [I+

j′
1,j

′
2
, I−
j′

1,j
′
2
] = {∅}. But

we never have I+
j1,j2 = ∅, which proves the statement.

The following lemma will be used in §5.2 to study extensions between (certain) non-locally
algebraic Orlik-Strauch representations and (certain) locally algebraic representations.
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Lemma 2.3.3. Let (j1, j2) ∈ J∞ and I ⊆ ∆.

(i) We have d(π∞
j1,j2 , V

∞
I,∆) = 0 if and only if I = I−

j1,j2, and d(V ∞
I,∆, π

∞
j1,j2) = 0 if and only

if I = I+
j1,j2.

(ii) If I ̸= I−
j1,j2, then we have d(π∞

j1,j2 , V
∞
I,∆) = 1 if and only if I /∈ [I+

j1,j2 , I
−
j1,j2 ] and

d(I−
j1,j2 , I) = 1. Similarly, if I ̸= I+

j1,j2, then d(V ∞
I,∆, π

∞
j1,j2) = 1 if and only if I /∈

[I+
j1,j2 , I

−
j1,j2 ] and d(I, I+

j1,j2) = 1.

Proof. (i) follows from i∞
ĵ1,∆

(π∞
j1,j2) ∼= Q∆(I+

j1,j2 , I
−
j1,j2). (ii) follows from this and Lemma 2.2.9,

using moreover the isomorphisms

Ext1
G(i∞

ĵ1
(π∞

j1,j2), V ∞
I,∆)∞ ∼= Ext1

G(V ∞
I,∆, i

∞
ĵ1

(π∞
j1,j2)∼)∞ ∼= Ext1

G(V ∞
I,∆, Q∆(I−

j1,j2 , I
+
j1,j2))∞

for the second statement (see Remark 2.2.2).

Recall that Σj1,j2 is defined in (96). The following lemma will be used in Lemma 2.3.5
below (and in §5.2).

Lemma 2.3.4. Let (j1, j2), (j′
1, j

′
2) ∈ J∞ with (j1, j2) < (j′

1, j
′
2).

(i) We have Σj1,j2 ∩ Σj′
1,j

′
2
̸= ∅ if and only if either j′

2 = j2 or j′
2 − j′

1 = j2 − j1.

(ii) If j′
1 = j1 then Σj1,j2 ∩ (w−1 · Σj1,j′

2
) ̸= ∅ for some w ∈ W ĵ1 ,̂j1 if and only if w is the

representative of w[1,j′
2−1]w

−1
[1,j2−1], i.e. w[1,j′

2−1]w
−1
[1,j2−1] ∈ W (L

ĵ1
)wW (L

ĵ1
). Moreover

Σj1,j2 ∩ (sj1 · Σj′
1,j

′
2
) ̸= ∅ (i.e. w = sj1) if and only if either j1 = 1 or j′

2 = j2 + 1.

Proof. We prove (i). Recall that Σj1,j2 = W (L
ĵ1

)xj1,j2 · 1T , Σj′
1,j

′
2

= W (L
ĵ′

1
)xj′

1,j
′
2
· 1T (see

(97) and Lemma 2.3.1). We need to find all pairs of (j1, j2) < (j′
1, j

′
2) such that Σj1,j2 ∩

Σj′
1,j

′
2
̸= ∅. As in the proof of (i) of Lemma 2.2.11, one checks that Σj1,j2 ∩ Σj′

1,j
′
2

is a
single left W (L

ĵ1∩ĵ′
1
)-coset if non-empty, and thus contains a unique element x′ · 1T with

x′ ∈ W (L
ĵ1

)xj1,j2 ∩ W (L
ĵ′

1
)xj′

1,j
′
2

of miminal length. We write x′ = x′
j1,j2xj1,j2 and x′ =

x′
j′

1,j
′
2
xj′

1,j
′
2

with x′
j1,j2 ∈ W (L

ĵ1
), x′

j′
1,j

′
2
∈ W (L

ĵ′
1
) and both expressions reduced. Then it is

clear that x′
j1,j2 ∈ W (L

ĵ1
) is minimal in W (L

ĵ1∩ĵ′
1
)x′

j1,j2 , and that x′
j′

1,j
′
2
∈ W (L

ĵ′
1
) is minimal

in W (L
ĵ1∩ĵ′

1
)x′

j′
1,j

′
2
. We have the following cases.

• If j′
1 = j1, then Σj1,j2 and Σj1,j′

2
are bothW (L

ĵ1
)-cosets, and thus Σj1,j2∩Σj′

1,j
′
2
̸= ∅ if and

only if Σj1,j2 = Σj′
1,j

′
2

if and only if xj1,j2 = xj′
1,j

′
2
, which contradicts (j1, j2) < (j′

1, j
′
2).

Thus Σj1,j2 ∩ Σj′
1,j

′
2

= ∅.

• If j′
1 < j1 and j′

2 = j2, then W (L
ĵ1

)xj1,j2 and W (L
ĵ′

1
)xj′

1,j
′
2

= W (L
ĵ′

1
)xj′

1,j2
both contain

the (unique) maximal length element in the set {x ∈ W (G) | Supp(x) ⊆ [1, j2 − 1]},
and thus Σj1,j2 ∩ Σj′

1,j
′
2
̸= ∅.
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• If j′
1 < j1 and j′

2 > j2, assume Σj1,j2 ∩ Σj′
1,j

′
2
̸= ∅. The minimal length element

x′ ∈ W (L
ĵ1

)xj1,j2 ∩ W (L
ĵ′

1
)xj′

1,j
′
2

satisfies x′ = x′
j′

1,j
′
2
xj′

1,j
′
2
≥ xj′

1,j
′
2
. Thus j′

2 − 1 ∈
[1, j′

2 − 1] = Supp(xj′
1,j

′
2
) ⊆ Supp(x′), which together with x′ = x′

j1,j2xj1,j2 and j′
2 − 1 /∈

[1, j2 − 1] = Supp(xj1,j2) forces j′
2 − 1 ∈ Supp(x′

j1,j2). As j′
1 < j1 and x′

j1,j2 ∈ W (L
ĵ1

) is
minimal in W (L

ĵ1∩ĵ′
1
)x′

j1,j2 , we deduce Supp(x′
j1,j2) ⊆ [1, j1−1] (use that L

ĵ1
and L

ĵ1∩ĵ′
1

have the lower right block GLn−j1 in common when j′
1 < j1). But [1, j1 − 1] doesn’t

contain j′
2 − 1 as j1 < j′

2, a contradiction. Thus Σj1,j2 ∩ Σj′
1,j

′
2

= ∅.

• If j′
1 > j1 and j′

2 − j′
1 = j2 − j1, then one checks that xj′

1,j
′
2
∈ W (L

ĵ1
)xj1,j2 and thus

Σj1,j2 ∩ Σj′
1,j

′
2
̸= ∅.

• If j′
1 > j1 and j′

2− j′
1 > j2− j1, assume Σj1,j2 ∩Σj′

1,j
′
2
̸= ∅. The minimal length element

x′ ∈ W (L
ĵ1

)xj1,j2 ∩W (L
ĵ′

1
)xj′

1,j
′
2

satisfies x′ = x′
j′

1,j
′
2
xj′

1,j
′
2
≥ xj′

1,j
′
2
. On the other hand,

we have x′ ≤ x′′
j1,j2xj1,j2 where x′′

j1,j2 is the element of maximal length in W ĵ1∩ĵ′
1,∅(L

ĵ1
),

thus xj′
1,j

′
2
≤ x′′

j1,j2xj1,j2 . But it follows from (i) of Lemma A.16 (together with j′
1 > j1

and j′
2− j′

1 > j2− j1) that xj′
1,j

′
2
̸≤ x′′

j1,j2xj1,j2 , a contradiction. Thus Σj1,j2 ∩Σj′
1,j

′
2

= ∅.
We have shown that Σj1,j2 ∩ Σj′

1,j
′
2
̸= ∅ for (j1, j2) < (j′

1, j
′
2) if and only if either j2 = j′

2 or
j′

2 − j′
1 = j2 − j1, which is (i).

We prove (ii) and assume from now on j1 = j′
1. Note first that Σj1,j2 ∩ (w−1 ·Σj′

1,j
′
2
) ̸= ∅ is

equivalent to Σj1,j2 ⊆ W (L
ĵ1

)w−1Σj′
1,j

′
2
, and hence can hold for at most one w ∈ W ĵ1 ,̂j1 (by

the double coset decomposition, see for instance the end of the proof of Lemma 2.1.18). From
the definitions we have w[1,j2−1] = w′xj1,j2 where w′ is the longest element in W (L[1,j2−1]\{j1}),
in particular w[1,j2−1] ∈ W (L

ĵ1
)xj1,j2 . Likewise we have w[1,j′

2−1] ∈ W (L
ĵ′

1
)xj1,j′

2
. Let w ∈

W ĵ1 ,̂j1 such that w[1,j′
2−1]w

−1
[1,j2−1] ∈ W (L

ĵ1
)wW (L

ĵ1
), i.e. w[1,j′

2−1]w
−1
[1,j2−1] = y′wy for some

y, y′ ∈ W (L
ĵ1

). Then yw[1,j2−1] = w−1(y′)−1w[1,j′
2−1] with

yw[1,j2−1] ∈ W (L
ĵ1

)w[1,j2−1] = W (L
ĵ1

)xj1,j2
w−1(y′)−1w[1,j′

2−1] ∈ w−1W (L
ĵ1

)w[1,j′
2−1] = w−1W (L

ĵ1
)xj1,j′

2
,

and thus Σj1,j2 ∩ (w−1 · Σj1,j′
2
) ̸= ∅. Finally, it follows from (ii) of Lemma A.16 that

w[1,j′
2−1]w

−1
[1,j2−1] ∈ W (L

ĵ1
)sj1W (L

ĵ1
) if and only if either j1 = 1 or j′

2 = j2 + 1.

Let (j1, j2), (j′
1, j

′
2) ∈ J∞ with (j1, j2) < (j′

1, j
′
2). From (31) and (60) we have canonical

isomorphisms for k ≥ 0
ExtkG(i∞

ĵ′
1,∆

(π∞
j′

1,j
′
2
), i∞

ĵ1,∆
(π∞

j1,j2))∞ ∼=
⊕

w∈W ĵ′
1 ,̂j1

ExtkL
ĵ1

(i∞
ĵ′

1 ,̂j1,w
(J
ĵ′

1 ,̂j1,w
(π∞

j′
1,j

′
2
)), π∞

j1,j2). (105)

Using (61) we see that (105) is non-zero for some k ≥ 0 if only if there exists w ∈ W ĵ′
1 ,̂j1

(necessarily unique) such that Σj1,j2 ⊆ W (L
ĵ1

)w−1Σj′
1,j

′
2

(equivalently Σj1,j2 ∩ (w−1 ·Σj′
1,j

′
2
) ̸=

∅) and such that 105 induces an isomorphism
0 ̸= ExtkG(i∞

ĵ′
1,∆

(π∞
j′

1,j
′
2
), i∞

ĵ1,∆
(π∞

j1,j2))∞ ∼= ExtkL
ĵ1

(i∞
ĵ′

1 ,̂j1,w
(J
ĵ′

1 ,̂j1,w
(π∞

j′
1,j

′
2
))

B̂j1
Σj1,j2

, π∞
j1,j2). (106)
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Lemma 2.3.5. Let (j1, j2), (j′
1, j

′
2) ∈ J∞ with (j1, j2) < (j′

1, j
′
2).

(i) We have
HomL

ĵ1

(
i∞
ĵ1∩ĵ′

1 ,̂j1
(J
ĵ′

1 ,̂j1∩ĵ′
1
(π∞

j′
1,j

′
2
)), π∞

j1,j2

)
̸= 0 (107)

if and only if (j′
1, j

′
2) ∈ {(j1 + 1, j2 + 1), (j1 − 1, j2)}.

(ii) When j′
1 = j1, we have

HomL
ĵ1

(
i∞
ĵ1 ,̂j1,sj1

(J
ĵ1 ,̂j1,sj1

(π∞
j1,j′

2
)), π∞

j1,j2

)
̸= 0

if and only if j′
2 = j2 + 1.

Proof. We prove (i). By definition (see (43) and (45)) we have

i∞
ĵ1∩ĵ′

1 ,̂j1
(J
ĵ′

1 ,̂j1∩ĵ′
1
(π∞

j′
1,j

′
2
)) = i∞

ĵ′
1 ,̂j1,1

(J
ĵ′

1 ,̂j1,1
(π∞

j′
1,j

′
2
)),

hence by (106) (and the line above it) we see that (107) holds if and only if Σj1,j2 ∩Σj′
1,j

′
2
̸= ∅

and d(π∞
j′

1,j
′
2
, π∞

j1,j2) = 0. We thus deduce (i) from (i) of Lemma 2.3.4 and (i) of Lemma 2.3.2.
We prove (ii). Likewise, (107) holds if and only if Σj1,j2∩sj1Σj1,j′

2
̸= ∅ and d(π∞

j1,j′
2
, π∞

j1,j2) =
0. Thus (ii) follows from the last statement in (ii) of Lemma 2.3.4 and (i) of Lemma 2.3.2.

Let (j1, j2) ∈ J∞ with 1 < j1 < n − 1 and j2 < n and thus (j1 + 1, j2 + 1), (j1 −
1, j2), (j1, j2 + 1) ∈ J∞. We write

I+
def= ∆ \ {j1, j1 + 1}, I−

def= ∆ \ {j1, j1 − 1}, I±
def= ∆ \ {j1 − 1, j1, j1 + 1} (108)

and we set 
Σ+,0

def= Σj1+1,j2+1 ∩ Σj1,j2+1 Σ−,0
def= Σj1−1,j2 ∩ Σj1,j2+1

Σ+,1
def= Σj1+1,j2+1 ∩ Σj1,j2 Σ−,1

def= Σj1−1,j2 ∩ Σj1,j2

Σ±
def= Σj1,j1 ∩ sj1 · Σj1,j2+1.

(109)

It follows from Lemma 2.3.4 that Σ∗,0 and Σ∗,1 are single left W (LI∗)-cosets for ∗ ∈ {+,−},
and Σ± is a single left W (LI±)-coset. Note that π∞

j1,j2 , π∞
j1+1,j2+1, π∞

j1−1,j2 and π∞
j1,j2+1 are all

irreducible G-regular. In all cases (i) to (v) below, (both parts of) Lemma 2.1.18 together
with (31) (for k = 0) and (i) of Lemma 2.3.2 imply that (89) holds, which gives us by the
first statement in (i) of Lemma 2.2.11 isomorphisms of irreducible G-regular representations:

(i) π∞
+,0

def= J
ĵ1,I+

(π∞
j1,j2+1)BI+

Σ+,0

∼= J ′
∆\{j1+1},I+

(π∞
j1+1,j2+1)BI+

Σ+,0
;

(ii) π∞
−,0

def= J
ĵ1,I−

(π∞
j1,j2+1)BI−

Σ−,0

∼= J ′
∆\{j1−1},I−

(π∞
j1−1,j2)BI−

Σ−,0
;

(iii) π∞
+,1

def= J∆\{j1+1},I+(π∞
j1+1,j2+1)BI+

Σ+,1

∼= J ′
ĵ1,I+

(π∞
j1,j2)BI+

Σ+,1
;
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(iv) π∞
−,1

def= J∆\{j1−1},I−(π∞
j1−1,j2)BI−

Σ−,1

∼= J ′
ĵ1,I−

(π∞
j1,j2)BI−

Σ−,1
;

(v) π∞
±

def= J
ĵ1 ,̂j1,sj1

(π∞
j1,j2+1)BI±

Σ±

∼= J ′
ĵ1,I±

(π∞
j1,j2)BI±

Σ±
.

Using the irreducibility of π∞
j1,j2 , π∞

j1,j2+1, π∞
j1+1,j2+1 and π∞

j1−1,j2 as well as (31) and (32), we
observe that π∞

j1,j2
∼= cosocL

ĵ1
(i∞
I∗ ,̂j1

(π∞
∗,1)) and π∞

j1,j2+1
∼= socL

ĵ1
(i∞
I∗ ,̂j1

(π∞
∗,0)) for ∗ ∈ {+,−}.

Similarly, we have socL
ĵ1

(i∞I+,∆\{j1+1}(π∞
+,1)) ∼= π∞

j1+1,j2+1
∼= cosocL

ĵ1
(i∞I+,∆\{j1+1}(π∞

+,0)) and
socL

ĵ1
(i∞I−,∆\{j1−1}(π∞

−,1)) ∼= π∞
j1−1,j2

∼= cosocL
ĵ1

(i∞I−,∆\{j1−1}(π∞
−,0)). As π∞

± is irreducible G-
regular, for each I ⊇ I± the representation i∞I±,I(π∞

± ) is G-basic and thus multiplicity free
with simple socle and cosocle by the last statement of (iv) of Remark 2.1.16.

The last lemma below will be used in Lemma 5.2.16 and in Lemma 5.2.17, themselves
used in the important Proposition 5.2.18.

Lemma 2.3.6. Let (j1, j2) ∈ J∞ with 1 < j1 < n− 1 and j2 < n.

(i) We have sj1 · Σj1+1,j2+1 = Σj1+1,j2+1 and sj1 · Σj1−1,j2 = Σj1−1,j2, which induce the
following equalities for ∗ ∈ {+,−}

Σ± = Σj1,j2 ∩ sj1 · Σ∗,0 = Σ∗,1 ∩ sj1 · Σj1,j2+1. (110)

(ii) We have
π∞

±
∼= J ′

I∗,I±(π∞
∗,1)BI±

Σ±

∼= J
I∗ ,̂j1,sj1

(π∞
∗,0)BI±

Σ±

and π∞
∗,1
∼= cosocLI∗

(i∞I±,I∗(π∞
± )) for ∗ ∈ {+,−}. We also have

π∞
j1+1,j2+1 ∈ JHL∆\{j1+1}(i∞I±,∆\{j1+1}(π∞

± )) and π∞
j1−1,j2 ∈ JHL∆\{j1−1}(i∞I±,∆\{j1−1}(π∞

± )).

(iii) We have J ′
∆\{j1+1},I+

(τ∞)BI+
Σ+,0

= 0 for each τ∞ ∈ JHL∆\{j1+1}(i∞I±,∆\{j1+1}(π∞
± )) sat-

isfying τ∞ < π∞
j1+1,j2+1, and similarly J ′

∆\{j1−1},I−
(τ∞)BI−

Σ−,0
= 0 for each τ∞ ∈

JHL∆\{j1−1}(i∞I±,∆\{j1−1}(π∞
± )) satisfying τ∞ < π∞

j1−1,j2.

(iv) We have J
ĵ1 ,̂j1,sj1

(τ∞)BI±
Σ±

= 0 for each τ∞ ∈ JHL
ĵ1

(i∞
I∗ ,̂j1

(π∞
∗,0)/π∞

j1,j2+1) and ∗ ∈ {+,−}.

Proof. We prove (i). It follows from sj1 ∈ W (L∆\{j1+1}) ∩W (L∆\{j1−1}) that we have sj1 ·
Σj1+1,j2+1 = Σj1+1,j2+1 and sj1 ·Σj1−1,j2 = Σj1−1,j2 , which together with (109) give sj1 ·Σ+,0 =
Σj1+1,j2+1∩sj1 ·Σj1,j2+1 and sj1 ·Σ−,0 = Σj1−1,j2 ∩sj1 ·Σj1,j2+1. Hence, in order to prove (110),
it suffices to prove that

Σ± ⊆ Σj1+1,j2+1 ∩ Σj1−1,j2 . (111)
Following the proof of Σj1,j2∩sj1Σj1,j2+1 ̸= ∅ in (ii) of Lemma 2.3.4, we write w[1,j2]w

−1
[1,j2−1] =

y′sj1y for some y, y′ ∈ W (L
ĵ1

). We have

yw[1,j2−1] = sj1(y′)−1w[1,j2] ∈ W (L
ĵ1

)xj1,j2 ∩ sj1W (L
ĵ1

)xj1,j2+1.
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More precisely, as w[1,j2]w
−1
[1,j2−1] = s1 · · · sj2 , we have y = sj1+1 · · · sj2 ∈ W (L∆\{j1−1}) (resp.

sj1(y′)−1 = sj1sj1−1 · · · s1 ∈ W (L∆\{j1+1})), and since w[1,j2−1] ∈ W (L∆\{j1−1})xj1−1,j2
(resp. w[1,j2] ∈ W (L∆\{j1+1})xj1+1,j2+1) this implies yw[1,j2−1] ∈ W (L∆\{j1−1})xj1−1,j2
(resp. sj1(y′)−1w[1,j2] ∈ W (L∆\{j1+1})xj1+1,j2+1). In other words, we have shown

yw[1,j2−1] · 1T = sj1(y′)−1w[1,j2] · 1T ∈ Σj1,j2 ∩ sj1Σj1,j2+1 ∩ Σj1−1,j2 ∩ Σj1+1,j2+1.

In particular, Σ± (resp. Σj1+1,j2+1, resp. Σj1−1,j2) is the unique W (LI±)-coset
(resp. W (L∆\{j1+1})-coset, resp. W (L∆\{j1−1})-coset) containing yw[1,j2−1] · 1T , which forces
(111) and thus (110). This finishes the proof of (i).

We prove (ii). On one hand, we have J ′
ĵ1,I±

(−) ∼= J ′
I∗,I±(J ′

ĵ1,I∗
(−)) which together with

Σ± ⊆ Σ∗,1 (and the definition of π∞
± and π∞

∗,1) gives the isomorphisms

π∞
±
∼= J ′

ĵ1,I±
(π∞

j1,j2)BI±
Σ±

∼= J ′
I∗,I±(J ′

ĵ1,I∗
(π∞

j1,j2))BI±
Σ±

∼= J ′
I∗,I±(J ′

ĵ1,I∗
(π∞

j1,j2)BI∗
Σ∗,1

)BI±
Σ±

∼= J ′
I∗,I+,−(π∞

∗,1)BI±
Σ±
,

which together with (32) (and the irreducibility of π∞
± ) give π∞

∗,1
∼= cosocLI∗

(i∞I±,I∗(π∞
± )) for

∗ ∈ {+,−}. On the other hand, we have the equalities

ĵ1 ∩ sj1(ĵ1) = I± = I∗ ∩ sj1(ĵ1), (112)

which together with (43), (44) and Σ± ⊆ sj1 · Σ∗,0 (and the definitions of π∞
± , π∞

∗,0) give
isomorphisms

π∞
±
∼= J

ĵ1 ,̂j1,sj1
(π∞

j1,j2+1)BI±
Σ±

∼= J
I∗ ,̂j1,sj1

(J
ĵ1,I∗

(π∞
j1,j2+1))BI±

Σ±

∼= J
I∗ ,̂j1,sj1

(J
ĵ1,I∗

(π∞
j1,j2+1)BI∗

Σ∗,0
)BI±

Σ±

∼= J
I∗ ,̂j1,sj1

(π∞
∗,0)BI±

Σ±
.

Finally, recall from the discussion right before this lemma that

π∞
j1+1,j2+1

∼= socL
ĵ1

(i∞I+,∆\{j1+1}(π∞
+,1)) and π∞

j1−1,j2
∼= socL

ĵ1
(i∞I−,∆\{j1−1}(π∞

−,1)),

which together with π∞
∗,1
∼= cosocLI∗

(i∞I±,I∗(π∞
± )) for ∗ ∈ {+,−} implies that π∞

j1+1,j2+1 ∈
JHL∆\{j1+1}(i∞I±,∆\{j1+1}(π∞

± )) and π∞
j1−1,j2 ∈ JHL∆\{j1−1}(i∞I±,∆\{j1−1}(π∞

± )). This finishes the
proof of (ii).

We prove the first half of (iii) and leave the second half, which is similar, to the reader.
We write δ def= δ̂

j1 ,̂j1,sj1
: LI± → E× (see (44)) and note that δ = δ

I∗ ,̂j1,sj1
for ∗ ∈ {+,−}

(using (112)). Recall from the discussion right before this lemma that i∞I±,∆\{j1+1}(π∞
± ) is G-

basic and multiplicity free with simple socle and cosocle, and from (ii) that π∞
j1+1,j2+1 ∈

JHL∆\{j1+1}(i∞I±,∆\{j1+1}(π∞
± )). We write π∞

j1+1,j2+1,− for the unique subrepresen-
tation of i∞I±,∆\{j1+1}(π∞

± ) with cosocle π∞
j1+1,j2+1. Note that π∞

j1+1,j2+1,− is G-basic by
Corollary 2.1.26, and that we have an injection q1 : π∞

j1+1,j2+1,− ↪→ i∞I±,∆\{j1+1}(π∞
± ) and
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a surjection q2 : π∞
j1+1,j2+1,− ↠ π∞

j1+1,j2+1. We write J+(−) def= J ′
∆\{j1+1},I+

(−)BI+
Σ+,0

and re-

call that J+(−) is an exact functor. By the exactness of J+(−), the injection q1 induces
an injection q′

1 : J+(π∞
j1+1,j2+1,−) ↪→ J+(i∞I±,∆\{j1+1}(π∞

± )), and the surjection q2 induces a
surjection q′

2 : J+(π∞
j1+1,j2+1,−) ↠ J+(π∞

j1+1,j2+1). For any G-basic representation σ∞ in
Rep∞

adm(L∆\{j1+1}), it follows from Lemma 2.1.29 and Remark 2.1.30 that J+(σ∞) is either
zero or G-basic. As J+(π∞

j1+1,j2+1) = π∞
+,0 by definition of π∞

+,0, we have J+(π∞
j1+1,j2+1,−) ̸= 0,

hence J+(π∞
j1+1,j2+1,−) and J+(i∞I±,∆\{j1+1}(π∞

± )) are G-basic, and thus multiplicity free with
simple socle and cosocle (last statement in (iv) of Remark 2.1.16). In particular, the sur-
jection q′

2 implies that J+(π∞
j1+1,j2+1,−) has cosocle π∞

+,0. It follows from (32) and then (31)
that

HomLI+
(π∞

+,0, J+(i∞I±,∆\{j1+1}(π∞
± )))

∼= HomL∆\{j1+1}(i∞I+,∆\{j1+1}(π∞
+,0), i∞I±,∆\{j1+1}(π∞

± ))
∼= HomLI±

(J∆\{j1+1},I±(i∞I+,∆\{j1+1}(π∞
+,0))BI±

Σ±
, π∞

± ). (113)

Applying (ii) of Lemma 2.1.18 with I0 = I+ and I1 = I±, we see that

J∆\{j1+1},I±(i∞I+,∆\{j1+1}(π∞
+,0))BI±

Σ±

∼= JI+,I±,sj1
(π∞

+,0)BI±
Σ±
.

Since JI+,I±,sj1
(−) = J

I+ ,̂j1,sj1
(−) from (43) and π∞

±
∼= J

I+ ,̂j1,sj1
(π∞

+,0)BI±
Σ±

from (ii), this implies
by (113)

HomLI+
(π∞

+,0, J+(i∞I±,∆\{j1+1}(π∞
± ))) ̸= 0. (114)

As J+(i∞I±,∆\{j1+1}(π∞
± )) has simple socle by the previous discussion, by (114) it must have

socle π∞
+,0, hence the same holds for its subrepresentation J+(π∞

j1+1,j2+1,−). But recall that
J+(π∞

j1+1,j2+1,−) is multiplicity free with cosocle π∞
+,0 by the previous discussion, hence we

have J+(π∞
j1+1,j2+1,−) ∼= π∞

+,0 and in particular J+(ker(q2)) = 0 by the exactness of J+(−).
As τ∞ ∈ JHL∆\{j1+1}(ker(q2)) if and only if τ∞ ∈ JHL∆\{j1+1}(i∞I±,∆\{j1+1}(π∞

± )) and τ∞ <
π∞
j1+1,j2+1 (from the definition of the partial order on JHL∆\{j1+1}(i∞I±,∆\{j1+1}(π∞

± )) in §1.4),
we obtain the first half of (iii) using J+(ker(q2)) = 0.

We prove (iv). As π∞
±
∼= J

I∗ ,̂j1,sj1
(π∞

∗,0)BI±
Σ±

by (ii), we have π∞
∗,0
∼= socLI∗

(i∞I±,sj1 (I∗)(π∞
± ⊗E

δ−1)sj1 ) for ∗ ∈ {+,−} by the last statement in (i) of Lemma 2.2.11 applied with I0 = I∗,
I1 = ĵ1 and w = sj1 , and thus i∞

I∗ ,̂j1
(π∞

∗,0) is a subrepresentation of

i∞
I∗ ,̂j1

(i∞I±,sj1 (I∗)(π∞
± ⊗E δ−1)sj1 ) ∼= i∞

I± ,̂j1
((π∞

± ⊗E δ−1)sj1 ).

By the first statement of (ii) of Lemma 2.2.11 (which uses the last statement of (i) of
Lemma 2.2.11) applied with I0 = I1 = ĵ1, w = sj1 , π∞ = π∞

± and σ∞
0 = τ∞, we have

J
ĵ1 ,̂j1,sj1

(τ∞)BI±
Σ±

= 0 for τ∞ ∈ JHL
ĵ1

(i∞
I± ,̂j1

((π∞
± ⊗E δ−1)sj1 )/π∞

j1,j2+1), and in particular for

τ∞ ∈ JHL
ĵ1

(i∞
I∗ ,̂j1

(π∞
∗,0)/π∞

j1,j2+1) as i∞
I∗ ,̂j1

(π∞
∗,0) ⊆ i∞

I± ,̂j1
((π∞

± ⊗E δ−1)sj1 ).
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3 Results on Lie algebra cohomology groups
We prove all results on U(g)-modules needed in §4 and especially in §5. In particular
we prove many statements on unipotent cohomology groups and on various Ext groups of
U(g)-modules, and we construct important explicit finite length U(g)-modules. We use the
notation in §1.4 and fix throughout a weight µ0 ∈ Λdom. For standard facts on the Bernstein-
Gelfand-Gelfand category and on Kazhdan-Lusztig theory, we use [Hum08] (the reader can
find in loc. cit. the original references where the results we use are actually proven).

3.1 Categories of U(g)-modules
We introduce various abelian categories of U(g)-modules and prove several basic results on
unipotent cohomology groups and Ext groups of U(g)-modules in these categories, and on
the relations between the two.

For M in ModU(t) and µ ∈ Λ = X(T ), we define Mµ ⊆M as the maximal U(t)-submodule
of M on which t− µ(t) acts nilpotently for each t ∈ t. So Mµ is the generalized weight space
attached to the weight µ. Hence, we always have a U(t)-equivariant embedding⊕

µ∈Λ
Mµ ↪→M. (115)

We define Calg as the full subcategory of ModU(g) of those M such that the embedding
(115) is an isomorphism, and Cfin

alg ⊂ Calg as the full subcategory of M satisfying moreover
dimEMµ < ∞ for each µ ∈ Λ. In particular each object of Cfin

alg has countable dimension
as E-vector space. We define Õb

alg ⊂ Calg as the full subcategory of M which are locally
b-finite, i.e. M is the union of its finite dimensional U(b)-submodules. Note that the full
subcategory of the category O of [Hum08] of objects with integral (equivalently algebraic)
weights is the full subcategory Ob

alg ⊂ Õb
alg ∩ Cfin

alg consisting of those M which are moreover
U(t)-semi-simple and finitely generated as U(g)-modules ([Hum08, §1.1]). We also write
Ob,∞

alg ⊆ Õb
alg for the full abelian subcategory consisting of finite length objects.

For each µ ∈ Λ, we have a Verma module M(µ) def= U(g) ⊗U(b) µ ∈ Ob
alg, which has

an irreducible cosocle denoted by L(µ) ([Hum08, Thm. 1.2(f)]). Moreover recall that each
simple object of Ob

alg has the form L(µ) for some µ ∈ Λ ([Hum08, §1.3]) and that each object
of Ob

alg has finite length ([Hum08, §1.11]), and thus Ob
alg is the full subcategory of Ob,∞

alg
consisting of those M which are moreover U(t)-semi-simple. As each M in Õb

alg contains
at least one b-stable E-line with weight µ ∈ Λ (since M is locally b-finite), there exists a
non-zero map M(µ) → M . It follows that Õb

alg, Ob,∞
alg and Ob

alg all share the same simple
objects, namely the L(µ) for µ ∈ Λ. (It is thus clear that Ob,∞

alg ⊆ Cfin
alg.) In the sequel, we

write N(µ) for the kernel of the surjection M(µ) ↠ L(µ).

We say that a full subcategory C ⊆ ModU(g) is stable under extensions if for each short
exact sequence 0 → M1 → M → M2 → 0 in ModU(g) with M1,M2 in C, we necessarily
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have M in C. We observe that both Calg and Cfin
alg are stable under extensions. It is not

difficult to check that Õb
alg and Ob,∞

alg are also stable under extensions (by pull-back one can
replace M2 by a finite dimensional U(b)-submodule M ′

2 ⊆ M2 , and then by induction on
dimEM

′
2 one can reduce to M ′

2 = E by taking a b-stable E-line in M ′
2 and twisting, and then

use that Ext1
U(b)(E,M1) = H1(b,M1) = lim−→H1(b,M ′

1) where the limit runs along the finite
dimensional U(b)-submodules M ′

1 of M1). Recall however that the extension in ModU(g) of
two objects of Ob

alg is not an object of Ob
alg in general.

For each object M of Cfin
alg, we set

M τ def=
⊕
µ∈Λ

M∗
µ (116)

with M∗
µ

def= HomE(Mµ, E) and we make g act on M τ by (see [Hum08, §3.2])

(x · f)(v) def= f(τ(x) · v)

where x ∈ g and τ : g → g is Chevalley’s anti-involution introduced at the end of [Hum08,
§0.5] (for GLn is it induced by the transpose map). Then M 7→M τ defines a (contravariant)
endo-functor of Cfin

alg which is an exact involution, and thus a self-equivalence. As Cfin
alg is stable

under extensions, the functor τ induces an isomorphism for M1,M2 in Cfin
alg

Ext1
U(g)(M1,M2) ∼= Ext1

U(g)(M τ
2 ,M

τ
1 ). (117)

Moreover, τ restricts to an exact involution of Ob
alg which satisfies

L(µ)τ ∼= L(µ) (118)

for each µ ∈ Λ ([Hum08, Thm. 3.2]).

For I ⊆ ∆, we consider the full subcategory ÕpI
alg ⊆ Õb

alg of those M which are locally pI-
finite, i.e. equal to the union of their finite dimensional U(pI)-submodules. As pI = lI⊕nI and
the category of finite dimensional U(lI)-modules is semi-simple, M ∈ Ob

alg is locally pI-finite
if and only if the (underlying) U(lI)-module M is a direct sum of (simple) finite dimensional
U(lI)-modules. We also define OpI ,∞

alg
def= ÕpI

alg∩O
b,∞
alg and OpI

alg
def= ÕpI

alg∩Ob
alg. Replacing g with

lI , we can define analogous full subcategories ClI ,alg, Cfin
lI ,alg, ÕbI

lI ,alg, ObI ,∞
lI ,alg, ObI

lI ,alg of ModU(lI)

with fully faithful embeddings ObI
lI ,alg ↪→ Cfin

lI ,alg ↪→ ClI ,alg and ObI
lI ,alg ↪→ O

bI ,∞
lI ,alg ↪→ Õ

bI
lI ,alg. We

also define ÕlI∩pI′
lI ,alg ↪→ ÕbI

lI ,alg, OlI∩pI′ ,∞
lI ,alg and OlI∩pI′

lI ,alg for each I ′ ⊆ I (note that lI ∩pI′ is a lower
parabolic in lI). We write LI(µ) ∈ ObI

lI ,alg for the unique simple quotient of U(lI) ⊗U(bI) µ,
and set

M I(µ) def= U(g)⊗U(pI) L
I(µ). (119)

Be careful that we allow M I(µ) and LI(µ) to be defined for any µ ∈ Λ, in particular LI(µ)
can be infinite dimensional. As M I(µ) is a quotient of

M(µ) = U(g)⊗U(b) µ ∼= U(g)⊗U(pI) (U(lI)⊗U(bI) µ),
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we see that M I(µ) is in Ob
alg and has L(µ) as unique simple quotient. We write N I(µ) for

the kernel of the surjection M I(µ) ↠ L(µ). Moreover it follows from [Hum08, Prop. 9.3(e)]
and [Hum08, Thm. 9.4] that M I(µ) is in OpI

alg if and only if L(µ) is in OpI
alg if and only if

µ ∈ Λdom
I if and only if LI(µ) is finite dimensional.

For w ∈ W (G) and I ⊆ ∆ we set

M(w) def= M(w · µ0), L(w) def= L(w · µ0), N(w) def= N(w · µ0)
M I(w) def= M I(w · µ0), LI(w) def= LI(w · µ0), N I(w) def= N I(w · µ0).

Note that all Jordan-Hölder factors of N(w) have the form L(w′) for some w′ > w ([Hum08,
§§5.1,5.2] and [Hum08, §8.3(a)]). For w ∈ W (G), recall the sets DL(w), DR(w) ⊆ ∆ from
(23) and (24).

Lemma 3.1.1. Let w ∈ W (G) be an element and I ⊆ ∆ be a subset. Then L(w) is in OpI
alg

if and only if I ∩DL(w) = ∅.

Proof. We have L(w) ∈ OpI
alg if and only if w·µ0 ∈ Λdom

I if and only if ⟨w·µ0, α
∨⟩ ≤ 0 for α ∈ I

if and only if ⟨w(µ0 + ρ), α∨⟩ ≤ ⟨ρ, α∨⟩ = −1 for α ∈ I if and only if ⟨µ0 + ρ, w−1(α)∨⟩ < 0
for α ∈ I if and only if w−1(α) ∈ Φ+ for α ∈ I (as µ0 ∈ Λdom and hence µ0 + ρ ∈ Λdom) if
and only if sαw > w for α ∈ I ([Hum08, §0.3(4)]) if and only if I ∩DL(w) = ∅.

For M1,M2 in ModU(g) we write ExtkU(g)(M1,M2) for the extension groups computed in
the category ModU(g). When M1,M2 are in Ob

alg, we write ExtkOb
alg

(M1,M2) for the extension
groups computed in Ob

alg (which still has enough projective and injective objects by [Hum08,
Thm. 3.8]). Given two objects M1,M2 in Ob

alg, the fully faithful embedding Ob
alg ↪→ ModU(g)

induces an injection
Ext1

Ob
alg

(M1,M2) ↪→ Ext1
U(g)(M1,M2),

but the comparison between ExtkOb
alg

(M1,M2) and ExtkU(g)(M1,M2) for k ≥ 2 is more com-
plicated in general. Since the dual functor τ : Cfin

alg → Cfin
alg in (116) restricts to an exact

involution of Ob
alg, we have a canonical isomorphism for M1,M2 in Ob

alg and k ≥ 0

ExtkOb
alg

(M1,M2) ∼= ExtkOb
alg

(M τ
2 ,M

τ
1 ). (120)

For M in ModU(g) and I ⊆ ∆, we consider the Chevalley-Eilenberg complex (see for
instance [ST05, §3])

M → HomE(nI ,M)→ · · · → HomE(∧knI ,M)→ · · · (121)

with M in degree zero, and we define Hk(nI ,M) as the cohomology group of this complex
in degree k ≥ 0. As the complex (121) is U(lI)-equivariant, Hk(nI ,M) is naturally a U(lI)-
module, and thus in particular a U(t)-module. We will use the following lemma.
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Lemma 3.1.2. Let µ, µ′ ∈ Λ, I ⊆ ∆ and k ≥ 0. Assume that

Hk(nI , L(µ))µ′ ̸= 0.

Then there exists k distinct roots α1, . . . , αk ∈ Φ+ \ Φ+
I (no roots if k = 0) such that

µ′ − µ−
k∑
ℓ=1

αℓ ∈ Z≥0Φ+. (122)

Proof. The statement is obvious for k = 0, hence we can assume k ≥ 1. Let µ′′ ∈ Λ be an
(integral) weight. We observe that (nI)µ′′ ̸= 0 if and only if µ′′ = −α for some α ∈ Φ+ \Φ+

I ,
and thus (∧knI)µ′′ ̸= 0 if and only if µ′′ = −∑k

ℓ=1 αℓ for k distinct roots α1, . . . , αk in
Φ+ \Φ+

I . Consequently, HomE(∧knI , L(µ))µ′ ̸= 0 if and only if there exists µ′′ ∈ Λ such that
(∧knI)µ′′ ̸= 0 and L(µ)µ′+µ′′ ̸= 0. Note that L(µ)µ′+µ′′ ̸= 0 implies µ′ + µ′′ − µ ∈ Z≥0Φ+.
Hence, HomE(∧knI , L(µ))µ′ ̸= 0 implies the existence of k distinct roots α1, . . . , αk ∈ Φ+\Φ+

I

such that (122) holds. As (121) is U(t)-equivariant and Hk(nI , L(µ)) is a subquotient of
HomE(∧knI , L(µ)) as U(t)-module, we obtain the statement.

It is not difficult to check that, if M is in Calg (resp. Cfin
alg, resp. Õb

alg), then the U(lI)-
module Hk(nI ,M) is also in ClI ,alg (resp. Cfin

lI ,alg, resp. ÕbI
lI ,alg, for the latter recall that nI ⊆ b).

If M is in Ob
alg, we will prove in Proposition 3.1.5 below that Hk(nI ,M) ∈ ObI

lI ,alg.

For I, I ′ ⊆ ∆, we have in g

uI ∩ nI′ = uI ∩ nI∩I′ = lI ∩ nI∩I′ = lI ∩ nI′ ,

which is the nilpotent radical of lI ∩ pI′ = lI ∩ pI∩I′ , and Hk(lI ∩ nI′ ,MI) is naturally a
U(lI∩I′)-module for MI in ModU(lI). Since nI is an ideal in nI∩I′ with quotient naturally
identified with lI ∩ nI′ , we have a U(lI∩I′)-equivariant spectral sequence for M in ModU(g)
(see for instance [Wei94, §7.5])

Hℓ1(lI ∩ nI′ , Hℓ2(nI ,M)) =⇒ Hℓ1+ℓ2(nI∩I′ ,M). (123)

When I ′ = ∅ and I = {j} for some j ∈ ∆, lI ∩ nI′ = l{j} ∩ n = u{j} is a 1-dimensional Lie
algebra, and (123) induces the short exact sequence for k ≥ 1 (see e.g. [Wei94, Exercise 5.2.1])

0→ H1(u{j}, H
k−1(n{j},M))→ Hk(u,M)→ H0(u{j}, H

k(n{j},M))→ 0. (124)

For I ⊆ ∆, MI an U(lI)-module and ξ : Z(lI) → E a character (i.e. an E-algebras
homomorphism), we write MI,ξ for the maximal U(lI)-submodule of MI on which z − ξ(z)
acts nilpotently for each z ∈ Z(lI). For a simple object LI(µ) of ÕbI

lI ,alg, we denote by
ξµ : Z(lI) → E the unique character such that LI(µ)ξµ ̸= 0 ([Hum08, §1.7]). By Harish-
Chandra’s theorem ([Hum08, Thm. 1.10]) ξµ = ξµ′ if and only if there exists w ∈ W (LI)
such that µ′ = w · µ. We consider the endo-functor

prξ : Cfin
lI ,alg → Cfin

lI ,alg, MI 7→MI,ξ.

65



Lemma 3.1.3. For ξ : Z(lI)→ E the endo-functor prξ has the following properties.

(i) The functor prξ is exact and an idempotent, and we have a natural transformation

id ∼=
⊕
ξ

prξ.

(ii) Let MI,1,MI,2 in Cfin
lI ,alg such that ExtkU(lI)(MI,1,MI,2) ̸= 0 for some k ≥ 0. Then there

exists ξ such that MI,1,ξ ̸= 0 and MI,2,ξ ̸= 0. The same statement holds for MI,1,MI,2
in ObI

lI ,alg when ExtkObI
lI ,alg

(MI,1,MI,2) ̸= 0.

(iii) For each indecomposable object MI in Cfin
lI ,alg, there exists a unique ξ : Z(lI)→ E such

that MI = MI,ξ.

Proof. It suffices to prove MI
∼=
⊕

ξMI,ξ for MI in Cfin
lI ,alg and the rest is abstract non-sense.

For µ ∈ Λ, the action of Z(lI) on MI stabilizes MI,µ. As MI,µ is finite dimensional by
assumption, we deduce MI,µ

∼=
⊕

ξMI,ξ,µ. As MI
∼=
⊕

µ∈Λ MI,µ by assumption, we obtain
MI
∼=
⊕

ξMI,ξ.

Recall that there is an E-linear projection pr : U(g) ↠ U(t) obtained by sending to 0
all monomials of U(g) (in a standard Poincaré-Birkhoff-Witt basis associated to the decom-
position g = u+ ⊕ t ⊕ u) containing factors which are not in t. Using the decompositions
g = n+

I ⊕ lI ⊕ nI and lI = u+
I ⊕ t ⊕ uI for I ⊆ ∆, we see that pr uniquely factors as

U(g) ↠ U(lI) ↠ U(t). It then follows from Harish-Chandra’s theory (see [Hum08, §§1.7,
1.9, 1.10]) and from the fact that ρ− ρI is invariant under W (LI) that the above surjections
restrict to injective morphisms of commutative E-algebras Z(g) ↪→ Z(lI) ↪→ Z(t) = U(t).
We denote by ψI : Z(g) ↪→ Z(lI) the first injection.

We recall the following version of a classical theorem by Casselman-Osborne [CO75,
Thm. 2.6].

Lemma 3.1.4. Let M in Cfin
alg, I ⊆ ∆ and ξ : Z(lI)→ E. Then we have for k ≥ 0

Hk(nI ,M)ξ ⊆ Hk(nI ,Mξ◦ψI
). (125)

Proof. Recall first that Hk(nI ,Mξ◦ψI
) is an U(lI)-submodule of Hk(nI ,M) by (i) of Lemma

3.1.3 (applied to I = ∅ and M). Making explicit the action of U(pI) on the Chevalley-
Eilenberg complex (121) (using [pI , nI ] ⊆ nI) and using that nI acts trivially onHk(nI ,Mξ◦ψI

),
it is not difficult to check that the characters ξ′ : Z(lI) → E such that Hk(nI ,Mξ◦ψI

)ξ′ ̸= 0
satisfy ξ′ ◦ ψI = ξ ◦ ψI . As any character of Z(g) can be written ξ′′ ◦ ψI for some character
ξ′′ of Z(lI), decomposing M using (i) of Lemma 3.1.3 and applying Hk(nI ,−)ξ implies the
inclusion (125).

The following important proposition is probably known, but we couldn’t find it in the
published literature (it is also proven in the upcoming [BCGP]).
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Proposition 3.1.5. Let M in Ob
alg and I ⊆ ∆. Then we have for k ≥ 0.

Hk(nI ,M) ∈ ObI
lI ,alg.

Proof. As M is in Ob
alg, M is locally bI-finite and U(t)-semi-simple with finite dimensional

weight spaces. Since ∧knI is a finite dimensional U(lI)-module which is semi-simple as U(t)-
module, HomE(∧knI ,M) is still locally bI-finite and t-semi-simple with finite dimensional
weight spaces. Hence so is Hk(nI ,M) for k ≥ 0 by U(lI)-equivariance of the Chevalley-
Eilenberg complex (121). It follows that any finitely generated U(lI)-submodule ofHk(nI ,M)
is necessarily in ObI

lI ,alg, and thus has finite length by [Hum08, §1.11].
It remains to show that Hk(nI ,M) itself has finite length. Since M is in Ob

alg, M has finite
length and hence by (i) of Lemma 3.1.3 there exists a finite set Ω of characters ξ : Z(g)→ E
such that M ∼=

⊕
ξ∈Ω Mξ wich Mξ ̸= 0. Let ξI : Z(lI) → E be a character such that

Hk(nI ,M)ξI
̸= 0. By Lemma 3.1.4 we know that MξI◦ψI

̸= 0 and thus ξI ◦ ψI ∈ Ω. By
(i) of Lemma 3.1.3 applied to the object Hk(nI ,M) of Cfin

lI ,alg we deduce an isomorphism of
U(lI)-modules where ΩI

def= {ξI : Z(lI)→ E | ξI ◦ ψI ∈ Ω}:

Hk(nI ,M) ∼=
⊕
ξI∈ΩI

Hk(nI ,M)ξI
.

Write U(t) as a polynomial algebra E[t1, . . . , tn], then there are constants ρ1, . . . , ρn ∈ E such
that, for any µ : U(t) → E, the polynomial ∏n

i=1(X − ρi − µ(ti)) ∈ E[X] only depends on
µ|Z(g) by [Hum08, Thm. 1.10(a)] (the ρi being related to the shift by ρ in loc. cit.). Since it has
finitely many roots, we deduce that there is only a finite number of characters µ : U(t)→ E
with a given µ|Z(g). Since any character of Z(lI) is the restriction of a character of U(t), it
follows that the set {ξI | ξI ◦ ψI = ξ} is a fortiori finite for each ξ ∈ Ω, hence ΩI is again
finite (as Ω is). Now, assume on the contrary that Hk(nI ,M) has infinite length. Then there
exists ξI ∈ ΩI such that Hk(nI ,M)ξI

has infinite length. Using [Hum08, Thm. 1.10(b)], we
deduce that there exists at least one µ ∈ Λ such that LI(µ) appears infinitely many times as
a subquotient of (finitely generated U(lI)-submodules of) Hk(nI ,M)ξI

. But Hk(nI ,M)ξI
is

t-semi-simple, so the infinite multiplicity of LI(µ) in Hk(nI ,M)ξI
forces the µ-weight space of

Hk(nI ,M)ξI
to have infinite dimension, a contradiction. Consequently Hk(nI ,M) has finite

length and thus lies in ObI
lI ,alg.

For M in ModU(g) and MI in ModU(lI), recall the Hochschild-Serre spectral sequence
([Wei94, §7.5])

Extℓ1U(lI)(MI , H
ℓ2(nI ,M)) =⇒ Extℓ1+ℓ2

U(pI)(MI ,M) ∼= Extℓ1+ℓ2
U(g) (U(g)⊗U(pI) MI ,M) (126)

where the last isomorphism is Shapiro’s lemma for Lie algebra cohomology. In particular,
we have a canonical isomorphism

HomU(lI)(MI , H
0(nI ,M)) ∼= HomU(g)(U(g)⊗U(pI) MI ,M), (127)
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and an exact sequence

0→ Ext1
U(lI)(MI , H

0(nI ,M))→ Ext1
U(g)(U(g)⊗U(pI) MI ,M)

→ HomU(lI)(MI , H
1(nI ,M))→ Ext2

U(lI)(MI , H
0(nI ,M)). (128)

Lemma 3.1.6. Let MI in ObI
lI ,alg and M in Ob

alg. Then we have a spectral sequence

Extℓ1
ObI

lI ,alg
(MI , H

ℓ2(nI ,M)) =⇒ Extℓ1+ℓ2
Ob

alg
(U(g)⊗U(pI) MI ,M). (129)

Proof. Note first that Hℓ2(nI ,M) is indeed in ObI
lI ,alg by Lemma 3.1.5. For I ⊆ ∆ we use

in this proof the extension groups ExtklI ,t(−,−) computed in the abelian category of (lI , t)-
modules as defined in [BW00, §I.2], i.e. the full subcategory of ModU(lI) of U(lI)-modules
which are semi-simple as U(t)-modules (i.e. such that (115) is an isomorphism with all
generalized weight spaces Mµ being weight spaces). We have analogous groups replacing
(lI , t) by (pI , t). We first need to recall a little background.

Let Hk(lI , t,−) def= ExtklI ,t(E,−) and Hk(pI , t,−) def= ExtkpI ,t
(E,−). For M,N in ModU(lI),

we endow HomE(N,M) with the unique structure of left U(lI)-module such that (x ·f)(n) def=
x(f(n))− f(x(n)) for x ∈ lI , f ∈ HomE(N,M) and n ∈ N . If M is in ModU(pI), by the same
formula HomE(N,M) is naturally a left U(pI)-module (with U(pI) acting on N via U(pI) ↠
U(lI)). If M and N are moreover semi-simple as U(t)-modules (in the above sense), then by
standard homological arguments we have canonical isomorphisms Hℓ(lI , t,HomE(N,M)) ∼=
ExtℓlI ,t(N,M) (or Hℓ(pI , t,HomE(N,M)) ∼= ExtℓpI ,t

(N,M) if M is in ModU(pI)) for ℓ ≥ 0.
Let MI in ModU(lI), M in ModU(g) and assume that M and MI are semi-simple as U(t)-

modules. As nI is an ideal in pI (with lI ∼= pI/nI) and nI∩ t = 0, it then follows from [BW00,
Thm. I.6.5] and [BW00, Rk. I.6.7] that there is a Hochschild-Serre type spectral sequence

Hℓ1(lI , t, Hℓ2(nI ,HomE(MI ,M))) =⇒ Hℓ1+ℓ2(pI , t,HomE(MI ,M)). (130)

As MI is semi-simple as U(t)-module, so is U(g) ⊗U(pI) MI , and we have canonical isomor-
phisms (the second being the usual Shapiro’s lemma)

Hℓ1+ℓ2(pI , t,HomE(MI ,M)) ∼= Extℓ1+ℓ2
pI ,t

(MI ,M)
∼= Extℓ1+ℓ2

g,t (U(g)⊗U(pI) MI ,M). (131)

As nI acts trivially on MI , we have a U(lI)-equivariant isomorphism

Hℓ2(nI ,HomE(MI ,M)) ∼= HomE(MI , H
ℓ2(nI ,M)),

which together with (131) implies that (130) can be rewritten

Extℓ1lI ,t(MI , H
ℓ2(nI ,M)) =⇒ Extℓ1+ℓ2

g,t (U(g)⊗U(pI) MI ,M). (132)
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Now take MI in ObI
lI ,alg, M in Ob

alg. By Delorme’s theorem ([Hum08, Thm. 6.15]) we have
in that case for k ≥ 0

ExtkOb
alg

(U(g)⊗U(pI) MI ,M) ∼= Extkg,t(U(g)⊗U(pI) MI ,M),

and for ℓ1, ℓ2 ≥ 0

Extℓ1
ObI

lI ,alg
(MI , H

ℓ2(nI ,M)) ∼= Extℓ1lI ,t(MI , H
ℓ2(nI ,M)).

Then (132) gives the spectral sequence (129).

Lemma 3.1.7. Let w ∈ W (G), I ⊆ ∆ and M in ObI
lI ,alg. Assume there is k ≥ 0 such that

ExtkU(lI)(LI(w),M) ̸= 0 (133)

or
ExtkObI

lI ,alg
(LI(w),M) ̸= 0 (134)

or
HomU(t)(w · µ0, H

k(uI ,M)) ̸= 0. (135)
Then there exists x ∈ W (LI)w such that

HomU(lI)(LI(x),M) ̸= 0.

Proof. Let ξ : Z(lI)→ E be the unique homomorphism such that LI(w)ξ ̸= 0.
We first prove that the three hypothesis all imply Mξ ̸= 0. If either (133) or (134) holds,

this follows from (ii) of Lemma 3.1.3. Replacing (g, lI , t) by (lI , t, t), we have a spectral
sequence analogous to (129). But since ExtkOt

t,alg
= 0 if k > 0, it gives isomorphisms for k ≥ 0

HomU(t)(w · µ0, H
k(uI ,M)) ∼= ExtkObI

lI ,alg
(U(lI)⊗U(bI) w · µ0,M).

If (135) holds, we thus obtain ExtkObI
lI ,alg

(LI(w′),M) ̸= 0 for some Jordan-Hölder factor LI(w′)

of U(lI)⊗U(bI)w ·µ0 (with w′ ∈ W (LI)w and LI(w′)ξ ̸= 0 since all constituents of U(lI)⊗U(bI)
w · µ0 have the same infinitesimal character). As above with (134), this implies Mξ ̸= 0.

We now prove the statement. Take µ ∈ Λ such that HomU(lI)(LI(µ),Mξ) ̸= 0, thus in
particular LI(µ)ξ ̸= 0. From Harish-Chandra’s theorem ([Hum08, Thm. 1.10]) we deduce
µ = x · µ0 for some x ∈ W (LI). This finishes the proof.

For µ, µ′ ∈ Λ, (127) applied with lI = t gives an isomorphism

HomU(t)(µ′, H0(u, L(µ))) ∼= HomU(g)(M(µ′), L(µ)).

As H0(u, L(µ)) is a semi-simple U(t)-module and HomU(g)(M(µ′), L(µ)) ̸= 0 if µ′ ̸= µ and
has dimension 1 if µ′ = µ, we deduce a U(t)-equivariant isomorphism H0(u, L(µ)) ∼= µ.
Similarly, we have a U(t)-equivariant isomorphism H0(uI , LI(µ)) ∼= µ for each I ⊆ ∆.
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Lemma 3.1.8. Let I ⊆ ∆.

(i) For I ′ ⊆ ∆, M in OpI′
alg and k ≥ 0, the U(lI)-module Hk(nI ,M) is locally lI ∩ pI′-finite.

(ii) For µ ∈ Λ we have H0(nI , L(µ)) ∼= LI(µ).

(iii) For µ ∈ Λ, the unique (by (ii)) ξ : Z(lI)→ E such that H0(nI , L(µ))ξ ̸= 0 is such that
Hk(nI , L(µ))ξ = 0 for k ≥ 1.

Proof. As M is in OpI′
alg, M is locally pI′-finite and a fortiori locally lI ∩ pI′-finite. Hence so

is HomE(∧knI ,M) for k ≥ 0 (as ∧knI is finite dimensional), and (i) follows by the U(lI)-
equivariance of (121).

We prove (ii). Note first that for µ′ ∈ Λ

HomU(lI)(U(lI)⊗U(bI) µ
′, H0(nI , L(µ))) ∼= HomU(t)(µ′, H0(uI , H0(nI , L(µ))))

∼= HomU(t)(µ′, H0(u, L(µ))) ∼= HomU(t)(µ′, µ)

is non-zero if and only if µ′ = µ. This implies that H0(nI , L(µ)) has simple socle LI(µ).
It is thus enough to prove that H0(nI , L(µ)) is a highest weight U(lI)-module of weight µ.
The following argument is due to Florian Herzig (note that we know that H0(nI , L(µ)) is
in ObI

lI ,alg by Proposition 3.1.5, but we need the above more precise statement). Recall that
−Φ+ (resp. −Φ+

I ) are the roots of u (resp. uI) and L(µ) = ∑
λ∈Z≥0Φ+ L(µ)µ+λ. Consider the

following U(t)-submodules of L(µ)

L(µ)′ def=
∑

λ∈Z≥0Φ+
I

L(µ)µ+λ and L(µ)′′ def=
∑

λ/∈Z≥0Φ+
I

L(µ)µ+λ.

We have L(µ) = L(µ)′ ⊕ L(µ)′′, L(µ)µ = L(µ)′
µ and L(µ)′ = U(u+

I ) · L(µ)µ. Since the action
of lI modifies a weight by a character in ZΦ+

I and since Z≥0Φ+ ∩ZΦ+
I = Z≥0Φ+

I , we see that
L(µ′) and L(µ′′) are U(lI)-submodules of L(µ). Since the action of nI modifies a weight by a
character in −Z≥0(Φ+ \Φ+

I ), we see that nI necessarily acts by 0 on L(µ)µ+λ for λ ∈ Z≥0Φ+
I ,

i.e. L(µ)′ ⊆ H0(nI , L(µ)). Assume that L(µ)′ ⊊ H0(nI , L(µ)), or equivalently L(µ)′′ ∩
H0(nI , L(µ)) ̸= 0. The action of b on L(µ)′′∩H0(nI , L(µ)) factors through bI and since L(µ)
is locally b-finite, then L(µ)′′ ∩ H0(nI , L(µ)) is locally bI-finite. In particular it contains
a non-zero maximal vector for the action of uI , or equivalently u, i.e. H0(u, L(µ)′′) ̸= 0.
However H0(u, L(µ)′′) ⊆ H0(u, L(µ)) = L(µ)µ = L(µ)′

µ which contradicts L(µ)′ ∩L(µ)′′ = 0.
It follows that L(µ)′ = H0(nI , L(µ)), hence H0(nI , L(µ)) = U(u+

I ) ·L(µ)µ is a highest weight
U(lI)-module of weight µ, which finishes the proof of (ii).

We prove (iii). Recall first that Hk(nI , L(µ)) is in ObI
lI ,alg by Proposition 3.1.5. Let

ξ : Z(lI) → E be the unique homomorphism such that LI(µ)ξ ̸= 0 and assume that there
exists k ≥ 1 and a Jordan-Hölder factor LI(µ′) of Hk(nI , L(µ)) such that LI(µ′)ξ ̸= 0. Then
we have µ′ = w · µ for some w ∈ W (LI) by Harish-Chandra’s theorem. As the weight space
Hk(nI , L(µ))µ′ is non-zero, by Lemma 3.1.2 there exists distinct α1, . . . , αk ∈ Φ+ \ Φ+

I such
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that µ′−µ−∑k
ℓ=1 αℓ ∈ Z≥0Φ+. However, µ′ = w ·µ (with w ∈ W (LI)) implies µ′−µ ∈ ZΦ+

I ,
which is a contradiction as (( k∑

ℓ=1
αℓ

)
+ Z≥0Φ+

)
∩ ZΦ+

I = ∅.

It follows that Hk(nI , L(µ))ξ = 0 for k ≥ 1.

Lemma 3.1.9. Let µ ∈ Λ, I ⊆ ∆ and MI in Cfin
lI ,alg such that MI = MI,ξ for some ξ :

Z(lI)→ E.

(i) The map

dk,12 : ExtkU(lI)(MI , H
1(nI , L(µ)))→ Extk+2

U(lI)(MI , H
0(nI , L(µ)))

in (126) is zero for k ≥ 0. In fact either the source or the target of dk,12 is 0.

(ii) If H0(nI , L(µ)))ξ ̸= 0 then ExtkU(lI)(MI , H
ℓ(nI , L(µ))) = 0 for k ≥ 0, ℓ ≥ 1 and we

have isomorphisms for k ≥ 0

ExtkU(lI)(MI , H
0(nI , L(µ))) ∼= ExtkU(g)(U(g)⊗U(pI) MI , L(µ)).

(iii) If H0(nI , L(µ))ξ = 0 then ExtkU(lI)(MI , H
0(nI , L(µ))) = 0 for k ≥ 0 and we have an

isomorphism

HomU(lI)(MI , H
1(nI , L(µ))) ∼= Ext1

U(g)(U(g)⊗U(pI) MI , L(µ))

and an injection

Ext1
U(lI)(MI , H

1(nI , L(µ))) ↪→ Ext2
U(g)(U(g)⊗U(pI) MI , L(µ)). (136)

(iv) Analogous statements as (i), (ii), (iii) hold when MI is in ObI
lI ,alg and replacing ExtkU(lI)

and ExtkU(g) by respectively ExtkObI
lI ,alg

and ExtkOb
alg

.

Proof. Combining (ii) and (iii) of Lemma 3.1.8 with (ii) of Lemma 3.1.3 and using (126),
(128) and (129), we obtain (i), (ii) and the first two statements in (iii) in both cases MI ∈
Cfin
lI ,alg and MI ∈ ObI

lI ,alg. For (136), note that the bottom line of the E2-terms in the spectral
sequence (126) is identically 0. This implies that E1,1

2 = E1,1
∞ = Ext1

U(lI)(MI , H
1(nI , L(µ)))

is the first non-zero graded piece of the abutment filtration on E2
∞ = Ext2

U(g)(U(g) ⊗U(pI)

MI , L(µ)), whence (136). WhenMI is inObI
lI ,alg the proof is analogous using (129) instead.
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3.2 Results on Ext1 groups in the category Ob
alg

We prove results on Ext groups (mainly Ext1 groups) in the category Ob
alg, in the category

of all U(g)-modules, and on the comparison between the two.

We denote by w0 ∈ W (G) the element of maximal length. For x,w ∈ W (G) such that
x ≤ w we let Px,w(q) ∈ Z[q] be the associated Kazhdan-Lusztig polynomial ([KL79]) and let
Px,w(q) def= 0 if x ̸≤ w. When x ≤ w recall that degPx,w(q) ≤ 1

2(ℓ(w) − ℓ(x) − 1) if x ̸= w
and Px,w = 1 if ℓ(w) ≤ ℓ(x) + 2. Moreover the Kazhdan-Lusztig conjectures (independently
proved in the 1980s by Beilinson-Bernstein and Brylinski-Kashiwara, and reproved by several
people ever since) imply the following formula in the Grothendieck group of Ob

alg (with
obvious notation)

[L(w)] =
∑
w≤x

(−1)ℓ(x)−ℓ(w)Pxw0,ww0(1)[M(x)].

Following [KL79, Def. 1.2], we write x ≺ w if x < w and degPx,w(q) = 1
2(ℓ(w) − ℓ(x) − 1)

(so x ≺ w implies that ℓ(w) − ℓ(x) is odd) and we define µ(x,w) as the leading coefficient
of Px,w if x ≺ w, and µ(x,w) def= 0 otherwise. For instance if x < w and ℓ(w) = ℓ(x) + 1, we
have x ≺ w (and µ(x,w) = 1).

Lemma 3.2.1. Let x,w ∈ W (G) and µ ∈ Λ.

(i) We have an isomorphism for k ≥ 0

ExtkOb
alg

(M(µ), L(w)) ∼= HomU(t)(µ,Hk(u, L(w))). (137)

Moreover, if (137) is non-zero then there exists x′ ≥ w in W (G) such that µ = x′ · µ0.

(ii) The dimension of ExtkOb
alg

(M(x), L(w)) (for k ≥ 0) is equal to the coefficient of the
monomial of degree 1

2(ℓ(x)− ℓ(w)− k) in Pxw0,ww0.

(iii) If k ≥ 0 is the minimal integer such that (137) is non-zero and if x′ is as in (i), then
we have for k′ ≤ k

Extk′

U(g)(M(x′), L(w)) ∼= Extk′

Ob
alg

(M(x′), L(w)).

Proof. We prove (i). The isomorphism (137) is simply [Hum08, Thm. 6.15(b)]. If (137) is
non-zero, then by (ii) of Lemma 3.1.3 Z(g) acts on M(µ) and L(w) by the same character,
which together with Harish-Chandra’s theorem gives some x′ ∈ W (G) such that µ = x′ · µ0.
Moreover the non-vanishing of (137) forces x′ ≥ w by [Hum08, Thm. 6.11(a)]. (ii) follows
from (the second statement in) (i) and [Hum08, Thm. 8.11(b),(c)]. We prove (iii). By
assumption we have

Hk′(u, L(w))x′·µ0
∼= HomU(t)(x′ · µ0, H

k′(u, L(w))) = 0 for k′ < k.
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Hence, from (ii) of Lemma 3.1.3 applied with I = ∅ (recall from Proposition 3.1.5 that
Hk′(u, L(w)) is in Ot

t,alg ⊂ Cfin
t,alg) we obtain Extk′′

U(t)(x′ · µ0, H
k′(u, L(w))) = 0 for k′′ ≥ 0 and

k′ < k. By (126) (applied with I = ∅) we deduce for k′ ≤ k

Extk′

U(g)(M(x′), L(w)) ∼= HomU(t)(x′ · µ0, H
k′(u, L(w)))

(which is zero if k′ < k).

We collect the following standard results on Ext1
Ob

alg
.

Lemma 3.2.2. Let x,w ∈ W (G).

(i) If Ext1
Ob

alg
(L(x), L(w)) ̸= 0, then either x < w or w < x.

(ii) If x < w, then Ext1
Ob

alg
(L(x), L(w)) ̸= 0 if and only if x ≺ w, and is µ(x,w)-dimensional

in that case.

(iii) If x < w and ℓ(w) = ℓ(x) + 1, then dimE Ext1
Ob

alg
(L(x), L(w)) = 1.

Proof. We start with (i). It follows from (120) and L(x)τ ∼= L(x), L(w)τ ∼= L(w) that

Ext1
Ob

alg
(L(x), L(w)) ∼= Ext1

Ob
alg

(L(w), L(x)). (138)

So upon exchanging x and w, it suffices to treat the case x ̸≥ w. Note that x ̸≥ w is
equivalent to x ·µ0−w ·µ0 /∈ Z≥0Φ+. Hence, by [Hum08, Prop. 3.1(a)] (and our conventions)

Ext1
Ob

alg
(M(x), L(w)) = 0. (139)

As L(x) is the cosocle of M(x), we obviously have

HomOb
alg

(L(x), L(w)) ∼= HomOb
alg

(M(x), L(w)). (140)

The short exact sequence 0 → N(x) → M(x) → L(x) → 0 together with (139) and (140)
induce an isomorphism

HomOb
alg

(N(x), L(w)) ∼= Ext1
Ob

alg
(L(x), L(w)) ̸= 0 (141)

which in particular implies w > x. We prove (ii). If x < w we have by (138), [Hum08,
Thm. 8.15(c)] and [Bre03, p.9]

dimE Ext1
Ob

alg
(L(x), L(w)) = µ(ww0, xw0) = µ(x,w), (142)

which implies (ii). We prove (iii). If x < w and ℓ(w) = ℓ(x) + 1, then Px,w = 1
and degPx,w = 1

2(ℓ(w) − ℓ(x) − 1) = 0, so we have x ≺ w and µ(x,w) = 1, and thus
dimE Ext1

Ob
alg

(L(x), L(w)) = 1 by (142).
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Lemma 3.2.3. Let x ∈ W (G) and M in Ob
alg with all irreducible constituents isomorphic

to L(x′) for some x′ ̸≤ x. Then we have a canonical isomorphism

Ext1
Ob

alg
(L(x),M) ∼−→ Ext1

U(g)(L(x),M). (143)

Proof. As (143) is clearly injective, it is enough to show that it is also surjective. Given
a U(g)-module M ′ representing a non-split extension of M by L(x), it is enough to show
that M ′ lies in Ob

alg (note that it lies in Cfin
alg). For x′ ̸≤ x and µ ∈ Z≥0Φ+, we have

L(x′)x·µ0−µ = 0. Indeed, x′ ̸≤ x if and only if x · µ0 − x′ · µ0 /∈ Z≥0Φ+ and L(x′)µ′ = 0 if
and only if µ′ − x′ · µ0 /∈ Z≥0Φ+. By the assumption and an obvious dévissage, we deduce
Mx·µ0−µ = 0 and thus M ′

x·µ0−µ
∼→ L(x)x·µ0−µ for µ ∈ Z≥0Φ+. In particular, dimEM

′
x·µ0 = 1

and M ′
x·µ0−α = 0 for α ∈ Φ+, forcing M ′[uα]x·µ0

∼→ M ′
x·µ0 for α ∈ Φ+ (uα being the one

dimensional Lie subalgebra of u corresponding to α ∈ ∆) and thus M ′[u]x·µ0
∼→ M ′

x·µ0 . We
deduce isomorphisms of one dimensional vector spaces

HomU(t)(x · µ0,M
′[u]) ∼= HomU(b)(x · µ0,M

′) ∼−→ HomU(b)(x · µ0, L(x)),

giving a non-zero map M(x) → M ′ whose image M ′′ is necessarily distinct from M . In
particular M ′ is the amalgamate sum of M and M ′′ over M ∩M ′′ ⊆ M . But M ′′ is in Ob

alg
as it is a quotient of M(x) and M is in Ob

alg by assumption. It follows that the quotient M ′

of M ⊕M ′′ is in also in Ob
alg.

We will extensively use the following consequences of Lemma 3.2.2 and Lemma 3.2.3:

Lemma 3.2.4. Let x,w ∈ W (G).

(i) We have Ext1
Ob

alg
(L(x), L(w)) ̸= 0 if and only if x ≺ w or w ≺ x, in which case it has

dimension µ(x,w) or µ(w, x) respectively and |ℓ(x)− ℓ(w)| is odd.

(ii) Assume x ̸= w, then Ext1
Ob

alg
(L(x), L(w)) ∼= Ext1

U(g)(L(x), L(w)). In particular for
x ̸= w we have Ext1

U(g)(L(x), L(w)) ̸= 0 if and only if x ≺ w or w ≺ x, in which case
it has dimension µ(x,w) or µ(w, x) respectively.

Proof. (i) follows from parts (i) and (ii) of Lemma 3.2.2 together with (138). (ii) follows
from Lemma 3.2.3 together with (117) and (120), and from (i).

Lemma 3.2.5. If x ≺ w and ℓ(w) > ℓ(x) + 1, then we have DL(w) ⊆ DL(x) and DR(w) ⊆
DR(x).

Proof. The inclusion DR(w) ⊆ DR(x) is [BB05, Prop. 5.1.9], and the inclusion DL(w) ⊆
DL(x) is its symmetric version which follows from Px,w = Px−1,w−1 ([Bre03, p.9]).

Recall that W I,∅ is the set of minimal length representatives of W (LI)\W (G).

Lemma 3.2.6. Let I ⊆ ∆, y ∈ W I,∅, x,w ∈ W (LI) with x < w and P I
x,w the Kazhdan-

Lusztig polynomial for the Coxeter group W (LI). Then we have P I
x,w = Px,w = Pxy,wy.
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Proof. Recall that the multiplication on the right by y gives a bijection preserving the Bruhat
order between the interval [x,w] in W (G) and the interval [xy, wy] in W (G), and that
ℓ(x′y) = ℓ(x′) + ℓ(y) for x′ ∈ W (LI) (one reference for such facts is [BB05, §2]). Using
this, the equality Px,w = Pxy,wy easily follows by induction on ℓ(y) from [Bre03, Thm. 2(iii)]
and [Bre03, Thm. 4(iv)] (arguing as in the last paragraph of [Bre03, p.8]). By the same
combinatorics, the equality P I

x,w = Px,w comes from the fact that the interval [x,w] in W (G)
is the same as the interval [x,w] in W (LI).

Lemma 3.2.7. Let x,w ∈ W (G) and I ⊆ ∆.

(i) If w ∈ W (LI)x, then we have canonical isomorphisms for k ≥ 0

ExtkObI
lI ,alg

(LI(w), H0(nI , L(x))) ∼= ExtkOb
alg

(M I(w), L(x)).

(ii) The E-vector space HomU(lI)(LI(w), H1(nI , L(x))) is non-zero if and only if x ≺ w and
w /∈ W (LI)x, and has dimension µ(x,w) if non-zero.

(iii) For k ≥ 0 the canonical map

Hk(uI , H1(nI , L(x)))→ Hk+2(uI , H0(nI , L(x))) (144)

induced from the spectral sequence (123) (with I ′ = ∅) is zero.

(iv) The inclusion socU(lI)(H1(nI , L(x))) ⊆ H1(nI , L(x)) induces a U(t)-equivariant iso-
morphism

H0
(
uI , socU(lI)(H1(nI , L(x)))

) ∼−→ H0(uI , H1(nI , L(x))) (145)

with both U(t)-modules in (145) isomorphic to ⊕w(w ·µ0)⊕µ(x,w) where w runs through
those w ∈ W (G) such that w /∈ W (LI)x and x ≺ w.

Proof. (i) follows from (ii) of Lemma 3.1.8 and (iv) of Lemma 3.1.9 (together with Harish-
Chandra’s theorem).

We prove (ii). Let µ ∈ Λ, by Lemma 3.1.2 if H1(nI , L(x))µ ̸= 0 then µ−x·µ0−α ∈ Z≥0Φ+

for some α ∈ Φ+ \ Φ+
I . In particular

HomU(lI)(LI(w), H1(nI , L(x))) ̸= 0 =⇒ w · µ0 − x · µ0 ∈ α + Z≥0Φ+ =⇒ w > x. (146)

On the other hand, each Jordan-Hölder factor L(w′) of N(w) satisfies w′ > w. So for w > x
the surjections M(w) ↠M I(w) ↠ L(w) induce embeddings

Ext1
Ob

alg
(L(w), L(x)) ↪→ Ext1

Ob
alg

(M I(w), L(x)) ↪→ Ext1
Ob

alg
(M(w), L(x)). (147)

But since the first and third vector spaces both have dimension µ(x,w) by [Bre03, p.9],
[Hum08, Thm. 8.15(c)] and [Hum08, Thm. 8.11(b)], we deduce that the embeddings in (147)
are all isomorphisms. In particular, when x < w each E-vector space in (147) has dimension
µ(x,w) and is non-zero if and only if x ≺ w.
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Now, from (ii), (iii) and (iv) of Lemma 3.1.9 we have HomU(lI)(LI(w), H1(nI , L(x))) ̸= 0
if and only if Ext1

Ob
alg

(M I(w), L(x)) ̸= 0 and H0(nI , L(x))ξ = 0 where ξ is the infinitesimal
character of LI(w). By Harish-Chandra’s theorem and (ii) of Lemma 3.1.8, H0(nI , L(x))ξ = 0
if and only if w /∈ W (LI)x. By the previous paragraph x ≺ w if and only if x < w and
Ext1

Ob
alg

(M I(w), L(x)) ̸= 0. Using (146), we get (ii).
We prove (iii). Since H0(nI , L(x)) ∼= LI(x) by (ii) of Lemma 3.1.8, for each µ ∈ Λ

satisfying Hk+2(uI , H0(nI , L(x)))µ ̸= 0, we deduce in particular from Lemma 3.1.2 (applied
with lI instead of g) that

µ− x · µ0 ∈ Z≥0Φ+
I . (148)

Let µ′ ∈ Λ such that Hk(uI , H1(nI , L(x)))µ′ ̸= 0. By a dévissage on H1(nI , L(x)) (using
Proposition 3.1.5) and by applying Lemma 3.1.2 twice, first to H1(nI , L(x)) and then to
Hk(uI , LI(µ′′)) for each Jordan-Hölder factor LI(µ′′) of H1(nI , L(x)), we deduce the existence
of α ∈ Φ+ \ Φ+

I such that
µ′ − x · µ0 − α ∈ Z≥0Φ+. (149)

If the map (144) is non-zero, then there must exists µ = µ′ satisfying both (148) and (149),
which is impossible as

Z≥0Φ+
I ∩ (α + Z≥0Φ+) = ∅.

We prove (iv). Note first that (iii) together with (123) imply a short exact sequence

0→ H1(uI , H0(nI , L(x)))→ H1(u, L(x))→ H0(uI , H1(nI , L(x)))→ 0. (150)

Secondly, from (i) and (ii) of Lemma 3.2.1 (and µ(ww0, xw0) = µ(x,w)) we have

H1(u, L(x)) ∼=
⊕
x≺w

(w · µ0)⊕µ(x,w). (151)

Thirdly, write x = xIx
I where xI ∈ W (LI) and xI ∈ W I,∅ and note that xI · µ0 ∈ Λdom

I , so
that, when dealing with the reductive group LI , we can replace µ0 by xI · µ0. Then a proof
analogous to the proof of (i) and (ii) of Lemma 3.2.1 replacing G by LI and using Lemma
3.2.6 gives

H1(uI , LI(x)) ∼=
⊕

x≺w,w∈W (LI)x
(w · µ0)⊕µ(x,w). (152)

As H0(nI , L(x)) ∼= LI(x) by (ii) of Lemma 3.1.8, we deduce from (150), (151) and (152)

H0(uI , H1(nI , L(x))) ∼=
⊕

x≺w,w/∈W (LI)x
(w · µ0)⊕µ(x,w).

But by (ii) we also have

socU(lI)(H1(nI , L(x))) ∼=
⊕

x≺w,w/∈W (LI)x
LI(w)⊕µ(x,w)

which clearly implies (145).
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Remark 3.2.8. Let x,w ∈ W (G) with x ̸= w and I def= ∆\DL(w). The short exact sequence
0→ N I(w)→M I(w)→ L(w)→ 0 together with x ̸= w give an exact sequence

0→ HomU(g)(N I(w), L(x))→ Ext1
U(g)(L(w), L(x))→ Ext1

U(g)(M I(w), L(x)). (153)

By [Hum08, Thm. 9.4(c)] and Lemma 3.1.1 we have HomU(g)(N I(w), L(x)) ̸= 0 if and only
if HomU(g)(N(w), L(x)) ̸= 0 and DL(x) ⊆ DL(w), and by (141) and (ii) of Lemma 3.2.2 that
HomU(g)(N(w), L(x)) ̸= 0 if and only if w ≺ x. Since w ≺ x and DL(x) ⊆ DL(w) if and
only if w ≺ x and x /∈ W (LI)w (using Lemma 3.2.5 to deal with the implication ⇐ when
ℓ(x) > ℓ(w)+1), we finally deduce (with (ii) of Lemma 3.2.2) that HomU(g)(N I(w), L(x)) ̸= 0
if and only if w ≺ x and x /∈ W (LI)w, in which case it has dimension µ(w, x).

Moreover it follows from (ii), (iii) of Lemma 3.1.9 (with Harish-Chandra’s theorem) and
(ii) of Lemma 3.1.8 that one has isomorphisms

Ext1
U(g)(M I(w), L(x)) ∼= Ext1

U(lI)(LI(w), H0(nI , L(x))) ∼= Ext1
U(lI)(LI(w), LI(x)) (154)

if w ∈ W (LI)x, and

Ext1
U(g)(M I(w), L(x)) ∼= HomU(lI)(LI(w), H1(nI , L(x))) (155)

if w /∈ W (LI)x. When w ∈ W (LI)x, it then follows from Lemma 3.2.6 (upon writing x = x′y,
w = w′y for w′ < x′ in W (LI) and y ∈ W I,∅) and (ii) of Lemma 3.2.4 (applied with lI instead
of g) that (154) has dimension µ(x,w) (resp. µ(w, x)) when x < w (resp. when w < x), which
is also dimE Ext1

U(g)(L(w), L(x)) by (ii) of Lemma 3.2.4. When w /∈ W (LI)x, it then follows
from (ii) of Lemma 3.2.7 that (155) is non-zero if and only if x ≺ w (and w /∈ W (LI)x) and
has dimension µ(x,w) = dimE Ext1

U(g)(L(w), L(x)) in that case.
By (153) and the above discussion on HomU(g)(N I(w), L(x)) and Ext1

U(g)(M I(w), L(x)),
we see that Ext1

U(g)(L(w), L(x)) ̸= 0 if and only if exactly one of the following holds:

• w ≺ x, x /∈ W (LI)(w), Ext1
U(g)(M I(w), L(x)) = 0 and (153) induces an isomorphism

HomU(g)(N I(w), L(x)) ∼−→ Ext1
U(g)(L(w), L(x));

• HomU(g)(N I(w), L(x)) = 0 and (153) induces an isomorphism

Ext1
U(g)(L(w), L(x)) ∼−→ Ext1

U(g)(M I(w), L(x))

(as it is then an embedding between two vector spaces of the same dimension).

Lemma 3.2.9. Let w ∈ W (G). We have canonical isomorphisms for ℓ ≤ ℓ(w) induced by
M(w) ↠ L(w)

ExtℓOb
alg

(L(w), L(1)) ∼→ ExtℓOb
alg

(M(w), L(1)) ∼= HomU(t)(w · µ0, H
ℓ(u, L(1))) (156)

where all E-vector spaces in (156) are 0 if ℓ < ℓ(w) and 1-dimensional if ℓ = ℓ(w).
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Proof. Recall that by definition L(1) = L(µ0). By Bott’s formula (see [Hum08, §6.6]) there
is a U(t)-equivariant isomorphism for ℓ ≥ 0

Hℓ(u, L(1)) ∼=
⊕

ℓ(w)=ℓ
w · µ0. (157)

We deduce from (129) applied with I = ∅ (using Extℓ1Ot
t,alg

= 0 if ℓ1 > 0) that for ℓ ≥ 0

ExtℓOb
alg

(M(w), L(1)) ∼= HomU(t)
(
w · µ0, H

ℓ(u, L(1))
)
,

which is 1-dimensional if ℓ = ℓ(w) and 0 otherwise by (157). This gives the second iso-
morphism in (156). We prove the first isomorphism in (156) when ℓ ≤ ℓ(w) by decreasing
induction on ℓ(w). If w = w0, then L(w0) = M(w0) and there is nothing more to prove.
If w < w0, we have by induction ExtℓOb

alg
(L(w′), L(1)) = 0 for ℓ ≤ ℓ(w) and w < w′, which

implies ExtℓOb
alg

(N(w), L(1)) = 0 for ℓ ≤ ℓ(w) by an obvious dévissage on N(w). The short
exact sequence 0→ N(w)→M(w)→ L(w)→ 0 then induces an isomorphism for ℓ ≤ ℓ(w)

ExtℓOb
alg

(L(w), L(1)) ∼−→ ExtℓOb
alg

(M(w), L(1)).

Lemma 3.2.10. Let M in Ob
alg. Assume that the inclusion socU(g)(M) ⊆ M induces an

isomorphism
H0(u, socU(g)(M)) ∼−→ H0(u,M) (158)

and that
HomU(t)(µ0, H

0(u,M)) = 0, (159)
then it also induces an isomorphism

Ext1
U(g)(L(1), socU(g)(M)) ∼−→ Ext1

U(g)(L(1),M). (160)

Proof. We have the decomposition M = ⊕
ξMξ from (i) of Lemma 3.1.3. Since both vector

spaces in (160) are 0 when M is replaced by Mξ with ξ ̸= ξµ0 by (ii) of Lemma 3.1.3, we can
assume M = Mξµ0

, i.e. that all Jordan-Hölder factors of M are of the form L(x) for some
x ∈ W (G).

For α ∈ Φ+, we have L(x)µ0−α = 0 for each x ∈ W (G) and thus Mµ0−α = 0. Conse-
quently, any v ∈Mµ0 must be killed by u, i.e. Mµ0 ⊆ H0(u,M). Then (159) forces Mµ0 = 0,
i.e. L(1) is not a constituent of M . Likewise, for α ∈ Φ+ and x, x′ ∈ W (G) with x′ ̸= 1 and
ℓ(x) = 1, we have L(x′)x·µ0−α = 0. Consequently Mx·µ0−α = 0 for α ∈ Φ+ and x ∈ W (G) with
ℓ(x) = 1 (using that L(1) does not appear in M) and thus Mx·µ0 ⊆ H0(u,M). From (158)
we then obtain Mx·µ0 ⊆ H0(u, socU(g)(M)) ⊆ socU(g)(M). Since any constituent L(x) of M
contributes to Mx·µ0 , we deduce that all constituents L(x) of M with ℓ(x) = 1 can only ap-
pear in socU(g)(M). Since, by (ii) of Lemma 3.2.4, for x ̸= 1 we have Ext1

U(g)(L(1), L(x)) ̸= 0
if and only if ℓ(x) = 1, an easy dévissage implies (160).
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3.3 W (G)-conjugates of objects of Ob
alg

We study unipotent cohomology groups and Ext1, Ext2 groups of U(g)-modules which are
conjugates of U(g)-modules in the category Ob

alg by elements of W (G).

Recall we defined full subcategories Calg, Cfin
alg, Õb

alg and Ob
alg of ModU(g) in §3.1. For M

in ModU(g) and g ∈ G, we define M g in ModU(g) as the same underlying U(g)-module as M
but where x ∈ U(g) acts by ad(g)(x) = gxg−1. For g1, g2 ∈ G we have (M g1)g2 ∼= M g1g2 . For
M1,M2 in ModU(g) and g ∈ G, we (clearly) have isomorphisms for k ≥ 0

ExtkU(g)(M1,M2) ∼= ExtkU(g)(M
g
1 ,M

g
2 ). (161)

Recall that an algebraic action of t, resp. of b, on a finite dimensional E-vector space lifts
uniquely to an (algebraic) action of T , resp. of B, see for instance [OS15, Lemma 3.2]. It
follows that, for M in Cfin

alg and t ∈ T , the resulting action of t on M induces an isomorphism
M

∼→M t in Cfin
alg. Likewise, for M in Õb

alg and b ∈ B, we have M ∼→M b in Õb
alg. In particular,

for M in Cfin
alg, the isomorphism class of M g is independent of the choice of g ∈ NG(T ) lifting

w ∈ NG(T )/T and we denote it by Mw. For I ⊆ ∆ and M ∈ OpI
alg, by [OS15, Lemma 3.2]

the action of U(pI) on M lifts uniquely to an action of PI on M , and thus as above M ∼→M g

as U(g)-modules when g ∈ PI . In particular, Mw ∼= M for each w ∈ W (LI).

Lemma 3.3.1. Let I, I ′ ⊆ ∆, M in OpI′
alg and w ∈ W (G). We write w = w1w2w3 for

(unique) w1 ∈ W (LI′), w3 ∈ W (LI) and w2 ∈ W I′,I .

(i) For k ≥ 0 the U(lI)-module Hk(nI ,Mw2) lies in ObI
lI ,alg and we have Hk(nI ,Mw) ∼=

(Hk(nI ,Mw2))w3 in ModU(lI).

(ii) For µ ∈ Λ such that I ′ is maximal for the condition L(µ) ∈ OpI′
alg, we have

H0(nI , L(µ)w) ̸= 0 if and only if w2 = 1.

(iii) For µ ∈ Λ such that I ′ is maximal for the condition L(µ) ∈ OpI′
alg, we have L(µ)w ∈ Ob

alg
if and only if L(µ)w ∼= L(µ) if and only if w ∈ W (LI′).

Proof. We prove the second statement in (i). Since any lift of w1 ∈ W (LI′) in NG(T )
lies in LI′ ⊆ PI′ , we have Mw1 ∼= M as U(g)-modules by the sentence just before Lemma
3.3.1. Since LI normalizes NI , we have w−1

3 nIw3 ∼= nI and thus (using (121) for the last
isomorphism)

Hk(nI ,Mw3
1 ) ∼= Hk(w−1

3 nIw3,M
w3
1 ) ∼= Hk(nI ,M1)w3 (162)

for any U(g)-module M1 and k ≥ 0. We apply this to M1 = Mw1w2 ∼= Mw2 , which gives
the second statement. We prove the first statement in (i). The minimal length assumption
on w2 implies in particular bI = b ∩ lI ⊆ w−1

2 bw2, and thus Mw2 is locally bI-finite, which
together with the U(lI)-equivariance of the Chevalley-Eilenberg complex (121) (and the fact
dimE nI < +∞) implies that the U(lI)-module Hk(nI ,Mw2) is locally bI-finite for k ≥ 0. A
similar argument shows that Hk(nI ,Mw2) is also t-semi-simple. Then the argument to show
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that Hk(nI ,Mw2) has finite length (hence is in ObI
lI ,alg) is parallel to the one for the proof of

Proposition 3.1.5, using as (crucial) inputs Lemma 3.1.4 and dimE H
k(nI ,Mw2)µ < ∞ for

µ ∈ Λ. Note that Mw2 itself is not in general in Ob
alg as it might not be locally b-finite

We prove (ii). By the second statement in (i), it suffices to treat the case when w =
w2 ∈ W I′,I . If w2 = 1, we have H0(nI , L(µ)) ∼= LI(µ) ̸= 0 from (ii) of Lemma 3.1.8. We
assume from now on w2 ̸= 1 and H0(nI , L(µ)w2) ̸= 0 and seek a contradiction. Let MI be
any non-zero simple U(lI)-module that embeds into H0(nI , L(µ)w2) (MI exists and belongs
to ObI

lI ,alg by the first statement in (i)). Then the injection MI ↪→ H0(nI , L(µ)w2) induces
a non-zero map U(g) ⊗U(pI) MI → L(µ)w2 by (127) which has to be a surjection as L(µ)w2

is irreducible. As U(g) ⊗U(pI) MI is in Ob
alg (see below (119)), L(µ)w2 is also an object of

Ob
alg, and in particular L(µ) is locally w2bw

−1
2 -finite. As 1 ̸= w2, there exists α ∈ ∆ (recall

it is a positive simple root for b+) such that w−1
2 (α) ∈ b, or equivalently uα ⊆ w2bw

−1
2

(where uα ⊆ u ⊂ b+ is the one dimensional root subspace corresponding to α), which implies
that L(µ) is locally uα-finite. Note that α /∈ I ′ because w−1

2 (I ′) ⊆ Φ+. Let v ∈ M(µ)µ
be a highest weight vector of M(µ) and 0 ̸= xα ∈ uα. As L(µ) is locally uα-finite, there
exists N ≥ 1 such that xNα · v ∈ N(µ)µ+Nα ⊆ M(µ)µ+Nα, which implies N(µ) ̸= 0 as
M(µ) ∼= U(u+). As each Jordan-Hölder factor of N(µ) has highest weight w′ · µ for some
w′ ∈ W (G) such that w′ · µ − µ ∈ Z>0Φ+ ([Hum08, Thm. 5.1], in particular w′ ̸= 1), we
deduce µ + Nα − w′ · µ ∈ Z≥0Φ+ for such a w′. Since w′ ̸= 1, there also exists β ∈ ∆
such that w′ · µ − µ = (w′ · µ − sβ · µ) + (sβ · µ − µ) ∈ β + Z≥0Φ+. We can choose β ̸= α,
as otherwise this would mean w′ · µ − µ ∈ Z>0α, hence w′ = sα, but this is impossible
since α /∈ I ′ and I ′ is maximal such that L(µ) ∈ OpI′

alg, equivalently I ′ is maximal such
that µ is dominant with respect to bI′ , which implies sα · µ − µ ∈ Z≤0Φ+. It follows that
(µ+Nα− w′ · µ) + (w′ · µ− µ) = Nα ∈ β + Z≥0Φ+ which is impossible as β ̸= α.

Finally we prove (iii). As in (i) above, w ∈ W (LI′) implies L(µ)w ∼= L(µ) which implies
L(µ)w ∈ Ob

alg. Conversely, assume L(µ)w ∈ Ob
alg, which implies H0(u, L(µ)w) ̸= 0. By (ii)

applied with I = ∅ we get w ∈ W (LI′)W (LI) = W (LI′).

The following consequence of Lemma 3.3.1 will be used later.

Lemma 3.3.2. For k ≥ 0, M , M ′ in Ob
alg and w ∈ W (G), the E-vector space

ExtkU(g)(M ′,Mw) is finite dimensional.

Proof. It follows from the first statement in (i) of Lemma 3.3.1 applied with I = ∅ that
Hℓ(u, L(µ)w) is a finite dimensional semi-simple U(t)-module for ℓ ≥ 0, µ ∈ Λ and w ∈
W (G), and thus ExtkU(t)(µ′, Hℓ(u, L(µ)w)) is finite dimensional for k, ℓ ≥ 0, µ, µ′ ∈ Λ. By
(126) (applied with I = ∅) we deduce

dimE ExtkU(g)(M(µ′), L(µ)w) < +∞ (163)

for k ≥ 0, µ, µ′ ∈ Λ and w ∈ W (G). Now, let µ′ ∈ Λ, if there is no µ′′ ̸= µ′ such that
µ′′ ↑ µ′ (where ↑ is the strong linkage relation from [Hum08, §5.1]) then M(µ′) ∼→ L(µ′) by
[Hum08, Thm. 5.1(b)] and hence ExtkU(g)(L(µ′), L(µ)w) is finite dimensional for k ≥ 0 by
(163). Assume by induction that ExtkU(g)(L(µ′′), L(µ)w) is finite dimensional for k ≥ 0 and
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any µ′′ ↑ µ′, µ′′ ̸= µ′. Then ExtkU(g)(N(µ′), L(µ)w) and ExtkU(g)(M(µ′), L(µ)w) are both finite
dimensional, the first by dévissage and induction using [Hum08, Thm. 5.1(a),(b)], and the
second by (163). We deduce dimE ExtkU(g)(L(µ′), L(µ)w) < +∞ for k ≥ 0 by an obvious
dévissage. The statement of the lemma then follows by (another) obvious dévissage on the
constituents of M ′ and Mw.

Recall from §3.1 that, for x ∈ W (G) and I ⊆ ∆, LI(x) is the unique simple quotient of
U(lI)⊗U(bI) x · µ0 (and lies in ObI

lI ,alg).

Lemma 3.3.3. Let x ∈ W (G) and j ∈ ∆.

(i) We have L{j}(x) ∼= L{j}(x)sj if and only if j /∈ DL(x), in which case we have U(t)-
equivariant isomorphisms H0(u{j}, L

{j}(x)) ∼= x · µ0 and H1(u{j}, L
{j}(x)) ∼= sjx · µ0.

(ii) If j ∈ DL(x), we have U(t)-equivariant isomorphisms H0(u{j}, L
{j}(x)) ∼= x · µ0,

H1(u{j}, L
{j}(x)) = 0, H0(u{j}, L

{j}(x)sj ) = 0 and H1(u{j}, L
{j}(x)sj ) ∼= sjx · µ0.

Proof. We prove (i). The isomorphism H0(u{j}, L
{j}(x)) ∼= x · µ0 always holds by (ii)

of Lemma 3.1.8. By (ii) of Lemma 3.2.7 (applied with the reductive group L{j} instead
of G and with I = ∅) and the fact that H1(u{j}, L

{j}(x)) is a semi-simple U(t)-module
(cf.Proposition 3.1.5) we deduce that H1(u{j}, L

{j}(x)) ∼= sjx · µ0 if x < sjx (equivalently
if j /∈ DL(x)), and H1(u{j}, L

{j}(x)) = 0 if sjx < x (equivalently if j ∈ DL(x)). By (iii)
of Lemma 3.3.1 (applied with L{j} and I = ∅), we have L{j}(x) ∼= L{j}(x)sj if and only if
j /∈ DL(x) (noting that I ′ ̸= ∅ in loc. cit. if and only if I ′ = {j} if and only if j /∈ DL(x) by
Lemma 3.1.1).

We prove (ii). By (ii) of Lemma 3.3.1 (applied with L{j} and I = ∅) if j ∈ DL(x) we
have I ′ = ∅ and H0(u{j}, L

{j}(x)sj ) = 0. In view of what was proven before, it remains to
show that H1(u{j}, L

{j}(x)sj ) ∼= sjx ·µ0 when j ∈ DL(x). Assume j ∈ DL(x), then L{j}(x) ∼=
U(l{j})⊗U(b{j})x·µ0 is a free U(u+

{j})-module with a generator 0 ̸= v ∈ L{j}(x)x·µ0 . So L{j}(x)sj

is a free U(u{j}) = U((u+
{j})sj )-module with a generator 0 ̸= vsj ∈ (L{j}(x)sj )sj(x·µ0). Recall

that H1(u{j}, L
{j}(x)sj ) is by definition the cokernel of the map of U(t)-modules

L{j}(x)sj → L{j}(x)sj ⊗E u∨
{j}, m 7→ u(m)⊗ u∨

where u∨
{j} is the E-vector space dual to u{j}, u ̸= 0 a fixed element of u{j} and u∨ the

dual basis (recall dimE u{j} = 1). By an easy computation (we are with GL2) we have that
vsj ⊗ u∨ spans this cokernel as E-vector space. In particular as U(t)-module the cokernel is
isomorphic to sj(x ·µ0) +αj = sj · (x ·µ0) = sjx ·µ0 where αj = ej − ej+1 ∈ ∆ is the positive
simple root also denoted j. This finishes the proof of (ii).

Lemma 3.3.4. Let I, I ′ ⊆ ∆, 1 ̸= w1 ∈ W I′,I and w ∈ W (G) such that I ′ = ∆ \ DL(w).
Let x ∈ W (G), then the following statements are equivalent.

(i) HomU(lI)(LI(x), H1(nI , L(w)w1)) ̸= 0;
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(ii) Ext1
U(g)(L(x), L(w)w1) ̸= 0;

(iii) Ext1
U(g)(L(x), L(w)) ̸= 0 and w1 ∈ W (LI′)W (L∆\DL(x)).

Moreover, if these statements hold, we have a canonical isomorphism of E-vector spaces of
dimension dimE Ext1

U(g)(L(x), L(w)) induced by applying the functor H0(uI ,−):

HomU(lI)(LI(x), H1(nI , L(w)w1)) ∼−→ HomU(t)
(
x · µ0, H

0(uI , H1(nI , L(w)w1))
)
. (164)

Proof. By Lemma 3.1.1 if w ∈ W (G) and I ′ = ∆ \ DL(w) then L(w) is in OpI′
alg and I ′ is

maximal for that condition. In particular L(w)w′ ∼= L(w) for w′ ∈ W (LI′) (see just before
Lemma 3.3.1) and, if w1 = w2w3 for some w2 ∈ W (L∆\DL(w)) and w3 ∈ W (L∆\DL(x)), then
L(w)w2 ∼= L(w) and L(x)w−1

3 ∼= L(x). Hence, we deduce from (161) (with M1 = L(x),
M2 = L(w)w1 and g = w−1

3 ):

Ext1
U(g)(L(x), L(w)w1) ∼= Ext1

U(g)(L(x)w
−1
3 , L(w)w2) ∼= Ext1

U(g)(L(x), L(w)). (165)

In particular, (iii) implies (ii).
Since w1 ̸= 1 by (ii) of Lemma 3.3.1 we have H0(nI , L(w)w1) = 0, which together with

(128) (applied with MI = LI(x) and M = L(w)w1) gives

Ext1
U(g)(M I(x), L(w)w1) ∼= HomU(lI)(LI(x), H1(nI , L(w)w1)). (166)

By a parallel argument, we have H0(u, L(w)w1) = 0 and a canonical isomorphism

Ext1
U(g)(M(x), L(w)w1) ∼= HomU(t)(x · µ0, H

1(u, L(w)w1)). (167)

The vanishing H0(nI , L(w)w1) = 0 together with (123) (applied with I ′ = ∅) also implies

H1(u, L(w)w1) ∼= H0(uI , H1(nI , L(w)w1)),

hence we have

HomU(t)
(
x · µ0, H

0(uI , H1(nI , L(w)w1))
) ∼= HomU(t)(x · µ0, H

1(u, L(w)w1)). (168)

By (iii) of Lemma 3.3.1 we have L(w)w1 /∈ Ob
alg, and thus HomU(g)(L(x′), L(w)w1) = 0 for

any L(x′) ∈ Ob
alg. Hence, the surjections M(x) ↠M I(x) ↠ L(x) induce injections

Ext1
U(g)(L(x), L(w)w1) ↪→ Ext1

U(g)(M I(x), L(w)w1) q1
↪→ Ext1

U(g)(M(x), L(w)w1). (169)

It follows that (ii) implies Ext1
U(g)(M I(x), L(w)w1) ̸= 0 which is equivalent to (i) by (166).

Thus (ii) implies (i).
The injection q1 corresponds under (166), (167) and (168) to the injection induced by

applying the functor H0(uI ,−)

HomU(lI)(LI(x), H1(nI , L(w)w1)) q2
↪→ HomU(t)

(
x · µ0, H

0(uI , H1(nI , L(w)w1))
)
. (170)
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Note that by (165), (166), (167) and (169), in order to prove that q2 (i.e. (164)) is an isomor-
phism it is enough to prove that (168) has dimension dimE Ext1

U(g)(L(x), L(w)). Moreover,
if (i) holds, then (168) must be non-zero by (170). Consequently, in order to prove that (i)
implies (iii) and the last statement of the lemma (and hence the lemma), it suffices to prove:
Claim 3.3.5. Assume that (168) is non-zero, then (iii) holds and (168) has dimension
dimE Ext1

U(g)(L(x), L(w)).
We now prove Claim 3.3.5 by an increasing induction on ℓ(w1) ≥ 1. Note first that, if

we take k = 1 and M = L(w)w1 in (124), we have the short exact sequence for any j ∈ ∆

0→ H1(u{j}, H
0(n{j}, L(w)w1))→ H1(u, L(w)w1)

→ H0(u{j}, H
1(n{j}, L(w)w1))→ 0. (171)

We first prove the case ℓ(w1) = 1, i.e. w1 = sj for some j ∈ ∆. As w1 = sj ∈ W I′,I we
have j /∈ I ∪ I ′ and thus j ∈ DL(w). We also have sjn{j}sj = n{j} and thus (arguing as in
(162))

Hk(n{j}, L(w)sj ) ∼= Hk(sjn{j}sj, L(w)sj ) ∼= Hk(n{j}, L(w))sj (172)
for k ≥ 0. By (ii) of Lemma 3.1.8 this implies H0(n{j}, L(w)sj ) ∼= L{j}(w)sj . Using (171),
the non-vanishing of HomU(t)(x · µ0, H

1(u, L(w)w1)) forces either

HomU(t)(x · µ0, H
1(u{j}, L

{j}(w)sj )) ̸= 0 (173)

or
HomU(t)(x · µ0, H

0(u{j}, H
1(n{j}, L(w)sj ))) ̸= 0. (174)

We treat these two possibilities separately.

• Since j ∈ DL(w), by (ii) of Lemma 3.3.3 (applied with x = w!) we see that (173) is
non-zero if and only if x = sjw(< w), in which case (173) is one dimensional.

• Now we consider (174). We deduce from (ii) of Lemma 3.2.7 (applied with I = {j})
that socU(l{j})(H1(n{j}, L(w))) ∼=

⊕
x′ L{j}(x′)⊕µ(w,x′) and therefore

socU(l{j})(H1(n{j}, L(w))sj ) ∼=
⊕
x′

(L{j}(x′)sj )⊕µ(w,x′) (175)

where x′ runs through elements of W (G) such that w ≺ x′ (note that, as W (L{j}) =
{1, sj} and j ∈ DL(w), w ≺ x′ also ensures x′ /∈ W (L{j})w). It follows from (ii) of
Lemma 3.3.1 (applied with L{j} and I = ∅) that H0(u{j}, L

{j}(x′)sj ) is non-zero if and
only if sj ∈ W (L∆\DL(x′)) if and only if j /∈ DL(x′), in which case it is isomorphic
to x′ · µ0 by (i) of Lemma 3.3.3. Using Proposition 3.1.5, each indecomposable direct
summand of the U(l{j})-module H1(n{j}, L(w)) has one of the five forms described in
[Hum08, Prop. 3.12]. But we also have

H0
(
u{j}, socU(l{j})(H1(n{j}, L(w)))

) ∼= H0(u{j}, H
1(n{j}, L(w)))
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by (iv) of Lemma 3.2.7 (applied with I = {j}). It is then easy to check that an
indecomposable direct summand of H1(n{j}, L(w)) is either irreducible of the form
L{j}(x′) (for w ≺ x′) or uniserial of length two with socle L{j}(x′) and cosocle L{j}(sjx′)
(for w ≺ x′ and j /∈ DL(x′)). Since H0(u{j}, L

{j}(sjx′)sj ) = 0 if j /∈ DL(x′) (as seen
above), this in turns implies using (172) (for k = 1)

H0
(
u{j}, socU(l{j})(H1(n{j}, L(w)sj ))

) ∼= H0(u{j}, H
1(n{j}, L(w)sj )).

By (175) and the discussion just after it, we deduce that (174) is non-zero if and only
if w ≺ x and j /∈ DL(x), in which case (174) is µ(w, x)-dimensional.

Note that in both cases w1 = sj ∈ W (L∆\DL(x)) and x ̸= w. Moreover when either
of (173), (174) is non-zero, then the other is zero. Using (ii) of Lemma 3.2.4 (together
with the U(t)-semi-simplicity of H1(u, L(w)w1)) we deduce that (168) always has dimension
dimE Ext1

U(g)(L(x), L(w)). This finishes the proof of Claim 3.3.5 when ℓ(w1) = 1.

We now assume ℓ(w1) > 1 and prove the induction step. We choose an arbitrary j ∈
DR(w1) and set w2

def= w1sj < w1. As sjn{j}sj = n{j}, we have as in (172)

Hk(n{j}, L(w)w1) ∼= Hk(sjn{j}sj, L(w)w2sj ) ∼= Hk(n{j}, L(w)w2)sj . (176)

As w1 ∈ W I′,I ⊆ W I′,∅ and w1 = w2sj > w2, we have w2 ∈ W I′,∅, which together with
j ∈ DR(w1) \DR(w2) implies w2 ∈ W I′,{j}. Note that w2 ̸= 1 since ℓ(w1) > 1, and therefore
H0(n{j}, L(w)w1) ∼= H0(n{j}, L(w)w2)sj = 0 by (176) and (ii) of Lemma 3.3.1. By (171) we
deduce an isomorphism (using again (176)) H1(u, L(w)w1) ∼= H0(u{j}, H

1(n{j}, L(w)w2)sj ).
In particular, HomU(t)(x · µ0, H

1(u, L(w)w1)) is non-zero if and only if

HomU(t)
(
x · µ0, H

0(u{j}, H
1(n{j}, L(w)w2)sj )

)
̸= 0. (177)

Moreover, as ℓ(w2) = ℓ(w1)−1 and w2 ∈ W I′,{j}, the induction assumption and the discussion
before Claim 3.3.5 imply that

HomU(l{j})(L{j}(x′), H1(n{j}, L(w)w2)) ̸= 0 (178)

if and only if Ext1
U(g)(L(x′), L(w)) ̸= 0 and w2 ∈ W (LI′)W (L∆\DL(x′)), in which case (178)

has the same dimension as Ext1
U(g)(L(x′), L(w)).

Now let x ∈ W (G) satisfying (177), we have the following two cases.

• Assume j ∈ DL(x). Then L{j}(x)sj is not locally b{j}-finite ((iii) of Lemma 3.3.1 and
(i) of Lemma 3.3.3). Let M{j}

def= U(l{j}) ⊗U(b{j}) x · µ0 which is isomorphic to L{j}(x)
since j ∈ DL(x). By (177) there exists a non-zero map M{j} → H1(n{j}, L(w)w2)sj , and
thus a non-zero map M sj

{j} → H1(n{j}, L(w)w2). This is impossible as H1(n{j}, L(w)w2)
is locally b{j}-finite (use w2 ∈ W I′,{j} and (i) of Lemma 3.3.1) but M sj

{j}
∼= L{j}(x)sj is

not. Hence this case can’t happen.
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• Assume j /∈ DL(x). Consider the natural embedding

HomU(t)
(
x · µ0, H

0(u{j}, socU(l{j})(H1(n{j}, L(w)w2)sj ))
)

↪→ HomU(t)(x · µ0, H
0(u{j}, H

1(n{j}, L(w)w2)sj )). (179)

Assume that (179) is not an isomorphism. Then H1(n{j}, L(w)w2)sj must contain
M{j} = U(l{j}) ⊗U(b{j}) x · µ0, and thus H1(n{j}, L(w)w2) must contain M

sj

{j}. This is
impossible as H1(n{j}, L(w)w2) is locally b{j}-finite but socU(l{j})(M sj

{j}) ∼= L{j}(sjx)sj

is not (same argument as in the previous case). Hence (179) is an isomorphism, and
in particular its left hand side is non-zero by (177). But since j /∈ DL(x), we have
sj ∈ W (L∆\DL(x)) and thus L{j}(x)sj ∼= L{j}(x) ((iii) of Lemma 3.3.1). Hence the
two (non-zero) U(l{j})-modules in (179), once “untwisted” by sj, become isomorphic
to HomU(l{j})(L{j}(x), H1(n{j},L(w)w2)), which is thus also non-zero and has the same
dimension as Ext1

U(g)(L(x), L(w)) by what follows (178) applied to x′ = x.

We have shown that (177) implies Ext1
U(g)(L(x), L(w)) ̸= 0, w2 ∈ W (LI′)W (L∆\DL(x)) (using

the induction) and j /∈ DL(x), which implies w1 = w2sj ∈ W (LI′)W (L∆\DL(x)). Moreover,
we have also seen that (177) has the same dimension as Ext1

U(g)(L(x), L(w)). The proof of
the induction step is thus finished.

Remark 3.3.6. Let I ⊆ ∆, w ∈ W (G), I ′ = ∆ \DL(w) and 1 ̸= w1 ∈ W I′,I .

(i) Let I ⊆ ∆, w ∈ W (G), I ′ def= ∆ \ DL(w) and 1 ̸= w1 ∈ W I′,I , it follows from (164),
the fact that L(w) and L(w)w1 have the same infinitesimal character (which is the one
of L(µ0) ∼= L(µ0)w1) and Lemma 3.1.4 (together with Harish-Chandra’s theorem) that
the inclusion socU(lI)(H1(nI , L(w)w1)) ⊆ H1(nI , L(w)w1) induces an isomorphism

H0(uI , socU(lI)(H1(nI , L(w)w1))) ∼−→ H0(uI , H1(nI , L(w)w1)).

(ii) We deduce from Lemma 3.3.4 and (166) that, for x ∈ W (G) such that I = ∆ \DL(x),
we must have

Ext1
U(g)(L(x), L(w)w1) = Ext1

U(g)(M I(x), L(w)w1)
= HomU(lI)(LI(x), H1(nI , L(w)w1)) = 0.

Lemma 3.3.7. Let j ∈ ∆ and x,w ∈ W (G) with DL(x) = DL(w) = {j}. Then we have

HomU(t)(x · µ0, H
2(u, L(w)sj )) = 0. (180)

Proof. We deduce from (124) the following exact sequence

0→ H1(u{j}, H
1(n{j}, L(w)sj ))→ H2(u, L(w)sj )→ H0(u{j}, H

2(n{j}, L(w)sj ))→ 0 (181)
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and recall that sjn{j}sj = n{j} implies Hk(n{j}, L(w)sj ) ∼= Hk(n{j}, L(w))sj for k ≥ 0 (see
(162)). By Lemma 3.3.3, for x′ ∈ W (G), we have H0(u{j}, L

{j}(x′)sj ) ̸= 0 if and only if
j /∈ DL(x′), in which case H0(u{j}, L

{j}(x′)sj ) ∼= H0(u{j}, L
{j}(x′)) ∼= x′ · µ0. As j ∈ DL(x),

H2(n{j}, L(w)sj ) ∼= H2(n{j}, L(w))sj and H2(n{j}, L(w) ∈ Ob{j}
l{j},alg by Proposition 3.1.5, we

deduce by dévissage on the constituents of H2(n{j}, L(w)sj )

HomU(t)(x · µ0, H
0(u{j}, H

2(n{j}, L(w)sj ))) = 0.

Assume as a contradiction that (180) fails. Then we deduce by 181

HomU(t)(x · µ0, H
1(u{j}, H

1(n{j}, L(w)sj ))) ̸= 0. (182)

Using [Hum08, Thm. 1.10] and a standard argument, one sees that any irreducible constituent
of H1(n{j}, L(w)) has the form L{j}(x′′) with x′′ ∈ {x′, sjx

′} for some L{j}(x′) showing up in
the socle of H1(n{j}, L(w)). By (iv) of Lemma 3.2.7 we have

H0
(
u{j}, socU(l{j})(H1(n{j}, L(w)))

) ∼= H0(u{j}, H
1(n{j}, L(w)))

and by Proposition 3.1.5 H1(n{j}, L(w)) is in Ob{j}
l{j},alg. Using the explicit list of all indecom-

posable objects in Ob{j}
l{j},alg (see [Hum08, §3.12]) we easily deduce that each indecomposable

direct summand of H1(n{j}, L(w)) is either irreducible of the form L{j}(x′), or uniserial
of length two with socle L{j}(x′), cosocle L{j}(sjx′) and j /∈ DL(x′). Let M{j} be such
an indecomposable direct summand. It follows from Lemma 3.3.3 (and a straightforward
dévissage using H2(u{j},−) = 0) that H1(u{j},M

sj

{j}) ∼= sjx
′ · µ0 if M{j} = L{j}(x′), and

H1(u{j},M
sj

{j}) ∼= sjx
′ ·µ0⊕x′ ·µ0 if M{j} has length two with socle L{j}(x′) (and j /∈ DL(x′)).

Since j ∈ DL(x), it follows that (182) forces x = sjx
′ > x′ for some x′ such that L{j}(x′) shows

up in the socle of H1(n{j}, L(w)) and j /∈ DL(x′) (so x′ ≺ x). By (ii) of Lemma 3.2.7 such
an x′ satisfies w ≺ x′. The existence of such a triple w ≺ x′ ≺ x with DL(x) = DL(w) = {j}
and j /∈ DL(x′) contradicts Lemma A.7.

Lemma 3.3.8. Let j ∈ ∆, x,w ∈ W (G) with DL(x) = DL(w) = {j} and I def= ∆\{j}. Then
we have

HomU(lI)(LI(x), H2(nI , L(w)sj )) = 0. (183)

Proof. As j ∈ DL(w), it follows from (i), (ii) of Lemma 3.3.1 (applied with I ′ = ∆\DL(w) =
I) that Hk(nI , L(w)sj ) ∈ ObI

lI ,alg for k ≥ 1 and that H0(nI , L(w)sj ) = 0. As I∩DL(x) = ∅ and
thus x has minimal length in W (LI)x, we deduce from Lemma 3.1.2 (applied with lI instead
of g and with I there being ∅) that Hℓ(uI , LI(w′))x·µ0 = 0 for ℓ ≥ 1 and any w′ ∈ W (G). By
a dévissage on the constituents of Hk(nI , L(w)sj ) we obtain for ℓ ≥ 1 and k ≥ 0

HomU(t)
(
x · µ0, H

ℓ(uI , Hk(nI , L(w)sj ))
)

= 0. (184)

By (123) (applied with I ′ = ∅) we have a spectral sequence of semi-simple U(t)-modules

Hℓ(uI , Hk(nI , L(w)sj )) =⇒ Hℓ+k(u, L(w)sj ).
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Applying the exact functor HomU(t)(x · µ0,−) to this spectral sequence, we deduce in par-
ticular from (184) and Lemma 3.3.7:

HomU(t)(x · µ0, H
0(uI , H2(nI , L(w)sj ))) ∼= HomU(t)(x · µ0, H

2(u, L(w)sj )) = 0. (185)

Now, from the surjection U(lI)⊗U(bI) x · µ0 ↠ LI(x) and (127) we have

HomU(lI)(LI(x), H2(nI , L(w)sj )) ↪→ HomU(lI)(U(lI)⊗U(bI) x · µ0, H
2(nI , L(w)sj ))

∼= HomU(t)(x · µ0, H
0(uI , H2(nI , L(w)sj ))),

which together with (185) gives (183).

Proposition 3.3.9. Let j ∈ ∆, w ∈ W (G) such that DL(w) = {j} and I
def= ∆ \ {j}. Let

S0
def= {x′ | x′ ∈ W (LI)w, ℓ(x′) = ℓ(w) + 1, j /∈ DL(x′)}. Then we have

dimE Ext2
U(g)(M I(w), L(w)sj ) = #S0

and
dimE Ext2

U(g)(M I(x), L(w)sj ) = 0
for each x ̸= w satisfying DL(x) = {j}.

Proof. Let x ∈ W (G) such that DL(x) = {j} (allowing x = w). As j ∈ DL(w), it follows
from (ii) of Lemma 3.3.1 that H0(nI , L(w)sj ) = 0, which together with Lemma 3.3.8 and
(126) give an isomorphism

Ext2
U(g)(M I(x), L(w)sj ) ∼= Ext1

U(lI)(LI(x), H1(nI , L(w)sj )). (186)

For any x′ ∈ W (G) we have by Lemma 3.3.4 that

HomU(lI)(LI(x′), socU(lI)H
1(nI , L(w)sj )) = HomU(lI)(LI(x′), H1(nI , L(w)sj )) ̸= 0

if and only if Ext1
U(g)(L(x′), L(w)) ̸= 0 and j /∈ DL(x′), in which case both dimensions are

dimE Ext1
U(g)(L(x′), L(w)). As j ∈ DL(x), the vector space in (164) is zero, which together

with (i) of Remark 3.3.6 and Lemma 3.2.10 (which can then be applied to lI instead of g,
noting that LI(x) is a twist of LI(µ0) = LI(1) since DL(x) = {j}) give an isomorphism by
(186)

Ext2
U(g)(M I(x), L(w)sj ) ∼= Ext1

U(lI)(LI(x), socU(lI)(H1(nI , L(w)sj ))). (187)
By the discussion following (186), we see that the dimension of (187) is∑

x′
dimE Ext1

U(lI)(LI(x), LI(x′)) dimE Ext1
U(g)(L(x′), L(w)) (188)

where x′ runs through the elements of W (G) such that j /∈ DL(x′) and

Ext1
U(lI)(LI(x), LI(x′)) ̸= 0 ̸= Ext1

U(g)(L(x′), L(w)).
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Let x′ ∈ W (G) such that x′ ̸= x and x′ ̸= w. As x is minimal in W (LI)x, by (ii) of Lemma
3.2.4 (applied to lI instead of g) and (ii) of Lemma 3.1.3 (with Harish-Chandra’s theorem),
we have Ext1

U(lI)(LI(x), LI(x′)) ̸= 0 if and only if x′ ∈ W (LI)x and ℓ(x′) = ℓ(x) + 1, in which
case it has dimension µ(x, x′) = 1. Likewise by (ii) of Lemma 3.2.4 Ext1

U(g)(L(x′), L(w)) ̸= 0
if and only if either x′ ≺ w or w ≺ x′, in which case it has dimension µ(x′, w) or µ(w, x′).
So in (188) we sum up over those x′ ∈ W (G) such that j /∈ DL(x′), x′ ∈ W (LI)x with
ℓ(x′) = ℓ(x) + 1 (which implies x ≺ x′), and either x′ ≺ w or w ≺ x′.

Since x ≺ x′, we can’t have x′ ≺ w because this would contradict Lemma A.7. Hence
we have w ≺ x′. Using Lemma 3.2.5, DL(w) = {j} and j /∈ DL(x′) then force x′ ∈ W (LI)w
and ℓ(x′) = ℓ(w) + 1 (hence µ(w, x′) = 1), which together with x′ ∈ W (LI)x and DL(x) =
DL(w) = {j} force x = w. Consequently, we conclude that (187) is non-zero only when
x = w, in which case it has dimension #S0.

Lemma 3.3.10. Let x,w ∈ W (G) and I ⊆ ∆ such that x ∈ W (LI)w, x > w and ℓ(x) =
ℓ(w) + 1. Let M ∈ Ob

alg be the (unique) length two object with socle L(x) and cosocle L(w)
((ii) of Lemma 3.2.4). Then H0(nI ,M) is the unique length two object in ObI

lI ,alg with socle
LI(x) and cosocle LI(w).
Proof. Using (ii) of Lemma 3.1.8 the short exact sequence 0 → L(x) → M → L(w) → 0
induces an exact sequence

0→ LI(x)→ H0(nI ,M) q−→ LI(w)→ H1(nI , L(x)).

Let ξ : Z(lI)→ E be the unique character such that LI(w)ξ ̸= 0, or equivalently LI(x)ξ ̸= 0.
Then by (iii) of Lemma 3.1.8 H1(nI , L(x))ξ = 0, which implies that the map LI(w) =
LI(w)ξ → H1(nI , L(x)) is 0 and hence that q is surjective.

It remains to prove that the short exact sequence 0→ LI(x)→ H0(nI ,M) q−→ LI(w)→ 0
is non-split. For M ′ in Ob

alg write [M ′ : L(x)] ∈ Z≥0 for the multiplicity of L(x) in M ′. Since
M(w) ∼= U(g) ⊗U(pI) (U(lI) ⊗U(bI) w · µ0) we have the following obvious equality (see (119)
for M I(x′))

[M(w) : L(x)] =
∑

x′∈W (G)
eI(w, x′)[M I(x′) : L(x)] (189)

where eI(w, x′) ∈ Z≥0 is the multiplicity of LI(x′) in U(lI) ⊗U(bI) w · µ0. As x ∈ W (LI)w,
x > w and ℓ(x) = ℓ(w)+1, we have eI(w, x) = 1. As x > w and ℓ(x) = ℓ(w)+1 we also have
[M(w) : L(x)] = 1. As [M I(x) : L(x)] = 1 and eI(w,w) = 1, we see that (189) and [M(w) :
L(x)] = 1 force [M I(w) : L(x)] = 0. Now, assume on the contrary that the above short
exact sequence splits. Then HomU(g)(M I(w),M) ∼= HomU(lI)(LI(w), H0(nI ,M)) ̸= 0, and in
particular L(x) must be a constituent of M I(w) which contradicts [M I(w) : L(x)] = 0.

The following lemma is essentially proved in [Schr11, (4.71)], we provide a self-contained
proof for the reader’s convenience.

Lemma 3.3.11. Let w ∈ W (G) and j1, j2 ∈ ∆ such that |j1−j2| = 1, sj1w > w and DL(w)∩
{j1, j2} = ∅. Let M be the unique length two U(l{j1,j2})-module with socle L{j1,j2}(sj1w) and
cosocle L{j1,j2}(w) ((ii) of Lemma 3.2.4). Then we have
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(i) the U(l{j2})-module H1(l{j1,j2}∩n{j2},M
sj1 ) has length two with socle L{j2}(sj2sj1w) and

cosocle L{j2}(sj1w);

(ii) the U(l{j2})-module H2(l{j1,j2} ∩ n{j2},M
sj1 ) has length two with socle L{j2}(sj2sj1sj2w)

and cosocle L{j2}(sj1sj2w).

Proof. Since DL(w) ∩ {j1, j2} = ∅, L{j1,j2}(w) is a twist of L{j1,j2}(µ0) = L{j1,j2}(1), so that
“untwisting everything”, we can reduce to the case g = gl3, ∆ = {j1, j2}, w = 1 and x = sj1 ,
in which case we have natural U(l{j2})-equivariant isomorphisms

M = M{j2}(1) = U(g)⊗U(p{j2}) L
{j2}(1) ∼= U(n+

{j2})⊗E L{j2}(1).

Write αs for the positive simple root corresponding to js for s = 1, 2, then n{j2} ∼= n−α1 ⊕
n−α1−α2 where nα ⊆ g is the one dimensional subspace corresponding to a root α ∈ Φ.
Then M sj1 ∼= U(sj1n+

{j2}sj1) ⊗E L{j2}(1)sj1 ∼= U(n−α1) ⊗E U(nα2) ⊗E L{j2}(1)sj1 is a free
U(n−α1)-module (of infinite rank). We have H0(n−α1 , U(n−α1)) = 0 and a U(t)-equivariant
isomorphism H1(n−α1 , U(n−α1)) ∼= α1 (use U(n−α1) ∼= E[X]). As n+

{j2} and hence sj1n+
{j2}sj1

are commutative Lie algebras, we deduce H0(n−α1 ,M
sj1 ) = 0. From the (analogue of) (124)

for the spectral sequence Hℓ1(n−α1−α2 , H
ℓ2(n−α1 ,M

sj1 )) =⇒ Hℓ1+ℓ2(n{j2},M
sj1 ) we deduce

then Hk(n{j2},M
sj1 ) = 0 for k /∈ {1, 2} and U(b+

{j2})-equivariant isomorphisms for k ∈ {1, 2}:

Hk(n{j2},M
sj1 ) ∼= Hk−1(n−α1−α2 , H

1(n−α1 ,M
sj1 ))

∼= Hk−1
(
n−α1−α2 , U(nα2)⊗E L{j2}(1)sj1 ⊗E H1(n−α1 , U(n−α1))

)
q∼= U(nα2)⊗E

(
Hk−1(n−α1−α2 , L

{j2}(1)sj1 )⊗E α1
)

∼= U(nα2)⊗E
(
Hk−1(n−α2 , L

{j2}(1))sj1 ⊗E α1
)

∼= U(nα2)⊗E sj1 · µk = U(u+
{j2})⊗E sj1 · µk

∼= U(l{j2})⊗U(b{j2}) sj1 · µk

where µk def= Hk−1(n−α2 , L
{j2}(1)), where by definition u+

{j2} = nα2 , and where the isomorphism
q above is checked to be U(b+

{j2})-equivariant using that n−α1 acts trivially on L{j2}(1)sj1 ⊗E
H1(n−α1 , U(n−α1)). By (i) of Lemma 3.3.3 we have µ1 = µ0 and µ2 = sj2 · µ0, and thus
U(l{j2})-equivariant isomorphisms

H1(n{j2},M
sj1 ) ∼= U(l{j2})⊗U(b{j2}) sj1 · µ0, H2(n{j2},M

sj1 ) ∼= U(l{j2})⊗U(b{j2}) sj1sj2 · µ0,

where we use the standard fact that a U(l{j2})-module which is isomorphic to U(l{j2})⊗U(b{j2})

µ as U(b+
{j2})-module must in fact be isomorphic to U(l{j2}) ⊗U(b{j2}) µ as U(l{j2})-module.

This finishes the proof.

Lemma 3.3.12. Let w ∈ W (G), j ∈ DL(w) and I
def= ∆ \ DL(w). Let M ∈ Ob

alg be
the unique length two U(g)-module with socle L(w) and cosocle L(sjw). The U(lI)-module
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LI(w) appears with multiplicity one in H1(nI ,M sj ) ∈ ObI
lI ,alg, and H1(nI ,M sj ) contains a

(unique) U(lI)-submodule M1
I with cosocle LI(w) which fits into a short exact sequence:

0 −→
⊕

x∈W (LI )w

ℓ(x)=ℓ(w)+1
j /∈DL(x)

LI(x) −→M1
I −→ LI(w) −→ 0. (190)

Proof. Note first that the existence of M is clear from (iii) of Lemma 3.2.2 and that
H1(nI ,M sj ) is in ObI

lI ,alg by (i) of Lemma 3.3.1 applied with I ′ = ∅.
As j /∈ DL(sjw), by Lemma 3.1.1 and (iii) of Lemma 3.3.1 we have L(sjw)sj ∼= L(sjw) ∈

Ob
alg and L(w)sj /∈ Ob

alg. Since L(w)sj is the socle of M sj , we deduce

H0(nI ,M sj ) = 0, (191)

otherwise M sj would contain a non-zero U(g)-submodule in Ob
alg using (127). By (ii) of

Lemma 3.1.8 we have H0(nI , L(sjw)sj ) ∼= LI(sjw). The short exact sequence 0→ L(w)sj →
M sj → L(sjw)sj → 0 then induces the long exact sequence of U(lI)-modules

0→ H1(nI , L(w)sj )/LI(sjw)→ H1(nI ,M sj )→ H1(nI , L(sjw))
→ H2(nI , L(w)sj )→ H2(nI ,M sj )→ H2(nI , L(sjw)). (192)

If LI(w) appears with multiplicity one in H1(nI ,M sj ), we define M1
I to be the unique U(lI)-

submodule of H1(nI ,M sj ) with cosocle LI(w).

We first prove that LI(w) appears with multiplicity one in H1(nI , L(sjw)). It follows
from (iv) of Lemma 3.2.7 (applied with x = sjw) that LI(w) appears with multiplicity one
in the socle of H1(nI , L(sjw)). As w is minimal in W (LI)w (since I = ∆ \ DL(w)) and
H1(nI , L(sjw)) ∈ ObI

lI ,alg is semi-simple as U(t)-module (Proposition 3.1.5), we must have the
inclusion

H1(nI , L(sjw))w·µ0 ⊆ H0(uI , H1(nI , L(sjw)))
(otherwise, apply uI to any vector in H1(nI , L(sjw))w·µ0). Together with (145), this implies
that any copy of LI(w) that appears in H1(nI , L(sjw)) must appear in its socle, and thus
LI(w) has multiplicity one in H1(nI , L(sjw)).

We now prove that LI(w) is not a Jordan-Hölder factor of H1(nI , L(w)sj ). By (i) of
Remark 3.3.6 we have an isomorphism

H0(uI , socU(lI)(H1(nI , L(w)sj ))) ∼−→ H0(uI , H1(nI , L(w)sj )).

Hence, by the same argument as in the previous paragraph, it is enough to prove that LI(w)
is not in the socle of H1(nI , L(w)sj ). But this follows from the first part of Lemma 3.3.4 (as
w1 = sj /∈ W (LI)). Note that we can then apply Lemma 3.2.10 (with lI instead of g and
noting that I = ∆ \ DL(w) implies w · µ0 ∈ Λdom

I hence LI(w) ∼= LI(1) up to twist) and
deduce

Ext1
U(lI)(LI(w), socU(lI)(H1(nI , L(w)sj ))) ∼−→ Ext1

U(lI)(LI(w), H1(nI , L(w)sj )). (193)
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Assuming that M1
I exists (i.e. that LI(w) “survives” in H1(nI ,M sj )), we prove that the

radical rad(M1
I ) (see §1.4) is contained in the kernel of the short exact sequence (190). Note

first that, since sj /∈ W (LI), by Lemma 3.1.7 we have ExtkU(lI)(LI(w), LI(sjw)) = 0 for k ≥ 0
and thus

Ext1
U(lI)(LI(w), H1(nI , L(w)sj )) ∼−→ Ext1

U(lI)(LI(w), H1(nI , L(w)sj )/LI(sjw)).

Hence we can forget about the quotient by LI(sjw) in (192). By the above results, in
particular (193) and the fact LI(w) appears in socU(lI)H

1(nI , L(sjw)), we must have
rad(M1

I ) ⊆ socU(lI)(H1(nI , L(w)sj )), (194)
so that rad(M1

I ) is semi-simple and its constituents LI(x) satisfy Ext1
U(lI)(LI(w), LI(x)) ̸= 0

with x ̸= w. Since w is minimal in W (LI)w, any x ∈ W (LI)w is such that w ≤ x, and if
moreover w ≺ x it follows from Lemma 3.2.5 that ℓ(x) = ℓ(w) + 1. Then by Lemma 3.1.7
and (ii) of Lemma 3.2.4 we see that, for x ∈ W (G) with x ̸= w, Ext1

U(lI)(LI(w), LI(x)) is
non-zero if and only if x ∈ W (LI)w and ℓ(x) = ℓ(w)+1. Combining this with the equivalence
between conditions (i) and (iii) in Lemma 3.3.4, we obtain from (194)

rad(M1
I ) ⊆

⊕
x∈W (LI )w

ℓ(x)=ℓ(w)+1
j /∈DL(x)

LI(x). (195)

Finally we prove that LI(w) is a constituent of H1(nI ,M sj ) and that (195) is an isomor-
phism. It is enough to prove that for any x ∈ W (LI)w with ℓ(x) = ℓ(w) + 1 and j /∈ DL(x),
H1(nI ,M sj ) contains a subquotient with socle LI(x) and cosocle LI(w). As x ∈ W (LI)w
and ℓ(x) = ℓ(w) + 1, there exists j1 ∈ I such that x = sj1w. As j ∈ DL(w) \DL(x), we must
have j1 ∈ {j − 1, j + 1}. As H0(nI ,M sj ) = 0 by (191), we obtain the following isomorphism
from the spectral sequence (123) (applied with I ′ def= {j, j1} and thus I ∩ I ′ = {j1})

H0(lI ∩ nI′ , H1(nI ,M sj )) ∼= H1(nI∩I′ ,M sj ). (196)
Switching the roles of I and I ′, another application of (123) gives an injection

H1(lI′ ∩ nI , H
0(nI′ ,M sj )) ↪→ H1(nI∩I′ ,M sj ). (197)

It follows from Lemma 3.3.10 (applied with x = w, w = sjw and I = I ′ there) and sjnI′sj ∼=
nI′ that H0(nI′ ,M sj ) ∼= H0(nI′ ,M)sj is a length two U(lI′)-module with socle LI′(w)sj and
cosocle LI′(sjw)sj (and thus isomorphic toM sj

{j1} whereM{j1}
def= U(lI′)⊗U(lI′ ∩p{j1})L

{j1}(sjw)).
Now by (i) of Lemma 3.3.11 applied with M there being the U(lI′)-module H0(nI′ ,M) we
have

H1(lI′ ∩ nI , H
0(nI′ ,M sj )) ∼= U(l{j1})⊗U(b{j1}) w · µ0,

which is a U(l{j1})-module of length two with socle L{j1}(sj1w) and cosocle L{j1}(w). By
(197) and (196) we deduce that U(l{j1})⊗U(b{j1})w ·µ0 embeds into H0(lI ∩nI′ , H1(nI ,M sj )).
By (127) (applied with lI instead of g and lI∩nI′ instead of nI) this first forces the constituent
LI(w) (the cosocle of U(lI)⊗U(bI) w · µ0 ∼= U(lI)⊗U(lI∩pI′ ) (U(l{j1})⊗U(b{j1}) w · µ0)) to show
up in H1(nI ,M sj ). Then together with (195) this also forces H1(nI ,M sj ) to have a length
two subquotient with socle LI(sj1w) = LI(x) and cosocle LI(w).
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3.4 Ext-squares of U(g)-modules
We use all previous results of §3 to construct important finite length U(g)-modules which
are uniserial (Lemma 3.4.14) or “squares” (Proposition 3.4.9, Lemma 3.4.11).

Definition 3.4.1. Let w, x, w1 ∈ W (G), I def= ∆ \DL(w) and I ′ def= ∆ \DL(x).

(i) A U(g)-module Qw1(x,w) is an Ext-hypercube if the following properties hold

• w1 ∈ W I,I′ ;
• Qw1(x,w) is semi-simple as U(t)-module;
• Qw1(x,w) is finite length multiplicity free and rigid as U(g)-module;
• Qw1(x,w) has socle L(w)w1 and cosocle L(x).

(ii) An Ext-hypercube is an Ext-square if it has Loewy length three, and an Ext-cube if it
has Loewy length four.

(iii) An Ext-hypercube Qw1(x,w) is minimal if for any U(g)-submodules M4 ⊊M3 ⊆M2 ⊊
M1 ⊆ Qw1(x,w), we have Ext1

U(g)(M1/M2,M3/M4) ̸= 0 if and only if M2 = M3, in
which case Ext1

U(g)(M1/M2,M3/M4) has dimension 1 and the sequence 0→M3/M4 =
M2/M4 →M1/M4 →M1/M2 → 0 is non-split.

(iv) When w1 = 1, an Ext-hypercube Q1(x,w) is minimal in Ob
alg if Q1(x,w) lies in Ob

alg
and if (iii) holds with Ext1

Ob
alg

instead of Ext1
U(g).

If an Ext-hypercube Qw1(x,w) exists, then Qw−1
1

(w, x) exists for the triple (w, x, w−1
1 ) by

setting Qw−1
1

(w, x) def= (Qw1(x,w)τ )w−1
1 .

Remark 3.4.2. It is not true that Qw1(x,w) is uniquely determined by the triple (x,w,w1).
For example, if g = gl3, x = s1s2, w = s2s1 and w1 = 1, one can check that there are
three different choices of Qw1(x,w) with minimal possible length, with middle layer being
respectively L(s1)⊕ L(s2), L(s1)⊕ L(s1s2s1) and L(s2)⊕ L(s1s2s1).

Recall that Radk and Radk for k ≥ 0 are defined in §1.4.

Lemma 3.4.3. An Ext-square Qw1(x,w) is minimal if and only if it satisfies the following
conditions:

(i) Ext1
U(g)(L(x), L(w)w1) = 0;

(ii) dimE Ext1
U(g)(C,L(w)w1) = 1 = dimE Ext1

U(g)(L(x), C) for any irreducible constituent
C of Rad1(Qw1(x,w));

92



(iii) there exists an irreducible constituent C of Rad1(Qw1(x,w)) such that
Ext1

U(g)(L(x),Rad1(Qw1(x,w))C) = 0

where Rad1(Qw1(x,w))C ⊂ Rad1(Qw1(x,w)) is the unique subobject not containing C
(in its cosocle).

Moreover, if w1 = 1, Q1(x,w) is minimal in Ob
alg if and only if the same conditions as above

hold replacing everywhere Ext1
U(g) by Ext1

Ob
alg

.

Proof. Note that, contrary to what the terminology “square” may suggest, Rad1(Qw1(x,w))
can contain more than 2 constituents. We prove the U(g)-module case, the proof for Ob

alg
being the same. Note first that (i) and (ii) are contained in (iii) of Definition 3.4.1. Let C
be an irreducible constituent of Rad1(Qw1(x,w)) and assume that (i) and (ii) hold. Since
dimE Ext1

U(g)(L(x), C) = 1 and Qw1(x,w) is an Ext-square, we have a short exact sequence

0 −→ Ext1
U(g)(L(x),Rad1(Qw1(x,w))C) −→ Ext1

U(g)(L(x),Rad1(Qw1(x,w)))
−→ Ext1

U(g)(L(x), C) −→ 0.

So we see that (iii) holds if and only if dimE Ext1
U(g)(L(x),Rad1(Qw1(x,w))) = 1 if and

only if (iii) holds for all constituents C if and only if Ext1
U(g)(L(x),M) = 0 for any M ⊊

Rad1(Qw1(x,w)) if and only if there is no Ext-square with socle L(w)w1 , cosocle L(x) and
middle layer strictly contained in Rad1(Qw1(x,w)) if and only if (iii) of Definition 3.4.1
holds.
Remark 3.4.4. The proof of Lemma 3.4.3 shows that, in the presence of (i) and (ii) of
Lemma 3.4.3, condition (iii) of loc. cit. is equivalent to: there exists an irreducible constituent
C of Rad1(Qw1(x,w)) such that Ext1

U(g)((Qw1(x,w)/L(w)w1)/C, L(w)w1) = 0. Likewise with
Ob

alg instead of U(g)-modules.
In the rest of this section, we construct several minimal Ext-squares. Our main tool to

do that is wall-crossing functors.

For λ, µ ∈ Λ we first have an exact translation functor (see for instance [Hum08, §7.1])

T µλ : Ob
alg → Ob

alg : M 7→ prµ(L⊗E prλ(M)) (198)

where L is the unique finite dimensional U(g)-module with highest weight in the W (G)-orbit
of µ−λ (for the naive action), and prµ, prλ is the projection onto the generalized eigenspace
for the infinitesimal character associated with L(µ), L(λ) respectively. Let j ∈ {1, . . . , n−1}
and µ ∈ Λ such that ⟨µ+ ρ, α∨⟩ ≥ 0 for all α ∈ Φ+ and the stabilizer of µ in W (G) for the
dot action is {1, sj}. We define Θsj

def= Tw0·µ0
µ ◦ T µw0·µ0 : Ob

alg → Ob
alg which doesn’t depend

on the choice of µ as above ([Hum08, Example 10.8]) and is called a wall-crossing functor
([Hum08, §7.15], the w0 comes from the conventions of loc. cit. which uses antidominant
weights). For any M in Ob

alg there are two canonical adjunction maps Θsj
(M) → M and

M → Θsj
(M) which are non-zero as soon as both M and Θsj

(M) are non-zero ([Hum08,
Prop. 7.2(a)]).
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Proposition 3.4.5. Let w ∈ W (G) and j ∈ ∆. Then we have Θw0sjw0(L(w)) ̸= 0 if and
only if j ∈ DR(w), in which case Θw0sjw0(L(w)) has Loewy length three with both socle and
cosocle isomorphic to L(w) and middle layer isomorphic to

L(wsj)⊕⊕x∈SL(x)µ(x,w) (199)

where S def= {x | w ≺ x, j /∈ DR(x)}.

Proof. It follows from [Hum08, Thm. 7.14(c),(f),(g)] together with [Hum08, Thm. 7.9] that
Θw0sjw0(L(w)) ̸= 0 if and only if j ∈ DR(w) (i.e. wsj < w), in which case L(w) is both
the socle and cosocle of Θw0sjw0(L(w)), that each L(x) ∈ JHU(g)(Θw0sjw0(L(w))) with x ̸= w
satisfies j /∈ DR(x) (i.e. x < xsj), and that if j /∈ DR(x) we have an isomorphism

HomOb
alg

(rad(Θw0sjw0(L(w))), L(x)) ∼= Ext1
Ob

alg
(L(w), L(x)). (200)

By Vogan’s Conjecture (which follows from the proof of the Kazhdan-Lusztig Conjecture)
rad(Θw0sjw0(L(w)))/soc(Θw0sjw0(L(w))) is semi-simple (cf. [Hum08, §7.15, §8.10]), which
together with (i) of Lemma 3.2.4 and (200) gives (199). Here we use the fact that the only
x satisfying x ≺ w and j ∈ DR(w) \DR(x) is x = wsj (see Lemma 3.2.5).

For j0, j1 ∈ ∆ we define

wj1,j0
def= sj1sj1−1 · · · sj0 ∈ W (G) if j1 ≥ j0, wj1,j0

def= sj1sj1+1 · · · sj0 ∈ W (G) if j1 ≤ j0 (201)

(with wj0,j0 = sj0). It is clear that DL(wj1,j0) = {j1} and DR(wj1,j0) = {j0}, and one can
check that wj1,j0 is the unique partial-Coxeter element satisfying these two properties.

Remark 3.4.6. Let j0, j1 ∈ ∆, w = wj1,j0 and S as in Proposition 3.4.5, we deduce from
(iv) of Lemma A.11 that

S = {wj1,j′
0
| j′

0 ∈ ∆, |j′
0 − j0| = 1, wj1,j′

0
> wj1,j0}

and that µ(w, x) = 1 for x ∈ S. More precisely, wj1,j0+1 ∈ S if and only if j1 ≤ j0 < n − 1,
and wj1,j0−1 ∈ S if and only if j1 ≥ j0 > 1.

Lemma 3.4.7. Let j0, j1, j
′
0, j

′
1 ∈ ∆ with |j0−j′

0| = 1 and |j1−j′
1| = 1. Let M0 be the unique

length 2 object in Ob
alg with socle L(wj′

1,j0
) and cosocle L(wj1,j0) (see (i) of Lemma 3.2.4 and

Lemma A.11). Then L(wj′
1,j

′
0
) occurs with multiplicity one in Θw0sj0w0(M0), and the unique

quotient of Θw0sj0w0(M0) with socle L(wj′
1,j

′
0
) is an Ext-square Q1(wj1,j0 , wj′

1,j
′
0
) in Ob

alg with
socle L(wj′

1,j
′
0
), cosocle L(wj1,j0) and middle layer contained in L(wj1,j′

0
)⊕L(wj′

1,j0
)⊕L(1) if

j0 = j1 and j′
0 = j′

1, and contained in L(wj1,j′
0
)⊕ L(wj′

1,j0
) otherwise.

Proof. We write S def= {x | wj1,j0 ≺ x, j0 /∈ DR(x)} and S ′ def= {x | wj′
1,j0
≺ x, j0 /∈ DR(x)}. By

Lemma 3.2.5 we have ℓ(x) = ℓ(wj1,j0) + 1 and thus µ(wj1,j0 , x) = 1 (resp. ℓ(x) = ℓ(wj′
1,j0

) + 1
and thus µ(wj′

1,j0
, x) = 1) for each x ∈ S (resp. for each x ∈ S ′). We write LS def= ⊕

x∈S L(x)
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and similarly for LS′ . By Proposition 3.4.5 and Lemma A.9 we know that Θw0sj0w0(L(wj1,j0))
(resp. Θw0sj0w0(L(wj′

1,j0
))) has Loewy length three with both socle and cosocle L(wj1,j0)

(resp. L(wj′
1,j0

)) and with middle layer L(wj1,j0sj0)⊕LS (resp. L(wj′
1,j0
sj0)⊕LS′). Recall that

for any non-zero M in Ob
alg we have adjunction maps Θw0sj0w0(M)→M , M → Θw0sj0w0(M)

which are non-zero if Θw0sj0w0(M) ̸= 0. Together with the previous discussion and the
exactness of Θw0sj0w0 , we easily deduce that Θw0sj0w0(M0) → M0 is surjective and M0 →
Θw0sj0w0(M0) is injective. As wj′

1,j
′
0
∈ S ′ \ S (see Remark A.10) and wj′

1,j
′
0
̸= wj1,j0 , wj′

1,j0
, we

see that L(wj′
1,j

′
0
) appears with multiplicity one in Θw0sj0w0(L(wj′

1,j0
)) and Θw0sj0w0(M0). We

define M (resp. Q) as the unique quotient of Θw0sj0w0(L(wj′
1,j0

)) (resp. Θw0sj0w0(M0)) with
socle L(wj′

1,j
′
0
) and cosocle L(wj′

1,j0
). Then M has length 2 and the (non-zero) composition

Θw0sj0w0(L(wj′
1,j0

)) ↪→ Θw0sj0w0(M0) ↠ Q

must have image M . In particular Q/M is a quotient of Θw0sj0w0(L(wj1,j0)). Since L(wj′
1,j

′
0
)

does not occur in M0 the composition

M0 ↪→ Θw0sj0w0(M0) ↠ Q

must be zero, and thus Q is a quotient of Θw0sj0w0(M0)/M0. As L(wj′
1,j0

) = soc(M0) does not
occur in Θw0sj0w0(L(wj1,j0)) and L(wj1,j0) = cosoc(M0) does not occur in Θw0sj0w0(L(wj′

1,j0
))

(using the above description), the composition

M0 ↪→ Θw0sj0w0(M0) ↠ Θw0sj0w0(L(wj1,j0))

factors through M0 ↠ L(wj1,j0) ↪→ Θw0sj0w0(L(wj1,j0)). It follows that Q/M is a quotient of
Θw0sj0w0(L(wj1,j0))/L(wj1,j0). Consequently, Q is an Ext-square (see Definition 3.4.1) with
socle L(wj′

1,j
′
0
), cosocle L(wj1,j0) and middle layer

rad1(Q) ⊆ L(wj′
1,j0

)⊕ L(wj1,j0sj0)⊕
⊕
x∈S′′

L(x) (202)

where S ′′ = {x ∈ S | Ext1
U(g)(L(x), L(wj′

1,j
′
0
)) ̸= 0}.

By (iv) of Lemma A.11 we know that x ∈ S if and only if x = wj1,j0−1 with j1 ≥ j0
or x = wj1,j0+1 with j1 ≤ j0. In both cases DL(x) = {j1} (and j1 ̸= j′

1), hence by (iii) of
Lemma A.11 and (117) we deduce that x ∈ S ′′ if and only if x = wj1,j′

0
(we already know

j1 = j′
1 ± 1). Since wj1,j0sj0 is obviously not in S, we also see that the right hand side of

(202) is multiplicity free.
Assume that L(wj1,j0sj0) occurs in rad1(Q). Then Ext1

U(g)(L(wj1,j0sj0), L(wj′
1,j

′
0
)) ̸= 0.

Assume first j0 ̸= j1 so that DL(wj1,j0sj0) = {j1}, then by (iii) of Lemma A.11 again (and
(117)) we have wj1,j0sj0 = wj1,j′

0
. Assume now j0 = j1, then wj1,j0sj0 = 1 ̸= wj′

1,j
′
0

and (ii) of
Lemma 3.2.4 implies 1 ≺ wj′

1,j
′
0

which forces j′
1 = j′

0 by Lemma 3.2.5.
Summing up, we have shown that rad1(Q) is contained in L(wj1,j′

0
)⊕ L(wj′

1,j0
)⊕ L(1) if

j0 = j1 and j′
0 = j′

1, and is contained in L(wj1,j′
0
)⊕ L(wj′

1,j0
) otherwise.
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Lemma 3.4.8. Let j0, j1, j
′
0, j

′
1 ∈ ∆ with |j0−j′

0| = 1 and |j1−j′
1| = 1. Let Q1(wj1,j0 , wj′

1,j
′
0
) be

an Ext-square with socle L(wj′
1,j

′
0
), cosocle L(wj1,j0) and middle layer contained in L(wj1,j′

0
)⊕

L(wj′
1,j0

)⊕L(1) if j0 = j1 and j′
0 = j′

1, and contained in L(wj1,j′
0
)⊕L(wj′

1,j0
) otherwise. Then

Q1(wj1,j0 , wj′
1,j

′
0
) is minimal, and in particular unique up to isomorphism, and is in Ob

alg.

Proof. We write Q def= Q1(wj1,j0 , wj′
1,j

′
0
) for short and note that the very last statement follows

from unicity and Lemma 3.4.7. Moreover unicity follows from (iii) and (ii) of Lemma 3.4.3,
hence we only need to prove minimality.

By (iii) of Lemma A.11, we see that (i) and (ii) of Lemma 3.4.3 hold. Hence it suffices to
prove (iii) of Lemma 3.4.3. More precisely it suffices to show Ext1

U(g)(L(wj1,j0),M) = 0 where
M ⊆ Q is the maximal U(g)-submodule such that L(wj1,j0), L(wj′

1,j0
) /∈ JHU(g)(M). Note

that the vanishing Ext1
U(g)(L(wj1,j0),M) = 0 actually forces L(wj′

1,j0
) ∈ JHU(g)(rad1(Q)).

Assume on the contrary Ext1
U(g)(L(wj1,j0),M) ̸= 0, then an arbitrary object M+ that fits

into a non-split extension 0→M →M+ → L(wj1,j0)→ 0 contains a unique submodule Q−

with cosocle L(wj1,j0). Since L(wj1,j0), L(wj′
1,j0

) /∈ JHU(g)(M), any constituent L(x) of Q−

distinct from its cosocle is such that j0 /∈ DR(x), hence is cancelled by Θw0sj0w0 by the first
statement of Proposition 3.4.5. Thus the surjection Q− ↠ L(wj1,j0) induces an isomorphism

Θw0sj0w0(Q−) ∼−→ Θw0sj0w0(L(wj1,j0)) (203)

and in particular Θw0sj0w0(Q−) has cosocle L(wj1,j0) by the second statement of Propo-
sition 3.4.5. Since Q− is multiplicity free (as Q is) with cosocle L(wj1,j0), the canonical
(non-zero) adjunction map Θw0sj0w0(Q−) → Q− must be a surjection. Note that we have
L(wj′

1,j
′
0
) /∈ JHU(g)(Θw0sj0w0(L(wj1,j0))) by Proposition 3.4.5 and Remark 3.4.6, and thus

L(wj′
1,j

′
0
) /∈ JHU(g)(Θw0sj0w0(Q−)) by (203). However L(wj′

1,j
′
0
) is the socle of M and hence

occurs in Q−. This contradicts the surjection Θw0sj0w0(Q−) ↠ Q−.

Proposition 3.4.9. Let j0, j1, j
′
0, j

′
1 ∈ ∆ with |j0 − j′

0| = 1 and |j1 − j′
1| = 1. Then there

exists a unique minimal Ext-square Q1(wj1,j0 , wj′
1,j

′
0
) with socle L(wj′

1,j
′
0
), cosocle L(wj1,j0)

and middle layer L(wj1,j′
0
)⊕L(wj′

1,j0
)⊕L(1) if j0 = j1 and j′

0 = j′
1, and L(wj1,j′

0
)⊕L(wj′

1,j0
)

otherwise. Moreover Q1(wj1,j0 , wj′
1,j

′
0
) is in Ob

alg.

Proof. By Lemma 3.4.8 we know that Q is minimal, unique up to isomorphism and is in Ob
alg.

Switching wj1,j0 and wj′
1,j

′
0
, we have similar statements for Q1(wj′

1,j
′
0
, wj1,j0), which implies

Qτ ∼= Q1(wj′
1,j

′
0
, wj1,j0) by unicity. Moreover, the proof of Lemma 3.4.8 implies L(wj′

1,j0
) ∈

JHU(g)(rad1(Q)), and similarly L(wj1,j′
0
) ∈ JHU(g)(rad1(Qτ )). Since JHU(g)(rad1(Qτ )) =

JHU(g)(rad1(Q)), we deduce L(wj1,j′
0
) ⊕ L(wj′

1,j0
) ⊆ rad1(Q). It remains to prove L(1) ⊆

rad1(Q) when j0 = j1 and j′
0 = j′

1. Assume on the contrary that L(1) /∈ JHU(g)(rad1(Q)) and
recall (from our convention) that if a weight in w·µ0−Z≥0Φ+ occurs in L(w′) = L(w′·µ0) then
w′ ≤ w. It follows that none of L(sj′

0
), L(wj0,j′

0
), L(wj′

0,j0
) contain weights in sj0 ·µ0−Z>0Φ+

and hence that Qsj0 ·µ0 is one dimensional and Qsj0 ·µ0−ν is 0 for ν ∈ Z>0Φ+. Since the ac-
tion of a non-zero element of u modifies a weight by a character in −Z>0Φ+, this forces
0 ̸= Qsj0 ·µ0 ⊆ H0(u, Q)sj0 ·µ0 , which together with (127) (for I = ∅) gives a non-zero map
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M(sj0) → Q. As Q is multiplicity free with cosocle L(sj0), it has to be a surjection. But
this contradicts the fact that L(sj′

0
) ∈ JHU(g)(Q) \ JHU(g)(M(sj0)). Hence, we must have

rad1(Q) ∼= L(wj1,j′
0
)⊕ L(wj′

1,j0
)⊕ L(1) when j0 = j1 and j′

0 = j′
1.

Remark 3.4.10. By a similar argument as in Lemma 3.4.7, Lemma 3.4.8 and Lemma 3.4.9,
one can prove that, for j0, j1 ∈ ∆ with |j0−j1| = 1, there exists a unique minimal Ext-square
Q1(1, wj1,j0) (resp. Q1(wj1,j0 , 1)) with middle layer L(sj0) ⊕ L(sj1), and that Q1(1, wj1,j0),
Q1(wj1,j0 , 1) are in Ob

alg.

For S ⊆ W (G), we write LS def= ⊕
x∈S L(x).

Lemma 3.4.11. Let j ∈ ∆, I = ∆ \ {j} and w ∈ W (G) such that DL(w) = {j}. Assume
S0

def= {x′ | x′ ∈ W (LI)w, ℓ(x′) = ℓ(w) + 1, j /∈ DL(x′)} ̸= ∅. Then there exists a unique
minimal Ext-square Qsj

(w,w) such that

Rad1(Qsj
(w,w)) ∼= L(sjw)⊕ LS0 .

Proof. There exists a unique U(g)-module M0 with socle L(w) and cosocle L(sjw) ⊕ LS0 .
Since L(x′)sj ∼= L(x′) if j /∈ DL(x′) ((iii) of Lemma 3.3.1), M sj

0 has socle L(w)sj and cosocle
L(sjw)⊕ LS0 . By (ii) of Lemma 3.2.4 we have

dimE Ext1
U(g)(L(w),M sj

0 /L(w)sj ) = dimE Ext1
U(g)(L(w), L(sjw)⊕ LS0) = 1 + #S0. (204)

By the equivalence between conditions (ii) and (iii) in Lemma 3.3.4 (applied with I =
I ′ = ∆ \ {j} and w1 = sj) we have Ext1

U(g)(L(x), L(w)sj ) = 0 for x ∈ W (G) such that
DL(x) = {j}, and in particular for each irreducible constituent L(x) of M I(w). This together
with Proposition 3.3.9 and a dévissage using 0→ N I(w)→M I(w)→ L(w)→ 0 implies

dimE Ext2
U(g)(L(w), L(w)sj ) ≤ #S0. (205)

The short exact sequence 0→ L(w)sj →M
sj

0 →M
sj

0 /L(w)sj → 0 yields the exact sequence

0→ Ext1
U(g)(L(w),M sj

0 )→ Ext1
U(g)(L(w),M sj

0 /L(w)sj )→ Ext2
U(g)(L(w), L(w)sj )

which together with (204) and (205) implies

dimE Ext1
U(g)(L(w),M sj

0 ) ≥ 1.

In particular, there exists an Ext-square Qsj
(w,w) with socle L(w)sj , cosocle L(w) and

middle layer
Rad1(Qsj

(w,w)) ⊆M
sj

0 /L(w)sj = L(sjw)⊕ LS0 .

We now prove L(sjw)⊕ LS0 ⊆ Rad1(Qsj
(w,w)) and the minimality of Qsj

(w,w).

Step 1: Let M be any U(g)-module with socle L(w) and M ′ a U(g)-module of finite
length with all irreducible constituents in Ob

alg. As L(w)sj is not in Ob
alg (by (iii) of Lemma

3.3.1 and Lemma 3.1.1), we have HomU(g)(M ′,M sj ) = 0.
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Step 2: We show that Qsj
(w,w) is minimal and is unique such that Rad1(Qsj

(w,w)) ⊆
L(sjw)⊕ LS0 .
Using again (ii) of Lemma 3.2.4, there exists a unique U(g)-module M1 with cosocle L(w)
and socle L(sjw) ⊕ LS0 . By unicity of M1 there is a surjection M1 ↠ Qsj

(w,w)/L(w)sj .
Moreover it follows from (i) of Lemma 3.2.4 and (141) (applied with x = w and w = x′ ∈ S0)
that M1/L(sjw) is a quotient of M(w). As HomU(g)(ker(M(w) ↠ M1/L(sjw)), L(w)sj ) =
0 since L(w)sj is not in Ob

alg, the surjection M(w) ↠ M1/L(sjw) induces an embedding
Ext1

U(g)(M1/L(sjw), L(w)sj ) ↪→ Ext1
U(g)(M(w), L(w)sj ), which using (ii) of Remark 3.3.6

(applied with I = ∅, x = w and w1 = sj) implies

Ext1
U(g)(M1/L(sjw), L(w)sj ) = 0. (206)

Then from 0→ L(sjw)→M1 →M1/L(sjw)→ 0 we deduce

Ext1
U(g)(M1, L(w)sj ) ↪→ Ext1

U(g)(L(sjw), L(w)sj ). (207)

But dimE Ext1
U(g)(L(sjw), L(w)sj ) = 1 by condition (iii) in Lemma 3.3.4 with (165) (ap-

plied with I = I ′ = ∆ \ DL(w) and w1 = sj) and (ii) of Lemma 3.2.4. Since we have
Ext1

U(g)(Qsj
(w,w)/L(w)sj , L(w)sj ) ̸= 0 (by definition of Qsj

(w,w)) and

Ext1
U(g)(Qsj

(w,w)/L(w)sj , L(w)sj ) ↪→ Ext1
U(g)(M1, L(w)sj ) (208)

(by Step 1 applied with M ′ = ker(M1 ↠ Qsj
(w,w)/L(w)sj ) and M = L(w)), we deduce

from (207) and (208) isomorphisms of 1-dimensional vector spaces

Ext1
U(g)(M1, L(w)sj ) ∼−→ Ext1

U(g)(L(sjw), L(w)sj )
Ext1

U(g)(Qsj
(w,w)/L(w)sj , L(w)sj ) ∼−→ Ext1

U(g)(M1, L(w)sj ).

The composition gives an isomorphism of 1-dimensional E-vector spaces

Ext1
U(g)(Qsj

(w,w)/L(w)sj , L(w)sj ) ∼−→ Ext1
U(g)(L(sjw), L(w)sj )

which implies that L(sjw) appears in Rad1(Qsj
(w,w)). We now prove minimality. Using

again Step 1, we deduce from (206)

Ext1
U(g)((Qsj

(w,w)/L(w)sj )/L(sjw), L(w)sj ) = 0.

By Lemma 3.4.3 and Remark 3.4.4 this implies that Qsj
(w,w) is minimal, and is actually

the unique Ext-square with socle L(w)sj , cosocle L(w) and middle layer Rad1(Qsj
(w,w)) ⊆

L(sjw)⊕ LS0 .

Step 3: We finally show that LS0 ⊆ Rad1(Qsj
(w,w)).

Let M ′
1 be the unique U(g)-module with socle L(w) and cosocle L(sjw) ⊕ LS0 , which is

in Ob
alg (use once more (ii) of Lemma 3.2.4). Then Qsj

(w,w) contains a unique maximal
U(g)-submodule Q1 with socle L(w)sj and cosocle contained in L(sjw)⊕LS0 and containing

98



L(sjw). We have Q1 ⊆ (M ′
1)sj , Q1/L(w)sj ∈ Ob

alg and Ext1
U(g)(L(w), Q1) ̸= 0. In order to

prove the statement, it suffices to show Q1 = (M ′
1)sj . Assume on the contrary Q1 ⊊ (M ′

1)sj

and let S ′
0 ⊊ S0 such that Q1 has cosocle L(sjw) ⊕ LS′

0
(and socle L(w)sj ). The surjection

M I(w) ↠ L(w) together with HomU(g)(ker(M I(w) → L(w)), Q1) = 0 gives an embedding
Ext1

U(g)(L(w), Q1) ↪→ Ext1
U(g)(M I(w), Q1), which forces

Ext1
U(g)(M I(w), Q1) ̸= 0. (209)

By (ii) of Lemma 3.3.1 (applied with I = I ′ and w = w2 = sj) we have H0(nI , L(w)sj ) = 0,
from which we deduce by dévissage (and (ii) of Lemma 3.1.8) that H0(nI , Q1) is in OpI

alg.
Since the socle L(w)sj of Q1 is not in Ob

alg, (127) implies H0(nI , Q1) = 0. Hence (128)
(applied with M = Q1 and MI = LI(w)) and (209) give

HomU(lI)(LI(w), H1(nI , Q1) ̸= 0. (210)

Let M2 be the unique U(g)-module with socle L(w) and cosocle L(sjw). The short exact
sequence 0→M

sj

2 → Q1 → Q1/M
sj

2 → 0 and H0(nI , Q1) = 0 give an exact sequence

0→ H0(nI , Q1/M
sj

2 )→ H1(nI ,M sj

2 )→ H1(nI , Q1)→ H1(nI , Q1/M
sj

2 ). (211)

Since Q1/M
sj

2
∼= L

sj

S′
0
∼= LS′

0
, we have H0(nI , Q1/M

sj

2 ) ∼= LIS′
0

by (ii) of Lemma 3.1.8.
Let ξ : Z(lI) → E such that LI(w)ξ ̸= 0. Since x′ ∈ W (LI)w, we have LI(x′)ξ ̸= 0,
and thus H1(nI , L(x′))ξ = 0 by (iii) of Lemma 3.1.8. In particular H1(nI , Q1/M

sj

2 ) ∼=
⊕x′∈S′

0
H1(nI , L(x′)) does not have LI(w) as Jordan-Hölder factor. By Lemma 3.3.12 LI(w)

has multiplicity one in H1(nI ,M sj

2 ) and H1(nI ,M sj

2 ) contains a U(lI)-submodule MI with
socle LIS0 and cosocle LI(w). From (211) we deduce that LI(w) appears with multiplicity
one in H1(nI , Q1) and that H1(nI , Q1) contains a submodule with socle LIS0\S′

0
and cosocle

LI(w) (the image of MI in H1(nI , Q1)). Since by assumption S0 \ S ′
0 ̸= ∅, we must have

HomU(lI)(LI(w), H1(nI , Q1)) = 0, which contradicts (210). It follows that S ′
0 = S0 and

Q1 = (M ′
1)sj , which finishes the proof.

Remark 3.4.12. Keep the notation of Lemma 3.4.11 and let M ⊊ M ′
1 where M ′

1 is the
unique U(g)-module with socle L(w) and cosocle L(sjw)⊕LS0 , and assume that L(sjw) ap-
pears in (the cosocle of) M . Then we proved in Step 3 of the above proof that H0(nI ,M sj ) =
0 and HomU(lI)(LI(w), H1(nI ,M sj )) = 0. By (128) (applied with M there being M sj ) it fol-
lows that we have for ℓ ≤ 1:

ExtℓU(g)(M I(w),M sj ) = 0.

Example 3.4.13. The following special cases of Lemma 3.4.11 will be useful. Let j, j′ ∈ ∆
and w def= wj,j′ (so DL(w) = {j}). If j > j′, then we have S0 = {wj+1,j′} when j < n− 1 and
S0 = ∅ when j = n− 1. If j < j′, then we have S0 = {wj−1,j′} when j > 1 and S0 = ∅ when
j = 1. If j = j′, then we have S0 = {wj′′,j′ | j′′ ∈ ∆, |j − j′′| = 1}.

Lemma 3.4.14. Let j ∈ ∆. There exists a z-semi-simple uniserial U(g)-module of length 3
with both socle and cosocle L(1) and middle layer L(sj).
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Proof. Upon applying Tw0·µ0
w0·0 (and using [Hum08, Thm. 7.8]), it is harmless to assume in the

rest of the proof that µ0 = 0. We write I def= ĵ, Z (resp. ZI) for the center of G (resp. LI)
and z (resp. zI) their associated Lie algebras. We write 1I for the trivial object of ModU(zI/z).
Recall we have (for instance using (121))

Ext1
U(zI/z)(1I , 1I) ∼= HomE(zI/z, E) ̸= 0.

Choose an arbitrary non-split extension 0 → 1I → 1̃I → 1I → 0 in ModU(zI/z). We define
L̃I(1) def= LI(1) ⊗E 1̃I , which we see in ModU(lI/z) (and thus in ModU(lI)) writing lI/z ∼=
lI/zI × zI/z and noting that LI(1) is in ModU(lI/zI). It is a non-split extension

0 −→ LI(1) −→ L̃I(1) −→ LI(1) −→ 0, (212)

and M̃ I(1) def= U(g) ⊗U(pI) L̃
I(1), which is in the category OpI ,∞

alg (see the beginning of §3.1)
and is an extension of U(g)-modules

0 −→M I(1) −→ M̃ I(1) −→M I(1) −→ 0. (213)

We denote by M+ the pushforward of M̃ I(1) along the surjection M I(1) ↠ L(1) (on the
left). Then M+ is a quotient of M̃ I(1) which fits into an exact sequence 0 → L(1) →
M+ → M I(1) → 0. Recall that by [Hum08, Thm. 9.4(c)] and Lemma 3.1.1 M I(1) is the
maximal quotient of M(1) with constituents L(y) such that DL(y) ⊆ ∆ \ I = {j}. By
(iii) of Lemma 3.2.2 and (141) M(1) admits a (unique) length 2 quotient M− with socle
L(sj) and cosocle L(1). Hence M− is also a quotient of M I(1). Since the two conditions
DL(y) ⊆ {j} and ℓ(y) ≤ 1 force y ∈ {1, sj}, and since L(1), L(sj) occur with multiplicity
1 in M(1), it follows that any constituent L(y) of ker(M I(1) ↠ M−) satisfies ℓ(y) ≥ 2.
As Ext1

U(g)(L(y), L(1)) = 0 by (ii) of Lemma 3.2.4, a dévissage yields Ext1
U(g)(M−, L(1)) ∼→

Ext1
U(g)(M I(1), L(1)). In particular M+ admits a unique length 3 quotient M that fits into

an exact sequence of U(g)-modules

0 −→ L(1) −→M −→M− −→ 0. (214)

Let ξ : Z(lI) → E be the unique infinitesimal character such that LI(1)ξ ̸= 0. By (ii)
and (iii) of Lemma 3.1.8 we have H0(nI , L(1))ξ ∼= LI(1)ξ = LI(1) ̸= 0 and Hk(nI , L(1))ξ = 0
for k ≥ 1. Given L(y) ∈ JHU(g)(M I(1)) \ {L(1)}, we have y ̸= 1 and DL(y) ⊆ {j} (Lemma
3.1.1), hence DL(y) = {j} and thus y /∈ W (LI). Let k ≥ 0 and assume Hk(nI , L(y))ξ ̸= 0.
Let LI(z) be a constituent of Hk(nI , L(y))ξ for some z ∈ W (LI) (using Proposition 3.1.5 and
[Hum08, Thm. 1.10] for LI). As LI(z)z·µ0 ̸= 0, we have Hk(nI , L(y))z·µ0 ̸= 0 (weight spaces).
By Lemma 3.1.2 this implies z ·µ0−y ·µ0 ∈ Z≥0Φ+, which implies z ≥ y in W (G) (in view of
our conventions), i.e. y is a subword of z (in W (G)). But since y /∈ W (LI) this contradicts
z ∈ W (LI). Hence we have Hk(nI , L(y))ξ = 0 for k ≥ 0, and by dévissage we obtain in
particular H1(nI ,M I(1))ξ = 0. It follows from all this that the surjection M1(1) ↠ L(1)
induces an isomorphism H0(nI ,M I(1))ξ ∼→ H0(nI , L(1))ξ ∼= LI(1), and that (213) induces a
short exact sequence

0→ H0(nI ,M I(1))ξ → H0(nI , M̃ I(1))ξ → H0(nI ,M I(1))ξ → 0. (215)
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By (127) (and (i) of Lemma 3.1.3) we have canonical isomorphisms

0 ̸= HomU(g)(M̃ I(1), M̃ I(1)) ∼= HomU(lI)(L̃I(1), H0(nI , M̃ I(1)))
∼= HomU(lI)(L̃I(1), H0(nI , M̃ I(1))ξ).

As the identity map on M̃ I(1) does not factor through M̃ I(1) ↠ M I(1), the corresponding
map L̃I(1) → H0(nI , M̃ I(1))ξ (via (127)) does not factor through L̃I(1) ↠ LI(1). Hence it
is injective and thus must be an isomorphism using (215) and H0(nI ,M I(1))ξ ∼= LI(1). As
Hk(nI , L(y))ξ = 0 for k ≥ 0 (in fact k = 0, 1 is enough) and L(y) ∈ JHU(g)(M I(1))\ {L(1)},
the surjection M̃ I(1) ↠M induces an isomorphism L̃I(1) ∼= H0(nI , M̃ I(1))ξ ∼→ H0(nI ,M)ξ.
In particular, the short exact sequence (214) is non-split, otherwise we would have L̃I(1) ∼=
H0(nI ,M)ξ ∼= LI(1) ⊕H0(nI ,M−)ξ ∼= LI(1) ⊕ LI(1) which contradicts (212). Let us prove
that M is actually uniserial (of length 3). If it were not uniserial, it would contain as
subquotient a non-split extension of L(1) by L(1). As U(z) acts on L̃I(1) by scalars (in E),
it also acts on M̃ I(1) and M by (the same) scalars. Since Ext1

U(g/z)(L(1), L(1)) = 0 (cf. for
instance [Schr11, (3.27)]), this would yield a contradiction. So M must be uniserial of length
3, with both socle and cosocle L(1) and middle layer L(sj). In particular, the unique length
2 U(g)-submodule of M is isomorphic to (M−)τ (see (116 for the notation) which is the
unique length 2 U(g)-module with socle L(1) and cosocle L(sj) by (ii) of Lemma 3.2.4.

Lemma 3.4.15. Let I def= ∆ \ {n− 1}.

(i) We have M I(wn−1,1) ∼= L(wn−1,1), and M I(wn−1,n−k) is the unique length 2 U(g)-
module with socle L(wn−1,n−k−1) and cosocle L(wn−1,n−k) for each 0 ≤ k ≤ n− 2 (with
the convention wn−1,n = 1).

(ii) Let 1 ≤ k ≤ n − 1. Then Θsk
(M I(wn−1,n−k)) admits a subquotient (resp. quotient) of

the form M I(µ) for some µ ∈ Λdom
J if and only if µ ∈ {wn−1,n−k · µ0, wn−1,n−k+1 · µ0}

(resp. if and only if µ = wn−1,n−k · µ0). Moreover, Θsk
(M I(wn−1,n−k)) fits into the

following short exact sequence

0→M I(wn−1,n−k+1)→ Θsk
(M I(wn−1,n−k))→M I(wn−1,n−k)→ 0. (216)

Proof. We have W I,∅ = {x ∈ W (G) | DL(x) ⊆ {n− 1}} = {1} ⊔ {wn−1,n−k | 1 ≤ k ≤ n− 1}
where the second equality follows from Lemma A.5 and Remark A.6. We fix w ∈ W I,∅,
hence we have w = wn−1,n−k (with wn−1,n = 1) for some k ∈ {0, . . . , n− 1}.

We prove (i). By [Hum08, Thm. 9.4(c)] M I(w) is the maximal length quotient of M(w)
which belongs to OpI

alg. We consider an arbitrary constituent L(x) of M I(w) with x > w. By
[Hum08, Thm. 9.4(c)] L(x) ∈ OpI

alg and thus by Lemma 3.1.1 x ∈ W I,∅ = {1} ⊔ {wn−1,n−k |
1 ≤ k ≤ n− 1}. As x is partial-Coxeter (see above Lemma A.2), by (i) of Lemma A.12 L(x)
has multiplicity one in M(x′) ⊆ M(w) for each x′ satisfying w < x′ < x (using [Hum08,
Thm. 5.1(a)]), so the quotient M I(w) of M(w) which admits L(x) as a constituent must
also admit L(x′) as a constituent (use that the composition M(x′) ↪→ M(w) ↠ M I(w) is
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non-zero as its image contains the constituent L(x)). If ℓ(x) > ℓ(w) + 1, we may always
choose w < x′ < x such that DL(x′) ̸⊆ {n− 1}, but L(x′) ∈ JHU(g)(M I(w)) forces DL(x′) ⊆
{n − 1} by [Hum08, Thm. 9.4(c)] (and Lemma 3.1.1), a contradiction. Hence, we must
have ℓ(x) = ℓ(w) + 1, which together with w = wn−1,n−k forces x = wn−1,n−k−1 (and thus
k < n− 1). When 0 ≤ k < n− 1, by (141) we know that a length 2 quotient of M(w) with
socle L(x) and cosocle L(w) exists, and is unique by (ii) of Lemma 3.2.4. This finishes the
proof of (i).

We prove (ii). Assume now 1 ≤ k ≤ n − 1. By the description of M I(w) in (i),
Proposition 3.4.5 and Remark 3.4.6 (and the exactness of Θsk

) we deduce that Θsk
(M I(w)) ∼=

Θsk
(L(w)) has Loewy length 3 with socle and cosocle L(w) and middle layer L(wn−1,n−k+1)⊕

L(wn−1,n−k−1) if k < n − 1 (resp. L(wn−1,n−k+1) if k = n − 1). Any M I(µ) that appears
as a subquotient of Θsk

(L(w)) satisfies JHU(g)(M I(µ)) ⊆ JHU(g)(Θsk
(L(w))), which by the

previous description of Θsk
(L(w)) and (i) forces µ ∈ {w · µ0, wn−1,n−k+1 · µ0}. Moreover,

as Θsk
(L(w)) has cosocle L(w) and M I(µ) has cosocle L(µ), we see that M I(µ) can be a

quotient of Θsk
(L(w)) only if µ = w · µ0. Finally (216) follows from the above explicit

structure of Θsk
(M I(w)) ∼= Θsk

(L(w)) and from (i).
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4 Computing Ext groups of locally analytic represen-
tations

We prove an important result (Corollary 4.5.11, which follows from Theorem 4.5.10) which
enables us to compute the Ext groups (230) of certain locally analytic representations of G
by a computation of Ext groups purely on the smooth side and purely on the Lie algebra
side.

4.1 Fréchet spaces with U(t)-action
We define and study certain (left) U(t)-modules over E and canonical Fréchet completions
of them. This section has an intersection with [Schm13], but our treatment is self-contained.

Definition 4.1.1. A (semi-simple) U(t)-module M over E is small if the following two
conditions hold.

• There is a U(t)-equivariant isomorphism M ∼=
⊕

µ∈Λ Mµ where Mµ is the eigenspace
attached to the weight µ ∈ Λ = X(T ), i.e. M is semi-simple with integral weights.

• There exist finitely many µ1, . . . , µk ∈ Λ such that Mµ ̸= 0 only if µ−µk′ ∈ Z≥0Φ+ for
some 1 ≤ k′ ≤ k, and Mµ is always a finite dimensional E-vector space.

Note that by [Schm13, Lemma 3.6.1] the second condition in Definition 4.1.1 implies that
the set of weights of M is relatively compact ([Schm13, §2]). For each µ ∈ Λ, we write ⟨µ⟩
for the one dimensional U(t)-module such that ⟨µ⟩µ ̸= 0. If M is a small U(t)-module M ,
then so is ⟨µ⟩ ⊗E M for each µ ∈ Λ. When µ ∈ ZΦ+, we write µ = ∑

α∈∆ µαα for some
µα ∈ Z and set |µ| def= ∑

α∈∆ µα ∈ Z.

Remark 4.1.2.

(i) For µ, µ′ ∈ Λ such that µ − µ′ ∈ ZΦ+, there always exist µ′′ ∈ Λ such that (µ +
Z≥0Φ+)∪ (µ′ + Z≥0Φ+) ⊆ µ′′ + Z≥0Φ+. Putting “together” the weights in µi + Z≥0Φ+

and µj + Z≥0Φ+ for all i, j such that µi − µj ∈ ZΦ+, it follows that a small U(t)-
module admits a canonical decomposition into small direct summands indexed by
finitely many cosets of Λ/ZΦ+. By considering each direct summand (with weights
contained in some µ′′ + Z≥0Φ+) separately and twisting it by ⟨−µ′′⟩, we will often
reduce ourselves to small U(t)-modules with weights in Z≥0Φ+ in the sequel.

(ii) Note that the Verma module M(µ) = U(g) ⊗U(b) µ, which is isomorphic to the twist
⟨µ⟩ ⊗E U(u+) as U(t)-module, is a small U(t)-module, and thus so is any object in
Ob

alg. Conversely, any U(g)-module which is small as a U(t)-module is necessarily such
that u− acts nilpotently, hence is the union of its finitely generated U(g)-submodules,
which are all in Ob

alg. An instructive example of such an M which is not in Ob
alg is

an infinite direct sum of Verma modules M(µ) where µ ∈ −Λ+ and |µ| tends to +∞
(because for a given weight, only a finite number of such M(µ) will contribute).
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Now we explicitly define a Fréchet topology on a small U(t)-module M as follows. By (i)
of Remark 4.1.2, we choose µ1, . . . , µk in Λ which are distinct in Λ/ZΦ+ and such that each
weight µ of M is in µi(µ) +Z≥0Φ+ for a unique i(µ) ∈ {1, . . . , k}. For each weight µ of M , we
fix a choice of a p-adic norm | · |µ on Mµ, which is equivalent to the choice of an OE-lattice
{x ∈Mµ | |x|µ ≤ 1} in the finite dimensional E-vector space Mµ. We write L = {| · |µ}µ for
this collection of norms. Then we define a semi-norm | · |L,r on M for r ∈ Q>0 by

|x|L,r
def= max

µ
|xµ|µr|µ−µi(µ)| (217)

where x = ∑
µ xµ ∈M . It is clear that |x|L,r ≤ |x|L,r′ for r′ ≥ r > 0. If we modify the µi by

elements in ZΦ+, we get an equivalent semi-norm using that, for each r ∈ Q>0 and ν ∈ ZΦ+,
there exist Cν,r, C ′

ν,r ∈ Q>0 such that C ′
ν,rr

|µ′−ν| ≤ r|µ′| ≤ Cν,rr
|µ′−ν| for µ′ ∈ Z≥0Φ+. The

countable family of semi-norms {|·|L,r}r∈Q>0 (or equivalently the countable family {|·|L,r}r∈pQ)
defines a Fréchet topology on M which we denote by TL. We write M̂L for the completion
of M under TL. For each U(t)-submodule M ′ ⊆ M , the induced subspace topology on M ′

can be defined by the family of semi-norms {| · |L′,r}r∈Q>0 associated with the collection
L′ = {| · |′µ}µ where | · |′µ is the restriction of | · |µ to M ′

µ.

For later convenience, we introduce the following definition.

Definition 4.1.3. Given a small U(t)-module M , a semi-norm | · | on M is called standard
if, up to equivalence of semi-norms, it satisfies |x| = maxµ |xµ| for x = ∑

µ xµ ∈M .

Fort instance the semi-norm (217) is standard for any r ∈ Q>0.

Remark 4.1.4. Let M be a small U(t)-module with a Fréchet topology TL as above. We
set MΛ′

def= ⊕
µ∈Λ′ Mµ for any subset Λ′ ⊆ Λ, i.e. we only keep in MΛ′ the weights of M that

are in Λ′. We clearly have M ∼= MΛ′ ⊕MΛ\Λ′ . We equip MΛ′ and MΛ\Λ′ with the subspace
topology (again denoted by TL) induced from M . It is then clear from (217) that the original
Fréchet topology TL on M is equivalent to the direct sum topology on MΛ′ ⊕MΛ\Λ′ , and
thus we have a U(t)-equivariant topological isomorphism M̂L ∼= M̂Λ′,L ⊕ M̂Λ\Λ′,L.

Lemma 4.1.5. Let M be a small U(t)-module and let L = {| · |µ}µ be as above. Let
q ∈ EndU(t)(M) with q|Mµ = aµ ∈ Z for each µ ∈ Λ (with aµ

def= 0 if Mµ = 0). Then
q is continuous for the topology on M given by the semi-norms (217) and extends to a
continuous endomorphism q̂ ∈ EndU(t)M̂L. Assume moreover that there exists C ∈ Z≥0 such
that |aµ|∞ ≤ |µ−µi(µ)|C for each weight µ of M (with the notation of (217)), then q̂ is strict,
and is invertible if and only if aµ ̸= 0 for each µ such that Mµ ̸= 0.

Proof. The continuity of q is clear from the definition of | · |L,r as well as the fact that
|aµ|p ≤ 1.

Now we assume that there exists C ∈ Z≥0 such that |aµ|∞ ≤ |µ− µi(µ)|C for any µ such
that Mµ ̸= 0. We set Λ0

def= {µ ∈ Λ | Mµ ̸= 0, aµ = 0}, Λ1
def= {µ ∈ Λ | Mµ ̸= 0, aµ ̸= 0}

and Mi
def= ⊕

µ∈Λi
Mµ for i = 0, 1. We have a U(t)-equivariant topological isomorphism
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M̂L ∼= M̂0,L ⊕ M̂1,L by Remark 4.1.4. As q̂(x) = ∑
µ∈Λ aµxµ for each convergent sum x =∑

µ∈Λ xµ ∈ M̂L, it is clear that ker(q̂) = M̂0,L and thus we have a U(t)-equivariant topological
isomorphism M̂L/ker(q̂) ∼= M̂1,L. It suffices to show that q′ : M1 → M1,

∑
µ∈Λ1 xµ 7→∑

µ∈Λ1 a
−1
µ xµ extends continuously to M̂1,L (this will necessarily give the inverse of q̂|

M̂1,L
).

For each r′ > r > 0 in Q, our assumption |aµ|∞ ≤ |µ − µi(µ)|C (together with aµ ∈ Z and
aµ ̸= 0 for µ ∈ Λ1) implies the existence of Cr,r′ ∈ Q>0 such that |aµ|−1

p (r/r′)|µ−µi(µ)| ≤ Cr,r′

for each µ ∈ Λ1, which together with (217) gives the continuity of q′ on M1.

Remark 4.1.6. It follows from Lemma 4.1.5 that the U(t)-action on M extends to a con-
tinuous U(t)-action on M̂L (i.e. any element of U(t) acts continuously): an arbitrary element
x ∈ M̂L can be expressed as a convergent infinite sum ∑

µ∈Λ xµ with xµ ∈Mµ for µ ∈ Λ, and
t · x = ∑

µ∈Λ µ(t)xµ. In particular, we have x ∈ (M̂L)µ, i.e. t · x = µ(t)x for t ∈ t, if and only
if x = xµ. In other words, the embedding M ↪→ M̂L induces an equality Mµ = (M̂L)µ for
each µ ∈ Λ.

It is convenient to introduce the following definitions.

Definition 4.1.7.

(i) Let V be a Fréchet space over E. We say that V is a Fréchet U(t)-module if it is
equipped with a continuous U(t)-action.

(ii) We say that a Fréchet U(t)-module V is small if there exists a (semi-simple) small
U(t)-module M (see Definition 4.1.1) and a collection of norms L = {| · |µ}µ such that
we have a U(t)-equivariant topological isomorphism V ∼= M̂L.

Remark 4.1.8. Given a small Fréchet U(t)-module V ∼= M̂L, it is clear that the Fréchet
U(t)-module ⟨µ1⟩ ⊗E V is small for each µ1 ∈ Λ.

We refer to [S02, §17.B] for the definition and properties of the semi-norm tensor product
of two semi-norms.

Lemma 4.1.9. Let V ∼= M̂L be a small Fréchet U(t)-module and N a finite dimensional
U(t)-module (with its canonical Banach topology). We fix an arbitrary norm | · |N,ν on Nν

for each ν ∈ Λ such that Nν ̸= 0.

(i) For µ ∈ Λ and ∑ν yν ⊗E xµ−ν ∈ (N ⊗E M)µ with yν ∈ Nν ̸= 0 and xµ−ν ∈ Mµ−ν we
define ∣∣∣∣∑

ν

yν ⊗E xµ−ν

∣∣∣∣
N⊗EM,µ

def= max
ν
|yν |N,ν |xµ−ν |µ−ν . (218)

Then N ⊗E V ∼= ( ̂N ⊗E M)L′ where the collection of norms L′ on the weight spaces
(N ⊗E M)µ is uniquely determined by (218). In particular N ⊗E V is a small Fréchet
U(t)-module.
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(ii) For any standard semi-norm | · | on M (Definition 4.1.3) the semi-norm (maxν | ·
|N,ν)⊗E | · | on N ⊗E M is standard.

Proof. We prove (i). Note first that N ⊗E M is a small U(t)-module and that the Fréchet
topology on N ⊗E V is defined by the family of semi-norms {(maxν | · |N,ν)⊗E | · |L,r}r∈Q>0 .
Let z = ⊕

µ∈Λ zµ ∈ N ⊗E M with zµ = ∑
ν yν ⊗E xµ−ν for some yν and xµ−ν as in (218). We

have by (217)
|z|L′,r = max

µ,ν
|yν |N,ν |xµ−ν |µ−νr

|µ−µi(µ)|.

The evaluation of the semi-norm (maxν | · |N,ν)⊗E | · |L,r on z is

max
µ,ν
|yν |N,ν |xµ−ν |µ−νr

|µ−ν−µi(µ−ν)|. (219)

As there exists only finitely many ν such that Nν ̸= 0, we conclude from (219) that for
r ∈ Q>0 the semi-norms | · |L′,r and (maxν | · |N,ν) ⊗E | · |L,r are equivalent on N ⊗E M . It
follows that N ⊗E V ∼= ( ̂N ⊗E M)L′ .

The proof of (ii) is an easy exercise that is left to the reader.

The following result is contained in [Lac99, §1.3.1], we reproduce a proof for the reader’s
convenience.

Lemma 4.1.10. Let V0 be a small Fréchet U(t)-module and V ⊆ V0 a closed Fréchet U(t)-
submodule. Then V is again small. In particular ⊕µ∈Λ Vµ is a small U(t)-module which is
dense in V .

Proof. We fix throughout this proof a small U(t)-module M and a collection of norms L =
{| · |µ}µ such that we have a U(t)-equivariant topological isomorphism V0 ∼= M̂L. We may
write x = ∑

µ∈Λ xµ as a convergent infinite sum with xµ ∈ Mµ for each µ ∈ Λ. Note that
Vµ ⊆ (V0)µ = Mµ is finite dimensional for each µ ∈ Λ. Hence to prove that V is small, it
suffices to show that ⊕µ∈Λ Vµ is dense in V . In other words, for each convergent infinite sum
x = ∑

µ∈Λ xµ ∈ V ⊆ V0 with xµ ∈Mµ, we need to show that

xµ ∈ V. (220)

Let e ∈ t be an element such that µ(e) ∈ Z for all µ ∈ Λ and α(e) ∈ Z>0 for all α ∈ ∆.
Replacing V0 by ⟨−µ′′⟩ ⊗E V0 for some µ′′ ∈ Λ, we can moreover assume that µ(e) ∈ Z≥0 for
all the weights µ of V0. For each N ∈ Z≥0, we set

ΛN
def= {µ weight of V0 | µ(e) = N}

and similarly for Λ≤N , Λ<N and Λ>N . Writing µ = µi(µ) +∑
α∈∆ µαα with µi(µ) as in (217)

and µα ∈ Z≥0, we have µ(e) = µi(µ)(e) +∑
α∈∆ µαα(e). Since α(e) ∈ Z>0 for all α and since

there is a finite number of µi, there is only a finite number (possibly 0) of tuples (µα)α∈∆ in
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Z∆
≥0 such that ∑α∈∆ µαα(e) = N − µi(e) for some i, i.e. ΛN is always a finite set. Therefore,

to prove (220), it suffices to prove by an increasing induction on N ∈ Z≥0 that∑
µ∈ΛN

xµ ∈ V (221)

for each N ∈ Z≥0 (use the action of U(t) on ∑µ∈ΛN
xµ and the fact the xµ are weight vectors

with distinct weights to deduce that each xµ is then also in V ). We fix N ∈ Z≥0, assume
inductively that (221) holds if N is replaced by any N ′ < N , and prove the statement for
N . Upon replacing x by x−∑N ′<N

∑
µ∈ΛN′ xµ = x−∑µ∈Λ<N

xµ, we can assume xµ = 0 for
µ ∈ Λ<N .

For each N1 ∈ Z>0, we set

ΘN,N1
e

def=
∏N1
k=1(N + k − e)

N1!
∈ U(t).

Then xµ for µ a weight of V0 is an eigenvector for ΘN,N1
e with eigenvalue

Cµ,N,N1
def=
∏N1
k=1(N − µ(e) + k)

N1!
∈ Z.

In particular, we have Cµ,N,N1 = 1 if µ ∈ ΛN , and Cµ,N,N1 = 0 if and only if µ ∈ ΛN ′ for some
N < N ′ ≤ N + N1. As ΘN,N1

e ∈ U(t) and V is U(t)-stable, we have ΘN,N1
e (x) ∈ V . Since

V is closed in V0, to prove (221), it suffices to show that the sequence {ΘN,N1
e (x)}N1∈Z≥1

of vectors of V converges to ΘN,N1
e (∑µ∈ΛN

xµ) = ∑
µ∈ΛN

xµ inside V0 when N1 → +∞, or
equivalently that {ΘN,N1

e (x−∑µ∈ΛN
xµ)}N1∈Z≥1 converges to zero in V0 when N1 → +∞. As

Cµ,N,N1 ∈ Z, we have |Cµ,N,N1|p ≤ 1 and thus for r ∈ Q>0:∣∣∣∣∣∣ΘN,N1
e

(
x−

∑
µ∈ΛN

xµ

)∣∣∣∣∣∣
L,r

=
∣∣∣∣∣∣

∑
µ∈Λ>N+N1

Cµ,N,N1xµ

∣∣∣∣∣∣
L,r

≤

∣∣∣∣∣∣
∑

µ∈Λ>N+N1

xµ

∣∣∣∣∣∣
L,r

.

Since |µ − µi(µ)| = ∑
α∈∆ µα tends to +∞ if and only if µ(e) = µi(µ)(e) + ∑

α∈∆ µαα(e)
tends to +∞, we see that the convergence of the infinite sum x = ∑

µ∈Λ xµ in V0 implies
lim−→N1→+∞ |

∑
µ∈Λ>N+N1

xµ|L,r = 0 for r ∈ Q>0, which gives the desired result.

Remark 4.1.11. By Lemma 4.1.10, there exists a natural bijection between U(t)-submodu-
les of M and closed Fréchet U(t)-submodules of M̂L, given by sending M ′ ⊆M to its closure
in M̂L, with inverse given by sending a closed Fréchet U(t)-submodule V ⊆ M̂L to its dense
U(t)-submodule ⊕

µ∈Λ
Vµ =

⊕
µ∈Λ

V ∩Mµ = V ∩
(⊕
µ∈Λ

Mµ

)
= V ∩M.

This is special case of [Lac99, Satz 1.3.19], see also [Schm13, Prop. 2.0.1].
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Remark 4.1.12. Let M be a small U(t)-module, | · | a standard semi-norm on M (see
Definition 4.1.3) and M̂ the corresponding completion. The proof of Lemma 4.1.10 actually
shows that, for any closed U(t)-stable Banach subspace V ⊆ M̂ , the subspace V ∩ M is
dense in V . In particular, there exists a natural bijection between U(t)-submodules of M
and closed U(t)-stable Banach subspaces of M̂ which sends M ′ ⊆M to its closure M̂ ′ in M̂ .
Note that the induced semi-norm on the submodule M ′ (resp. on the quotient M/M ′) of M
is again standard, with M̂ ′ (resp. M̂/M̂ ′) being the corresponding completion.

Lemma 4.1.13. Let V0 be a small Fréchet U(t)-module and V ⊆ V0 a closed Fréchet U(t)-
submodule. Then there exists another closed Fréchet U(t)-submodule V ′ ⊆ V0 such that the
natural map V ⊕ V ′ → V0 is a U(t)-equivariant topological isomorphism.

Proof. We fix a small U(t)-module M and a collection of norms L = {| · |µ}µ such that
V0 ∼= M̂L. By Remark 4.1.11, the choice of V ′ is equivalent to the choice of a subspace
V ′
µ ⊆Mµ for each µ ∈ Λ. From the definition of the semi-norms | · |L,r for r ∈ Q>0 in (217),

we see that it suffices to construct V ′
µ ⊆Mµ such that Vµ ⊕ V ′

µ
∼= Mµ and

|x|µ = max{|yµ|µ, |zµ|µ} (222)

for x = y + z ∈ Mµ with y ∈ Vµ and z ∈ V ′
µ. If we set M◦

µ
def= {x ∈ Mµ | |x|µ ≤ 1}, which is

an OE-lattice in the E-vector space Mµ, then (222) is equivalent to the equality (inside Mµ)

M◦
µ = (Vµ ∩M◦

µ) + (V ′
µ ∩M◦

µ).

But such V ′
µ ⊆Mµ exists for each given Vµ (and our fixed M◦

µ ⊆Mµ) because we can extend
an arbitrary OE-basis of Vµ ∩M◦

µ into one of M◦
µ, and define V ′

µ as the E-span of the new
basis elements we added. This finishes the proof.

Remark 4.1.14. We consider a (U(t)-equivariant) strict exact sequence of Fréchet U(t)-
modules

0 −→ V1 −→ V2 −→ V3 −→ 0 (223)
with V2 small (and thus V1 is also small by Lemma 4.1.10). By Lemma 4.1.13 there exists
another (small) Fréchet U(t)-submodule V ′

3 ⊆ V2 such that the natural map V1⊕V ′
3 → V2 is a

U(t)-equivariant topological isomorphism, which together with our assumption V2/V1
∼→ V3

gives a U(t)-equivariant topological isomorphism V ′
3

∼→ V3, and thus a U(t)-equivariant
topological isomorphism V2 ∼= V1 ⊕ V3. In other words, the short exact sequence (223)
always splits (non-canonically). Moreover, since V ′

3 is small so is V3, and we have canonical
isomorphisms of small U(t)-modules(⊕

µ∈Λ
V2,µ

)/(⊕
µ∈Λ

V1,µ

)
∼=
⊕
µ∈Λ

V2,µ/V1,µ ∼=
⊕
µ∈Λ

V3,µ. (224)
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Lemma 4.1.15. Let e ∈ t such that α(e) ∈ Z>0 for each α ∈ ∆ and let V be a small Fréchet
U(t)-module. Then the action of e−N on

V
/(⊕

µ∈Λ
Vµ

)

is invertible for any N ∈ Z.

Proof. By (i) of Remark 4.1.2 we can assume Vµ ̸= 0 only if µ ∈ Z≥0Φ+. As in the proof
of Lemma 4.1.10, the set ΛN = {µ ∈ Z≥0Φ+ | µ(e) = N} is finite and we write Λ ̸=N for its
complement in Z≥0Φ+. Let V ̸=N be the closure of ⊕µ∈Λ ̸=N

Vµ in V , then by Remark 4.1.4
we have a canonical isomorphism of Fréchet U(t)-modules

V ∼= V̸=N ⊕
( ⊕
µ∈ΛN

Vµ

)
, (225)

with ⊕µ∈ΛN
Vµ being (finite dimensional and) exactly the kernel of e−N in V . The isomor-

phism (225) induces the following isomorphism of U(t)-modules

V
/(⊕

µ∈Λ
Vµ

)
∼= V̸=N

/(⊕
µ∈Λ

(V ̸=N)µ
)

= V ̸=N

/( ⊕
µ∈Λ̸=N

Vµ

)
. (226)

By Lemma 4.1.5 applied to M = ⊕
µ∈Λ(V ̸=N)µ and q = e − N , we know that e − N has

invertible action on V̸=N , and thus on any U(t)-equivariant quotient of V̸=N . In particular,
e−N has invertible action on (226).

Remark 4.1.16. The results in this section can be generalized to certain U(t)-modules M
which are not necessarily semi-simple as follows. In the first part of Definition 4.1.1, we
can replace “where Mµ is the eigenspace attached to the weight µ” by “where Mµ is the
generalized eigenspace attached to the weight µ such that there is a fixed N ∈ Z≥1 satisfying
(t − µ(t))N = 0 on Mµ for all µ and all t ∈ t” (the second part of Definition 4.1.1 being
unchanged). Then such an M contains a sequence of U(t)-submodules M = MN ⊇MN−1 ⊇
· · · ⊇ M1 ⊇ M0 = 0 such that Mk/Mk−1 is the maximal semi-simple U(t)-submodule of
M/Mk−1 for 1 ≤ k ≤ N . We can also fix a collection of norms L = {| · |µ}µ on each Mµ and
take the completion V def= M̂L for the same semi-norms (217). For 0 ≤ k ≤ N we define Vk as
the closure of Mk in V , and we easily check that Vk/Vk−1 for 1 ≤ k ≤ N is the completion
of Mk/Mk−1 for the quotient topology (which is given by (217) for the quotient norms of the
norms | · |µ).

Let V ′ ⊆ V be a closed Fréchet U(t)-submodule. For 0 ≤ k ≤ N we have a closed Fréchet
U(t)-submodule V ′

k
def= V ′ ∩ Vk ⊆ Vk . As Mk/Mk−1 is small (semi-simple) with completion

Vk/Vk−1, by Lemma 4.1.10 the closed Fréchet U(t)-submodule V ′
k/V

′
k−1 ⊆ Vk/Vk−1 is also

small with ⊕
µ∈Λ

(V ′
k/V

′
k−1)µ = (V ′

k/V
′
k−1) ∩ (Mk/Mk−1) ⊆Mk/Mk−1.
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By an increasing induction on k ∈ {1, . . . , N} one easily checks that V ′ ∩Mk is dense in V ′
k

with V ′ ∩Mk = ⊕
µ∈Λ(V ′

k)µ, and hence satisfies the generalized Definition 4.1.1 (as defined
above).

For such non-semi-simple M as above, Lemma 4.1.13 clearly fails in general, and likewise
a strict exact sequence as in (223) does not split in general. However, one can prove (using
the above filtration V = VN ⊇ · · · ⊇ V0) that (224) still holds. Lemma 4.1.15 also admits a
straightforward generalization to such non-semi-simple M .

4.2 Preliminaries on locally analytic distributions
We prove several important (technical) results on locally analytic and locally constant dis-
tribution algebras with prescribed support. All these results are used in the next sections.

For a paracompact locally K-analytic manifold M of finite dimension ([Sch2, §8]), we
write Can(M) for the space of E-valued locally K-analytic functions on M equipped with its
usual locally convex topology ([Sch2, §12]). We write D(M) def= Can(M)∨

b for its continuous
E-dual equipped with the strong topology ([S02, §9], [ST102, §2]). For a closed subset
C ⊆ M , we let D(M)C ⊆ D(M) be the closed subspace of distributions supported on C,
which is the strong dual of the quotient Can(M)/Can(M)M\C where Can(M)M\C is the closed
subspace of Can(M) of functions with support contained in the open M \C ([Koh07, §1.2]).

Similarly, we write C∞(M) for the space of E-valued locally constant functions on M

equipped with its usual locally convex topology and D∞(M) def= C∞(M)∨
b for its strong

continuous E-dual. We have a closed embedding C∞(M) ↪→ Can(M) (use that C∞(M) is
the kernel of the continuous map Can(M) → Can(TM) where TM is the tangent bundle,
see [Sch2, §9], [Sch2, Def. 12.4.i] and [Sch2, Rem. 6.2]) which induces a strict continuous
surjection D(M) ↠ D∞(M) ([ST01, §2]). We write D∞(M)C for the image of D(M)C
under D(M) ↠ D∞(M).
Lemma 4.2.1. The subspace D∞(M)C is closed in D∞(M).
Proof. Define D̃∞(M)C as the closed subspace of D∞(M) which is the strong dual of
C∞(M)/C∞(M)M\C where C∞(M)M\C is the closed subspace of C∞(M) of functions with
support contained in M \C. The composition D(M)C ↪→ D(M) ↠ D∞(M) factors through
a continuous map D(M)C → D̃∞(M)C , and it is enough to prove that this map is surjective.
Arguing exactly as in the first part of the proof of [BD19, Lemme 3.2.12] for both C∞(M)
and Can(M), we can assume that the closed subset C is compact. Then using [BD19, (42)]
for both D̃∞(M)C and D(M)C , it is enough to prove that the natural injection of locally
convex spaces of compact type lim−→U

C∞(U) ↪→ lim−→U
Can(U) is a closed embedding, where U

runs among the compact open subsets of M containing C and the transition maps are the
restrictions. But this easily follows from the short exact sequence

0 −→ lim−→
U

C∞(U) −→ lim−→
U

Can(U) −→ lim−→
U

Can(TU)

where TU is the tangent bundle of U (see [Sch2, §9]).
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If M ∼= M1 ×M2 and the closed subset C ⊆ M has the form C1 × C2 with Ci ⊆ Mi for
i = 1, 2, then we have a canonical topological isomorphism ([BD19, Lemme 3.2.12])

D(M)C ∼= D(M1)C1⊗̂E,ιD(M2)C2 (227)

and by the same proof as for loc. cit.

D∞(M)C ∼= D∞(M1)C1⊗̂E,ιD∞(M2)C2 . (228)

Lemma 4.2.2. Let M be a paracompact locally K-analytic manifold and C ⊆ M a closed
paracompact locally K-analytic submanifold. The embedding C ↪→M induces a closed topo-
logical embedding D∞(C) ↪→ D∞(M), which induces a topological isomorphism

D∞(C) ∼−→ D∞(M)C . (229)

Proof. The first statement follows from [Koh07, Prop. 1.1.2] (and its proof). It suffices to
show that (229) is surjective. If (Mi)i∈I is a covering of M by compact open disjoint subsets,
then (Ci)i∈I def= (Mi ∩ C)i∈I is a covering of C by compact open disjoint subsets, and using
D∞(C) ∼=

⊕
iD

∞(Ci), D(M)C ∼=
⊕

iD(Mi)Ci
(see e.g. the proof of [BD19, Lemme 3.2.12]),

we have D∞(M)C ∼=
⊕

iD
∞(Mi)Ci

which shows that we can assume M and C compact.
Let δ ∈ D∞(M)C , we define below an element δ ∈ D∞(C) which maps to δ. For each
f ∈ C∞(C), there exists a finite partition P of C into compact open subsets U such that f |U
is a constant for each U ∈ P . We can moreover choose an arbitrary partition P̃ of M into
compact open subsets Ũ such that we have either Ũ ∩C ∈ P or Ũ ∩C = ∅ for Ũ ∈ P̃ . Then
we define f̃ ∈ C∞(M) by requiring that f̃ is a constant on each Ũ ∈ P̃ and that f̃ |C = f .
Now we define δ(f) def= δ(f̃) ∈ E and observe that δ(f̃) is independent of the choice of f̃ (and
the partitions P , P̃) as above. Indeed, if f̃ ′ is another choice, then by construction f̃ − f̃ ′

is zero in an open neighborhood of C and thus δ(f̃ − f̃ ′) = 0 since δ ∈ D∞(M)C . It is then
clear that δ ∈ HomE(C∞(M), E) ∼= D∞(C) has image δ under D∞(C) ↪→ D∞(M).

If M = G is a locally K-analytic group (automatically paracompact by [Sch2, Cor. 18.8]),
then D(G) is a unital associative algebra (with multiplication being the convolution, see
[ST102, Prop. 2.3]). For a locally K-analytic closed subgroup H ⊆ G, the closed subspace
D(G)H is closed under convolution ([Koh07, Cor. 1.2.6]), making D(G)H a unital associative
subalgebra of D(G). Similarly, D∞(G) is also a unital associative algebra isomorphic to the
quotient D(G) ⊗U(g) E of D(G) by the closed two-sided ideal generated by the Lie algebra
g of G (cf. [Sch2, §13] and [ST05, Rem. 1.1(iii)]). The surjective algebra homomorphism
D(G) ↠ D∞(G) induces a surjective homomorphism D(G)H ↠ D∞(G)H showing that
D∞(G)H is a closed unital associative subalgebra of D∞(G) isomorphic to D∞(H) (using
Lemma 4.2.1 and Lemma 4.2.2). When H is the trivial group, we write D(G)1 and D∞(G)1
instead of D(G){1}, D∞(G){1}.

For A a Fréchet-Stein algebra we let CA be the abelian category of coadmissible left A-
modules (see [ST03, §3]), which is a full subcategory of ModA ([ST03, Cor. 3.5]). By the
discussion before and after [ST03, Lemma 3.6], each M ∈ CA carries a canonical topology as
a E-Fréchet space and any A-linear map in CA is continuous and strict.
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If G is a compact locally K-analytic group, by [ST03, Thm. 5.1] the algebra D(G) is
Fréchet-Stein, and so is its quotient D∞(G) by [ST03, Prop. 3.7]. Moreover the continuous
surjection D(G) ↠ D∞(G) induces a fully faithful embedding CD∞(G) ↪→ CD(G). When G is
not necessarily compact, one defines the category CD(G) of coadmissible D(G)-modules over
E as the full subcategory of ModD(G) of D(G)-modules which are coadmissible as D(H)-
module for any - equivalently one - compact open subgroup H of G (see [ST03, §6] and the
references there). Replacing ModD(G) by ModD∞(G), one defines in a similar way the full
subcategory CD∞(G) of CD(G).

Let G be an arbitrary locally K-analytic group, then an admissible locally K-analytic -
or just locally analytic - representation of G over E is a locally K-analytic G-representation
on a E-vector space of compact type V such that the strong dual V ∨

b is in CD(G). Here the
left D(G)-action on V ∨ is given by (δg · δ)(x) def= δ(g−1 · x) for g ∈ G, x ∈ V and δ ∈ V ∨. We
write Repan

adm(G) for the abelian category of admissible locally analytic representations of G
over E. The strong dual gives an anti-equivalence Repan

adm(G) ∼−→ CD(G) ([ST03, Thm. 6.3]).
Via this equivalence, the “inverse image” of the full subcategory CD∞(G) recovers the abelian
category Rep∞

adm(G) (see §2.1) of admissible smooth representations of G over E ([ST03,
Thm. 6.6]).

Given a locally K-analytic group G, we write Ext•
D(G)(−,−) for the extension groups

computed in the category ModD(G). For V0, V1 in Repan
adm(G), we use the notation

Ext•
G(V0, V1) def= Ext•

D(G)(V ∨
1 , V

∨
0 ). (230)

We will need the following lemmas.

Lemma 4.2.3. Let G be a locally K-analytic group and V0, V1 in Rep∞(G). Assume either
that both V0, V1 are admissible, or that the map V1 → (V ∨

1 )∨ is an isomorphism (i.e. V1 is
finite dimensional). Then we have isomorphisms Ext•

D∞(G)(V ∨
1 , V

∨
0 ) ∼= Ext•

G(V0, V1)∞.

Proof. The first case is proven in Corollary 0.2 of the erratum to [Schr11] (http://math.univ-
lyon1.fr/homes-www/schraen/Erratum GL3.pdf), we prove the second. First recall that for
any M0,M1 in ModD∞(G) one has a functorial isomorphism

HomD∞(G)(M1,M
∨
0 ) ∼= HomD∞(G)(M0,M

∨
1 ) (231)

where M∨ = HomE(M,E) is the algebraic dual of M with δ ∈ D∞(G) acting on f ∈M∨ by
(δ · f)(m) def= f(δ̃ ·m) where m ∈M and˜is the unique anti-involution on D∞(G) extending
g 7→ g−1 on G. In particular for V0, V1 in Rep∞(G) we have a functorial isomorphism
HomD∞(G)(V ∨

1 , V
∨

0 ) ∼= HomD∞(G)(V0, (V ∨
1 )∨) (recall that any smooth representation of G

over E is also a module over D∞(G), see [ST05, p. 300]). Under the assumption on V1, we
thus have a functorial isomorphism in V0:

HomD∞(G)(V ∨
1 , V

∨
0 ) ∼= HomD∞(G)(V0, V1) = HomG(V0, V1). (232)
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Take any projective resolution P · of V0 in Rep∞(G) (which exists by [Be93, §2]). Using
(231) together with the fact that the functor from ModD∞(G) to Rep∞(G) sending a module
M to the subspace of its smooth vectors (under the action of G) is exact (as follows from
[ST05, Lemma 1.3]), one easily deduces that the algebraic dual P ·∨ is an injective resolution
of V ∨

0 in ModD∞(G). It then follows from (232) that ExtiD∞(G)(V ∨
1 , V

∨
0 ) ∼= ExtiG(V0, V1)∞ for

i ≥ 0.

Lemma 4.2.4. Let I be a countable directed index set and (0 → Ai → Bi → Ci → 0)i∈I
a inverse system of strict exact sequences of Banach E-spaces with continuous transition
maps. Assume that the image of Ai′ is dense in Ai for each pair of indices i ≤ i′. Then the
inverse limit

0→ lim←−
i∈I

Ai → lim←−
i∈I

Bi → lim←−
i∈I

Ci → 0

is a strict exact sequence of Fréchet E-spaces.

Proof. Continuous maps between E-Banach spaces are uniformly continuous. So this is a
special case of [Bo, Chap. II, § 3.5, Th. 1] (see also [EGAIII, Rem. 13.2.4(i)]).

We now introduce some notation largely following [OS15, §5.5]. Let G0 be a split reduc-
tive algebraic group scheme over OK and T0 ⊆ G0 a maximal split torus. Let P0 ⊆ G0 be a
parabolic subgroup scheme that contains T0, and P−

0 the opposite parabolic with unipotent
radical N−

0 . We write G0
def= G0(OK), G def= G0(K), g0

def= Lie(G0), g def= Lie(G) and use similar
notation for the other subgroup schemes (e.g. P0, P , p0, p, T0, etc.). Note that g0 is an
OK-lattice in the K-vector space g. We fix an integer m0 ≥ 1 if p > 2, m0 ≥ 2 if p = 2, and
set κ def= 1 if p > 2, κ def= 2 if p = 2. By [DDMS99, §9.4], the OK-lattices pm0g0 ⊆ g, pm0p0 ⊆ p
and pm0n−

0 are powerful Zp-Lie algebras, and thus the exponential map expG : g 99K G

converges on these OK-lattices. Hence we may define G1
def= expG(pm0g0), P1

def= expG(pm0p0)
and N−

1
def= expG(pm0n−

0 ) which are uniform pro-p groups by [DDMS99, Thm. 9.10]. Since
the adjoint action of G0 leaves g0 invariant, G1 is normal in G0. Moreover using coordi-
nates “of the second kind” ([Sch2, §34], [DDMS99, Thm. 4.9]) one checks that G1 = N−

1 P1,
G1 ∩ P0 = P1 and G1 ∩ N−

0 = N−
1 . In particular the embedding N−

1 ↪→ G1 gives a (locally
K-analytic) section G1/P1 ∼= N−

1 ↪→ G1 of the natural surjection pr1 : G1 ↠ G1/P1. Using
G0/P0 = ⊔

g∈G0/G1P0 gG1/P1 and choosing a system of representatives of G0/G1P0, we extend
it to a section s : G0/P0 ↪→ G0 of pr0 : G0 ↠ G0/P0. As G0/P0 = G/P (by the Iwasawa
decomposition of Bruhat-Tits, see e.g. [He11, Lemma 3.4]), s determines a section (again
denoted by) s : G/P ↪→ G of the surjection pr : G↠ G/P .

We let I ⊆]0, 1[∩pQ be the subset of r satisfying [OS15, (5.5.3)] and | · |r the norm on
D(G1) associated to r ∈ I and the canonical p-valuation on the uniform pro-p group G1, see
[OS10, §§2.2.3, 2.2.6] (with our G1 and | · |r denoted by H and qr there, see [OS10, §2.2.6
Step 3]). We write D(G1)r for the completion of D(G1) with respect to | · |r. Then D(G1)r
is an E-Banach algebra and D(G1) ∼= lim←−r∈I D(G1)r gives the Fréchet-Stein structure on
D(G1) (the projective limit is for r → 1 in I). As in [OS15, (5.5.4), (5.5.5)], we extend the
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norm | · |r on D(G1) to a maximum norm (still denoted) | · |r on D(G0) ∼=
⊕

g∈G0/G1 δgD(G1).
Then D(G0)r def= D(G0)⊗D(G1)D(G1)r is isomorphic to the completion of D(G0) with respect
to | · |r and D(G0) ∼= lim←−r∈I D(G0)r is a Fréchet-Stein structure on D(G0). Similarly, we
equip D(P1) (resp. D(N−

1 )) with the norm | · |r attached to the canonical p-valuation on P1
(resp. N−

1 ), extend it to a norm |·|r on D(P0) (resp. D(N−
0 )) and write D(P0)r (resp. D(N−

0 )r)
for the corresponding completion. Since the canonical p-valuation of G1 restricts to the one
of P1 and N−

1 , the norm | · |r on G1 restricts to the norm | · |r on P1 and N−
1 , and thus the

norm | · |r on G0 restricts to the norm | · |r on P0 and N−
0 (cf. the discussion before [OS15,

(5.5.8)]). Finally, using D∞(G0) ∼= D(G0) ⊗U(g) E (cf. the discussion below Lemma 4.2.2),
we deduce from [ST03, Prop. 3.7] (and its proof) that D∞(G0) admits the Fréchet-Stein
structure D∞(G0) ∼= lim←−r∈I D

∞(G0)r where D∞(G0)r def= D(G0)r ⊗U(g) E ∼= E ⊗U(g) D(G0)r.

Let (Pm(G1))m≥1 be the lower p-series of G1 (cf. [DDMS99, Def. 1.15]). Following the
notation of [OS15], we write Gm

1
def= Pm+1(G1). By the proof of [DDMS99, Thm. 4.2] we

have that Gm
1 is a uniform pro-p group and using [DDMS99, Thm. 3.6(iii)] we have that

its Zp-Lie algebra is pmLieZp(G1) (in fact Gm
1 ≃ Gpm

1
def= {xpm

, x ∈ G1}). Similarly, we
define Pm

1
def= Pm+1(P1) for m ≥ 0 and as before we have Pm

1 = Gm
1 ∩ P1 = Gm

1 ∩ P0. Let
s = rp

m with s > 1
p

and sκ < p−1/(p−1). Following [Schm08, §6], we write | · |(m)
s for the

norm on D(Gm
1 ) attached to s and the canonical p-valuation on Gm

1 , and D(Gm
1 )s for the

corresponding completion. As before | · |(m)
s restricts to the norm on D(Pm

1 ) defined similarly
using the canonical p-valuation on Pm

1 . We have the following result from [Schm08] (refining
results by [Fro03] and [Koh07]).

Lemma 4.2.5. For r,m, s as above the restriction of the norm | · |r of D(G1) to D(Gm
1 ) is

equivalent to | · |(m)
s , and D(G1)r is a finite free right D(Gm

1 )s-module with a basis given by
any set of coset representatives for G1/G

m
1 .

Proof. This is [Schm08, Prop. 6.2, Cor. 6.4].

For r ∈ I, i = 0, 1 and a closed subset C ⊆ Gi, we write D(Gi)C,r (resp. D∞(Gi)C,r)
for the closure of D(Gi)C in D(Gi)r (resp. of D∞(Gi)C in D∞(Gi)r). As U(g) is dense in
D(G1)1 ([Koh07, Prop. 1.2.8]), in the particular case C = {1} we see that D(G1)1,r is also
the closure of U(g) in D(G1)r.

Lemma 4.2.6. If rκ < p−1/(p−1), then U(g) is dense in D(G1)r. In particular D(G1)1,r =
D(G1)r and D(G1)1,rg = gD(G1)1,r = gD(G1)r = D(G1)rg is the (two-sided) augmentation
ideal of D(G1)r.

Proof. This is [OS15, (5.5.6)], which follows from [Schm08, Prop. 5.6].

The following lemma will be used many times in the sequel.

Lemma 4.2.7. Let r ∈ I and m ≥ 0 such that s = rp
m satisfies s > p−1 and sκ < p−1/(p−1).
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(i) For each closed subset C ⊆ G0, D(G0)C,r (resp. D∞(G0)C,r) is a finite free right
D(G0)1,r-module (resp. a finite dimensional E-vector space) with a basis given by any
set of coset representatives of CGm

1 /G
m
1 .

(ii) Let H0 ⊆ G0 be a closed subgroup, for each closed subset C ⊆ G0 such that CH0 = C in
G0, D(G0)C,r (resp. D∞(G0)C,r) is a finite free right D(G0)H0,r-module (resp. a finite
free right D∞(G0)H0,r-module) with a basis given by any set of coset representatives of
CGm

1 /H0G
m
1 .

Proof. We fix r, m and s = rp
m as in the statement. As sκ < p−1/(p−1), by Lemma 4.2.6

D(Gm
1 )1,s = D(Gm

1 )s. As Gm
1 is compact open in G1, we have D(Gm

1 ) ∼→ D(G1)Gm
1

and
D(Gm

1 )1
∼→ D(G1)1 and likewise with D(G0) instead of D(G1). Together with Lemma 4.2.5

this implies D(G1)Gm
1 ,r

= D(G1)1,r = D(Gm
1 )1,s = D(Gm

1 )s (likewise with D(G0) instead of
D(G1)) and

D(G1)r ∼=
⊕

g∈G1/Gm
1

δgD(G1)Gm
1 ,r
∼=

⊕
g∈G1/Gm

1

D(G1)gGm
1 ,r
,

which together with D(G0)r ∼=
⊕

g∈G0/G1 δgD(G1)r implies

D(G0)r ∼=
⊕

g∈G0/Gm
1

δgD(G0)Gm
1 ,r
∼=

⊕
g∈G0/Gm

1

D(G0)gGm
1 ,r
. (233)

By Lemma 4.2.6 (and the above discussion) D(Gm
1 )1,sg = D(Gm

1 )sg = D(G0)Gm
1 ,r

g is the
augmentation ideal of D(Gm

1 )1,s = D(Gm
1 )s = D(G0)Gm

1 ,r
, which together with the first

equality in (233) implies

D∞(G0)r = D(G0)r/D(G0)rg ∼= E[G0/G
m
1 ]. (234)

Now we fix a closed subset C ⊆ G0 and note that D(G0) ∼=
⊕

g∈G0/Gm
1
δgD(Gm

1 ) ∼=⊕
g∈G0/Gm

1
D(G0)gGm

1
implies D(G0)C ∼=

⊕
g∈G0/Gm

1
D(G0)C∩gGm

1
(see e.g. the proof of [Koh07,

Lemma 1.2.5]) which in turn implies

D(G0)C,r =
⊕

g∈G0/Gm
1

D(G0)C∩gGm
1 ,r
. (235)

Step 1: We prove D(G0)C∩gGm
1 ,r

=D(G0)gGm
1 ,r

if g∈CGm
1 and D(G0)C∩gGm

1 ,r
= 0 other-

wise.
Note that g ∈ CGm

1 if and only if C ∩ gGm
1 ̸= ∅. If C ∩ gGm

1 = ∅, we obviously have
D(G0)C∩gGm

1 ,r
= 0. If C ∩ gGm

1 ̸= ∅, for any h ∈ C ∩ gGm
1 we have closed embeddings of

E-Banach spaces
D(G0)gGm

1 ,r
⊇ D(G0)C∩gGm

1 ,r
⊇ D(G0){h},r.

Writing D(G0){h},r = δhD(G0)1,r = δhD(G0)Gm
1 ,r

= D(G0)hGm
1 ,r

= D(G0)gGm
1 ,r

(where
the last equality follows from hGm

1 = gGm
1 ), we deduce D(G0){h},r = D(G0)C∩gGm

1 ,r
=

D(G0)gGm
1 ,r

.
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Step 2: We prove (i) and (ii).
We combine Step 1 with (235) and first deduce

D(G0)C,r =
⊕

g∈CGm
1 /G

m
1

D(G0)C∩gGm
1 ,r

=
⊕

g∈CGm
1 /G

m
1

δgD(G0)Gm
1 ,r

=
⊕

g∈CGm
1 /G

m
1

δgD(G0)1,r (236)

which proves the first statement in (i). Define D̃∞(G0)C,r def= D(G0)C,r ⊗U(g) E (noting that
D(G0)C,r is a right D(G0)1,r-module) and note that D∞(G0)C,r is the closure of the image
of D̃∞(G0)C,r in D∞(G0)r. Applying (−)⊗U(g) E to (236), we deduce

D̃∞(G0)C,r = E[CGm
1 /G

m
1 ],

which together with (234) shows that D̃∞(G0)C,r is already closed in D∞(G0)r. This implies
D̃∞(G0)C,r ∼→ D∞(G0)C,r and also gives the second statement of (i). Note that Gm

1 is normal
in G0 and thus Gm

1 H0 = H0G
m
1 is a compact open subgroup of G0. If furthermore CH0 = C,

then we may rewrite (236) as

D(G0)C,r =
⊕

g∈CGm
1 /G

m
1

δgD(G0)Gm
1 ,r

=
⊕

g∈CGm
1 /H0Gm

1 ,h∈H0Gm
1 /G

m
1

δgδhD(G0)Gm
1 ,r

=
⊕

g∈CGm
1 /H0Gm

1

δgD(G0)H0Gm
1 ,r

=
⊕

g∈CGm
1 /H0Gm

1

δgD(G0)H0,r

where the third equality follows from (236) applied with C = H0G
m
1 and the last equal-

ity follows from (i) applied with C = H0 and C = H0G
m
1 (noting that H0G

m
1 /G

m
1 =

(H0G
m
1 )Gm

1 /G
m
1 ). Applying (−) ⊗U(g) E and using D̃∞(G0)C,r ∼→ D∞(G0)C,r (for both C

and H0, see Step 1) we deduce

D∞(G0)C,r =
⊕

g∈CGm
1 /H0Gm

1

δgD
∞(G0)H0,r

which finishes the proof of (ii).

The following result is well-known, we provide a proof for lack of a precise reference.

Lemma 4.2.8. Let H0 ⊆ G0 be a closed subgroup. The closed subalgebra D(G0)H0 of D(G0)
is Fréchet-Stein via D(G0)H0

∼= lim←−r∈I D(G0)H0,r.

Proof. We consider r, r′ ∈ I with r ≤ r′. We note that the image of D(G0)H0,r′ is dense in
D(G0)H0,r (both contain as a dense subspace the image of D(G0)H0). It suffices to check that
D(G0)H0,r is flat over D(G0)H0,r′ . By (ii) of Lemma 4.2.7 (applied with C = G0), we know
that D(G0)r (resp. D(G0)r′) is finite free as a D(G0)H0,r-module (resp. D(G0)H0,r′-module)
with D(G0)H0,r being a direct summand. Since D(G0)r is flat over D(G0)r′ (cf. [ST03,
Thm. 5.1] which uses [ST03, Thm. 4.10, Prop. 3.7]) and D(G0)r′ is free as a D(G0)H0,r′-
module, we see that D(G0)r is flat over D(G0)H0,r′ . Since D(G0)H0,r is a direct summand of
D(G0)r as D(G0)H0,r′-modules, this implies that D(G0)H0,r is also flat over D(G0)H0,r′ .
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Let H ⊆ G be a closed subgroup, we say that a left D(G)H-module is coadmissible if it
is coadmissible as a D(G0)H∩G0-module with the Fréchet-Stein structure given by Lemma
4.2.8. If G′

0 ⊆ G0 is another compact open subgroup, then D(G0)H∩G0 is free of finite rank
over D(G′

0)H∩G′
0

(see the argument for [Koh07, (1.7)]) and arguing as in [ST05, §6] we see
that being a coadmissible D(G)H-module doesn’t depend on the compact open subgroup
G0. We let CD(G)H

be the abelian category of coadmissible (left) D(G)H-modules. Recall
that each coadmissible D(G)H-module carries a canonical Fréchet topology, and any D(G)H-
linear map between coadmissible D(G)H-modules is continuous and strict. See [AS22, §7.7]
for a similar discussion (also) based on [Koh07, Corollary 1.4.3].

Let H0 ⊆ G0 be a closed subgroup, as D(G0)H0 is a Fréchet-Stein U(g)-module, it
follows from [ST03, Prop. 3.7] and its proof that D(G0)H0 ⊗U(g) E is also Fréchet-Stein with
D(G0)H0 ⊗U(g) E

∼→ lim←−r∈I(D(G0)H0,r ⊗U(g) E). Since D(G0)H0,r ⊗U(g) E
∼→ D∞(G0)H0,r ⊆

D∞(G0)r (see Step 2 in the proof of Lemma 4.2.7), we have D(G0)H0⊗U(g)E
∼→ D∞(G0)H0 ⊆

D∞(G0) (recall D∞(G0)H0 is by definition the image of D(G0)H0 in D∞(G0)). This statement
can in fact be generalized to any closed subset C in G0.
Lemma 4.2.9. For any closed subset C ⊆ G0 we have a topological isomorphism

D(G0)C ⊗U(g) E
∼−→ D(G0)C ⊗D(G0)1 E

∼−→ D∞(G0)C . (237)

Proof. From the definitions each map is surjective and continuous, hence it is enough to prove
injectivity of the composition. Since D∞(G0)C is closed in D∞(G0) (Lemma 4.2.1), we have
D∞(G0)C ∼= lim←−r∈I D

∞(G0)C,r ⊆ lim←−r∈I D
∞(G0)r ∼= D∞(G0). Since D(G0)C,r ⊗U(g) E

∼→
D∞(G0)C,r (Step 2 in the proof of Lemma 4.2.7) we have exact sequences 0→ D(G0)C,rg→
D(G0)C,r → D∞(G0)C,r → 0 and since the maps D(G0)C,r′g → D(G0)C,rg for r ≤ r′ have
dense image (as the image of D(G0)Cg is dense everywhere by construction), Lemma 4.2.4
gives a short exact sequence of Fréchet E-spaces

0 −→ lim←−
r∈I

(D(G0)C,rg) −→ D(G0)C −→ D∞(G0)C −→ 0. (238)

Since D(G0)1
∼→ lim←−r∈I D(G0)1,r is a Fréchet-Stein algebra (e.g. by Lemma 4.2.8), both

D(G0)1 ⊗E g and D(G0)1g are coadmissible D(G0)1-modules (by [ST03, Cor. 3.4.iv] for the
latter). By [ST03, Cor. 3.4.ii] we have in particular short exact sequences of finitely generated
D(G0)1,r-modules 0 → Mr → D(G0)1,r ⊗E g → D(G0)1,rg → 0 where the maps Mr′ → Mr

have dense image. By (i) of Lemma 4.2.7 D(G0)C,r is a free D(G0)1,r-module of finite rank
(this rank growing when r tends to 1), hence tensoring by D(G0)C,r over D(G0)1,r again
gives short exact sequences of Banach spaces

0 −→ D(G0)C,r ⊗D(G0)1,r Mr −→ D(G0)C,r ⊗E g −→ D(G0)C,rg −→ 0

where the maps D(G0)C,r′ ⊗D(G0)1,r′ Mr′ → D(G0)C,r ⊗D(G0)1,r Mr have dense image. By
Lemma 4.2.4 (and since g is finite dimensional over E) we deduce in particular a sur-
jection D(G0)C ⊗E g ↠ lim←−r∈I(D(G0)C,rg). By (238) this implies D(G0)C ⊗U(g) E ∼=
D(G0)C/D(G0)Cg ∼→ D∞(G0)C .
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Recall the surjections pr0 : G0 ↠ G0/P0 and pr : G ↠ G/P . For each subset C ⊆ G0
(resp. C ⊆ G), we have CP0 = pr−1

0 (pr0(C)) (resp. CP = pr−1(pr(C))). As the inclusion
G0 ⊆ G induces an isomorphism G0/P0

∼→ G/P , we have C ∩ G0 = pr−1
0 pr(C) for each

subset C ⊆ G such that CP = C. The fixed section s : G0/P0 ↪→ G0 of pr0 induces an
isomorphism G0/P0×P0

∼−→ G0 and thus an isomorphism C0/P0×P0
∼−→ C0 for each closed

subset C0 ⊆ G0 such that C0P0 = C0. We deduce a topological isomorphism for such closed
subsets (by applying (227) with M1 = G0/P0, C1 = C0/P0 and M2 = C2 = P0)

D(G0/P0)C0/P0⊗̂ED(P0) ∼= D(G0)C0 . (239)

Similarly, using (228) s also induces a topological isomorphism

D∞(G0/P0)C0/P0⊗̂ED∞(P0) ∼= D∞(G0)C0 . (240)

We now fix a locally closed subset X ⊆ G (i.e. X is the intersection of a closed subset and
an open subset of G, equivalently X is open in its closure X ⊆ G) such that XP = X and
we set X0

def= X ∩G0 and Y def= X. Note that X0 is also open in its closure Y0
def= X0 ∼= Y ∩G0

and that X0 = X0P0. A compact open subset of X0 is the same thing as a compact open
subset of Y0 which is contained in X0, in particular it is a compact subset of G0 of the
form Y0 ∩ U0 where U0 is a compact open subset of G0 (of which there are only countably
many). For each compact open subset C0 of X0, recall that D(G0)C0 is a Fréchet space
equipped with a separately continuous right action of D(G0)P0 . If C0 ⊆ C ′

0 are two compact
open subsets of X0, one can easily find compact open subsets U0 ⊆ U ′

0 of G0 such that
C0 = X0 ∩ U0 = Y0 ∩ U0 and C ′

0 = X0 ∩ U ′
0 = Y0 ∩ U ′

0, in particular C0 = C ′
0 ∩ U0,

D(G0)C0 = D(U0)C0 and D(G0)C′
0

= D(U ′
0)C′

0
. Writing U0 = U0 ⨿ U ′

0\U0 and noting that
U ′

0\U0 is also a compact open subset of G0, we have D(U ′
0)C′

0
∼= D(U0)C0⊕D(U ′

0\U0)C′
0∩U ′

0\U0 ,
and hence deduce a canonical projection of Fréchet spaces D(G0)C′

0
↠ D(G0)C0 . We then

consider the projective limit
D̂(G0)X0

def= lim←−
C0

D(G0)C0 (241)

over the compact open subsets C0 of X0 such that C0P0 = C0 with transition maps given by
the above projections for C0 ⊆ C ′

0. This is still a Fréchet space equipped with a separately
continuous right D(G0)P0-action and we have

D̂(G0)X0
∼= lim←−

C0

(
D(G0/P0)C0/P0⊗̂ED(P0)

) ∼= (
lim←−
C0

D(G0/P0)C0/P0

)
⊗̂ED(P0) (242)

where the first isomorphism comes from (239) and the second from [Em12, Prop. 1.1.29].
We also deduce a right D(G)P -action on

D̂(G)X def= D̂(G0)X0 ⊗D(G0)P0
D(G)P ∼= D̂(G0)X0 ⊗D(P0) D(P )

∼= (lim←−
C0

D(G0/P0)C0/P0)⊗̂E,ιD(P ) (243)
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where the first isomorphism follows from D(G)P ∼= D(G0)P0 ⊗D(P0) D(P ) (see the argument
for [Koh07, (1.7)]) and the second from (242) and the same argument as at the end of the
proof of [ST05, Prop. A.3]. Similarly, we consider the right D∞(G0)P0

∼= D∞(P0)-module
(see Lemma 4.2.2 for the latter isomorphism)

D̂∞(G0)X0
def= lim←−

C0

D∞(G0)C0
∼= (lim←−

C0

D∞(G0/P0)C0/P0)⊗̂ED∞(P0)

where we have used (240) for the last isomorphism, and the right D∞(G)P ∼= D∞(P )-module

D̂∞(G)X def= D̂∞(G0)X0 ⊗D∞(P0) D
∞(P ) ∼= (lim←−

C0

D∞(G0/P0)C0/P0)⊗̂E,ιD∞(P ) (244)

(note that D∞(P ) ∼= D∞(P0)⊗D(P0) D(P )).

Lemma 4.2.10. For any compact open subset C0 of X0 such that C0 = C0P0 we have
topological isomorphisms

D̂(G0)X0 ⊗U(g) E
∼−→ D̂(G0)X0 ⊗D(G0)1 E

∼−→ D̂∞(G0)X0 (245)
D̂(G)X ⊗U(g) E

∼−→ D̂(G)X ⊗D(G)1 E
∼−→ D̂∞(G)X . (246)

Proof. The proof of (245) is analogous to the proof of Lemma 4.2.9 using twice Lemma 4.2.4
(first with lim←−r for a given C0 as in the proof of loc. cit., then with lim←−C0

) and noting that
all transition maps always have dense image. Writing D(P ) = ⊕

h∈P0\P D(P0)δh, we have
and by (243) and (244)

D̂(G)X ∼=
⊕

h∈P0\P
D̂(G0)X0δh

∼= D̂(G0)X0 ⊗D(P0) D(P )

D̂∞(G)X ∼=
⊕

h∈P0\P
D̂∞(G0)X0δh

∼= D̂∞(G0)X0 ⊗D(P0) D(P )
(247)

from which we easily deduce (246) using (245).

As the morphisms in (237) are right D(G0)P0-equivariant, so are the morphisms in (245),
and thus the morphisms (246) are also right D(G)P -equivariant by definition. Note that the
topological isomorphisms G0/P0 × P0

∼→ G0, G/P × P → G, G0/P0
∼→ G/P (given by the

section s and the Iwasawa decomposition) induce topological isomorphismsX0/P0×P0
∼→ X0,

X/P × P → X, X0/P0
∼→ X/P . If X is moreover such that QX = X for some locally

K-analytic closed subgroup Q ⊆ G, we then have a natural separately continuous left D(Q)-
action on lim←−C D(G/P )C and lim←−C D

∞(G/P )C , where C runs among the compact open
subsets of X/P = X0/P0 and the transition maps are defined as previously, which is uniquely
determined by (h ∈ Q, (δC)C ∈ lim←−D(G/P )C or lim←−D

∞(G/P )C):

δh · (δC)C = (δh · δC)hC .

Via the last isomorphism in (243) (resp. (244)), we deduce a separately continuous left D(Q)-
action on D̂(G)X (resp. D̂∞(G)X), which makes (245) and (246) left D(Q)-equivariant.
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Lemma 4.2.11. Let X ⊆ G be a locally closed subset such that XP = X. We have canonical
right topological D(G)P -equivariant isomorphisms

D(G)X/D(G)X\X
∼−→ D̂(G)X (248)

D∞(G)X/D∞(G)X\X
∼−→ D̂∞(G)X . (249)

If moreover QX = X for some locally K-analytic subgroup Q ⊆ G, then (248) and (249)
are D(Q)-equivariant for the natural left D(Q)-action on both sides.

Proof. We only give the proofs for (248), leaving the case of (249) to the reader (arguing as
in the proof of (246) above). As before we note Y = X, X0 = X ∩ G0, Y0 = Y ∩ G0, and
we also define Z def= X \ X and Z0

def= Z ∩ G0. Hence Z0 ⊆ Y0 are closed subspaces of the
compact group G0 with X0 = Y0 \Z0 and we have Y P = Y , ZP = Z, Y0P0 = Y0, Z0P0 = Z0.
Each compact open subset C0 ⊆ X0 is compact open in Y0, and writing Y0 = C0⨿ Y0\C0 we
have as in (241) a surjection of Fréchet spaces D(G0)Y0 ↠ D(G0)C0 with kernel D(G0)Y0\C0

containing D(G0)Z0 as closed subspace. Taking the projective limit over those C0 such that
C0P0 = C0 we deduce a canonical morphism of Fréchet spaces

D(G0)Y0/D(G0)Z0 −→ lim←−
C0

D(G0)C0 = D̂(G0)X0 . (250)

Step 1: We prove that (250) is a topological isomorphism.
By (ii) of Lemma 4.2.7, D(G0)Z0,r, D(G0)Y0,r and D(G0)Y0,r/D(G0)Z0,r are finite free right
D(G0)P0,r-modules with a basis given by {δg} with g running through coset representatives
of Z0G

m
1 /P0G

m
1 , Y0G

m
1 /P0G

m
1 and (Y0G

m
1 \Z0G

m
1 )/P0G

m
1 respectively (using the notation of

loc. cit.). Since (Y0G
m
1 \Z0G

m
1 )/P0G

m
1 = (Y0\(Z0G

m
1 ))Gm

1 /P0G
m
1 (recall Gm

1 P0 = P0G
m
1 ) it

follows from loc. cit. again that we have short exact sequence of E-Banach spaces (which
are finite free right D(G0)P0,r-modules)

0→ D(G0)Z0,r → D(G0)Y0,r → D(G0)Y0\(Z0Gm
1 ),r → 0. (251)

Applying Lemma 4.2.4, we obtain a short exact sequence of E-Fréchet spaces

0→ D(G0)Z0 → D(G0)Y0 → lim←−
r∈I

D(G0)Y0\(Z0Gm
1 ),r → 0. (252)

As Z0 is compact, the (Gm
1 )m form a system of neighborhood of 1 in G0 when r → 1 in I

and as Gm
1 P0 = P0G

m
1 , it is easy to check that (Y0 \ (Z0G

m
1 ))m is cofinal among compact

open subsets of X0 = Y0\Z0 stable under right multiplication by P0, and thus

lim←−
r

D(G0)Y0\(Z0Gm
1 ),r ∼= lim←−

C0

lim←−
r

D(G0)C0,r
∼= lim←−

C0

D(G0)C0
∼= D̂(G0)X0 . (253)

Step 2: We prove that (250) induces a topological isomorphism (248) which is D(G)P -
equivariant.
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Writing D(P ) = ⊕
h∈P0\P D(P0)δh, we have by the argument at the end of the proof of

[Koh07, Lemma 1.2.5] for S ∈ {Z, Y }

D(G)S ∼=
⊕

h∈P0\P
D(G0)S0δh

∼= D(G0)S0 ⊗D(P0) D(P ). (254)

Together with the first line in (247), it follows that (250) induces a topological isomorphism
(248). As the projection D(G0)Y0 ↠ D(G0)C0 is right D(G0)P0-equivariant for each compact
open C0 ⊆ X0 such that C0P0 = C0, we deduce that (250) is right D(G0)P0-equivariant, and
therefore (248) is right D(G)P ∼= D(G0)P0 ⊗D(P0) D(P )-equivariant.

Step 3: If furthermore QX = X, we prove that (248) is left D(Q)-equivariant.
As X is left Q-stable, Y and Z are also left Q-stable, so we have natural left D(Q)-action
on D(G)Y and D(G)Z . Let C0 ⊆ X0 be a compact open subset such that C0P0 = C0, the
above short exact sequence 0 → D(G0)Y0\C0 → D(G0)Y0 → D(G0)C0 → 0 induces a short
exact sequence

0 −→ D(G0)Y0\C0 ⊗D(P0) D(P ) −→ D(G)Y ∼= D(G0)Y0 ⊗D(P0) D(P )
−→ D(G0)C0 ⊗D(P0) D(P ) ∼= D(G)C0P −→ 0 (255)

where the kernel contains the closed subspace D(G)Z ∼= D(G0)Z0⊗D(P0)D(P ) of D(G)Y and
where the last isomorphism follows again from the proof of [Koh07, Lemma 1.2.5]. We thus
have a continuous morphism D(G)Y /D(G)Z → D(G)C0P . Using Z0 = ⋂

C0 Y0\C0, and hence
D(G0)Z0 = ∩C0D(G0)Y0\C0

∼= lim←−C0
D(G0)Y0\C0 , we deduce from (255) an embedding

D(G)Y /D(G)Z ↪→ lim←−
C0

D(G)C0P . (256)

Note that D(G)C0P does not have a left action of D(Q). However, for each δ ∈ D(Q) and
δC0P ∈ D(G)C0P , Supp(δδ′) ⊆ QC0P ⊆ X is compact ([Koh07, Rem. 1.2.3]), so there always
exists a compact open subset C ′

0 ⊆ X0 such that C ′
0P0 = C ′

0 and Supp(δδ′) ⊆ C ′
0P (use

X/P ∼= X0/P0). Using this, we can equip lim←−C0
D(G)C0P with a natural left D(Q)-action so

that (256) is D(Q)-equivariant. From the first isomorphism in (243) we have a natural map

D̂(G)X → D(G0)C0 ⊗D(P0) D(P ) ∼= D(G)C0P

for each compact open C0 ⊆ X0 such that C0P0 = C0, hence a map

D̂(G)X → lim←−
C0

D(G)C0P (257)

which is D(Q)-equivariant by the definition of the D(Q)-actions on both sides. We see that
the D(Q)-equivariant embedding (256) factors as the composition of the isomorphism (248)
with the D(Q)-equivariant map (257). This forces (248) to be also D(Q)-equivariant.
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If A is a locally convex E-vector space endowed with a structure of a separately continuous
algebra and V (resp. W ) is a locally convex E-vector space endowed with a structure of
a separately continuous right (resp. left) A-module, we define V ⊗̂AW as the quotient of
V ⊗̂E,ιW by the closure of the E-vector subspace generated by elements va ⊗ w − v ⊗ aw,
(a, v, w) ∈ A× V ×W with the quotient topology. Let V ⊗AW be the obvious quotient of
V ⊗E,ιW (without completing) endowed with the quotient topology, it is then not difficult
to check using the various universal properties that V ⊗̂AW is also the universal Hausdorff
completion of V ⊗AW ([S02, §7]). The following lemma will be very useful.

Lemma 4.2.12. Let V = lim←−r Vr and W = lim←−rWr be Fréchet spaces written as countable
projective limits of E-Banach spaces Vr, Wr and assume that the transition maps have dense
image. Let A = lim←−r Ar be a Fréchet algebra which is a countable projective limit of noethe-
rian E-Banach algebras Ar with transition maps having dense image. Assume that V and
W admit a separately continuous A-action induced by a separately continuous action of Ar
on Vr and Wr. Assume finally that Vr is a finitely generated Ar-module for each r. Then we
have a canonical isomorphism of Fréchet spaces V ⊗̂AW ∼→ lim←−r(Vr ⊗Ar Wr).

Proof. By [Em12, Prop. 1.1.29] we have an isomorphism V ⊗̂EW
∼→ lim←−r(Vr⊗̂EWr) and by

[Bo, Chap. II, § 3.5, Th. 1] the image of V , W , A in respectively Vr, Wr, Ar has dense image.
Let C ⊆ V ⊗̂EW (resp. Cr ⊆ Vr⊗̂EWr) be the closure of the E-vector subspace generated
by elements va ⊗ w − v ⊗ aw for (v, w) ∈ V ×W and a ∈ A (resp. (v, w) ∈ Vr ×Wr and
a ∈ Ar), then Cr is also the closure of the image of C in Vr⊗̂EWr and hence C ∼→ lim←−r Cr.
Applying Lemma 4.2.4 to the short exact sequences 0 → Cr → Vr⊗̂EWr → Vr⊗̂ArWr → 0
we deduce an isomorphism V ⊗̂AW ∼= lim←−r(Vr⊗̂ArWr). But since Vr is finitely generated over
the noetherian algebra Ar, hence finitely presented, using for instance [ST03, Prop. 2.1.iii]
we see that Vr ⊗Ar Wr is already complete, hence Vr⊗̂AWr

∼= Vr ⊗Ar Wr.

Recall that a locally closed locally K-analytic submanifold of G is a closed locally K-
analytic submanifold of an open subset of G (with its induced structure of locally K-analytic
manifold). We need to slightly generalize the definition of smooth compact induction given
before Lemma 2.1.2. We fix X ⊆ G a locally closed locally K-analytic submanifold of G
such that XP = X. We also fix a representation π∞ of P in Rep∞

adm(P ) and recall that
(π∞)∨ = HomE(π∞, E) is in CD∞(P ). We define (indXP π∞)∞ to be the set of locally constant
functions f : X → π∞ such that

• f(xh) = h−1 · f(x) for x ∈ X and h ∈ P ;

• there exists a compact open subset Cf of X such that f(x) = 0 for x /∈ CfP .

If moreover QX = X for some locally K-analytic closed subgroup Q ⊆ G, then (indXP π∞)∞

is naturally a (left) smooth Q-representation via (h′(f))(x) def= f((h′)−1x) (h′ ∈ Q, x ∈ X,
f ∈ (indXP π∞)∞). As D(G)P ⊗U(g)E ∼= (D(G0)P0⊗D(P0)D(P ))⊗U(g)E ∼= D∞(G0)P0⊗D∞(P0)
D∞(P ) ∼= D∞(P ) (Lemma 4.2.2) we see that (π∞)∨ is in CD(G)P

by [ST03, Prop. 3.7] and
[ST03, Lemma 3.8].
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Lemma 4.2.13. With the above notation (indXP π∞)∞ is a locally convex E-vector space of
compact type and we have a canonical isomorphism of Fréchet E-spaces

D̂(G)X⊗̂D(G)P
(π∞)∨ ∼= D̂∞(G)X⊗̂D∞(G)P

(π∞)∨ ∼=
(
(indXP π∞)∞

)∨
. (258)

If moreover QX = X for some locally K-analytic closed subgroup Q ⊆ G, then the isomor-
phisms in (258) are left D(Q)-equivariant with the D(Q)-actions factoring through D∞(Q).

Proof. It follows from (244) and (246) that

D̂(G)X ⊗D(G)1 E
∼= D̂∞(G)X ∼= (lim←−D

∞(G0)C0)⊗D∞(P0) D
∞(P ) (259)

where C0 runs through the compact open subsets of X0
def= X ∩ G0 such that C0P0 = C0.

As the left D(G)P -action on (π∞)∨ factors through D∞(G)P and as D∞(G)P ∼= D∞(P )
(Lemma 4.2.2), by (259) we have topological isomorphisms

D̂(G)X⊗D(G)P
(π∞)∨ ∼= D̂(G)X⊗D∞(G)P

(π∞)∨ ∼= (lim←−
C0

D∞(G0)C0)⊗D∞(P0)(π∞)∨.

Taking universal Hausdorff completion, we obtain topological isomorphisms

D̂(G)X⊗̂D(G)P
(π∞)∨ ∼= D̂∞(G)X⊗̂D∞(G)P

(π∞)∨ ∼=
(

lim←−
C0

D∞(G0)C0

)
⊗̂D∞(P0)(π∞)∨

which the last space is a Fréchet space since both lim←−C0
D∞(G0)C0 and (π∞)∨ are. We now

prove the last isomorphism in (258). We have topological isomorphisms of Fréchet spaces
(

lim←−
C0

D∞(G0)C0

)
⊗̂D∞(P0)(π∞)∨ ∼=

(
lim←−
C0

(
D∞(G0/P0)C0/P0⊗̂ED∞(P0)

))
⊗̂D∞(P0)(π∞)∨

∼=
((

lim←−
C0

D∞(G0/P0)C0/P0

)
⊗̂ED∞(P0)

)
⊗̂D∞(P0)(π∞)∨ ∼=

(
lim←−
C0

D∞(G0/P0)C0/P0

)
⊗̂E(π∞)∨

∼= lim←−
C0

(
D∞(G0/P0)C0/P0⊗̂E(π∞)∨

) ∼= lim←−
C0

((
D∞(G0/P0)C0/P0⊗̂ED∞(P0)

)
⊗̂D∞(P0)(π∞)∨

)
∼= lim←−

C0

(
D∞(G0)C0⊗̂D∞(P0)(π∞)∨

)
where the first and last isomorphisms follow from (240), the second and fourth from [Em12,
Prop. 1.1.29] (recall there are countably many C0) and the third and fifth from [BD19,
Lemma 3.2.1]. For r ∈ I let (π∞)∨

r
def= D∞(P0)r ⊗D∞(P0) (π∞)∨. By the same proof as for

(i) of Lemma 4.2.7 replacing G0 by P0 and Gm
1 by Pm

1 = Gm
1 ∩ P0 (see the discussion above

Lemma 4.2.5) shows that D∞(P0)C,r is finite dimensional. Applying this with C = P0 and
since (π∞)∨ is in CD(G)P

, it follows that (π∞)∨
r is a finite dimensional E-vector space. Then

by Lemma 4.2.12 we have an isomorphism of Fréchet spaces

D∞(G0)C0⊗̂D∞(P0)(π∞)∨ ∼= lim←−
r

(
D∞(G0)C0,r⊗D∞(P0)r(π∞)∨

r

)
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Putting everything together we obtain an isomorphism of Fréchet spaces

D̂(G)X⊗̂D(G)P
(π∞)∨ ∼= lim←−

C0,

lim←−
r

(D∞(G0)C0,r⊗D∞(P0)r(π∞)∨
r ). (260)

Given r ∈ I let m ≥ 0, s = rp
m as in Lemma 4.2.7, and define π∞

r
def= (π∞)Pm

1 which is
a finite dimensional representation of the finite group P0/P

m
1 . As {Pm

1 }r∈I is a system of
open neighborhoods of 1 inside P0, we have π∞ = lim−→r∈I π

∞
r . Recall from (i) of Lemma 4.2.7

(with G0 there replaced with P0) that

D∞(P0)r ∼= E[P0/P
m
1 ] ∼= E ⊗D∞(Pm

1 ) D
∞(P0), (261)

which implies

(π∞)∨
r = D∞(P0)r ⊗D∞(P0) (π∞)∨ ∼= E ⊗D∞(Pm

1 ) (π∞)∨ ∼= (π∞
r )∨. (262)

For any compact open subset C0 ⊆ X0 such that C0P0 = C0, by (ii) of Lemma 4.2.7 we have
D∞(G0)C0,r

∼= E[C0G
m
1 /G

m
1 ], which together with (262) and (261) implies

D∞(G0)C0,r ⊗D∞(P0)r (π∞)∨
r
∼= E[C0G

m
1 /G

m
1 ]⊗E[P0/Pm

1 ] (π∞
r )∨ ∼=

(
indC0Gm

1 /G
m
1

P0/Pm
1

π∞
r

)∨
(263)

where indC0Gm
1 /G

m
1

P0/Pm
1

π∞
r is the set of functions ϕ : C0G

m
1 /G

m
1 → π∞

r satisfying ϕ(xh) = h−1 ·ϕ(x)
for x ∈ C0G

m
1 /G

m
1 and h ∈ P0/P

m
1 . If we lift such ϕ : C0G

m
1 /G

m
1 → π∞

r to a locally constant
function on C0G

m
1 , take its restriction to C0 and then extend it by zero on the open subset

X0 \C0 of X0, we obtain a locally constant function f : X0 → π∞
r ⊆ π∞ which is supported

on the compact open subset C0 of X0, constant on the compact open subsets yGm
1 ∩C0 ⊆ C0

for y ∈ C0 and which satisfies f(yh) = h−1 ·f(y) for y ∈ C0 and h ∈ P0. Using X0/P0
∼→ X/P

(see the paragraph before Lemma 4.2.11) there exists a unique extension of f : X0 → π∞

to a locally constant function (still denoted) f : X → π∞ such that f(yh) = h−1 · f(y) for
y ∈ X and h ∈ P . This defines an injection

indC0Gm
1 /G

m
1

P0/Pm
1

π∞
r ↪→ (indXP π∞)∞ (264)

with image consisting of those f : X → π∞ such that

• f is supported on C0P ;

• the restrictionf |C0 has image in π∞
r and is constant on yGm

1 ∩ C0 for y ∈ C0.

As each element of (indXP π∞)∞ obviously satisfies the above two conditions for some compact
open subset C0 ⊆ X0 and some r ∈ I, we deduce from (264) a topological isomorphism with
both sides endowed with the finest locally convex topology

lim−→
C0

lim−→
r

indC0Gm
1 /G

m
1

P0/Pm
1

π∞
r

∼−→ (indXP π∞)∞, (265)
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and in particular (indXP π∞)∞ is of compact type. Taking the dual of (265), by [S02,
Prop. 16.10] and (263), we obtain topological isomorphisms of Fréchet spaces
(
(indXP π∞)∞

)∨ ∼−→
(

lim−→
C0

lim−→
r

indC0Gm
1 /G

m
1

P0/Pm
1

π∞
r

)∨ ∼= lim←−
C0

lim←−
r

(
indC0Gm

1 /G
m
1

P0/Pm
1

π∞
r

)∨

∼= lim←−
C0

lim←−
r

(
D∞(G0)C0,r⊗D∞(P0)r(π∞)∨

r

)
.

Together with (260) this finishes the proof of (258). The left D(Q)-equivariance of the
isomorphisms in (258) is easy and left to the reader.

4.3 Fréchet completion of objects of Ob
alg

We prove several statements on the canonical Fréchet completions of U(g)-modules in Ob
alg

defined in §4.1 and use them to give a useful description of the continuous dual of Orlik-
Strauch representations (Proposition 4.3.6).

We fix I ⊆ ∆ and use the notation of §4.2 with G0
def= GLn/OK and P0

def= PI/OK , so
that we are back with PI = P0(K) ⊆ G = G0(K) = GLn(K), pI = Lie(PI) and we have
G0 = GLn(OK), PI,0 = PI(OK), etc. We use without further ado that a U(pI)-module which
is finite dimensional over E is an algebraic representation of PI ([OS15, Lemma 3.2]), and
hence in particular is a D(PI)-module, and thus also a D(PI)1-module. We start by recalling
Schmidt’s result on the canonical Fréchet completion of objects in Ob

alg ([Schm13]). We define
Ôb

alg ⊆ CD(G)1 as the full subcategory consisting of those coadmissible left D(G)1-modules D
such that D|U(t) is a small Fréchet U(t)-module in the sense of (ii) of Definition 4.1.7 and
the (left) U(g)-module ⊕µ∈Λ Dµ is an object of Ob

alg (recall that Dµ ⊆ D is the eigenspace
of D for the weight µ).

Proposition 4.3.1.

(i) The algebra D(G)1 is flat over U(g).

(ii) The functor M 7→ M def= D(G)1 ⊗U(g) M induces an equivalence of (abelian) categories
between Ob

alg and Ôb
alg, with a quasi-inverse given by D 7→⊕

µ∈Λ Dµ.

(iii) Let M in OpI
alg and X a finite dimensional U(pI)-module such that one has a surjection

q : U(g)⊗U(pI) X ↠ M . Then D(G)1ker(q) ⊆ D(G)1 ⊗U(pI) X is a coadmissible (left)
D(G)1-submodule of D(G)1⊗U(pI)X

∼→ D(G)1⊗D(PI)1 X and we have an isomorphism
in Ôb

alg ⊆ CD(G)1:

M = D(G)1 ⊗U(g) M ∼= (D(G)1 ⊗D(PI)1 X)/(D(G)1ker(q)). (266)

Proof. Part (i) is [Schm13, Thm. 4.3.3] and part (ii) is the case I = ∅ of [Schm13, Thm. 4.3.1],
with the harmless difference that we have the extra condition that the weights of M are
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integral. We prove (iii). By applying (i) and (ii) to 0→ ker(q)→ U(g)⊗U(pI) X →M → 0,
we obtain a short exact sequence in Ôb

alg ⊆ CD(G)1 :

0 −→ D(G)1 ⊗U(g) ker(q) −→ D(G)1 ⊗U(pI) X −→ D(G)1 ⊗U(g) M −→ 0. (267)

By the density of U(g) in D(G)1 and 267 we know that D(G)1 ⊗U(g) ker(q) is the closure of
ker(q) in D(G)1 ⊗U(pI) X and by (ii) we have⊕

µ∈Λ
(D(G)1 ⊗U(g) ker(q))µ ∼= ker(q).

As ker(q) is a finitely generated U(g)-submodule of U(g)⊗U(pI) X, D(G)1ker(q) is a finitely
generated D(G)1-submodule of D(G)1⊗U(pI) X, hence is coadmissible by [ST03, Cor. 3.4.iv]
and thus closed in D(G)1 ⊗U(pI) X by [ST03, Lemma 3.6]. As it contains ker(q) as dense
subspace, we deduce D(G)1 ⊗U(g) ker(q) ∼→ D(G)1ker(q). Comparing (266) with (267), it
remains to show that the natural map D(G)1⊗U(pI)X → D(G)1⊗D(PI)1X is an isomorphism.
It is enough to prove that we have an isomorphism

X
∼−→ D(PI)1 ⊗U(pI) X. (268)

Since the action of U(pI) on X extends to D(PI)1, there is a natural surjection D(PI)1⊗U(pI)
X ↠ X, d⊗ x 7→ dx which is the identity of X when composed with (268). Hence the map
(268) is injective, and it is enough to prove its surjectivity. But using [ST03, Cor. 3.4] applied
to the Fréchet-Stein algebra D(PI)1, one can check that D(PI)1 ⊗U(pI) X is a coadmissible
D(PI)1-module, hence is a Fréchet space. Since the map X → D(PI)1 ⊗U(pI) X has dense
image (as U(pI) is dense in D(PI)1) with its source finite dimensional, it follows that it is
surjective (and that D(PI)1 ⊗U(pI) X is finite dimensional).

Let I ⊆ ∆, following [ST102, §3] we say that a smooth representation π∞ of PI,0 over E
is strongly admissible if there exists a PI,0-equivariant embedding π∞ ↪→ C∞(PI,0)m for some
m ≥ 0. Since PI,0 is compact, C∞(PI,0) is a direct sum of (finite dimensional) irreducible
smooth representations of PI,0 over E. In particular, π∞ is a direct summand of C∞(PI,0)m
and C∞(PI,0)m/π∞ is another strongly admissible smooth representation of PI,0 over E.

Lemma 4.3.2. Let I ⊆ ∆, π∞ a strongly admissible smooth representation of PI,0 over E
(see [ST01, §2]) and X a finite dimensional left U(pI)-module. Then for each k0 ≤ 0 there
exists an exact sequence in ModD(PI,0)

Dk0 −→ · · · −→ D0 −→ X ⊗E (π∞)∨ −→ 0 (269)

such that Dk is a finite free D(PI,0)-module for k0 ≤ k ≤ 0.

Proof. By taking the dual of the short exact sequence

0 −→ π∞ −→ C∞(PI,0)m −→ C∞(PI,0)m/π∞ −→ 0,
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we obtain a short exact sequence of finitely generated D∞(PI,0)-modules

0 −→ D∞ −→ D∞(PI,0)m −→ (π∞)∨ −→ 0 (270)

where D∞ def= (C∞(PI,0)m/π∞)∨. We construct the exact sequence (269) for all strongly
admissible smooth representations π∞ of PI,0 over E by an increasing induction on k0. The
case k0 = 0 is clear from (270) and the fact that X ⊗E D∞(PI,0) is a finite free D∞(PI,0)-
module (see [Schr11, Lemma 3.5]). Assume now k0 < 0. Then by our induction hypothesis
for k0 + 1 > k0 applied to C∞(PI,0)m/π∞ there exists an exact sequence

Rk0+1 −→ · · · −→ R0 −→ D∞ −→ 0 (271)

where Rk is a finite free D(PI,0)-module for k0 + 1 ≤ k ≤ 0. Recall from equation (∗) on
[ST05, p.307] that D∞(PI,0)m admits a resolution of the form

0 −→ D(PI,0)m ⊗E ∧dimE pIpI −→ · · · −→ D(PI,0)m ⊗E ∧0pI −→ D∞(PI,0)m −→ 0. (272)

We can extend the exact sequence (271) into an exact sequence

0 −→ · · · −→ Rk −→ · · · −→ Rk0+1 −→ · · · −→ R0 −→ D∞ −→ 0 (273)

where Rk is a free (not necessarily finite) D(PI,0)-module for − dimE pI ≤ k < k0 + 1
and Rk = 0 for k ≪ 0 (with Rk arbitrary for k < − dimE pI). For k ≤ 0 choose a
map Rk → D(PI,0)m ⊗E ∧kpI (which is always possible by our choice of Rk) so that we
obtain a map from the resolution (273) to the resolution (272) that extends the given map
D∞ → D∞(PI,0)m. We can then define a bounded double complex with exact rows Y •,•

such that Y •,j def= 0 if j < −1 and j > 0, Y •,−1 def= R• and Y •,0 def= D(PI,0)m ⊗E ∧•pI (with
Y k,−1 = Y k,0 = 0 if k > 0). We set (using Y k,j ̸= 0 only when −1 ≤ j ≤ 0 and k ≤ 0)

D• = [Dk0 → · · · → D0] def= X ⊗E σ≥k0Tot(Y •,•) = σ≥k0Tot(X ⊗E Y •,•).

Since D(PI,0)m⊗E∧kpI for all k and Rk for k0+1 ≤ k ≤ 0 are finite free D(PI,0)-modules, one
easily checks with [Schr11, Lemma 3.5] that D• is a complex of finite free D(PI,0)-modules.
Moreover by the proof of [Wei94, Lemma 2.7.3] and (270), D• gives an exact sequence as in
(269).

Lemma 4.3.3. Let M in OpI
alg and X a finite dimensional t-semi-simple U(pI)-module such

that one has a surjection q : U(g) ⊗U(pI) X ↠ M in OpI
alg. Then the left D(G)1-action on

M def= D(G)1 ⊗U(g) M ∈ CD(G)1 (see (ii) of Proposition 4.3.1) naturally extends to a left
D(G)PI

-action which fits into an isomorphism of coadmissible D(G)PI
-modules:

M∼= (D(G)PI
⊗D(PI) X)/(D(G)PI

ker(q)) ∼−→ (D(G)PI
⊗̂D(PI)X)/(D(G)PI

ker(q)).

Proof. First note that, by Lemma 4.3.2, for each k0 ≤ 0 the finite dimensional representation
X fits into an exact sequence of the form

Dk0 → · · · → D0 → X → 0 (274)
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where Dk is a finite free D(PI,0)-modules for k0 ≤ k ≤ 0. Moreover, it follows from the
argument in the proof of [ST05, Lemma 6.3i] with D(G)PI

instead of D(G) that applying
D(G0)PI,0 ⊗D(PI,0) (−) to (274) gives another exact sequence

D(G0)PI,0 ⊗D(PI,0) D
k0 → · · · → D(G0)PI,0 ⊗D(PI,0) D

0 → D(G0)PI,0 ⊗D(PI,0) X → 0

(usingD(G)PI
∼= D(G0)PI,0⊗D(PI,0)D(PI)). Note that the argument of loc. cit. indeed extends

since D(G0)PI,0,r is flat over D(PI,0)r for r ∈ I, which follows from the flatness of D(G0)r over
D(PI,0)r ([Schm09, Prop. 2.6]) and the fact that D(G0)PI,0,r is a direct summand of D(G0)r as
D(PI,0)r-module by (ii) of Lemma 4.2.7 (applied with C = G0 and H0 = PI,0). This implies
that D(G)PI

⊗D(PI) X is a D(G0)PI,0-module of finite presentation, hence is coadmissible by
[ST03, Cor. 3.4.v]. In particular we have D(G)PI

⊗D(PI) X
∼→ D(G)PI

⊗̂D(PI)X (compare
with [Bre19, Rem. 5.1.3(ii)]). Since we have seen in the proof of (iii) of Lemma 4.3.1 that
D(G)1 ⊗D(PI)1 X

∼= D(G)1 ⊗U(pI) X is a coadmissible, hence complete, D(G)1-module, we
also have D(G0)1 ⊗D(PI,0)1 X

∼= D(G)1 ⊗D(PI)1 X
∼→ D(G)1⊗̂D(PI)1X.

By (iii) of Proposition 4.3.1 we have an isomorphism of coadmissible left D(G)1-modules

M = D(G)1 ⊗U(g) M ∼= (D(G)1 ⊗D(PI)1 X)/(D(G)1ker(q)),

hence it is enough to prove that the natural map

D(G0)1 ⊗D(PI,0)1 X −→ D(G0)PI,0 ⊗D(PI,0) X ∼= D(G)PI
⊗D(PI) X

is a topological isomorphism which sends D(G)1ker(q) to D(G)PI
ker(q). For the first state-

ment, using Lemma 4.2.12 (noting that X is a finitely generated D(PI)1,r-module or D(PI,0)r-
module) and the above discussion, it suffices to prove that we have canonical isomorphisms
of E-Banach spaces for r ∈ I

D(G)1,r ⊗D(PI)1,r X
∼−→ D(G0)PI,0,r ⊗D(PI,0)r X.

But this follows from
D(G)1,r⊗D(PI)1,rD(PI,0)r ∼= D(G0)PI,0,r, (275)

which itself follows from (i) of Lemma 4.2.7 (applied with C = PI,0 and both G0 and PI,0,
noting that PI,0/Pm

I,1
∼→ PI,0G

m
1 /G

m
1 ). Thus D(G)1 ⊗D(PI)1 X is a coadmissible left D(G)PI

-
module. As the left U(pI)-action on ker(q) extends to a left D(PI)-action (this is so for
any object of OpI

alg, see [OS15, §3.4]), we deduce that D(G)1ker(q) (which is the closure of
ker(q) in D(G)1⊗D(PI)1 X, see (266)) is a closed subspace of D(G)PI

⊗D(PI) X which is both
D(PI)-stable and D(G)1-stable. As D(PI) and D(G)1 generate a dense subalgebra of D(G)PI

(see [Koh07, Prop. 1.2.12]), we deduce that D(G)1ker(q) is a closed D(G)PI
-submodule of

D(G)PI
⊗D(PI) X. In particular D(G)1ker(q) ∼= D(G)PI

ker(q) since both spaces are the
closure of ker(q) in D(G)PI

⊗D(PI) X. This finishes the proof.

We will need the following result.
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Lemma 4.3.4. Let M in OpI
alg andM the canonical Fréchet completion of M as a coadmissi-

ble D(G0)PI,0-module (Lemma 4.3.3) withM∼= lim←−r∈IMr whereMr
def=D(G0)PI,0,r⊗D(G0)PI,0

M. Then there exists a family of standard semi-norms {| · |r}r∈I on M (see Definition 4.1.3)
such that Mr is the completion of M under | · |r for r ∈ I. Moreover the natural map
M→Mr is a continuous injection.

Proof. We first prove that the first statement implies the second. Assume that the (con-
tinuous) map M → Mr is not injective, then its non-zero kernel is a closed Fréchet U(t)-
submodule of M. By Lemma 4.1.10 its intersection with M is non-zero. By Remark 4.1.12
applied to the standard semi-norm | · |r, the completion under | · |r of this intersection is also
non-zero in Mr, which is a contradiction. Hence the map M→Mr is injective.

Let X be a finite dimensional t-semi-simple U(pI)-module such that one has a surjection
q : U(g) ⊗U(pI) X ↠ M in OpI

alg. We fix r ∈ I and let m, s be as before Lemma 4.2.5.
The isomorphism g ∼= n+

I ⊕ pI induces an isomorphism of locally K-analytic manifolds
Gm

1 = (Gm
1 ∩N+

I )× (Gm
1 ∩PI) (see the paragraph before Lemma 4.2.5), which together with

[Schm08, Prop. 5.9, Prop. 6.2] (see also Lemma 4.2.5) implies that

D(G)1,r = D(G)Gm
1 ,r
∼= D(Gm

1 )s ∼= D(Gm
1 ∩N+

I )s⊗̂ED(Gm
1 ∩ PI)s

∼= D(N+
I )Gm

1 ∩N+
I ,r
⊗̂ED(PI)Gm

1 ∩PI ,r = D(N+
I )1,r⊗̂ED(PI)1,r.

This together with (275) gives the following isomorphisms

D(G0)PI,0,r ⊗D(PI,0) X = D(G0)PI,0,r ⊗D(PI,0)r (D(PI,0)r ⊗D(PI,0) X)
∼= D(G0)PI,0,r ⊗D(PI,0)r X

∼= (D(G)1,r ⊗D(PI)1,r D(PI,0)r)⊗D(PI,0)r X

∼= D(G)1,r ⊗D(PI)1,r X
∼= D(N+

I )1,r ⊗E X,

and taking projective limit over r ∈ I recovers D(G0)PI,0 ⊗D(PI,0) X ∼= D(N+
I )1 ⊗E X. By

replacing g in [Koh07, Thm. 1.4.2] with n+
I , we know that U(n+

I ) admits a standard semi-
norm | · |′r for which its completion is D(N+

I )1,r (and thus D(N+
I )1 ∼= lim←−r∈I D(N+

I )1,r is the
completion of U(n+

I ) under the Fréchet topology defined by {|·|′r}r∈I). By (ii) of Lemma 4.1.9
we know that U(g)⊗U(pI) X ∼= U(n+

I )⊗E X admits a standard semi-norm | · |′′r under which
its completion is D(G0)PI,0,r ⊗D(PI,0) X ∼= D(N+

I )1,r ⊗E X. In particular, still denoting by
| · |′′r the induced semi-norm on D(G0)PI,0,r ⊗D(PI,0) X, the Fréchet topology on the small
Fréchet U(t)-module D(G0)PI,0 ⊗D(PI,0) X ∼= D(N+

I )1 ⊗E X can be defined by the family
of semi-norms {| · |′′r}r∈I . By Lemma 4.3.3 M is a quotient of the coadmissible D(G0)PI,0-
module D(G0)PI,0 ⊗D(PI,0) X and for r ∈ I the D(G0)PI,0,r-module Mr is a quotient of
D(G0)PI,0,r⊗D(PI,0)X. In particular,Mr is a quotient of D(G0)PI,0,r⊗D(PI,0)X by a (closed)
Banach subspace stable under the action of U(t), so by Remark 4.1.12 the standard semi-
norm | · |′′r on U(g) ⊗U(pI) X induces a standard semi-norm | · |r on its quotient M so that
Mr is the completion of M under | · |r.
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For M in OpI
alg, by Lemma 4.3.3 the canonical completion M of M is a coadmissible left

D(G)PI
-module. For π∞ in Rep∞

adm(LI), recall that (π∞)∨ is a coadmissible left D(G)PI
-

module via the surjections (where the middle isomorphism follows from Lemma 4.2.2)

D(G)PI
↠ D∞(G)PI

∼= D∞(PI) ↠ D∞(LI).

We will use the following lemma.

Lemma 4.3.5. Let M in OpI
alg, M = D(G)1 ⊗U(g) M its canonical Fréchet completion, X

a finite dimensional U(pI)-module with a surjection q : U(g) ⊗U(pI) X ↠ M . Let π∞ in
Rep∞

adm(LI) and D def= (π∞)∨.

(i) The D(PI)-module X ⊗E D (with the diagonal action) is coadmissible and we have an
isomorphism of coadmissible D(G)PI

-modules

D(G)PI
⊗̂D(PI)(X ⊗E D) ∼−→ (D(G)PI

⊗D(PI) X)⊗̂ED (276)

with the diagonal action of D(G)PI
on the right hand side.

(ii) The D(G)PI
-module M⊗̂ED (with the diagonal action) is coadmissible and we have a

short exact sequence of coadmissible D(G)PI
-modules (with the diagonal action)

0 −→
(
D(G)PI

ker(q)
)
⊗̂ED −→ (D(G)PI

⊗D(PI) X)⊗̂ED −→M⊗̂ED −→ 0. (277)

Proof. Note first that for the diagonal actions, one uses the comultiplication map D(G)PI
→

D(G)PI
⊗̂ED(G)PI

deduced from (227) as in [ST05, §A]. We prove (i). By the proof of
[OS15, Lemma 2.4(i)], the D(PI)-module X⊗ED is coadmissible, which implies that (X⊗E
D)r def= D(PI,0)r ⊗D(PI,0) (X ⊗E D) is a finitely generated D(PI,0)r-module for r ∈ I (see
[OS15, §3]). Moreover, using the universal property of the inductive tensor product ([S02,
§17.A]), one has a topological isomorphism (D(G0)PI,0 ⊗D(PI,0) D(PI)) ⊗D(PI) (X ⊗E D) ∼=
D(G0)PI,0 ⊗D(PI,0) (X ⊗E D). Then we have topological isomorphisms

D(G)PI
⊗̂D(PI)(X ⊗E D) ∼= D(G0)PI,0⊗̂D(PI,0)(X ⊗E D)

∼−→ lim←−
r

(
D(G0)PI,0,r ⊗D(PI,0)r (X ⊗E D)r

)
where the first isomorphism follows from D(G)PI

∼= D(G0)PI,0⊗D(PI,0)D(PI) and the fact that
D(G)PI

⊗̂D(PI)(X ⊗E D) is the completion of D(G)PI
⊗D(PI) (X ⊗E D) ∼= D(G0)PI,0 ⊗D(PI,0)

(X ⊗E D), and the second from Lemma 4.2.12 and the beginning of the proof. Now, since
we have for r ≤ r′ in I

D(G0)PI,0,r ⊗D(G0)PI,0,r′

(
D(G0)PI,0,r′ ⊗D(PI,0)r′ (X ⊗E D)r′

)
∼= D(G0)PI,0,r ⊗D(PI,0)r′ (X ⊗E D)r′

∼= D(G0)PI,0,r ⊗D(PI,0)r

(
D(PI,0)r ⊗D(PI,0)r′ (X ⊗E D)r′

)
∼= D(G0)PI,0,r ⊗D(PI,0)r (X ⊗E D)r
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which is a finitely generated D(G0)PI,0,r-module, it follows from the definition of coadmissi-
bility ([OS15, p. 152]) that D(G)PI

⊗̂D(PI)(X ⊗E D) is a coadmissible D(G)PI
-module. The

D(PI)-equivariant embedding X ↪→ D(G)PI
⊗D(PI)X, x 7→ 1⊗x induces a continuous D(PI)-

equivariant embedding X ⊗E D ↪→ (D(G)PI
⊗D(PI) X)⊗̂ED (with diagonal action of D(PI)

on both sides via [ST05, §A]), which itself induces a continuous D(G)PI
-equivariant map

D(G)PI
⊗̂D(PI)(X ⊗E D) −→ (D(G)PI

⊗D(PI) X)⊗̂ED (278)

(where we have used that the right hand side is complete thanks to the first paragraph of
the proof of Lemma 4.3.3). Hence it suffices to show that (278) is a topological isomorphism.
Note that we also have a topological isomorphism X⊗ED

∼→ X⊗E(lim←−rDr) ∼= lim←−r(X⊗EDr)
where Dr

def= D(PI,0)r⊗D(PI,0)D ∼= D∞(P0)r⊗D∞(P0)D (a finite dimensional E-vector space).
Using Lemma 4.2.12 (noting that both X and X ⊗E Dr are finitely generated D(PI,0)r-
modules) it suffices to prove that the natural morphism of E-Banach spaces

D(G0)PI,0,r ⊗D(PI,0)r (X ⊗E Dr) −→ (D(G0)PI,0,r ⊗D(PI,0)r X)⊗E Dr (279)

is a topological isomorphism. By (i) of Lemma 4.2.7 we have an isomorphism

D(G0)1,r ⊗D(PI,0)1,r D(PI,0)r ∼−→ D(G0)PI,0,r (280)

(using loc. cit. and the discussion above Lemma 4.2.5 one checks that both are free over
D(G0)1,r with same basis). So (279) can be rewritten as

D(G0)1,r ⊗D(PI,0)1,r (X ⊗E Dr) −→ (D(G0)1,r ⊗D(PI,0)1,r X)⊗E Dr. (281)

But since D(PI,0)1,r acts on Dr via the surjection D(PI,0)1,r ↠ D∞(PI,0)1,r ∼= E, one trivially
checks that (281) is an isomorphism of E-Banach spaces.

We prove (ii). By Lemma 4.3.3 we have a short exact sequence in CD(G)PI

0 −→ D(G)PI
ker(q) −→ D(G)PI

⊗D(PI) X −→M −→ 0

which gives a short exact sequence of Fréchet spaces as in (277) by [Schr11, Lemme 4.13].
So it suffices to show that M⊗̂ED and (D(G)PI

ker(q))⊗̂ED (with the diagonal D(G)PI
-

action) are coadmissible D(G)PI
-modules. By (i) we know that (D(G)PI

⊗D(PI) X)⊗̂ED is a
coadmissible D(G)PI

-module. Since (D(G)PI
ker(q))⊗̂ED is closed in (D(G)PI

⊗D(PI)X)⊗̂ED
(by the above (277)) and stable under D(G)PI

, it is a coadmissible D(G)PI
-module by [ST03,

Lemma 3.6], hence M⊗̂ED is a coadmissible D(G)PI
-module by [ST03, Lemma 3.4.ii].

Given M in OpI
alg and π∞ in Rep∞

adm(LI), Orlik and Strauch define a representation
FGPI

(M,π∞) in Repan
adm(G), we refer the reader to [OS15] for details (see also Theorem

4.3.7 below). The following result gives a convenient description of the continuous dual
FGPI

(M,π∞)∨ of FGPI
(M,π∞) using the completion functor M 7→ M of Proposition 4.3.1.
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Proposition 4.3.6. For M in OpI
alg, M def= D(G)1 ⊗U(g) M and π∞ a smooth admissible

representation of LI over E we have a canonical isomorphism of coadmissible left D(G)-
modules

FGPI
(M,π∞)∨ ∼= D(G)⊗̂D(G)PI

(M⊗̂E(π∞)∨). (282)

Proof. We let X be a finite dimensional left U(pI)-module X which is t-semi-simple and such
that we have a surjection q : U(g)⊗U(pI)X ↠M in OpI

alg, and we define D1
def= D(G)PI

ker(q),
D2

def= D(G)PI
⊗D(PI) X and D3

def=M. By (277) (applied with D = (π∞)∨) we have a short
exact sequence in CD(G)PI

0 −→ D1⊗̂E(π∞)∨ −→ D2⊗̂E(π∞)∨ −→ D3⊗̂E(π∞)∨ −→ 0.

Let Rk
def= D(G)⊗̂D(G)PI

(Dk⊗̂E(π∞)∨) for 1 ≤ k ≤ 3, then by [Schr11, Lemma 4.27] (the proof
of which extends to our setting) we deduce a short exact sequence of (left) D(G)-modules

0 −→ R1 −→ R2 −→ R3 −→ 0 (283)

(one could also again argue using Lemma 4.2.12 and (ii) of Lemma 4.2.7). Let (π∞)∨
r

def=
D(P0)r ⊗D(P0) (π∞)∨ ∼= D∞(P0)r ⊗D∞(P0) (π∞)∨, we have isomorphisms of coadmissible
D(G)PI

-modules:

D2⊗̂E(π∞)∨ ∼= D(G)PI
⊗̂D(PI)(X ⊗E (π∞)∨) ∼−→ lim←−

r∈I

(
D(G0)PI,0,r ⊗D(PI,0)r (X ⊗E (π∞)∨

r )
)

where the first isomorphism follows from (276) and the second from the proof of (i) of Lemma
4.3.5. Thus (using Lemma 4.2.12 again with (ii) of Lemma 4.2.7) we have isomorphisms of
topological D(G)-modules

R2 ∼= lim←−
r∈I

(
D(G0)r ⊗D(G0)PI,0,r

(
D(G0)PI,0,r⊗D(PI,0)r (X ⊗E (π∞)∨

r )
))

∼= lim←−
r∈I

(
D(G0)r ⊗D(PI,0)r (X ⊗E (π∞)∨

r )
)

∼= D(G)⊗̂D(PI)(X ⊗E (π∞)∨) (284)

where the last D(G)-module is coadmissible by [OS15, Lemma 2.4(i)] (recall we have an
isomorphism of Fréchet spaces R2 ∼= ((IndGPI

(X∨ ⊗E π∞))an)∨ using e.g. [Koh11, (52), (56),
Rem. 5.4] with [BD19, Lemme 3.1]). It then follows from [ST03, Lemma 3.6] that R1 and
R3 are also coadmissible D(G)-modules.

By [OS15, (3.2.2),(4.4.1)] we have a natural pairing

(U(g)⊗U(pI) X)⊗E
(
IndGPI

(X∨ ⊗E π∞)
)an
−→ Can(G, π∞) (285)

which sends (δ ⊗E x)⊗E f (for δ ∈ U(g), x ∈ X and f ∈ (IndGPI
(X∨ ⊗E π∞))an) to[

g 7→ δ
(
h 7→ f(gh)(x)

)]
∈ Can(G, π∞)

132



with f(gh)(x) ∈ π∞, [h 7→ f(gh)(x)] ∈ Can(G, π∞) and δ(h 7→ f(gh)(x)) ∈ π∞. Let g ∈ G,
composing (285) with the evaluation map Can(G, π∞)→ π∞, φ 7→ φ(g) induces a pairing

(U(g)⊗U(pI) X)⊗E
(
IndGPI

(X∨ ⊗E π∞)
)an
−→ π∞ (286)

which sends (δ ⊗E x) ⊗E f to δ(h 7→ f(gh)(x)). By pairing with (π∞)∨ on both sides of
(286), we obtain the pairing(

(U(g)⊗U(pI) X)⊗E (π∞)∨
)
⊗E

(
IndGPI

(X∨ ⊗E π∞)
)an
−→ E (287)

which sends ((δ ⊗E x) ⊗E δ∞) ⊗E f to δ∞(δ(h 7→ f(gh)(x))) for δ, x, f as above and δ∞ ∈
(π∞)∨. From the isomorphism R2 ∼= ((IndGPI

(X∨ ⊗E π∞))an)∨, we have a perfect pairing

R2 ⊗E (IndGPI
X∨ ⊗E π∞)an −→ E. (288)

Then (287) can be reinterpreted as the pairing (recall δg ∈ D(G) is the Dirac distribution)

(δg · ((U(g)⊗U(pI) X)⊗E (π∞)∨))⊗E (IndGPI
X∨ ⊗E π∞)an −→ E

obtained from (288) via composition with the natural map

δg · ((U(g)⊗U(pI) X)⊗E (π∞)∨) −→ R2 ∼= D(G)⊗̂D(PI)(X ⊗E (π∞)∨).

The representation FGPI
(M,π∞) is defined in [OS15, (4.4.1)] as the closed (invariant) subspace

of (IndGPI
X∨ ⊗E π∞)an which is the orthogonal of ker(q) under the pairing (285). Since

φ ∈ Can(G, π∞) is zero if and only if φ(g) = 0 for all g ∈ G, we deduce that FGPI
(M,π∞) is

the closed subspace of (IndGPI
X∨⊗E π∞)an which is the orthogonal of the image of ∑g∈G δg ·

(ker(q)⊗E (π∞)∨) in R2 under the pairing (288), that is, FGPI
(M,π∞)∨ is the quotient of R2

by the closure of ∑
g∈G

δg · (ker(q)⊗E (π∞)∨). (289)

As ker(q) is dense in D1 (see the last sentence of the proof of Lemma 4.3.3), ker(q)⊗E (π∞)∨

is dense in D1⊗̂E(π∞)∨, and as {δg | g ∈ G} is dense in D(G), one easily checks that (289)
is dense inside R1 = D(G)⊗̂D(G)PI

(D1⊗̂E(π∞)∨) ⊆ R2 (see (283)). Hence, we deduce from
loc. cit. that

FGPI
(M,π∞)∨ ∼= R2/R1 ∼= R3 = D(G)⊗̂D(G)PI

(M⊗̂E(π∞)∨).

We recall for later convenience the main theorem of [OS15] in the following form.

Theorem 4.3.7.

(i) The functor FGPI
(−,−) is contravariant (resp. covariant) in the first (resp. the second)

argument and is exact for both arguments.
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(ii) For I1 ⊆ I ⊆ ∆, M in OpI
alg and π∞

1 in Rep∞
adm(LI1), we have a canonical isomorphism

FGPI1
(M,π∞

1 ) ∼= FGPI
(M, i∞I1,I(π

∞
1 )).

(iii) Let I ⊆ ∆, M in OpI
alg with I maximal for M and π∞ in Rep∞

adm(LI). If both M and
π∞ are simple, then so is FGPI

(M,π∞).

(iv) Let I ⊆ ∆, M in OpI
alg and π∞ in Rep∞

adm(LI). Then a Jordan-Hölder factor of
FGPI

(M,π∞) has the form FGPI1
(M1, π

∞
1 ) for some Jordan-Hölder factor M1 of M such

that I1 ⊇ I is maximal for M1 ∈ O
pI1
alg , and some Jordan-Hölder factor π∞

1 of i∞I,I1(π∞).

We finish this section with several remarks.

Remark 4.3.8. For I ⊆ ∆, recall the subcategory OpI ,∞
alg ⊆ Õb

alg∩Cfin
alg from the discussion at

the beginning of §3.1. Recall also from [AS22] that, at least for smooth strongly admissible
representations π∞ of LI over E, the construction of FGPI

(M,π∞) can be extended to M in
OpI ,∞

alg (modulo a choice of logarithm that we ignore here). For M in OpI ,∞
alg , we can still define

its canonical Fréchet completion asM def= D(G)1⊗U(g)M . Let ÔpI ,∞
alg ⊆ CD(G)1 be the abelian

full subcategory of coadmissible D(G)1-modules D such that D is a (generalized) small
Fréchet U(t)-module in the sense of Remark 4.1.16 and ⊕µ∈Λ Dµ lies in OpI ,∞

alg . Then using
Remark 4.1.16 one can check that the functor M 7→ M induces an equivalence of categories
OpI ,∞

alg
∼−→ ÔpI ,∞

alg . Lemma 4.3.3, Proposition 4.3.6 and Proposition 4.3.7 also remain true for
M in OpI ,∞

alg .

Remark 4.3.9. If I ⊆ ∆, π∞ is a smooth strongly admissible representations of LI over
E and X is a finite dimensional left U(pI)-module, then by Lemma 4.3.2 for each k0 ≤ 0
X⊗E (π∞)∨ fits into an exact sequence (269) where Dk is a finite free D(PI,0)-module for k0 ≤
k ≤ 0 (we use here the strong admissibility of π∞). Arguing as in the first paragraph of the
proof of Lemma 4.3.3 we then deduce that D(G)PI

⊗D(PI)(X⊗ED) is a coadmissible D(G)PI
-

module, in particular we have a topological isomorphism D(G)PI
⊗D(PI) (X ⊗E (π∞)∨) ∼→

D(G)PI
⊗̂D(PI)(X ⊗E (π∞)∨) (so no need to complete on the right). By the same kind of

arguments we also have R2 ∼= D(G)⊗D(PI)(X ⊗E (π∞)∨) in (284). However, it is not clear
to us if we can replace D(G)⊗̂D(G)PI

(−) by D(G)⊗D(G)PI
(−) in (282).

Remark 4.3.10. Let E ′ be a finite extension of E. Given two D(G) = D(G,E)-modules D1
and D2, we may consider the D(G,E ′) = D(G)⊗EE ′-modules D1⊗EE ′ and D2⊗EE ′. Note
that any injective resolution of D1 ⊗E E ′ in ModD(G,E′) restricts to an injective resolution
of D1 ⊗E E ′ in ModD(G), and any injective resolution of D1 in ModD(G) remains by scalar
extension to E ′ an injective resolution of D1⊗EE ′ seen in ModD(G). We thus have canonical
isomorphisms for k ≥ 0

ExtkD(G)(D2, D1)⊗E E ′ ∼→ ExtkD(G)(D2, D1 ⊗E E ′) ∼→ ExtkD(G,E′)(D2 ⊗E E ′, D1 ⊗E E ′).

Moreover, one has the following results.

134



(i) Let I ⊆ ∆, M in OpI
alg, π∞ in Rep∞

adm(LI) and D
def= FGPI

(M,π∞)∨, then we have
D ⊗E E ′ ∼= FGPI

(M ⊗E E ′, π∞ ⊗E E ′)∨ as coadmissible D(G,E ′)-modules. If moreover
π∞ ∈ BIΣ for some left W (LI)-coset Σ ⊆ T̂∞ (see above (37)), then it follows from
Remark 2.1.22 (using the last statement of Remark 2.1.12) that D is a simple D(G)-
module if and only if D ⊗E E ′ is a simple D(G,E ′)-module.

(ii) Let D be a multiplicity free finite length D(G)-module with irreducible constituents all
of the form FGPI

(L(µ), π∞)∨ for some I ⊆ ∆, µ ∈ Λdom
I , π∞ ∈ BIΣ for some left W (LI)-

coset Σ ⊆ T̂∞. Then from (i) the scalar extension (−) ⊗E E ′ induces a bijection of
partially-ordered sets

JHD(G)(D) ∼−→ JHD(G,E′)(D ⊗E E ′).

4.4 Orlik-Strauch representations and the Bruhat filtration
Using the results of §4.3 we describe explicitly the duals of the graded pieces of the Bruhat
filtration on Orlik-Strauch representations.

For i = 0, 1 we fix Ii ⊆ ∆ and recall thatW I0,I1 is the set of minimal length representatives
of W (LI0)\W (G)/W (LI1). We have the Bruhat decomposition ([DM91, Lemma 5.5])

G =
⊔

w∈W I0,I1

PI1w
−1PI0 . (290)

For w ∈ W I0,I1 we write Sw def= PI1w
−1PI0 and Sw its closure in G. The following lemma is

surely well-known, but we couldn’t find a proof.

Lemma 4.4.1. We have
Sw =

⊔
w,w′∈W I0,I1 , w′≤w

Sw′ .

Proof. By [EK23, Lemma 2.12(1)] W (LI1)w−1W (LI0) is an interval in W (G), hence there
is a unique maximal element wmax in W (LI1)w−1W (LI0) for the Bruhat order (and also
a unique minimal element which is w−1). It follows that all cosets Bw′B appearing in
Sw are such that w′ ≤ wmax and hence are in the closure BwmaxB of BwmaxB. This im-
plies Sw ⊆ BwmaxB and hence Sw ⊆ BwmaxB. But since BwmaxB ⊆ Sw, we have Sw =
BwmaxB = ⊔

w′≤wmax Bw
′B. Since PI1SwPI0 = Sw, it follows that Sw = ⋃

w′≤wmax PI1w
′PI0 .

Writing wmax = xmax,1w
−1xmax,0 with xmax,i ∈ W (LIi

) such that xmax,1w
−1 is minimal in

xmax,1w
−1W (LI0) ([DM91, Lemma 5.4(iii)]), by the subword property of the Bruhat order

and [BB05, Prop. 2.4.4] any w′ ≤ wmax can be written w′ = x′
1w

′′x′
0 with x′

i ≤ xmax,i inW (LIi
)

and w′′ ≤ w−1. Thus Sw = ⋃
w′′≤w−1 PI1w

′′PI0 , or equivalently Sw = ⋃
w′′≤w PI1w

′′−1PI0 . The
result follows replacing w′′ by its minimal representative in PI0w

′′PI1 .
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In particular it follows from Lemma 4.4.1 and its proof that Sw is open in its closure Sw,
i.e. Sw is locally closed in G. The closed subsets (Sw)w∈W I0,I1 of G induce an exhaustive (by
(290)) left D(PI1)-equivariant and right D(PI0)-equivariant filtration

Filw(D(G)) def= D(G)Sw
⊆ D(G)

on D(G) indexed by W I0,I1 (using Lemma 4.4.1). Note that by loc. cit. we have Fil1(D(G)) =
D(G)PI1PI0

⊆ Filw(D(G)) for any w ∈ W I0,I1 . The terminology “filtration” comes from
Filw′(D(G)) ⊆ Filw(D(G)) whenever w′ ≤ w. For w ∈ W I0,I1 recall that D̂(G)Sw was
defined in (243) (using (241)), and we have

grw(D(G)) def= Filw(D(G))
/ ∑
w′<w

Filw′(D(G)) ∼= D(G)Sw
/D(G)Sw\Sw

∼= D̂(G)Sw

where the first isomorphism follows from Lemma 4.4.1 and the second from (248).

Let M0 in OpI0
alg , π∞

0 a smooth admissible representation of LI0 over E and let V0
def=

FGPI0
(M0, π

∞
0 ). Recall from Proposition 4.3.6 that

V ∨
0
∼= D(G)⊗̂D(G)PI0

(M0⊗̂E(π∞
0 )∨) (291)

where M0 = D(G)1 ⊗U(g) M0 is a coadmissible D(G)PI0
-module (Lemma 4.3.3). We define

the following filtration indexed by w ∈ W I0,I1 on the D(PI1)-module V ∨
0 :

Filw(V ∨
0 ) def= D(G)Sw

⊗̂D(G)PI0
(M0⊗̂E(π∞

0 )∨). (292)

Lemma 4.4.2. For w ∈ W I0,I1 the inclusion D(G)Sw
⊆ D(G) induces a closed embedding

of left D(G)PI1
-modules Filw(V ∨

0 ) ↪→ V ∨
0 .

Proof. It is clear from (291) and (292) that the natural map Filw(V ∨
0 ) → V ∨

0 is D(G)PI1
-

equivariant (as Sw = PI1Sw). Hence we have to prove that it is a closed embedding. Since
M0⊗̂E(π∞

0 )∨ is a coadmissible D(G)PI0
-module by (ii) of Lemma 4.3.5, we have

M0⊗̂E(π∞
0 )∨ ∼−→ lim←−

r∈I
(M0⊗̂E(π∞

0 )∨)r (293)

where (M0⊗̂E(π∞
0 )∨)r def= D(G0)PI0,0,r ⊗D(G0)PI0,0

(M0⊗̂E(π∞
0 )∨) and PI0,0

def= PI0 ∩ G0. Set
Y

def= Sw and Y0
def= Y ∩G0, we have a topological isomorphisms by (254)

D(G)Y ∼= D(G0)Y0 ⊗D(PI0,0) D(PI0) ∼= D(G0)Y0 ⊗D(G0)PI0,0

(
D(G0)PI0,0 ⊗D(PI0,0) D(PI0)

)
∼= D(G0)Y0 ⊗D(G0)PI0,0

D(G)PI0
.

From the universal property of the inductive tensor product, we obtain a topological isomor-
phism

D(G)Y⊗D(G)PI0
(M0⊗̂E(π∞

0 )∨) ∼= D(G0)Y0⊗D(G0)PI0,0
(M0⊗̂E(π∞

0 )∨), (294)
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hence (taking completions) a topological isomorphism

Filw(V ∨
0 ) ∼= D(G0)Y0⊗̂D(G0)PI0,0

(M0⊗̂E(π∞
0 )∨). (295)

By (ii) of Lemma 4.2.7 D(G0)r and D(G0)Y0,r are finite free over D(G0)PI0,0,r. From (293),
(295) and Lemma 4.2.12 we deduce isomorphisms of Fréchet spaces

Filw(V ∨
0 ) ∼= lim←−

r

(
D(G0)Y0,r ⊗D(G0)PI0,0,r

(M0⊗̂E(π∞
0 )∨)r) (296)

V ∨
0
∼= lim←−

r

(
D(G0)r ⊗D(G0)PI0,0,r

(M0⊗̂E(π∞
0 )∨)r).

The result follows from the fact that D(G0)Y0,r is a direct summand of D(G0)r as D(G0)PI0,0,r-
module by (ii) of Lemma 4.2.7 again.

For w ∈ W I0,I1 , we define Pw def= w−1PI0w and Lw
def= w−1LI0w. Recall that π∞,w

0 is the
representation of Lw with the same underlying vector space as π∞

0 but where h ∈ Lw =
w−1LI0w acts by whw−1 (by inflation π∞,w

0 is also a representation of Pw). Likewise we write
Mw

0 for the coadmissible D(G)Pw-module with the same underlying (topological) vector
space as M0 but where δ ∈ D(G)Pw acts by wδw−1 ∈ D(G)PI0

.

Proposition 4.4.3. For w ∈ W I0,I1 let grw(V ∨
0 ) def= Filw(V ∨

0 )/∑w′<w Filw′(V ∨
0 ) (via Lemma

4.4.2), we have a canonical (left) D(PI1)-equivariant isomorphism of Fréchet spaces

grw(V ∨
0 ) ∼= D̂(G)PI1Pw⊗̂D(G)Pw

(Mw
0 ⊗̂E(π∞,w

0 )∨) (297)

where D̂(G)PI1Pw is defined in (243) with its left D(PI1)-action as before lemma 4.2.11.

Proof. For w ∈ W I0,I1 let Pw,0 def= Pw ∩G0, S ⊆ G a closed subset such that S = SPw = PI1S

and S0
def= S∩G0. Arguing as for (295) and (296) we have D(G)PI1

-equivariant isomorphisms
of Fréchet spaces (where (Mw

0 ⊗̂E(π∞,w
0 )∨)r def= D(G0)Pw,0,r ⊗D(G0)Pw,0

(Mw
0 ⊗̂E(π∞,w

0 )∨))

D(G)S·w−1⊗̂D(G)PI0
(M0⊗̂E(π∞

0 )∨) ∼= D(G)S⊗̂D(G)Pw
(Mw

0 ⊗̂E(π∞,w
0 )∨) (298)

∼= D(G0)S0⊗̂D(G0)Pw,0
(Mw

0 ⊗̂E(π∞,w
0 )∨)

∼= lim←−
r

(
D(G0)S0,r ⊗D(G0)Pw,0,r

(Mw
0 ⊗̂E(π∞,w

0 )∨)r).

Let X def= Sww = PI1Pw ⊆ G, Y def= X and Z
def= X \ X, applying these isomorphisms with

S = Y and S = Z and using (251), (252), (253) and Lemma 4.2.4 we obtain an exact
sequence of Fréchet spaces

0 −→ D(G0)Z0⊗̂D(G0)Pw,0
(Mw

0 ⊗̂E(π∞,w
0 )∨) −→ D(G0)Y0⊗̂D(G0)Pw,0

(Mw
0 ⊗̂E(π∞,w

0 )∨)

−→ D̂(G0)X0⊗̂D(G0)Pw,0
(Mw

0 ⊗̂E(π∞,w
0 )∨) −→ 0.
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Using the definition of D̂(G)X (see (243)) and arguing as before (295), we deduce a D(PI)-
equivariant exact sequence of Fréchet spaces

0 −→ D(G)Z⊗̂D(G)Pw
(Mw

0 ⊗̂E(π∞,w
0 )∨) −→ D(G)Y ⊗̂D(G)Pw

(Mw
0 ⊗̂E(π∞,w

0 )∨)
−→ D̂(G)X⊗̂D(G)Pw

(Mw
0 ⊗̂E(π∞,w

0 )∨) −→ 0.

By (295) and using (298) “backwards” together with Lemma 4.4.1, it remains to prove

D(G0)Z′
0
⊗̂D(G0)PI0,0

(M0⊗̂E(π∞
0 )∨) ∼=

∑
w′<w

Filw′(V ∨
0 )

where Z ′
0

def= ∪w′<w(Sw′ ∩G0). Let D def=M0⊗̂E(π∞
0 )∨, it is enough to prove that if C1, C2 are

two closed subsets of G0 such that Ci = CiPI0 then we have inside D(G0)⊗̂D(G0)PI0,0
D:

D(G0)C1⊗̂D(G0)PI0,0
D +D(G0)C2⊗̂D(G0)PI0,0

D = D(G0)C1∪C2⊗̂D(G0)PI0,0
D.

Using (ii) of Lemma 4.2.7, for r ∈ I we have an isomorphism of finite free D(G0)PI0,0,r-
modules D(G0)C1,r + D(G0)C2,r

∼→ D(G0)C1∪C2,r which gives an isomorphism of Banach
spaces where Dr

def= D(G0)PI0,0,r ⊗D(G0)PI0,0
D

(D(G0)C1,r +D(G0)C2,r)⊗D(G0)PI0,0,r
Dr

∼−→ D(G0)C1∪C2,r ⊗D(G0)PI0,0,r
Dr.

Using Lemma 4.2.12, it is enough to prove

lim←−
r∈I

(D(G0)C1,r +D(G0)C2,r) ∼= D(G0)C1 +D(G0)C2

(inside lim←−rD(G0)r ∼= D(G0)). The image of D(G0)Ci
is dense in D(G0)Ci,r, hence the image

of D(G0)C1 + D(G0)C2 is dense in D(G0)C1,r + D(G0)C2,r (inside D(G0)r). As D(G0)C1,r +
D(G0)C2,r is closed in D(G0)r (see above), it follows that lim←−r(D(G0)C1,r + D(G0)C2,r) is
the closure of D(G0)C1 + D(G0)C2 inside D(G0). Hence it is enough to prove D(G0)C1 +
D(G0)C2

∼= D(G0)C1∩C2 (the latter being closed in D(G0)). Let U1, U2 be compact open
subsets of G0 containing respectively C1, C2, then we have a short exact sequence of locally
convex E-vector spaces of compact type

0 −→ Can(U1 ∪ U2) −→ Can(U1)⊕ Can(U2) −→ Can(U1 ∩ U2) −→ 0

where the maps are the restrictions. Taking the colimit over such U1, U2, we deduce a short
exact sequence of locally convex E-vector spaces of compact type

0 −→ lim−→
U1,U2

Can(U1 ∪ U2) −→ lim−→
U1

Can(U1) ⊕ lim−→
U2

Can(U2) −→ lim−→
U1,U2

Can(U1 ∪ U2) −→ 0.

In particular the injection on the left is a closed embedding. Noting that compact open
subsets of G0 of the form U1 ∪ U2, where Ui are compact open subsets of G0 containing Ci,
are cofinal among compact open subsets of G0 containing C1∪C2, by [BD19, (3.3)] and [S02,
Cor. 9.4] we deduce a surjection of Fréchet spaces D(G0)C1 ⊕ D(G0)C2 ↠ D(G0)C1∪C2 . In
particular we have D(G0)C1 +D(G0)C2 = D(G0)C1∩C2 in D(G0).
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4.5 Ext groups of Orlik-Strauch representations
We prove several results on the Ext groups of Orlik-Strauch representations, in particular
that they are finite dimensional when their smooth entries are finite length representations
(Theorem 4.5.16). The most important statements are Corollary 4.5.11 (which follows from
Theorem 4.5.10) and Corollary 4.5.13.

We keep the notation of §4.4, in particular we have I0, I1 ⊆ ∆, M0 ∈ O
pI0
alg , π∞

0 a
smooth strongly admissible representation of LI0 over E and V0 = FGPI0

(M0, π
∞
0 ). Note

that we assume π∞
0 strongly admissible ([ST102, §3]) instead of just admissible and we

recall that if π∞
0 is of finite length then it is strongly admissible ([ST01, Prop. 2.2]). From

now until Corollary 4.5.13 (included), we let M1
def= M I1(µ) ∈ OpI1

alg for some µ ∈ Λdom
I1 (a

generalized Verma module, see (119) and the lines below it), π∞
1 a smooth strongly admissible

representation of LI1 over E and V1
def= FGPI1

(M1, π
∞
1 ). Our main aim in this section is to

study the E-vector spaces ExtkD(G)(V ∨
1 , V

∨
0 ) for k ≥ 0.

Recall from Remark 4.3.9 and (284) (noting that R1 = 0 in (283)) that we have a
D(G)-equivariant isomorphism V ∨

1
∼= D(G) ⊗D(PI1 ) (LI1(µ) ⊗E (π∞

1 )∨). By Lemma 4.3.2
and the proof of [ST05, Lemma 6.3(ii)] (where we use [Schm09, Prop. 2.6] instead of [ST05,
Lemma 6.2] as we are locally K-analytic) we deduce isomorphisms for k ≥ 0

ExtkD(G)(V ∨
1 , V

∨
0 ) ∼= ExtkD(PI1 )(LI1(µ)⊗E (π∞

1 )∨, V ∨
0 ). (299)

Thus our main aim is to compute ExtkD(PI1 )(LI1(µ)⊗E (π∞
1 )∨, V ∨

0 ) for k ≥ 0.

For M in ModU(pI1 ), we endow HomE(LI1(µ),M) with a structure of U(pI1)-module by

(u · f)(x) = u · f(x)− f(u · x)

(u ∈ pI , f ∈ HomE(LI1(µ),M), x ∈ LI1(µ)). In particular

H0(pI ,HomE(LI1(µ),M)) ∼= HomU(pI)(LI1(µ),M). (300)

It is easy to check for M ′ in ModU(pI1 ):

HomU(pI1 )(M ′,HomE(LI1(µ),M)) ∼= HomU(pI1 )(M ′ ⊗E LI1(µ),M) (301)

with U(pI1) acting diagonally on M ′ ⊗E LI1(µ). It follows from (301) and the exact-
ness of HomE(LI1(µ),−) that if M• is an injective resolution of M in ModU(pI1 ), then
HomE(LI1(µ),M•) is an injective resolution of HomE(LI1(µ),M) in ModU(pI1 ). Using (300)
this implies canonical isomorphisms for ℓ ≥ 0

ExtℓU(pI1 )(LI1(µ),M) ∼= Hℓ(pI1 ,HomE(LI1(µ),M)). (302)
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Recall that Hℓ(pI1 ,HomE(LI1(µ),M)) can also be computed by the Chevalley-Eilenberg
complex C• where for ℓ ≥ 0

Cℓ def= HomE(∧ℓpI1 ,HomE(LI1(µ),M)) ∼= HomE(∧ℓpI1 ⊗E LI1(µ),M) (303)

(see also (121)). The left (continuous) action of PI on LI1(µ) induces a left action on
HomE(LI1(µ), E) defined by (g · f)(x) = f(g−1x) (g ∈ PI1 , f ∈ HomE(LI1(µ), E), x ∈
LI1(µ)). As HomE(LI1(µ), E) is finite dimensional, this action extends to a left D(PI1)-
action. Let D be any D(PI1)-module, we endow HomE(LI1(µ), D) ∼= HomE(LI1(µ), E)⊗ED
with the diagonal (left) action of D(PI1) (via [ST05, §A]). It is easy to check that for any
D(PI1)-module D′:

HomD(PI1 )(D′,HomE(LI1(µ), D)) ∼= HomD(PI1 )(D′ ⊗E LI1(µ), D) (304)

with D(PI1) acting diagonally on D′⊗ELI1(µ). Hence, if D• is an injective resolution of D in
ModD(PI1 ), then HomE(LI1(µ), D•) is an injective resolution of HomE(LI1(µ), D) satisfying

HomD(PI1 )(LI1(µ)⊗E (π∞
1 )∨, Dk) ∼= HomD(PI1 )((π∞

1 )∨,HomE(LI1(µ), Dk))

for k ≥ 0. We thus obtain canonical isomorphisms for k ≥ 0

ExtkD(PI1 )(LI1(µ)⊗E (π∞
1 )∨, D) ∼= ExtkD(PI1 )((π∞

1 )∨,HomE(LI1(µ), D)). (305)

It follows from [ST05, §3] (more precisely from [ST05, page 307 line 5] together with [ST05,
page 306 line -11] applied with X = X• = HomE(LI1(µ), D) and Y • = (π∞

1 )∨, both in degree
0) that we have a spectral sequence

ExtkD∞(PI1 )

(
(π∞

1 )∨, Hℓ(pI1 ,HomE(LI1(µ), D))
)

=⇒ Extk+ℓ
D(PI1 )

(
(π∞

1 )∨,HomE(LI1(µ), D)
)
,

(in particular Hℓ(pI1 ,HomE(LI1(µ), D)) is naturally a D∞(PI1)-module) which together with
(305) and (302) (applied with M = D) gives a spectral sequence

ExtkD∞(PI1 )

(
(π∞

1 )∨,ExtℓU(pI1 )(LI1(µ), D)
)

=⇒ Extk+ℓ
D(PI1 )

(
LI1(µ)⊗E (π∞

1 )∨, D
)
. (306)

The spectral sequence (306) applied to graded pieces of V ∨
0 will be our primary means of

accessing Ext•
D(PI1 )(LI1(µ)⊗E (π∞

1 )∨, V ∨
0 ) (and hence ExtkD(G)(V ∨

1 , V
∨

0 ) by (299)).

From now until Theorem 4.5.10 (included) we fix w ∈ W I0,I1 . We write C• (resp. C•)
for the Chevalley-Eilenberg complex (303) with M = Mw

0 (resp. M = Mw
0 ) where Mw

0 is
defined above (161) and Mw

0 as in Proposition 4.4.3. Note that as ∧ℓpI1 ⊗E LI1(µ) is finite
dimensional each Cℓ is a Fréchet space. The algebra U(pI1) acts on both ∧ℓpI1 ⊗E LI1(µ)
and Mw

0 (resp. Mw
0 ), and thus acts diagonally on Cℓ (resp. Cℓ). We write dℓ : Cℓ → Cℓ+1

(resp. δℓ : Cℓ → Cℓ+1) for the differential maps of the complex C• (resp. C•), see [ST05, p. 305]
for instance. The U(g)-equivariant embedding 1⊗ id : M0 ↪→M0 = D(G)1⊗U(g)M0 induces
an U(g)-equivariant embedding Mw

0 ↪→ Mw
0 which induces a map of complexes C• → C•

which induces for ℓ ≥ 0

κℓ : ExtℓU(pI1 )(LI1(µ),Mw
0 ) −→ ExtℓU(pI1 )(LI1(µ),Mw

0 ). (307)
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Lemma 4.5.1. For ℓ≥0 κℓ in (307) is an isomorphism of finite dimensional E-vector spaces.
Proof. By dévissage using the short exact sequence 0 → Mw

0 →Mw
0 → (M0/M0)w → 0, it

suffices to show for ℓ ≥ 0:

ExtℓU(pI1 )(LI1(µ), (M0/M0)w) = 0. (308)

Let e ∈ t such that α(e) ∈ Z>0 for all α ∈ Φ+. We divide the proof into three steps.

Step 1: We prove that ad(w−1)(e) − N acts bijectively on the U(t)-module
Hℓ1(u, (M0/M0)w) for N ∈ Z and ℓ1 ≥ 0.
By (ii) of Lemma 4.3.1 and Lemma 4.1.15 for N ∈ Z e − N acts bijectively on M0/M0
and thus ad(w−1)(e) − N acts bijectively on (M0/M0)w. As ∧ℓ1u is t-semi-simple we
have ∧ℓ1u = ⊕

M∈Z ∧ℓ1u|ad(w−1)(e)=M , and we see that ad(w−1)(e) − N acts invertibly on
HomE(∧ℓ1u, (M0/M0)w), and thus on any of its U(t)-subquotient, in particular on its U(t)-
subquotient Hℓ1(u, (M0/M0)w).

Step 2: We prove Extℓ2U(t)(µ1, H
ℓ1(u, (M0/M0)w)) = 0 for ℓ1, ℓ2 ≥ 0 and µ1 ∈ Λ.

Let t′
def= E(ad(w−1)(e)) ⊆ t, for µ1 ∈ Λ and any U(t)-module we have a Hochschild-Serre

spectral sequence

Hℓ′′2 (t/t′, Hℓ′2(t′,HomE(µ1, D))) =⇒ Hℓ′2+ℓ′′2 (t,HomE(µ1, D)) ∼= Extℓ
′
2+ℓ′′2
U(t) (µ1, D),

(where the last isomorphism is proved as (302)). Taking D = Hℓ1(u, (M0/M0)w)) it suffices
to prove for ℓ′

2 ≥ 0:
Hℓ′2

(
t′,HomE(µ1, H

ℓ1(u, (M0/M0)w))
)

= 0. (309)
But since dimE t′ = 1 the Chevalley-Eilenberg complex that computes (309) is just

HomE(µ1, H
ℓ1(u, (M0/M0)w)) ad(w−1)(e)−→ HomE(µ1, H

ℓ1(u, (M0/M0)w))

and by Step 1 the unique differential map is an isomorphism, whence the result.

Step 3: We prove for ℓ ≥ 0 and µ1 ∈ Λ:

ExtℓU(pI1 )(LI1(µ1), (M0/M0)w) = 0. (310)

Let µ1 ∈ Λ, by (126) applied with I = ∅ we have the spectral sequence

Extℓ2U(t)(µ1, H
ℓ1(u, (M0/M0)w)) =⇒ Extℓ1+ℓ2

U(b) (µ1, (M0/M0)w),

which together with Step 2 implies for ℓ ≥ 0

ExtℓU(pI1 )(U(pI1)⊗U(b) µ1, (M0/M0)w) ∼= ExtℓU(b)(µ1, (M0/M0)w) = 0 (311)

where the isomorphism in (311) is Shapiro’s lemma. Recall U(pI1)⊗U(b)µ1 ∼= U(lI1)⊗U(bI1 )µ1.
Hence if U(lI1) ⊗U(bI1 ) µ1 ∼= LI1(µ1), we are done. In general, we argue by induction using
[Hum08, Thm. 5.1] applied to lI1 and a dévissage on the constituents of U(lI1) ⊗U(bI1 ) µ1.
Finally, applying (310) with µ1 = µ gives (308).
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For ℓ ≥ 0 the map δℓ : Cℓ → Cℓ+1 is a continuous map between Fréchet spaces, in
particular ker(δℓ) ⊆ Cℓ is a closed subspace. We endow ker(δℓ) with the subspace topology
of Cℓ and Hℓ(C•) = ker(δℓ)/im(δℓ−1) with the quotient topology ([S02, §5.B]).
Lemma 4.5.2. For ℓ ≥ 0 the differential map δℓ : Cℓ → Cℓ+1 has closed image and Hℓ(C•)
is a finite dimensional separated E-vector space (with its natural Banach topology).
Proof. Let im(δℓ−1) be the closure of im(δℓ−1) in Cℓ, which is still contained in ker(δℓ), then
Hℓ(C•) is separated if and only if im(δℓ−1) = im(δℓ−1). The identificationM0 = ⊕

µ1∈Λ(M0)µ1

from (ii) of Proposition 4.3.1 implies Mw
0 = ⊕

µ1∈Λ(Mw
0 )µ1 and thus Cℓ = ⊕

µ1∈Λ(Cℓ)µ1 for
ℓ ≥ 0 with each (Cℓ)µ1 being finite dimensional (recall ∧ℓpI1 ⊗E LI1(µ) is finite dimensional
and U(t)-semi-simple). In particular, together with the U(t)-equivariance of the differential
maps d• and δ• we deduce

im(dℓ−1) =
⊕
µ1∈Λ

(
im(δℓ−1)

)
µ1

=
⊕
µ1∈Λ

(
im(δℓ−1)

)
µ1

and ker(dℓ) =
⊕
µ1∈Λ

(
ker(δℓ)

)
µ1
.

and from (224)⊕
µ1∈Λ

(
ker(δℓ)/im(δℓ)

)
µ1

∼=
( ⊕
µ1∈Λ

(
ker(δℓ)

)
µ1

)
/
( ⊕
µ1∈Λ

im
(
δℓ)
)
µ1

)
∼= ker(dℓ)/im(dℓ).

This forces the composition ker(dℓ)/im(dℓ) κℓ

−→ ker(δℓ)/im(δℓ) θℓ

−→ ker(δℓ)/im(δℓ) to be an
injection. But κℓ is a bijection by Lemma 4.5.1 and θℓ is a surjection by definition, so θℓ

must also be an isomorphism, which means im(δℓ) = im(δℓ). The rest of the statement
follows from Lemma 4.5.1 (and (302)).

In [BCGP] a more general statement is proven which implies Lemma 4.5.2.

We write D∞ def= (π∞,w
0 )∨ and D

def= Mw
0 ⊗̂ED∞ for short. For g ∈ G we write Mwg−1

0 ,
D∞,g−1 , Dg−1 for the D(G)gPwg−1-module with the same underlying space as Mw

0 , D∞, D
(respectively) but with δ ∈ D(G)gPwg−1 acting by δ−1

g δδg. For g ∈ G and h ∈ gPwg−1, the
map v 7→ δhv gives a D(G)gPwg−1 = D(G)hgPw(hg)−1-equivariant topological isomorphism

Mwg−1

0
∼−→Mw(hg)−1

0 (312)

and likewise D(G)gPwg−1-equivariant isomorphisms D∞,g−1 ∼→ D∞,(hg)−1 , Dg−1 ∼→ D(hg)−1 .

For g ∈ G, we consider the Chevalley-Eilenberg complex attached to Mwg−1

0 :

C•
g

def= HomE(∧•pI1 ⊗E LI1(µ),Mwg−1

0 )

and we denote by δℓg : Cℓg → Cℓ+1
g the differential maps (not to be confused with the Dirac

distribution δg!). For ℓ ≥ 0 we write Dℓg
def= δℓ−1

g (Cℓ−1
g ) and

Hℓ
g

def= Hℓ(C•
g ) = ker(δℓg)/Dℓg = Hℓ(pI1 ,HomE(LI1(µ),Mwg−1

0 ))
(302)∼= ExtℓU(pI1 )(LI1(µ),Mwg−1

0 ).
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For ℓ ≥ 0, g ∈ G and h ∈ gPwg
−1, the D(G)gPwg−1-equivariant topological isomorphism

(312) induces a U(pI1)-equivariant topological isomorphism

Cℓg
∼−→ Cℓhg, (313)

which further induces topological isomorphisms Dℓg
∼→ Dℓhg, ker(δℓg)

∼→ ker(δℓhg) and

Hℓ
g

∼−→ Hℓ
hg. (314)

It follows from (313) and (314) that the complex C•
g and the cohomology space Hℓ

g only
depend on the coset (gPwg−1)g = gPw up to natural U(pI1)-equivariant topological isomor-
phisms. We tacitly use this in the sequel.

Let ℓ ≥ 0, g ∈ G, h ∈ PI1 . As ∧ℓpI1 ⊗E LI1(µ) is a finite dimensional D(PI1)-module,
the map v 7→ δhv induces an isomorphism of U(pI1)-modules ∧•pI1 ⊗E LI1(µ) ∼−→ (∧•pI1 ⊗E
LI1(µ))h−1 , which induces a topological isomorphism

θℓg,h : Cℓg = HomE(∧ℓpI1 ⊗E LI1(µ),Mwg−1

0 )
∼= HomE((∧ℓpI1 ⊗E LI1(µ))h−1

,Mwg−1h−1

0 )
∼−→ HomE(∧ℓpI1 ⊗E LI1(µ),Mw(hg)−1

0 ) = Cℓhg. (315)

Moreover under (315) the differential map δℓg corresponds to δℓhg, hence we deduce a topo-
logical isomorphism for ℓ ≥ 0, g ∈ G and h ∈ PI1

ωℓg,h : Hℓ
g = ExtℓU(pI1 )(LI1(µ),Mwg−1

0 ) ∼−→ ExtℓU(pI1 )(LI1(µ),Mw(hg)−1

0 ) = Hℓ
hg. (316)

By a direct check for g ∈ G and h, h′ ∈ PI1 we have θℓhg,h′ ◦ θℓg,h = θℓg,h′h and therefore

ωℓhg,h′ ◦ ωℓg,h = ωℓg,h′h. (317)

Note that Cℓg (for g ∈ G) contains the (U(pI1)-equivariant) subcomplex

C•
g

def= HomE(∧•pI1 ⊗E LI1(µ),Mwg−1

0 )

with Cℓ
g being a dense subspace of Cℓg for each ℓ ≥ 0. The map between complexes C•

g → C•
g

induces a natural map for ℓ ≥ 0

Hℓ(C•
g ) −→ Hℓ(C•

g ) = Hℓ
g. (318)

Lemma 4.5.3. Assume that g ∈ X = PI1Pw. Then for ℓ ≥ 0, the morphism (318) is
an isomorphism, the image Dℓg of the differential map δℓ−1

g : Cℓ−1
g → Cℓg is closed and

Hℓ
g = Hℓ(C•

g ) = ker(δℓg)/Dℓg is a finite dimensional separated E-vector space (with its natural
Banach topology).
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Proof. As g ∈ X = PI1Pw, there exists h ∈ gPwg−1 such that hg ∈ PI1 . Using the U(pI1)-
equivariant topological isomorphism (313) (which restricts to an isomorphism Cℓ

g
∼−→ Cℓ

hg)
and upon replacing g with hg, we can assume g ∈ PI1 . As g ∈ PI1 , we know that δℓg
corresponds to δℓ1 = δℓ under (315) for h = g−1. Consequently, the desired results for δℓ−1

g ,
Dℓg and Hℓ

g follow from those for δℓ−1
1 = δℓ−1, Dℓ1 and Hℓ

1, which are proven in Lemma 4.5.1
and Lemma 4.5.2. In particular, it follows from (315) (for h = g−1 ∈ PI1) and (317) that
ωℓg,g−1 = (ωℓ1,g)−1 : Hℓ

g
∼→ Hℓ

1 is a topological isomorphism of finite dimensional E-vector
spaces (with their natural Banach topology).

Lemma 4.5.4. For g, h ∈ PI1 such that h ∈ g(PI1 ∩ Pw)g−1 we have

ωℓg,h = IdHℓ
g
. (319)

In particular, the map ωℓg,h only depends on the cosets gPw and hgPw.

Proof. For ℓ ≥ 0 and g ∈ PI1 by Lemma 4.5.3 the embedding Mwg−1

0 ↪→ Mwg−1

0 induces
an isomorphism ExtℓU(pI1 )(LI1(µ),Mwg−1

0 ) ∼→ ExtℓU(pI1 )(LI1(µ),Mwg−1

0 ) ∼= Hℓ
g. If g−1hg ∈

PI1 ∩Pw, the D(G)gPwg−1 = D(G)hgPw(hg)−1-equivariant isomorphism (312) of Fréchet spaces
restricts to an isomorphism of U(g)-modules Mwg−1

0
∼→M

w(hg)−1

0 . In the following we identify
Mw(hg)−1

0 with Mwg−1

0 and M
w(hg)−1

0 with Mwg−1

0 via (312). Hence (under (312)) h 7→ θℓg,h
gives an action of g(PI1 ∩ Pw)g−1 on Cℓg which preserves the subspace

Cℓ
g = HomE(∧ℓpI1 ⊗E LI1(µ),Mwg−1

0 ) ⊆ Cℓg.

By the definition of θℓg,h, we see that the action of g(PI1 ∩ Pw)g−1 on Cℓ
g is algebraic, and its

derivative at 1 ∈ g(PI1 ∩ Pw)g−1 recovers the natural action of g(pI1 ∩ pw)g−1 on Cℓ
g. Since

Hℓ
g
∼= ExtℓU(pI1 )(LI1(µ),Mwg−1

0 ) is a g(PI1 ∩Pw)g−1-subquotient of Cℓ
g on which g(pI1 ∩pw)g−1

(and even gpI1g
−1 = pI1) acts trivially, we deduce that g(PI1 ∩ Pw)g−1 also acts trivially on

Hℓ
g, i.e. ωℓg,h = IdHℓ

g
for h ∈ g(PI1 ∩ Pw)g−1. This proves (319).

Together with (317) this implies that the map ωℓg,h for g, h ∈ PI1 only depends on the
cosets g(PI1 ∩Pw) and hg(PI1 ∩Pw)g−1. For the final statement, note that, as g, h ∈ PI1 , the
cosets g(PI1 ∩ Pw) and hg(PI1 ∩ Pw)g−1 determine uniquely the cosets gPw and hgPw and
vice versa.

Let Pw,0 def= Pw∩G0 and PI1,0
def= PI1∩G0. For r ∈ I we let (Mw

0 )r def= D(G0)Pw,0,r⊗D(G0)Pw,0

Mw
0 and consider the Chevalley-Eilenberg complex

Cℓr
def= HomE(∧ℓpI1 ⊗E LI1(µ), (Mw

0 )r)

where we denote by δℓr : Cℓr → Cℓ+1
r the differential maps. We let Dℓr be the closure of

Dℓ def= δℓ−1(Cℓ−1) ⊆ Cℓ in Cℓr. Then Dℓr is a closed subspace of ker(δℓr) ⊆ Cℓr and we define
Hℓ
r

def= ker(δℓr)/Dℓr (with the quotient topology). The natural continuous map Mw
0 → (Mw

0 )r
induces continuous maps Cℓ → Cℓr, Dℓ → Dℓr, ker(δℓ)→ ker(δℓr) and

Hℓ −→ Hℓ
r. (320)
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As Mw
0 → (Mw

0 )r is a continous injection with dense image (see Lemma 4.3.4), so are
Cℓ → Cℓr and Dℓ → Dℓr.

Lemma 4.5.5. For r ∈ I the map ker(δℓ)→ ker(δℓr) has dense image and the map (320) is
a topological isomorphism of finite dimensional E-Banach spaces.

Proof. It follows from Lemma 4.3.4 (after conjugation by w) that there exists a family
of standard semi-norms {| · |r}r∈I (see Definition 4.1.3) on Mw

0 such that (Mw
0 )r is the

completion of Mw
0 under | · |r. By (ii) of Lemma 4.1.9, there exists a norm | · | on the

finite dimensional Fréchet U(t)-module HomE(∧ℓpI1 ⊗E LI1(µ), E) such that the family of
semi-norms | · | ⊗E | · |r on Cℓ = HomE(∧ℓpI1 ⊗E LI1(µ),Mw

0 ) is standard with Cℓr being
the completion of Cℓ under | · | ⊗E | · |r. By Remark 4.1.12 we know that ker(δℓr) ∩ Cℓ is
dense in ker(δℓr). Since ker(δℓr) ∩ Cℓ = ker(δℓr|Cℓ) = ker(δℓ|Cℓ) ⊆ ker(δℓ), we deduce that
ker(δℓ) is dense in ker(δℓr) (here we use Cℓ ↪→ Cℓr), and thus (320) has dense image. By
Lemma 4.5.1 the injection Mw

0 ↪→ Mw
0 induces an isomorphism Hℓ(C•) ∼→ Hℓ(C•) = Hℓ

and by Lemma 4.5.2 Hℓ is a finite dimensional E-Banach space. As δℓ−1 is continuous,
δℓ−1(Cℓ−1) is dense in δℓ(Cℓ−1) = Dℓ and hence in Dℓr, which forces δℓ−1(Cℓ−1) = Dℓr ∩ Cℓ

by the bijection statement in Remark 4.1.12. It follows that the map Hℓ(C•) → Hℓ
r is

an injection, and hence (with the isomorphism Hℓ(C•) ∼= Hℓ) that (320) is a (continuous)
injection. Hence (320) is a continuous injection with dense image from a finite dimensional
E-Banach space to an E-Banach space, it must therefore be a topological isomorphism of
finite dimensional E-Banach spaces.

Let us fix r ∈ I. For g ∈ G0 we define (Mw
0 )g−1

r as D(G0)gPw,0g−1-modules. Using
D(G0)Pw,0,r = D(G0)Pw,0Gm

1 ,r
(see (i) of Lemma 4.2.7 with m defined from r as in loc. cit.), for

g ∈ G0 and h ∈ gPw,0Gm
1 g

−1 the map v 7→ δhv gives a D(G0)gPw,0g−1,r = D(G0)hgPw,0(hg)−1,r-
equivariant topological isomorphism

(Mw
0 )g−1

r
∼−→ (Mw

0 )(hg)−1

r . (321)

We consider the following Chevalley-Eilenberg complex

Cℓg,r
def= HomE(∧ℓpI1 ⊗E LI1(µ), (Mw

0 )g−1

r )

and denote by δℓg,r : Cℓg,r → Cℓ+1
g,r the differential maps. We write Dℓg,r for the closure of

the image of Dℓg = δℓ−1
g (Cℓ−1

g ) in Cℓg,r and define Hℓ
g,r

def= ker(δℓg,r)/Dℓg,r. For g ∈ G0 and
h ∈ gPw,0Gm

1 g
−1, (321) induces a U(pI1)-equivariant topological isomorphism Cℓg,r

∼→ Cℓhg,r,
which further induces topological isomorphisms Dℓg,r

∼→ Dℓhg,r, ker(δℓg,r)
∼→ ker(δℓhg,r) and

Hℓ
g,r

∼→ Hℓ
hg,r. Hence Cℓg,r, Dℓg,r, ker(δℓg,r) and Hℓ

g,r only depend on the coset gPw,0G
m
1 ,

or equivalently on the group gPw,0G
m
1 g

−1 (writing gh = ghg−1g for h ∈ Pw,0G
m
1 ), up to

canonical U(pI1)-equivariant topological isomorphisms.

For g ∈ PI1,0, using Lemma 4.2.4 and that Dℓg is closed in Cℓg (Lemma 4.5.3), the projective
limit over r ∈ I of the strict exact sequence of E-Banach spaces 0 → Dℓg,r → ker(δℓg,r) →
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Hℓ
g,r → 0 gives back the strict exact sequence of E-Fréchet spaces 0 → Dℓg → ker(δℓg) →
Hℓ
g → 0.

Similar to (315), for r ∈ I, g ∈ G0, h ∈ PI1,0 and ℓ ≥ 0, we have topological isomorphisms
of E-Banach spaces

θℓg,h,r : Cℓg,r = HomE(∧ℓpI1 ⊗E LI1(µ), (Mw
0 )g−1

r )
∼= HomE((∧ℓpI1 ⊗E LI1(µ))h−1

, (Mw
0 )g−1h−1

r )
∼−→ HomE(∧ℓpI1 ⊗E LI1(µ), (Mw

0 )(hg)−1

r ) = Cℓhg,r (322)

under which the differential map δℓg,r corresponds to δℓhg,r. Hence we deduce a topological
isomorphism of E-Banach spaces (r ∈ I, g ∈ G0, h ∈ PI1,0, ℓ ≥ 0)

ωℓg,h,r : Hℓ
g,r

∼−→ Hℓ
hg,r. (323)

By Lemma 4.5.5 ker(δℓ1) is dense in ker(δℓ1,r) and (320) is a topological isomorphism of finite
dimensional E-Banach spaces. For g ∈ PI1,0, it then follows from (322) (with 1, g instead of
g, h) that ker(δℓg) is dense in ker(δℓg,r), and from (323) and (316) (also applied with 1, g) that
the natural map

Hℓ
g −→ Hℓ

g,r (324)
is a topological isomorphism of finite dimensional E-Banach space for r ∈ I.

We write for r ∈ I

D∞
r

def= D(G0)Pw,0,r ⊗D(G0)Pw,0
D∞ ∼=

(
D(G0)Pw,0,r ⊗D(G0)Pw,0

D∞(G0)Pw,0

)
⊗D∞(G0)Pw,0

D∞

∼= D∞(G0)Pw,0,r ⊗D∞(Pw,0) D
∞ ∼= D∞(Pw,0)r ⊗D∞(Pw,0) D

∞ (325)

where we recall that the second isomorphism follows from D(G0)Pw,0,r⊗U(g)E ∼= D∞(G0)Pw,0,r

(see Step 2 in the proof of Lemma 4.2.7) and D∞(G0)Pw,0
∼= D∞(Pw,0) (see Lemma 4.2.2)

and that the last follows using (280). Recall also that

D =Mw
0 ⊗̂ED∞ ∼= lim←−

r∈I
Dr (326)

where Dr
def= (Mw

0 )r ⊗E D∞
r with D∞

r finite dimensional (use the coadmissibility of M0
(Lemma 4.3.3) together with Lemma 4.2.12). For g ∈ G0 and r ∈ I we define D∞,g−1

r and
Dg−1
r as D(G0)gPw,0g−1-modules.

Recall that X = PI1Pw and X0 = X ∩ G0. We write X0 for the set of compact open
subsets of X0 stable under right multiplication by Pw,0, and X for the set of open subsets
of X which are stable under right multiplication by Pw and which have compact image in
X/Pw. We denote by U0 and U a general element of respectively X0 and X (do not confuse
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U here with the unipotent radical of the Borel subgroup B ⊆ G!). Since X0/Pw,0 = X/Pw,
the map X0 → X : U0 7→ U0Pw is a bijection with inverse given by U 7→ U ∩G0.

Recall from (241) that we have topological isomorphisms

D̂(G0)X0
∼= lim←−

U0∈X0

D(G0)U0
∼= lim←−

U0∈X0,r∈I
D(G0)U0,r,

and from (ii) of Lemma 4.2.7 that D(G0)U0,r is a finite free D(G0)Pw,0,r-module. Applying
Lemma 4.2.12 to V = D̂(G0)X0 , W = D, A = D(G0)Pw,0 (with the index r replaced by U0, r)
and again to V = D(G0)U0 , W = D, A = D(G0)Pw,0 , we obtain topological isomorphisms
(where ⊗̂D(G0)Pw,0

is defined before Lemma 4.2.12)

grw(V ∨
0 ) ∼= D̂(G0)X0⊗̂D(G0)Pw,0

D ∼= lim←−
U0∈X0,r∈I

(
D(G0)U0,r ⊗D(G0)Pw,0,r

Dr

)
∼= lim←−

U0∈X0

(
D(G0)U0⊗̂D(G0)Pw,0

D
) ∼= lim←−

U∈X

(
D(G)U⊗̂D(G)Pw

D
)
. (327)

where the first isomorphism follows from Proposition 4.4.3 and its proof, and the last iso-
morphism follows from

D(G0)U0⊗̂D(G0)Pw,0
D ∼= D(G)U⊗̂D(G)Pw

D (328)

which is analogous to (294).

By (303) for ℓ ≥ 0 we have ExtℓU(pI1 )(LI1(µ), grw(V ∨
0 )) ∼= Hℓ(C•

w) where

Cℓw
def= HomE(∧ℓpI1 ,HomE(LI1(µ), grw(V ∨

0 ))) ∼= HomE(∧ℓpI1 ⊗E LI1(µ), grw(V ∨
0 ))

and where Cℓw is a left D(PI1)-module by the discussion before (304) replacing LI1(µ) there
by ∧ℓpI1 ⊗E LI1(µ) with the diagonal D(PI1)-action (via [ST05, §A] and with the adjoint
action of PI1 on ∧ℓpI1). We write δℓw : Cℓw → Cℓ+1

w for the differential maps.

The topological isomorphisms (327) induce topological isomorphisms for ℓ ≥ 0

Cℓw ∼= lim←−
U0∈X0,r∈I

CℓU0,r
∼= lim←−

U0∈X0

CℓU0
∼= lim←−

U∈X
CℓU (329)

where
CℓU0,r

def= HomE

(
∧ℓ pI1 ⊗E LI1(µ), D(G0)U0,r ⊗D(G0)Pw,0,r

Dr

)
and similarly with CℓU0 , CℓU . Note that (328) gives a natural identification CℓU0 = CℓU . We
write δℓU0,r, δℓU0 and δℓU for the corresponding differential maps. Under (329), we have δℓw =
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lim←−U0,r
δℓU0,r = lim←−U0

δℓU0 = lim←−U δ
ℓ
U . Recall from (ii) of Lemma 4.2.7 that D(G0)U0,r is a finite

free D(G0)Pw,0,r-module with a basis given by {δg}g∈U0Gm
1 /Pw,0Gm

1
, so that we have

D(G0)U0,r ⊗D(G0)Pw,0,r
Dr
∼=

⊕
g∈U0Gm

1 /Pw,0Gm
1

Dg−1

r

∼=
⊕

g∈U0Gm
1 /Pw,0Gm

1

(
((Mw

0 )r)g
−1 ⊗E D∞,g−1

r

)
. (330)

This induces U(pI1)-equivariant isomorphisms for ℓ ≥ 0

CℓU0,r
∼=

⊕
g∈U0Gm

1 /Pw,0Gm
1

HomE(∧ℓpI1⊗E LI1(µ), Dg−1

r ) ∼=
⊕

g∈U0Gm
1 /Pw,0Gm

1

(
Cℓg,r⊗ED∞,g−1

r

)
(331)

and the differential maps satisfy
δℓU0,r =

⊕
g∈U0Gm

1 /Pw,0Gm
1

(δℓg,r ⊗E Id
D∞,g−1

r
). (332)

We write Dℓw for the closure of δℓ−1
w (Cℓ−1

w ) in Cℓw and define Hℓ
w

def= ker(δℓw)/Dℓw, so that we
have a strict short exact sequence

0 −→ Dℓw −→ ker(δℓw) −→ Hℓ
w −→ 0. (333)

For U0 ∈ X0 and r ∈ I, we similarly define Dℓ∗ and Hℓ
∗ with ∗ being U0, r or U0 or U = U0Pw.

In particular, we have a short exact sequence of E-Banach spaces
0 −→ DℓU0,r −→ ker(δℓU0,r) −→ H

ℓ
U0,r −→ 0. (334)

The projective limit over r ∈ I of (334) gives a strict exact sequence of E-Fréchet spaces
0 −→ DℓU0 −→ ker(δℓU0) −→ Hℓ

U0 −→ 0, (335)
and the projective limit of (335) over U0 ∈ X0 gives back (333) (using (329) and Lemma 4.2.4).
Moreover we have topological isomorphisms by (331) and (332)

ker(δℓU0,r) ∼=
⊕

g∈U0Gm
1 /Pw,0Gm

1

(
ker(δℓg,r)⊗E D∞,g−1

r

)
and DℓU0,r

∼=
⊕

g∈U0Gm
1 /Pw,0Gm

1

(
Dℓg,r ⊗E D∞,g−1

r

)
,

which together with (335) give a topological isomorphism

Hℓ
U0,r
∼=

⊕
g∈U0Gm

1 /Pw,0Gm
1

(
Hℓ
g,r ⊗E D∞,g−1

r

)
. (336)

For g ∈ X/Pw = X0/Pw,0 there is a natural continuous map Cℓg → Cℓw induced by the
continuous map Dg−1 = δgD → grw(V ∨

0 ) (see (297)). Taking the direct sum over g ∈ X/Pw,
we obtain a map

Cℓw,♭
def=

⊕
g∈X/Pw

Cℓg⊗̂E(D∞)g−1 −→ Cℓw. (337)

Similarly, for U ∈ X , we have a map
CℓU,♭

def=
⊕

g∈U/Pw

Cℓg⊗̂E(D∞)g−1 −→ CℓU . (338)
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Lemma 4.5.6. The maps (337) and (338) are injective with dense image.

Proof. Let U ∈ X , U0
def= U ∩ G0 ∈ X0 and note that U0/Pw,0 = U/Pw. For g, g′ ∈ U0 and

r ∈ I one checks from (331) that Cℓg,r = Cℓg′,r ⊆ CℓU0,r if and only if gPw,0Gm
1 = g′Pw,0G

m
1 .

Let S ⊆ U0 be a finite subset such that the cosets gPw,0 are distinct for g ∈ S. (Since
X0/Pw,0 = X/Pw, this is equivalent to gPw being distinct for g ∈ S.) Then for r ∈ I
sufficiently close to 1 the cosets gPw,0Gm

1 are distinct for g ∈ S and thus from (331) CℓU0,r (for
such an r) contains as closed subspace the direct sum ⊕

g∈S Cℓg,r ⊗E (D∞
r )g−1 . Taking lim←−r∈I

we obtain by Lemma 4.2.12 a closed embedding⊕
g∈S
Cℓg⊗̂E(D∞)g−1

↪→ CℓU0
∼= CℓU , (339)

and taking the projective limit over U0 ∈ X0 a closed embedding (using (329))⊕
g∈S
Cℓg⊗̂E(D∞)g−1

↪→ Cℓw. (340)

Taking the colimit over S in (339) and (340) gives the maps (338) and (337) which are
thus injective. As the map (338) induces a surjection CℓU0,♭

↠ CℓU0,r for each r ∈ I (see
(331)), it has dense image. The inclusion U0 ⊆ X0 induces a projection Cℓw,♭ ↠ CℓU0,♭

which is
compatible with the natural projection Cℓw ↠ CℓU0 . Since Cℓw ∼= lim←−U0∈X0

CℓU0 and since (338)
has dense image for each U0, it follows that (337) also has dense image.

In particular, the natural map Cℓg → Cℓw for g ∈ X (resp. Cℓg → CℓU for U ∈ X and g ∈ U)
is injective.

Note that the dense subspace Cℓw,♭ ⊆ Cℓw is PI1-stable with h ∈ PI1 acting (on the left) via
the collection of maps (for g ∈ X/Pw)

θℓg,h⊗̂Eκg,h : Cℓg⊗̂E(D∞)g−1 −→ Cℓhg⊗̂E(D∞)(hg)−1

where
κg,h : (D∞)g−1 −→ (D∞)(hg)−1 (341)

sends v to δhv. As δℓhg = δhδ
ℓ
gδh−1 for ℓ ≥ 0, g ∈ X/Pw and h ∈ PI1 , the action of PI1 on Cℓw,♭

stabilizes the two (closed) subspaces⊕
g∈X/Pw

Dℓg⊗̂E(D∞)g−1 ⊆ ker(δℓw) ∩ Cℓw,♭ =
⊕

g∈X/Pw

ker(δℓg)⊗̂E(D∞)g−1

and thus induces a left action of PI1 on

Hℓ
w,♭

def=
⊕

g∈X/Pw

Hℓ
g ⊗E (D∞)g−1
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with h ∈ PI1 acting via the collection of maps (for g ∈ X/Pw)

ωℓg,h ⊗E κg,h : Hℓ
g ⊗E (D∞)g−1 −→ Hℓ

hg ⊗E (D∞)(hg)−1
. (342)

The maps (337) and (338) induce maps

Hℓ
w,♭ −→ Hℓ

w

and for U ∈ X
Hℓ
U,♭

def=
⊕

g∈U/Pw

Hℓ
g ⊗E (D∞)g−1 −→ Hℓ

U . (343)

Lemma 4.5.7. For U ∈ X such that U ⊆ PI1,0Pw the map (343) is injective with dense
image.

Proof. Since U ⊆ PI1,0Pw and thus U0 ⊆ PI1,0Pw,0, each (representative) g in the decomposi-
tion (336) can be chosen in PI1,0, in which case we have the topological isomorphism (324).
This forces the composition Hℓ

U0,♭
→ Hℓ

U0 → H
ℓ
U0,r to be a surjection for each r ∈ I, and

thus (343) has dense image. By a similar argument as in the proof of Lemma 4.5.6 using
(336), (324), (334) and (335) the map⊕

g∈S
Hℓ
g ⊗E (D∞)g−1 −→ Hℓ

U = Hℓ
U0

is injective for each finite subset S ⊆ U0 such that the cosets gPw,0 for g ∈ S are distinct.
Taking the colimit over such S, it follows that (343) is injective.

By Lemma 4.5.4 applied with 1, g (g ∈ PI1) instead of g, h the map ωℓ1,g in (316) for
g ∈ PI1 only depends on the coset gPw. Consequently, we can define the map

ζℓ : Hℓ
1 ⊗E

( ⊕
g∈X/Pw

(D∞)g−1
)
−→ Hℓ

w,♭ (344)

by sending (x, y) ∈ Hℓ
1 ⊗E (D∞)g−1 to (ωℓ1,g(x), y) ∈ Hℓ

g ⊗E (D∞)g−1 for g ∈ PI1 . Note that
since ωℓ1,g is bijective, the map ζℓ is also bijective. We defined above a left action of PI1 on
Hℓ
w,♭. We define one on the left hand side of (344) by letting PI1 act trivially on Hℓ

1 and by
(341) on ⊕g∈X/Pw

(D∞)g−1 .

Lemma 4.5.8. The map ζℓ is PI1-equivariant.

Proof. We have for h ∈ PI1 , g ∈ X/Pw and (x, y) ∈ Hℓ
1 ⊗E (D∞)g−1 :

ζℓ(δh · (x, y)) = ζℓ((x, κg,h(y))) = (ωℓ1,hg(x), κg,h(y)) = (ωℓg,h(ωℓ1,g(x)), κg,h(y)) = δh · ζℓ(x, y)

where the third equality follows from (317) and the last from (342).
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For U ∈ X the map ζℓ in (344) restricts to a bijection

ζℓU : Hℓ
1 ⊗E

( ⊕
g∈U/Pw

(D∞)g−1
)

∼−→ Hℓ
U,♭. (345)

We recall that Hℓ
1 is finite dimensional by Lemma 4.5.5.

Lemma 4.5.9. For U ∈ X such that U ⊆ PI1,0Pw the differential map δℓU has closed image
and the bijection ζℓU uniquely extends into an isomorphism of E-Fréchet spaces

Hℓ
1 ⊗E

(
D∞(G)U⊗̂D∞(G)Pw

D∞
) ∼−→ Hℓ

U . (346)

Proof. Note that, although U is not compact, U/Pw = U0/Pw,0 is and by (244) we have
D∞(G)U ∼= D̂∞(G)U . Recall that given U,U ′ ∈ X satisfying U∩U ′ = ∅, we have D(G)U⊔U ′ ∼=
D(G)U⊕D(G)U ′ and D∞(G)U⊔U ′ ∼= D∞(G)U⊕D∞(G)U ′ , and thus CℓU⊔U ′

∼= CℓU⊕CℓU ′ , δℓU⊔U ′ =
δℓU ⊕ δℓU ′ , DℓU⊔U ′

∼= DℓU ⊕ DℓU ′ and Hℓ
U⊔U ′

∼= Hℓ
U ⊕ Hℓ

U ′ . Moreover we have PI1,0Pw \ U ∈ X
for U ∈ X such that U ⊆ PI1,0Pw (writing U = U0Pw where U0 = U ∩ G0 ⊆ PI1,0Pw,0, one
checks that PI1,0Pw \ U = (PI1,0Pw,0 \ U0)Pw). It follows from all this that the statement of
the lemma for U = PI1,0Pw is the “direct sum” of the statement for U and for PI1,0Pw \ U .
Hence it is enough to prove (346) for U = PI1,0Pw or equivalently U0 = PI1,0Pw,0.

Given a norm | · | on a E-vector space V equipped with a left action by a group H, we say
that |·| is H-invariant if |h·x| = |x| for each h ∈ H and x ∈ V . For r ∈ I, let m, s be as before
Lemma 4.2.5. By [Schm08, Prop. 5.6] the natural norm on the Banach algebra D(Gm

1 )s is
multiplicative, which together with [Schm08, Prop. 6.2] (cf. Lemma 4.2.5) implies that the
natural norm on D(G0)1,r = D(G0)Gm

1 ,r
is multiplicative and in particular Gm

1 -invariant (for
the natural left action of Gm

1 on D(G0)Gm
1 ,r

). This together with (i) of Lemma 4.2.7 implies
that there exists a Pw,0Gm

1 -invariant norm on D(G0)Pw,0,r = D(G0)Pw,0Gm
1 ,r

which defines its
Banach topology. As (Mw

0 )r is a finitely generated D(G0)Pw,0,r = D(G0)Pw,0Gm
1 ,r

-module,
the Pw,0Gm

1 -invariant norm on D(G0)Pw,0Gm
1 ,r

induces a Pw,0G
m
1 -invariant norm on (Mw

0 )r
that defines its Banach topology ([ST03, Prop. 2.1.i]). Similarly, we can choose a Pw,0Gm

1 -
invariant norm | · |∞r on D∞

r (which defines its Banach topology). We write | · |r (resp. | · |∞r )
for the induced semi-norm onMw

0 (resp. on D∞) and | · |D,r def= | · |r ⊗E | · |∞r for the induced
semi-norm on D (under which the completion of is Dr). (Note that this semi-norm | · |r on
Mw

0 might be different than the one in the proof of Lemma 4.5.5.)

For r ∈ I we let Jr def= PI1,0Pw,0G
m
1 /Pw,0G

m
1 (a finite set). We fix a choice of representatives

J̃r ⊆ PI1,0 for Jr, and choose them in a compatible way so that we have a surjection J̃r′ ↠ J̃r
for r ≤ r′.

Given g ∈ PI1,0, we write |·|g−1
r (resp. |·|∞,g−1

r , |·|Dg−1 ,r) for the corresponding semi-norm on
Mwg−1

0 (resp. D∞,g−1 , Dg−1), and (Mwg−1

0 )r (resp. (D∞,g−1)r, (Dg−1)r) for the corresponding
completion. We have obvious identifications (Mwg−1

0 )r = (Mw
0 )g−1

r , (D∞,g−1)r = D∞,g−1
r and
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(Dg−1)r = Dg−1
r . Since we have |δh · x|r = |x|r for h ∈ Pw,0Gm

1 and x ∈ (Mw
0 )r, the norm

| · |g−1
r on (Mwg−1

0 )r only depends on the coset gPw,0Gm
1 . Similar facts hold for the norms

| · |∞,g−1
r and | · |Dg−1 ,r on respectively (D∞,g−1)r and (Dg−1)r.

We fix a norm | · |pI1
on pI1 . For x ∈ pI1 the map g 7→ |Ad(g)(x)|pI1

is a locally constant
function on PI1,0. Hence, replacing | · |pI1

by the norm x 7→ |
∫
PI1,0

Ad(g)(x)|pI1
dg for some

Haar measure dg on PI1,0, we can assume |Ad(g)(x)|pI1
= |x|pI1

for g ∈ PI1,0 and x ∈ pI1 .
For ℓ ≥ 0, the norm | · |pI1

induces a norm on ⊗ℓEpI1 (the tensor product norm) and then a
norm | · |∧ℓpI1

on ∧ℓpI1 (the quotient norm) which satisfies (g ∈ PI1,0, x ∈ ∧ℓpI1)

|Ad(g)(x)|∧ℓpI1
= |x|∧ℓpI1

. (347)

For g ∈ PI1,0, the norm | · |∧ℓpI1
on ∧ℓpI1 with the semi-norm | · |g−1

r onMwg−1

0 induce a semi-
norm | · |Cℓ

g ,r
on Cℓg such that the corresponding completion is Cℓg,r (in particular {| · |Cℓ

g ,r
}r∈I

defines the Fréchet topology on Cℓg). It follows from (347) and from (315) that for g, h ∈ PI1,0,
r ∈ I and x ∈ Cℓg

|θℓg,h(x)|Cℓ
hg
,r = |x|Cℓ

g ,r
. (348)

The (induced) norm | · |Cℓ
g ,r

on Cℓg,r induces a norm on the closed subspaces Dℓg,r, ker(δℓg,r) and
thus a norm | · |Hℓ

g ,r
on Hℓ

g,r, which satisfies for g, h ∈ PI1,0, r ∈ I and x ∈ Hℓ
g (using (316))

|ωℓg,h(x)|Hℓ
hg
,r = |x|Hℓ

g ,r
. (349)

As the norm | · |g−1
r on (Mwg−1

0 )r only depends on gPw,0Gm
1 , so does the norm | · |Cℓ

g ,r
on Cℓg,r

and the norm | · |Hℓ
g ,r

on Hℓ
g,r.

Using (331), we obtain a norm |·|Cℓ
U0
,r on CℓU0,r by taking the maximum of |·|Cℓ

g ,r
⊗E(|·|∞r )g−1

on the direct summands Cℓg,r ⊗E (D∞
r )g−1 for g ∈ J̃r (recall U0 = PI1,0Pw,0). As both | · |Cℓ

g ,r

and (| · |∞r )g−1 only depend on gPw,0G
m
1 , so does | · |Cℓ

g ,r
⊗E (| · |∞r )g−1 , and thus | · |Cℓ

U0
,r

does not depend on the choice of J̃r. Since CℓU0,r is a Banach space with norm | · |Cℓ
U0
,r and

CℓU0 = lim←−r∈I C
ℓ
U0,r, the family of semi-norms | · |Cℓ

U0
,r defines the Fréchet topology on CℓU0 .

Note that for g ∈ PI1,0 the restriction of | · |Cℓ
U0
,r to Cℓg⊗̂E(D∞)g−1 via (338) (and Lemma

4.5.6) is | · |Cℓ
g ,r
⊗E (| · |∞r )g−1 . Finally the norm | · |Cℓ

U0
,r on CℓU0,r induces a norm on the closed

subspaces DℓU0,r, ker(δℓU0,r) and thus a norm on Hℓ
U0,r which, under (336), is explicitly

| · |Hℓ
U0
,r

def= max
g∈J̃r

(
| · |Hℓ

g ,r
⊗E (| · |∞r )g−1)

. (350)

We now prove that the image of the differential map δℓU0 is closed for ℓ ≥ 0. Recall that the
Fréchet topology on CℓU0 is defined by the family of semi-norms {|·|Cℓ

U0
,r}r∈I . We write | · |′Cℓ

U0
,r
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for the induced semi-norm on the quotient CℓU0/ker(δℓU0). Since δℓ1 : Cℓ1/ker(δℓ1)
∼→ Dℓ+1

1 ⊆ Cℓ+1
1

is a topological isomorphism by Lemma 4.5.3 (applied to g = 1), given r ∈ I, there exists
r′ ≥ r and Ar,r′ ∈ Q>0 such that

|x|′Cℓ
1,r
≤ Ar,r′ |δℓ1(x)|Cℓ+1

1 ,r′ (351)

for x ∈ Cℓ1/ker(δℓ1). Let g ∈ PI1,0, by (315) (applied with 1, g instead of h, g), we have a
topological isomorphism θℓ1,g : Cℓ1

∼−→ Cℓg. This together with θℓ+1
1,g ◦ δℓ1 = δℓg ◦ θℓ1,g, (351) and

(348) implies
|y|′Cℓ

g ,r
≤ Ar,r′|δℓg(y)|Cℓ+1

g ,r′ (352)

for y ∈ Cℓg/ker(δℓg). By continuity (352) holds for any g ∈ PI1,0 and any y ∈ Cℓg,r′/ker(δℓg,r′).
Using (331) (for r and r′), we deduce for y ∈ CℓU0,r′/ker(δℓU0,r′)

|y|′Cℓ
U0
,r ≤ Ar,r′|δℓU0(y)|Cℓ+1

U0
,r′ . (353)

As (353) a fortiori holds for any y ∈ CℓU0/ker(δℓU0), we see that δℓU0 : CℓU0/ker(δℓU0) ↪→ Cℓ+1
U0 is

a closed embedding for ℓ ≥ 0 (in particular δℓU0(CℓU0) = Dℓ+1
U0 ).

We finally prove the isomorphism (346). Recall first that by Lemma 4.2.12 and (ii) of
Lemma 4.2.7 we have isomorphisms

D∞(G0)U0⊗̂D∞(G0)Pw,0
D∞ ∼= lim←−

r∈I

(
D∞(G0)U0,r⊗D∞(G0)Pw,0,r

D∞
r

) ∼= lim←−
r∈I

(⊕
g∈J̃r

(D∞
r )g−1

)
. (354)

By an argument similar to the proof of the injectivity of (338) in Lemma 4.5.6, we see that
(354) contains as a dense subspace⊕

g∈U/Pw

(D∞)g−1 =
⊕

g∈U0/Pw,0

(D∞)g−1
. (355)

The Fréchet topology on (354) is defined by {| · |∞U0,r}r∈I where | · |∞U0,r
def= max

g∈J̃r
(| · |∞r )g−1),

and (354) is the completion of (355) under this topology. In particular, the left hand side of
(346) is the completion of the left hand side of (345) under the Fréchet topology defined by
the family of semi-norms

{| · |Hℓ
1,r
⊗E | · |∞U0,r}r∈I . (356)

On the other hand the Fréchet topology on Hℓ
U0 is defined by the family of semi-norms

{| · |Hℓ
U0
,r}r∈I (357)

from (350). Since the map (343) is injective with dense image by Lemma 4.5.7, Hℓ
U0 can be

identified with the completion of Hℓ
U0,♭

under {| · |Hℓ
U0
,r}r∈I .

By (349) (applied with 1, g instead of h, g), for g ∈ PI1,0 the norm | · |Hℓ
1,r

on Hℓ
1,r is

identical to the norm | · |Hℓ
g ,r

on Hℓ
g,r under (323). Consequently, the two families of semi-

norms (357) and (356) are identical under the isomorphism ζℓU0 . It follows that ζℓU0 uniquely
extends by completion into a topological isomorphism of E-Fréchet spaces as in (346).
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We can finally prove the first important result of this section.

Theorem 4.5.10. We have a (left) D∞(PI1)-equivariant isomorphism of Fréchet spaces for
ℓ ≥ 0

ExtℓU(pI1 )(LI1(µ),Mw
0 )⊗E

(
D̂∞(G)PI1Pw⊗̂D∞(G)Pw

(π∞,w
0 )∨

)
∼−→ ExtℓU(pI1 )(LI1(µ), grw(V ∨

0 )) (358)

with trivial D∞(PI1)-action on the finite dimensional E-vector space ExtℓU(pI1 )(LI1(µ),Mw
0 )

and where D̂∞(G)PI1Pw is defined in (244).

Proof. Recall that ExtℓU(pI1 )(LI1(µ),Mw
0 ) ∼→ ExtℓU(pI1 )(LI1(µ),Mw

0 ) is finite dimensional by
Lemma 4.5.1. Let U ∈ X . If there exists t ∈ T such that U ⊆ tPI1,0Pw = tPI1,0t

−1Pw, then
replacing G0 (resp. PI1,0, Pw,0) by tG0t

−1 (resp. tPI1,0t
−1, tPw,0t−1), a parallel argument as

in the proof of Lemma 4.5.9 shows that δℓU is strict and that ζℓU uniquely extends into a
topological isomorphism as in (346). In general, since U/Pw is compact there exists a finite
partition U = ⊔

i Ui and elements ti ∈ T such that Ui ∈ X and Ui ⊆ tiPI1,0Pw = tiPI1,0t
−1
i Pw

for each i (use the open covering (tPI1,0t
−1/(tPI1,0t

−1 ∩ Pw))t∈T of PI1/(PI1 ∩ Pw)). Since
CℓU ∼=

⊕
i CℓUi

, δℓU = ⊕
i δ
ℓ
Ui

and ζℓU = ⊕
i ζ

ℓ
Ui

, we deduce that δℓU is strict and that ζℓU uniquely
extends into a topological isomorphism (346). Since Cℓw ∼= lim←−U∈X C

ℓ
U with δℓw = lim←−U∈X δ

ℓ
U

(see (329)), we deduce that δℓ−1
w is strict with closed image Dℓw and thus Hℓ(C•

w) = Hℓ
w.

Taking lim←−U∈X on (346), we obtain a topological isomorphism

lim←−
U∈X

ζℓU : Hℓ
1 ⊗E

(
D̂∞(G)X⊗̂D∞(G)Pw

D∞
) ∼−→ Hℓ

w = Hℓ(C•
w) (359)

as the composition of the topological isomorphisms

Hℓ
1 ⊗E

(
D̂∞(G)X⊗̂D∞(G)Pw

D∞
) ∼= Hℓ

1 ⊗E
(
( lim←−
U∈X

D∞(G)U)⊗̂D∞(G)Pw
D∞

)
∼= lim←−

U∈X

(
Hℓ

1 ⊗E D∞(G)U⊗̂D∞(G)Pw
D∞

) ∼= lim←−
U∈X
Hℓ
U
∼= Hℓ

w.

Here we have used the topological isomorphisms

D̂∞(G)X⊗̂D∞(G)Pw
D∞ ∼= D̂∞(G0)X0⊗̂D∞(G0)Pw,0

D∞

∼= lim←−
U0∈X0

(
D∞(G0)U0⊗̂D∞(G0)Pw,0

D∞
) ∼= lim←−

U∈X

(
D∞(G)U⊗̂D∞(G)Pw

D∞
)

which follows by similar argument as for (327). The source (resp. target) of (359) contains
Hℓ

1⊗E
(⊕

g∈X/Pw
(D∞)g−1

)
(resp. Hℓ

w,♭) as a PI1-stable dense subspace and the isomorphism
(359) restricts to the isomorphism ζℓ of (344) on these dense subspaces. Then Lemma 4.5.8
forces (359) to be D(PI1)-equivariant (hence D∞(PI1)-equivariant). Finally, by (303) and
(302) the isomorphism (359) is (358).
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We write Σi
def= W (LIi

) · J (π∞
i ) ⊆ T̂∞ for i = 0, 1 where J (π∞

i ) is in Definition 2.1.4 and
the dot action · in (35). Recall that the categories BIi

Σi
are defined above (37) and that any

π∞
i in BIi

Σi
is of finite length. The following corollary to Theorem 4.5.10 is crucial.

Corollary 4.5.11. Keep the setting of Theorem 4.5.10 and assume moreover that the smooth
representations π∞

i of LIi
are of finite length for i = 0, 1. We have canonical isomorphisms

of finite dimensional E-vector spaces for w ∈ W I0,I1 and k, ℓ ≥ 0

ExtkD∞(PI1 )

(
(π∞

1 )∨,ExtℓU(pI1 )(LI1(µ), grw(V ∨
0 ))

)
∼= ExtℓU(pI1 )(LI1(µ),Mw

0 )⊗E ExtkLI1
(i∞I0,I1,w(JI0,I1,w(π∞

0 )), π∞
1 )∞ (360)

where i∞I0,I1,w is defined in (45) and JI0,I1,w in (43). If moreover Σi is a single G-regular
W (LIi

)-coset, π∞
i is in BIi

Σi
for i = 0, 1 and Σ1 ∩W (G) · Σ0 ̸= ∅, then (360) is non-zero for

at most one w ∈ W I0,I1, which is the unique w ∈ W I0,I1 such that Σ1 ∩ w−1 · Σ0 ̸= ∅.

Proof. Recall from Lemma 4.2.13 and its proof (applied with P = Pw, X = PI1Pw and
Q = PI1) that (indPI1Pw

Pw
π∞,w

0 )∞ (with the finest locally convex topology) is a smooth rep-
resentation of PI1 on a vector space of compact type and that we have isomorphisms of
E-Fréchet spaces with separately continuous D∞(PI1)-actions

D̂∞(G)PI1Pw⊗̂D∞(G)Pw
(π∞,w

0 )∨ ∼=
(
(indPI1Pw

Pw
π∞,w

0 )∞
)∨ ∼=

(
(indPI1

PI1 ∩Pw
π∞,w

0 )∞
)∨
. (361)

From (361) and Theorem 4.5.10 we deduce isomorphisms for k, ℓ ≥ 0 (using that D∞(PI1)
acts trivially on ExtℓU(pI1 )(LI1(µ),Mw

0 ))

ExtkD∞(PI1 )

(
(π∞

1 )∨,ExtℓU(pI1 )(LI1(µ), grw(V ∨
0 ))

)
∼= ExtℓU(pI1 )(LI1(µ),Mw

0 )⊗E ExtkD∞(PI1 )

(
(π∞

1 )∨, ((indPI1
PI1 ∩Pw

π∞,w
0 )∞)∨

)
. (362)

By Lemma 4.2.3 we have for k1 ≥ 0 (writing 1 for the trivial representation of NI1)

Extk1
D∞(NI1 )

(
1,
(
(indPI1

PI1 ∩Pw
π∞,w

0 )∞
)∨
)
∼= Extk1

NI1

((
(indPI1

PI1 ∩Pw
π∞,w

0 )∞
)
, 1
)∞

. (363)

Since Jacquet functors are exact on smooth representations, we deduce from (363) that we
have for k1 > 0

Extk1
D∞(NI1 )

(
1,
(
(indPI1

PI1 ∩Pw
π∞,w

0 )∞
)∨
)

= 0 (364)

and a canonical D∞(LI1)-equivariant isomorphism of E-Fréchet spaces

HomD∞(NI1 )

(
1,
(
(indPI1

PI1 ∩Pw
π∞,w

0 )∞
)∨
)
∼=
((

(indPI1
PI1 ∩Pw

π∞,w
0 )∞

)
NI1

)∨
. (365)

Combining (364) and (365) with the (standard “Hochschild-Serre type”) spectral sequence

Extk2
D∞(LI1 )

(
(π∞

1 )∨,Extk1
D∞(NI1 )(1,−)

)
=⇒ Extk1+k2

D∞(PI1 )((π∞
1 )∨,−)
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we deduce isomorphisms for k ≥ 0

ExtkD∞(PI1 )

(
(π∞

1 )∨,
(
(indPI1

PI1 ∩Pw
π∞,w

0 )∞
)∨
)

∼= ExtkD∞(LI1 )

(
(π∞

1 )∨,
(
((indPI1

PI1 ∩Pw
π∞,w

0 )∞)NI1

)∨
)
. (366)

Recall from (49) the isomorphism of smooth admissible representations of LI1(
(indPI1

PI1 ∩Pw
π∞,w

0 )∞
)
NI1

∼= i∞I0,I1,w(JI0,I1,w(π∞
0 )),

which together with (366), (362) and Lemma 4.2.3 gives the isomorphism (360). The finite
dimensionality of ExtkLI1

(i∞I0,I1,w(JI0,I1,w(π∞
0 )), π∞

1 )∞ comes from the finite length of both rep-
resentations i∞I0,I1,w(JI0,I1,w(π∞

0 )) and π∞
1 ([SS93, §3 Cor. 3] noting that i∞I0,I1,w(JI0,I1,w(π∞

0 ))
is of finite length as π∞

0 is by [Re10, §VI.6.4] and [Re10, §VI.6.2]). For the last statement,
note first that by the definition of regularity (Definition 2.1.4), we have Σ1∩W (G) ·Σ0 ̸= ∅ if
and only if there exists w ∈ W (G) such that Σ1 ∩w−1 ·Σ0 ̸= ∅, and we can take w in W I0,I1

which is then unique. The last statement then follows from the first and (ii) of Lemma 2.1.18
(applied with LI = G).

Remark 4.5.12. For i = 0, 1 and Σi as before Corollary 4.5.11, assume that π∞
i is in BIi

Σi
.

For w ∈ W I0,I1 , the isomorphism (358) is functorial in π∞
0 and the isomorphism (360) is

functorial in both π∞
0 and π∞

1 .

We now use Corollary 4.5.11 to derive several results on the groups Ext•
G(V0, V1) of (230).

Corollary 4.5.13. Keep the setting of Theorem 4.5.10, let Σi = W (LIi
) · J (π∞

i ) ⊆ T̂∞ and
assume moreover that the smooth representations π∞

i of LIi
are of finite length (i = 0, 1).

(i) The E-vector space ExtkG(V0, V1) is finite dimensional for k ≥ 0.

(ii) Assume that π∞
i is in BIi

Σi
for i = 0, 1. If Σ1 ∩W (G) · Σ0 = ∅, then ExtkG(V0, V1) = 0

for k ≥ 0.

(iii) Assume that π∞
i is in BIi

Σi
for i = 0, 1. Let ξ : Z(lI1) → E be the unique infinitesimal

character such that LI1(µ)ξ ̸= 0. If ExtkG(V0, V1) ̸= 0 for some k ≥ 0, then there exists
w ∈ W I0,I1 and ℓ ≤ k such that Σ1 ∩ w−1 · Σ0 ̸= ∅ and Hℓ(nI1 ,M

w
0 )ξ ̸= 0 (see before

Lemma 3.1.3 for the notation).

(iv) Assume that Σi is a single G-regular W (LIi
)-coset and that π∞

i is in BIi
Σi

for i = 0, 1. If
Σ1 ∩W (G) ·Σ0 ̸= ∅, then there exists a unique w ∈ W I0,I1 such that Σ1 ∩w−1 ·Σ0 ̸= ∅,
and we have a spectral sequence

ExtℓU(g)(M1,M
w
0 )⊗E ExtkLI1

(
i∞I0,I1,w(JI0,I1,w(π∞

0 )), π∞
1

)∞
=⇒ Extk+ℓ

G (V0, V1). (367)
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Proof. We prove (i). By the first statement of Corollary 4.5.11 the E-vector space
ExtkD∞(PI1 )((π∞

1 )∨,ExtℓU(pI1 )(LI1(µ), grw(V ∨
0 ))) is finite dimensional for k ≥ 0, ℓ ≥ 0 and w ∈

W I0,I1 . By the spectral sequence (306) this implies that ExtkD(PI1 )(LI1(µ)⊗E (π∞
1 )∨, grw(V ∨

0 ))
is finite dimensional for k ≥ 0 and w ∈ W I0,I1 . By an obvious dévissage and (299) we deduce
that ExtkG(V0, V1) is finite dimensional for k ≥ 0.

We prove (ii). As Σ1 ∩W (G) · Σ0 = ∅ and by (55), we have i∞I0,I1,w(JI0,I1,w(π∞
0 ))BI1

Σ1
= 0

using the property of the Bernstein block BI1
Σ1 (see the paragraph after Remark 2.1.6). Since

i∞I0,I1,w(JI0,I1,w(π∞
0 )) and π∞

1 live in different Bernstein blocks, we deduce for k ≥ 0:

ExtkLI1
(i∞I0,I1,w(JI0,I1,w(π∞

0 )), π∞
1 )∞ = 0.

Together with (306) applied with D = grw(V ∨
0 ), (360) and a dévissage with respect to the

W I0,I1-filtration Fil•(V ∨
0 ) on V ∨

0 , we deduce ExtkD(PI1 )(LI1(µ) ⊗E (π∞
1 )∨, V ∨

0 ) = 0 for k ≥ 0
and hence by (299) ExtkG(V0, V1) = 0 for k ≥ 0.

We prove (iii). If ExtkG(V0, V1) ̸= 0 we have ExtkD(PI1 )(LI1(µ) ⊗E (π∞
1 )∨, V ∨

0 ) ̸= 0 by
(299), and thus there exists w ∈ W I0,I1 such that ExtkD(PI1 )(LI1(µ)⊗E (π∞

1 )∨, grw(V ∨
0 )) ̸= 0.

By (306) (with D = grw(V ∨
0 )), (360) and Lemma 4.5.1 (together with Shapiro’s lemma

for Lie algebra cohomology) there exist ℓ, k′ ≤ k such that ExtℓU(g)(M1,M
w
0 ) ̸= 0 and

Extk′

LI1
(i∞I0,I1,w(JI0,I1,w(π∞

0 )), π∞
1 )∞ ̸= 0. The latter implies Σ1 ∩ w−1 · Σ0 ̸= ∅ (otherwise

i∞I0,I1,w(JI0,I1,w(π∞
0 )) and π∞

1 would live in distinct blocks by (55) and the paragraph after
Remark 2.1.6). By (126) the former implies Extℓ1U(lI1 )(LI1(µ), Hℓ2(nI1 ,M

w
0 )) ̸= 0 for some

ℓ1, ℓ2 ≥ 0 such that ℓ1 + ℓ2 = ℓ. We thus deduce Hℓ2(nI1 ,M
w
0 )ξ ̸= 0 from (ii) of Lemma 3.1.3.

We prove (iv). By the last statement in Corollary 4.5.11 we have that w is unique,
and together with (306) applied with D = grw′(V ∨

0 ) for w′ ̸= w ∈ W I0,I1 we deduce
ExtkD(PI1 )(LI1(µ) ⊗E (π∞

1 )∨, grw′(V ∨
0 )) = 0 for k ≥ 0 and such w′. Via a dévissage with

respect to the W I0,I1-filtration Fil•(V ∨
0 ) on V ∨

0 , we deduce for k ≥ 0

ExtkD(PI1 )(LI1(µ)⊗E (π∞
1 )∨, V ∨

0 ) ∼= ExtkD(PI1 )(LI1(µ)⊗E (π∞
1 )∨, grw(V ∨

0 )). (368)

Finally, we apply (306) with D = grw(V ∨
0 ), which together with (360) and the isomorphisms

(368), (299) give the spectral sequence (367).

By the last statement in (i) of Lemma 2.1.15 and the comment below Lemma 2.1.15,
Corollary 4.5.11 and (iv) of Corollary 4.5.13 can in particular be applied to G-basic π∞

i .
Remark 4.5.14. If I1 = ∆ (with µ1 ∈ Λdom and V1 ∼= L(µ1)∨ ⊗E π∞

1 ), then W I0,∆ = {1}
and the same argument as at the end of the proof of (iv) of Corollary 4.5.13 (for π∞

0 , π
∞
1 of

finite length) gives a spectral sequence of finite dimensional E-vector spaces

ExtℓU(g)(L(µ1),M0)⊗E ExtkG(i∞I0 (π∞
0 ), π∞

1 )∞ =⇒ Extk+ℓ
G (V0, V1).

If moreover I0 = ∆ (with µ0 ∈ Λdom and V0 ∼= L(µ0)∨⊗E π∞
0 ), we obtain a spectral sequence

ExtℓU(g)(L(µ1), L(µ0))⊗E ExtkG(π∞
0 , π

∞
1 )∞ =⇒ Extk+ℓ

G (V0, V1). (369)
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Note that, as µ0, µ1 ∈ Λdom, we have L(µ0)ξ ̸= 0 ̸= L(µ1)ξ for some ξ : Z(g) → E if
and only if µ0 = µ1. Hence by (ii) of Lemma 3.1.3 we have ExtℓU(g)(L(µ1), L(µ0)) ̸= 0 for
some ℓ ≥ 0 if and only if µ0 = µ1, in which case a translation functor argument gives
a canonical isomorphism ExtℓU(g)(L(µ0), L(µ0)) ∼= Hℓ(g, 1g) for ℓ ≥ 0. Consequently, when
I0 = I1 = ∆, ExtkG(V0, V1) ̸= 0 for some k ≥ 0 only if µ0 = µ1, in which case ExtkG(V0, V1) = 0
for k < d(π∞

0 , π
∞
1 ) (see (iii) of Definition 2.1.4 for d(π∞

0 , π
∞
1 )) and we have a canonical

isomorphism
Extd(π∞

0 ,π∞
1 )

G (π∞
0 , π

∞
1 )∞ ∼−→ Extd(π∞

0 ,π∞
1 )

G (V0, V1). (370)

Lemma 4.5.15. For i = 0, 1 let Vi = FGPi
(Mi, π

∞
i ) with Ii ⊆ ∆, Mi in OpIi

alg and π∞
i smooth

finite length representations of LIi
such that π∞

i is in BIi
Σi

with Σi = W (LIi
) · J (π∞

i ) ⊆ T̂∞.
Assume that

Σ0 ∩W (G) · Σ1 = ∅. (371)
Then we have for k ≥ 0

ExtkG(V0, V1) = 0. (372)

Proof. By dévissage we can assume M1 simple of the form L(µ) for some µ ∈ Λdom
I1 . If

M1 = L(µ) = M I1(µ), then (372) follows directly from (371) and (ii) of Corollary 4.5.13. In
general, we assume inductively that

ExtkG(V0,FGPI1
(L(µ′), π∞

1 )) = 0 (373)

for µ′ ∈ Λdom
I1 such that µ′ − µ ∈ Z≥0Φ+ and µ′ ̸= µ. Recall M I1(µ) fits into 0→ N I1(µ)→

M I1(µ) → L(µ) → 0 with all Jordan-Hölder factors of N I1(µ) of the form L(µ′) for some
µ′ ∈ Λdom

I1 such that µ′ − µ ∈ Z≥0Φ+ and µ′ ̸= µ (use [Hum08, Thm. 5.1]). This together
with (373) (and (i) of Proposition 4.3.7) implies ExtkG(V0,FGPI1

(N I1(µ), π∞
1 )) = 0 for k ≥ 0.

Using 0 → V1 → FGPI1
(M I1(µ), π∞

1 ) → FGPI1
(N I1(µ), π∞

1 ) → 0 we obtain an isomorphism
ExtkG(V0, V1) ∼→ ExtkG(V0,FGPI1

(M I1(µ), π∞
1 )) for k ≥ 0. We then again deduce (372) from

(371) and (ii) of Corollary 4.5.13, which finishes the proof by induction.

We isolate the following result because it has its own interest.

Theorem 4.5.16. For i = 0, 1 let Vi = FGPi
(Mi, π

∞
i ) with Ii ⊆ ∆, Mi in OpIi

alg and π∞
i smooth

finite length representations of LIi
over E. Then the E-vector space ExtkG(V0, V1) is finite

dimensional for k ≥ 0.

Proof. By dévissage we can assume M1 simple of the form L(µ) for some µ ∈ Λdom
I1 . If

M1 = L(µ) = M I1(µ), then the result is (i) of Corollary 4.5.13. In general, we argue by
induction as in the proof of Lemma 4.5.15 using the short exact sequence 0 → N I1(µ) →
M I1(µ)→ L(µ)→ 0.

We can obtain better vanishing results when Σi is a single G-regular left W (LIi
)-coset

for i = 0, 1.
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Lemma 4.5.17. For i = 0, 1 let Vi = FGPi
(Mi, π

∞
i ) with Ii ⊆ ∆, Mi in OpIi

alg and π∞
i smooth

finite length representations of LIi
such that π∞

i is in BIi
Σi

with Σi = W (LIi
) · J (π∞

i ) ⊆ T̂∞.
Assume that Σi is a single G-regular left W (LIi

)-coset and recall that d(π∞
0 , π

∞
1 ) is defined

in (iii) of Definition 2.1.4.

(i) We have ExtkG(V0, V1) = 0 for k < d(π∞
0 , π

∞
1 ).

(ii) Let w ∈ W I0,I1 such that Σ def= Σ1 ∩ w−1 · Σ0 ̸= ∅ and I
def= w−1(I0) ∩ I1. Then Σ is a

single G-regular W (LI)-coset and, if JI0,I1,w(π∞
0 )BI

Σ
= 0, we have ExtkG(V0, V1) = 0 for

k ≥ 0.

Proof. We prove (i). By (31) and (i) of Lemma 2.1.18 (applied with I = ∆) we have for
k ≥ 0

ExtkG(i∞I0,∆(π∞
0 ), i∞I1,∆(π∞

1 ))∞ ∼=
⊕

w∈W I0,I1

ExtkLI1
(i∞I0,I1,w(JI0,I1,w(π∞

0 )), π∞
1 )

and thus ExtkLI1
(i∞I0,I1,w(JI0,I1,w(π∞

0 )), π∞
1 ) = 0 for w ∈ W I0,I1 and k < d(π∞

0 , π
∞
1 ). This

together with (367) gives (i) when M1 = M I1(µ1) for some µ1 ∈ Λdom
I1 . The result for general

M1 follows from the same induction as in the proof of Lemma 4.5.15.
We prove (ii). The fact that Σ is a single G-regular W (LI)-coset follows easily from the

fact that Σi, for i = 0, 1, is also a single G-regular W (LI)-coset (last statement in (i) of
Lemma 2.1.15). We have for k ≥ 0 (see (30) for J ′

I1,I(π∞
1 ))

ExtkLI1
(i∞I0,I1,w(JI0,I1,w(π∞

0 )), π∞
1 )∞ ∼= ExtkLI

(JI0,I1,w(π∞
0 ), J ′

I1,I(π
∞
1 ))∞

∼= ExtkLI
(JI0,I1,w(π∞

0 )BI
Σ
, J ′

I1,I(π
∞
1 )BI

Σ
)∞ = 0

where the first isomorphism is (92), the second follows from Lemma 2.1.29 and Remark
2.1.30 (arguing as above (94)) and where the last equality follows from the assumption
JI0,I1,w(π∞

0 )BI
Σ

= 0. Together with (367) this implies (ii) when M1 = M I1(µ1) for some
µ1 ∈ Λdom

I1 . The result for general M1 again follows from the same induction as in the proof
of Lemma 4.5.15.

Lemma 4.5.18. For i = 0, 1 let Vi = FGPi
(Mi, π

∞
i ) with Ii ⊆ ∆, Mi in OpIi

alg and π∞
i smooth

finite length representations of LIi
such that π∞

i is in BIi
Σi

with Σi = W (LIi
) · J (π∞

i ) ⊆ T̂∞.
If ExtkG(V0, V1) ̸= 0 for some k ≥ 0 then there exists ξ : Z(g)→ E such that M0,ξ ̸= 0 ̸= M1,ξ.

Proof. By dévissage we can assumeM1 simple of the form L(µ) for some µ ∈ Λdom
I1 . Moreover,

we may choose µ so that any µ′ ∈ Λdom
I1 such that µ′ ∈ W (G) · µ \ {µ} and µ′ − µ ∈ Z≥0Φ+

must also satisfy for k ≥ 0

ExtkG(V0,FGPI1
(L(µ′), π∞

1 )) = 0. (374)

Define N I1(µ) as in the proof of Lemma 4.5.15. As the irreducible constituents L(µ′) of
N I1(µ) satisfy µ′ ∈ Λdom

I1 , µ′ ∈ W (G)·µ\{µ} and µ′−µ ∈ Z≥0Φ+ (use [Hum08, Thm. 5.1]), we
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have ExtkG(V0,FGPI1
(N I1(µ), π∞

1 )) = 0 for k ≥ 0 by (374), and thus the surjection M I1(µ) ↠
L(µ) induces an isomorphism for k ≥ 0

ExtkG(V0,FGPI1
(L(µ), π∞

1 )) ∼−→ ExtkG(V0,FGPI1
(M I1(µ), π∞

1 ))

(which is non-zero for some k ≥ 0 by assumption). By the proof of (iii) of Corollary 4.5.13
we have ExtℓU(g)(M I1(µ),Mw

0 ) ̸= 0 for some w ∈ W I0,I1 and some ℓ ≥ 0, which together with
(ii) of Lemma 3.1.3 implies (Mw

0 )ξ ̸= 0 for the unique infinitesimal character ξ : Z(g) → E
such that M I1(µ)ξ ̸= 0 ̸= L(µ)ξ. As the adjoint action of G, and in particular of w ∈ W (G),
on Z(g) (inside U(g)) is the identity, this is equivalent to (M0,ξ)w ̸= 0, i.e. to M0,ξ ̸= 0.
Remark 4.5.19. Let V be a finite length object in Repan

adm(G) with each constituent of
the form FGPI

(M,π∞) for some I ⊆ ∆, some M in OpI
alg and some smooth (finite length)

representation π∞ of LI in BIW (LI)·J (π∞). Given ξ : Z(g) → E and a W (G)-coset Σ ⊆ T̂∞,
there exists a maximal closed subrepresentation Vξ,Σ ⊆ V such that each constituent of
Vξ,Σ has the form FGPI

(M,π∞) for I, M , π∞ with M = Mξ and J (π∞) ⊆ Σ. It follows
from Lemma 4.5.15 and Lemma 4.5.18 that V is the direct sum of Vξ,Σ over all pairs ξ,Σ.
Similarly, we can define Vξ just taking ξ into account, as well as VΣ. Taking continuous
duals we can define Dξ,Σ, Dξ and DΣ for a finite length coadmissible D(G)-module with
constituents of the form FGPI

(M,π∞)∨ (with M,π∞ as above).

Remark 4.5.20. Let I0 ⊆ ∆, x0 ∈ W (G) with I0 = ∆\DL(x0), M0
def= L(x0) ∈ O

pI0
alg (Lemma

3.1.1), π∞
0 a smooth strongly admissible representation of LI0 over E and V0

def= FGPI0
(M0, π

∞
0 ).

We have H0(u,Mw
0 ) = 0 for 1 ̸= w ∈ W I0,∅ by (ii) of Lemma 3.3.1 (applied with I ′ = I0 and

I = ∅) and H0(u,M0) is finite dimensional. Since H0(u,Mw
0 ) ⊆Mw

0 is a closed Fréchet U(t)-
submodule, it is small by Lemma 4.1.10, and thus contains H0(u,Mw

0 ) = H0(u,Mw
0 )∩Mw

0 as
a dense subspace. In particular H0(u,Mw

0 ) = 0 for 1 ̸= w ∈ W I0,∅ and the injection M0 ↪→
M0 induces a (topological) isomorphism of finite dimensional E-vector spaces H0(u,M0) ∼→
H0(u,M0). We fix a compact open subgroup G0 ⊆ G and for w ∈ W I0,∅, we write Pw def=
w−1PI0w, Pw,0 def= Pw ∩G0, and Xw for the set of compact open subsets of (BPw)∩G0 stable
under right multiplication by Pw,0. We write Uw for a general element of Xw. For r ∈ I,
it follows from Lemma 4.3.4 that (Mw

0 )r = D(G0)Pw,0,r ⊗D(G0)Pw,0
Mw

0 is the completion
of Mw

0 under a standard semi-norm, which by Remark 4.1.12 implies that H0(u,Mw
0 ) =

H0(u, (Mw
0 )r) ∩Mw

0 is dense inside the closed Banach subspace H0(u, (Mw
0 )r) ⊆ (Mw

0 )r.
Consequently, for 1 ̸= w ∈ W I0,∅, we have for g ∈ B and r ∈ I (since H0(u,Mw

0 ) = 0)

H0(u, ((Mw
0 )r)g

−1) ∼= H0(gug−1, ((Mw
0 )r)g

−1) ∼= H0(u, (Mw
0 )r) = 0,

and therefore
H0(u, grw(V ∨

0 )) ∼=
(

lim←−Uw∈Xw,r∈I(D(G0)Uw,r ⊗D(G0)Pw,0,r
Dr)

)
[u]

∼= lim←−Uw∈Xw,r∈I

(
(D(G0)Uw,r ⊗D(G0)Pw,0,r

Dr)[u]
)

∼= lim←−Uw∈Xw,r∈I

(⊕
g∈UwGm

1 /Pw,0Gm
1

(
((Mw

0 )r)g
−1 [u]⊗E D∞,g−1

r

))
= 0
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where the first isomorphism uses (327) and the third isomorphism uses (330), and where Dr

and D∞
r are the same as in loc. cit. and depend on the choice of w (see (326), (325) and the

paragraph before (312)). For w = 1, we have

H0(u, gr1(V ∨
0 )) ∼=

(
lim←−r∈I((M0)r ⊗E (π∞

0 )∨
r )
)
[u] ∼= lim←−r∈I

(
((M0)r ⊗E (π∞

0 )∨
r )[u]

)
∼= lim←−r∈I((M0)r[u]⊗E (π∞

0 )∨
r ) ∼= lim←−r∈I((M0)r[u])⊗̂E lim←−r∈I(π∞

0 )∨
r )

∼= M0[u]⊗̂E(π∞
0 )∨

∼= M0[u]⊗E (π∞
0 )∨

where the first isomorphism follows from Proposition 4.4.3 (applied with I1 = ∅) and
from (326), the fourth follows from Lemma 4.2.12, and the last follows from the finite di-
mensionality of M0[u]. We deduce from all this H0(U, grw(V ∨

0 )) = 0 for 1 ̸= w ∈ W I0,∅ and
H0(U, gr1(V ∨

0 )) ∼= H0(u,M0)⊗E (JI0,∅(π∞
0 ))∨ (cf. (365) with I1 = ∅ and w = 1). By dévissage

on the W I0,∅-filtration Fil•(V ∨
0 ) we finally obtain the following isomorphism of D(T )-modules

(which will be used in the proof of Theorem 5.4.4 below)

H0(U, V ∨
0 ) ∼= H0(u,M0)⊗E (JI0,∅(π∞

0 ))∨. (375)

Note that (375) is a finite dimensional (coadmissible) D(T )-module which is non-zero when
π∞

0 is G-basic (and M0 = L(x0)).
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5 Complexes of locally analytic representations
We describe the global sections of the de Rham complex of the Drinfeld space in dimension
n − 1 as a complex of explicit finite length coadmissible D(G)-modules, and we describe
an explicit quasi-isomorphism with the direct sum of its (shifted) cohomology groups. The
proof works essentially verbatim for the complex of holomorphic discrete series of [S92].

5.1 Results on locally analytic Ext0, Ext1 and Ext2 groups
We prove various useful results on Hom, Ext1 and Ext2 groups between certain Orlik-Strauch
representations.

We use the notation of §2 and §3, in particular µ0 ∈ Λdom is a fixed weight, L(w) =
L(w · µ0) for w ∈ W (G), N I(w) = ker(M I(w) ↠ L(w)), etc. For x ∈ W (G) we write
Ix

def= ∆ \ DL(x). Throughout this section for i = 0, 1, Ii is a subset of ∆, Mi is a U(g)-
module in OpIi

alg (see below (118)), Σi is a finite subset of T̂∞ preserved under the left action
(35) of W (LIi

) and π∞
i is a smooth (finite length) representation of LIi

in the category BIi
Σi

(see above (37)). We write Vi def= FGPIi
(Mi, π

∞
i ) for i = 0, 1. Depending on the statements, we

will add various assumptions on Ii, Mi, Σi or π∞
i (and thus Vi).

Lemma 5.1.1. For i = 0, 1 assume that Ii = ∆ \ DL(xi) and Mi = L(xi) for some xi ∈
W (G). Then we have HomG(V0, V1) ̸= 0 only if x0 = x1 (and I0 = I1), in which case we
have a canonical isomorphism

HomG(V0, V1) ∼= HomU(g)(M1,M0)⊗E HomLI1
(π∞

0 , π
∞
1 ). (376)

In particular, if V0 and V1 are irreducible (which forces π∞
i to be irreducible for i = 0, 1),

they are isomorphic if and only if x0 = x1 and π∞
0
∼= π∞

1 .

Proof. Let V2
def= FGPI1

(M I1(x1), π∞
1 ), the surjection M I1(x1) ↠ L(x1) induces an injection

V1 ↪→ V2 and thus an injection

HomG(V0, V1) ↪→ HomG(V0, V2). (377)

Recall from (iii) of Lemma 3.3.1 that L(x0)w is in Ob
alg for some w ∈ W I0,I1 if and only if

w = 1. Hence for 1 ̸= w ∈ W I0,I1 we have (using Shapiro’s lemma for the first isomorphism)

HomU(g)(M I1(x1), L(x0)w) ∼= HomU(pI1 )(LI1(x1), L(x0)w) = 0.

By (299) (applied with grw(V ∨
0 ) instead of V ∨

0 there, which doesn’t change the argument),
(306) (applied with D = grw(V ∨

0 ) and k = ℓ = 0) and Corollary 4.5.11 (for k = ℓ = 0), we
deduce HomD(G)(V ∨

2 , grw(V ∨
0 )) = 0 for 1 ̸= w ∈ W I0,I1 and for w = 1:

HomD(G)(V ∨
2 , gr1(V ∨

0 )) ∼= HomU(g)(M I1(x1), L(x0))⊗E HomLI1
(i∞I0,I1,1(JI0,I1,1(π∞

0 )), π∞
1 ).
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By a dévissage with respect to (Filw(V ∨
0 ))w∈W I0,I1 we obtain

HomG(V0, V2) ∼= HomD(G)(V ∨
2 , V

∨
0 )

∼= HomU(g)(M I1(x1), L(x0))⊗E HomLI1
(i∞I0,I1,1(JI0,I1,1(π∞

0 )), π∞
1 ). (378)

If HomG(V0, V1) ̸= 0 then HomG(V0, V2) ̸= 0 by (377), thus HomU(g)(M I1(x1), L(x0)) ̸= 0 by
(378) and thus

HomU(g)(L(x1), L(x0)) ∼−→ HomU(g)(M I1(x1), L(x0)) ̸= 0 (379)

(as M I1(x1) has irreducible cosocle L(x1)) which forces x0 = x1 and hence I0 = I1. As any
irreducible constituent L(x′) of N I1(x1) satisfies x′ > x1 = x0, the argument above with
M I1(x′) and L(x′) instead of M I1(x1) and L(x1) (note that I1 = ∆ \ DL(x′) by Lemma
3.1.1) shows that HomG(V0,FGPI1

(L(x′), π∞
1 )) = 0. As V2/V1 ∼= FGPI1

(N I1(x1), π∞
1 ) (see (i) of

Theorem 4.3.7), we deduce by dévissage HomG(V0, V2/V1) = 0 and hence HomG(V0, V1) ∼→
HomG(V0, V2). Then (376) follows from (378) (with I0 = I1) and (379).

Lemma 5.1.2. Let x ∈ W (G), I def= ∆ \ DL(x), Σ a finite subset of T̂∞ preserved under
the left action (35) of W (LI), π∞ a smooth (finite length) multiplicity free representation of
LI in BIΣ and V

def= FGPI
(L(x), π∞). Then V is of finite length and multiplicity free, and the

functor FGPI
(L(x),−) induces a bijection JHLI

(π∞) ∼→ JHG(V ) between partially ordered sets
(see §1.4 for the definition of this partial order).

Proof. It follows from Proposition 4.3.7 and Lemma 5.1.1 that V is finite length and multi-
plicity free with JHG(V ) = {FGPI

(L(x), τ∞) | τ∞ ∈ JHLI
(π∞)}. Let τ∞

0 , τ∞
1 be two distinct

irreducible constituents of π∞ and define σ∞ as the unique subrepresentation of π∞ with
cosocle τ∞

0 . Recall that, by definition of the partial order on JHLI
(π∞), τ∞

1 < τ∞
0 if and only

if τ∞
1 ∈ JHLI

(σ∞). Let W def= FGPI
(L(x), σ∞) and Wi

def= FGPI
(L(x), τ∞

i ) for i = 0, 1. By Propo-
sition 4.3.7 and the last claim in Lemma 5.1.1 τ∞

1 ∈ JHLI
(σ∞) if and only if W1 ∈ JHG(W ).

By (376) applied with x0 = x1 = x, π∞
0 = σ∞ and π∞

1 any constituent of σ∞, we deduce
that W has simple cosocle W0, and thus W1 < W0 if and only if W1 ∈ JHG(W ). We have
shown τ∞

1 < τ∞
0 if and only if W1 < W0, which proves the lemma.

Recall that G-regular and G-basic smooth representations of LI over E are defined in
(ii) of Definition 2.1.4. Recall also that a G-basic representation of LI is in BIΣ for Σ =
W (LI)·J (π∞) (see below Lemma 2.1.15) and is multiplicity free ((i) of loc. cit.), in particular
we can apply Lemma 5.1.2 when π∞ is G-basic.

Lemma 5.1.3. For i = 0, 1 assume that I def= I0 = I1 = ∆ \DL(x) and M0 = M1 = L(x) for
some x ∈ W (G). Assume moreover that π∞

0 and π∞
1 have no common Jordan-Hölder factor.

Then the functor FGPI
(L(x),−) induces a canonical isomorphism

Ext1
LI

(π∞
0 , π

∞
1 )∞ ∼−→ Ext1

G(V0, V1). (380)

If moreover π∞
0 and π∞

1 are G-basic, then (380) is one dimensional if non-zero.
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Proof. Recall first that both spaces in (380) are finite dimensional over E, as follows from
Theorem 4.5.16 and (the references in) its proof.

Step 1: We prove that (380) is injective.
If Ext1

LI
(π∞

0 , π
∞
1 )∞ = 0, there is nothing to prove. Otherwise, let π∞ in Rep∞

adm(LI) that fits
into a non-split extension

0→ π∞
1 → π∞ → π∞

0 → 0. (381)
and note that π∞ is in BIΣ for Σ = Σ0 ∪ Σ1 and is multiplicity free. In particular, there
exists σ∞

i ∈ JHLI
(π∞

i ) such that π∞ admits a length 2 subquotient σ∞ with socle σ∞
1

and cosocle σ∞
0 . Applying FGPI

(L(x),−) to (381) and using Lemma 5.1.2, it follows that
V

def= FGPI
(L(x), π∞) admits a length 2 subquotient FGPI

(L(x), σ∞) with socle FGPI
(L(x), σ∞

1 )
and cosocle FGPI

(L(x), σ∞
0 ). In particular the short exact sequence 0 → V1 → V → V0 → 0

is non-split. This proves the injectivity of (380).

Step 2: We prove dimE Ext1
G(V0, V1) ≤ dimE Ext1

LI
(π∞

0 , π
∞
1 )∞.

We can assume Ext1
G(V0, V1) ̸= 0. Let V2

def= FGPI
(M I(x), π∞

1 ), we have V1 ↪→ V2 with
V2/V1 ∼= FGPI

(N I(x), π∞
1 ). Since L(x) /∈ JHU(g)(N I(x)), by Lemma 5.1.1 (using Lemma

3.1.1) we know that V2/V1 and V0 share no common Jordan-Hölder factor and in particular
HomG(V0, V2/V1) = 0. A dévissage on 0→ V1 → V2 → V2/V1 → 0 then gives an injection

Ext1
G(V0, V1) ↪→ Ext1

G(V0, V2) (382)

and thus Ext1
G(V0, V2) ̸= 0 since Ext1

G(V0, V1) ̸= 0. By a dévissage on (Filw(V ∨
0 ))w∈W I,I there

exists w ∈ W I,I such that Ext1
D(G)(V ∨

2 , grw(V ∨
0 )) ̸= 0, which together with (299) (applied

with grw(V ∨
0 ) instead of V ∨

0 ), (306) (applied with D = grw(V ∨
0 )) and Corollary 4.5.11 implies

ExtkLI
(i∞I,I,w(JI,I,w(π∞

0 )), π∞
1 )∞ ⊗E ExtℓU(g)(M I(x), L(x)w) ̸= 0 (383)

for some k, ℓ ≥ 0 such that k + ℓ = 1. By (iii) of Lemma 3.3.1 (for ℓ = 0) and (ii) of
Remark 3.3.6 (for ℓ = 1) we have ExtℓU(g)(M I(x), L(x)w′) = 0 for ℓ ≤ 1 and 1 ̸= w′ ∈ W I,I .
Hence, (383) can hold only when w = 1. Since π∞

0 and π∞
1 have no common Jordan-Hölder

factor, we have HomLI
(π∞

0 , π
∞
1 ) = 0, so that the only possibly non-zero term in (383) is for

k = 1 and ℓ = 0. The spectral sequence (306) (with Corollary 4.5.11) and (382) then yield

dimE Ext1
G(V0, V1) ≤ dimE Ext1

G(V0, V2)
≤ dimE Ext1

LI
(π∞

0 , π
∞
1 )∞ dimE HomU(g)(M I(x), L(x)). (384)

As HomU(g)(M I(x), L(x)) is one dimensional, (384) implies the statement.

Step 1 and Step 2 imply that (380) is an isomorphism. When π∞
0 and π∞

1 are more-
over G-basic and (380) is non-zero, then dI(π∞

0 , π
∞
1 ) = 1 (see (iii) of Definition 2.1.4) and

Lemma 2.2.4 then implies that (380) is one dimensional.
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Lemma 5.1.4. Let I ⊆ ∆, L(x) in OpI
alg, π∞ a smooth G-basic representation of LI and

V
def= FGPI

(L(x), π∞). Let V ′ be a smooth multiplicity free finite length representation of G
such that JHG(V ′) = JHG(V ) as partially ordered sets. Then we have V ∼= V ′.

Proof. Using (ii) of Theorem 4.3.7 we can assume I = ∆\DL(x) and by (iii) of Lemma 2.1.15
π∞ is (finite length) multiplicity free. By Lemma 5.1.2 V is multiplicity free and the functor
FGPI

(L(x),−) induces a bijection of partially ordered sets JHLI
(π∞) ∼−→ JHG(V ). We prove

the statement by induction on the length of π∞. If π∞ is irreducible, then V is irreducible by
(iii) of Proposition 4.3.7, so JHG(V ) = JHG(V ′) forces V ∼= V ′ and there is nothing to prove.
If π∞ is reducible, by Corollary 2.1.27 there exist smooth G-basic representations π∞

0 , π
∞
1 of

LI and a non-split short exact sequence 0→ π∞
1 → π∞ → π∞

0 → 0. Applying FGPI
(L(x),−)

we obtain a short exact sequence 0 → V1 → V → V0 → 0 with Vi
def= FGPI

(L(x), π∞
i ), which

is non-split by Step 1 of the proof of Lemma 5.1.3. Since JHG(V ) = JHG(V ′) as partially
ordered sets, V ′ also fits into a non-split short exact sequence 0→ V ′

1 → V ′ → V ′
0 → 0 with

JHG(Vi) = JHG(V ′
i ) as partially ordered sets for i = 0, 1. As π∞

i has strictly smaller length
than π∞, by induction we have Vi ∼= V ′

i for i = 0, 1. As both V and V ′ fit into non-split
short exact sequences 0 → V1 → ∗ → V0 → 0 and dimE Ext1

G(V0, V1) = 1 by Lemma 5.1.3,
we deduce V ∼= V ′.

Lemma 5.1.5. For i = 0, 1 assume that Ii = ∆ \ DL(xi) and Mi = L(xi) for some xi ∈
W (G). Assume moreover that x0 ̸= x1, that π∞

0 and π∞
1 are G-basic and that

HomLI1
(i∞I,I1(JI0,I(π∞

0 )), π∞
1 ) ̸= 0 (385)

where I def= I0 ∩ I1. Then there exists a unique G-basic representation π∞ of LI which is both
a subrepresentation of J ′

I1,I(π∞
1 )(see (30)) and a quotient of JI0,I(π∞

0 ). Moreover, we have a
canonical injection

HomLI0
(π∞

0 , i
∞
I,I0(π∞))⊗EExt1

U(g)(M1,M0)⊗EHomLI1
(i∞I,I1(π∞), π∞

1 ) ↪→ Ext1
G(V0, V1). (386)

Proof. Step 1: We construct the desired G-basic π∞.
By (32), (385) is equivalent to

HomLI
(JI0,I(π∞

0 ), J ′
I1,I(π

∞
1 )) ̸= 0. (387)

For i = 0, 1 let Σi
def= W (LIi

)·J (π∞
i ). By (36) and (i) of Lemma 2.1.15W (LI1)·J (J ′

I1,I(π∞
1 ))=

Σ1 is a single left W (LI1)-coset and Σ0 is a single left W (LI0)-coset, and thus (using the
regularity of the characters, see (i) of Lemma 2.1.15)

Σ def= Σ0 ∩W (LI1) · J (J ′
I1,I(π

∞
1 )) = Σ0 ∩ Σ1 (388)

(which is non-empty using (387)) is a single left W (LI)-coset. In particular, (387) is equiv-
alent to

HomLI

(
JI0,I(π∞

0 )BI
Σ
, J ′

I1,I(π
∞
1 )BI

Σ

)
̸= 0
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with both JI0,I(π∞
0 )BI

Σ
and J ′

I1,I(π∞
1 )BI

Σ
non-zero and thus G-basic by Lemma 2.1.29 and

Remark 2.1.30. The desired π∞ is necessarily the image of a non-zero map JI0,I(π∞
0 ) →

J ′
I1,I(π∞

1 ), which itself is necessarily the image of the unique (up to scalar) non-zero map
JI0,I(π∞

0 )BI
Σ
→ J ′

I1,I(π∞
1 )BI

Σ
(the unicity follows from the fact G-basic representations are

multiplicity free with simple socle (and cosocle), see (iv) of Remark 2.1.16). In particular
π∞ is a quotient of JI0,I(π∞

0 )BI
Σ

with simple socle and cosocle and thus is also G-basic by
Corollary 2.1.26. The definition of π∞ together with (31) and (32) implies

HomLI0
(π∞

0 , i
∞
I,I0(π∞)) ̸= 0 and HomLI1

(i∞I,I1(π∞), π∞
1 ) ̸= 0 (389)

with both spaces being one dimensional (using (iv) of Remark 2.1.16 as above).

Step 2: We construct the map (386).
The exact functor FGPI

(−, π∞) induces a canonical map

Ext1
U(g)(M1,M0) −→ Ext1

G(FGPI
(M0, π

∞),FGPI
(M1, π

∞)). (390)

From (ii) of Proposition 4.3.7 and Lemma 5.1.1 we have canonical isomorphisms

HomLI0
(π∞

0 , i
∞
I,I0(π∞)) ∼= HomG(V0,FGPI

(M0, π
∞))

and
HomLI1

(i∞I,I1(π∞), π∞
1 ) ∼= HomG(FGPI

(M1, π
∞), V1),

which together with (390) and obvious functorialities give a canonical map (386). In the
rest of the proof we assume that the left hand side of (386) is non-zero, equivalently
Ext1

U(g)(M1,M0) ̸= 0 by the end of Step 1 (otherwise (386) is obviously an injection).

Step 3: We reduce to the case π∞
0 is a subobject of i∞I,I0(π∞) and π∞

1 a quotient of i∞I,I1(π∞).
Let π∞

0,− (resp. π∞
1,−) be the image of the unique (up to scalar) non-zero map π∞

0 → i∞I,I0(π∞)
(resp. i∞I,I1(π∞)→ π∞

1 ) which is G-basic by Corollary 2.1.26. As π∞
0 and π∞

1 are multiplicity
free and x0 ̸= x1, by the last statement in Lemma 5.1.1 V0 and V1 are multiplicity free with
no common Jordan-Hölder factor. In particular

HomG

(
V0, V1/FGPI1

(M1, π
∞
1 /π

∞
1,−)

)
= 0 = HomG

(
FGPI0

(M0, ker(π∞
0 ↠ π∞

0,−)),FGPI1
(M1, π

∞
1,−)

)
hence we have injections (using V0 ↠ FGPI0

(M0, π
∞
0,−) and FGPI1

(M1, π
∞
1,−) ↪→ V1)

Ext1
G(FGPI0

(M0, π
∞
0,−),FGPI1

(M1, π
∞
1,−)) ↪→ Ext1

G(V0,FGPI1
(M1, π

∞
1,−)) ↪→ Ext1

G(V0, V1).

It easily follows that, to prove the injectivity of (386), we can assume in the rest of the
proof π∞

0 = π∞
0,− and π∞

1 = π∞
1,−. We fix an injection f0 : π∞

0 ↪→ i∞I,I0(π∞) and a surjection
f1 : i∞I,I1(π∞) ↠ π∞

1 (unique up to scalar).

Step 4: We reduce to the case π∞, π∞
0 and π∞

1 are all simple.
We choose an arbitrary non-split extension 0 → M0 → M → M1 → 0, which induces an
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extension 0 → R1 → R → R0 → 0 where R
def= FGPI

(M,π∞) and Ri
def= FGPI

(Mi, π
∞) ∼=

FGPIi
(Mi, i

∞
I,Ii

(π∞)) for i = 0, 1. We write V for the extension

0→ V1 → V → V0 → 0 (391)

induced from R by pullback and pushforward along f0 and f1. We want to prove that
(391) is non-split. Let σ∞ be an arbitrary irreducible (G-regular) constituent of π∞, then
J (σ∞) ⊆ J (π∞) ⊆ J (JI0,I(π∞

0 )BI
Σ
) using the first statement in (i) of Lemma 2.1.15 ap-

plied to JI0,I(π∞
0 )BI

Σ
. By the last statement in Lemma 2.1.29 the irreducible (G-regular)

constituents of JI0,I(π∞
0 )BI

Σ
are the JI0,I(σ∞

0 )BI
Σ

for σ∞
0 an irreducible (G-regular) constituent

of π∞
0 . Hence it follows from the last statement in (ii) of Lemma 2.1.15 that there exists a

unique irreducible constituent σ∞
0 of π∞

0 such that σ∞ ∼= JI0,I(σ∞
0 )BI

Σ
. A similar argument

using moreover Remark 2.1.30 gives a unique irreducible constituent σ∞
1 of π∞

1 such that
σ∞ ∼= J ′

I1,I(σ∞
1 )BI

Σ
. By (31) and JI0,I(σ∞

0 )BI
Σ

∼→ σ∞ (resp. (32) and σ∞ ∼→ J ′
I1,I(σ∞

1 )BI
Σ
), we

deduce σ∞
0

∼→ socLI0
(i∞I,I0(σ∞)) (resp. cosocLI1

(i∞I,I1(σ∞)) ∼→ σ∞
1 ).

Now, let us assume that FGPI
(M,σ∞) admits a uniserial length 2 subquotient with socle

FGPI1
(M1, σ

∞
1 ) and cosocle FGPI0

(M0, σ
∞
0 ), then so does R = FGPI

(M,π∞). But such a uniserial
length 2 subquotient of R must also be a subquotient of V as R is multiplicity free (using
Lemma 5.1.1) and FGPIi

(Mi, σ
∞
i ) for i = 0, 1 is a constituent of Vi, hence of V . In particular

(391) is then non-split. Hence to prove the injectivity of (386), we see that can we replace
π∞, π∞

0 and π∞
1 by σ∞, σ∞

0 and σ∞
1 respectively, and it is enough to prove that FGPI

(M,π∞)
admits such a subquotient.

Step 5: We assume π∞, π∞
0 , π∞

1 (G-regular) irreducible and prove that FGPI
(M,π∞) has

a uniserial length 2 subquotient with socle FGPI1
(M1, π

∞
1 ) and cosocle FGPI0

(M0, π
∞
0 ).

Note that we then have π∞
0

∼→ socLI0
(i∞I,I0(π∞)) and cosocLI1

(i∞I,I1(π∞)) ∼→ π∞
1 .

As Lemma 5.1.2 (together with (iv) of Remark 2.1.16) implies that FGPI
(Mi, π

∞) has sim-
ple socle FGPIi

(Mi, socLIi
(i∞I,Ii

(π∞))) and simple cosocle FGPIi
(Mi, cosocLIi

(i∞I,Ii
(π∞))) for i =

0, 1, we see that the existence of such a subquotient forces FGPI
(M,π∞) to have simple

socle FGPI1
(M1, socLI1

(i∞I,I1(π∞))) and simple cosocle FGPI0
(M0, socLI0

(i∞I,I0(π∞))). Also, as
Ext1

U(g)(M1,M0) ̸= 0 we have either x0 ≺ x1 or x1 ≺ x0 by (ii) of Lemma 3.2.4. We have the
following two possibilities.

Case 5.1: Assume HomU(g)(M I(x1),M) = 0. Since I ⊆ I1 M
I1(x1) is a quotient of

M I(x1) ([Hum08, Thm. 9.4(c)]) and thus we a fortiori have HomU(g)(M I1(x1),M) = 0. Let
V2

def= FGPI1
(M I1(x1), π∞

1 ), by (367) for k = ℓ = 0 and w = 1 this implies HomG(R, V2) =
0. The surjection M I1(x1) ↠ L(x1) induces an injection V1 ↪→ V2 and thus an injection
HomG(R, V1) ↪→ HomG(R, V2) which thus implies HomG(R, V1) = 0. As cosocG(R1) ∼→ V1
by Lemma 5.1.2 and cosocLI1

(i∞I,I1(π∞)) ∼→ π∞
1 , there exists an irreducible constituent V ′

0 =
FGPI0

(L(x0), τ∞
0 ) of R0 (with τ∞

0 an irreducible constituent of i∞I,I0(π∞)) such that R admits a
subquotient V ′ with socle V1 and cosocle V ′

0 . In particular Ext1
G(V ′

0 , V1) ̸= 0, which together
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with (i) of Lemma 4.5.17 implies d(τ∞
0 , π∞

1 ) ≤ 1. Now by (31) we have for k ≥ 0

ExtkG(i∞I0,∆(τ∞
0 ), i∞I1,∆(π∞

1 ))∞ ∼= ExtkLI1
(J∆,I1(i∞I0,∆(τ∞

0 )), π∞
1 )∞

and thus from (i) of Lemma 2.1.18 applied with I = ∆ we deduce

ExtkG(i∞I0,∆(τ∞
0 ), i∞I1,∆(π∞

1 ))∞ ∼=
⊕

w∈W I0,I1

ExtkLI1

(
i∞I0,I1,w(JI0,I1,w(τ∞

0 )), π∞
1

)∞
.

But from (55) we have J (i∞I0,I1,w(JI0,I1,w(π∞
0 ))) ⊆ W (LI1)w−1Σ0, and from (388) and the

G-regularity ((i) of Lemma 2.1.15) we have W (LI1)w−1Σ0 ∩ Σ1 = ∅ if w ̸= 1. It fol-
lows that (i∞I0,I1,w(JI0,I1,w(τ∞

0 )))BI1
Σ1

= 0 if w ̸= 1 and thus ExtkG(i∞I0,∆(τ∞
0 ), i∞I1,∆(π∞

1 ))∞ ∼=

ExtkLI1

(
i∞I,I1(JI0,I(τ∞

0 )), π∞
1

)∞
for k ≥ 0. Then the last statement of (ii) of Lemma 2.2.11

(applied with w = 1, σ∞
0 = τ∞

0 and σ∞
1 = π∞

1 ) implies τ∞
0
∼= π∞

0
∼= socLI0

(i∞I,I0(π∞)). In
other words, we must have V ′

0
∼= V0 and V ′ is the desired V .

Case 5.2: Assume HomU(g)(M I(x1),M) ̸= 0. As x0 ̸= x1 we must have a surjection
M I(x1) ↠M , which induces an injection R ↪→ R′ def= FGPI

(M I(x1), π∞) and thus an injection

HomG(V0, R) ↪→ HomG(V0, R
′). (392)

By (367) (for k = ℓ = 0 and w = 1) we have HomG(V0, R
′) = 0 as HomU(g)(M I(x1), L(x0)) =

0, and by (392) we deduce HomG(V0, R) = 0. As V0 ∼= socG(R0) by Lemma 5.1.2, there exists
an irreducible constituent V ′′

1 = FGPI1
(L(x1), τ∞

1 ) of R1 such that R admits a subquotient
V ′′ with socle V ′′

1 and cosocle V0. In particular Ext1
G(V0, V

′′
1 ) ̸= 0, which together with

(i) of Lemma 4.5.17 implies d(π∞
0 , τ

∞
1 ) ≤ 1. By an argument analogous to the one in

Case 5.1, (ii) of Lemma 2.2.11 (applied with w = 1, σ∞
0 = π∞

0 and σ∞
1 = τ∞

1 ) implies
τ∞

1
∼= π∞

1
∼= cosocLI1

(i∞I,I1(π∞)). In other words, we must have V ′′
1
∼= V1 and V ′′ is the

desired V . This finishes the proof.

Lemma 5.1.6. For i = 0, 1 let xi ∈ W (G) such that x0 ̸= x1, Ii
def= ∆ \DL(xi), I ⊆ I0 ∩ I1

and M a uniserial length 2 object in OpI
alg with socle L(x0) and cosocle L(x1). Let Σ be a G-

regular finite subset of T̂∞ preserved under the left action (35) of W (LI), π∞ a smooth (finite
length) multiplicity free representation of LI in BIΣ and V

def= FGPI
(M,π∞). Then we have

socG(V ) = FGPI1
(L(x1), socLI1

(i∞I,I1(π∞))) and cosocG(V ) = FGPI0
(L(x0), cosocLI0

(i∞I,I0(π∞))).

Proof. Replacing I by I0 ∩ I1 and π∞ by i∞I,I0∩I1(π∞), we can assume I = I0 ∩ I1. Using
(37) we can assume that Σ is a single (G-regular) W (LI)-coset, i.e. Σ = W (LI) · χ for
some regular χ. Then using Remark 2.1.12 the irreducible constituents of π∞ are (some of)
the irreducible constituents of i∞∅,I(χ), and using (iii) of Lemma 2.1.15 for Ii (i = 0, 1) we
deduce that i∞I,Ii

(π∞) is still multiplicity free. Hence by Lemma 5.1.2 (and (ii) of Propo-
sition 4.3.7) Vi

def= FGPI
(L(xi), π∞) ∼= FGPIi

(L(xi), i∞I,Ii
(π∞)) is multiplicity free with socle

FGPIi
(L(xi), socLIi

(i∞I,Ii
(π∞))) and cosocle FGPIi

(L(xi), cosocLIi
(i∞I,Ii

(π∞))) for i = 0, 1. Fix
σ∞

0 ∈ JHLI0
(socLI0

(i∞I,I0(π∞))), σ∞
1 ∈ JHLI1

(cosocLI1
(i∞I,I1(π∞))) (both irreducible G-regular)
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and let Wi
def= FGPIi

(L(xi), σ∞
i ) for i = 0, 1. It suffices to show that W0 (resp. W1) does

not show up in the socle (resp. cosocle) of V . By (31) and the assumption on π∞ we have
isomorphisms

0 ̸= HomLI0
(σ∞

0 , i
∞
I,I0(π∞)) ∼= HomLI

(JI0,I(σ∞
0 ), π∞) ∼= HomLI

(JI0,I(σ∞
0 )BI

Σ
, π∞), (393)

which by the last statement in Lemma 2.1.29 (and our assumption on Σ) implies that τ∞
0

def=
JI0,I(σ∞

0 )BI
Σ

is G-regular irreducible. Another application of (31) (with τ∞
0 instead of π∞)

together with the last statement in (ii) of Lemma 2.1.15 show that σ∞
0

∼→ socLI0
(i∞I,I0(τ∞

0 )).
Note that any injection W0 ↪→ V0 determines by (376) an injection σ∞

0 ↪→ i∞I,I0(π∞), then by
(393) an injection τ∞

0 ↪→ π∞, and finally an injection W̃0
def= FGPI

(M, τ∞
0 ) ↪→ V . Moreover W̃0

is multiplicity free as V is by Lemma 5.1.1 (and using that the Vi are multiplicity free). It
follows from Step 5 of the proof of Lemma 5.1.5 (replacing π∞ there by τ∞

0 ) that W̃0 contains
a unique length 2 subquotient with socle FGPI1

(L(x1), cosocLI1
(i∞I,I1(τ∞

0 ))) and cosocle W0, and
thus the pullback of 0 → V1 → V → V0 → 0 along W0 ↪→ V0 is non-split. In particular,
W0 does not show up in socG(V ). Similarly, we can define τ∞

1
def= J ′

I1,I(σ∞
1 )BI

Σ
and deduce as

above from Remark 2.1.30 and (32) (together with (ii) of Lemma 2.1.15 and (36)) that τ∞
1 is

G-regular irreducible with σ∞
1
∼= cosocLI1

(i∞I,I1(τ∞
1 )). Parallel to the above argument for W0,

any surjection V1 ↠ W1 determines a surjection V ↠ W̃1
def= FGPI

(M, τ∞
1 ) with W̃1 admitting a

unique length 2 subquotient with socle W1 and cosocle FGPI0
(L(x0), socLI0

(i∞I,I0(τ∞
1 ))), forcing

the pushforward of 0 → V1 → V → V0 → 0 along V1 ↠ W1 to be non-split. In particular
W1 does not show up in cosocG(V ), which finishes the proof.

Keeping the notation at the very beginning of this section, we now assume till its end
that, for i = 0, 1, Σi is a single G-regular W (LIi

)-coset and that the LIi
-representation π∞

i

(in BIi
Σi

) is multiplicity free. We will add other assumptions, depending on the statements.

Lemma 5.1.7. Assume that I0 = ∆ \DL(x0) and M0 = L(x0) for some x0 ∈ W (G).

(i) If HomG(V0, V1) ̸= 0, then we have I1 ⊆ I0 and a canonical isomorphism

HomG(V0, V1) ∼= HomU(g)(M1,M0)⊗E HomLI0
(π∞

0 , i
∞
I1,I0(π∞

1 )). (394)

(ii) If HomG(V1, V0) ̸= 0, then we have I1 ⊆ I0 and a canonical isomorphism

HomG(V1, V0) ∼= HomU(g)(M0,M1)⊗E HomLI0
(i∞I1,I0(π∞

1 ), π∞
0 ). (395)

Proof. By Lemma 4.5.18 (and Harish-Chandra’s theorem) we can assume that the irreducible
constituents of the U(g)-module M1 are of the form L(w) for some w ∈ W (G). We only
prove (ii) as (i) is symmetric. The assumption HomG(V1, V0) ̸= 0 implies that there is an
irreducible constituent L(x1) of M1 such that HomG(FGPI1

(L(x1), π∞
1 ), V0) ̸= 0. By (ii) of

Theorem 4.3.7 and Lemma 3.1.1 we can replace I1 by the larger ∆ \ DL(x1). Then by the
first statement of Lemma 5.1.1 we deduce x0 = x1, and in particular I1 ⊆ I0 (note that the
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smooth induction of π∞
1 satisfies the condition at the beginning of this section, for instance

using (iii) of Lemma 2.1.15 for I = ∆ \DL(x1)).
Considering each irreducible constituent of socU(g)(M1) and arguing as above, it follows

from (376) that we have an isomorphism (where both sides could a priori be 0)

HomU(g)(M0, socU(g)(M1))⊗EHomLI0
(i∞I1,I0(π∞

1 ), π∞
0 ) ∼−→ HomG(FGPI1

(socU(g)(M1), π∞
1 ), V0).

Hence, as HomU(g)(M0, socU(g)(M1)) ∼= HomU(g)(M0,M1) (since M0 = L(x0)), it is enough to
show that the map

HomG(V1, V0) −→ HomG(FGPI1
(M1/socU(g)(M1), π∞

1 ), V0) (396)

induced by the surjection M1 ↠M1/socU(g)(M1) is zero. Assume on the contrary that (396)
is non-zero and let M2 be a quotient of M1/socU(g)(M1) of minimal length such that the
composition M1 ↠M1/socU(g)(M1) ↠M2 induces a non-zero map

HomG(V1, V0) −→ HomG(FGPI1
(M2, π

∞
1 ), V0).

The minimality of M2 easily implies that socU(g)(M2) is irreducible, isomorphic to L(x) for
some x ∈ W (G), and that the map HomG(V1, V0)→ HomG(FGPI1

(M2/L(x), π∞
1 ), V0) (induced

by M1 ↠M2/L(x)) is zero. Using the exact sequence

0→ HomG

(
FGPI1

(ker(M1 →M2/L(x)), π∞
1 ), V0

)
→ HomG(V1, V0)

→ HomG

(
FGPI1

(M2/L(x), π∞
1 ), V0

)
we deduce that ker(M1 →M2/L(x)) ↪→M1 induces an isomorphism

HomG

(
FGPI1

(ker(M1 →M2/L(x)), π∞
1 ), V0

) ∼−→ HomG(V1, V0).

Hence we can replace M1 by ker(M1 →M2/L(x)) and M2 by L(x). The surjection M1 ↠M2
(which is 0 on socU(g)(M1)) then factors through surjections M1 ↠ M ′

1 ↠ M2 where M ′
1 is

uniserial of length 2 with cosocle L(x) and socle L(w) for some w ∈ W (G). Moreover we
have w ̸= x by (i) of Lemma 3.2.4. Hence M ′

1 ↠M2 induces a non-zero map

HomG(FGPI1
(M ′

1, π
∞
1 ), V0) −→ HomG(FGPI1

(M2, π
∞
1 ), V0). (397)

The target of (397) being non-zero forces x = x0 by Lemma 5.1.1. But by Lemma 5.1.6
(applied with x0 = w, x1 = x, I = I1, π∞ = π∞

1 and M = M ′
1) FGPI1

(M ′
1, π

∞
1 ) has

cosocle FGPIw
(L(w), cosocLIw

(i∞I1,Iw
(π∞

1 ))) where Iw
def= ∆ \ DL(w) ⊇ I1 (by Lemma 3.1.1).

Lemma 5.1.1 then forces HomG(FGPI1
(M ′

1, π
∞
1 ), V0) = 0, a contradiction to (397) being non-

zero. This finishes the proof.

Remark 5.1.8. Using Remark 4.5.12, we can check through the proof of Lemma 5.1.1 that
the isomorphism (376) is functorial in π∞

0 and π∞
1 . Similarly, the proof of Lemma 5.1.7 shows

that both (394) and (395) are functorial in π∞
0 and π∞

1 .
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Lemma 5.1.9. Let I ⊆ ∆, Σ a G-regular W (LI)-coset and π∞ a smooth (finite length)
representation of LI in BIΣ such that i∞I,∆(π∞) is multiplicity free. Let M,M ′ in OpI

alg with
all irreducible constituents of the form L(w) for some w ∈ W (G) and V

def= FGPI
(M,π∞),

V ′ def= FGPI
(M ′, π∞). If V ′ is a subquotient of V , then there exists a subquotient M ′′ of M

such that V ′ ∼= FGPI
(M ′′, π∞).

Proof. Note that, although it is possible that M ′′ = M ′, we actually do not need that (and
we do not prove it below). Replacing M by Q, we can assume that there does not exist a
strict subquotient Q of M such that V ′ is a subquotient of FGPI

(Q, π∞). Let V ′
− (resp. V ′

+) a
(closed) subrepresentation (resp. a quotient) of V such that the composition V ′

− ↪→ V ↠ V ′
+

has image V ′. It is an easy exercise to check that we can always choose V ′
− and V ′

+ such
that the injection V ′ ↪→ V ′

+ (resp. the surjection V ′
− ↠ V ′) induces an isomorphism on socles

(resp. on cosocles).
Under the first assumption, it is enough to show that V ′ = V , or equivalently V ′

− =
V = V ′

+. We consider an arbitrary surjection q : M ↠ L(x), which induces an injection
FGPI

(L(x), π∞) ↪→ V . The composition

FGPI
(L(x), π∞) ↪→ V ↠ V ′

+ (398)

must be non-zero, otherwise the surjection V ↠ V ′
+ factors through FGPI

(ker(q), π∞) ↠ V ′
+

which forces V ′ to be a subquotient of FGPI
(ker(q), π∞) and thus contradicts our first as-

sumption. Note that I ⊆ Ix by Lemma 3.1.1 (recall Ix = ∆ \DL(x)). As i∞Ix,∆(i∞I,Ix
(π∞)) ∼=

i∞I,∆(π∞) is multiplicity free, so is i∞I,Ix
(π∞). By Lemma 5.1.2 (which can be applied since

i∞I,Ix
(π∞) satisfies the assumption there using the (second statement in) (iii) of Lemma

2.1.15) we deduce that FGPI
(L(x), π∞) ∼= FGPIx

(L(x), i∞I,Ix
(π∞)) is multiplicity free with so-

cle FGPIx
(L(x), σ∞

0 ) where σ∞
0

def= socLIx
(i∞I,Ix

(π∞)). If the non-zero composition (398) is not
injective, then socG(V ′

+) has an irreducible constituent W of the form FGPIx
(L(x), σ∞) for

some constituent σ∞ of i∞I,Ix
(π∞)/σ∞

0 . Since socG(V ′) ∼→ socG(V ′
+), W is also a constituent

of socG(V ′), in particular HomG(W,V ′) ̸= 0. But by (i) of Lemma 5.1.7 (applied with
V0 = W and V1 = V ′) HomG(W,V ′) ̸= 0 implies HomLIx

(σ∞, i∞I,Ix
(π∞)) ̸= 0, which contra-

dicts σ∞ ∈ JHLIx
(i∞I,Ix

(π∞)/σ∞
0 ) (as i∞I,Ix

(π∞) is multiplicity free). Hence, the composition
(398) must be injective. Since q : M ↠ L(x) was arbitrary, the composition

FGPI
(cosocU(g)(M), π∞) ↪→ V ↠ V ′

+

(induced by M ↠ cosocU(g)(M)) has to be injective. Applying Lemma 5.1.6 to FGPI
(N, π∞)

where N is any uniserial length 2 subquotient of M (using (i) of Lemma 3.2.4), we obtain (us-
ing (iv) of Theorem 4.3.7) that the injection FGPI

(cosocU(g)(M), π∞) ↪→ V contains socG(V ).
It follows that the composition socG(V ) ↪→ V ↠ V ′

+ is also injective, and thus the surjection
V ↠ V ′

+ is an isomorphism. A symmetric argument (using (ii) of Lemma 5.1.7) shows that
the injection V ′

− ↪→ V must also be an isomorphism, hence we have V ′ = V .
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Lemma 5.1.10. For i = 0, 1 assume that Ii = ∆ \DL(xi), M0 = L(x0) and M1 = M I1(x1)
for some xi ∈ W (G) such that x0 ̸= x1. Then we have a canonical isomorphism

Ext1
G(V0, V1) ∼= Ext1

U(g)(M1,M0)⊗E HomLI1
(i∞I0∩I1,I1(JI0,I0∩I1(π∞

0 )), π∞
1 ). (399)

Proof. Assume Σ1 ∩W (G) · Σ0 = ∅, then Ext1
G(V0, V1) = 0 by (iii) of Corollary 4.5.13 and

HomLI1
(i∞I0∩I1,I1(JI0,I0∩I1(π∞

0 )), π∞
1 ) = 0 by (61) for w = 1 (using J (π∞

0 ) ⊆ Σ0), so (399)
holds (both sides being 0). Assume Σ1∩W (G) ·Σ0 ̸= ∅, then by (iv) of Corollary 4.5.13 and
as HomU(g)(M1,M0) = 0 (since x0 ̸= x1), it suffices to show ExtkU(g)(M1,M

w
0 ) = 0 for k ≤ 1

and 1 ̸= w ∈ W I0,I1 . As L(x0)w is not in Ob
alg for 1 ̸= w ∈ W I0,I1 by (iii) of Lemma 3.3.1, we

have HomU(g)(M1,M
w
0 ) = 0. And we have Ext1

U(g)(M1,M
w
0 ) = 0 for 1 ̸= w ∈ W I0,I1 by (ii)

of Remark 3.3.6.

Lemma 5.1.11. For i = 0, 1 assume that Ii = ∆ \ DL(xi) and Mi = L(xi) for some
xi ∈ W (G) such that x0 ̸= x1. Then we have a canonical injection

Ext1
G(V0, V1) ↪→ Ext1

U(g)(M1,M0)⊗E HomLI1
(i∞I0∩I1,I1(JI0,I0∩I1(π∞

0 )), π∞
1 ). (400)

In particular Ext1
G(V0, V1) ̸= 0 implies Ext1

U(g)(M1,M0) ̸= 0 and

HomLI1
(i∞I0∩I1,I1(JI0,I0∩I1(π∞

0 )), π∞
1 ) ̸= 0. (401)

Proof. It is enough to prove (400) when Ext1
G(V0, V1) ̸= 0, which we now assume. Let

V2
def= FGPI1

(M I1(x1), π∞
1 ) and note that there is an injection V1 ↪→ V2. As x0 ̸= x1, we have

HomU(g)(M I1(x1), L(x0)) = 0. If HomG(V0, V2) ̸= 0, then HomU(g)(M I1(x1), L(x0)) ̸= 0 by
(i) of Lemma 5.1.7 which is a contradiction, hence HomG(V0, V2) = 0. This together with
the exact sequence 0→ V1 → V2 → V2/V1 → 0 induce an exact sequence

0→ HomG(V0, V2/V1)→ Ext1
G(V0, V1)→ Ext1

G(V0, V2). (402)

Case 1: Ext1
G(V0, V2) = 0.

Then HomG(V0, V2/V1) ∼→ Ext1
G(V0, V1) ̸= 0 by (402). Using V2/V1 ∼= FGPI1

(N I1(x1), π∞
1 ), by

(i) of Lemma 5.1.7 we have I1 ⊆ I0 and an isomorphism

HomG(V0, V2/V1) ∼= HomU(g)(N I1(x1), L(x0))⊗E HomL0(π∞
0 , i

∞
I1,I0(π∞

1 )). (403)

As N I1(x1) is the image of N(x1) under M(x1) ↠ M I1(x1) and I1 ⊆ I0, we deduce from
[Hum08, Thm. 9.4(c)] and Lemma 3.1.1 that

HomU(g)(N I1(x1), L(x0)) ∼−→ HomU(g)(N(x1), L(x0)) ̸= 0,

which by (141) and (ii) of Lemma 3.2.2 has dimension µ(x1, x0) (and x1 ≺ x0). As x1 < x0
and M I1(x1) has cosocle L(x1) we have HomU(g)(M I1(x1), L(x0)) = 0 which implies

HomU(g)(N I1(x1), L(x0)) ↪→ Ext1
U(g)(L(x1), L(x0)). (404)
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By (ii) of Lemma 3.2.4 the target of (404) also has dimension µ(x1, x0), hence (404) is an
isomorphism and (403) together with HomG(V0, V2/V1) ∼→ Ext1

G(V0, V1) give

Ext1
G(V0, V1) ∼= Ext1

U(g)(L(x1), L(x0))⊗E HomL0(π∞
0 , i

∞
I1,I0(π∞

1 )). (405)

The right hand side of (405 is exactly the right hand side of (400) by (31) and I0 ∩ I1 = I1.

Case 2: Ext1
G(V0, V2) ̸= 0.

The isomorphism from Lemma 5.1.10

Ext1
G(V0, V2) ∼= Ext1

U(g)(M I1(x1), L(x0))⊗E HomLI1
(i∞I0∩I1,I1(JI0,I0∩I1(π∞

0 )), π∞
1 ) (406)

implies Ext1
U(g)(M I1(x1), L(x0)) ̸= 0. Hence the end of Remark 3.2.8 (which can be ap-

plied since Ext1
G(V0, V1) ̸= 0) implies Ext1

U(g)(L(x1), L(x0)) ∼→ Ext1
U(g)(M I1(x1), L(x0)) and

HomU(g)(N I1(x1), L(x0)) = 0. In particular (406) gives

Ext1
G(V0, V2) ∼= Ext1

U(g)(L(x1), L(x0))⊗E HomLI1
(i∞I0∩I1,I1(JI0,I0∩I1(π∞

0 )), π∞
1 ). (407)

Moreover HomU(g)(N I1(x1), L(x0)) = 0 implies HomG(V0, V2/V1) = 0 (otherwise use (403))
and thus Ext1

G(V0, V1) ↪→ Ext1
G(V0, V2) by (402). With (407) this finishes the proof.

Remark 5.1.12. As i∞I0∩I1,I1(JI0,I0∩I1(π∞
0 )) ∼= i∞I0,I1,1(JI0,I1,1(π∞

0 )) is a direct summand of
J∆,I1(i∞I0,∆(π∞

0 )) by (60), (400) being non-zero forces (using (31))

0 ̸= HomLI1
(J∆,I1(i∞I0,∆(π∞

0 )), π∞
1 ) ∼= HomG(i∞I0,∆(π∞

0 ), i∞I1,∆(π∞
1 )).

In particular Ext1
G(V0, V1) ̸= 0 and x0 ̸= x1 imply d(π∞

0 , π
∞
1 ) = 0.

Remark 5.1.13. Using Remark 4.5.12, an examination of the proof of Lemma 5.1.10 shows
that the isomorphism (399) is functorial in π∞

0 and π∞
1 . Since the proof of Lemma 5.1.11 is

based on Lemma 5.1.10 and Lemma 5.1.7, we deduce from Remark 5.1.8 that the injection
(400) is also functorial in π∞

0 and π∞
1 .

Proposition 5.1.14. For i = 0, 1 assume that Ii = ∆ \ DL(xi) and Mi = L(xi) for some
xi ∈ W (G). Assume moreover x0 ̸= x1 and that π∞

0 , π∞
1 are G-basic. Then the injection

(400) is an isomorphism

Ext1
G(V0, V1) ∼−→ Ext1

U(g)(M1,M0)⊗E HomLI1
(i∞I0∩I1,I1(JI0,I0∩I1(π∞

0 )), π∞
1 ). (408)

Proof. It suffices to show that both sides of (408) have the same dimension when the right
hand side is non-zero. It follows from Lemma 2.1.29 and Lemma 2.1.18 that

i∞I0∩I1,I1(JI0,I0∩I1(π∞
0 ))BI1

Σ1
= i∞I0,I1,1(JI0,I1,1(π∞

0 ))BI1
Σ1

is either zero or G-basic, and by (iv) of Remark 2.1.16 that

HomLI1
(i∞I0∩I1,I1(JI0,I0∩I1(π∞

0 )), π∞
1 ) ∼= HomLI1

(i∞I0∩I1,I1(JI0,I0∩I1(π∞
0 ))BI1

Σ1
, π∞

1 ) (409)
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is one dimensional if non-zero. Consequently the right hand side of (408), if non-zero, has
dimension dimE Ext1

U(g)(M1,M0). However, under the assumption that (409) is non-zero, it
follows from (386) and (389) that

dimE Ext1
G(V0, V1) ≥ dimE Ext1

U(g)(M1,M0),
which forces (408) to be an isomorphism.
Lemma 5.1.15. For i = 0, 1 assume that Ii = ∆ \ DL(xi) and Mi = L(xi) for some
xi ∈ W (G). Assume moreover x0 ̸= x1 and that π∞

0 , π∞
1 are G-basic. Let V in Repan

adm(G)
which fits into a non-split short exact sequence 0→ V1 → V → V0 → 0.

(i) We have cosocG(V ) ∼= cosocG(V0) if and only if V has simple cosocle if and only if π∞
1

is a quotient of J∆,I1(i∞I0,∆(π∞
0 )).

(ii) We have socG(V ) ∼= socG(V1) if and only if V has simple socle if and only if π∞
0 is a

subrepresentation of J ′
∆,I0(i∞I1,∆(π∞

1 )).
Proof. Recall that, since Σi is a single W (LIi

)-coset, we have Σi = W (LIi
) · J (π∞

i ) for
i = 0, 1. The assumptions imply that we have (401) and by (61) (for w = 1) we deduce
Σ0∩Σ1 ̸= ∅. By Lemma 5.1.2 and (the last statement in) (iv) of Remark 2.1.16 Vi has simple
socle FGPIi

(Mi, socLIi
(π∞

i )) and simple cosocle FGPIi
(Mi, cosocLIi

(π∞
i )) for i = 0, 1. Hence

V has simple socle (resp. cosocle) if and only if socG(V ) = socG(V1) (resp. cosocG(V ) =
cosocG(V0)) if and only if the map Ext1

G(V0, V1)→ Ext1
G(socG(V0), V1) (resp. Ext1

G(V0, V1)→
Ext1

G(V0, cosocG(V1))) is non-zero. Since the isomorphism (408) is functorial in π∞
0 and π∞

1
by Remark 5.1.13, Ext1

G(V0, V1)→ Ext1
G(socG(V0), V1) is non-zero if and only if the map

HomLI1
(i∞I0∩I1,I1(JI0,I0∩I1(π∞

0 )), π∞
1 )→ HomLI1

(i∞I0∩I1,I1(JI0,I0∩I1(socLI0
(π∞

0 ))), π∞
1 ) (410)

is non-zero, and Ext1
G(V0, V1)→ Ext1

G(V0, cosocG(V1))) is non-zero if and only if the map
HomLI1

(i∞I0∩I1,I1(JI0,I0∩I1(π∞
0 )), π∞

1 )→ HomLI1
(i∞I0∩I1,I1(JI0,I0∩I1(π∞

0 )), cosocLI1
(π∞

1 )) (411)
is non-zero. As cosocLI1

(π∞
1 ) is simple, by (both parts of) Lemma 2.1.18 the map (411) is

non-zero if and only if π∞
1 is a quotient of J∆,I1(i∞I0,∆(π∞

0 ))BI1
Σ1

if and only if π∞
1 is a quotient

of J∆,I1(i∞I0,∆(π∞
0 )). This proves (i).

By (32) followed by (31) and by both parts of Lemma 2.1.18 we have functorial isomor-
phisms in representations ∗ in Rep∞

adm(LI0)

HomLI0
(∗, J ′

∆,I0(i∞I1,∆(π∞
1 ))) ∼= HomLI1

(J∆,I1(i∞I0,∆(∗)), π∞
1 )

∼= HomLI1
(i∞I0∩I1,I1(JI0,I0∩I1(∗)), π∞

1 ).
Hence (410) is the map

HomLI0
(π∞

0 , J
′
∆,I0(i∞I1,∆(π∞

1 ))) −→ HomLI0
(socLI0

(π∞
0 ), J ′

∆,I0(i∞I1,∆(π∞
1 ))). (412)

Since socLI0
(π∞

0 ) is simple, (412) is non-zero if and only if π∞
0 is a subrepresentation of

J ′
∆,I0(i∞I1,∆(π∞

1 ))BI1
Σ0

if and only if π∞
0 is a subrepresentation of J ′

∆,I0(i∞I1,∆(π∞
1 )). This proves

(ii).
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Lemma 5.1.16. For i = 0, 1 assume that Ii = ∆ \ DL(xi) and Mi = L(xi) for some
xi ∈ W (G). Assume moreover that M0 is not a constituent of M I1(x1), that d(π∞

0 , π
∞
1 ) ≥ 1

and that Ext2
G(V0, V1) ̸= 0. Then we have Ext1

U(g)(M1,M0) ̸= 0 and

Ext1
LI1

(i∞I0∩I1,I1(JI0,I0∩I1(π∞
0 )), π∞

1 )∞ ̸= 0. (413)

Proof. Let V2
def= FGPI1

(M I1(x1), π∞
1 ), the surjection M I1(x1) ↠ M1 induces an injection

V1 ↪→ V2 with V2/V1 ∼= FGPI1
(N I1(x1), π∞

1 ). Since M0 is not a constituent of M I1(x1), we
have in particular x0 ̸= x′

1 for any constituent L(x′
1) of M I1(x1). We then deduce from

d(π∞
0 , π

∞
1 ) ≥ 1 and Remark 5.1.12 that Ext1

G(V0,FGPI1
(L(x′

1), π∞
1 )) = 0 for any constituent

L(x′
1) of N I1(x1) (note that we also implicitly use Lemma 3.1.1 applied to L(x′

1) together
with (ii) of Theorem 4.3.7). Therefore we have Ext1

G(V0, V2/V1) = 0 and the exact sequence
0→ V1 → V2 → V2/V1 → 0 induces an embedding

0 ̸= Ext2
G(V0, V1)→ Ext2

G(V0, V2).

By a dévissage on (Filw(V ∨
0 ))w∈W I0,I1 there is w ∈ W I0,I1 such that Ext2

D(G)(V ∨
2 , grw(V ∨

0 )) ̸=
0, which together with (299) (applied with grw(V ∨

0 ) instead of V ∨
0 ), (306) (applied with

D = grw(V ∨
0 )) and Corollary 4.5.11 implies

ExtkLI1
(i∞I0,I1,w(JI0,I1,w(π∞

0 )), π∞
1 )∞ ⊗E ExtℓU(g)(M I1(x1),Mw

0 ) ̸= 0 (414)

for some k, ℓ ≥ 0 such that k + ℓ = 2. As HomU(g)(M I1(x1),Mw
0 ) = 0 using M0 /∈

JHU(g)(M I1(x1)) and (iii) of Lemma 3.3.1, and as HomLI1
(i∞I0,I1,w(JI0,I1,w(π∞

0 )), π∞
1 ) = 0

using d(π∞
0 , π

∞
1 ) ≥ 1 and (60) for I = ∆ (with (31)), we see that (414) can hold only when

k = ℓ = 1. As Ext1
U(g)(M I1(x1),Mw

0 ) = 0 for 1 ̸= w ∈ W I0,I1 by (ii) of Remark 3.3.6,
we must have w = 1. Then (414) implies (413) and Ext1

U(g)(M I1(x1),M0) ̸= 0. Finally, it
follows from the discussion in the paragraph below (155) (applied with w, x being x1, x0)
that if Ext1

U(g)(M I1(x1),M0) ̸= 0 then Ext1
U(g)(M I1(x1),M0) and Ext1

U(g)(M1,M0) have the
same dimension. In particular Ext1

U(g)(M1,M0) ̸= 0.

Lemma 5.1.17. For i = 0, 1 assume that Ii = ∆ \ DL(xi) and Mi = L(xi) for some
xi ∈ W (G). Assume moreover that Σ0 ∩ Σ1 = ∅. Then the following results hold.

(i) We have Ext1
G(V0, V1) = 0.

(ii) If d(π∞
0 , π

∞
1 ) ≥ 1, then we have Ext2

G(V0, V1) = 0.

Proof. We let V2
def= FGPI1

(M I1(x1), π∞
1 ), which contains V1.

We prove (i). Assume HomG(V0, V2/V1) ̸= 0, then by (i) of Lemma 5.1.7 we have I1 ⊆ I0
and (using (31))

HomL0(π∞
0 , i

∞
I1,I0(π∞

1 )) ∼= HomLI1
(i∞I0∩I1,I1(JI0,I0∩I1(π∞

0 )), π∞
1 ) ̸= 0.
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But by (61) for w = 1 this contradicts the assumption Σ0∩Σ1 = ∅. Hence HomG(V0, V2/V1) =
0, so the injection V1 ↪→ V2 induces an injection Ext1

G(V0, V1) ↪→ Ext1
G(V0, V2). Assume on the

contrary Ext1
G(V0, V1) ̸= 0 and thus Ext1

G(V0, V2) ̸= 0. By a dévissage on (Filw(V ∨
0 ))w∈W I0,I1

there exists w ∈ W I0,I1 such that Ext2
D(G)(V ∨

2 , grw(V ∨
0 )) ̸= 0, which as in the previous proof

implies
ExtkLI1

(i∞I0,I1,w(JI0,I1,w(π∞
0 )), π∞

1 )∞ ⊗E ExtℓU(g)(M I1(x1), L(x0)w) ̸= 0 (415)

for some k, ℓ ≥ 0 such that k + ℓ = 1. Then (61) and Σ0 ∩ Σ1 = ∅ force w ̸= 1. But then
we have ExtℓU(g)(M I1(x1), L(x0)w) = 0 for ℓ ≤ 1 by (iii) of Lemma 3.3.1 (ℓ = 0) and (ii) of
Remark 3.3.6 (ℓ = 1), which contradicts (415).

We prove (ii). By (i), V2/V1 ∼= FGPI1
(N I1(x1), π∞

1 ) and a dévissage on the constituents of
N I1(x1), we obtain Ext1

G(V0, V2/V1) = 0. Assume on the contrary Ext2
G(V0, V1) ̸= 0, then we

must have Ext2
G(V0, V2) ̸= 0, and by the same dévissage as in (i) there exists w ∈ W I0,I1 such

that (415) holds for some k, ℓ ≥ 0 with k+ ℓ = 2. As Σ0 ∩Σ1 = ∅, we have again w ̸= 1 and
thus ExtℓU(g)(M I1(x1), L(x0)w) = 0 for ℓ ≤ 1. But we also have

HomLI1
(i∞I0,I1,w(JI0,I1,w(π∞

0 )), π∞
1 ) = 0

by (60) (for I = ∆), (31) and the assumption d(π∞
0 , π

∞
1 ) ≥ 1. This contradicts (415) for all

k, ℓ ≥ 0 such that k + ℓ = 2 and finishes the proof.

Proposition 5.1.18. For i = 0, 1 assume that I def= Ii = ∆ \ {j} and Mi = L(xi) for some
j ∈ ∆ and some xi ∈ W (G) such that DL(xi) = {j}. Assume moreover that π∞

0 , π∞
1 are

G-basic, that Ext2
G(V0, V1) ̸= 0 and that

i∞I,I,sj
(JI,I,sj

(π∞
0 ))BI

Σ1
̸= 0. (416)

Then we have x0 = x1,
HomLI

(i∞I,I,sj
(JI,I,sj

(π∞
0 )), π∞

1 ) ̸= 0 (417)
and

dimE Ext2
G(V0, V1) ≤ #S0 (418)

where S0 = {x′ | x′ ∈ W (LI)x0, ℓ(x′) = ℓ(x0) + 1, j /∈ DL(x′)}.

Proof. We have canonical isomorphisms

HomG(i∞I,∆(π∞
0 ), i∞I,∆(π∞

1 )) ∼= HomLI
(J∆,I(i∞I,∆(π∞

0 )), π∞
1 )

∼= HomLI
(i∞I,I,sj

(JI,I,sj
(π∞

0 )), π∞
1 ) ∼= HomLI

(i∞I,I,sj
(JI,I,sj

(π∞
0 ))BI

Σ1
, π∞

1 )

where the first isomorphism is (31) and the other two follow from both parts of Lemma 2.1.18
together with (416) remembering that Σ1 = W (LI) · J (π∞

1 ) is a G-regular left W (LI)-coset.
In particular, assuming (416), (417) is equivalent to d(π∞

0 , π
∞
1 ) = 0.

Let V2
def= FGPI

(M I(x1), π∞
1 ) and recall M I(x1) ↠ L(x1) induces V1 ↪→ V2. The exact

sequence 0→ V1 → V2 → V2/V1 → 0 induces an exact sequence

Ext1
G(V0, V2/V1)→ Ext2

G(V0, V1)→ Ext2
G(V0, V2). (419)
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Step 1: We prove Ext1
G(V0, V2/V1) = 0.

We have V2/V1 ∼= FGPI
(N I(x1), π∞

1 ) which admits a filtration with graded pieces of the
form FGPI

(L(x′), π∞
1 ) for some x′ > x1 with DL(x′) ⊆ DL(x1) (by Lemma 3.1.1) and hence

DL(x′) = {j}. We deduce from (416) and Lemma 2.1.18 that

Σ1 = W (LI) · J (π∞
1 ) ⊆ W (LI)sjW (LI) · J (π∞

0 ), (420)

which forces
Σ1 ∩W (LI) · J (π∞

0 ) = Σ1 ∩ Σ0 = ∅. (421)
Then (421) together with (i) of Lemma 5.1.17 applied to each FGPI

(L(x′), π∞
1 ) and a dévissage

imply the statement.

Step 2: We prove the proposition.
Note first that Step 1, (419) and the assumption Ext2

G(V0, V1) ̸= 0 imply Ext2
G(V0, V2) ̸= 0.

By (367) and (420) we have a spectral sequence

ExtℓU(g)(M I(x1), L(x0)sj )⊗E ExtkLI
(i∞I,I,sj

(JI,I,sj
(π∞

0 )), π∞
1 )∞ =⇒ Extk+ℓ

G (V0, V2).

Since ExtℓU(g)(M I(x1), L(x0)sj ) = 0 for ℓ ≤ 1 by (iii) of Lemma 3.3.1 (ℓ = 0) and (ii) of
Remark 3.3.6 (ℓ = 1), we deduce

0 ̸= Ext2
G(V0, V2) ∼= HomLI

(i∞I,I,sj
(JI,I,sj

(π∞
0 )), π∞

1 )⊗E Ext2
U(g)(M I(x1), L(x0)sj ). (422)

From (422) we have (417), which is one dimensional by (i) of Lemma 2.2.11, and thus
dimE Ext2

G(V0, V2) = dimE Ext2
U(g)(M I(x1), L(x0)sj ) ̸= 0, which by Proposition 3.3.9 gives

x0 = x1 and
dimE Ext2

G(V0, V2) = #S0. (423)
Finally, we deduce (418) from (419), Step 1 and (423).

Let I ⊆ ∆, M multiplicity free in OpI
alg and recall the set JHU(g)(M) is equipped with a

partial order (see §1.4). For π∞ G-basic in Rep∞
adm(LI) it follows that FGPI

(M,π∞) is also
multiplicity free using Lemma 5.1.1 and (iv) of Remark 2.1.16 (and Theorem 4.3.7). As M
is multiplicity free, for each L(x) ∈ JHU(g)(M) there is a unique subobject of M with cosocle
L(x). This defines an increasing filtration on M indexed by JHU(g)(M), where “increasing”
means that the inclusions respect the partial order on JHU(g)(M). By the exactness of the
contravariant functor FGPI

(−, π∞) this in turn defines a decreasing filtration on FGPI
(M,π∞)

indexed by JHU(g)(M). We call it the JHU(g)(M)-filtration on FGPI
(M,π∞).

Lemma 5.1.19. With the above assumptions assume that for each L(x) ∈ JHU(g)(M) there
exists a G-basic subquotient σ∞

x of i∞I,Ix
(π∞) such that d(σ∞

x , σ
∞
x′ ) = 0 when L(x′) ≤ L(x) in

JHU(g)(M). Then FGPI
(M,π∞) contains a unique subquotient V such that

(i) the JHU(g)(M)-filtration on FGPI
(M,π∞) induces a decreasing filtration on V indexed

by JHU(g)(M) with L(x)-graded piece Vx
def= FGPIx

(L(x), σ∞
x ) for L(x) ∈ JHU(g)(M);
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(ii) for each uniserial length 2 subquotient of M with socle L(x′) and cosocle L(x), V
contains a (unique) subquotient Vx,x′ which fits into a non-split extension 0 → Vx →
Vx,x′ → Vx′ → 0;

(iii) if σ∞
x is furthermore a subrepresentation (resp. a quotient) of i∞I,Ix

(π∞) for each L(x) ∈
JHU(g)(M), then V is a subrepresentation (resp. a quotient) of FGPI

(M,π∞).

Proof. Recall that i∞I,Ix
(π∞) and σ∞

x are G-basic and thus multiplicity free with simple socle
and cosocle ((iv) of Remark 2.1.16). For L(x) ∈ JHU(g)(M), let σ∞

x,+ (resp. σ∞
x,−) be the

unique quotient (resp. subrepresentation) of i∞I,Ix
(π∞) with socle socLIx

(σ∞
x ) (resp. cosocle

cosocLIx
(σ∞

x )), which is multiplicity free with simple socle and cosocle. By Corollary 2.1.26
both σ∞

x,+ and σ∞
x,− are G-basic. In fact, σ∞

x,+ (resp. σ∞
x,−) is the unique quotient (resp. sub-

representation) of minimal length of i∞I,Ix
(π∞) that admits σ∞

x as a subrepresentation (resp. a
quotient).

We first prove that (i) implies (iii). It follows from Lemma 5.1.2 and (i) of Lemma 5.1.7
that FGPI

(M,π∞) has socle ⊕
L(x)∈JHU(g)(cosocU(g)(M))

FGPIx
(L(x), socLIx

(i∞I,Ix
(π∞))), (424)

and from Lemma 5.1.2 and (ii) of Lemma 5.1.7 that FGPI
(M,π∞) has cosocle⊕

L(x)∈JHU(g)(socU(g)(M))
FGPIx

(L(x), cosocLIx
(i∞I,Ix

(π∞))). (425)

If σ∞
x is a subrepresentation of i∞I,Ix

(π∞) for each L(x) ∈ JHU(g)(M), we have socLIx
(σ∞

x ) =
socLIx

(i∞I,Ix
(π∞)) for each L(x) ∈ JHU(g)(M) as i∞I,Ix

(π∞) is G-basic with simple socle by (iv)
of Remark 2.1.16. Hence by Lemma 5.1.2 and (i) we have

socG(Vx) ∼= FGPIx
(L(x), socLIx

(σ∞
x )) = FGPIx

(L(x), socLIx
(i∞I,Ix

(π∞))),

which implies by (424) and (i) of Lemma 5.1.7

socG(V ) ⊇
⊕

L(x)∈JHU(g)(cosocU(g)(M))
socG(Vx) = socG(FGPI

(M,π∞)).

Since FGPI
(M,π∞) is multiplicity free, this forces V to be a subrepresentation of FGPI

(M,π∞).
If σ∞

x is a quotient of i∞I,Ix
(π∞) for each L(x) ∈ JHU(g)(M), a symmetric argument using (425)

shows cosocG(V ) ⊇ cosocG(FGPI
(M,π∞)), which forces V to be a quotient of FGPI

(M,π∞).
We prove (i), (ii) and (iii) by increasing induction on the length ℓ(M) ≥ 1. If ℓ(M) =

1 with JHU(g)(M) = {L(x)}, then V = Vx, which is a subquotient of FGPI
(L(x), π∞) ∼=

FGPIx
(L(x), i∞I,Ix

(π∞)). Assume from now on ℓ(M) ≥ 2. If ℓ(cosocU(g)(M)) ≥ 2, then there
exists M ′,M ′′ ⊊M such that M = M ′ +M ′′. In this case, by Proposition 4.3.7 we have

FGPI
(M,π∞) ∼= FGPI

(M ′, π∞)×FG
PI

(M ′∩M ′′,π∞) FGPI
(M ′′, π∞).
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By our induction hypothesis there is a subquotient V ′ (resp. V ′′) of FGPI
(M ′, π∞) (resp. of

FGPI
(M ′′, π∞)) which satisfies (i) and (ii) (with M replaced by M ′, M ′′ respectively). More-

over, still by induction V ′ and V ′′ admit a common quotient V ′′′ which is a subquotient of
FGPI

(M ′ ∩M ′′, π∞) and satisfies (i) and (ii) (with M replaced by M ′ ∩M ′′). Then we can
take V def= V ′ ×V ′′′ V ′′.

We assume from now on cosocU(g)(M) ∼= L(x) for some x ∈ W (G) and we write
M ′ def= Rad1(M) ⊊ M . By induction hypothesis there is a subquotient V ′ of FGPI

(M ′, π∞)
that satisfies (i) and (ii) (with M replaced by M ′). By Lemma 5.1.2 (and the definition of
σ∞
x′,−) for L(x′) ∈ JHU(g)(M ′), FGPIx′

(L(x′), σ∞
x′,−) is the unique minimal length subrepresen-

tation of FGPI
(L(x′), π∞) ∼= FGPIx′

(L(x′), i∞I,Ix′ (π∞)) with Vx′ = FGPIx′
(L(x′), σ∞

x′ ) as quotient.
As σ∞

x′,− is a subrepresentation of i∞I,Ix′ (π∞) which admits σ∞
x′ as quotient, i∞Ix′ ,∆(σ∞

x′,−) is
a subrepresentation of i∞Ix′ ,∆(i∞I,Ix′ (π∞)) ∼= i∞I,∆(π∞) which admits i∞Ix′ ,∆(σ∞

x′ ) as quotient.
Let L(x′), L(x′′) ∈ JHU(g)(M ′) such that L(x′) ≤ L(x′′). The assumption d(σ∞

x′ , σ∞
x′′) = 0,

i.e. HomG(i∞Ix′ ,∆(σ∞
x′ ), i∞Ix′′ ,∆(σ∞

x′′)) ̸= 0, implies (with (iv) of Remark 2.1.16)

cosocG(i∞Ix′ ,∆(σ∞
x′,−)) = cosocG(i∞Ix′ ,∆(σ∞

x′ )) ∈ JHG(i∞Ix′′ ,∆(σ∞
x′′)) ⊆ JHG(i∞Ix′′ ,∆(σ∞

x′′,−)),

which forces i∞Ix′ ,∆(σ∞
x′,−) ⊆ i∞Ix′′ ,∆(σ∞

x′′,−) ⊆ i∞I,∆(π∞) (using that all these representations
are G-basic hence multiplicity free) and thus d(σ∞

x′,−, σ
∞
x′′,−) = 0. As ℓ(M ′) < ℓ(M), by

induction there is subquotient V ′
− of FGPI

(M ′, π∞) with a decreasing filtration indexed by
JHU(g)(M ′) such that its L(x′)-graded piece is FGPIx′

(L(x′), σ∞
x′,−) for each L(x′) ∈ JHU(g)(M ′).

By Lemma 5.1.2 again (and the definition of σ∞
x′,−), for L(x′) ∈ JHU(g)(M ′), FGPIx′

(L(x′), σ∞
x′,−)

is the unique minimal length subrepresentation of FGPI
(L(x′), π∞) ∼= FGPIx′

(L(x′), i∞I,Ix′ (π∞))
with FGPIx′

(L(x′), σ∞
x′ ) as quotient. Hence by (iii) applied to V ′

− (which holds by the induction
hypothesis and the beginning of the proof) V ′

− is the minimal length subrepresentation of
FGPI

(M ′, π∞) with V ′ as quotient. As FGPI
(M,π∞) fits into an exact sequence

0→ FGPI
(L(x), π∞)→ FGPI

(M,π∞)→ FGPI
(M ′, π∞)→ 0,

the subrepresentation V ′
− of FGPI

(M ′, π∞) and the quotient FGPIx
(L(x), σ∞

x,+) of FGPI
(L(x), π∞)

uniquely determine a subquotient W of FGPI
(M,π∞) that fits into

0→ FGPIx
(L(x), σ∞

x,+)→ W → V ′
− → 0. (426)

We construct the desired V as a subquotient of W through the following steps.

Step 1: We prove that, for each length 2 quotient Q of M (with cosocle L(x) and socle
some L(x′)), the exact sequence

0→ FGPIx
(L(x), σ∞

x,+)→ R→ FGPIx′
(L(x′), σ∞

x′,−)→ 0 (427)

induced from (426) is non-split.
As σ∞

x is a subrepresentation of σ∞
x,+ and σ∞

x′ is a quotient of σ∞
x′,−, we deduce from the
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assumption d(σ∞
x′ , σ∞

x ) = 0 that

HomG(i∞Ix′ (σ
∞
x′,−), i∞Ix

(σ∞
x,+)) ̸= 0. (428)

By Lemma 5.1.6 FGPI
(Q, π∞) has simple socle FGPIx

(L(x), socLIx
(i∞I,Ix

(π∞))) and simple cosocle
FGPIx′

(L(x′), cosocLIx′
(i∞I,Ix′ (π∞))). In particular no constituent of FGPIx′

(L(x′), σ∞
x′,−) shows up

in the socle of FGPI
(Q, π∞). Hence, if (427) splits, an easy diagram chase shows that there

must exist a constituent FGPIx
(L(x), τ∞) of FGPI

(L(x), π∞) not in FGPIx
(L(x), σ∞

x,+) such that
Ext1

G(FGPIx′
(L(x′), σ∞

x′,−),FGPIx
(L(x), τ∞)) ̸= 0. By Remark 5.1.12 this implies

HomG(i∞Ix′ ,∆(σ∞
x′,−), i∞Ix,∆(τ∞)) ̸= 0. (429)

Note that i∞Ix,∆(σ∞
x,+) and i∞Ix,∆(τ∞) have no common constituent since i∞Ix,∆(i∞I,Ix

(π∞)) ∼=
i∞I,∆(π∞) is G-basic, thus multiplicity free, and τ∞ ∈ JHLIx

(i∞I,Ix
(π∞)) \ JHLIx

(σ∞
x,+). But

(428) and (429) force both i∞Ix
(σ∞

x,+) and i∞Ix
(τ∞) to have the (simple) cosocle of i∞Ix′ (σ∞

x′,−) as
a Jordan-Hölder factor, which is a contradiction and shows that (427) is non-split.

Step 2: We construct V as a subquotient of W .
Since σ∞

x,+ is a quotient of i∞I,Ix
(π∞) which contains σ∞

x as a subrepresentation, i∞Ix,∆(σ∞
x,+) is

a quotient of i∞I,∆(π∞) ∼= i∞Ix,∆(i∞I,Ix
(π∞)) which contains i∞Ix,∆(σ∞

x ) as a subrepresentation. In
fact it is the unique quotient of i∞I,∆(π∞) with the same (simple) socle as i∞Ix,∆(σ∞

x ). Likewise,
for L(y) ∈ JHU(g)(M ′), i∞Iy ,∆(σ∞

y,−) is the unique subrepresentation of i∞I,∆(π∞) with the same
(simple) cosocle as i∞Iy ,∆(σ∞

y ) (recall all these objects are G-basic and thus multiplicity free
with simple socle and cosocle by (iv) of Remark 2.1.16). It follows from d(σ∞

y , σ
∞
x ) = 0

that the injection σ∞
x ↪→ σ∞

x,+ and the surjection σ∞
y,− ↠ σ∞

y induce an isomorphism of
1-dimensional E-vector spaces

0 ̸= HomG(i∞Iy ,∆(σ∞
y ), i∞Ix,∆(σ∞

x )) ∼−→ HomG(i∞Iy ,∆(σ∞
y,−), i∞Ix,∆(σ∞

x,+)).

In particular, the unique (up to scalar) non-zero map i∞Iy ,∆(σ∞
y,−)→ i∞Ix,∆(σ∞

x,+) factors through
i∞Iy ,∆(σ∞

y )→ i∞Ix,∆(σ∞
x ) and we have

JHG(i∞Iy ,∆(σ∞
y,−)) ∩ JHG(i∞Ix,∆(σ∞

x,+)) = JHG(i∞Iy ,∆(σ∞
y )) ∩ JHG(i∞Ix,∆(σ∞

x )) (430)

(which is the set of constituents of i∞I,∆(π∞) “between” the socle of i∞Ix,∆(σ∞
x ) and the cosocle

of i∞Iy ,∆(σ∞
y ) for the partial order on JHG(i∞I,∆(π∞))). For τ∞

x ∈ JHLIx
(σ∞

x,+) \ JHLIx
(σ∞

x ) and
τ∞
y ∈ JHLIy,∆(σ∞

y,−) \ JHLIy,∆(σ∞
y ) we also have using (430)

HomG(i∞Iy ,∆(τ∞
y ), i∞Ix,∆(τ∞

x )) = 0 (431)

and
HomG(i∞Iy ,∆(τ∞

y ), i∞Ix,∆(σ∞
x )) = 0 = HomG(i∞Iy ,∆(σ∞

y ), i∞Ix,∆(τ∞
x )). (432)

It follows from (431) and (432) together with Lemma 5.1.1 (for ℓ = 0), Remark 5.1.12 and
Proposition 5.1.14 (for ℓ = 1) that for ℓ ≤ 1 and τx, τy as above

ExtℓG(FGPIy
(L(y), τ∞

y ),FGPIx
(L(x), τ∞

x )) = 0 (433)
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and

ExtℓG(FGPIy
(L(y), σ∞

y ),FGPIx
(L(x), τ∞

x )) = 0 = ExtℓG(FGPIy
(L(y), τ∞

y ),FGPIx
(L(x), σ∞

x )). (434)

Then by dévissage from (433) and (434) we deduce an isomorphism for L(y) ∈ JHU(g)(M ′)

Ext1
G(FGPIy

(L(y), σ∞
y ),FGPIx

(L(x), σ∞
x )) ∼−→ Ext1

G(FGPIy
(L(y), σ∞

y,−),FGPIx
(L(x), σ∞

x,+)). (435)

As for (433) and (434) we deduce from (431) and (432) for ℓ ≤ 1

ExtℓG(V ′,FGPIx
(L(x), σ∞

x,+/σ
∞
x )) = ExtℓG(ker(V ′

− ↠ V ′),FGPIx
(L(x), σ∞

x,+)) = 0

which implies an isomorphism

Ext1
G(V ′, Vx) = Ext1

G(V ′,FGPIx
(L(x), σ∞

x )) ∼−→ Ext1
G(V ′

−,FGPIx
(L(x), σ∞

x,+)).

In other words, the object W from (426) admits a unique subquotient V that fits into a short
exact sequence 0→ Vx → V → V ′ → 0. It is then clear that V satisfies (i).

Step 3: We check (ii) for V as in Step 2.
Let Q′ be a subquotient of M which is uniserial of length 2 with socle L(y) and cosocle
L(y′), we want to show that V in Step 2 admits a (unique) subquotient Vy′,y which fits into a
non-split short exact sequence 0→ Vy′ → Vy′,y → Vy → 0. If y′ ̸= x, then Q′ is a subquotient
of M ′ and the existence of Vy′,y follows from the induction hypothesis on V ′. If y′ = x, then
it follows from Step 1 that W contains a subrepresentation R which fits into a non-split
extension (427). But (435) ensures that R contains a subquotient Vx,y as desired.

Let I ⊆ ∆, M multiplicity free in OpI
alg and π∞ G-basic in Rep∞

adm(LI). For L(x) ∈
JHU(g)(M) let σ∞

x be a G-basic subquotient of i∞I,Ix
(π∞) as in Lemma 5.1.19 and let V

as in loc. cit. Let V− be the minimal length subrepresentation of FGPI
(M,π∞) with V as

quotient. We define σ∞
x,− as in the first paragraph of the proof of Lemma 5.1.19, and as in

loc. cit. (see the paragraph before (426) with M ′ there replaced by M), V− has a decreasing
filtration (indexed by JHU(g)(M)) induced by the one on FGPI

(M,π∞) with L(x)-graded
piece FGPIx

(L(x), σ∞
x,−) for L(x) ∈ JHU(g)(M). Now let x0 ∈ W (G), I0

def= ∆ \ DL(x0), π∞
0

a smooth G-basic representation of LI0 , V0
def= FGPI0

(L(x0), π∞
0 ), Σ0

def= W (L0) · J (π∞
0 ) and

Σ0,x
def= Σ0 ∩W (LIx) · J (σ∞

x ) for L(x) ∈ JHU(g)(M). Note that Σ0,x, if non-empty, is a single
left W (LI0∩Ix)-coset by (i) of Lemma 2.1.15 and G-regularity.

Lemma 5.1.20. With the above assumptions assume d(π∞
0 , σ

∞
x ) = 0 for L(x) ∈ JHU(g)(M),

J ′
Ix,I0∩Ix

(τ∞
x )BI0∩Ix

Σ0,x

= 0 for L(x) ∈ JHU(g)(M) \ {L(x0)} and τ∞
x ∈ JHLIx

(σ∞
x,−) \ JHLIx

(σ∞
x ),

and Σ0,x0 = ∅ if L(x0) ∈ JHU(g)(M). Assume moreover that L(x0) is not a constituent
of M Ix(x) for L(x) ∈ JHU(g)(M) with x ̸= x0. Then the unique (up to scalar) injection
V− ↪→ FGPI

(M,π∞) and surjection V− ↠ V induce isomorphisms

Ext1
G(V0, V ) ∼←− Ext1

G(V0, V−) ∼−→ Ext1
G(V0,FGPI

(M,π∞)). (436)
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Proof. Note first that, for any L(x) ∈ JHU(g)(M) and any constituent τ∞
x of i∞I,Ix

(π∞),
it follows from (i) and (iii) of Lemma 2.1.15 that W (LIx) · J (τ∞

x ) = W (LIx) · J (σ∞
x ) =

W (LIx) · J (π∞).

Step 1: We prove
Ext1

G(V0,FGPIx
(L(x), τ∞

x )) = 0 (437)
for L(x) ∈ JHU(g)(M) and τ∞

x ∈ JHLIx
(i∞I,Ix

(π∞)) \ JHLIx
(σ∞

x ).
As d(π∞

0 , σ
∞
x ) = 0, i∞Ix,∆(σ∞

x ) contains cosocG(i∞I0,∆(π∞
0 )) as an (irreducible) constituent. As

i∞Ix,∆(i∞I,Ix
(π∞)) ∼= i∞I,∆(π∞) is multiplicity free (since G-basic), for τx as above i∞Ix,∆(τ∞

x )
cannot have cosocG(i∞I0,∆(π∞

0 )) as a constituent, which forces

HomG(i∞I0,∆(π∞
0 ), i∞Ix,∆(τ∞

x )) = 0. (438)

If x ̸= x0, then (438) and Remark 5.1.12 imply (437). If x = x0, then Σ0,x0 = ∅ and (i) of
Lemma 5.1.17 imply (437).

Step 2: We prove
Ext2

G(V0,FGPIx
(L(x), τ∞

x )) = 0 (439)
for L(x) ∈ JHU(g)(M) and τ∞

x ∈ JHLIx
(σ∞

x,−) \ JHLIx
(σ∞

x ).
It follows from (438) that d(π∞

0 , τ
∞
x ) ≥ 1. If x = x0, then Σ0,x0 = ∅ together with

d(π∞
0 , τ

∞
x ) ≥ 1 and (ii) of Lemma 5.1.17 imply (439). Assume on the contrary that (439)

fails for some τ∞
x with x ̸= x0, then we deduce from d(π∞

0 , τ
∞
x ) ≥ 1, Lemma 5.1.16 and (32)

Ext1
LI0∩Ix

(JI0,I0∩Ix(π∞
0 ), J ′

Ix,I0∩Ix
(τ∞
x ))∞ ∼= Ext1

LIx
(i∞I0∩Ix,Ix

(JI0,I0∩Ix(π∞
0 )), τ∞

x )∞ ̸= 0. (440)

We have J (JI0,I0∩Ix(π∞
0 )) = J (π∞

0 ) ⊆ Σ0. We also have J (J ′
Ix,I0∩Ix

(τ∞
x )) ⊆ W (LIx) ·

J (τ∞
x ) = W (LIx) · J (π∞) using (36) for the first inclusion. Hence we deduce from (440)

Ext1
LI0∩Ix

(JI0,I0∩Ix(π∞
0 )BI0∩Ix

Σ0,x

, J ′
Ix,I0∩Ix

(τ∞
x )BI0∩Ix

Σ0,x

)∞ ̸= 0,

which contradicts the assumption J ′
Ix,I0∩Ix

(τ∞
x )BI0∩Ix

Σ0,x

= 0.

Step 3: We prove the isomorphisms in (436).
As we have assumed Σ0,x0 = ∅ when L(x0) ∈ JHU(g)(M), we deduce from Lemma 5.1.1
that V0 has no constituent in commun with FGPI

(M,π∞), and in particular the injection
V− ↪→ FGPI

(M,π∞) induces an exact sequence

0→ Ext1
G(V0, V−)→ Ext1

G(V0,FGPI
(M,π∞))→ Ext1

G(V0,FGPI
(M,π∞)/V−). (441)

The surjection V− ↠ V induces an exact sequence

Ext1
G(V0, V−−)→ Ext1

G(V0, V−)→ Ext1
G(V0, V )→ Ext2

G(V0, V−−) (442)

where we write V−− ⊆ V− for the unique subrepresentation such that V−/V−− ∼= V . By
dévissage using (437) we have Ext1

G(V0,FGPI
(M,π∞)/V−) = 0 = Ext1

G(V0, V−−), and using
(439) we have Ext2

G(V0, V−−) = 0. Together with (441) and (442) we obtain (436).
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Remark 5.1.21. There exists a “dual” version of Lemma 5.1.20 with a parallel proof.
Let V+ be the minimal length quotient of FGPI

(M,π∞) which has V as a subrepresentation
and define σ∞

x,+ as in the proof of Lemma 5.1.19 for L(x) ∈ JHU(g)(M). Similar to V−,
V+ is equipped with a decreasing filtration indexed by JHU(g)(M) which is induced from
FGPI

(M,π∞), with L(x)-graded piece FGPIx
(L(x), σ∞

x,+). Now let x0, π∞
0 , V0, Σ0 and Σ0,x (for

L(x) ∈ JHU(g)(M)) as before Lemma 5.1.20. Assume d(σ∞
x , π

∞
0 ) = 0 for L(x) ∈ JHU(g)(M),

JIx,I0∩Ix(τ∞
x )BI0∩Ix

Σ0,x

= 0 for L(x) ∈ JHU(g)(M) \ {L(x0)} and τ∞
x ∈ JHLIx

(σ∞
x,+) \ JHLIx

(σ∞
x ),

Σ0,x0 = ∅ if L(x0) ∈ JHU(g)(M) and JHU(g)(M) ∩ JHU(g)(M I0(x0)) ⊆ {L(x0)}. Then as in
(436) the unique (up to scalar) surjection FGPI

(M,π∞) ↠ V+ and injection V ↪→ V+ induce
isomorphisms

Ext1
G(V, V0) ∼←− Ext1

G(V+, V0) ∼−→ Ext1
G(FGPI

(M,π∞), V0).

5.2 Ext-squares and Ext-cubes of Orlik-Strauch representations
We use (essentially) all previous results to construct locally analytic representations of G
which are either uniserial (Lemma 5.2.33) or “squares” (Proposition 5.2.10, Proposition
5.2.18) and “cubes” (Proposition 5.2.28) of irreducible Orlik-Strauch representations.

We keep the notation of §5.1. We first define some irreducible locally analytic represen-
tations via Orlik-Strauch’s construction (Theorem 4.3.7).

For j, j′ ∈ ∆, since DL(wj,j′) = {j} we have L(wj,j′) ∈ O
p

ĵ

alg by Lemma 3.1.1, where
ĵ = ∆ \ {j} (see the beginning of §2.3) and wj,j′ is defined in (201) (in particular we always
have wj,j′ ̸= 1). We set

J = Jn
def= {j = (j0, j1, j2) | 1 ≤ j0 ≤ n− 1, 1 ≤ j1 ≤ n− 1, 1 ≤ j2 ≤ n, 0 ≤ j2− j1 ≤ n− 1}

that we equip with the partial order j = (j0, j1, j2) ≤ j′ = (j′
0, j

′
1, j

′
2) if and only if j0 ≤ j′

0,
j2 ≤ j′

2 and j2 − j1 ≤ j′
2 − j′

1. In particular forgetting j0 gives a surjection J ↠ J∞

which respects the partial orders (see the beginning of §2.3 for the set J∞). We will see
later in §5.3 that this partial order on J is motivated by the layer structure of certain
admissible finite length multiplicity free locally analytic representations. For j, j′ ∈ J we
write d(j, j′) def= |j0 − j′

0|+ |j2 − j′
2|+ |(j2 − j1)− (j′

2 − j′
1)| for the distance between j and j′.

Finally, for j = (j0, j1, j2) ∈ J, we set

Cj = C(j0,j1,j2)
def= FGP

ĵ1
(L(wj1,j0), π∞

j1,j2) (443)

where π∞
j1,j2 is the irreducible G-regular smooth representation of L

ĵ1
defined in (95).

Lemma 5.2.1. Let j, j′ ∈ J such that j′ ̸≤ j. Then Ext1
G(Cj′ , Cj) ̸= 0 if and only if

d(j, j′) = 1, in which case it is one dimensional.
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Proof. Note first that j′ ̸≤ j with j0 = j′
0 and |j1 − j′

1| ≤ 1 force j < j′ in J.
Assume first wj1,j0 = wj′

1,j
′
0
, equivalently (j0, j1) = (j′

0, j
′
1). Hence we have j < j′ by

the previous sentence, hence j2 < j′
2 since j1 = j′

1, and thus d(j, j′) ≥ 2. We also have
Σj1,j2 ∩ Σj′

1,j
′
2

= ∅ by (i) of Lemma 2.3.4 (see above (97) for the notation), which by (i)
of Lemma 5.1.17 implies Ext1

G(Cj′ , Cj) = 0. In particular the lemma trivially holds when
wj1,j0 = wj′

1,j
′
0

since both assertions in the statement never happen.
We assume from now on wj1,j0 ̸= wj′

1,j
′
0

and write I = ∆ \ {j1, j
′
1}. It follows from

Proposition 5.1.14 that Ext1
G(Cj′ , Cj) ̸= 0 if and only if Ext1

U(g)(L(wj1,j0), L(wj′
1,j

′
0
)) ̸= 0 and

HomL
ĵ1

(i∞
I,̂j1

(J
ĵ′

1,I
(π∞

j′
1,j

′
2
)), π∞

j1,j2) ̸= 0. (444)

It follows from the last assertion in (ii) of Lemma 3.2.4 that Ext1
U(g)(L(wj1,j0), L(wj′

1,j
′
0
)) ̸= 0

if and only if either wj1,j0 ≺ wj′
1,j

′
0

or wj′
1,j

′
0
≺ wj1,j0 . By Remark A.10 this is equivalent to

wj1,j0 < wj′
1,j

′
0

with ℓ(wj′
1,j

′
0
) = ℓ(wj1,j0)+1 or wj′

1,j
′
0
< wj1,j0 with ℓ(wj1,j0) = ℓ(wj′

1,j
′
0
)+1, which

is easily checked to be equivalent to |j0−j′
0|+|j1−j′

1| = 1. Hence Ext1
G(Cj′ , Cj) ̸= 0 if and only

if |j0− j′
0|+ |j1− j′

1| = 1 and (444) holds. In that case, note that Ext1
U(g)(L(wj1,j0), L(wj′

1,j
′
0
))

is one dimensional by the last assertion in (ii) of Lemma 3.2.4.
We distinguish the two cases j0 = j′

0 and j0 ̸= j′
0.

Assume j0 = j′
0, then |j0 − j′

0|+ |j1 − j′
1| = 1 is equivalent to |j1 − j′

1| = 1 which implies
j < j′ by the first sentence and also (j1, j2) < (j′

1, j
′
2) in J∞. When (j1, j2) < (j′

1, j
′
2) in

J∞, (444) is equivalent to |j2 − j′
2| + |(j2 − j1) − (j′

2 − j′
1)| ≤ 1 by (i) of Lemma 2.3.5. It

follows that, when j0 = j′
0 (and j′ ̸≤ j, wj1,j0 ̸= wj′

1,j
′
0
), Ext1

G(Cj′ , Cj) ̸= 0 is equivalent to
|j1− j′

1| = 1 and |j2− j′
2|+ |(j2− j1)− (j′

2− j′
1)| ≤ 1, which is easily checked to be equivalent

to |j2 − j′
2|+ |(j2 − j1)− (j′

2 − j′
1)| = 1 (using j′ ̸= j), i.e. d(j, j′) = 1.

Assume j0 ̸= j′
0, then |j0− j′

0|+ |j1− j′
1| = 1 implies j1 = j′

1 and I = ĵ1, and thus (444) is
equivalent to j2 = j′

2. Thus Ext1
G(Cj′ , Cj) ̸= 0 is equivalent to |j0 − j′

0| = 1, j1 = j′
1, j2 = j′

2,
which is equivalent to d(j, j′) = 1 (when j0 ̸= j′

0).

Recall from the paragraph below Lemma 2.3.1 that, for (j1, j2) ∈ J∞, we have defined
I+
j1,j2 , I

−
j1,j2 ⊆ ∆ by socG(i∞

ĵ1,∆
(π∞

j1,j2)) ∼= V ∞
I+

j1,j2
,∆ and cosocG(i∞

ĵ1,∆
(π∞

j1,j2)) ∼= V ∞
I−

j1,j2
,∆ (see (64)

for the G-regular irreducible representation V ∞
I,∆). Recall also that L(1) = L(µ0).

Lemma 5.2.2. Let j ∈ J and I ⊆ ∆.

(i) We have Ext1
G(L(1)∨ ⊗E V ∞

I,∆, Cj) ̸= 0 if and only if j0 = j1 and I = I+
j1,j2, in which

case it is one dimensional.

(ii) We have Ext1
G(Cj, L(1)∨ ⊗E V ∞

I,∆) ̸= 0 if and only if j0 = j1 and I = I−
j1,j2, in which

case it is one dimensional.

Proof. We prove (i). As 1 ̸= wj1,j0 , we deduce from Proposition 5.1.14 that Ext1
G(L(1)∨ ⊗E

V ∞
I,∆, Cj) ̸= 0 if and only if Ext1

U(g)(L(wj1,j0), L(1)) ̸= 0 and HomG(V ∞
I,∆, i

∞
ĵ1,∆

(π∞
j1,j2)) ̸= 0, if

and only if ℓ(wj1,j0) = 1 i.e. j0 = j1 (using (ii) of Lemma 3.2.4), and I = I+
j1,j2 (using (i) of

Lemma 2.3.3). The proof of (ii) is completely analogous.
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Lemma 5.2.3. Let j, j′ ∈ J such that j < j′ and j′
0 ≤ j0 + 1.

(i) If Ext2
G(Cj′ , Cj) ̸= 0 then (j′

1, j
′
2) ∈ {(j1 + 1, j2 + 1), (j1 − 1, j2), (j1, j2 + 1), (j1, j2)}.

(ii) Assume (j′
1, j

′
2) = (j1, j2 + 1). Then Ext2

G(Cj′ , Cj) ̸= 0 implies j′
0 = j0, and

Ext2
G(Cj′ , Cj) is at most one dimensional except when 2 ≤ j0 = j1 ≤ n − 2 in which

case it is at most two dimensional.

Proof. We first prove (i). Assume on the contrary that there exists j, j′ ∈ J that satisfies j <
j′, j′

0 ≤ j0+1, (j′
1, j

′
2) /∈ {(j1+1, j2+1), (j1−1, j2), (j1, j2+1), (j1, j2)} and Ext2

G(Cj′ , Cj) ̸= 0.
The condition (j′

1, j
′
2) /∈ {(j1 + 1, j2 + 1), (j1 − 1, j2), (j1, j2 + 1), (j1, j2)} together with (i) of

Lemma 2.3.2 implies d(π∞
j′

1,j
′
2
, π∞

j1,j2) ≥ 1. We have two cases.

Case 1: j1 ̸= j′
1. Then wj1,j0 ̸= wj′

1,j
′
0

and L(wj′
1,j

′
0
) is not a constituent of M ĵ1(wj1,j0)

using Lemma 3.1.1 and [Hum08, Thm. 9.4(c)]. We can then apply Lemma 5.1.16 which
gives Ext1

U(g)(L(wj1,j0), L(wj′
1,j

′
0
)) ̸= 0 and Ext1

L
ĵ1

(i∞
ĵ′

1∩ĵ1 ,̂j1
(J
ĵ′

1,ĵ
′
1∩ĵ1

(π∞
j′

1,j
′
2
)), π∞

j1,j2)∞ ̸= 0. The
first inequality implies |j1 − j′

1| ≤ 1 by (ii) of Lemma 3.2.4 and Remark A.10. By (31)
we have Ext1

G(i∞
ĵ′

1,∆
(π∞

j′
1,j

′
2
), i∞

ĵ1,∆
(π∞

j1,j2))∞ = Ext1
L

ĵ1
(J∆,̂j1(i∞

ĵ′
1,∆

(π∞
j′

1,j
′
2
)), π∞

j1,j2)∞, which is non-
zero by (60) (applied with I = ∆ and taking w = 1) and the second inequality. Hence
d(π∞

j′
1,j

′
2
, π∞

j1,j2) = 1, which by (ii) of Lemma 2.3.2 implies (j′
1, j

′
2) ∈ {(j1 +2, j2 +2), (j1−2, j2)}

and thus |j1 − j′
1| = 2. This contradicts |j1 − j′

1| ≤ 1.

Case 2: j1 = j′
1. Then j2 < j′

2 and (i) of Lemma 2.3.4 forces Σj1,j2 ∩Σj′
1,j

′
2

= ∅, which by
(ii) of Lemma 5.1.17 implies Ext2

G(Cj′ , Cj) = 0, a contradiction.
We prove (ii). As (j′

1, j
′
2) = (j1, j2 + 1) by (ii) of Lemma 2.3.5 we have

HomL
ĵ1

(i∞
ĵ′

1 ,̂j1,sj1
(J
ĵ′

1 ,̂j1,sj1
(π∞

j′
1,j

′
2
)), π∞

j1,j2) ̸= 0.

By Proposition 5.1.18 if Ext2
G(Cj′ , Cj) ̸= 0 then j0 ̸= j′

0, and when j0 = j′
0 then

dimE Ext2
G(Cj′ , Cj) ≤ #S0

where S0 = {x′ | x′ ∈ W (L
ĵ1

)wj1,j0 , ℓ(x′) = ℓ(wj1,j0) + 1, j1 /∈ DL(x′)}. Let x′ ∈ S0 and
j ∈ DL(x′). The condition j1 /∈ DL(x′) forces j = j1 + 1 if j1 > j0, j = j1 − 1 if j1 < j0, and
j ∈ {j1 − 1, j1 + 1} if j1 = j0. In particular, we always have S0 ⊆ {wj1+1,j0 , wj1−1,j0}, with
wj1+1,j0 ∈ S0 if and only if j0 ≤ j1 < n− 1, and wj1−1,j0 ∈ S0 if and only if j0 ≥ j1 > 1. This
finishes the proof.

Lemma 5.2.4. Let j ∈ J and I ⊆ ∆.

(i) If I ̸= I+
j1,j2 and if Ext2

G(L(1)∨ ⊗E V ∞
I,∆, Cj) ̸= 0 then j0 = j1, I /∈ [I+

j1,j2 , I
−
j1,j2 ] and

d(I, I+
j1,j2) = 1 (see (74) and (73) for the notation).
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(ii) If I ̸= I−
j1,j2 and if Ext2

G(Cj, L(1)∨ ⊗E V ∞
I,∆) ̸= 0 then j0 = j1, I /∈ [I+

j1,j2 , I
−
j1,j2 ] and

d(I−
j1,j2 , I) = 1.

Proof. We first prove (i). As I ̸= I+
j1,j2 , we have d(V ∞

I,∆, π
∞
j1,j2) ≥ 1 by (i) of Lemma 2.3.3. By

Lemma 5.1.16 (note that L(1) is not a constituent ofM ĵ1(wj1,j0)) Ext2
G(L(1)∨⊗EV ∞

I,∆, Cj) ̸= 0
implies Ext1

U(g)(L(wj1,j0), L(1)) ̸= 0 and Ext1
L

ĵ1
(i∞
I∩ĵ1 ,̂j1

(J
I,I∩ĵ1(V ∞

I,∆)), π∞
j1,j2)∞ ̸= 0. The first

inequality is equivalent to j0 = j1 by (ii) of Lemma 3.2.4 and Lemma 3.2.5. Arguing as in
Case 1 of the proof of Lemma 5.2.3 using (60), (61) and that π∞

j1,j2 is in a single Bernstein
block (as it is irreducible), the second inequality is equivalent to

Ext1
G(V ∞

I,∆, i
∞
ĵ1,∆

(π∞
j1,j2))∞

(31)∼= Ext1
L

ĵ1
(J∆,̂j1(V ∞

I,∆), π∞
j1,j2)∞ ̸= 0,

which is equivalent to d(V ∞
I,∆, π

∞
j1,j2) = 1 (since d(V ∞

I,∆, π
∞
j1,j2) ≥ 1), which is equivalent to

I /∈ [I+
j1,j2 , I

−
j1,j2 ] and d(I, I+

j1,j2) = 1 by (ii) of Lemma 2.3.3. The proof of (ii) is similar.

Lemma 5.2.5. Let j ∈ J.

(i) If (j1, j2) ̸= (1, n) and j ̸= (2, 2, n), then we have Ext2
G(L(1)∨ ⊗E St∞

n , Cj) = 0.

(ii) If (j1, j2) ̸= (1, 1) and j ̸= (2, 2, 2), then we have Ext2
G(Cj, L(1)∨ ⊗E St∞

n ) = 0.

Proof. It follows from Lemma 2.3.1 that I+
j1,j2 ̸= ∅ if and only if (j1, j2) ̸= (1, n), I−

j1,j2 ̸= ∅ if
and only if (j1, j2) ̸= (1, 1), and ∅ /∈ [I+

j1,j2 , I
−
j1,j2 ] (equivalently I+

j1,j2 ∩ I
−
j1,j2 ̸= ∅) if and only

if j1 > 1.
If (j1, j2) ̸= (1, n) and j ̸= (2, 2, n), we have either j1 = 1 in which case ∅ ∈ [I+

j1,j2 , I
−
j1,j2 ], or

j1 > 2 in which case d(∅, I+
j1,j2) = #I+

j1,j2 > 1, or j1 = 2, j2 < n in which case d(∅, I+
j1,j2) > 1

(again), or (j1, j2) = (2, n) in which case j0 ̸= j1 by assumption. In all these cases (i) of
Lemma 5.2.4 implies Ext2

G(L(1)∨ ⊗E St∞
n , Cj) = 0, which gives (i).

If (j1, j2) ̸= (1, 1) and j ̸= (2, 2, 2), we have either j1 = 1 in which case ∅ ∈ [I+
j1,j2 , I

−
j1,j2 ], or

j1 > 2 in which case d(∅, I−
j1,j2) = #I−

j1,j2 > 1, or j1 = 2, j2 > 2 in which case d(∅, I−
j1,j2) > 1

(again), or (j1, j2) = (2, 2) in which case j0 ̸= j1 by assumption. In all these cases (ii) of
Lemma 5.2.4 implies Ext2

G(Cj, L(1)∨ ⊗E St∞
n ) = 0, which gives (ii).

Let ΓOS be the set of pairs (x, π∞) with x ∈ W (G) and π∞ an isomorphism class of
G-basic representation in Rep∞

adm(LIx) where Ix def= ∆ \ DL(x) (“OS” for “Orlik-Strauch”).
For (x, π∞) ∈ ΓOS we write Vx,π∞

def= FGPIx
(L(x), π∞) (which is not assumed to be irreducible).

We consider a finite length object V in Repan
adm(G) equipped with a decreasing filtration (for

some d ≥ 0)
0 = Fild+1(V ) ⊊ Fild(V ) ⊊ · · · ⊊ Fil1(V ) ⊊ Fil0(V ) = V, (445)

and a finite subset Γ(V ) ⊆ ΓOS equipped with a partition Γ(V ) = ⊔d
k=0 Γk(V ), such that

there is an isomorphism for 0 ≤ k ≤ d

0 ̸= grk(V ) def= Filk(V )/Filk+1(V ) ∼=
⊕

(x,π∞)∈Γk(V )
Vx,π∞ . (446)

186



We will always assume that the pairs (x,W (LIx) · J (π∞)) are distinct for different choices
of (x, π∞) ∈ Γ(V ). Under this assumption, Lemma 5.1.1 and Lemma 2.1.15 imply that V is
multiplicity free and that the set Γ(V ) is uniquely determined by V (but not necessarily the
partition ⊔d

k=0 Γk(V ) of Γ(V ) nor the filtration (445) of V ). In particular, the constituents
of the subquotient Vx,π∞ of V are the constituents of V of the form FGPIx

(L(x), σ∞) with
σ∞ ∈ BIx

W (LIx )·J (π∞) and two distinct (x, π∞) in Γ(V ) lead to two multiplicity free Vx,π∞

which have no constituent in commun.

For V fixed as above and V ′ a subquotient of V , we define Filk(V ′) ⊆ V ′ for k ∈
{0, . . . , d+1} as the maximal (for inclusion) subrepresentation of V ′ such that its constituents
are constituents of Filk(V ) (recall that V is multiplicity free of finite length). We say that a
subquotient V ′ of V is a basic subquotient of V if there exists (x, π∞) ∈ Γ(V ) such that V ′ ∼=
Vx,π∞ , and is a good subquotient of V if there exists Γk(V ′) ⊆ Γk(V ) for every k ∈ {0, . . . , d}
such that

grk(V ′) = Filk(V ′)/Filk+1(V ′) ∼=
⊕

(x,π∞)∈Γk(V ′)
Vx,π∞ .

In particular every subquotient of V is good if the Vx,π∞ are irreducible for every (x, π∞) ∈
Γ(V ). (Note that “basic” here is relative to a fixed representation V , and is quite different
from “G-basic” as in Definition 2.1.4.)

The partial order on JHG(V ) induces a partial order on Γ(V ) as follows. Given two
distinct (x0, π

∞
0 ), (x1, π

∞
1 ) ∈ Γ(V ), we write (x1, π

∞
1 ) < (x0, π

∞
0 ) if there exists Wi ∈

JHG(Vxi,π∞
i

) ⊆ JHG(V ) for i = 0, 1 such that W1 < W0 in the sense of §1.4. If di ∈ {0, . . . , d}
is such that (xi, π∞

i ) ∈ Γdi
(V ), we note from (445) and (446) that (x1, π

∞
1 ) < (x0, π

∞
0 ) implies

d0 < d1. If there does not exist (x, π∞) ∈ Γ(V ) such that (x1, π
∞
1 ) < (x, π∞) < (x0, π

∞
0 ),

then there is a good subquotient V ′ of V that fits into a non-split short exact sequence

0→ Vx1,π∞
1
→ V ′ → Vx0,π∞

0
→ 0.

The following definition is reminiscent of (though different from) Definition 3.4.1.

Definition 5.2.6. Let d be some integer in Z≥0.

(i) A finite length multiplicity free representation V as in (445) and (446) is an Ext-
hypercube of rank d if the following properties hold

• the partially ordered set Γ(V ) admits a unique maximal element which is (neces-
sarily) in Γ0(V ) and a unique minimal element which is (necessarily) in Γd(V );

• for 0 ≤ d0, d1 ≤ d and (xi, π∞
i ) ∈ Γdi

(V ), i = 0, 1, we have

Ext1
G(Vx0,π∞

0
, Vx1,π∞

1
) ̸= 0 (447)

if and only if d1 = d0 + 1 and (x1, π
∞
1 ) < (x0, π

∞
0 ), in which case (447) is one

dimensional.
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(ii) An Ext-hypercube is an Ext-square if d = 2, and an Ext-cube if d = 3.

(iii) An Ext-hypercube V is strict if it has simple socle and cosocle, in which case socG(V ) =
socG(grd(V )) and cosocG(V ) = cosocG(gr0(V )).

(iv) An Ext-hypercube V of rank d is minimal if for any good subquotient V ′ of V which
is an Ext-hypercube of rank d′ ≤ d, there does not exist an Ext-hypercube V ′′ of rank
d′ such that gr0(V ′′) ∼= gr0(V ′), grd′(V ′′) ∼= grd′(V ′) and grk(V ′′) ⊆ grk(V ′) is a good
direct summand of grk(V ′) for 1 ≤ k ≤ d′ − 1 with at least one inclusion being strict.

If V is an Ext-hypercube of rank d the conditions in (i) imply that both Γ0(V ), Γd(V ) are
singletons. In fact, it is not difficult to see that the filtration (445) is uniquely determined
by (the isomorphism class of) V , and that the second condition in (i) above implies that, for
0 ≤ d0, d1 ≤ d and (xi, π∞

i ) ∈ Γdi
(V ) (i = 0, 1) such that d1 > d0+1 and (x1, π

∞
1 ) < (x0, π

∞
0 ),

there exists (yk, σ∞
k ) ∈ Γk(V ) for d0 ≤ k ≤ d1 such that (ydi

, σ∞
di

) = (xi, π∞
i ) for i = 0, 1

and (yℓ, σ∞
ℓ ) < (yℓ+1, σ

∞
ℓ+1) for d0 ≤ ℓ ≤ d1 − 1. Moreover for (x0, π

∞
0 ), (x1, π

∞
1 ) ∈ Γ(V ) such

that (x1, π
∞
1 ) < (x0, π

∞
0 ), one easily checks that V admits a unique good subquotient V x0,π∞

0
x1,π∞

1

with Γ(V x0,π∞
0

x1,π∞
1

) consisting exactly of those (y, σ∞) ∈ Γ(V ) such that (x1, π
∞
1 ) ≤ (y, σ∞) ≤

(x0, π
∞
0 ), and that V x0,π∞

0
x1,π∞

1
is an Ext-hypercube. Conversely any good subquotient of V which

is an Ext-hypercube has the form V
x0,π∞

0
x1,π∞

1
for some (x1, π

∞
1 ) ≤ (x0, π

∞
0 ) ∈ Γ(V ).

Lemma 5.2.7. Let V be an Ext-hypercube of rank d. Assume that there does not exist
another Ext-hypercube V ′ of rank d such that gr0(V ′) ∼= gr0(V ), grd(V ′) ∼= grd(V ) and
grk(V ′) ⊆ grk(V ) is a good direct summand for 1 ≤ k ≤ d − 1 with at least one inclusion
being strict. Then Ext1

G(gr0(V ),Fil1(V )) is one dimensional.

Proof. We can assume d ≥ 2. The existence of V forces Ext1
G(gr0(V ),Fil1(V )) ̸= 0. As-

sume on the contrary that Ext1
G(gr0(V ),Fil1(V )) has dimension ≥ 2. Choose a good sub-

representation V1 ⊆ Fil1(V ) such that Fil1(V )/V1 is a basic (hence non-zero) subquotient
of V , then we have dimE Ext1

G(gr0(V ),Fil1(V )/V1) = 1 by the second condition in (i) of
Definition 5.2.6, which by dévissage from 0 → V1 → Fil1(V ) → Fil1(V )/V1 → 0 forces
Ext1

G(gr0(V ), V1) ̸= 0. Hence, there exists V ′′ that fits into a non-split short exact se-
quence 0 → V1 → V ′′ → gr0(V ) → 0. We equip V ′′ with the filtration Fil0(V ′′) def= V ′ and
Filk(V ′′) def= Filk(V ) ∩ V1 for k ≥ 1. We now define V ′ as the minimal length good subrepre-
sentation of V ′′ such that gr0(V ′) = gr0(V ′′) = gr0(V ) (note that V ′ can be strictly smaller
than V ′′ since gr0(V ′′) may have more than one maximal element in Γ(V ′′)). Then the con-
ditions in (i) of Definition 5.2.6 for V imply the similar conditions for V ′, in particular V ′ is
an Ext-hypercube of rank d, which contradicts the minimality of V as gr1(V ′) ⊊ gr1(V ).

The following formal lemma gives a rigidity property of Ext-hypercubes.

Lemma 5.2.8. Let V be a minimal Ext-hypercube and V ′ a finite length multiplicity free
representation in Repan

adm(G). If JHG(V ) = JHG(V ′) as partially ordered sets, then V ∼= V ′.
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Proof. Let d ≥ 0 be the rank of V . If d = 0, Lemma 5.1.4 implies V ∼= V ′. We assume
from now d ≥ 1 and prove V ∼= V ′ by an increasing induction on d ≥ 0. The equality
JHG(V ) = JHG(V ′) as partially ordered sets implies that V ′ admits a unique quotient V ′

0
such that JHG(V ′

0) = JHG(gr0(V )) as partially ordered sets, which by Lemma 5.1.4 implies
V ′

0
∼= gr0(V ). For k ≥ 1 and (x, π∞) ∈ Γk(V ), V admits a unique good subrepresentation

Ṽx,π∞ such that Γ(Ṽx,π∞) consists of all pairs (w, σ∞) ∈ Γ(V ) such that (w, σ∞) ≤ (x, π∞). It
is clear from (i) of Definition 5.2.6 that Ṽx,π∞ is itself an Ext-hypercube of rank d−k ≥ 0. Let
S ⊆ Γ(V ) \ Γ0(V ) be a subset such that any (w, σ∞) ∈ Γ(V ) satisfying (w, σ∞) ≤ (x, π∞)
for some (x, π∞) ∈ S also satisfies (w, σ∞) ∈ S and define the good subrepresentation
FilS(V ) def= ⋃

(x,π∞)∈S Ṽx,π∞ . The equality JHG(V ) = JHG(V ′) as partially ordered sets implies
that V ′ admits unique subrepresentations Ṽ ′

x,π∞ for (x, π∞) ∈ Γ(V ) \Γ0(V ) and FilS(V ′) for
S ⊆ Γ(V ) as above such that JHG(Ṽx,π∞) = JHG(Ṽ ′

x,π∞) and JHG(FilS(V )) = JHG(FilS(V ′))
as partially ordered sets. By induction we have in Repan

adm(G) for (x, π∞) ∈ Γ(V ) \ Γ0(V )

Ṽx,π∞ ∼= Ṽ ′
x,π∞ . (448)

We prove FilS(V ) ∼= FilS(V ′) by induction on #S ≥ 1. Let (x, π∞) be a maximal element
of S, S ′ def= S \ {(x, π∞)} and S ′′ the set of (w, σ∞) ∈ Γ(V ) such that (w, σ∞) ≤ (x, π∞). If
S ′′ = S (i.e. (x, π∞) is the unique maximal element of S), then FilS(V ) ∼= Ṽx,π∞ ∼= Ṽ ′

x,π∞
∼=

FilS(V ′) by (448). Otherwise we have S ′, S ′′ ⊊ S which implies FilS′(V ) ∼= FilS′(V ′),
FilS′′(V ) ∼= FilS′′(V ′) and FilS′∩S′′(V ) ∼= FilS′∩S′′(V ′) by induction on S. It follows from
the first condition in (i) of Definition 5.2.6 (applied to V ) that FilS′(V ), FilS′′(V ) and
FilS′∩S′′(V ) are indecomposable representations, and hence that FilS(V ) is the amalgamate
sum of FilS′(V ) and FilS′′(V ) over FilS′∩S′′(V ) (recall all representations are multiplicity free).
Likewise FilS′(V ′), FilS′′(V ′), FilS′∩S′′(V ′) are indecomposable and FilS(V ′) is the amalga-
mate sum of FilS′(V ′) and FilS′′(V ′) over FilS′∩S′′(V ′). Hence we deduce FilS(V ) ∼= FilS(V ′).
Now take S = Γ(V ) \ Γ0(V ), so that FilS(V ) = Fil1(V ). From JHG(V ) = JHG(V ′) and the
previous paragraph V ′ fits into a non-split short exact sequence

0 −→ Fil1(V ) ∼= FilS(V ′) −→ V ′ −→ V ′
0
∼= gr0(V ) −→ 0. (449)

The minimality of V and Lemma 5.2.7 imply dimE Ext1
G(gr0(V ),Fil1(V )) = 1, and thus it

follows from (449) that we must have V ′ ∼= V .

Lemma 5.2.9. Let V be an Ext-square. Assume that there exist good subrepresentations
gr2(V ) ⊆ V2 ⊆ V1 ⊆ Fil1(V ) such that V1/V2 is a basic subquotient of V and Ext1

G(V/V1, V2)=
0. Then V is minimal.

Proof. We fix throughout the proof V1, V2 as in the statement. Let V ′
2 and V ′

1 be good
subrepresentations of V such that gr2(V ) ⊆ V ′

2 ⊆ V2 ⊆ V1 ⊆ V ′
1 ⊆ Fil1(V ). As V is

multiplicity free, the injection V ′
2 ↪→ V2 and the surjection V1 ↠ V ′

1 induce an injection
Ext1

G(V/V ′
1 , V

′
2) ↪→ Ext1

G(V/V1, V2) which implies

Ext1
G(V/V ′

1 , V
′

2) = 0. (450)
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Step 1: We prove that dimE Ext1
G(gr0(V ),Fil1(V )) = 1.

The existence of the Ext-square V ensures Ext1
G(gr0(V ),Fil1(V )) ̸= 0. As V1/V2 is a basic

direct summand of gr1(V ) by (446), we have a surjection q : Fil1(V ) ↠ V1/V2 which induces
an exact sequence

Ext1
G(gr0(V ), ker(q))→ Ext1

G(gr0(V ),Fil1(V ))→ Ext1
G(gr0(V ), V2/V1). (451)

Assume dimE Ext1
G(gr0(V ),Fil1(V )) ≥ 2. Then (451) and dimE Ext1

G(gr0(V ), V2/V1) = 1
(see the second condition in (i) of Definition 5.2.6) imply Ext1

G(gr0(V ), ker(q)) ̸= 0. Similar
arguments as in the proof of Lemma 5.2.7 with V1 there replaced by ker(q) then show that
there exists an Ext-square V ′ with gr0(V ′) = gr0(V ), gr2(V ′) = gr2(V ) and gr1(V ′) a good
direct summand of ker(q)/gr2(V ) ∼= gr1(V )/(V1/V2). But such a V ′ necessarily fits into a
non-split extension 0 → V ′

2 → V ′ → V/V ′
1 → 0 for some good subrepresentations V ′

1 , V
′

2 of
V such that gr2(V ) ⊆ V ′

2 ⊆ V2 ⊆ V1 ⊆ V ′
1 ⊆ Fil1(V ), which contradicts (450).

Step 2: We prove that V is minimal.
By (iv) of Definition 5.2.6, it suffices to show that there does not exist an Ext-square V ′

such that gr0(V ′) = gr0(V ), gr2(V ′) = gr2(V ) and gr1(V ′) is a proper good direct summand
of gr1(V ). Assume on the contrary that such V ′ exists. Let V0 be a basic subquotient of V
which is a direct summand of gr1(V )/gr1(V ′) and fix a surjection q′ : Fil1(V ) ↠ V0. Using
that V is multiplicity free, the injection Fil1(V ′) ⊆ ker(q′) induces an injection

0 ̸= Ext1
G(gr0(V ),Fil1(V ′))→ Ext1

G(gr0(V ), ker(q′)), (452)

and the short exact sequence 0→ ker(q′)→ Fil1(V )→ V0 → 0 induces an exact sequence

0→ Ext1
G(gr0(V ), ker(q′))→ Ext1

G(gr0(V ),Fil1(V ))→ Ext1
G(gr0(V ), V0). (453)

By (i) of Definition 5.2.6 dimE Ext1
G(gr0(V ), V0) = 1 and the last map in (453) is non-zero. By

Step 1 it is an isomorphism, which forces Ext1
G(gr0(V ), ker(q′))= 0, contradicting (452).

Recall that for j ∈ J the representation Cj is defined in (443).

Proposition 5.2.10. Let j, j′ ∈ J and write j = (j0, j1, j2), j′ = (j′
0, j

′
1, j

′
2).

(i) If j′ = (j0 + 1, j1 − 1, j2) there exists a unique Ext-square Vj,j′ such that
gr0(Vj,j′) ∼= Cj′

gr1(Vj,j′) ∼= C(j0+1,j1,j2) ⊕ C(j0,j1−1,j2)

gr2(Vj,j′) ∼= Cj.

(ii) If j′ = (j0 + 1, j1 + 1, j2 + 1) there exists a unique Ext-square Vj,j′ such that
gr0(Vj,j′) ∼= Cj′

gr1(Vj,j′) ∼= C(j0+1,j1,j2) ⊕ C(j0,j1+1,j2+1) ⊕ L(1)∨ ⊗E π∞
j,j′

gr2(Vj,j′) ∼= Cj
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where π∞
j,j′ ∼= V ∞

[1,j1],∆ if j0 = j1 = j2, π∞
j,j′ is the unique G-basic length 2 representation

of G with socle V ∞
[j2−j1+1,j2],∆ and cosocle V ∞

[j2−j1,j2],∆ if j0 = j1 < j2 (first statement in
Lemma 2.2.5), and π∞

j,j′ is zero otherwise.

(iii) If j1 = j0 + 1 there exists a unique Ext-square Vj,∞ such that
gr0(Vj,∞) ∼= L(1)∨ ⊗E π∞

j,∞

gr1(Vj,∞) ∼= C(j0,j0,j2) ⊕ C(j0+1,j0+1,j2)
gr2(Vj,∞) ∼= Cj

where π∞
j,∞ is the unique G-basic length two representation of G with socle

V ∞
[j2−j0+1,j2]∩∆,∆ and cosocle V ∞

[j2−j0,j2]∩∆,∆ (Lemma 2.2.5).

(iv) If j1 = j0 − 1 there exists a unique Ext-square V∞,j such that
gr0(V∞,j) ∼= Cj
gr1(V∞,j) ∼= C(j0,j0,j2) ⊕ C(j0−1,j0−1,j2)
gr2(V∞,j) ∼= L(1)∨ ⊗E π∞

∞,j

where π∞
∞,j
∼= V ∞

[1,j2−1],∆ if j1 + 1 = j0 = j2, and π∞
∞,j is the unique G-basic length 2

representation of G with socle V ∞
[j2−j0+1,j2−1],∆ and cosocle V ∞

[j2−j0,j2−1],∆ (Lemma 2.2.5)
if j1 + 1 = j0 < j2.

Moreover, all Ext-squares above are minimal and strict (see Definition 5.2.6).

Proof. We make crucial use of the Ext-squares of U(g)-modules constructed in §3.4. We
divide the proof into two steps.

Step 1: We construct I ⊆ ∆, Q in OpI
alg (see §3.1) and a G-regular irreducible π∞ in

Rep∞
adm(LI) such that FGPI

(Q, π∞) contains a unique subquotient of the form Vj,j′ (resp. Vj,∞,
V∞,j) which is a strict Ext-square as described in (i) and (ii) (resp. (iii), (iv)).
We define I def= ∆ \ {j1, j

′
1} = ĵ1 ∩ ĵ′

1 in (i) and (ii), and I
def= ∆ \ {j0, j1} = ĵ0 ∩ ĵ1 in (iii)

and (iv). In case (i) and (ii) we set Q def= Q1(wj1,j0 , wj′
1,j

′
0
) using Proposition 3.4.9. In case

(iii) we set Q def= Q1(wj1,j0 , 1) and in case (iv) we set Q def= Q1(1, wj1,j0) using Remark 3.4.10.
All these Ext-squares of U(g)-modules are actually in OpI

alg using Lemma 3.1.1 and [Hum08,
Prop. 9.3(c)].

We consider the W (LI)-coset Σ given by Σj1,j2 ∩Σj′
1,j

′
2

in (i) and (ii), and by Σj1,j2 ∩Σj0,j2

in (iii) and (iv). Thanks to (i) of Lemma 2.3.5 and (i) of Lemma 2.2.11, we can define a
G-regular irreducible smooth representation π∞ of LI in (i) and (ii) as

π∞ def= J
ĵ′

1,I
(π∞

j′
1,j

′
2
)BI

Σ
∼= J ′

ĵ1,I
(π∞

j1,j2)BI
Σ
, (454)
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and note that π∞
j1,j2 (resp. π∞

j′
1,j

′
2
) is a subquotient of i∞

I,̂j1
(π∞) (resp. i∞

I,̂j′
1
(π∞)) by (32)

(resp. by (31)). Similarly, using (i) of Lemma 2.3.5 (applied with (j1, j
′
1, j2, j

′
2) there be-

ing (j1, j0, j2, j2)) and (i) of Lemma 2.2.11) we have in (iii)

π∞ def= J
ĵ0,I

(π∞
j0,j2)BI

Σ
∼= J ′

ĵ1,I
(π∞

j1,j2)BI
Σ

and using (i) of Lemma 2.3.5 (applied with (j1, j
′
1, j2, j

′
2) there being (j0, j1, j2, j2)) and (i) of

Lemma 2.2.11) we have in (iv)

π∞ def= J
ĵ1,I

(π∞
j1,j2)BI

Σ
∼= J ′

ĵ0,I
(π∞

j0,j2)BI
Σ
. (455)

Moreover in (iii) and (iv) π∞
j1,j2 (resp. π∞

j0,j2) is a subquotient of i∞
I,̂j1

(π∞) (resp. i∞
I,̂j0

(π∞))
using again (31) and (32). Using Lemma 2.3.1 applied to σ∞

j1,j2 = π∞ one easily checks that:
• in (ii) π∞

j,j′ is a subquotient of i∞I,∆(π∞) which is a subrepresentation of i∞
ĵ1,∆

(π∞
j1,j2) and a

quotient of i∞
ĵ′

1,∆
(π∞

j′
1,j

′
2
);

• in (iii) π∞
j,∞ is a subquotient of i∞I,∆(π∞) which is a subrepresentation of i∞

ĵ0,∆
(π∞

j0,j2) such
that HomG(π∞

j,∞, i
∞
ĵ1,∆

(π∞
j1,j2)) ̸= 0;

• in (iv) π∞
∞,j is a subquotient of i∞I,∆(π∞) which is a quotient of i∞

ĵ0,∆
(π∞

j0,j2) such
that HomG(i∞

ĵ1,∆
(π∞

j1,j2), π∞
∞,j) ̸= 0.

We see that all assumptions in Lemma 5.1.19 are satisfied and thus FGPI
(Q, π∞) contains a

unique subquotient of the form Vj,j′ (resp. Vj,∞, V∞,j) in (i) and (ii) (resp. in (iii), in (iv)).
More precisely the first condition in (i) of Definition 5.2.6 is obvious and the second condition
for Vj,j′ , Vj,∞ and V∞,j respectively can be checked using Lemma 5.2.1, Lemma 5.2.2 and (ii)
of Lemma 5.1.19. In (i) and (ii), since gr0(Vj,j′) and gr2(Vj,j′) are simple, the Ext-square Vj,j′

is strict. In (iii), as gr0(Vj,∞) is the only reducible basic subquotient of Vj,∞ and π∞
j,∞ is a

subrepresentation of i∞
ĵ0,∆

(π∞
j0,j2), we deduce from (ii) of Lemma 5.1.15 (applied with I0 = ∆)

that Vj,∞ is strict. Similarly, in (iv), as gr2(V∞,j) is the only reducible basic subquotient of
V∞,j and π∞

∞,j is a quotient of i∞
ĵ0,∆

(π∞
j0,j2), we deduce from (i) of Lemma 5.1.15 (applied with

I1 = ∆) that V∞,j is strict.

Step 2: We prove the minimality of the Ext-squares in the statement.
In each case, we choose a subrepresentation M ⊆ Q and a quotient M ′ of Q/M as follows.

• In (i) and (ii), M ′ has length 2 with socle L(wj1,j0+1) and cosocle L(wj1,j0) if j1 ≤ j0,
and M ′ def= L(wj1,j0) if j1 ≥ j0 + 1.

• In (i), M has length 2 with socle L(wj1−1,j0+1) and cosocle L(wj1−1,j0) if j1 ≥ j0 + 1,
and M

def= L(wj1−1,j0+1) if j1 ≤ j0. In (ii), M has length 2 with socle L(wj1+1,j0+1) and
cosocle L(wj1+1,j0) if j1 ≥ j0, and M

def= L(wj1+1,j0+1) if j1 ≤ j0 − 1.

• In (iii), M ′ def= L(wj1,j0) and M has length 2 with socle L(1) and cosocle L(sj0).
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• In (iv), M ′ def= L(1) and M has length 2 with socle L(wj1,j0) and cosocle L(sj1).

Since M ′ is a proper quotient of Q/M , we have for k ≤ 1

ExtkU(g)(M ′,M) = 0 (456)

by minimality of the Ext-square Q, see Proposition 3.4.9 and Remark 3.4.10. By (ii) of
Lemma 5.1.19 M uniquely determines a quotient V of Vj,j′ in (i) and (ii) (resp. Vj,∞ in
(iii), V∞,j in (iv)) and M ′ uniquely determines a subrepresentation V ′ of Vj,j′ (resp. Vj,∞,
V∞,j). We prove the minimality of the Ext-square Vj,j′ , Vj,∞ and V∞,j using Lemma 5.2.9.
To check the assumption of Lemma 5.2.9, it suffices to prove in each case above

Ext1
G(V, V ′) = 0. (457)

The idea is to apply (367) and use (456). But in order to do so, we need to replace V ′ by a
parabolic Verma module as this is part of the assumptions in (367).

Case 2.1: In (i) and (ii), we have V ∼= FGP
ĵ′
1

(M,π∞
j′

1,j
′
2
) and V ′ ∼= FGP

ĵ1
(M ′, π∞

j1,j2). We

first note that M ′ is a quotient of M(wj1,j0) (using for instance (141)), hence of M ĵ1(wj1,j0)
by [Hum08, Thm. 9.4(c)]. By loc. cit. and Lemma 3.1.1, M ĵ1(wj1,j0) and M do not share
any constituent, and thus FGP

ĵ1
(M ĵ1(wj1,j0), π∞

j1,j2) and V do not share any constituent by

Lemma 5.1.1. Hence the surjection M ĵ1(wj1,j0) ↠M ′ induces an embedding

Ext1
G(V, V ′) ↪→ Ext1

G

(
V,FGP

ĵ1
(M ĵ1(wj1,j0), π∞

j1,j2)
)
. (458)

Let M ′′ ⊆ M ĵ1(wj1,j0) such that M ĵ1(wj1,j0)/M ′′ ∼= M ′ and let L(x) ∈ JHU(g)(M ′′). We
have x ≥ wj1,j0 (from the structure of M(wj1,j0)), DL(x) = {j1} (from Lemma 3.1.1) and
x /∈ {wj1,j0 , wj1,j0+1} (from L(x) /∈ JHU(g)(M ′) and the fact both L(wj1,j0) and L(wj1,j0+1)
have multiplicity ≤ 1 in M(wj1,j0) by (i) of Lemma A.12 for instance). Since each L(y) ∈
JHU(g)(M) satisfies y ∈ {wj′

1,j0
, wj′

1,j0+1} we deduce Ext1
U(g)(L(x), L(y)) = 0 from (iii) of

Lemma A.11. Using this and L(x) /∈ JHU(g)(M) we deduce by an obvious dévissage on
0→M ′′ →M ĵ1(wj1,j0)→M ′ → 0:

ExtkU(g)(M ′,M) ∼−→ ExtkU(g)(M ĵ1(wj1,j0),M) for k ≤ 1,

which together with (456) implies ExtkU(g)(M ĵ1(wj1,j0),M) = 0 for k ≤ 1. As Σj1,j2∩Σj′
1,j

′
2
̸= ∅

((i) of Lemma 2.3.4), we can apply (367) with w = 1 and obtain

Ext1
G(V,FGP

ĵ1
(M ĵ1(wj1,j0), π∞

j1,j2)) = 0.

By (458) this implies (457).
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Case 2.2: In (iii), we have V ′ ∼= Cj and V is a subrepresentation of FGP
ĵ0

(M,π∞
j0,j2) as π∞

j,∞

is a subrepresentation of i∞
ĵ0,∆

(π∞
j0,j2). As (j0, j2) = (j1−1, j2), we have by (i) of Lemma 2.3.5

HomL
ĵ1

(i∞
ĵ0∩ĵ1

(J
ĵ0 ,̂j0∩ĵ1(π∞

j0,j2)), π∞
j1,j2) ̸= 0,

which together with (ii) of Lemma 2.2.11 implies J
ĵ1

(τ∞)
B̂j1

Σj1,j2

= 0 for any constituent τ∞ of

i∞
ĵ0,∆

(π∞
j0,j2)/π∞

j,∞. Note that JHU(g)(M)∩ JHU(g)(M ĵ1(wj1,j0)) = ∅ (using j1 > j0). Hence, we
deduce from Remark 5.1.21 (applied when V+ = V ) an isomorphism

Ext1
G(FGP

ĵ0
(M,π∞

j0,j2), V ′) ∼−→ Ext1
G(V, V ′). (459)

Note that FGP
ĵ0

(M,π∞
j0,j2) and FGP

ĵ1
(M ĵ1(wj1,j0), π∞

j1,j2) also have no common constituent by

Lemma 5.1.1. So the surjection M ĵ1(wj1,j0) ↠ L(wj1,j0) induces an embedding

Ext1
G(FGP

ĵ0
(M,π∞

j0,j2), V ′) ↪→ Ext1
G(FGP

ĵ0
(M,π∞

j0,j2),FGP
ĵ1

(M ĵ1(wj1,j0), π∞
j1,j2)). (460)

By a similar argument as in Case 2.1 using (iii) of Lemma A.11 and (456), one shows
ExtkU(g)(M ĵ1(wj1,j0),M) = 0 for k ≤ 1. As Σj1,j2 ∩ Σj0,j2 ̸= ∅ (from (i) of Lemma 2.3.4 and
j0 = j1 − 1 here) we can apply (367) with w = 1 and deduce

Ext1
G(FGP

ĵ0
(M,π∞

j0,j2),FGP
ĵ1

(M ĵ1(wj1,j0), π∞
j1,j2)) = 0.

Then (460) and (459) imply (457).
Case 2.3: In (iv), we have V ∼= FGP

ĵ1
(M,π∞

j1,j2) and V ′ ∼= L(1)∨ ⊗E π∞
∞,j, and the

assumption Σj1,j2 ∩W (G) · J (π∞
∞,j) ̸= ∅ is satisfied since both cosets contain J (π∞) (see

case (iv) below (455)). Thus we can apply directly (367) (with w = 1) and obtain (457)
from (456).

A D(G)-module is said to be Z(g)-finite if every element is killed by an ideal of finite
codimension in Z(g) (recall that Z(g) lies in the center of D(G) by [ST102, Prop. 3.7]).
For λ, µ ∈ Λ = Λ, [JLS21, (2)] defines (by the formula (22)) an exact endofunctor T µλ
on the abelian category of Z(g)-finite D(G)-modules such that for I ⊆ ∆, M in OpI

alg and
π∞ a strongly admissible smooth representation of LI over E we have an isomorphism of
D(G)-modules (see [JLS21, Thm. 2])

T µλ (FGPI
(M,π∞)∨) ∼= FGPI

(T µλ (M), π∞)∨ (461)

where T µλ is defined in (198) (note that T µλ (M) remains in OpI
alg when M is in OpI

alg using
the argument in the proof of [Hum08, Thm. 1.1(d)]). Recall from §4.2 that CD(G) is the
abelian category of coadmissible D(G)-modules over E. If V is an admissible locally analytic
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representation of G over E such that V ∨ is Z(g)-finite, it follows from the discussion below
[JLS21, Def. 2.4.5] that T µλ (V ∨) is again in CD(G), hence we can define an admissible locally
analytic representation by T µλ (V ) def= T µλ (V ∨)∨. Note also that if V has a central character,
then (using that an irreducible algebraic representation of G always has a central character),
we deduce from [JLS21, (2)] that T µλ (V ) also has a central character.

Let j ∈ {1, . . . , n− 1} and µ ∈ Λ such that ⟨µ+ ρ, α∨⟩ ≥ 0 for α ∈ Φ+ and the stabilizer
of µ in W (G) for the dot action is {1, sj}. By the same formula as below (198) we define
a wall-crossing functor Θµ

def= T w0·µ0
µ ◦ T µw0·µ0 which is an exact endofunctor on the abelian

category of Z(g)-finite D(G)-modules. If V is an admissible locally analytic representation
of G over E such that V ∨ is Z(g)-finite, we define Θµ(V ) def= Θµ(V ∨)∨. By (461) for I ⊆ ∆,
M in OpI

alg and π∞ a strongly admissible smooth representation of LI over E we have

Θµ(FGPI
(M,π∞)∨) ∼= FGPI

(Θsj
(M), π∞)∨. (462)

As Θµ(FGPI
(M,π∞)∨) only depends on sj (and on µ0) by (462), we write Θsj

(FGPI
(M,π∞)∨)

in that case.

Remark 5.2.11. Though we do not need it, it is possible that the endofunctor Θµ =
T w0·µ0
µ ◦ T µw0·µ0 only depends on sj (and on µ0) up to isomorphism. Let µ′ ∈ Λ such that
⟨µ′ + ρ, α∨⟩ ≥ 0 for α ∈ Φ+ and the stabilizer of µ′ in W (G) for the dot action is {1, sj}. By
[Bez, Prop. 5.0.8(c)] we have isomorphisms of functors T µ′

µ ◦T µw0·µ0

∼→ T µ
′

w0·µ0 and Tw0·µ0
µ ◦T µµ′

∼→
Tw0·µ0
µ′ . It would be enough to prove the analogous statements with T µ′

µ ◦T µw0·µ0 and T w0·µ0
µ ◦T µµ′ .

Indeed, we would then have isomorphisms of endofunctors

T w0·µ0
µ′ ◦ T µ′

w0·µ0
∼= (T w0·µ0

µ ◦ T µµ′ ) ◦ (T µ′

µ ◦ T µw0·µ0) ∼= T w0·µ0
µ ◦ (T µµ′ ◦ T µ

′

µ ) ◦ T µw0·µ0
∼= T w0·µ0

µ ◦ T µw0·µ0

where the last isomorphism follows from T µµ′ ◦ T µ′
µ
∼= id (see [JLS21, Thm. 3.2.1]). If M is

a Z(g)-finite D(G)-module, seeing M as a U(g)-module we have an isomorphism of U(g)-
modules (T µ′

µ ◦ T µw0·µ0)(M) ∼→ T µ
′

w0·µ0(M), and since the functors T µλ in [JLS21, §1] are just
T µλ on the underlying U(g)-modules, it would be enough to prove that this isomorphism is
D(G)-equivariant. An examination of the proof of [JLS21, Thm. 3.2.1] shows that it would
even be enough to prove this D(G)-equivariance for M the form D(G)⊗U(g)N where N is in
ModU(g). However, we couldn’t find a quick argument for this D(G)-equivariance (if true).

Lemma 5.2.12. Let x ∈ W (G) and π∞ an irreducible G-regular smooth representation of
LIx such that V = FGPIx

(L(x), π∞) is irreducible (see (iii) of Proposition 4.3.7).

(i) If j /∈ DR(x) then Θw0sjw0(V ) = 0.

(ii) If j ∈ DR(x) then Θw0sjw0(V ) has V as both socle and cosocle.

Proof. By Proposition 3.4.5 Θw0sjw0(L(x)) is zero if j /∈ DR(x), and has Loewy length 3
with both socle and cosocle isomorphic to L(x) (and middle layer not containing L(x)) if
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j ∈ DR(x). Then (i) follows from (462). Assume j ∈ DR(x). Let W be an irreducible
constituent of Θw0sjw0(V ), which we can write W = FGIw

(L(w), σ∞) for some w ∈ W (G)
such that Ix ⊆ Iw and some irreducible G-regular smooth representation σ∞ which is a
subquotient of i∞Ix,Iw

(π∞) (using (ii) of Proposition 4.3.7 and (i), (iii) of Lemma 2.1.15). By
the first sentence of this proof together with (i) of Lemma 5.1.7 applied with I0 = Iw, I1 = Ix,
M0 = L(w), M1 = Θw0sjw0(L(x)), π∞

0 = σ∞ and π∞
1 = π∞, we have HomG(W,Θw0sjw0(V )) ̸=

0 if and only if w = x and σ∞ = π∞ if and only if W = V (using Lemma 5.1.1 for the last
equivalence). Moreover the space of homomorphisms is then 1-dimensional (still by (i) of
Lemma 5.1.7). It follows that V is the socle of Θw0sjw0(V ). An analogous argument using
(ii) of Lemma 5.1.7 gives that V is also the cosocle of Θw0sjw0(V ).

Lemma 5.2.13. Let j = (j0, j1, j2) ∈ J and µ ∈ Λ such that ⟨µ + ρ, α∨⟩ ≥ 0 for α ∈ Φ+

and the stabilizer of µ in W (G) for the dot action is {1, w0sj0w0}.

(i) The representation Θw0sj0w0(Cj) of G has simple socle and cosocle Cj and middle layer

radG(Θw0sj0w0(Cj))/socG(Θw0sj0w0(Cj)) ∼= C(j0−1,j1,j2) ⊕ C(j0+1,j1,j2) ⊕ L(1)∨ ⊗E π∞

where π∞ is non-zero if and only if j0 = j1, in which case π∞ ∼= i∞
ĵ0,∆

(π∞
j0,j2), and where

we omit C(j0−1,j1,j2) when j0 = 1 and C(j0+1,j1,j2) when j0 = n− 1.

(ii) Assume j0 < n−1 and let j′ ∈ {(j0, j1+1, j2+1), (j0, j1−1, j2)}, j′′ def= (j0+1, j′
1, j

′
2) and

Vj,j′′ the minimal Ext-square with socle Cj and cosocle Cj′′ constructed in (i) or (ii)
of Proposition 5.2.10. Let V be the unique length 2 representation of G with socle Cj
and cosocle Cj′ defined from Lemma 5.2.1. Then Θµ(V ) admits a unique subquotient
isomorphic to Vj,j′′ which is moreover a subrepresentation.

Proof. We prove (i). It follows from Lemma 5.2.12 that Θw0sj0w0(Cj) has simple socle and
cosocle Cj. By Proposition 3.4.5 and Remark 3.4.6 Θw0sj0w0(L(wj1,j0)) has Loewy length 3
with both socle and cosocle L(wj1,j0) and with middle layer rad1(Θw0sj0w0(L(wj1,j0))) semi-
simple and multiplicity free. More precisely, from Remark 3.4.6 L(x) is a constituent of
rad1(Θw0sj0w0(L(wj1,j0))) if and only if either j0 = j1 and x = 1, or j0 > 1 and x = wj1,j0−1, or
j0 < n− 1 and x = wj1,j0+1. If x = wj1,j for j ∈ {j0− 1, j0 + 1}, we have FGP

ĵ1
(L(x), π∞

j1,j2) =
C(j,j1,j2) by definition (see (443)). If x = 1 (with j0 = j1), we have FGP

ĵ1
(L(1), π∞

j1,j2) =
L(1)∨ ⊗E i∞ĵ0,∆(π∞

j0,j2) using (ii) of Proposition 4.3.7. By (462) this finishes the proof of (i).
We prove (ii). Let I def= ∆ \ {j1, j

′
1} = ĵ1 ∩ ĵ′

1 and M0 the (unique) length 2 object
in OpI

alg with socle L(wj′
1,j0

) and cosocle L(wj1,j0). Let Σ def= Σj1,j2 ∩ Σj′
1,j

′
2

and π∞ as in
(454). Then by Step 5 in the proof of Lemma 5.1.5 we know that V (as in the state-
ment) is a subquotient of FGPI

(M0, π
∞). By Lemma 3.4.7 L(wj′

1,j0+1) appears with multi-
plicity one in Θw0sj0w0(M0) and the unique quotient of Θw0sj0w0(M0) with socle L(wj′

1,j0+1)
is isomorphic to Q1(wj1,j0 , wj′

1,j0+1) (see Proposition 3.4.9). Moreover π∞
j′′

1 ,j
′′
2

= π∞
j′

1,j
′
2

ap-
pears with multiplicity one in the G-basic, hence multiplicity free, representation i∞

I,̂j′
1
(π∞)
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(see below (454)). Using Proposition 4.3.7 and Lemma 5.1.1 this implies that Cj′′ appears
with multiplicity one in Θw0sj0w0(FGPI

(M0, π
∞)) ∼= FGPI

(Θw0sj0w0(M0), π∞). Moreover the
unique subrepresentation of Θw0sj0w0(FGPI

(M0, π
∞)) with cosocle Cj′′ is a subrepresentation

of FGPI
(Q1(wj1,j0 , wj′

1,j0+1), π∞) and thus is multiplicity free (using Lemma 5.1.1 and the
facts that Q1(wj1,j0 , wj′

1,j0+1) is multiplicity free and π∞ irreducible G-regular). By the last
paragraph in Step 1 in the proof of Proposition 5.2.10, we know that Vj,j′′ is the unique sub-
quotient of FGPI

(Q1(wj1,j0 , wj′
1,j0+1), π∞) with socle Cj and cosocle Cj′′ . Since any subquotient

of Θw0sj0w0(FGPI
(M0, π

∞)) with cosocle Cj′′ is a subquotient of FGPI
(Q1(wj1,j0 , wj′

1,j0+1), π∞)
by the previous discussion, Vj,j′′ is also the unique subquotient of Θw0sj0w0(FGPI

(M0, π
∞))

with socle Cj and cosocle Cj′′ . As Θµ(V ) is a subquotient of Θw0sj0w0(FGPI
(M0, π

∞)) and
Cj, Cj′′ ∈ JHG(Θµ(V )) (by (i) applied to Cj and Cj′), Vj,j′′ is the unique subquotient of
Θµ(V ) with socle Cj and cosocle Cj′′ . By the explicit description of Vj,j′′ in (i) or (ii) of
Proposition 5.2.10 we know that V injects into Vj,j′′ . By the first statement in Propo-
sition 3.4.5 and (462) (and the exactness of Θµ) we have Θµ(Vj,j′′/V ) = 0 and thus the
injection V ↪→ Vj,j′′ induces an isomorphism Θµ(V ) ∼→ Θµ(Vj,j′′). Moreover, the canoni-
cal maps Cj → Θµ(Cj) and Cj′ → Θµ(Cj′) are injective (since non-zero), hence so is the
canonical map V → Θµ(V ) ∼= Θµ(Vj,j′′). We deduce that the restriction of Vj,j′′ → Θµ(Vj,j′′)
to V is injective. Since V and Vj,j′′ have same socle Cj, it follows that Vj,j′′ injects into
Θµ(Vj,j′′) ∼= Θµ(V ).

Remark 5.2.14. Similarly, we can prove that Θw0sj0+1w0(C(j0+1,j1,j2)) has Loewy length 3
with both socle and cosocle C(j0+1,j1,j2), and with middle layer not containing C(j0+1,j1,j2) but
containing C(j0,j1,j2) with multiplicity one. Keeping the notation and assumption in (ii) of
Lemma 5.2.13, let V ′ be the unique length 2 representation of G with socle C(j0+1,j1,j2) and
cosocle Cj′′ (using Lemma 5.2.1), then Θµ(V ′) also uniquely admits Vj,j′′ as a subquotient
(with Vj,j′′ constructed in (i) or (ii) of Proposition 5.2.10), which is moreover a quotient.

Remark 5.2.15. Using similar arguments as in the proof of (ii) of Lemma 5.2.13, we can
also prove the following results (where we choose µ ∈ Λ such that ⟨µ+ρ, α∨⟩ ≥ 0 for α ∈ Φ+

and the stabilizer of µ in W (G) for the dot action is {1, w0sjw0}).

(i) Let V be the (unique) length 2 representation of G with socle C(j0,j0+1,j2) and cosocle
C(j0,j0,j2) for some 1 ≤ j0 < j2 ≤ n (Lemma 5.2.1), then V(j0,j0+1,j2),∞ in (iii) of
Proposition 5.2.10 is isomorphic to the unique subrepresentation of Θµ(V ) with cosocle
L(1)∨ ⊗E V ∞

[j2−j0,j2]∩∆,∆.

(ii) Let V ′ be the (unique) length 2 representation of G with socle C(j0,j0,j2) and cosocle
C(j0,j0−1,j2) for some 1 < j0 ≤ j2 ≤ n (Lemma 5.2.1), then V∞,(j0,j0−1,j2) in (iv) of
Proposition 5.2.10 is isomorphic to the unique quotient of Θµ(V ′) with socle L(1)∨⊗E
V ∞

[j2−j0+1,j2−1],∆.

We now introduce some technical but useful notation, which will be used in Lemma 5.2.16
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and Lemma 5.2.17 below. For a fixed j ∈ J with (j0, j1, j2 + 1) ∈ J we define

Sj0,j1
def= {x ∈ W (G) | wj1,j0 ≺ x, j1 /∈ DL(x)}. (463)

It follows from (ii) of Lemma A.11 that Sj0,j1 = {wj1+1,j0} if j1 > j0 and j1 + 1 ∈ ∆,
Sj0,j1 = {wj1−1,j0} if j1 < j0 and j1 − 1 ∈ ∆, Sj0,j1 = {wj,j0 | j ∈ {j1 − 1, j1 + 1} ∩ ∆} if
j1 = j0, and Sj0,j1 = ∅ otherwise. We define

Aj
def= C(j0,j1−1,j2) if j1 > j0

Aj
def= C(j0,j1+1,j2+1) if j1 < j0

Aj
def= L(1)∨ ⊗E V ∞

[j2−j0+1,j2],∆ if j1 = j0.

We also define
Bj

def= ⊕j′Cj′ ,

the direct sum being over those j′ ∈ J such that j ≤ j′, j0 = j′
0, d(j, j′) = |j′

2 − j2| + |(j′
2 −

j′
1)− (j2 − j1)| = 1 and wj′

1,j0
∈ Sj0,j1 . An easy check shows that there is in fact a bijection

between Sj0,j1 and JHG(Bj) given by wj1+1,j0 7→ C(j0,j1+1,j2+1), wj1−1,j0 7→ C(j0,j1−1,j2). For
S ⊆ Sj0,j1 we define Bj,S as the direct summand of Bj corresponding to S under this bijection
(with Bj,∅

def= 0). We finally define Wj as the unique (up to isomorphism) representation with
socle Cj which fits into an exact sequence 0→ Cj → Wj → Bj → 0. Note that the existence
and unicity of Wj follows from Lemma 5.2.1.

Lemma 5.2.16. Let j ∈ J with (j0, j1, j2 + 1) ∈ J. Then we have

Ext1
G(C(j0,j1,j2+1),Wj) = 0. (464)

Proof. If Sj0,j1 = ∅, i.e. Bj = 0, we have Wj = Cj and (464) follows from Lemma 5.2.1 (note
that d(j, (j0, j1, j2 + 1)) = 2). We assume from now on Sj0,j1 ̸= ∅ and write M for the unique
U(g)-module with cosocle L(wj1,j0) which fits into an exact sequence 0 → LSj0,j1

→ M →
L(wj1,j0) → 0 (recall that for S ⊆ W (G) we define LS = ⊕x∈SL(x)). We let I ⊆ ∆ be the
maximal subset such that M is in OpI

alg. In the following, we only prove (464) when j0 = j1
and Sj1,j0 = {j1− 1, j1 + 1}, the other cases being simpler and left to the (interested) reader.
In particular we have 2 ≤ j0 = j1 ≤ n − 2 and I = ∆ \ {j1 − 1, j1, j1 + 1}. We recall the
notation (above) Lemma 2.3.6: Σ± = Σj1,j2 ∩ sj1 · Σj1,j2+1 (a left W (LI)-coset) and

π∞
± = J

ĵ1 ,̂j1,sj1
(π∞

j1,j2+1)BI
Σ±

∼= J ′
ĵ1,I

(π∞
j1,j2)BI

Σ±

which is an irreducible G-regular representation of LI over E (note that I± = ∆ \ {j1 −
1, j1, j1 + 1} = I). In particular FGPI

(M,π∞
± ) is multiplicity free by Lemma 5.1.1.

Step 1: We prove that Wj is a subquotient of FGPI
(M,π∞

± ).
By (32) applied to (v) above Lemma 2.3.6, π∞

j1,j2 is in the cosocle of i∞
I,̂j1

(π∞
± ). By (ii) of

Lemma 2.3.6 (and the definition of π∞
+,1, π∞

−,1 above loc. cit.) π∞
∗,1
∼= cosocLI∗

(i∞I,I∗(π∞
± )) for
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∗ ∈ {+,−}. By (31) applied to (iii) and (iv) above Lemma 2.3.6, π∞
j1+1,j2+1, π∞

j1−1,j2 is in the
socle of i∞I+,∆\{j1+1}(π∞

+,1), i∞I−,∆\{j1−1}(π∞
−,1) respectively. Thus π∞

j1+1,j2+1, π∞
j1−1,j2 is a subquo-

tient of i∞I,∆\{j1+1}(π∞
± ), i∞I,∆\{j1−1}(π∞

± ) respectively. Moreover we have d(π∞
j1+1,j2+1, π

∞
j1,j2) =

d(π∞
j1−1,j2 , π

∞
j1,j2) = 0 by (i) of Lemma 2.3.2. We can thus apply Lemma 5.1.19 to M as

above and π∞
± , which gives that Wj is a subquotient of FGPI

(M,π∞
± ). We define Wj,− as the

(unique) minimal length subrepresentation of FGPI
(M,π∞

± ) which admits Wj as a quotient.

Step 2: We prove that the injection Wj,− ↪→ FGPI
(M,π∞

± ) and surjection Wj,− ↠ Wj

induce isomorphisms

Ext1
G(C(j0,j1,j2+1),Wj) ∼←− Ext1

G(C(j0,j1,j2+1),Wj,−) ∼−→ Ext1
G(C(j0,j1,j2+1),FGPI

(M,π∞
± )). (465)

We wish to apply Lemma 5.1.20 to V0 = C(j0,j1,j2+1), π∞ = π∞
± and V = Wj, so we check that

all assumptions there are satisfied (using the notation of loc. cit.). We recall that j0 = j1,
so wj1,j0 = sj1 . First, for L(x) ∈ JHU(g)(M) with x ̸= wj1,j0 = sj1 we have j1 /∈ DL(x),
and hence L(sj1) is not a constituent of M Ix(x) by [Hum08, Thm. 9.4(c)] and Lemma 3.1.1.
Secondly we have d(π∞

j1,j2+1, π
∞
j1,j2) = d(π∞

j1,j2+1, π
∞
j1+1,j2+1) = d(π∞

j1,j2+1, π
∞
j1−1,j2) = 0 by (i) of

Lemma 2.3.2. Thirdly, writing Σ0,x = Σj1,j2+1 ∩W (LIx) · J (σ∞
x ) for L(x) ∈ JHU(g)(M), we

have Σ0,sj1
= Σj1,j2+1 ∩ Σj1,j2 = ∅ by (i) of Lemma 2.3.4. Finally we need to check that for

L(x) ∈ JHU(g)(M) \ {L(sj1)} and τ∞
x ∈ JHLIx

(σ∞
x,−) \ {σ∞

x } we have

J ′
Ix,Ix∩ĵ1

(τ∞
x )

BIx∩̂j1
Σ0,x

= 0

where σ∞
x

def= π∞
j1+1,j2+1 if x = wj1+1,j0 and σ∞

x
def= π∞

j1−1,j2 if x = wj1−1,j0 . But this follows
from (iii) of Lemma 2.3.6, noting that the constituents in JHLIx

(σ∞
x,−)\{σ∞

x } are exactly the
constituents τ∞

x in i∞I,Ix
(π∞

± ) such that τ∞
x < σ∞

x .

Step 3: We prove (for j0 = j1)

Ext1
G(C(j0,j1,j2+1),FGPI

(M,π∞
± )) = 0. (466)

As M has cosocle L(sj1) and socle L(wj1−1,j1)⊕L(wj1+1,j1), it is a quotient of M(sj1) (using
(141)), which by [Hum08, Thm. 9.4(c)] implies that M is a quotient of M I(sj1). Let W def=
FGPI

(M I(sj1), π∞
± ), then W/FGPI

(M,π∞
± ) ∼= FGPI

(Q, π∞
± ) where Q def= ker(M I(sj1) ↠M) ((i) of

Proposition 4.3.7). It is clear that L(sj1) /∈ JHU(g)(Q) and thus we have by Lemma 5.1.1

HomG(C(j0,j1,j2+1),W/FGPI
(M,π∞

± )) = 0.

Hence, the injection FGPI
(M,π∞

± ) ↪→ W induces an embedding

Ext1
G(C(j0,j1,j2+1),FGPI

(M,π∞
± )) ↪→ Ext1

G(C(j0,j1,j2+1),W ). (467)

By (ii) of Lemma 3.3.1 applied with I ′ = ĵ1 and j1 /∈ I we have H0(nI , L(sj1)sj1 ) = 0. By (i)
of Lemma 3.3.4 applied with I ′ = ĵ1 we also have HomU(lI)(LI(sj1), H1(nI , L(sj1)sj1 )) = 0.
By (126) applied with MI = LI(sj1) and M = L(sj1)sj1 we deduce for ℓ ≤ 1

ExtℓU(g)(M I(sj1), L(sj1)sj1 ) = 0. (468)
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Since Σ± ∩ sj1 · Σj1,j2+1 = Σ± ̸= ∅ we can apply (367) with w = sj1 which gives using (468)

Ext1
G(C(j0,j1,j2+1),W ) = 0.

This together with (467) gives (466). Then (464) follows from (466) and (465).

For S ⊆ Sj0,j1 we define B̃j,S as the unique (up to isomorphism) representation with
cosocle C(j0,j1,j2+1) which fits into an exact sequence 0→ Aj⊕Bj,S → B̃j,S → C(j0,j1,j2+1) → 0.
Note that the existence and unicity of B̃j,S follows from Lemma 5.2.1 and (ii) of Lemma 5.2.2.

Lemma 5.2.17. Let j ∈ J with (j0, j1, j2 + 1) ∈ J. Then we have for S ⊊ Sj0,j1

Ext1
G(B̃j,S, Cj) = 0. (469)

Proof. Let S ⊊ Sj0,j1 . By (iii) of Lemma 3.2.2 we have dimE Ext1
Ob

alg
(L(sj1wj1,j0), L(wj1,j0))=

1 (recall j1 ∈ DL(wj1,j0)). By (i) of Lemma 3.2.4 and the explicit description of Sj0,j1 below
(463) we have dimE Ext1

Ob
alg

(L(x), L(wj1,j0)) = 1 for x ∈ Sj0,j1 . Hence there is a unique M in
Ob

alg with socle L(wj1,j0) which fits into an exact sequence (where LS = ⊕x∈SL(x))

0 −→ L(wj1,j0) −→M −→ L(sj1wj1,j0)⊕ LS −→ 0.

Let I ⊆ ∆ be the maximal subset such that M is in OpI
alg. An explicit check using Lemma

3.1.1 and the explicit description of Sj0,j1 below (463) shows that we have the following cases
(with the notation in (108) and using that S is strictly smaller than Sj0,j1):

• I = I− if either j1 > j0 with S = ∅, or j1 = j0 with S = {wj1−1,j0};

• I = I+ if either j1 < j0 with S = ∅, or j1 = j0 with S = {wj1+1,j0};

• I = ĵ1 if j1 = j0 with S = ∅.

We let Σ def= Σ∗,0 if I = I∗ with ∗ ∈ {+,−} and Σ def= Σj1,j2+1 if I = ĵ1 (see (109)). From (110)
and (109) we have

Σj1,j2 ∩ sj1 · Σ = Σj1,j2 ∩ sj1 · Σj1,j2+1 = Σ± ̸= ∅. (470)

We define π∞ def= J
ĵ1,I

(π∞
j1,j2+1)BI

Σ
, an irreducible G-regular representation of LI (so π∞ =

π∞
j1,j2+1 if I = ĵ1 and π∞ = π∞

∗,0 if I = I∗ for ∗ ∈ {+,−} with the notation above Lemma
2.3.6). By (31) and using (iv) of Remark 2.1.16 π∞

j1,j2+1 is the socle of i∞
I,̂j1

(π∞), and by (32)
with the isomorphism in (i) (resp. (ii)) above Lemma 2.3.6 π∞

j1+1,j2+1 (resp. π∞
j1−1,j2) is the

cosocle of i∞I,∆\{j1+1}(π∞) if I = I+ (resp. of i∞I,∆\{j1−1}(π∞) if I = I−). By Lemma 2.3.1 (and
j1 ≤ j2 < j2 + 1) we have

cosocG(i∞
ĵ1,∆

(π∞
j1,j2+1)) ∼= V ∞

[j2−j1+1,j2],∆
∼= socG(i∞

ĵ1,∆
(π∞

j1,j2)), (471)
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hence V ∞
[j2−j1+1,j2],∆ is a subquotient of i∞I,∆(π∞). By (i) of Lemma 2.3.2 and (i) Lemma 2.3.3

we have

d(π∞
j1,j2+1, π

∞
j1−1,j2) = d(π∞

j1,j2+1, π
∞
j1+1,j2+1) = d(π∞

j1,j2+1, V
∞

[j2−j1+1,j2],∆) = 0.

Hence we can apply Lemma 5.1.19 with σ∞
x

def= π∞
j1,j2+1 if x = wj1,j0 , σ∞

x
def= π∞

j1−1,j2 if x =
wj1−1,j0 , σ∞

x
def= π∞

j1+1,j2+1 if x = wj1+1,j0 and σ∞
x
∼= V ∞

[j2−j1+1,j2],∆ if j0 = j1 and x = 1.
This gives that B̃j,S is a subquotient of FGPI

(M,π∞). Since M is multiplicity free and
i∞I,Ix

(π∞) is multiplicity free for any constituent L(x) of M (see (iv) of Remark 2.1.16),
FGPI

(M,π∞) is also multiplicity free by Lemma 5.1.2 and Lemma 5.1.1. We can thus define
B̃+
j,S as the minimal length quotient of FGPI

(M,π∞) which admits B̃j,S as a subrepresentation.
By a similar argument as in the paragraph before Step 1 of the proof of Lemma 5.1.19,
B̃+
j,S admits a decreasing filtration indexed by JHU(g)(M) with L(x)-graded piece given by
FGPIx

(L(x), σ∞
x,+), where σ∞

x,+ is the minimal length quotient of i∞I,Ix
(π∞) which admits σ∞

x as
a subrepresentation. For L(x) ∈ JHU(g)(M), we have from the previous discussion

• if x = wj1−1,j0 , I = I− and σ∞
x
∼= π∞

j1−1,j2
∼= cosoc(i∞I,∆\{j1−1}(π∞)), thus σ∞

x,+ = σ∞
x ;

• if x = wj1+1,j0 , I = I+ and σ∞
x
∼= π∞

j1+1,j2+1
∼= cosoc(i∞I,∆\{j1+1}(π∞)), thus σ∞

x,+ = σ∞
x ;

• if x = wj1,j0 , σ∞
x
∼= π∞

j1,j2+1
∼= socL

ĵ1
(i∞
I,̂j1

(π∞)), thus σ∞
x,+ = i∞

I,̂j1
(π∞);

• If x = 1, σ∞
x,+ is the unique quotient of i∞I,∆(π∞) with socle σ∞

x
∼= V ∞

[j2−j1+1,j2],∆.

We need to make σ∞
x,+ a bit more explicit when x = 1. We have isomorphisms

HomG(i∞I,∆(π∞), i∞
ĵ1,∆

(π∞
j1,j2)) ∼= HomL

ĵ1
(J∆,̂j1(i∞I,∆(π∞)), π∞

j1,j2)
∼= HomL

ĵ1
(i∞
I,̂j1,sj1

(J
I,̂j1,sj1

(π∞)), π∞
j1,j2) ∼= HomLI

(J
I,̂j1,sj1

(π∞), J ′
ĵ1,I±

(π∞
j1,j2))

where the first isomorphism follows from (31), the second from (i) and (ii) of Lemma 2.1.18
and from Σj1,j2 ⊆ W (L

ĵ1
)sj1W (LI) · J (π∞) (which follows from (470) and Σ = W (LI) ·

J (π∞)), and the last from sj1(I) ∩ ĵ1 = sj1(ĵ1) ∩ ĵ1 = I± (see (45) and (108)) followed by
(32). Moreover these spaces are all non-zero since we have

J ′
ĵ1,I±

(π∞
j1,j2)BI

Σ±

∼= J
ĵ1 ,̂j1,sj1

(π∞
j1,j2+1)BI

Σ±

∼= J
I∗ ,̂j1,sj1

(π∞
∗,0)BI

Σ±
̸= 0

by (v) above Lemma 2.3.6 and (ii) of Lemma 2.3.6. Since σ∞
x
∼= V ∞

[j2−j1+1,j2],∆ (when x = 1)
is the socle of i∞

ĵ1,∆
(π∞

j1,j2) by (471) (and since all representations are multiplicity free by (iv)
of Remark 2.1.16), we finally deduce that σ∞

x,+ injects into i∞
ĵ1,∆

(π∞
j1,j2).

We divide the rest of the proof into two steps.

Step 1: We prove that
Ext1

G(FGPI
(M,π∞), Cj) = 0. (472)
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We first claim that FGPI
(M,π∞) has no constituent isomorphic to FGP

ĵ1
(L(x), π∞

j1,j2) for any
x such that DL(x) = {j1}. Assume on the contrary that W is such a constituent, then by
Lemma 5.1.1 (and (ii) of Theorem 4.3.7) W must be a constituent of FGP

ĵ1
(L(x), i∞

I,̂j1
(π∞)),

and thus π∞
j1,j2 is a constituent of i∞

I,̂j1
(π∞) ((iv) of Theorem 4.3.7). This implies Σj1,j2 =

W (L
ĵ1

) · J (i∞
I,̂j1

(π∞)) since both are single W (L
ĵ1

)-cosets by the last statement in (i) of
Lemma 2.1.15. By (52) this implies Σ = W (LI) · J (π∞) ⊆ Σj1,j2 . But by (109) we have
Σ ⊆ Σj1,j2+1, and since Σj1,j2+1 ∩Σj1,j2 = ∅ by (i) of Lemma 2.3.4, we derive a contradiction.
Now, since any constituent L(x) of N ĵ1(wj1,j0) is such that DL(x) = {j1} by Lemma 3.1.1,
we deduce in particular

HomG

(
FGPI

(M,π∞),FGP
ĵ1

(N ĵ1(wj1,j0), π∞
j1,j2)

)
= 0,

which together with 0→ N ĵ1(wj1,j0)→M ĵ1(wj1,j0)→ L(wj1,j0)→ 0 gives an embedding

Ext1
G(FGPI

(M,π∞), Cj) ↪→ Ext1
G

(
FGPI

(M,π∞),FGP
ĵ1

(M ĵ1(wj1,j0), π∞
j1,j2)

)
. (473)

By Remark 3.4.12 (with j, w, S0 there being j1, wj1,j0 , Sj0,j1) we have for ℓ ≤ 1

ExtℓU(g)(M ĵ1(wj1,j0),M sj1 ) = 0. (474)

By (470) we can apply (367), which gives using (474)

Ext1
G

(
FGPI

(M,π∞),FGP
ĵ1

(M ĵ1(wj1,j0), π∞
j1,j2)

)
= 0.

By (473) this gives (472).

Step 2: We prove that the injection B̃j,S ↪→ B̃+
j,S and the surjection FGPI

(M,π∞) ↠ B̃+
j,S

induce isomorphisms

Ext1
G(B̃j,S, Cj) ∼−→ Ext1

G(B̃+
j,S, Cj)

∼←− Ext1
G(FGPI

(M,π∞), Cj). (475)

We wish to apply Remark 5.1.21 to V0 = Cj and V = B̃j,S, so we check that all assumptions
there are satisfied (using the notation of loc. cit.). From the definition of M , Lemma 3.1.1
and [Hum08, Thm. 9.4(c)], we have JHU(g)(M) ∩ JHU(g)(M ĵ1(wj1,j0)) = {L(wj1,j0)}. By (i)
of Lemma 2.3.2 and (i) Lemma 2.3.3 we have d(σ∞

x , π
∞
j1,j0) = 0 for all constituents L(x)

of M . By (i) of Lemma 2.3.4 we have Σj1,j2+1 ∩ Σj1,j2 = ∅. Hence it remains to check
J
ĵ1

(τ∞
x )

B̂j1
Σj1,j2

= 0 for each L(x) ∈ JHU(g)(M) with x ̸= wj1,j0 and each τ∞
x ∈ JHLIx

(σ∞
x,+) \

{σ∞
x }. Since σ∞

x,+ = σ∞
x when x ∈ {wj1−1,j0 , wj1+1,j0} by the explicit description of σ∞

x,+
before Step 1, such a τ∞

x only exists when x = 1. In this case σ∞
x
∼= V ∞

[j2−j1+1,j2],∆ and
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τ∞
x ∈ JHG(i∞

ĵ1,∆
(π∞

j1,j2)) \ {V ∞
[j2−j1+1,j2],∆} by the discussion just before Step 1. We claim that

we have isomorphisms

J∆,̂j1(V ∞
[j2−j1+1,j2],∆)

B̂j1
Σj1,j2

∼= π∞
j1,j2
∼= J∆,̂j1(i∞

ĵ1,∆
(π∞

j1,j2))
B̂j1

Σj1,j2

. (476)

Applying (31) to V ∞
[j2−j1+1,j2],∆ ↪→ i∞

ĵ1,∆
(π∞

j1,j2) and using the last assertion of Lemma 2.1.29
gives the first isomorphism. The second isomorphism is the very last isomorphism in (ii) of
Lemma 2.1.18 applied with I, I1, I0, w, π∞

0 there being ∆, ĵ1, ĵ1, 1, π∞
j1,j2 . By exactness of

J∆,̂j1 we deduce from (476) J∆,̂j1(τ∞
x )

B̂j1
Σj1,j2

= 0 for τx as above (and x = 1). By Remark 5.1.21

we thus have (475). Finally, (469) follows from (475) and (472).

Proposition 5.2.18. Let j ∈ J such that j′ = (j′
0, j

′
1, j

′
2)

def= (j0, j1, j2 + 1) is still in J.

(i) If j0 ̸= j1 there exists a unique minimal Ext-square Vj,j′ such that


gr0(Vj,∞) ∼= C(j0,j1,j2+1)
gr1(Vj,∞) ∼= C(j0,j1−1,j2) ⊕ C(j0,j1+1,j2+1)
gr2(Vj,∞) ∼= C(j0,j1,j2).

(ii) If j0 = j1 there exists a unique minimal Ext-square Vj,j′ such that


gr0(Vj,∞) ∼= C(j0,j1,j2+1)
gr1(Vj,∞) ∼= C(j0,j1−1,j2) ⊕ C(j0,j1+1,j2+1) ⊕ L(1)∨ ⊗E V ∞

[j2−j0+1,j2],∆
gr2(Vj,∞) ∼= C(j0,j1,j2).

In both (i) and (ii) we omit C(j0,j1+1,j2+1) if j1 = j2 = n− 1 and C(j0,j1−1,j2) if j1 = 1.

Proof. Note that, with the notation before Lemma 5.2.16, we have gr1(Vj,j′) ∼= Aj ⊕ Bj,
and we prove (i) and (ii) simultaneously. We define W+

j as the unique (up to isomorphism)
representation with socle Cj which fits into an exact sequence 0→ Cj → W+

j → Aj⊕Bj → 0.
Note that the existence and unicity of W+

j follows from Lemma 5.2.1 and (i) of Lemma 5.2.2,
and that we have an exact sequence 0 → Wj → W+

j → Aj → 0 (see before Lemma 5.2.16
for Wj). An obvious dévissage gives

dimE Ext1
G(Cj′ ,W+

j ) ≤ dimE Ext1
G(Cj′ ,Wj) + dimE Ext1

G(Cj′ , Aj) = 0 + 1 = 1 (477)

where the last equality follows from (464), Lemma 5.2.1 and (ii) of Lemma 5.2.2. The short
exact sequence 0→ Cj → W+

j → Aj ⊕Bj → 0 yields an exact sequence

Ext1
G(Cj′ , Cj)→ Ext1

G(Cj′ ,W+
j )→ Ext1

G(Cj′ , Aj ⊕Bj)→ Ext2
G(Cj′ , Cj). (478)
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We have by Lemma 5.2.1
Ext1

G(Cj′ , Cj) = 0 (479)

and by Lemma 5.2.1 and (ii) of Lemma 5.2.2

dimE Ext1
G(Cj′ , Aj ⊕Bj) = 1 + #Sj0,j1 . (480)

By (ii) of Lemma 5.2.3 and the explicit description of Sj0,j1 below (463) we have

dimE Ext2
G(Cj′ , Cj) ≤ #Sj0,j1 ,

which together with (479), (478) and (480) implies

dimE Ext1
G(Cj′ ,W+

j ) ≥ 1 + #Sj0,j1 −#Sj0,j1 = 1.

With (477), we deduce dimE Ext1
G(Cj′ ,W+

j ) = 1. The unique (up to scalar) non-zero class in
Ext1

G(Cj′ ,W+
j ) determines a unique (up to isomorphism) representation of G over E, which is

moreover multiplicity free using Lemma 5.1.1. We define Vj,j′ as its unique subrepresentation
with cosocle Cj′ . It is clear from its definition and from Lemma 5.2.1 and Lemma 5.2.2 that
Vj,j′ is an Ext-square. Moreover we have by (464) (and since Aj is irreducible)

Aj ⊆ gr1(Vj,j′) ⊆ Aj ⊕Bj. (481)

If the second inclusion in (481) is strict, there exists S ⊊ Sj0,j1 such that gr1(Vj,j′) ∼= Aj⊕Bj,S,
and the existence of Vj,j′ forces Ext1

G(B̃j,S, Cj) ̸= 0, which contradicts (469). Hence we
have Wj ↪→ Vj,j′ . Finally, the minimality of Vj,j′ follows from Lemma 5.2.9 (applied with
V1 = Fil1(Vj,j′), V2 = Wj) and Lemma 5.2.16.

Until the end of the proof of Proposition 5.2.28, we fix j ∈ J such that j′ = (j′
0, j

′
1, j

′
2)

def=
(j0 + 1, j1, j2 + 1) is still in J. Note that we have 1 ≤ j0 ≤ n − 2, 1 ≤ j1 ≤ j2 ≤ n − 1 and
j2 − j1 ≤ n− 2− j0. The following notation is convenient

C0,0,0 def= C(j0,j1,j2)

C1,0,0 def= C(j0+1,j1,j2) C0,1,0 def= C(j0,j1+1,j2+1) C0,0,1 def= C(j0,j1−1,j2)

C1,1,0 def= C(j0+1,j1+1,j2+1) C0,1,1 def= C(j0,j1,j2+1) C1,0,1 def= C(j0+1,j1−1,j2)

C1,1,1 def= C(j0+1,j1,j2+1)

(so C0,0,0 = Cj and C1,1,1 = Cj′). By Proposition 5.2.18 there exists a minimal Ext-square V0

with socle C0,0,0, cosocle C0,1,1 and middle layer containing C0,1,0⊕C0,0,1. By loc. cit. applied
with j, j′ there being (j0 + 1, j1, j2), (j0 + 1, j1, j2 + 1), there exists a minimal Ext-square
V1 with socle C1,0,0, cosocle C1,1,1 and middle layer containing C1,1,0 ⊕ C1,0,1. By loc.cit. V0
(resp. V1) is multiplicity free and admits a locally algebraic constituent if and only if j1 = j0
(resp. j1 = j0 + 1).
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Until Proposition 5.2.28 we also fix µ ∈ Λ such that ⟨µ + ρ, α∨⟩ ≥ 0 for all α ∈ Φ+ and
the stabilizer of µ in W (G) for the dot action is {1, w0sj0w0}. The following lemma gives
technical results on Θw0sj0w0(C0,b,c) for b, c ∈ {0, 1} which will be used in various proofs, in
particular the proof of Proposition 5.2.28.

Lemma 5.2.19. For each (b, c) ∈ {0, 1}2 we have:

(i) Ca′,b′,c′ is a constituent of Θw0sj0w0(C0,b,c) for some a′, b′, c′ ∈ {0, 1} if and only if b′ = b
and c′ = c;

(ii) C1,b,c (resp. C0,b,c) appears with multiplicity 1 (resp. 2) in Θw0sj0w0(C0,b,c) and in
Θµ(V0);

(iii) Θw0sj0w0(C0,b,c) has simple socle and cosocle C0,b,c, and admits a unique length 2 sub-
representation (resp. quotient) with socle C0,b,c and cosocle C1,b,c (resp. with socle C1,b,c

and cosocle C0,b,c).

Proof. We fix b, c ∈ {0, 1} and write C0,b,c = FGPIx
(L(x), σ∞) for some x ∈ W (G) and some

irreducible G-regular smooth σ∞, which can be made explicit using (443). In particular by
Proposition 3.4.5 we have Θw0sj0w0(L(x)) ̸= 0.

We prove (i). For a′, b′, c′ ∈ {0, 1} we write Ca′,b′,c′ = FGPIw
(L(w), π∞) for some w ∈ W (G)

and some irreducible G-regular smooth π∞. Note that #DL(x) = #DL(w) = 1, and thus
Iw ⊇ Ix if and only if Ix = Iw. Hence by (462) and Lemma 5.1.1 Ca′,b′,c′ is a constituent of
Θw0sj0w0(C0,b,c) if and only if L(w) is a constituent of Θw0sj0w0(L(x)), Ix = Iw and σ∞ ∼= π∞.
On one hand, Ix = Iw and σ∞ ∼= π∞ force b = b′ and c = c′ (by definition of C0,b,c and
Ca′,b′,c′). On the other hand, if b = b′ and c = c′, then σ∞ ∼= π∞ and a case by case check
from the definition of C0,b,c, Ca′,b′,c′ gives that x = wj,j0 for some j ∈ {j1 − 1, j1, j1 + 1} ∩∆
and either w = x or w = wj,j0+1. In all these cases Ca′,b′,c′ is a constituent of Θw0sj0w0(C0,b,c)
by Proposition 3.4.5 (with Remark 3.4.6).

We prove (ii). By the first statement in Proposition 3.4.5 and (462) we
have Θw0sj0w0(W ) = 0 if W is a locally algebraic constituent of V0. As V0 is multiplicity
free with non locally algebraic constituents exactly given by C0,b,c for b, c ∈ {0, 1} (see
Proposition 5.2.18), we deduce from the exactness of Θµ that Θµ(V0) admits a filtration
with graded pieces given by Θw0sj0w0(C0,b,c) for b, c ∈ {0, 1}. This together with (i) implies
that C1,b,c (resp. C0,b,c) appears in Θw0sj0w0(C0,b,c) and Θµ(V0) with the same multiplicity.
It then follows from the (second half of) the first sentence in (i) of Lemma 5.2.13 that
C1,b,c (resp. C0,b,c) appears with multiplicity one (resp. two) in Θw0sj0w0(C0,b,c) (we apply
loc. cit. with j there being (j0, j1, j2), (j0, j1 + 1, j2 + 1), (j0, j1 − 1, j2) and (j0, j1, j2 + 1)
which corresponds to (b, c) being (0, 0), (1, 0), (0, 1) and (1, 1)).

Finally, (iii) follows from the rest of the statement in (i) of Lemma 5.2.13.

For λ, λ′ ∈ Λ and C,D any Z(g)-finite D(G)-modules, by [JLS21, Thm. 2.4.7] we have
canonical isomorphisms

HomD(G)(T λ
′

λ (C), D) ∼= HomD(G)(C, T λλ′ (D)), (482)
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from which we (formally) obtain canonical functorial adjunction maps Θλ(D) → D, D →
Θλ(D) for D any Z(g)-finite D(G)-module and λ ∈ Λ such that ⟨λ+ ρ, α∨⟩ ≥ 0 for α ∈ Φ+

and the stabilizer of λ in W (G) for the dot action is {1, sj} for some j ∈ {0, . . . , n− 1}. It
is clear that these two adjunction maps are non-zero when both D and Θλ(D) are non-zero.
If V is an admissible locally analytic representation of G over E such that V ∨ is Z(g)-finite,
we therefore have canonical functorial adjunctions maps V → Θλ(V ) and Θλ(V )→ V . Note
that, when D = FGPI

(M,π∞)∨ for I ⊆ ∆, M in OpI
alg and π∞ a strongly admissible smooth

representation of LI , an examination of the proof of (462) in [JLS21, Thm. 4.1.12] shows
that the adjunction maps Θλ(D) = Θsj

(D) → D coming from (i) the above argument and
(ii) the adjunction map Θsj

(M)→M (see below (198)) by functoriality of the Orlik-Strauch
functor are the same. Likewise with the adjunction maps D → Θsj

(D).

Going back to our previous running notation, since C1,1,1 occurs with multiplicity 1 in
Θµ(V0) by (ii) of Lemma 5.2.19, we can (and do) define Vj,j′ as the unique subrepresentation
of Θµ(V0) with cosocle C1,1,1.

Lemma 5.2.20. The representations Θµ(V0) and Vj,j′ have socle C0,0,0. Moreover, Vj,j′

satisfies the following properties:

(i) V0 injects into Vj,j′;

(ii) for each (b, c), (b′, c′) ∈ {0, 1}2 such that b ≤ b′, c ≤ c′ and b′ +c′ = b+c+1, Θµ(V0) ad-
mits a subquotient which is the minimal Ext-square (with socle C0,b,c, cosocle C1,b′,c′ and
middle layer containing C0,b′,c′⊕C1,b,c) constructed in (i) or (ii) of Proposition 5.2.10;

(iii) for each (a, b, c) ∈ {0, 1}3, Ca,b,c appears in Vj,j′ with multiplicity 1;

(iv) for each (a, b, c), (a′, b′, c′) ∈ {0, 1}3 such that a ≤ a′, b ≤ b′, c ≤ c′ and a′ + b′ + c′ =
a + b + c + 1, Vj,j′ admits a unique length 2 subquotient with socle Ca,b,c and cosocle
Ca′,b′,c′.

Proof. By the first statement in (i) of Lemma 5.2.13, for b, c ∈ {0, 1} we have (up to
non-zero scalars) a canonical injection C0,b,c ↪→ Θw0sj0w0(C0,b,c) and a canonical surjection
Θw0sj0w0(C0,b,c) ↠ C0,b,c. Since V0 has socle C0,0,0 and cosocle C0,1,1, it follows from the exact-
ness and functoriality of Θµ that the adjunction map V0 → Θµ(V0) is injective and the adjunc-
tion map Θµ(V0)→ V0 is surjective. As the composition C0,b,c ↪→ Θw0sj0w0(C0,b,c) ↠ C0,b,c is
(obviously) zero for b, c ∈ {0, 1} and as Θµ kills any locally algebraic constituent of V0 (by
the first statement in Proposition 3.4.5 and (462)), by functoriality and exactness again of
Θµ the composition V0 → Θµ(V0)→ V0 is also zero. As C1,1,1 is not a constituent of V0 and as
C0,b,c appears in Θµ(V0) (resp. V0) with multiplicity 2 (resp. 1) for each (b, c) ∈ {0, 1}2 by (ii)
of Lemma 5.2.19, we deduce that Vj,j′ injects into the kernel of the surjection Θµ(V0) ↠ V0

and that each C0,b,c appears in Vj,j′ with multiplicity at most one.
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We prove that Θµ(V0) has socle C0,0,0 (and thus its subrepresentation Vj,j′ also has socle
C0,0,0). We choose an arbitrary irreducible W ↪→ socG(Θµ(V0)). By the discussion before
this lemma, we have canonical isomorphisms

0 ̸= HomG(W,Θµ(V0)) ∼= HomG(T µw0·µ0(W ), T µw0·µ0(V0)) ∼= HomG(Θw0sj0w0(W ), V0). (483)

In particular, we have Θw0sj0w0(W ) ̸= 0 and W is not locally algebraic by Proposition 4.3.7
and (462). By Lemma 5.2.12 Θw0sj0w0(W ) has simple cosocle W , which together with (483)
forces W to be a non locally algebraic factor of V0, and thus W = C0,b,c for some b, c ∈
{0, 1}. But by (i) of Lemma 5.2.19 we know that the socle C0,0,0 of V0 is a constituant of
Θw0sj0w0(C0,b,c) if and only if b = c = 0. Hence, a non-zero map Θw0sj0w0(W )→ V0 exists only
if W = C0,0,0, in which case this map must factor through Θw0sj0w0(W ) ↠ C0,0,0 = socG(V0)
and (483) is one dimensional by (iii) of Lemma 5.2.19. It follows from this discussion that
Θµ(V0) has simple socle C0,0,0.

We prove (i). The surjection V0 ↠ C0,1,1 induces a surjection Θµ(V0) ↠ Θw0sj0w0(C0,1,1)
such that (by functoriality of the adjunction map) the composition V0 ↪→ Θµ(V0) ↠
Θw0sj0w0(C0,1,1) coincides with the composition

V0 ↠ C0,1,1 ∼= socG(Θw0sj0w0(C0,1,1) ↪→ Θw0sj0w0(C0,1,1)

(see (iii) of Lemma 5.2.19 for the above isomorphism). By loc. cit. Θw0sj0w0(C0,1,1) admits
a unique length 2 subrepresentation with socle C0,1,1 and cosocle C1,1,1, and we denote by
Ṽ its inverse image in Θµ(V0) via Θµ(V0) ↠ Θw0sj0w0(C0,1,1). Then C0,1,1 has multiplicity
1 in Ṽ since it has multiplicity 2 in Θµ(V0) and Θw0sj0w0(C0,1,1) (by (ii) of Lemma 5.2.19).
As V0 has cosocle C0,1,1 and V0 ⊆ Ṽ by the above discussion, it follows that V0 is the
unique subrepresentation of Ṽ with cosocle C0,1,1. Moreover any subrepresentation of Ṽ
which contains C0,1,1 as a constituent also contains the subrepresentation V0. Since Vj,j′ has
cosocle C1,1,1 (which appears with multiplicity 1 in Θµ(V0)), its image in Θw0sj0w0(C0,1,1) is
the unique subrepresentation of cosocle C1,1,1, in particular Vj,j′ ⊆ Ṽ , and thus V0 ⊆ Vj,j′ .
Hence, by the end of the last sentence of the first paragraph of the proof, we also deduce
that each C0,b,c for b, c ∈ {0, 1} appears in Vj,j′ with multiplicity exactly one.

We prove (ii). Let (b, c), (b′, c′) ∈ {0, 1}2 such that b ≤ b′, c ≤ c′ and b′+c′ = b+c+1, then
V0 admits a unique length 2 subquotient V with socle C0,b,c and cosocle C0,b′,c′ . It follows
from (ii) of Lemma 5.2.13 that Θµ(V ) admits a unique subquotient which is the Ext-square
constructed in (i) or (ii) of Proposition 5.2.10 with socle C0,b,c, cosocle C1,b′,c′ and middle
layer containing C1,b,c ⊕ C0,b′,c′ . Since Θµ(V ) is a subquotient of Θµ(V0), this proves (ii). In
particular Θµ(V0) admits a length 2 subquotient with socle C1,b,c and cosocle C1,b′,c′ .

We prove (iii). Let (b, c), (b′, c′) ∈ {0, 1}2 such that b ≤ b′, c ≤ c′, and recall from (ii)
of Lemma 5.2.19 that C1,b,c and C1,b′,c′ have multiplicity one in Θµ(V0). Hence, the end of
the previous paragraph implies that Θµ(V0) admits a unique length 2 subquotient with socle
C1,b,c and cosocle C1,b′,c′ when b′ + c′ = b+ c+1. Since C1,1,1 appears in Vj,j′ , we deduce that
C1,0,1 and C1,1,0, and then C1,0,0, must all appear in Vj,j′ . So Vj,j′ admits a unique length 2
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subquotient with socle C1,b,c and cosocle C1,b′,c′ when b′ + c′ = b+ c+ 1. Together with the
last sentence of the proof of (i), we deduce (iii).

We prove (iv). As V0 injects into Vj,j′ by (i) and V0 admits a unique length 2 subquotient
with socle C0,b,c and cosocle C0,b′,c′ when b′ + c′ = b + c + 1, such a subquotient uniquely
appears in Vj,j′ (unicity uses multiplicity 1 in (iii)). As C1,b,c has multiplicity one in Θµ(V0)
and Vj,j′ by the previous paragraph, Vj,j′ contains the unique subrepresentation of Θµ(V0)
with cosocle C1,b,c. As Θw0sj0w0(C0,b,c) admits a length 2 subrepresentation with socle C0,b,c

and cosocle C1,b,c by (iii) of Lemma 5.2.19, this subrepresentation of Θµ(V0), and hence Vj,j′ ,
also admit a length 2 subquotient with socle C0,b,c and cosocle C1,b,c. Moreover, for Vj,j′

this subquotient is unique again by multiplicity 1 in (iii). Together with the one but last
sentence of the proof of (iii), this gives all cases of (iv).

Remark 5.2.21. Let q : V0 → Θµ(V0) be any non-zero map, which is necessarily injective as
V0 is multiplicity free with socle C0,0,0 and Θµ(V0) has socle C0,0,0 by (the first statement of)
Lemma 5.2.20, and denote by p : Θµ(V0) ↠ V0 the canonical surjection (cf. the first paragraph
of the proof of Lemma 5.2.20). If the composition p ◦ q : V0 → V0 is non-zero, then it has to
be an isomorphism as V0 is multiplicity free with socle C0,0,0. By exactness of Θµ and (iii) of
Lemma 5.2.19, the restriction (p ◦ q)|socG(V0) is the composition C0,0,0 ↪→ Θµ(C0,0,0) ↠ C0,0,0

which is zero, a contradiction to p ◦ q being an isomorphism. Hence, we have p ◦ q = 0 and
thus im(q) ⊆ ker(p). But from (ii) of Lemma 5.2.19 C0,1,1 has multiplicity one in ker(p), so
im(q) has to be the unique subrepresentation of ker(p) with cosocle C0,1,1. It follows that q
is unique up to a scalar, or equivalently dimE HomG(V0,Θµ(V0)) = 1.

For each (b, c) ∈ {0, 1}2, we write Vb,c for the unique subrepresentation of V0 with cosocle
C0,b,c. By exactness of Θµ and since Θµ kills any locally algebraic constituent of V0, Θµ(V0)
admits a natural increasing filtration Filb,c(Θµ(V0)) def= Θµ(Vb,c) with graded piece

grb,c(Θµ(V0)) def= Filb,c(Θµ(V0))
/ ∑
b′+c′<b+c

Filb′,c′(Θµ(V0)) ∼= Θw0sj0w0(C0,b,c).

The filtration {Filb,c(Θµ(V0))}0≤b,c≤1 induces a filtration {Filb,c(Vj,j′)}0≤b,c≤1 on Vj,j′ ⊆ Θµ(V0)
with graded piece grb,c(Vj,j′) ⊆ Θw0sj0w0(C0,b,c). We deduce from (ii) and (iii) of Lemma 5.2.19
combined with (iii) of Lemma 5.2.20 that we have inclusions for (b, c) ∈ {0, 1}2

grb,c(Vj,j′) ⊆ radG(Θw0sj0w0(C0,b,c)) = ker(Θw0sj0w0(C0,b,c) ↠ C0,b,c). (484)

Lemma 5.2.22. Assume j1 ̸= j0 +1. Then Vj,j′ admits a locally algebraic constituent if and
only if j0 = j1. Moreover, if j0 = j1 then grb,c(Vj,j′) (for (b, c) ∈ {0, 1}2) admits a locally
algebraic constituent if and only if b = c = 0.

Proof. Assume that Vj,j′ admits a locally algebraic constituent W , then there exists (b, c) ∈
{0, 1}2 such that W occurs in grb,c(Vj,j′) ⊆ Θw0sj0w0(C0,b,c). Writing C0,b,c = FGPIx

(L(x), π∞)
with x ∈ W (G) and π∞ irreducible G-regular, it follows from (462) and Lemma 5.1.1 (and (ii)
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of Proposition 4.3.7) that L(1) is a constituent of Θw0sj0w0(L(x)), which by Proposition 3.4.5
forces x = sj0 . By checking the definition of C0,b,c for b, c ∈ {0, 1} (see above Lemma 5.2.19
with (443)) and using j1 ̸= j0 + 1, we have either b = c with j1 = j0, or b = 1, c = 0 with
j0 = j1 + 1.

Case 1: Assume W occurs in gr1,1(Vj,j′). By (iii) of Lemma 5.2.19 Θw0sj0w0(C0,1,1) admits
a unique length 2 subrepresentation V with socle C0,1,1 and cosocle C1,1,1, and by the proof of
(i) of Lemma 5.2.20, V is the image of Vj,j′ via Θµ(V0) ↠ Θw0sj0w0(C0,1,1), i.e. gr1,1(Vj,j′) ∼= V .
In particular, gr1,1(Vj,j′) has no locally algebraic constituent, a contradiction.

Case 2: Assume W occurs in gr1,0(Vj,j′) (and j0 = j1 + 1). Then by Proposition 3.4.5
and (484), W occurs in the cosocle of gr1,0(Vj,j′). As Vj,j′ has cosocle C1,1,1, there must
exist W ′ ∈ JHG(gr1,1(Vj,j′)) = {C0,1,1, C1,1,1} (see Case 1 for the equality) such that Vj,j′

admits a length 2 subquotient V ′ with socle W and cosocle W ′. Recall that V0 is the unique
subrepresentation of Vj,j′ with cosocle C0,1,1 (use (i) and (iii) of Lemma 5.2.20). Thus, if
W ′ = C0,1,1 then W must occur in V0. But V0 admits a locally algebraic factor if and only
if j0 = j1 (see Proposition 5.2.18), which contradicts j0 = j1 + 1. Hence we must have
W ′ = C1,1,1. Since Ext1

U(g)(L(1), L(wj1,j0+1)) = 0 when j0 = j1 + 1 by (ii) of Lemma 3.2.4,
Proposition 5.1.14 forces Ext1

G(C1,1,1,W ) = 0, which contradicts the existence of V ′ above.
So the only remaining case is b = c = 0 with j1 = j0. This proves the “only if” of the two

statements of the lemma. For the “if”, we can use that V0 has a locally algebraic constituent
when j1 = j0 by (ii) of Proposition 5.2.18, hence so does Vj,j′ by (i) of Lemma 5.2.20.

Lemma 5.2.23. Assume j1 ̸= j0 + 1. The non-locally algebraic constituents of Vj,j′ are the
Ca,b,c for (a, b, c) ∈ {0, 1}3.

Proof. Assume on the contrary that there exists a non-locally algebraic constituent W0 of
Vj,j′ such that W0 ̸= Ca,b,c for any (a, b, c) ∈ {0, 1}3. Then there exists (b, c) ∈ {0, 1}2 such
that W0 occurs in grb,c(Vj,j′) ⊆ Θw0sj0w0(C0,b,c). We take (b, c) such that b + c is maximal
among those (b, c) ∈ {0, 1}2 such that grb,c(Vj,j′) has a non-locally algebraic constituent
distinct from the Ca,b,c. By definition we can write C0,b,c = FGP

ĵ
(L(wj,j0), π∞) for some

j ∈ {j1 − 1, j1, j1 + 1} ∩ ∆ and some irreducible G-regular π∞ (see above Lemma 5.2.19),
and note that, by definition again, we have C1,b,c = FGP

ĵ
(L(wj,j0+1), π∞). It then follows

from Proposition 3.4.5, Remark 3.4.6, (462) and Lemma 5.1.1 (and the above assumptions
on W0) that we must have W0 ∼= FGP

ĵ
(L(wj,j0−1), π∞), and using moreover (484) and the first

statement of (iii) of Lemma 5.2.19 that W0 must be in the cosocle of grb,c(Vj,j′). Since Vj,j′ has
cosocle C1,1,1 ̸= W0 there must exist a constituent W1 of grb′,c′(Vj,j′) for some b′, c′ ∈ {0, 1}
with b′ + c′ > b+ c such that Vj,j′ admits a length 2 subquotient V with socle W0 and cosocle
W1. As b′ + c′ > b + c ≥ 0, it follows from Lemma 5.2.22 that W1 is not locally algebraic.
By maximality of b+ c, we deduce W1 = Ca′,b′,c′ for some (a′, b′, c′) ∈ {0, 1}3. If a′ = 0, then
W1 occurs in V0 by (i) and (iii) of Lemma 5.2.20, but W0 does not, a contradiction. Assume
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a′ = 1, and thus W1 = C1,b′,c′ = FGP
ĵ′

(L(wj′,j0+1), σ∞) for some j′ ∈ {j1 − 1, j1, j1 + 1} ∩∆
and some irreducible G-regular σ∞ (see above Lemma 5.2.19). By (ii) of Lemma 3.2.4 and
(the very last statement in) Remark A.10, we have Ext1

U(g)(L(wj,j0−1), L(wj′,j0+1)) = 0. By
Proposition 5.1.14 this forces Ext1

G(W1,W0) = 0, a contradiction to the existence of V .

Lemma 5.2.24. Assume j1 ̸= j0 + 1. Then Vj,j′ admits a unique quotient isomorphic to V1
(see above Lemma 5.2.19 for V1).

Proof. Using (iii) of Lemma 5.2.20 we define V ′
1 as the unique quotient of Vj,j′ with socle

C1,0,0. We let Filb,c(V ′
1) be the image of Filb,c(Vj,j′) via Vj,j′ ↠ V ′

1 . It follows from (ii) of
Lemma 5.2.19 and from (484) that C1,0,0 occurs in the cosocle of gr0,0(Vj,j′), which forces
gr0,0(V ′

1) ∼= C1,0,0. Since grb,c(Vj,j′), and hence grb,c(V ′
1), have no locally algebraic constituent

when b+ c > 0 by Lemma 5.2.22, it follows that V ′
1 has no locally algebraic constituent. By

Lemma 5.2.23, all constituents of V ′
1 are therefore of the form Ca,b,c for some (a, b, c) ∈ {0, 1}3.

In particular V ′
1 is multiplicity free by (iii) of Lemma 5.2.20 with socle C1,0,0 and cosocle

C1,1,1. Since V0 maps to 0 via V0 ↪→ Vj,j′ ↠ V ′
1 (using (i) of Lemma 5.2.20 and the fact V ′

1
has cosocle C1,0,0 which doesn’t occur in V0), it follows from (iii) of Lemma 5.2.20 that the
constituents of V ′

1 are of the form C1,b′,c′ for some (b′, c′) ∈ {0, 1}2. Since C1,b,c is a constituent
of grb′,c′(Vj,j′) if and only if b = b′ and c = c′ by (i) of Lemma 5.2.19, we deduce with (iv) of
Lemma 5.2.20 that V ′

1 has Loewy length 3 with socle C1,0,0, cosocle C1,1,1 and middle layer
C1,0,1 ⊕ C1,1,0. By Lemma 5.2.8 and the definition of V1, this implies V ′

1
∼= V1.

For I ⊆ ∆ we write (see also (64))

V alg
I,∆

def= L(1)∨ ⊗E V ∞
I,∆ = L(µ0)∨ ⊗E V ∞

I,∆. (485)

Lemma 5.2.25. Assume j1 ̸= j0 + 1. Then Vj,j′ is multiplicity free. Moreover, when
j1 = j0, Vj,j′ admits a unique quotient isomorphic to V∞,j′ (see (iv) of Proposition 5.2.10)
which contains all its locally algebraic constituents.

Proof. If j1 ̸= j0 (and j1 ̸= j0 + 1), then by Lemma 5.2.22 Vj,j′ has no locally algebraic
constituent, which by Lemma 5.2.23 and (iii) of Lemma 5.2.20 implies that Vj,j′ is multiplicity
free. We assume j1 = j0 in the rest of the proof. Note that, by loc. cit. each non locally
algebraic constituent of Vj,j′ occurs with multiplicity 1. Recall from Proposition 3.4.5 that
L(1) has multiplicity 1 in Θw0sj0w0(L(sj0)). It then follows from (462), (ii) of Proposition 4.3.7
and Lemma 5.1.1 that L(1)∨⊗E i∞ĵ0,∆(π∞

j0,j2) contains all the locally algebraic constituents of
Θw0sj0w0(C0,0,0), and therefore of Vj,j′ by Lemma 5.2.22. As i∞

ĵ0,∆
(π∞

j0,j2) is multiplicity free
by (iv) of Remark 2.1.16, we deduce that Vj,j′ is multiplicity free.

It remains to prove that Vj,j′ admits a (unique) quotient isomorphic to V∞,j′ which con-
tains all its locally algebraic constituents. As gr0,0(Vj,j′) ⊆ Θw0sj0w0(C0,0,0), and the subquo-
tient L(1)∨ ⊗E i∞ĵ0,∆(π∞

j0,j2) of Θw0sj0w0(C0,0,0) contains all its locally algebraic constituents,
there exists a (unique) subrepresentation π∞ ⊆ i∞

ĵ0,∆
(π∞

j0,j2) such that L(1)∨ ⊗E π∞ is a
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subquotient of Vj,j′ which contains its locally algebraic constituents. Moreover by (484),
Proposition 3.4.5 and Lemma 5.1.1 we know that L(1)∨ ⊗E π∞ is a quotient of gr0,0(Vj,j′).

Now we study all possible length 2 subquotients V of Vj,j′ with socle W0 and cosocle W1

such that W0 is locally algebraic and W1 is not. By Lemma 5.2.23 W1 = Ca,b,c for some
(a, b, c) ∈ {0, 1}3 and by (i) of Lemma 5.2.19 W1 is a constituent of grb,c(Vj,j′). As W0 is
necessarily a constituent of L(1)∨ ⊗E π∞ which is a quotient of gr0,0(Vj,j′), we must have
b + c > 0. If a = 0, then W1 occurs in V0 (using (i) and (iii) of Lemma 5.2.20), which
together with the layer structure of V0 (see (ii) of Proposition 5.2.18) forces W1 = C0,1,1

and W0 = L(1)∨ ⊗E V ∞
[j2−j0+1,j2],∆. Assume a = 1 and thus W1 = FGP

ĵ
(L(wj,j0+1), τ∞) for

some j ∈ {j1 − 1, j1, j1 + 1} ∩ ∆ and some irreducible G-regular τ∞ (see above Lemma
5.2.19). The existence of V implies Ext1

G(W1,W0) ̸= 0, which together with Proposi-
tion 5.1.14 forces Ext1

U(g)(L(1), L(wj,j0+1)) ̸= 0. By (ii) of Lemma 3.2.4 and our assump-
tion j0 = j1, we deduce j = j0 + 1 = j1 + 1 and thus W1 = C1,1,0 (with wj,j0+1 = sj0+1
and τ∞ = π∞

j0+1,j2+1). We can write W0 = L(1)∨ ⊗E σ∞ for some irreducible G-regular
constituent σ∞ of π∞. Then Ext1

G(W1,W0) ̸= 0 and the last statement in Remark 5.1.12
imply HomG(σ∞, i∞∆\{j0+1},∆(π∞

j0+1,j2+1)) ̸= 0. By Lemma 2.3.1 we deduce σ∞ = V ∞
[j2−j0,j2],∆

if j0 = j1 < j2 and σ∞ = V ∞
[j2−j0+1,j2],∆ if j0 = j1 = j2. We have thus shown that all pos-

sible pairs (W0,W1) are (V alg
[j2−j0+1,j2],∆, C

0,1,1), (V alg
[j2−j0,j2],∆, C

1,1,0) when j0 = j1 < j2, and
(V alg

[j2−j0+1,j2],∆, C
1,1,0) when j0 = j1 = j2.

Let σ∞ be a constituent of cosocG(π∞), then since L(1)∨⊗Eπ∞ is a quotient of gr0,0(Vj,j′)
there must exist (W0,W1) in the above list with W0 = L(1)∨ ⊗E σ∞. An examination of
Lemma 2.3.1 shows that π∞ ⊆ i∞

ĵ0,∆
(π∞

j0,j2) must be the length 2 subrepresentation with socle
V ∞

[j2−j0+1,j2],∆ and cosocle V ∞
[j2−j0,j2],∆ when j0 = j1 < j2, and the irreducible representation

V ∞
[j2−j0+1,j2],∆ when j0 = j1 = j2. From the description of the possible pairs above, from

Lemma 5.2.23 and (iii), (iv) of Lemma 5.2.20, and from the fact Vj,j′ has (irreducible) cosocle
C1,1,1, we can deduce that Vj,j′ admits a unique (multiplicity free) quotient with constituents

{V alg
[j2−j0+1,j2],∆, V

alg
[j2−j0,j2],∆, C

0,1,1, C1,1,0, C1,1,1}

with partial order (in the sense of §1.4) which can only be: V alg
[j2−j0+1,j2],∆ ≤ V alg

[j2−j0,j2],∆,
V alg

[j2−j0+1,j2],∆ ≤ C0,1,1, V alg
[j2−j0,j2],∆ ≤ C1,1,0, C0,1,1 ≤ C1,1,1 and C1,1,0 ≤ C1,1,1 (with V alg

[j2−j0,j2],∆
omitted when j0 = j1 = j2). It then follows from (iv) of Proposition 5.2.10 (with j there
replaced by j′ here) together with the minimality of the Ext-square V∞,j′ in loc. cit. (last
statement of Proposition 5.2.10) and with Lemma 5.2.8 that this quotient must be V∞,j′ .

Lemma 5.2.26. Assume j1 ̸= j0 + 1. Then Vj,j′ is an Ext-cube such that

(i) gr0(Vj,j′) ∼= Cj′ and gr3(Vj,j′) ∼= Cj;

(ii) Vj,j′ contains a unique subquotient of the form Vj′′,j′′′ for each pair (j′′, j′′′) ∈ J2 sat-
isfying j ≤ j′′ ≤ j′′′ ≤ j′ and d(j′′, j′′′) = 2 (these Vj′′,j′′′ are defined in (i), (ii) of
Proposition 5.2.10 and (i), (ii) of Proposition 5.2.18).
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Proof. We first prove (ii). Note that j′′ ∈ J satisfying j ≤ j′′ ≤ j′ is equivalent to the choice
of (a, b, c) ∈ {0, 1}3 (writing j′′ = (j0 + a, j1 + c − b, j2 + c)). In particular, the choice of
j′′, j′′′ ∈ J such that j ≤ j′′ ≤ j′′′ ≤ j′ and d(j′′, j′′′) = 2 is equivalent to the choice of
(a, b, c), (a′, b′, c′) ∈ {0, 1}3 such that a ≤ a′, b ≤ b′, c ≤ c′ and a′ + b′ + c′ = a+ b+ c+ 2. It
follows from (iii) of Lemma 5.2.20 that if Vj′′,j′′′ is a subquotient of Vj,j′ , then it is necessarily
the unique subquotient of Vj,j′ with socle Cj′′ and cosocle Cj′′′ . If b = b′ or c = c′, then the
existence of a subquotient Vj′′,j′′′ of Vj,j′ follows from (ii), (iii) of Lemma 5.2.20 and (ii) of
Lemma 5.2.19. If a = a′ = 0, then Vj′′,j′′′ = V0 and the existence of a subquotient V0 of Vj,j′

follows from (i) of Lemma 5.2.20. If a = a′ = 1, then Vj′′,j′′′ = V1 and the existence of a
subquotient V1 of Vj,j′ follows from Lemma 5.2.24. This proves (ii).

Now we construct a filtration on Vj,j′ that makes it an Ext-cube (see Definition 5.2.6).
Recall that Vj,j′ has socle C0,0,0 and cosocle C1,1,1. It follows from (ii) above, from (iii)
and (iv) of Lemma 5.2.20, from Lemma 5.2.23 and from Lemma 5.2.25 (with (iv) and (ii)
of Proposition 5.2.10) that Vj,j′ admits a unique decreasing filtration (Filk(Vj,j′))0≤k≤3 such
that for 0 ≤ k ≤ 3

grk(Vj,j′) ∼= C∞,k

⊕( ⊕
a+b+c=3−k

Ca,b,c

)
, (486)

where C∞,k
def= gr2(V∞,j′) when k = 2 and j1 = j0, and C∞,k

def= 0 otherwise. In particular,
(i) holds for the filtration (Filk(Vj,j′))k. It remains to check that Vj,j′ is an Ext-cube for this
filtration. But the first condition in (i) of Definition 5.2.6 holds by definition of Vj,j′ and
of the filtration (Filk(Vj,j′))k, and the second condition in (i) of Definition 5.2.6 holds by
Lemma 5.2.1 and Lemma 5.2.2.

Lemma 5.2.27. Assume j1 ̸= j0 + 1. Then the Ext-cube Vj,j′ is strict and minimal (see
(iii) and (iv) of Definition 5.2.6).

Proof. The Ext-cube Vj,j′ is strict as it has simple socle (C0,0,0 = Cj) and simple cosocle
(C1,1,1 = Cj′). By (i), (ii) of Proposition 5.2.10 and Proposition 5.2.18, Vj′′,j′′′ is minimal
for each (j′′, j′′′) ∈ J2 such that j ≤ j′′ ≤ j′′′ ≤ j′ and d(j′′, j′′′) = 2, and by (iv) of
Proposition 5.2.10 V∞,j′ is minimal when j1 = j0. Hence to check the minimality of Vj,j′ ,
it suffices to show that any Ext-cube V ′ such that gr0(V ′) = Cj′ , gr3(V ′) = Cj and grk(V ′)
is a good direct summand of grk(Vj,j′) for k = 1, 2 must satisfy grk(V ′) = grk(Vj,j′) for
k = 1, 2. Let V ′ be such an Ext-cube, then grk(V ′) ̸= 0 for k = 1, 2. Thus by (486)
gr1(V ′) contains a constituent Cj′′ for some j < j′′ < j′ such that d(j, j′′) = 2. It follows
from Lemma 5.2.26 and its proof that the unique subrepresentation V ′′ of V ′ with cosocle
Cj′′ is an Ext-square such that gr0(V ′′) = Cj′′ , gr2(V ′′) = Cj and gr1(V ′′) is a good direct
summand of gr1(Vj,j′′). The minimality of Vj,j′′ forces gr1(V ′′) ∼= gr1(Vj,j′′), and thus for
each j′′′ such that j < j′′′ < j′′ the constituent Cj′′′ shows up in gr1(V ′′), and therefore in
gr2(V ′). A similar argument using the minimality of Vj′′′,j′ for j′′′ such that j < j′′′ < j′′

gives gr1(V ′) ∼= gr1(Vj,j′). In particular Cj′′ occurs in gr1(V ′) for each j < j′′ < j′ with
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d(j, j′′) = 2, and we can repeat the previous argument with the subrepresentation V ′′ of V ′

with cosocle Cj′′ . We now deduce that Cj′′′ occurs in gr1(V ′′), and therefore in gr2(V ′), for
any j′′′ such that j < j′′′ < j′ and d(j, j′′′) = 1. If j0 ̸= j1, there are no constituents left
and we have proven grk(V ′) = grk(Vj,j′) for k = 1, 2. We now assume j1 = j0. We already
have gr1(V ′) ∼= gr1(Vj,j′) but it remains to prove gr2(V ′) ∼= gr2(Vj,j′), and for that we have
to prove that the locally algebraic constituents of Vj,j′ , equivalently of gr2(Vj,j′) by Lemma
5.2.25, are also in gr2(V ′). Let j′′ = (j0 + 1, j1 + 1, j2 + 1), from the minimality of Vj,j′′ in
(ii) of Proposition 5.2.10 and the fact Cj′′ occurs in gr1(V ′), we deduce gr2(V∞,j′) ⊆ gr2(V ′).
This finally implies gr2(V ′) ∼= gr2(Vj,j′) and finishes the proof.

We now note that Lemma 5.2.19 has a symmetric statement replacing V0 by V1, Θw0sj0w0

(resp. Θµ) by Θw0sj0+1w0 (resp. by Θµ where µ ∈ Λ is such that ⟨µ + ρ, α∨⟩ ≥ 0 for α ∈ Φ+

and the stabilizer of µ in W (G) for the dot action is {1, w0sj0+1w0}) and switching C0,b,c

and C1,b,c everywhere. Then we can define Ṽj,j′ as the unique quotient of Θµ(V1) with socle
Cj. Then Lemma 5.2.20 also has a symmetric version (Θµ(V1) and Ṽj,j′ have cosocle C1,1,1,
Ṽj,j′ surjects onto V1, etc.) and likewise all statements from Lemma 5.2.22 to Lemma 5.2.27
have symmetric versions replacing the assumption j1 ̸= j0 + 1 by the assumption j1 ̸= j0,
V0 by V1 and the case j1 = j0 by the case j1 = j0 + 1. We let the reader work out by
himself the symmetric statements. For instance the symmetric Lemma 5.2.25 is: assume
j1 ̸= j0, then Vj,j′ is multiplicity free, and moreover when j1 = j0 + 1, Ṽj,j′ admits a unique
subrepresentation isomorphic to Vj,∞ which contains all its locally algebraic constituents.
Note that all minimal Ext-squares that are used in the (symmetric) proofs are still provided
by Proposition 5.2.10 and Proposition 5.2.18. It also follows from Lemma 5.2.26 and its proof,
from the minimality in Lemma 5.2.27, from their symmetric versions, and from Lemma 5.2.8
that Vj,j′ ∼= Ṽj,j′ when j1 /∈ {j0, j0 + 1}.

In order to avoid too much notation, we will now denote by Vj,j′ the Ext-cube previously
(also) denoted Vj,j′ when j1 ̸= j0 + 1, and by Vj,j′ the Ext-cube previously denoted Ṽj,j′

when j1 ̸= j0. Note that Vj,j′ is well defined by the above isomorphism. The following
proposition sums up some of the previous results on Vj,j′ which are proven in Lemma 5.2.27,
Lemma 5.2.23, Lemma 5.2.26, Lemma 5.2.25 and in their symmetric versions.

Proposition 5.2.28. Let j ∈ J such that j′ = (j′
0, j

′
1, j

′
2)

def= (j0 + 1, j1, j2 + 1) is still in J.
There exists a minimal Ext-cube Vj,j′ such that

(i) the non-locally algebraic constituents of Vj,j′ are the Cj′′ for j ≤ j′′ ≤ j′;

(ii) gr0(Vj,j′) ∼= C(j0+1,j1,j2+1) and gr3(Vj,j′) ∼= C(j0,j1,j2);

(iii) Vj,j′ contains a unique subquotient of the form Vj′′,j′′′ for each pair (j′′, j′′′) ∈ J2 satis-
fying j ≤ j′′ ≤ j′′′ ≤ j′ and d(j′′, j′′′) = 2 ((i), (ii) of Proposition 5.2.10 and (i), (ii)
of Proposition 5.2.18);
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(iv) Vj,j′ admits a locally algebraic constituent if and only if one of the following holds:
either j1 = j0 and Vj,j′ admits a unique quotient isomorphic to V∞,j′ ((iv) of Propo-
sition 5.2.10) which contains all its locally algebraic constituents, or j1 = j0 + 1 and
Vj,j′ admits a unique subrepresentation isomorphic to Vj,∞ ((iii) of Proposition 5.2.10)
which contains all its locally algebraic constituents.

Remark 5.2.29. In fact one can prove that the representations Vj,j′ and Ṽj,j′ just below
Lemma 5.2.27 are always isomorphic (even if j1 ∈ {j0, j0 + 1}). But we won’t need that
result.

We end up this section with three lemmas, two of which construct other finite length
representations V +

j,∞ and Vj of G in Repan
adm(G) which will be important to define key repre-

sentations in §5.3.

Lemma 5.2.30. Let 1 ≤ j0 = j1 ≤ j2 < n−1 and let j def= (j0, j0, j2), j′ def= (j0, j0, j2 +1), j′′ def=
(j0 + 1, j0 + 1, j2 + 1). Then there exists a unique multiplicity free finite length representation
V +
j,∞ in Repan

adm(G) such that (see (485) for the notation)

(i) V +
j,∞ has socle Cj and cosocle V alg

[j2−j0+1,j2+1],∆;

(ii) both Vj,j′ and Vj,j′′ inject into V +
j,∞ (see (ii) of Proposition 5.2.18 and (ii) of Proposition

5.2.10 respectively);

(iii) the quotient V +
j,∞/(Vj,j′ + Vj,j′′) is uniserial of length 2 with socle V alg

[j2−j0+2,j2+1],∆ and
cosocle V alg

[j2−j0+1,j2+1],∆.

Proof. We first prove unicity of V +
j,∞. We fix µ ∈ Λ such that ⟨µ + ρ, α∨⟩ ≥ 0 for α ∈ Φ+

and the stabilizer of µ in W (G) for the dot action is {1, w0sj0w0}. Condition (iii) together
with Proposition 3.4.5 and (462) imply Θµ(V +

j,∞/Vj,j′) = 0. The exactness of Θµ then
imply Θµ(Vj,j′) ∼→ Θµ(V +

j,∞). Since V +
j,∞ has socle Cj by condition (ii), it follows from the

exactness and functoriality of Θµ that the adjunction map V +
j,∞ → Θµ(V +

j,∞) is injective.
We thus deduce an injection V +

j,∞ ↪→ Θµ(Vj,j′). It follows from Proposition 3.4.5 that L(1)
is a constituent of Θw0sj0w0(L(x)) for some x ∈ W (G) if and only if x = sj0 , in which
case L(1) occurs with multiplicity 1. Together with (ii) of Proposition 5.2.18, (462) and
the fact Θµ kills locally algebraic constituents of Vj,j′ (Proposition 3.4.5), we see that if
W is a constituent of Vj,j′ , then Θµ(W ) admits locally algebraic constituents if and only if
W ∈ {Cj, Cj′}, and together with (ii) of Theorem 4.3.7 that Θµ(Cj) (resp. Θµ(Cj′)) admits a
subquotient L(1)∨⊗E i∞ĵ0,∆(π∞

j0,j2) (resp. L(1)∨⊗E i∞ĵ0,∆(π∞
j0,j2+1)) which contains all its locally

algebraic constituents. By Lemma 2.3.1 i∞
ĵ0,∆

(π∞
j0,j2) and i∞

ĵ0,∆
(π∞

j0,j2+1) are multiplicity free,
and V ∞

[j2−j0+1,j2+1],∆, V
∞

[j2−j0+2,j2+1],∆ ∈ JHG(i∞
ĵ0,∆

(π∞
j0,j2+1)) \ JHG(i∞

ĵ0,∆
(π∞

j0,j2)). This implies
that V alg

[j2−j0+1,j2+1],∆, V
alg

[j2−j0+2,j2+1],∆ ∈ JHG(Θµ(Cj′)) \ JHG(Θµ(Cj)), that V alg
[j2−j0+1,j2+1],∆,

V alg
[j2−j0+2,j2+1],∆ both appear with multiplicity 1 in Θµ(Vj,j′), and that Θµ(Vj,j′) contains
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as a subquotient the unique non-split extension of V alg
[j2−j0+1,j2+1],∆ by V alg

[j2−j0+2,j2+1],∆ (see
Lemma 2.3.1 and Lemma 5.1.3). In particular the second statement in condition (i) and the
beginning of the proof force V +

j,∞, if it exists, to be the unique subrepresentation of Θµ(Vj,j′)
with cosocle V alg

[j2−j0+1,j2+1],∆. This proves unicity of V +
j,∞.

We now prove that V +
j,∞, defined as the unique subrepresentation of Θµ(Vj,j′) with cosocle

V alg
[j2−j0+1,j2+1],∆, is multiplicity free and satisfies (i), (ii), (iii). We already note that (i) follows

from the fact that Θµ(Vj,j′) has socle Cj (see the first statement of Lemma 5.2.20 and note
that Vj,j′ is the representation denoted V0 there in the case j1 = j0).

Step 1: We prove that Vj,j′ injects into V +
j,∞.

Let π∞ be the unique smooth length 2 representation of G with socle V ∞
[j2−j0+2,j2+1],∆ and

cosocle V ∞
[j2−j0+1,j2+1],∆, which is G-basic by Lemma 2.2.5. By (i) of Lemma 2.3.1 (applied

with j1, j2 there being j0, j2 + 1) π∞ injects into i∞
ĵ0,∆

(π∞
j0,j2+1), and thus d(π∞, π∞

j0,j2+1) = 0.
Let M be the unique length 2 U(g)-module with socle L(1) and cosocle L(sj0) ((ii) of
Lemma 3.2.4), then (ii) of Lemma 5.1.19 implies that FGP

ĵ0
(M,π∞

j0,j2+1) contains a unique
subrepresentation V which fits into a non-split extension 0→ Cj′ → V → L(1)∨⊗E π∞ → 0.
Moreover, as π∞ injects into i∞

ĵ0,∆
(π∞

j0,j2+1), we deduce from (ii) of Lemma 5.1.15 (ap-
plied with V1 = Cj′ and V0 = L(1)∨ ⊗E π∞) that V is uniserial of length 3, with so-
cle Cj′ , cosocle V alg

[j2−j0+1,j2+1],∆ and middle layer V alg
[j2−j0+2,j2+1],∆. As M is a quotient of

Θw0sj0w0(L(sj0)) by Proposition 3.4.5, we deduce from (462) that FGP
ĵ0

(M,π∞
j0,j2+1) is a sub-

representation of Θµ(Cj′) ∼= FGP
ĵ0

(Θw0sj0w0(L(sj0)), π∞
j0,j2+1). Hence V is also a subrepresenta-

tion of Θµ(Cj′), and is necessarily the unique subrepresentation with cosocle V alg
[j2−j0+1,j2+1],∆

(note that V alg
[j2−j0+1,j2+1],∆ occurs with multiplicity 1 in Θµ(Cj′) arguing as in the first para-

graph of the proof of Lemma 5.2.25). Let us consider the surjection

Θµ(Vj,j′) ↠ Θµ(Cj′) (487)

induced by Vj,j′ ↠ Cj′ . As V alg
[j2−j0+1,j2+1],∆ occurs with multiplicity 1 in both Θµ(Vj,j′) and

Θµ(Cj′), it follows from the definition of V +
j,∞ that V is the image of V +

j,∞ under (487). In
particular V +

j,∞ contains the constituent Cj′ . As Cj′ does not occur in the kernel of (487) by
(i) of Lemma 5.2.19, it follows from (ii) of Lemma 5.2.19 that Cj′ has multiplicity 1 in the
inverse image Ṽ of V via (487) (which contains V +

j,∞). Note that, by the same proof as for
V +
j,∞, the adjunction map Vj,j′ → Θµ(Vj,j′) is injective. By functoriality of Θµ the composition

of (487) with the injection Vj,j′ ↪→ Θµ(Vj,j′) factors through Vj,j′ ↠ Cj′ ↪→ Θµ(Cj′). Hence
the image of Vj,j′ under (487) is just its cosocle Cj′ , and we deduce that Vj,j′ is the unique
subrepresentation of Ṽ with cosocle Cj′ . Since V +

j,∞ is a subrepresentation of Ṽ which
contains Cj′ , it follows that Vj,j′ is also the unique subrepresentation of V +

j,∞ with cosocle
Cj′ . In particular Vj,j′ injects into V +

j,∞.
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Step 2: We prove that Vj,j′′ injects into V +
j,∞.

Let V ′ be the unique length 2 representation of G with socle C(j0,j0+1,j2+1) and cosocle
C(j0,j0,j2+1) (Lemma 5.2.1). Note that we have a canonical surjection Vj,j′ ↠ V ′ by (ii)
of Proposition 5.2.18. By (i) of Remark 5.2.15 (applied with j0, j2 there being j0, j2 + 1),
the representation V(j0,j0+1,j2+1),∞ in (iii) of Proposition 5.2.10 is isomorphic to the unique
subrepresentation of Θµ(V ′) with cosocle V alg

[j2−j0+1,j2+1],∆. Let us consider the surjection

Θµ(Vj,j′) ↠ Θµ(V ′) (488)

induced from Vj,j′ ↠ V ′. As V alg
[j2−j0+1,j2+1],∆ occurs with multiplicity 1 in both Θµ(Vj,j′)

and Θµ(V ′), it follows from the definition of V +
j,∞ that V(j0,j0+1,j2+1),∞ is the image of V +

j,∞
under (488). As Cj′′ occurs in V(j0,j0+1,j2+1),∞ and Θµ(Vj,j′) with multiplicity 1 (by (iii) of
Proposition 5.2.10 and (ii) of Lemma 5.2.19 respectively), we deduce that Cj′′ occurs in
V +
j,∞ with multiplicity 1. Now let V ′′ be the unique length 2 representation of G with socle
C(j0,j0,j2) and cosocle C(j0,j0+1,j2+1) (Lemma 5.2.1). Note that we have a canonical injection
V ′′ ↪→ Vj,j′ by (ii) of Proposition 5.2.18. By (ii) of Lemma 5.2.13 Vj,j′′ is isomorphic to
the unique subrepresentation of Θµ(V ′′) with cosocle Cj′′ . The injection V ′′ ↪→ Vj,j′ induces
an injection Θµ(V ′′) ↪→ Θµ(Vj,j′), which therefore allows to identify Vj,j′′ with the unique
subrepresentation of Θµ(Vj,j′) with cosocle Cj′′ . Since V +

j,∞ is a subrepresentation of Θµ(Vj,j′)
which contains Cj′′ , it follows that Vj,j′′ is also the unique subrepresentation of V +

j,∞ with
cosocle Cj′′ . In particular Vj,j′′ injects into V +

j,∞.

Step 3: We prove that, when j0 > 1, there does not exist W ∈ JHG(Θµ(C(j0,j0−1,j2)))
such that Ext1

G(V alg
I ,W ) ̸= 0 for some I ∈ {[j2 − j0 + 2, j2 + 1], [j2 − j0 + 1, j2 + 1]}.

By (462) and Lemma 5.1.1 a constituent of Θµ(C(j0,j0−1,j2)) has the form W =
FGP∆\{j0−1}

(L(x), π∞
j0−1,j2) where L(x) is a constituent of Θw0sj0w0(L(wj0−1,j0)), and by Propo-

sition 3.4.5 and Remark 3.4.6 we have DL(x) = {j0 − 1}. Assume on the contrary that
Ext1

G(V alg
I ,W ) ̸= 0 for some I ∈ {[j2 − j0 + 2, j2 + 1], [j2 − j0 + 1, j2 + 1]}, then we have

d(V ∞
I,∆, π

∞
j0−1,j2) = 0 by the last statement in Remark 5.1.12, which implies I = [j2−j0 +2, j2]

by (i) of Lemma 2.3.1, a contradiction.

Step 4: We prove that the constituents in the following list(
JHG(Vj,j′) ∪ JHG(Vj,j′′)

)
⨿
{
V alg

[j2−j0+2,j2+1],∆, V
alg

[j2−j0+1,j2+1],∆

}
(489)

occur with multiplicity 1 in V +
j,∞.

Note first that, from Step 1, Step 2 and the definition of V +
j,∞, all these constituents occur in

V +
j,∞. By the end of the first paragraph of the proof of Lemma 5.2.20, we have a surjective

adjunction map
Θµ(Vj,j′) ↠ Vj,j′ . (490)
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Since the cosocle V alg
[j2−j0+1,j2+1],∆ of V +

j,∞ doesn’t occur in Vj,j′ by (ii) of Proposition 5.2.18,
V +
j,∞ is contained in the kernel of (490). Hence it is enough to prove that all constituents in

(489) occur with multiplicity ≤ 1 in this kernel. For V alg
[j2−j0+2,j2+1],∆ and V alg

[j2−j0+1,j2+1],∆, this
holds because they occur with multiplicity 1 in Θµ(Vj,j′) (see above Step 1). For the non-
locally algebraic constituents in JHG(Vj,j′) ∪ JHG(Vj,j′′), this also holds using (ii) of Lemma
5.2.19. The discussion in the first paragraph of the proof shows that only Θµ(Cj) and
Θµ(Cj′) have locally algebraic constituents given by the constituents of L(1)∨⊗E i∞ĵ0,∆(π∞

j0,j2)
and L(1)∨ ⊗E i∞ĵ0,∆(π∞

j0,j2+1) respectively. By Lemma 2.3.1 the only common constituent of
these two locally algebraic representations is V alg

[j2−j0+1,j2],∆, which occurs in Vj,j′ by (ii) of
Proposition 5.2.18. Hence all these locally algebraic constituents finally occur with multi-
plicity 1 in the kernel of (490).

Step 5: We prove that V +
j,∞ is multiplicity free and satisfies (iii).

For V +
j,∞ multiplicity free, by Step 4 it is enough to prove

JHG(V +
j,∞) =

(
JHG(Vj,j′) ∪ JHG(Vj,j′′)

)
⨿
{
V alg

[j2−j0+2,j2+1],∆, V
alg

[j2−j0+1,j2+1],∆

}
. (491)

By Step 4 the right hand side of (491) is contained in JHG(V +
j,∞). Assume on the contrary that

(491) is a strict inclusion. Then V +
j,∞/(Vj,j′ +Vj,j′′) admits a quotient containing a constituent

W which is not in the list (491). Taking such a quotient of minimal length and using Step 4,
we can assume that it contains a length 2 subrepresentation with socle W and cosocle V alg

I

for some I ∈ {[j2−j0 +2, j2 +1], [j2−j0 +1, j2 +1]} (since any quotient of V +
j,∞/(Vj,j′ +Vj,j′′)

has cosocle V alg
[j2−j0+1,j2+1],∆ and since V alg

I for I ∈ {[j2− j0 + 2, j2 + 1], [j2− j0 + 1, j2 + 1]} are
the only “remaining” constituents in (491)). This forces Ext1

G(V alg
I ,W ) ̸= 0. Define V ′′′ as Cj

if j0 = 1, and as the unique length 2 representation of G with socle Cj and cosocle C(j0,j0−1,j2)
if j0 > 1 (using Lemma 5.2.1). By (ii) of Proposition 5.2.18 ker(Vj,j′ → V ′)/V ′′′ is locally
algebraic and thus Θµ(ker(Vj,j′ → V ′)/V ′′′) = 0 by Proposition 3.4.5 and (462). This together
with the exactness of Θµ allows to identify Θµ(V ′′′) with the kernel of the surjection (488).
We have seen in Step 2 that the image of V +

j,∞ under (488) is isomorphic to V(j0,j0+1,j2+1),∞.
By (iii) of Proposition 5.2.10 (with j2 there being j2 + 1) JHG(V(j0,j0+1,j2+1),∞) is contained
in the right and side of (491). Since Θµ(V ′′′) is the kernel of (488), we deduce that W ∈
JHG(Θµ(V ′′′)) \ (JHG(Vj,j′) ∪ JHG(Vj,j′′)). Moreover by Step 3 W /∈ JHG(Θµ(C(j0,j0−1,j2)))
when j0 > 1. Therefore, by definition of V ′′′ (and the exactness of Θµ), we must have

W ∈ JHG

(
Θµ(Cj)

)
\
(
JHG(Vj,j′) ∪ JHG(Vj,j′′)

)
.

Since W is a constituent of Θµ(Cj), by (462), (ii) of Proposition 4.3.7 and Lemma 5.1.1 it
has the form W = FGPx

(L(x), σ∞) where L(x) is a constituent of Θw0sj0w0(L(sj0)) and σ∞

a constituent of i∞
ĵ0,Ix

(π∞
j0,j2). If x ̸= 1, then Ext1

G(V alg
I ,W ) ̸= 0 together Proposition 5.1.14

and Remark 5.1.12 force Ext1
U(g)(L(x), L(1)) ̸= 0 and d(V ∞

I,∆, σ
∞) = 0. By Proposition 3.4.5
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and (ii) of Lemma 3.2.4 we deduce x = sj0 , which forces W = Cj and σ∞ = π∞
j0,j2 , a

contradiction as d(V ∞
I,∆, π

∞
j0,j2) = 0 if and only if I = [j2 − j0 + 1, j2] (Lemma 2.3.1) but we

have I ∈ {[j2−j0 +2, j2 +1], [j2−j0 +1, j2 +1]}. Hence we have x = 1, i.e. W = L(1)∨⊗Eσ∞.
Since W is not a constituent of Vj,j′′ and since L(1)∨⊗E π∞

j,j′′ is a subquotient of Vj,j′′ by (ii)
of Proposition 5.2.10, it follows that

σ∞ ∈ JHG(i∞
ĵ0,∆

(π∞
j0,j2)) \ JHG(π∞

j,j′′) = {V ∞
[j2−j0+1,j2−1],∆, V

∞
[j2−j0,j2−1],∆}

with V ∞
[j2−j0,j2−1],∆ omitted when j0 = j2 (the equality follows from Lemma 2.3.1). Write

σ∞ = V ∞
I′,∆, then one can check for each I ∈ {[j2 − j0 + 2, j2 + 1], [j2 − j0 + 1, j2 + 1]} that

d(V ∞
I,∆, V

∞
I′,∆) > 1 (for instance using [Or05]) and thus Ext1

G(V alg
I ,W ) = 0 by Lemma 5.1.3,

another contradiction. We conclude that W cannot exist, and thus (491) holds. Hence V +
j,∞ is

multiplicity free. The statement (iii) comes from the fact Θµ(Vj,j′) contains as a subquotient
the unique non-split extension of V alg

[j2−j0+1,j2+1],∆ by V alg
[j2−j0+2,j2+1],∆ (see above Step 1).

Remark 5.2.31. An inspection of Proposition 5.2.18 and (ii) of Proposition 5.2.10 shows
that the (multiplicity free) subrepresentation Vj,j′ + Vj,j′′ of V +

j,∞ must be the amalgamate
sum of Vj,j′ and Vj,j′′ over the length 3 subrepresentation of V +

j,∞ with socle Cj and cosocle
C(j0,j0+1,j2+1) ⊕ V alg

[j2−j0+1,j2],∆. This determines the partially ordered set JHG(Vj,j′ + Vj,j′′)
completely. The partial order on JHG(V +

j,∞) is then determined by the one on JHG(Vj,j′ +
Vj,j′′) and the relations Cj′ ≤ V alg

[j2−j0+2,j2+1],∆ ≤ V alg
[j2−j0+1,j2+1],∆ and Cj′′ ≤ V alg

[j2−j0+1,j2+1],∆,
using that the representation V(j0,j0+1,j2+1),∞ of (iii) of Proposition 5.2.10 is a quotient of V +

j,∞

(see Step 2 of the proof of Lemma 5.2.30) and using Ext1
G(V alg

[j2−j0+2,j2+1],∆, Cj′′) = 0 which
follows from (i) of Lemma 5.2.2.

Recall from (i) of Lemma 5.2.30 that V +
j,∞ has cosocle V alg

[j2−j0+1,j2+1],∆ and socle Cj, and
thus fits into a non-split extension 0 → radG(V +

j,∞) → V +
j,∞ → V alg

[j2−j0+1,j2+1],∆ → 0. In
particular

Ext1
G(V alg

[j2−j0+1,j2+1],∆, radG(V +
j,∞)) ̸= 0. (492)

Lemma 5.2.32. The vector space in (492) is one dimensional, and any multiplicity free finite
length V ♭ in Repan

adm(G) which satisfies JHG(V ♭) = JHG(radG(V +
j,∞)) as partially ordered sets

must satisfy V ♭ ∼= radG(V +
j,∞).

Proof. We borrow all notation from the proof of Lemma 5.2.30.
We prove that the vector space in (492) is one dimensional, and it suffices to show that it

has dimension at most one. Using Remark 5.2.31, we check that there is a unique increasing
filtration on radG(V +

j,∞) whose only reducible graded pieces are the length 2 quotient U0 of
radG(V +

j,∞) with socle C(j0,j0+1,j2+1) and cosocle Cj′′ , and the length 2 subrepresentation U1

of radG(V +
j,∞) with socle Cj and cosocle V alg

[j2−j0+1,j2],∆. By Lemma 5.1.3 and Lemma 2.2.3
we have dimE Ext1

G(V alg
[j2−j0+1,j2+1],∆, V

alg
[j2−j0+2,j2+1],∆) = 1, and by (i) of Lemma 5.2.2 (and
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Remark 5.2.31) we have Ext1
G(V alg

[j2−j0+1,j2+1],∆,W ) = 0 for W ∈ JHG(radG(V +
j,∞))\(JHG(U0)⊔

JHG(U1) ⊔ {V alg
[j2−j0+2,j2+1],∆}). Hence by an easy dévissage it is enough to prove

Ext1
G(V alg

[j2−j0+1,j2+1],∆, Ui) = 0 for i = 0, 1. (493)

The surjection gr0(V(j0,j0+1,j2+1),∞) ↠ V alg
[j2−j0+1,j2+1],∆ induces an embedding

Ext1
G(V alg

[j2−j0+1,j2+1],∆, U0) ↪→ Ext1
G(gr0(V(j0,j0+1,j2+1),∞), U0).

But the minimality of V(j0,j0+1,j2+1),∞ in (iii) of Proposition 5.2.10 (applied with j2 there
being j2 + 1) implies Ext1

G(gr0(V(j0,j0+1,j2+1),∞), U0) = 0. Hence we deduce (493) for i = 0.
Assume on the contrary that (493) fails for i = 1. As Ext1

G(V alg
[j2−j0+1,j2+1],∆, Cj) = 0 by

(i) of Lemma 5.2.2, there must exist a uniserial length 3 representation Ũ1 containing U1
with socle Cj, cosocle V alg

[j2−j0+1,j2+1],∆ and middle layer V alg
[j2−j0+1,j2],∆. By Lemma 5.1.3 and

Lemma 2.2.3 there exists a unique length 2 representation L(1) ⊗E τ∞ with τ∞ of length
2 with socle V ∞

[j2−j0+1,j2],∆ and cosocle V ∞
[j2−j0+1,j2+1],∆ (and thus G-basic by Lemma 2.2.5).

By Lemma 2.3.1 HomG(τ∞, i∞
ĵ0,∆

(π∞
j0,j2)) = 0, which together with the last statement in

Remark 5.1.12 forces Ext1
G(L(1)∨ ⊗E τ∞, Cj) = 0, contradicting the existence of Ũ1. Hence

(493) holds and thus the vector space in (492) has dimension 1.
Now we let V ♭ in Repan

adm(G) be a multiplicity free finite length representation such that
JHG(V ♭) = JHG(radG(V +

j,∞)) as partially ordered sets. By Remark 5.2.21 (recall Vj,j′ is the
representation V0 there for j0 = j1) Θµ(Vj,j′) contains a unique subrepresentation isomorphic
to Vj,j′ . By (ii) of Lemma 5.2.19 and (ii) of Lemma 5.2.20 (and the fact Θµ(Vj,j′) has socle Cj)
we see that Θµ(Vj,j′) also contains a unique subrepresentation isomorphic to Vj,j′′ . Finally, by
the first paragraph of the proof of Lemma 5.2.30, recall that V alg

[j2−j0+1,j2+1],∆ has multiplicity
one in Θµ(Vj,j′).

Given V ♭ as above, the equality of partially ordered sets JHG(V ♭) = JHG(radG(V +
j,∞))

forces V ♭ to have socle Cj. Lemma 5.2.8 then forces V ♭ to contain both Vj,j′ and Vj,j′′ . Using
the first statement of Proposition 3.4.5, (462) and the explicit description of JHG(V ♭/Vj,j′) =
JHG(radG(V +

j,∞)/Vj,j′) (cf. Remark 5.2.31), we have Θµ(V ♭/Vj,j′) = 0 and thus Θµ(Vj,j′) ∼→
Θµ(V ♭). As V ♭ and Θµ(Vj,j′) have socle Cj, the canonical (non-zero) map V ♭ → Θµ(V ♭) ∼=
Θµ(Vj,j′) is injective, hence V ♭ is a subrepresentation of Θµ(Vj,j′). Finally the equality
JHG(V ♭) = JHG(radG(V +

j,∞)) and the above unicity statements in Θµ(Vj,j′) force V ♭ ∼=
radG(V +

j,∞).

Lemma 5.2.33. Let j ∈ J with 1 ≤ j0 = j1 < j2 < n. Then there exists a unique
uniserial length 3 representation Vj in Repan

adm(G) with socle L(1)∨ ⊗E V ∞
[j2−j1,j2−1],∆, cosocle

L(1)∨ ⊗E V ∞
[j2−j1+1,j2],∆ and middle layer Cj.

Proof. We write I
def= ∆ \ {j1}. By Lemma 3.4.14 there exists a z-semi-simple uniserial

U(g)-module M of length 3 with both socle and cosocle L(1) and middle layer L(sj1). Let
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M− be the unique length 2 U(g)-module with socle L(sj1) and cosocle L(1) (using (ii) of
Lemma 3.2.4), then M− is isomorphic to the unique length 2 quotient of M , and the unique
length 2 U(g)-submodule of M is isomorphic to (M−)τ (see (116 for the notation) which
is the unique length 2 U(g)-module with socle L(1) and cosocle L(sj1) (again by (ii) of
Lemma 3.2.4).

We define W def= FGPI
(M,π∞

j1,j2), which is well defined by Remark 4.3.8 and comes with an
injection q1 : FGPI

(M−, π∞
j1,j2) ↪→ W and a surjection q2 : W ↠ FGPI

((M−)τ , π∞
j1,j2) such that

q2 ◦q1 has (simple) image Cj ∼= FGPI
(L(sj1), π∞

j1,j2). As j1 < j2 < n, recall that V ∞
[j2−j1,j2−1],∆

∼=
cosocG(i∞I (π∞

j1,j2)) and V ∞
[j2−j1+1,j2],∆

∼= socG(i∞I (π∞
j1,j2)) by (i) of Lemma 2.3.1. Now by

Lemma 5.1.19 FGPI
(M−, π∞

j1,j2) (resp. FGPI
((M−)τ , π∞

j1,j2)) admits a quotient W1 (resp. a sub-
representation W2) which is uniserial of length 2 with socle L(1)∨ ⊗E cosocG(i∞I (π∞

j1,j2)) ∼=
V alg

[j2−j1,j2−1],∆ and cosocle Cj (resp. with socle Cj and cosocle L(1)∨ ⊗E socG(i∞I (π∞
j1,j2)) ∼=

V alg
[j2−j1+1,j2],∆). Taking the pushforward of W along FGPI

(M−, π∞
j1,j2) ↠ W1, and then the pull-

back alongW2 ↪→ FGPI
((M−)τ , π∞

j1,j2) gives a length 3 subquotient Vj ofW which admitsW1 as
a subrepresentation and W2 as a quotient. As we have d(V ∞

[j2−j1+1,j2],∆, V
∞

[j2−j1,j2−1],∆) = 2 > 1
by [Or05], we have by (the sentence before) (370)

Ext1
G(V alg

[j2−j1+1,j2],∆, V
alg

[j2−j1,j2−1],∆) = 0.

We also have by Lemma 5.2.2

dimE Ext1
G(V alg

[j2−j1+1,j2],∆, Cj) = 1 = dimE Ext1
G(Cj, V alg

[j2−j1,j2−1],∆).

All this implies (by an easy dévissage) that the representation Vj is uniserial and unique.

5.3 Hooking all constituents together
We hook together the various Ext-squares, Ext-cubes and uniserial representations con-
structed in §5.2 to define two complexes of explicit finite length coadmissible D(G)-modules
D•, D̃• and explicit quasi-isomorphisms ⊕n−1

ℓ=0 H
ℓ(D•)[−ℓ]← D̃• → D• (Theorem 5.3.13).

From now on we tacitly identify the set J of §5.2 with the set {Cj | j ∈ J} of irreducible
admissible representations of G over E defined in (443), and we recall that J is equipped
with the partial order j ≤ j′ if and only if j0 ≤ j′

0, j2 ≤ j′
2 and j2 − j1 ≤ j′

2 − j′
1. In order to

take into account locally algebraic constituents, it is convenient to enlarge J and define

J̃ def= J ⊔ {V alg
[j,j′],∆ | 1 ≤ j ≤ j′ ≤ n− 1}

(see (485)) equipped with the (unique) weakest partial order such that

• the partial order on J̃ restricts to the one on J;

•


C(j0,j0,j2) < V alg

[j2−j0+1,j2],∆ < C(j0,j0,j2+1) for 1 ≤ j0 ≤ j2 ≤ n− 1
V alg

[1,j0],∆ < Cj0+1,j0+1,j0+1 for 1 ≤ j0 ≤ n− 2
V alg

[j2−j0+1,j2],∆ < V alg
[j2−j0,j2],∆ for 1 ≤ j0 < j2 ≤ n− 1.
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In particular we have V alg
[j2−j0+1,j2],∆ ≤ C(j0,j0,j2+1) ≤ V alg

[j2−j0+2,j2+1],∆, and an easy induction
shows that if C(j0,j1,j2) ≤ V alg

[j′
2−j′

0+1,j′
2],∆ then j0 ≤ j′

0. For V,W ∈ J̃ such that V ≤ W , we
then define

[V,W ] def= {V ′ ∈ J̃ | V ≤ V ′ ≤ W} ⊆ J̃, (494)
and for 1 ≤ j0 ≤ n− 1 we define

J̃j0
def= [C(j0,1,1), C(j0,1,n)] ⊆ J̃, (495)

which can be more explicitly described as

J̃j0 = {C(j0,j1,j2) | (j0, j1, j2) ∈ J} ⊔ {V alg
[j2−j0+1,j2],∆ | j0 ≤ j2 ≤ n− 1}. (496)

Let j, j′ ∈ J such that j ≤ j′ and

max{j′
0 − j0, j

′
2 − j2, (j′

2 − j′
1)− (j2 − j1)} ≤ 1, (497)

and note that the corresponding Cj′ are exactly the 8 constituents above Lemma 5.2.19.
When d(j, j′) = |j0 − j′

0|+ |j2 − j′
2|+ |(j2 − j1)− (j′

2 − j′
1)| ≥ 2 we have defined in (i), (ii) of

Proposition 5.2.10, Proposition 5.2.18 and Proposition 5.2.28 a minimal Ext-hypercube Vj,j′

of socle Cj and cosocle Cj′ . When d(j, j′) = 1 we let Vj,j′ be the unique non-split extension
of Cj′ by Cj in Lemma 5.2.1, and when d(j, j′) = 0 we set Vj,j′

def= Cj. From the definition of
the partial order on J̃, we immediately check:

Lemma 5.3.1. Let j, j′ ∈ J satisfying j ≤ j′ and the bound (497), we have JHG(Vj,j′) =
[Cj, Cj′ ] as partially ordered sets.

For j′ ∈ J, we set J̃(Cj′) def= [Cj, Cj′ ] ⊆ J̃ where j ∈ J is the (unique) minimal element
that satisfies j ≤ j′ and (497) (for instance if j′

0, j
′
2 ≥ 2 we have j = (j′

0 − 1, j′
1, j

′
2 − 1), the

remaining cases are easily worked out). For 2 ≤ j0 ≤ j2 ≤ n− 1, we set

J̃(V alg
[j2−j0+1,j2],∆) def= [C(j0−1,j0−1,j2−1), V

alg
[j2−j0+1,j2],∆] = JHG(V +

(j0−1,j0−1,j2−1),∞)

where the last identification (as partially ordered sets) follows from Lemma 5.2.30 and Re-
mark 5.2.31. For 2 ≤ j2 ≤ n−1 (and j0 = 1) we set J̃(V alg

{j2},∆) def= [V alg
{j2−1},∆, V

alg
{j2},∆], and (when

j2 = j0 = 1) J̃(V alg
{1},∆) def= [C(1,1,1), V

alg
{1},∆] (in fact, in each case we have J̃(V alg

[j2−j0+1,j2],∆) =
JHG(V +

(j0−1,j0−1,j2−1),∞) where we keep the constituents of V +
(j0−1,j0−1,j2−1),∞ which “remain”).

Lemma 5.3.2. Let j ∈ J, j′
0 ∈ {1, . . . , n− 1} and W ∈ J̃j′

0
such that Cj ≤ W .

(i) There exists a unique multiplicity free finite length representation Vj,W in Repan
adm(G)

such that JHG(Vj,W ) = [Cj,W ] ∩ J̃(W ) as partially ordered sets.
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(ii) Let Vj,<W be the unique subrepresentation of Vj,W such that Vj,W/Vj,<W ∼= W and
assume Vj,<W ̸= 0, then Vj,<W is the unique multiplicity free finite length representation
in Repan

adm(G) such that JHG(Vj,<W ) = JHG(Vj,W ) \ {W} as partially ordered sets.
Moreover we have

dimE Ext1
G(W,Vj,<W ) = 1. (498)

Proof. Assume first W = Cj′ for some j′ ∈ J̃j′
0

(so we have j ≤ j′). Then [Cj,W ] ∩
J̃(W ) = [Cj′′ ,W ] for the (unique) minimal j′′ = (j′′

0 , j
′′
1 , j

′′
2 ) ∈ J such that j ≤ j′′ ≤ j′ and

max{j′
0 − j′′

0 , j
′
2 − j′′

2 , (j′
2 − j′

1)− (j′′
2 − j′′

1 )} ≤ 1. It follows from the definition of the partial
order on J that j′′ is the unique element in J such that

j′
0 − j′′

0 = min{1, j′
0 − j0}, j′

2 − j′′
2 = min{1, j′

2 − j2},
(j′

2 − j′
1)− (j′′

2 − j′′
1 ) = min{1, (j′

2 − j′
1)− (j2 − j1)}.

In particular d(j′′, j′) ∈ {0, 1, 2, 3}. We have d(j′′, j′) = 0 if and only if j′′ = j′ if and
only if j = j′, in which case Vj,W ∼= Cj. If d(j′′, j′) = 1 then Vj,W is the unique length
2 representation with socle Cj′′ and cosocle Cj′ (Lemma 5.2.1). If d(j′′, j′) = 2 then Vj,W
is the unique minimal Ext-square Vj′′,j′ constructed in (i), (ii) of Proposition 5.2.10 and
Proposition 5.2.18. Finally if d(j′′, j′) = 3 then Vj,W is the unique minimal Ext-cube Vj′′,j′

constructed in Proposition 5.2.28). This proves (i) in that case. Assume now Vj,<W ̸= 0,
i.e. j′′ < j′. The unicity of Vj,<W is obvious when d(j′′, j′) = 1 (as Vj,<W ∼= Cj′′), and follows
from the minimality of Vj′′,j′ and Lemma 5.2.8 when d(j′′, j′) ≥ 2. Finally (498) follows from
Lemma 5.2.1 when d(j′′, j′) = 1, and from Lemma 5.2.7 (together with the minimality of
Vj′′,j′) when d(j′′, j′) ≥ 2. This proves (ii) in the case W = Cj′ .

Assume now W = V alg
[j′

2−j′
0+1,j′

2],∆ for some j′
0 ≤ j′

2 ≤ n− 1. If j0 = j′
0 = 1, then [Cj,W ] ∩

J̃(W ) is either J̃(W ) or [C(1,1,j′
2),W ], in which case the existence and unicity of Vj,W follows

from Lemma 5.2.33 and (i) of Lemma 5.2.2 respectively. Assume from now j′
0 > 1 so that

J̃(W ) = [C(j′
0−1,j′

0−1,j′
2−1),W ] = JHG(V +

(j′
0−1,j′

0−1,j′
2−1),∞). From the definition of the partial

order on J̃ one checks that Cj ≤ V alg
[j′

2−j′
0+1,j′

2],∆ if and only if either j ≤ (j′
0, j

′
0, j

′
2 − 1) or j ≤

(j′
0−1, j′

0−1, j′
2−1). Hence the intersection [Cj,W ]∩ J̃(W ) = [Cj,W ]∩ [C(j′

0−1,j′
0−1,j′

2−1),W ]
is equal to [Cj′′ ,W ] for some j′′ ∈ J such that j ≤ j′′, (j′

0 − 1, j′
0 − 1, j′

2 − 1) ≤ j′′ and either
j′′ ≤ (j′

0, j
′
0, j

′
2 − 1) or j′′ ≤ (j′

0 − 1, j′
0 − 1, j′

2 − 1). We see that we necessarily have:

j′′ ∈ {(j′
0 − 1, j′

0 − 1, j′
2 − 1), (j′

0 − 1, j′
0, j

′
2), (j′

0 − 1, j′
0 − 2, j′

2 − 1), (j′
0 − 1, j′

0 − 1, j′
2),

(j′
0, j

′
0 − 1, j′

2 − 1), (j′
0, j

′
0, j

′
2)}.

But from Remark 5.2.31 any constituent Cj′′ for j′′ in the above set is a constituent of
V +

(j′
0−1,j′

0−1,j′
2−1),∞, hence it follows that [Cj,W ] ∩ J̃(W ) = [Cj′′ ,W ] = JHG(Qj′′) (as par-

tially ordered sets) where Qj′′ is the unique quotient of V +
(j′

0−1,j′
0−1,j′

2−1),∞ with socle Cj′′

222



(and cosocle W = V alg
[j′

2−j′
0+1,j′

2],∆). We thus take Vj,W = Qj′′ and Vj,<W = radG(Qj′′). It
remains to prove (ii) (which implies the unicity in (i) once we know the existence in (i)).
If j′′ = (j′

0 − 1, j′
0 − 1, j′

2 − 1) then JHG(Qj′′) = JHG(V +
(j′

0−1,j′
0−1,j′

2−1),∞), and (ii) follows
from Lemma 5.2.32. If j′′ = (j′

0 − 1, j′
0, j

′
2) then JHG(Qj′′) = JHG(V(j′

0−1,j′
0,j

′
2),∞) (see Step

2 of the proof of Lemma 5.2.30 and recall that V(j′
0−1,j′

0,j
′
2),∞ is defined in (iii) of Proposi-

tion 5.2.10), and (ii) follows from the existence and minimality of the Ext-square V(j′
0−1,j′

0,j
′
2),∞

((iii) of Proposition 5.2.10) and from Lemma 5.2.8. In the remaining 4 cases for j′′, Qj′′ and
radG(Qj′′) are uniserial, and (ii) follows by dévissage from Lemma 5.2.1, (i) of Lemma 5.2.2,
Lemma 5.1.3 and Lemma 2.2.3.

It follows from (496) that J̃1 = J ⊔ {V alg
{j},∆ | 1 ≤ j ≤ n− 1}.

Lemma 5.3.3. Let j0, j
′
0 ∈ {1, . . . , n− 1} such that j0 ≤ j′

0 ≤ j0 + 1 and V ∈ J̃j0, V ′ ∈ J̃j′
0

such that V < V ′.

(i) If V /∈ J̃(V ′), then we have Ext1
G(V ′, V ) = 0.

(ii) If V /∈ J̃(V ′) and Ext2
G(V ′, V ) ̸= 0, then either j0 = j′

0 = 1, or V ′ ∼= C(j0+1,j0+1,j2+2)

and V ∼= V alg
[j2−j0+1,j2],∆ for some 1 ≤ j0 ≤ j2 ≤ n− 2.

Proof. Assume first that V and V ′ are both not locally algebraic. Then V = Cj and V ′ = Cj′

with j < j′ in J. The assumption V /∈ J̃(V ′) then implies that (497) fails, and it follows
from Lemma 5.2.1 and (i) of Lemma 5.2.3 that

Ext1
G(V ′, V ) = Ext2

G(V ′, V ) = 0. (499)

Assume V = Cj = C(j0,j1,j2) and V ′ is locally algebraic. Then there exists j′
2 ∈ {j′

0, . . . , n−
1} such that V ′ ∼= V alg

[j′
2−j′

0+1,j′
2],∆. An examination of the partial order on J̃ shows that V < V ′

implies j2 ≤ j′
2 ≤ n − 1, and thus I+

j1,j2 = [j2 − j1 + 1, j2] by Lemma 2.3.1 (see (100) for
I+
j1,j2). If I+

j1,j2 = [j′
2 − j′

0 + 1, j′
2] then j2 = j′

2 and j1 = j′
0, hence (using j′

0 ∈ {j0, j0 + 1}) j ∈
{(j′

0, j
′
0, j

′
2), (j′

0− 1, j′
0, j

′
2)} which implies V = Cj ∈ J̃(V ′) and contradicts V /∈ J̃(V ′). Hence

I+
j1,j2 ̸= [j′

2− j′
0 + 1, j′

2] and thus Ext1
G(V ′, V ) = 0 by (i) of Lemma 5.2.2. If Ext2

G(V ′, V ) ̸= 0,
then by (i) of Lemma 5.2.4 we have j0 = j1 and d([j′

2 − j′
0 + 1, j′

2], [j2 − j1 + 1, j2]) =
d([j′

2 − j′
0 + 1, j′

2], [j2 − j0 + 1, j2]) = 1. Since j2 ≤ j′
2 and j′

0 ∈ {j0, j0 + 1}, the latter implies
either j′

2 = j2 and j′
0 = j0 + 1, or j′

2 = j2 + 1 and j′
0 = j0 + 1. In the first case we have

V = C(j′
0−1,j′

0−1,j′
2) ∈ J̃(V ′) and in the second V = C(j′

0−1,j′
0−1,j′

2−1) ∈ J̃(V ′). Hence both cases
contradict V /∈ J̃(V ′), and we must have Ext2

G(V ′, V ) = 0.

Assume V is locally algebraic, i.e. V ∼= V alg
[j2−j0+1,j2],∆ for some j2 ∈ {j0, . . . , n − 1}, and

V ′ = Cj′ = C(j′
0,j

′
1,j

′
2). Then one checks that V < V ′ implies j′

2 > j′
1 and j′

2 ≥ j2 + 1, and thus
I−
j′

1,j
′
2

= [j′
2 − j′

1, j
′
2 − 1] by Lemma 2.3.1 (see (100) for I−

j′
1,j

′
2
). If I−

j′
1,j

′
2

= [j2 − j0 + 1, j2] then
j2 = j′

2− 1 and j′
1 = j0, hence (using j′

0 ∈ {j0, j0 + 1}) j′ ∈ {(j0, j0, j2 + 1), (j0 + 1, j0, j2 + 1)}
which implies V = Cj ∈ J̃(V ′) and contradicts V /∈ J̃(V ′). Hence I−

j′
1,j

′
2
̸= [j2− j0 + 1, j2] and
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thus Ext1
G(V ′, V ) = 0 by (ii) of Lemma 5.2.2. If Ext2

G(V ′, V ) ̸= 0, then by (ii) of Lemma 5.2.4
we have j′

0 = j′
1 and d([j′

2− j′
1, j

′
2−1], [j2− j0 +1, j2]) = d([j′

2− j′
0, j

′
2−1], [j2− j0 +1, j2]) = 1.

Since j2 + 1 ≤ j′
2 and j′

0 ∈ {j0, j0 + 1}, the latter implies either j′
2 = j2 + 1 and j′

0 = j0 + 1,
or j′

2 = j2 + 2 and j′
0 = j0 + 1. In the first case we have V ′ ∼= C(j0+1,j0+1,j2+1) and thus

V ∼= V alg
[j2−j0+1,j2],∆ ∈ J̃(V ′) which contradicts V /∈ J̃(V ′). So the only possible case is

V ∼= V alg
[j2−j0+1,j2],∆ and V ′ ∼= C(j0+1,j0+1,j2+2).

We now finally assume that V and V ′ are both locally algebraic, i.e. V ∼= V alg
[j2−j0+1,j2],∆

and V ′ ∼= V alg
[j′

2−j′
0+1,j′

2],∆ for some j2 ∈ {j0, . . . , n − 1} and some j′
2 ∈ {j′

0, . . . , n − 1}. The
assumption V < V ′ forces j0 ≤ j′

0 and j2 ≤ j′
2 by an examination of the partial order on J̃.

If j′
0 = 1 (and hence j0 = 1), then we have V ∼= V alg

{j2},∆ and V ′ ∼= V alg
{j′

2},∆ with j2 < j′
2, in

which case we have
Ext1

G(V ′, V ) = 0 ̸= Ext2
G(V ′, V )

by Lemma 2.2.3 and the sentence before (370). In particular this finishes the proof of (i).
Assume from now j′

0 > 1, which forces J̃(V ′) = JHG(V +
(j′

0−1,j′
0−1,j′

2−1),∞). If j2 ∈ {j′
2, j

′
2 − 1}

then the assumption j0 ≤ j′
0 ≤ j0 + 1 implies

V ∈ {V alg
[j′

2−j′
0+1,j′

2],∆, V
alg

[j′
2−j′

0+2,j′
2],∆, V

alg
[j′

2−j′
0,j

′
2−1],∆, V

alg
[j′

2−j′
0+1,j′

2−1],∆}

which are precisely the 4 locally algebraic constituents of J̃(V ′) = JHG(V +
(j′

0−1,j′
0−1,j′

2−1),∞)
by Remark 5.2.31, a contradiction with V /∈ J̃(V ′). Hence we have j2 < j′

2 − 1. The
bounds j′

0 ≤ j0 + 1 and j2 < j′
2 − 1 imply j′

2 − j′
0 + 1 ̸≤ j2 − j0 + 1, hence in particular

j2 − j0 + 1 ∈ [j2 − j0 + 1, j2] \ [j′
2 − j′

0 + 1, j′
2], and the bounds j′

0 > 1, j2 < j′
2 − 1 imply

j′
2, j

′
2 − 1 ∈ [j′

2 − j′
0 + 1, j′

2] \ [j2 − j0 + 1, j2]. Thus d([j′
2 − j′

0 + 1, j′
2], [j2 − j0 + 1, j2]) ≥ 3

by (73). Hence by Lemma 2.2.3 we have d(V ∞
[j′

2−j′
0+1,j′

2],∆, V
∞

[j2−j0+1,j2],∆) ≥ 3, which by the
sentence before (370) implies (499) in this case. By summarizing all the above cases, we
have (ii).

Lemma 5.3.4. Let j = (j0, j1, j2) ∈ J, j′
0 ∈ {1, . . . , n−1} such that j0 ≤ j′

0 ≤ j0+1 and W ∈
J̃j′

0
such that Cj ≤ W . There exists at most one multiplicity free finite length representation

V in Repan
adm(G) such that JHG(V ) = [Cj,W ] as partially ordered sets. Moreover, if j0 =

j′
0 > 1 then such a V exists.

Proof. We fix j ∈ J and let Cj ⊆ J̃ be the subset of constituents W such that Cj ≤ W

and there exists j′
0 ∈ {j0, j0 + 1} with j′

0 ≤ n − 1 such that W ∈ J̃j′
0
. As W ∈ J̃j′

0
,

using (495) we have C(j0,1,1) ≤ Cj ≤ W ≤ C(j′
0,1,n). By (495) we have [C(j0,1,1), C(j′

0,1,n)] =
[C(j0,1,1), C(j0,1,n)] = J̃j0 when j0 = j′

0, and an examination of the partial order on J̃ gives
[C(j0,1,1), C(j′

0,1,n)] = [C(j0,1,1), C(j0,1,n)]⊔ [C(j′
0,1,1), C(j′

0,1,n)] = J̃j0 ⊔ J̃j′
0

when j′
0 = j0 +1. Hence,

we always have [Cj,W ] ⊆ [Cj0,1,1, Cj′
0,1,n] = J̃j0 ∪ J̃j′

0
for each W ∈ J̃j′

0
such that Cj ≤ W .

Note that we have Cj = [Cj, Cj0+1,1,n] when j0 < n−1, and Cj = [Cj, Cn−1,1,n] when j0 = n−1.
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We now prove the statement by an increasing induction on W ∈ Cj (for the partial
order on Cj induced by J̃). If W = Cj, we have V = Cj and there is nothing to prove.
We assume from now on Cj < W . By induction, for each W ′ ∈ [Cj,W ] \ {W} there
exists at most one multiplicity free finite length representation V ′ in Repan

adm(G) such that
JHG(V ′) = [Cj,W ′] as partially ordered sets. Taking the amalgamate sum of all such V ′

for W ′ ∈ [Cj,W ] \ {W} (noting that we need here the unicity in the induction hypothesis)
we obtain a representation Ṽj,<W in Repan

adm(G) which is the unique (if it exists) multiplicity
free finite length representation such that JHG(Ṽj,<W ) = [Cj,W ]\{W} (as partially ordered
sets). Replacing [Cj,W ] \ {W} by [Cj,W ] \ J̃(W ) and noting that any W ′′ ∈ [Cj,W ] such
that W ′′ ≤ W ′ for some W ′ ∈ [Cj,W ] \ J̃(W ) is still in [Cj,W ] \ J̃(W ), we also obtain a
unique (if it exists) multiplicity free finite length representation Ṽ ′

j,<W in Repan
adm(G) such

that JHG(Ṽ ′
j,<W ) = [Cj,W ] \ J̃(W ) and such that Ṽ ′

j,<W is a subrepresentation of Ṽj,<W . It
then follows from (ii) of Lemma 5.3.2 that we have a short exact sequence (if Ṽj,<W exists)

0 −→ Ṽ ′
j,<W −→ Ṽj,<W −→ Vj,<W → 0,

which in turn induces a long exact sequence

Ext1
G(W, Ṽ ′

j,<W )→ Ext1
G(W, Ṽj,<W ) q−→ Ext1

G(W,Vj,<W )→ Ext2
G(W, Ṽ ′

j,<W ). (500)

It follows from (i) of Lemma 5.3.3 that Ext1
G(W,W ′) = 0 for each constituent W ′ of

Ṽ ′
j,<W , which by dévissage implies Ext1

G(W, Ṽ ′
j,<W ) = 0. Then (500) and (498) imply

dimE Ext1
G(W, Ṽj,<W ) ≤ 1, which shows that V as in the statement is unique if it exists.

Note that if j0 = j′
0 > 1, then (ii) of Lemma 5.3.3 implies Ext2

G(W, Ṽ ′
j,<W ) = 0 by an analo-

gous dévissage and thus q is an isomorphism. Going back through the induction above, we
see that V exists if j0 = j′

0 > 1.

Proposition 5.3.5. Let 1 ≤ j0 ≤ n − 1 and µ ∈ Λ such that ⟨µ + ρ, α∨⟩ ≥ 0 for α ∈ Φ+

and the stabilizer of µ in W (G) for the dot action is {1, w0sj0w0}.

(i) For each representation V ∈ J̃ \ (J̃j0 ∩ J), we have Θw0sj0w0(V ) = 0.

(ii) Assume j0 > 1 and set j+
0

def= min{j0 + 1, n − 1}. Let (j1, j2) ∈ {(n − 1, n − 1), (1, n)}
and V0 be the unique multiplicity free finite length representation in Repan

adm(G) such
that JHG(V0) = [C(j0,1,1), C(j0,j1,j2)] as partially ordered sets (see Lemma 5.3.4). Then
we have a short exact sequence

0 −→ V +
0 −→ Θµ(V0) −→ V −

0 −→ 0,

where V −
0 (resp. V +

0 ) is the unique multiplicity free finite length representation in
Repan

adm(G) such that JHG(V −
0 ) = [C(j0−1,1,1), C(j0,j1,j2)] (resp. such that JHG(V +

0 ) =
[C(n−1,1,1), L(1)∨] when j0 = j1 = j2 = n − 1, and JHG(V +

0 ) = [C(j0,1,1), C(j+
0 ,j1,j2)]

otherwise) as partially ordered sets.

225



Proof. (i) follows from (i) of Lemma 5.2.12 and the fact that each V ∈ J̃ \ (J̃j0 ∩ J) is either
locally algebraic or of the form FGP

ĵ1
(L(wj1,j′

0
), π∞

j1,j2) with DR(wj1,j′
0
) = {j′

0} and j′
0 ̸= j0.

We prove (ii). It follows from Lemma 5.3.4 that V0 exists (using j0 > 1) and is unique,
that V −

0 and V +
0 are unique if they exist, and that V +

0 exists if j0 = n − 1 = j+
0 . By a

decreasing induction on 1 < j0 ≤ n−1, it suffices to assume the existence of V +
0 , construct an

embedding V +
0 ↪→ Θµ(V0), and then prove that Θµ(V0)/V +

0 is a multiplicity free finite length
representation that satisfies JHG(Θµ(V0)/V +

0 ) = [C(j0−1,1,1), C(j0,j1,j2)] as partially ordered
sets (for instance, when j0 = n − 1, then Θµ(V0)/V +

0 is actually the V +
0 for j0 = n − 2 and

the induction goes on). Assume from now that V +
0 exists. As C(j0,1,1) ≤ C(j0,j1,j2) ≤ C(j+

0 ,j1,j2),
V0 is the unique subrepresentation of V +

0 with cosocle C(j0,j1,j2). We divide the rest of the
proof of (ii) into the following steps.

Step 1: We prove that the injection V0 ↪→ V +
0 induces an isomorphism Θµ(V0) ∼−→

Θµ(V +
0 ), and that the adjunction map V +

0 → Θµ(V +
0 ) is injective.

Note that we have
V +

0 /V0 ∼= L(1)∨ if j0 = j+
0 = n− 1 and (j1, j2) = (n− 1, n− 1)

V +
0 = V0 if j0 = j+

0 = n− 1 and (j1, j2) = (1, n),

and when j+
0 = j0 + 1 ≤ n− 1:

JHG(V +
0 /V0) = [C(j0,1,1), C(j+

0 ,j1,j2)] \ [C(j0,1,1), C(j0,j1,j2)] = [C(j+
0 ,1,1), C(j+

0 ,j1,j2)] ⊆ J̃j′
0
.

Since in the third case J̃j+
0
∩ J̃j0 = ∅, we have JHG(V +

0 /V0) ⊆ J̃ \ J̃j0 , and a fortiori
JHG(V +

0 /V0) ⊆ J̃\(J̃j0∩J). The first two cases also clearly satisfy JHG(V +
0 /V0) ⊆ J̃\(J̃j0∩J).

Hence we deduce from (i) that Θµ(V +
0 /V0) = 0 and thus that the injection V0 ↪→ V +

0
induces an isomorphism Θµ(V0) ∼−→ Θµ(V +

0 ). We define q+ as the composition V +
0 →

Θµ(V +
0 ) ∼= Θµ(V0) (the first map being the adjunction map). As q+ restricts to an injection

C(j0,1,1) ↪→ Θw0sj0w0(C(j0,1,1)) by (the first statement in) (i) of Lemma 5.2.13 and V +
0 has

socle C(j0,1,1), the map q+ is injective.

Step 2: We prove that Θµ(V0)/V +
0 is a multiplicity free finite length representation such

that there is an equality of sets
JHG(Θµ(V0)/V +

0 ) = [C(j0−1,1,1), C(j0,j1,j2)]. (501)
It suffices to show that we have an equality in the Grothendieck group of finite length ad-
missible representations of G

[Θµ(V0)] = [C(j0,1,1), C(j+
0 ,j1,j2)] + [C(j0−1,1,1), C(j0,j1,j2)] (502)

(where now [C(j0,1,1), C(j+
0 ,j1,j2)], [C(j0−1,1,1), C(j0,j1,j2)] mean the direct sums of the correspond-

ing constituents in this Grothendieck group, but this does not lead to confusions). By (i) of
Lemma 5.2.12 we have

[Θµ(V0)] =
∑

(j′
1,j

′
2)≤(j1,j2)

[Θw0sj0w0(C(j0,j′
1,j

′
2))],
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and we can compute [Θw0sj0w0(C(j0,j′
1,j

′
2))] using (i) of Lemma 5.2.13. For each (j′

1, j
′
2) ≤

(j1, j2), we check that C(j0,j′
1,j

′
2) (resp. C(j0−1,j′

1,j
′
2)) appears with multiplicity 2 (resp. 1) on

both sides of (502), and that C(j0+1,j′
1,j

′
2) appears with multiplicity 1 on both sides of (502)

when j′
0 = j0 + 1 ≤ n − 1. We now treat the locally algebraic constituents. Assume first

(j1, j2) = (1, n). Using (i) of Lemma 5.2.13 and Lemma 2.3.1, we check that the contribution
of locally algebraic constituents on the left hand side of (502) is

n∑
j′

2=j0

[L(1)∨ ⊗E i∞ĵ0,∆(π∞
j0,j′

2
)] = 2

n−1∑
j′

2=j0

[V alg
[j′

2−j0+1,j′
2],∆] +

n−1∑
j′

2=j0+1
[V alg

[j′
2−j0,j′

2],∆]

+
n∑

j′
2=j0

[V alg
[j′

2−j0+1,j′
2−1],∆]. (503)

Using the relations
C(j0,j0,j′

2) ≤ V alg
[j′

2−j0+1,j′
2],∆ ≤ C(j0,j0,j′

2+1) for j0 ≤ j′
2 ≤ n− 1;

C(j0+1,j0+1,j′
2) ≤ V alg

[j′
2−j0,j′

2],∆ ≤ C(j0+1,j0+1,j′
2+1) for j0 + 1 ≤ j′

2 ≤ n− 1;
Cj0−1,j0−1,j′

2−1 ≤ V alg
[j′

2−j0+1,j′
2−1],∆ ≤ Cj0−1,j0−1,j′

2
for j0 ≤ j′

2 ≤ n,

we check that the contribution of the locally algebraic constituents in [V +
0 ] + [V −

0 ] is given
by exactly the same formula (503). Finally, when (j1, j2) = (n − 1, n − 1), using again (i)
of Lemma 5.2.13, Lemma 2.3.1 and the above relations, one checks that the contribution of
locally algebraic constituents on both sides of (502) is [L(1) ⊗E i∞ĵ0,∆(π∞

j0,j0)] = [V alg
[1,j0],∆] +

[V alg
[1,j0−1],∆].

Step 3: We assume (j1, j2) = (1, n) and prove that the partial order on JHG(Θµ(V0)/V +
0 )

is at least as strong as the one on [C(j0−1,1,1), C(j0,1,n)] induced by J̃.
Note that the underlying set of (501) is explicitly given by

{Cj′ | (j0 − 1, 1, 1) ≤ j′ ≤ (j0, 1, n)} ⊔ {V alg
[j′

2−j0+2,j′
2],∆ | 1 ≤ j′

2 ≤ n− 1}

⊔ {V alg
[j′

2−j0+1,j′
2],∆ | 2 ≤ j′

2 ≤ n− 1}.

Recall from (i) of Lemma 5.2.13 that the adjunction map Θµ(C(j0,1,n))→ C(j0,1,n) is surjective,
and the composition C(j0,1,n) → Θµ(C(j0,1,n)) → C(j0,1,n) with the other adjunction map
is zero. Since V0 has cosocle C(j0,1,n) and the adjunction maps V0 → Θµ(V0) → V0 are
compatible with the adjunction maps C(j0,1,n) → Θµ(C(j0,1,n))→ C(j0,1,n) under the surjection
V0 ↠ C(j0,1,n), we deduce that the adjunction map Θµ(V0) → V0 is surjective and the
composition of V0 → Θµ(V0)→ V0 is zero. If j0 = j+

0 = n− 1, then V0 = V +
0 and we obtain

a surjection Θµ(V0)/V +
0 ↠ V0. If j0 < n − 1, then as the cosocle C(j0+1,1,n) of V +

0 does not
occur in V0, this forces the composition V +

0 ↪→ Θµ(V0) ↠ V0 to be zero and we also obtain a
surjection Θµ(V0)/V +

0 ↠ V0. It follows that the partial order on JHG(Θµ(V0)/V +
0 ) restricts

to the one on JHG(V0) = [C(j0,1,1), C(j0,1,n)]. In particular, inside JHG(Θµ(V0)/V +
0 ) we have
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C(j0,j′
1,j

′
2) < C(j0,j′′

1 ,j
′′
2 ) for (j′

1, j
′
2) < (j′′

1 , j
′′
2 ) ∈ J∞, and Cj0,j0,j′

2
< V alg

[j′
2−j0+1,j′

2],∆ < Cj0,j0,j′
2+1 for

2 ≤ j′
2 ≤ n− 1 (as these relations occur in [C(j0,1,1), C(j0,1,n)]). Now, let (j′

1, j
′
2), (j′′

1 , j
′′
2 ) ∈ J∞

with (j′′
1 , j

′′
2 ) ∈ {(j′

1 +1, j′
2 +1), (j′

1−1, j′
2)}, then V0 admits a unique length 2 subquotient V1

with socle C(j0,j′
1,j

′
2) and cosocle C(j0,j′′

1 ,j
′′
2 ) (Lemma 5.2.1). By the last statement in Remark

5.2.14 applied to j0 (there) being j0−1 (here), Θµ(V1) admits a unique subquotient isomorphic
to V(j0−1,j′

1,j
′
2),(j0,j′′

1 ,j
′′
2 ) as in (i) or (ii) of Proposition 5.2.10. Since socG(V(j0−1,j′

1,j
′
2),(j0,j′′

1 ,j
′′
2 )) ∼=

C(j0−1,j′
1,j

′
2) /∈ JHG(V +

0 ), it follows that V(j0−1,j′
1,j

′
2),(j0,j′′

1 ,j
′′
2 ) is still a subquotient of Θµ(V0)/V +

0 .
In particular, from the structure of V(j0−1,j′

1,j
′
2),(j0,j′′

1 ,j
′′
2 ) in loc. cit., inside JHG(Θµ(V0)/V +

0 )
we have C(j0−1,j′

1,j
′
2) < C(j0−1,j′′

1 ,j
′′
2 ) < C(j0,j′′

1 ,j
′′
2 ), C(j0−1,j′

1,j
′
2) < C(j0,j′

1,j
′
2), and{

C(j0−1,j0−1,j′
2)<V

alg
[j′

2−j0+2,j′
2],∆

<V alg
[j′

2−j0+1,j′
2],∆

<C(j0,j0,j′
2+1) if j1=1 and j′′

2 =j′
2+1>j0

C(j0−1,j0−1,j0−1)<V
alg

[1,j0−1],∆<C(j0,j0,j0) if j1 = 1j1=1 and j′′
2 =j′

2+1=j0.
(504)

In particular the partial order on JHG(Θµ(V0)/V +
0 ) and on [C(j0−1,1,1), C(j0,1,n)] have the same

restriction to [C(j0−1,1,1), C(j0,1,n)] ∩ J (i.e. non locally algebraic constituents). We now deal
with locally algebraic constituents. We prove by an increasing induction on 1 ≤ j′

2 ≤ n− 1
that, inside JHG(Θµ(V0)/V +

0 ), V alg
[j′

2−j0+2,j′
2],∆ is the only locally algebraic constituent V such

that:
C(j0−1,j0−1,j′

2) < V < C(j0−1,j0−1,j′
2+1). (505)

Note first that all constituents of the form V alg
[j′

2−j0+1,j′
2],∆ occur in V0 and hence can’t lie below

C(j0−1,j0−1,j′
2+1) in JHG(Θµ(V0)/V +

0 ) (since C(j0−1,j0−1,j′
2+1) ∈ JHG(Θµ(V0)/V +

0 ) maps to 0 in
the quotient V0 of Θµ(V0)/V +

0 , the same holds for any constituent below C(j0−1,j0−1,j′
2+1) in

JHG(Θµ(V0)/V +
0 )). It follows from (504) that C(j0−1,j0−1,j′

2+1) ≤ C(j0−1,j0−1,j) < V alg
[j−j0+2,j],∆

for j > j′
2. Our induction hypothesis implies V alg

[j−j0+2,j],∆ < C(j0−1,j0−1,j+1) ≤ C(j0−1,j0−1,j′
2)

for j < j′
2 (and is empty when j′

2 = j0 − 1). Hence, the only locally algebraic constituent
V that could satisfy (505) is V = V alg

[j′
2−j0+2,j′

2],∆. To prove that V alg
[j′

2−j0+2,j′
2],∆ is indeed there

(in JHG(Θµ(V0)/V +
0 )), one has to check that the unique subquotient V2 of Θµ(V0)/V +

0 with
socle C(j0−1,j0−1,j′

2) and cosocle C(j0−1,j0−1,j′
2+1) has Loewy length 3 with middle layer ei-

ther C(j0−1,j0,j′
2+1) or C(j0−1,j0,j′

2+1) ⊕ V alg
[j′

2−j0+2,j′
2],∆. But by minimality of the Ext-square

V(j0−1,j0−1,j′
2),(j0−1,j0−1,j′

2+1) ((ii) of Proposition 5.2.18 applied with j0, j1 there both being
j0 − 1) we see that V alg

[j′
2−j0+2,j′

2],∆ must appear in the middle layer of V2 and thus we indeed
have (505) for V = V alg

[j′
2−j0+2,j′

2],∆. Since the partial order on [C(j0−1,1,1), C(j0,1,n)] is generated
by the relations (504), (505) and Cj < Cj′ for j < j′, we have shown that the partial order
on JHG(Θµ(V0)/V +

0 ) is at least as strong as the one on [C(j0−1,1,1), C(j0,1,n)] induced by J̃.

Step 4: We assume (j1, j2) = (1, n) and prove that the equality of sets (501) holds as
partially ordered sets.
We consider an arbitrary length 2 subquotient V3 of Θµ(V0)/V +

0 with socle V and cosocle V ′.
We have Ext1

G(V ′, V ) ̸= 0 and V is right below V ′ for the partial order on JHG(Θµ(V0)/V +
0 ).

Let us prove V < V ′ for the partial order on J̃. If V and V ′ are not both locally algebraic,
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then this follows from Lemma 5.2.1 and Lemma 5.2.2. Assume that V and V ′ are both
locally algebraic. Since JHG(V0) = [C(j0,1,1), C(j0,1,n)] (as partially ordered sets), one easily
checks that V0 does not contain any locally algebraic length 2 subquotient. Hence V is not
a constituent of V0, and we therefore have V = V alg

[j′
2−j0+2,j′

2],∆ for some 1 ≤ j′
2 ≤ n− 1. Then

by Lemma 5.1.3 and Lemma 2.2.3 we have V ′ = V alg
[j′′

2 −j0+1,j′′
2 ],∆ with d([j′

2 − j0 + 2, j′
2], [j′′

2 −
j0 + 1, j′′

2 ]) = 1. If V ′ = V alg
[j′

2−j0+1,j′
2],∆ with j′

2 > 1, then V lies right below V ′ in J̃. Otherwise
V ′ = V alg

[j′
2−j0+2,j′

2+1],∆ and we have for the partial order on JHG(Θµ(V0)/V +
0 )

V = V alg
[j′

2−j0+2,j′
2],∆ < C(j0−1,j0−1,j′

2+1) < V alg
[j′

2−j0+3,j′
2+1],∆ < V ′ = V alg

[j′
2−j0+2,j′

2+1],∆

(as these relations hold in J̃ and the partial order on JHG(Θµ(V0)/V +
0 ) is at least as strong).

But this contradicts the existence of V3. We conclude that (501) is an equality of partially
ordered sets.

Step 5: We finish the proof of (ii).
If (j1, j2) = (1, n), we conclude (ii) from Step 4 together with a decreasing induction on
1 < j0 ≤ n − 1 (as explained above Step 1). In particular, for each 1 < j0 ≤ n − 1
there exists a unique multiplicity free finite length representation V in Repan

adm(G) such that
JHG(V ) = [C(j0−1,1,1), C(j0,1,n)] as partially ordered sets. Then its unique subrepresentation
V ′ with cosocle C(j0,n−1,n−1) satisfies JHG(V ′) = [C(j0−1,1,1), C(j0,n−1,n−1)] as partially ordered
sets. Assume (j1, j2) = (n − 1, n − 1) and let V0, V −

0 as in (ii) (both of which exist now).
We have a surjection V0 ↠ V −

0 . By a symmetric argument as for V +
0 in Step 1, this induces

an isomorphism Θµ(V −
0 ) ∼= Θµ(V0) and the adjunction map Θµ(V −

0 )→ V −
0 is surjective. We

define q− as the composition Θµ(V0) ∼= Θµ(V −
0 ) ↠ V −

0 . As socG(V −
0 ) = C(j0−1,1,1) is not a

constituent of V +
0 , the composition q− ◦ q+ (see Step 1 for q+) is necessarily zero, hence we

have a complex [V +
0

q+
−→ Θµ(V0)

q−
−→ V −

0 ] which is exact on the left by Step 1 and on the
right by above. Then Step 2 (applied with (j1, j2) = (n − 1, n − 1)) gives exactness in the
middle, and also that (501) is again an equality of partially ordered sets. This finishes the
proof of (ii).

Theorem 5.3.6. For each j = (j0, j1, j2) ∈ J, j′
0 ∈ {1, . . . , n − 1} such that j0 ≤ j′

0 ≤
j0 + 1 and W ∈ J̃j′

0
such that Cj ≤ W , there exists a unique multiplicity free finite length

representation V in Repan
adm(G) such that JHG(V ) = [Cj,W ] as partially ordered sets.

Proof. The unicity of V follows from Lemma 5.3.4. By (ii) of Proposition 5.3.5 there exists
a unique multiplicity free finite length representation V0 in Repan

adm(G) such that JHG(V0) =
[C(j0,1,1), C(j′

0,1,n)] as partially ordered sets. Since we have Cj,W ∈ [C(j0,1,1), C(j′
0,1,n)] with

Cj ≤ W , V0 admits a unique subquotient with socle Cj and cosocle W , which gives the
existence of V .

Remark 5.3.7. It follows from Theorem 5.3.6 that there exists a unique multiplicity free
finite length representation V0 in Repan

adm(G) such that JHG(V0) = [C(1,1,1), C(1,1,n)] as partially
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ordered sets. When n = 2 the representation V0 is well-known, it is (up to unramified twist)
the representation denoted Π1,σ(kσ, D) at the bottom of [Bre19, p.638]. When n = 3 and
K = Qp, V0 is the representation denoted Π1(k,D) in [Bre19, Thm. 1.2] (the value of
k = (k1, k2, k3) being determined by µ0).

Let Z(G) be the center of G and χ : Z(G)→ E× the central character of Stalg
n (which de-

pends on µ0). We consider the extension groups Ext•
D(G),χ∨ computed in the full subcategory

of ModD(G) of D(G)-modules where D(Z(G)) acts by χ∨ : D(Z(G))→ E× (see e.g. [Bre19,
Rem. 5.1.3(i)]). It follows from the analogue of the spectral sequence (369) (with (230))
where we fix central characters everywhere and from ExtℓU(g),χ∨(L(1), L(1)) = 0 for ℓ = 1, 2
(Whitehead’s lemma) that we have isomorphisms for ℓ ≤ 2 and I, I ′ ⊆ ∆

ExtℓG,1(V ∞
I,∆, V

∞
I′,∆)∞ ∼−→ ExtℓD(G),χ∨((V alg

I′,∆)∨, (V alg
I,∆)∨) (506)

(where ExtℓG,1(−,−)∞ means smooth extensions with trivial central character). Recall that
Stalg
n = V alg

∅,∆ = L(1)∨ ⊗E V ∞
∅,∆ = L(1)∨ ⊗E St∞

n (with St∞
n being the smooth Steinberg

representation of G). By [Or05, Thm. 2] and (506) we deduce

Ext1
D(G),χ∨((Stalg

n )∨, (Stalg
n )∨) = 0. (507)

Lemma 5.3.8. Let j+
0 = min{2, n− 1}, (j1, j2) ∈ {(n− 1, n− 1), (1, n)} and V0 (resp. V +

0 )
be the unique multiplicity free finite length representation in Repan

adm(G) such that JHG(V0) =
[C(1,1,1), C(1,j1,j2)] (resp. JHG(V +

0 ) = [C(1,1,1), L(1)∨] if n = 2 with (j1, j2) = (1, 1), and
JHG(V +

0 ) = [C(1,1,1), C(j+
0 ,j1,j2)] otherwise) as partially ordered sets (see Theorem 5.3.6). Let

µ ∈ Λ such that ⟨µ + ρ, α∨⟩ ≥ 0 for α ∈ Φ+ and the stabilizer of µ in W (G) for the dot
action is {1, w0s1w0}. We set m = 1 if (j1, j2) = (n−1, n−1) and m = n if (j1, j2) = (1, n).

(i) The injection V0 ↪→ V +
0 induces an isomorphism Θµ(V0) ∼−→ Θµ(V +

0 ), and the canoni-
cal adjunction map V +

0 → Θµ(V +
0 ) is an injection.

(ii) The representation Θµ(V0)/V +
0 admits a central character, has socle (Stalg

n )⊕n and fits
into a short exact sequence

0 −→ (Stalg
n )⊕m −→ Θµ(V0)/V +

0 −→ V0 −→ 0. (508)

Proof. The proof of (i) is similar to Step 1 of the proof of (ii) of Proposition 5.3.5. We
prove (ii). As V0 is multiplicity free, it admits a central character, and so do Θµ(V0) and
Θµ(V0)/V +

0 . By Step 3 and Step 5 of the proof of (ii) of Proposition 5.3.5, the adjunction
Θµ(V0)→ V0 induces a surjection q : Θµ(V0)/V +

0 ↠ V0. Similar to Step 2 of the proof of (ii)
of Proposition 5.3.5, we can check using (i) of Lemma 5.2.12 and (i) of Lemma 5.2.13 that
we have in the Grothendieck group of finite length admissible representations of G

[Θµ(V0)]− [V0]− [V +
0 ] = m[Stalg

n ], (509)
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which implies [ker(q)] = m[Stalg
n ] by the previous sentence. Since Θµ(V0)/V +

0 has a central
character, so does its subrepresentation ker(q), which together with (507) forces ker(q) ∼=
(Stalg

n )⊕m and gives (508). It remains to show that Θµ(V0)/V +
0 has socle (Stalg

n )⊕m. Since
V0 has socle C(1,1,1), by (508) it suffices to show that C(1,1,1) does not appear in the socle
of Θµ(V0)/V +

0 . It follows from (i) of Lemma 5.2.13 that Θµ(C(1,1,1)) admits a quotient V
with socle Stalg

n and cosocle C(1,1,1). Since Stalg
n is not constituent of V +

0 , the subquotient V
of Θµ(C(1,1,1)) and thus of Θµ(V0) must be a subquotient of Θµ(V0)/V +

0 . Since C(1,1,1) has
multiplicity 1 in Θµ(V0)/V +

0 by (509), we deduce that C(1,1,1) cannot show up in the socle of
Θµ(V0)/V +

0 .

We now define several important finite length multiplicity free coadmissible D(G)-modu-
les. By Theorem 5.3.6 we only need to specify the corresponding partially ordered set of
irreducible constituents of J̃.

We set X0 = Y0 = Z0 = 0, and for 1 ≤ k ≤ n− 1, we define (with the notation (494))
Xk such that JHG(X∨

k ) = [C(n−k,1,1), C(n−k,n−1,n−1)]
Yk such that JHG(Y ∨

k ) = [C(n−k,1,2), C(n−k,1,n)]
Zk such that JHG(Z∨

k ) = [C(n−k,1,1), C(n−k,1,n)].
(510)

We can check that Y ∨
1 has no locally algebraic constituent but that for k ≥ 2 the locally

algebraic constituents of Y ∨
k are

V alg
[2,n−k+1],∆, V

alg
[3,n−k+2],∆, . . . , V

alg
[k,n−1],∆,

and that for k ≥ 1 the locally algebraic constituents of Z∨
k are

V alg
[1,n−k],∆, V

alg
[2,n−k+1],∆, V

alg
[3,n−k+2],∆, . . . , V

alg
[k,n−1],∆.

We define{
D0 such that JHG(D∨

0 ) = [C(n−1,1,1), V
alg

∆,∆] = [C(n−1,1,1), L(1)∨]
D̃0 such that JHG(D̃∨

0 ) = [C(n−1,1,1), C(n−1,1,n)],
(511)

(note that D̃0 = Z1) and for 1 ≤ k ≤ n− 2{
Dk such that JHG(D∨

k ) = [C(n−k−1,1,1), C(n−k,n−1,n−1)]
D̃k such that JHG(D̃∨

k ) = [C(n−k−1,1,1), C(n−k,1,n)].
(512)

From their definition (and the definition of J̃), we see that all coadmissibleD(G)-modules Xk,
Yk, Zk, Dk and D̃k are indecomposable multiplicity free with irreducible socle and cosocle.

The following remark will be useful.

Remark 5.3.9. Let V0 be a multiplicity free finite length representation in Repan
adm(G), and

let S1, S2 ⊆ JHG(V0) be subsets such that S1∩S2 = ∅. The partial order on JHG(V0) restricts
to a partial order on Si for i = 1, 2. Assume that the following conditions hold for each Si:
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• the partially ordered set Si admits a unique minimal element V ′
i and a unique maximal

element V ′′
i ;

• each V ∈ JHG(V0) such that V ′
i ≤ V ≤ V ′′

i is in Si.

Then the following results are easily checked.

(i) For i = 1, 2 V0 admits a unique subquotient Vi such that JHG(Vi) = Si.

(ii) If V ′
2 ̸≤ V ′′

1 in JHG(V0) and JHG(V0) = S1 ⊔ S2 as sets, then V0 fits into a (possibly
split) short exact sequence 0→ V1 → V0 → V2 → 0.

(iii) If V ′
2 ̸≤ V ′′

1 and V ′
1 ̸≤ V ′′

2 in JHG(V0), then V0 admits a unique subquotient isomorphic
to V1 ⊕ V2.

We now sum up the main properties of the above coadmissible D(G)-modules.

Theorem 5.3.10.

(i) The finite length coadmissible D(G)-modules Xk, Yk, Zk, Dk and D̃k are multiplicity
free with simple socle and cosocle and are uniquely determined (up to isomorphism) by
their set of constituents endowed with the partial order of §1.4.

(ii) For 1 ≤ k ≤ n − 1, the coadmissible D(G)-module Zk admits a unique increasing 3-
stage filtration by (closed) D(G)-submodules with subrepresentation Yk, middle graded
piece (V alg

[1,n−k],∆)∨ and quotient Xk.

(iii) For 0 ≤ k ≤ n − 1, the coadmissible D(G)-module Dk admits a unique increasing 3-
stage filtration by (closed) D(G)-submodules with subrepresentation Xk, middle graded
piece (V alg

[1,n−k−1],∆)∨ and quotient Xk+1 (with Xn
def= 0 if k = n− 1).

(iv) For 0 ≤ k ≤ n − 2 we have a short exact sequence 0 → Zk → D̃k → Zk+1 → 0 and a
surjection D̃k ↠ Dk. More precisely, for 1 ≤ k ≤ n−2, the coadmissible D(G)-module
D̃k admits a unique increasing 5-stage filtration by (closed) D(G)-submodules with
subrepresentation Yk, second graded piece (V alg

[1,n−k],∆)∨, third graded piece Xk ⊕ Yk+1,
fourth graded piece (V alg

[1,n−k−1],∆)∨ and quotient Xk+1.

Proof. (i) follows directly from Theorem 5.3.6. (ii), (iii) and (iv) follow from Remark 5.3.9
and corresponding decompositions inside J̃ of the respective partially ordered sets of con-
stituents. Let us prove (iv) and leave the other (easier) cases to the reader. For 1 ≤ k ≤ n−2
we have

JHG(D̃∨
k ) = [C(n−k−1,1,1), C(n−k,1,n)] = [C(n−k−1,1,1), C(n−k−1,1,n)] ⊔ [C(n−k,1,1), C(n−k,1,n)]

= JHG(Z∨
k+1) ⊔ JHG(Z∨

k ),
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which by (ii) of Remark 5.3.9 and the fact C(n−k,1,1) ̸≤ C(n−k−1,1,n) in [C(n−k−1,1,1), C(n−k,1,n)]
gives the first exact sequence in (iv). We also have

JHG(D̃∨
k ) = [C(n−k−1,1,1), C(n−k,n−1,n−1)] ⊔ [C(n−k−1,1,2), C(n−k,1,n)]

= JHG(D∨
k ) ⊔ [C(n−k−1,1,2), C(n−k,1,n)],

which by (ii) of Remark 5.3.9 and the fact that C(n−k−1,1,2) ̸≤ C(n−k,n−1,n−1) in
[C(n−k−1,1,1), C(n−k,1,n)] gives an injection D∨

k ↪→ D̃∨
k , and thus a surjection D̃k ↠ Dk. Finally,

by (iii) of Remark 5.3.9 and the fact C(n−k−1,1,2) ̸≤ C(n−k,n−1,n−1) and C(n−k,1,1) ̸≤ C(n−k−1,1,n)
(with JHG(X∨

k ) = [C(n−k,1,1), C(n−k,n−1,n−1)] and JHG(Y ∨
k+1) = [C(n−k−1,1,2), C(n−k−1,1,n)]), we

deduce that Xk ⊕ Yk+1 is a subquotient of D̃k.

Theorem 5.3.11.

(i) The E-vector space Ext1
D(G)((Stalg

n )∨, Xn−1) has dimension 1.

(ii) The E-vector spaces Ext1
D(G)((Stalg

n )∨, Zn−1) and Ext1
D(G)(Zn−1, (Stalg

n )∨) have dimen-
sion n.

(iii) For 1 ≤ k ≤ n− 2 we have Ext1
D(G)(Dk, (V alg

[1,n−k],∆)∨) = 0.

(iv) For 1 ≤ k ≤ n− 1, the E-vector space Ext1
D(G)(Xk, (V alg

[1,n−k],∆)∨) has dimension 1 and
the E-vector space Ext1

D(G)((V
alg

[1,n−k−1],∆)∨, X̃k) has dimension 2 where X̃k is the unique
non-split extension of Xk by (V alg

[1,n−k],∆)∨.

Proof. We prove (i). By (ii) of Lemma 5.2.2 applied with I = ∅ and by (ii) of Lemma 5.2.5 we
have dimE Ext1

G(C(1,1,1), Stalg
n ) = 1 and ExtiG(V, Stalg

n ) = 0 for i = {1, 2} and V = C(1,j1,j1) ∈
JHG(X∨

n−1) = [C(1,1,1), C(1,n−1,n−1)] with 2 ≤ j1 ≤ n − 1 (note that I−
j1,j1 = ∅ if and only if

j1 = 1 by Lemma 2.3.1 and (100)). The statement then follows by dévissage.
We prove (ii). Recall the functors Ext•

D(G),χ∨ from the discussion above Lemma 5.3.8.
Note first that, since Stalg

n is not a constituent of Z∨
n−1, we have isomor-

phisms Ext1
D(G),χ((Stalg

n )∨, Zn−1) ∼→ Ext1
D(G)((Stalg

n )∨, Zn−1) and Ext1
D(G),χ∨(Zn−1, (Stalg

n )∨) ∼→
Ext1

D(G)(Zn−1, (Stalg
n )∨). By [Or05, Thm. 2] and (506) we deduce for j ∈ {1, . . . , n− 1}

dimE Ext1
D(G),χ∨((Stalg

n )∨, (V alg
{j} )∨) = 1, Ext2

D(G),χ∨((Stalg
n )∨, (V alg

{j} )∨) = 0. (513)

Moreover, by (ii) of Lemma 5.2.2 applied with I = ∅ (where we recall that Ext1
D(G),χ∨ =

Ext1
D(G) there) and by the analogue of (ii) of Lemma 5.2.5 with Ext2

D(G),χ∨ instead of Ext2
D(G)

(the proof of which is the same), we deduce for ℓ ∈ {1, 2} and V = C(1,j1,j2) ∈ JHG(Z∨
n−1) \

{C(1,1,1)} = [C(1,1,1), C(1,1,n)] \ {C(1,1,1)}

ExtℓD(G),χ∨((Stalg
n )∨, V ∨) = 0. (514)
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Then combining dimE Ext1
D(G),χ∨((Stalg

n )∨, C∨
(1,1,1)) = 1 in (i) with (513), (514) and a dévissa-

ge, we obtain the first statement in (ii). Similarly, by [Or05, Thm. 2] and (506) we deduce
for j ∈ {1, . . . , n− 1}

dimE Ext1
D(G),χ∨((V alg

{j} )∨, (Stalg
n )∨) = 1, Ext2

D(G),χ∨((V alg
{j} )∨, (Stalg

n )∨) = 0. (515)

Recall from Lemma 2.3.1 and (100) (see also the proof of Lemma 5.2.5) that I+
j1,j2 = ∅ if

and only if (j1, j2) = (1, n). Then by (i) of Lemma 5.2.2 applied with I = ∅ (noting that
Ext1

D(G),χ∨ = Ext1
D(G) there) and by the analogue of (i) of Lemma 5.2.5 with Ext2

D(G),χ∨

instead of Ext2
D(G) (the proof of which is the same), we deduce for ℓ ∈ {1, 2} and V =

C(1,j1,j2) ∈ JHG(Z∨
n−1) \ {C(1,1,n)} = [C(1,1,1), C(1,1,n)] \ {C(1,1,n)}

ExtℓD(G),χ∨(V ∨, (Stalg
n )∨) = 0. (516)

Then combining dimE Ext1
D(G),χ∨(C∨

(1,1,n), (Stalg
n )∨) = 1 from (i) of Lemma 5.2.2 with (515),

(516) and a dévissage, we obtain the second statement in (ii).
We prove (iii). By construction Dk admits a unique subquotient D with JHG((D)∨) =

[C(n−k−1,n−k−1,n−k−1), C(n−k,n−k,n−k)] as partially ordered sets. More precisely D∨ is the
Ext-square constructed in (ii) of Proposition 5.2.10 with socle C(n−k−1,n−k−1,n−k−1), cosocle
C(n−k,n−k,n−k), and middle layer C(n−k−1,n−k,n−k)⊕C(n−k,n−k−1,n−k−1)⊕V alg

[1,n−k−1],∆. By (i) of
Lemma 5.2.2 and Lemma 5.1.3 together with Lemma 2.2.3 we know that, for V ∈ JHG(D∨

k ),
we have Ext1

D(G)(V ∨, (V alg
[1,n−k],∆)∨) ̸= 0 if and only if V ∈ {Cn−k,n−k,n−k, V

alg
[1,n−k−1],∆}. So by

dévissage it suffices to show
Ext1

G(V alg
[1,n−k],∆, D

∨) = 0. (517)
Assume (517) does not hold. Then there exists a non-split extension 0 → D∨ → W →
V alg

[1,n−k],∆ → 0 in Repan
adm(G). As D∨ has socle V1

def= C(n−k−1,n−k−1,n−k−1), so does W . Let
W− be the unique length 2 subrepresentation of D∨ ⊆ W with socle V1 and cosocle V0

def=
C(n−k−1,n−k,n−k). By (i) of Lemma 5.2.12 we have Θsk

(V ) = 0 for each constituent V of
W/W−, and thus the injection W− ↪→ W induces an isomorphism Θsk

(W−) ∼−→ Θsk
(W ).

As the canonical adjunction map W → Θsk
(W ) restricts to an injection V1 ↪→ Θsk

(V1) (as
V1 is irreducible and the adjunction map is non-zero), and as W has socle V1, we obtain an
injection W ↪→ Θsk

(W ) ∼= Θsk
(W−). But from (i) of Lemma 5.2.13 we deduce V alg

[1,n−k],∆ /∈
JHG(Θsk

(W−)) = JHG(Θsk
(V1)) ∪ JHG(Θsk

(V0)), which is a contradiction.
We prove (iv). Let 1 ≤ k ≤ n−1 and recall that JHG(X∨

k ) = [C(n−k,1,1), C(n−k,n−1,n−1)] =
{C(n−k,j,j) | 1 ≤ j ≤ n− 1}. We have d([1, n− k − 1], [1, n− k]) = 1 (with [1, n− k − 1] = ∅
when k = n− 1), which by (506) and [Or05, Thm. 1] gives

Ext2
D(G),χ∨((V alg

[1,n−k−1],∆)∨, (V alg
[1,n−k],∆)∨) = 0 and

dimE Ext1
D(G),χ∨((V alg

[1,n−k−1],∆)∨, (V alg
[1,n−k],∆)∨) = 1. (518)

By (i) of Lemma 5.2.2 (with (100)), we have

Ext1
D(G),χ∨(C∨

(n−k,j,j), (V
alg

[1,n−k],∆)∨) ̸= 0 if and only if j = n− k (519)
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and dimE Ext1
D(G),χ∨(C∨

(n−k,n−k,n−k), (V
alg

[1,n−k],∆)∨) = 1. By (ii) of Lemma 5.2.2, we have

Ext1
D(G),χ∨((V alg

[1,n−k−1],∆)∨, C∨
(n−k,j,j)) ̸= 0 if and only if j = n− k (520)

and dimE Ext1
D(G),χ∨((V alg

[1,n−k−1],∆)∨, C∨
(n−k,n−k,n−k)) = 1. By the analogue of (i) of

Lemma 5.2.4 (see also the second paragraph in the proof of Lemma 5.3.3) with Ext2
D(G),χ∨

instead of Ext2
D(G) (the proof of which is the same), we have for j < n− k

Ext2
D(G),χ∨(C∨

(n−k,j,j), (V
alg

[1,n−k],∆)∨) = 0. (521)

By the analogue of (ii) of Lemma 5.2.4 (see also the third paragraph in the proof of
Lemma 5.3.3) with Ext2

D(G),χ∨ instead of Ext2
D(G), we have for j > n− k

Ext2
D(G),χ∨((V alg

[1,n−k−1],∆)∨, C∨
(n−k,j,j)) = 0. (522)

Let V0 (resp. V1) be the unique quotient of X∨
k with socle C(n−k,n−k,n−k) (resp.

C(n−k,n−k+1,n−k+1)) with V1 = 0 when k = 1. By a dévissage using (519) and (521), we
deduce Ext1

D(G),χ∨(V ∨
1 , (V

alg
[1,n−k],∆)∨) = 0 and ExtℓD(G),χ∨(Xk/V

∨
0 , (V

alg
[1,n−k],∆)∨) = 0 for ℓ =

1, 2. Hence, the surjection Xk ↠ Xk/V
∨

1 and the injection C∨
(n−k,n−k,n−k) ↪→ Xk/V

∨
1 (with

cokernel Xk/V
∨

0 ) induce isomorphisms between 1-dimensional E-vector spaces

Ext1
D(G),χ∨(Xk, (V alg

[1,n−k],∆)∨) ∼←− Ext1
D(G),χ∨(Xk/V

∨
1 , (V

alg
[1,n−k],∆)∨)

∼−→ Ext1
D(G),χ∨(C∨

(n−k,n−k,n−k), (V
alg

[1,n−k],∆)∨).

In particular there exists a unique (up to isomorphism) D(G)-module that fits into a non-
split extension 0 → (V alg

[1,n−k],∆)∨ → X̃k → Xk → 0. A symmetric argument gives
dimE Ext1

D(G),χ∨((V alg
[1,n−k−1],∆)∨, Xk/V

∨
1 ) = 1. By (518) we have a short exact sequence

0→ Ext1
D(G),χ∨((V alg

[1,n−k−1],∆)∨, (V alg
[1,n−k],∆)∨)→ Ext1

D(G),χ∨((V alg
[1,n−k−1],∆)∨, X̃k/V

∨
1 )

→ Ext1
D(G),χ∨((V alg

[1,n−k−1],∆)∨, Xk/V
∨

1 )→ 0

where the left hand side and the right hand side both have dimension 1. By another
dévissage using (520) and (522) we deduce Ext1

D(G),χ∨((V alg
[1,n−k−1],∆)∨, Xk/V

∨
0 ) = 0 and

ExtℓD(G),χ∨((V alg
[1,n−k−1],∆)∨, V ∨

1 ) = 0 for ℓ = 1, 2, which gives an isomorphism

Ext1
D(G),χ∨((V alg

[1,n−k−1],∆)∨, X̃k) ∼−→ Ext1
D(G),χ∨((V alg

[1,n−k−1],∆)∨, X̃k/V
∨

1 ).

In particular, we conclude that dimE Ext1
D(G),χ∨((V alg

[1,n−k−1],∆)∨, X̃k) = 2. Finally, since
all irreducible constituents in the various Ext1

D(G),χ∨ are actually distinct, we can replace
Ext1

D(G),χ∨ by Ext1
D(G).
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Remark 5.3.12. Note that, when n = 2, the first statement in (ii) of Theorem 5.3.11 proves
[Bre19, Conj. 3.2.1].

For 1 ≤ j ≤ n − 1, define Zn−1,≥j (resp. Zn−1,≤j) as the D(G)-module which is the
unique (closed) subspace (resp. (topological) quotient) of Zn−1 such that JHG(Z∨

n−1,≥j) =
[V alg

{j},∆, C(1,1,n)] (resp. JHG(Z∨
n−1,≤j) = [C(1,1,1), V

alg
{j},∆]). The same argument as in the proof

of (ii) of Theorem 5.3.11 shows that the injections Zn−1,≥n−1 ↪→ · · · ↪→ Zn−1,≥1 ↪→ Zn−1
induce a decreasing filtration of subspaces of Ext1

D(G)((Stalg
n )∨, Zn−1){

Ext1
D(G)((Stalg

n )∨, Zn−1,≥j)
}

1≤j≤n−1
(523)

where dimE Ext1
D(G)((Stalg

n )∨, Zn−1,≥j) = n−j. Similarly, the surjections Zn−1↠Zn−1,≤n−1↠

· · ·↠ Zn−1,≤1 induce an increasing filtration of subspaces of Ext1
D(G)(Zn−1, (Stalg

n )∨){
Ext1

D(G)(Zn−1,≤j, (Stalg
n )∨)

}
1≤j≤n−1

where dimE Ext1
D(G)(Zn−1,≤j, (Stalg

n )∨) = j.

By (iv) of Theorem 5.3.10, for 0 ≤ k ≤ n− 2, D̃k has the form

D̃k
∼= Yk (V alg

[1,n−k],∆)∨

Xk

(V alg
[1,n−k−1],∆)∨

Yk+1

Xk+1 (524)

where we write subrepresentations on the left, quotients on the right, where lines represent
non-split extensions, and where Yk = (V alg

[1,n−k],∆)∨ = Xk = 0 when k = 0. Let Dn−1 be the
unique (up to isomorphism) non-split extension in (i) of Theorem 5.3.11:

0 −→ Xn−1 −→ Dn−1 −→ (Stalg
n )∨ −→ 0.

Define D̃n−1 as any non-split extension with cosocle (Stalg
n )∨:

0 −→ Zn−1 −→ D̃n−1 −→ (Stalg
n )∨ −→ 0.

Note that, by (ii) of Theorem 5.3.11 and the discussion around (523), the isomorphism class
of D̃n−1 depends on n − 1 “parameters”. More precisely, the set of isomorphism classes of
coadmissible D(G)-modules D̃n−1 is in natural bijection with the set(

Ext1
D(G)((Stalg

n )∨, Zn−1) \ Ext1
D(G)((Stalg

n )∨, Zn−1,≥1)
)
/E×

which is in non-canonical bijection with An−1(E). By (ii) of Theorem 5.3.10 (for k = n− 1)
D̃n−1 has the form

D̃n−1 ∼= Yn−1 (V alg
{1},∆)∨ Xn−1 (Stalg

n )∨. (525)
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It follows from (i), (iii) of Theorem 5.3.10 and the above definition of Dn−1 that, for
0 ≤ k ≤ n − 2, there exists a unique (up to scalar) non-zero map dkD : Dk → Dk+1 whose
image is Xk+1. In particular we can consider the complex of finite length coadmissible
D(G)-modules (with Dk in degree k)

D• def= [D0
d0

D−→ · · ·
dk−1

D−→ Dk

dk
D−→ Dk+1

dk+1
D−→ · · ·

dn−2
D−→ Dn−1]. (526)

For 0 ≤ k ≤ n − 1 we define Hk(D•) def= ker(dkD)/im(dk−1
D ) (with the convention dn−1

D = 0).
By (iii) of Theorem 5.3.10 and the above definition of Dn−1 we have for 0 ≤ k ≤ n− 1

Hk(D•) ∼= (V alg
[1,n−k−1],∆)∨.

Similarly it follows from (i), (iv) of Theorem 5.3.10 and the above definition of D̃n−1
that, for 0 ≤ k ≤ n− 2, there exists a unique (up to scalar) non-zero map dk

D̃
: D̃k → D̃k+1

whose image is Zk+1, and we obtain a complex of finite length coadmissible D(G)-modules
(with D̃k in degree k)

D̃• def= [D̃0
d0

D̃−→ · · ·
dk−1

D̃−→ D̃k

dk

D̃−→ D̃k+1
dk+1

D̃−→ · · ·
dn−2

D̃−→ D̃n−1]. (527)

Recall that D̃• is not unique because D̃n−1 depends non-canonically on some element in
An−1(E). For 0 ≤ k ≤ n − 1 we define Hk(D̃•) def= ker(dk

D̃
)/im(dk−1

D̃
) (with the convention

dn−1
D̃

= 0). By (iv) of Theorem 5.3.10 and the above definition of D̃n−1 we have Hk(D̃•) = 0
for 0 ≤ k ≤ n − 2 and Hn−1(D̃•) ∼= (Stalg

n )∨. In particular the canonical morphism of
complexes D̃• ↠ Hn−1(D̃•)[−(n− 1)] ∼= (Stalg

n )∨[−(n− 1)] is a quasi-isomorphism.

For 0 ≤ k ≤ n−2, by (iii), (iv) of Theorem 5.3.10 we have a surjection D̃k ↠ Dk which is
unique up to scalar (as D̃k is multiplicity free with simple cosocle by (i) of Theorem 5.3.10).
It follows from (525) and the definition of Dn−1 that there is a unique (up to scalar) surjection
D̃n−1 ↠ Dn−1. Consequently, we see from the definition of the complexes (526) and (527)
that there is a natural morphism of complexes of D(G)-modules

D̃• −→ D•

which is an isomorphism on Hn−1. We thus have proven the following theorem.

Theorem 5.3.13. The canonical morphism of complexes

D• ↠ Hn−1(D•)[−(n− 1)] ∼= (Stalg
n )∨[−(n− 1)]

admits an explicit section in the derived category of finite length coadmissible D(G)-modules
with Orlik-Strauch constituents (Theorem 4.3.7) given by

(Stalg
n )∨[−(n− 1)]←− D̃• −→ D•.
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Recall that D̃• (and hence the corresponding section) depends on a parameter in An−1(E).

At this point, one can ask the following question. For 0 ≤ ℓ ≤ n − 1, define the usual
truncated subcomplex τ≤ℓD• of D• (with τ≤n−1D• = D•)

τ≤ℓD• def= [D0 −→ · · · −→ · · · −→ Dℓ−1 −→ ker(dℓD)].
Then we again have a canonical morphism of complexes

τ≤ℓD• ↠ Hℓ(D•)[−ℓ] ∼= (V alg
[1,n−ℓ−1],∆)∨[−ℓ]. (528)

In view of Theorem 5.3.13, it is natural to ask if, for 0 ≤ ℓ ≤ n−2 there also exists a section
to this morphism in the derived category of finite length coadmissible D(G)-modules with
Orlik-Strauch constituents. This is obvious when ℓ = 0 (since τ≤0D• ∼= H0(D•)[0]), and not
too complicated when ℓ = 1:
Proposition 5.3.14. The canonical morphism of complexes

τ≤1D• ↠ H1(D•)[−1] ∼= (V alg
[1,n−2],∆)∨[−1]

admits an explicit section in the derived category of finite length coadmissible D(G)-modules
with Orlik-Strauch constituents given by

(V alg
[1,n−2],∆)∨[−1]←− [D0 → D0 (V alg

[1,n−2],∆)∨ ] −→ τ≤1D•

where D0 (V alg
[1,n−2],∆)∨ ∼= (V alg

[1,n−1],∆)∨ X1 (V alg
[1,n−2],∆)∨ is one of the representations

in (iv) of Theorem 5.3.11 (applied with k = 1) depending on a parameter in A1(E), and
where the morphisms of complexes are the obvious ones.

One can prove that the parameter in A1(E) corresponds to a choice of a p-adic logarithm
log : K× → E. Note that, when n = 2, D0 (V alg

[1,n−2],∆)∨ ∼= D̃1/Y1. Theorem 5.3.13 and
Proposition 5.3.14 have the following consequence.
Corollary 5.3.15. For n = 3 there exists an explicit splitting in the derived category of finite
length coadmissible D(G)-modules with Orlik-Strauch constituents D• ∼= ⊕2

ℓ=0H
ℓ(D•)[−ℓ].

When 2 ≤ ℓ ≤ n−2, finding a “nice” explicit section to (528) becomes more complicated.
For instance when n = 4 and ℓ = 2, we can use a variant of the complex D̃• of (527) for
GL3(K) combined with parabolic induction to GL4(K) to build a complex of finite length
coadmissible D(G)-modules with Orlik-Strauch constituents which is exact in degrees 0, 1
and maps to τ≤2D• with an isomorphism on H2, hence which gives an explicit section. But
this complex is not nice (contrary to D̃•). It just gives us enough confidence to state the
following conjecture.
Conjecture 5.3.16. For 2 ≤ ℓ ≤ n − 2 the morphism of complexes (528) admits a sec-
tion in the derived category of finite length coadmissible D(G)-modules with Orlik-Strauch
constituents.

Recall we know that a section exists in the derived category of all (abstract) D(G)-
modules by [Schr11, Thm. 6.1] and Dat ([Dat06, Cor. A.1.3].
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5.4 Application to de Rham complex of the Drinfeld space
We show that, for E = K and µ0 = (0, · · · , 0), the complex of coadmissible D(G)-modules
D• in (526) is isomorphic to the global sections of the de Rham complex of the rigid analytic
Drinfeld space over K of dimension n−1, and for arbitrary µ0 to the complex of holomorphic
discrete series of [S92].

Throughout this section, we use the notation I
def= 1̂, J def= n̂− 1 and µk

def= wn−1,n−k ·
µ0 ∈ Λdom

J for 1 ≤ k ≤ n − 1 where wn−1,n−k = sn−1sn−2 · · · sn−k (see (201)). Recall from
§1.4 that w0 (resp. wI) is the longest element of W (G) (resp. of W (LI)). We check that
w0 = wn−1,1wI = wIw1,n−1. We also keep the notation of §5.3.

We start with two more results on coadmissible D(G)-modules which will be used in
Theorem 5.4.16 below. The first statement shows that the D(G)-modules Dk and D̃k of
(511), (512) have a nice behaviour with respect to wall-crossing functors.

Theorem 5.4.1. Let 1 ≤ k ≤ n − 1 and µ ∈ Λ such that ⟨µ + ρ, α∨⟩ ≥ 0 for α ∈ Φ+ and
the stabilizer of µ in W (G) for the dot action is {1, sk}.

(i) The morphisms Dk−1 ↠ Xk ↪→ Dk from (iii) of Theorem 5.3.10 induce isomorphisms
Θµ(Dk−1) ∼→ Θµ(Xk) ∼→ Θµ(Dk).

(ii) The morphisms D̃k−1 ↠ Zk ↪→ D̃k from (iv) of Theorem 5.3.10 induce isomorphisms
Θµ(D̃k−1) ∼→ Θµ(Zk) ∼→ Θµ(D̃k).

(iii) We have non-split short exact sequences 0 → Dk → Θµ(Dk) → Dk−1 → 0 where
Dk → Θµ(Dk) is the canonical adjunction map.

(iv) If 1 ≤ k ≤ n−2 we have non-split short exact sequences 0→ D̃k → Θµ(D̃k)→ D̃k−1 →
0 where D̃k → Θµ(D̃k) is the canonical adjunction map.

(v) If k = n− 1 the composition Θµ(D̃n−1) ∼= Θµ(D̃n−2) → D̃n−2 (where the first isomor-
phism follows from (ii) and the second map is the adjunction map) is surjective and
its kernel is the “universal” extension

0 −→ Zn−1 −→ ∗ −→
(
(Stalg

n )∨
)⊕n
−→ 0 (529)

deduced from (ii) of Theorem 5.3.11.

Proof. We prove (i) and (ii). One checks that any V ∈ JHG(ker(D̃∨
k ↠ Z∨

k )) (resp. any
V ∈ JHG(D̃∨

k−1/Z
∨
k )) either is locally algebraic or is in J̃n−k−1 if k < n− 1 (resp. in J̃n−k+1

if 1 < k) (see (495)). Hence we deduce from (i) of Lemma 5.2.12 that Θµ(V ) = 0. The
exactness of Θµ(−) then gives the isomorphisms in (ii). The proof of (i) is completely
analogous.

We prove (iii) and (iv). When 1 ≤ k ≤ n−2, (iii) (resp. (iv)) follows from the definition of
Dk (resp. of D̃k) in (512) and (ii) of Proposition 5.3.5 applied with V −

0 = D∨
k (i.e. j0 = n−k)
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and (j1, j2) = (n−1, n−1) (resp. and (j1, j2) = (1, n)), noting that in the proof of loc. cit. we
have Θµ(V0) ∼= Θµ(V −

0 ). When k = n− 1, (iii) follows from the (j1, j2) = (n− 1, n− 1) case
of (ii) of Lemma 5.3.8 (where V = X∨

n−1 and V + = D∨
n−2), the fact that Dn−1 is the unique

D(G)-module that fits into a non-split extension 0 → Xn−1 → Dn−1 → (Stalg
n )∨ → 0 ((i) of

Theorem 5.3.11), and Θµ(Xn−1) ∼→ Θµ(Dn−1) since Θµ((Stalg
n )∨) = 0 by (i) of Lemma 5.2.12.

The non-splitness easily follows from (ii) of Lemma 5.2.12.
Finally (v) follows from the (j1, j2) = (1, n) case of (ii) of Lemma 5.3.8 with V0 = Z∨

n−1
and V +

0 = D̃∨
n−2 in loc. cit. (and noting that Θµ(V0) = Θµ(V +

0 )).

Remark 5.4.2. With the notation of Theorem 5.4.1, for 1 ≤ k ≤ n − 1 the composition
Θµ(Dk) ↠ Dk−1 → Dk where the last map is the differential map dk−1

D (see (526)) is nothing
else than the (non-zero) canonical adjunction map Θµ(Dk)→ Dk. Indeed, by functoriality of
the adjunction maps and since Θµ(Xk) ∼→ Θµ(Dk) (see (i) of Theorem 5.4.1), this adjunction
map factors as Θµ(Dk) → Xk ↪→ Dk. One easily checks from (510) and (512) that the
(irreducible) cosocle of Dk does not appear in Xk. It then follows from (iii) of Theorem 5.4.1
that the adjunction map Θµ(Dk)→ Dk factors through a non-zero map Dk−1 → Dk, which
must be dk−1

D (up to a non-zero scalar) by unicity of dk−1
D (see the references above (526)). A

similar proof replacing Xk, Xk−1 by Zk, Zk−1 and using (ii), (iv) and (v) of Theorem 5.4.1
gives that, for 1 ≤ k ≤ n − 1, the composition Θµ(D̃k) ↠ D̃k−1 → D̃k (where the last map
is dk−1

D̃
, see (527)) is the (non-zero) adjunction map Θµ(D̃k)→ D̃k (for k = n− 1 one has to

use (529)).

Using Theorem 5.4.1 we can prove the following unicity statements which strengthen
Theorem 5.3.10.

Corollary 5.4.3. We have the following unicity results.

(i) For 1 ≤ k ≤ n− 1, Zk is the unique coadmissible D(G)-module of the form

Yk (V alg
[1,n−k],∆)∨ Xk .

(ii) For 0 ≤ k ≤ n− 1, Dk is the unique coadmissible D(G)-module of the form

Xk (V alg
[1,n−k−1],∆)∨ Xk+1 .

(iii) For 0 ≤ k ≤ n− 2, D̃k is the unique coadmissible D(G)-module of the form

Zk Zk+1 .

Proof. We prove (i). It follows from (i) of Lemma 5.2.2 that for j ∈ {1, . . . , n− 1} we have
Ext1

D(G)(C∨
n−k,j,j, (V

alg
[1,n−k],∆)∨) ̸= 0 if and only if j = n−k, in which case it is one dimensional.
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It follows from (i) of Lemma 5.2.4 that Ext2
D(G)(C∨

n−k,j,j, (V
alg

[1,n−k],∆)∨) = 0 for 1 ≤ j < n− k.
By dévissage and (510) this implies

dimE Ext1
D(G)(Xk, (V alg

[1,n−k],∆)∨) = 1, (530)

in particular it is enough to prove Ext1
D(G)(Xk, Yk) = 0.

Assume the contrary and let M be a non-split extension of Xk by Yk. Using again (i) of
Lemma 5.2.2, for j ∈ {1, . . . , n− 1} and i ∈ {1, . . . , k − 1} we have

Ext1
D(G)(C∨

n−k,j,j, (V
alg

[1+i,n−k+i],∆)∨) = 0,

and hence Ext1
D(G)(Xk, (V alg

[1+i,n−k+i],∆)∨) = 0 for i ∈ {1, . . . , k−1} (see (510)). It follows that
there exist j ∈ {1, . . . , n− 1} and (n− k, j1, j2) ∈ J with j1 < j2 such that M has a length
2 subquotient with socle C∨

n−k,j1,j2 in Yk and cosocle C∨
n−k,j,j in Xk (see (510) and the lines

that follow). Moreover by Lemma 5.2.1 we must have |j2 − j|+ |j2 − j1| = 1, i.e. j2 = j and
j1 = j2 − 1 = j − 1 (which implies j ≥ 2). In other terms C∨

n−k,j−1,j is the only constituent
of Yk that can lie “just below” the constituent C∨

n−k,j,j of Xk.
Using this result we now prove that, for any j′ ∈ {1, . . . , n − 1}, M must contain as a

subquotient the unique non-split extension of C∨
n−k,j′,j′ by C∨

n−k,j′−1,j′ (using again Lemma
5.2.1). We have just seen this holds for j′ = j. Assume this fails for some j′ > j and take
the minimal such j′. Then, by definition of j′, M contains as a subquotient the unique non-
split extension of C def= C∨

n−k,j′−1,j′−1 by B
def= C∨

n−k,j′−2,j′−1. Note that, from (510) and the
definition of the partial order on J, Yk and hence M also contain as a subquotient the unique
non-split extension of B by A def= C∨

n−k,j′−1,j′ . Moreover there cannot exist a fourth constituent
B′ of M distinct from B such that A < B′ < C for the partial order on JHD(G)(M). Indeed,
if such a B′ exists, one can take it such that Ext1

D(G)(B′, A) ̸= 0. If B′ ∈ JHD(G)(Yk), then
the partial order on Yk and (510) force B′ = B, a contradiction. Hence B′ ∈ JHD(G)(Xk),
but then arguing as at the end of the previous paragraph we must have B′ = C∨

n−k,j′,j′ ,
contradicting the hypothesis on j′. It follows that M contains as a subquotient a uniserial
D(G)-module of the form A B C , contradicting the minimality of the Ext-square
V(n−k,j′−1,j′−1),(n−k,j′−1,j′) in Proposition 5.2.18. A symmetric argument when j′ < j also
yields a contradiction.

Finally, applying the previous result with j′ = n − k and j′ = n − k + 1 (and using the
structures of Xk and Yk from (510)), we deduce that M contains as a subquotient the dual of
the minimal Ext-square V(n−k,n−k,n−k),(n−k,n−k,n−k+1) in (ii) of Proposition 5.2.18, in particular
M contains (V alg

[1,n−k],∆)∨ which contradicts the lines below (510). Hence Ext1
D(G)(Xk, Yk) = 0,

which proves (i).
We prove (ii). The case k = 0 follows from (530) for k = 1, while the case k = n − 1 is

(i) of Theorem 5.3.11. We assume k ∈ {1, . . . , n− 2} and let M be any coadmissible D(G)-
module as in (ii). By the same proof as for (i) of Theorem 5.4.1 we have Θµ(Xk) ∼→ Θµ(M)
(with µ as in loc. cit.), and thus by adjunction (for M) a non-zero map M → Θµ(Xk).
Since C∨

(n−k−1,1,1) is the (irreducible) cosocle of Xk+1, it also appears in the cosocle of M .
Assume first that C∨

(n−k−1,1,1) maps to 0 in Θµ(Xk). Then from the form of M it follows
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that a non-zero strict quotient of Xk embeds into Θµ(Xk), and thus (from (510)) there exists
1 ≤ j ≤ n−2 such that C∨

(n−k,j,j) appears in the socle of Θµ(Xk). By (i) and (iii) of Theorem
5.4.1, this implies that C∨

(n−k,j,j) embeds into Dk or into Dk−1, which is impossible by (512).
Hence C∨

(n−k−1,1,1) still occurs in the (cosocle of the) image of M in Θµ(Xk). By (i), (iii)
of Theorem 5.4.1 and (512), C∨

(n−k−1,1,1) has multiplicity 1 in Θµ(Xk). Hence the image of
M contains the unique (closed) D(G)-submodule of Θµ(Xk) of cosocle C∨

(n−k−1,1,1). But this
submodule is Dk using loc. cit. again. Since M and Dk are multiplicity free with the same
irreducible constituents, if follows that M ∼→ Dk.

The proof of (iii) is analogous to (ii) replacing Xk, Xk+1 by Zk, Zk+1 and (i), (iii) of
Theorem 5.4.1 by (ii), (iv) of Theorem 5.4.1.

We now prove another unicity theorem which will play a key role in the comparison of
the complex D• when µ0 = (0, · · · , 0) with the (global sections of) the de Rham complex of
the Drinfeld space (Theorem 5.4.16).

Theorem 5.4.4. Let C be a finite length coadmissible D(G)-module equipped with a decreas-
ing filtration

C = Fil0(C) ⊇ Fil1(C) ⊇ · · · ⊇ Filn−1(C) = 0
which satisfies the following conditions:

(i) we have H0(NJ , C) ∼= LJ(wn−1,1);

(ii) for 0 ≤ ℓ ≤ n − 2, there exists a U(g)-module Mℓ in O
p

ℓ̂+1
alg (see the beginning of

§3.1) such that gr0(C) = C/Fil1(C) fits into a short exact sequence of coadmissible
D(G)-modules

0→ FGPI
(M0, π

∞
1,1)∨ → gr0(C)→ (Stalg

n )∨ → 0,
and grℓ(C) ∼= FGP

ℓ̂+1
(Mℓ, π

∞
ℓ+1,ℓ+1)∨ if ℓ ̸= 0 (see (95) for π∞

ℓ+1,ℓ+1).

Then we have C ∼= Dn−1 (and Mℓ = L(wℓ+1,1) for 0 ≤ ℓ ≤ n− 2).

Proof. Note that in (ii) we do not specify Mℓ neither whether the short exact sequence is split
or not. But Condition (i) (which was inspired by [Schr11, Prop. 6.3] when G = GL3(Qp))
“rigidifies” everything.

As FGP
ℓ̂+1

(Mℓ, π
∞
ℓ+1,ℓ+1)∨ injects into grℓ(C) by condition (ii), we define Filℓ(C)′ for 0 ≤

ℓ ≤ n − 2 as the unique (closed) D(G)-submodule of Filℓ(C) which fits into a short exact
sequence

0→ Filℓ+1(C)→ Filℓ(C)′ → FGP
ℓ̂+1

(Mℓ, π
∞
ℓ+1,ℓ+1)∨ → 0 (531)

(in particular Filℓ(C)′ = Filℓ(C) for 1 ≤ ℓ ≤ n − 2). For ℓ ≥ 1, we define Filℓ(Dn−1)′ =
Filℓ(Dn−1) as the unique (closed) D(G)-submodule of Dn−1 such that JHG(Filℓ(Dn−1)∨) =
[C(1,ℓ+1,ℓ+1), C(1,n−1,n−1)]. For ℓ = 0 we define Fil0(Dn−1) def= Dn−1 and Fil0(Dn−1)′ def= Xn−1 ⊆
Dn−1. We check from the definitions of Dn−1 and Xn−1 that gr0(Dn−1) fits into a non-split
extension

0→ FGPI
(L(s1), π∞

1,1)∨ → gr0(Dn−1)→ (Stalg
n )∨ → 0,
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and that grℓ(Dn−1) ∼= C∨
(1,ℓ+1,ℓ+1) = FGP

ℓ̂+1
(L(wℓ+1,1), π∞

ℓ+1,ℓ+1)∨ for 1 ≤ ℓ ≤ n− 2 (see (443)).

Step 1: We prove Mn−2 ∼= L(wn−1,1).
From (i) we deduce

H0(U,C) ∼= H0(UJ , H0(NJ , C)) ∼= wn−1,1 · µ0. (532)

Note that FGPJ
(Mn−2, π

∞
n−1,n−1)∨ ∼= grn−2(C) injects into C by (ii). Since H0(U,−) is left

exact and since we have by (375)

H0(U,FGPJ
(Mn−2, π

∞
n−1,n−1)∨) ∼= H0(u,Mn−2)⊗E (JJ,∅(π∞

n−1,n−1))∨ ̸= 0,

we deduce the following isomorphism of D(T )-modules

H0(u,Mn−2)⊗E (JJ,∅(π∞
n−1,n−1))∨ ∼= H0(U,C) ∼= wn−1,1 · µ0.

In particular we have JJ,∅(π∞
n−1,n−1) = JJ,∅(1LJ

) = 1T and an isomorphism of U(t)-modules

H0(u,Mn−2) ∼= wn−1,1 · µ0. (533)

Left exactness of H0(u,−) with (ii) of Lemma 3.1.8 force socU(g)(Mn−2) ∼= L(wn−1,1). If
Mn−2 ̸∼= L(wn−1,1), then Mn−2 contains a length 2 U(g)-submodule M ′

n−2 with cosocle L(x)
such that DL(x) ⊆ {n− 1} (using Mn−2 ∈ OpJ

alg and Lemma 3.1.1), or equivalently x ∈ W J,∅

(see §1.4 for W J,∅). Moreover x ̸= wn−1,1 by (i) of Lemma 3.2.4, and hence x < wn−1,1 since
x ∈ W J,∅ and wn−1,1 is the maximal element in W J,∅. But x < wn−1,1 together with (141)
imply that M ′

n−2 is a quotient of M(x), which by (127) (applied with I = ∅) implies

0 ̸= HomU(g)(M(x),M ′
n−2) ↪→ HomU(g)(M(x),Mn−2) ∼= HomU(t)(x · µ0, H

0(u,Mn−2)),

contradicting (533). Hence, we have Mn−2 ∼= L(wn−1,1). Note that by (375) we have
H0(U, V ∨) ̸= 0 for V = FGPI

(M,π∞) with M ∈ OpI
alg and π∞ G-basic ((ii) of Definition

2.1.4). By left exactness of H0(U,−) we deduce using (532) and Mn−2 ∼= L(wn−1,1)

socD(G)(C) ∼= grn−2(C) ∼= C∨
(1,n−1,n−1). (534)

Note that, by Remark 4.5.19, (534) and condition (ii) imply (Mℓ)ξ = Mℓ for 0 ≤ ℓ ≤ n − 2
where ξ : Z(g)→ E is the unique infinitesimal character such that L(1)ξ ̸= 0. In particular
any irreducible constituent of Mℓ (for 0 ≤ ℓ ≤ n− 2) is of the form L(x) for x ∈ W (G).

Step 2: We prove that L(1) /∈ JHU(g)(Mℓ) for 1 ≤ ℓ ≤ n− 2.
We fix µ ∈ Λ such that ⟨µ + ρ, α∨⟩ ≥ 0 for α ∈ Φ+ and the stabilizer of µ in W (G) for the
dot action is {1, sn−1}. Note that Fil1(C) ⊆ C has socle C∨

(1,n−1,n−1) by (534) (for n ≥ 3),
and that the canonical adjunction map Fil1(C) → Θµ(Fil1(C)) is injective as it restricts to
the canonical injection C∨

(1,n−1,n−1) ↪→ Θsn−1(C∨
(1,n−1,n−1)) (see (ii) of Lemma 5.2.12). The

decreasing filtration Filℓ(C) on Fil1(C) for 1 ≤ ℓ ≤ n − 2 induces a decreasing filtration
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Θµ(Filℓ(C)) on Θµ(Fil1(C)) with graded pieces Θsn−1(grℓ(C)) ∼= FGP
ℓ̂+1

(Θsn−1(Mℓ), π∞
ℓ+1,ℓ+1)∨

by condition (ii) and (462). It follows from Proposition 3.4.5 that L(1) ∈ JHU(g)(Θsn−1(L(x)))
for some x ∈ W (G) if and only if x = s1. Since any L(x) ∈ JHU(g)(Mℓ) satisfies DL(x) ⊆
{ℓ + 1} by Lemma 3.1.1, we deduce x ̸= s1, and thus L(1) /∈ JHU(g)(Θsn−1(L(x))), for
any L(x) ∈ JHU(g)(Mℓ) and any 1 ≤ ℓ ≤ n − 2. By the above discussion we deduce that
Θµ(Fil1(C)), and hence its D(G)-submodule Fil1(C), do not admit constituents which are
duals of locally algebraic representations, or equivalently L(1) /∈ JHU(g)(Mℓ) for 1 ≤ ℓ ≤ n−2
by condition (ii) (and Lemma 5.1.1).

Step 3: We prove that Mℓ ̸= 0 for 0 ≤ ℓ ≤ n− 2.
From Step 1 we have Mℓ ̸= 0 for ℓ = n − 2. Assume first M0 = 0. As (Stalg

n )∨ shows up in
C by (ii) but not in the socle of C by (534), from condition (ii) there exists 1 ≤ ℓ ≤ n − 2
and L(x) ∈ JHU(g)(Mℓ) such that

Ext1
D(G)((Stalg

n )∨,FGP
ℓ̂+1

(L(x), π∞
ℓ+1,ℓ+1)∨) ̸= 0.

As x ̸= 1 by Step 2, the last statement in Remark 5.1.12 implies d(π∞
ℓ+1,ℓ+1, St∞

n ) = 0. But
by (ii) of Lemma 2.3.1, for 1 ≤ ℓ ≤ n−2 the representation i∞

ℓ̂+1,∆
(π∞

ℓ+1,ℓ+1) has length 2 with
socle V ∞

[1,ℓ+1],∆ and cosocle V ∞
[1,ℓ],∆, and thus we can’t have d(π∞

ℓ+1,ℓ+1, St∞
n ) = 0. Hence we

have M0 ̸= 0. Assume now Mℓ = 0 for some 0 < ℓ < n− 2. Since M0 ̸= 0, we may choose ℓ
such that Mℓ−1 ̸= 0 = Mℓ. Let L(y) ⊆Mℓ−1 be an arbitrary irreducible U(g)-submodule and
recall that DL(y) ⊆ {ℓ} by Lemma 3.1.1. As Mℓ = 0 and FGP

ℓ̂
(L(y), π∞

ℓ,ℓ)∨ has no common
constituent with socD(G)(C) by (534) and DL(y) ⊆ {ℓ} (using Lemma 5.1.1), there exist
ℓ < ℓ′ ≤ n− 2 and L(z) ∈ JHU(g)(Mℓ′) such that

Ext1
D(G)

(
FGP

ℓ̂
(L(y), π∞

ℓ,ℓ)∨,FGP
ℓ̂′+1

(L(z), π∞
ℓ′+1,ℓ′+1)∨

)
̸= 0.

Note that z ̸= 1 by Step 2 (as ℓ′ ≥ 1) and hence DL(z) = {ℓ′ + 1}, in particular z ̸= y (as
DL(y) ⊆ {ℓ}). But then, the last statement of Remark 5.1.12 again implies d(π∞

ℓ′+1,ℓ′+1, π
∞
ℓ,ℓ)=

0, which contradicts (i) of Lemma 2.3.2 since ℓ < ℓ′. This finishes the proof of Step 3.

Step 4: Let 0 ≤ ℓ < ℓ′ ≤ n− 2 and L(x) ∈ JHU(g)(Mℓ), we prove that if

Ext1
D(G)(FGP

ℓ̂+1
(L(x), π∞

ℓ+1,ℓ+1)∨, C∨
(1,ℓ′+1,ℓ′+1)) ̸= 0 (535)

then ℓ′ = ℓ+ 1 and x = wℓ+1,1, in which case (535) has dimension 1.
As DL(wℓ′+1,1) = {ℓ′ + 1} and DL(x) ⊆ {ℓ + 1} (by Lemma 3.1.1), we have x ̸= wℓ′+1,1.
By Proposition 5.1.14 we have Ext1

U(g)(L(x), L(wℓ′+1,1)) ̸= 0, or equivalently
Ext1

U(g)(L(wℓ′+1,1), L(x)) ̸= 0 by (117) and (118). As ℓ(wℓ′+1,1) ≥ 2, we have
Ext1

U(g)(L(wℓ′+1,1), L(1)) = 0 by (ii) of Lemma 3.2.4 and Lemma 3.2.9, thus x ̸= 1 and
DL(x) = {ℓ + 1}. By (iii) of Lemma A.11 and ℓ < ℓ′, we obtain ℓ′ = ℓ + 1 and x = wℓ+1,1.
Hence FGP

ℓ̂+1
(L(x), π∞

ℓ+1,ℓ+1)∨ = C∨
(1,ℓ+1,ℓ+1) and (535) is one dimensional by Lemma 5.2.1.
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Step 5: We prove Filℓ(C)′ ∼= Filℓ(Dn−1)′ for 0 ≤ ℓ ≤ n− 2.
We proceed by a decreasing induction on 0 ≤ ℓ ≤ n− 2. The case ℓ = n− 2 holds by Step
1. We now assume 0 ≤ ℓ ≤ n − 3 and Filℓ′(C)′ ∼= Filℓ′(Dn−1)′ for all ℓ′ > ℓ, or equivalently
Filℓ′(C) ∼= Filℓ′(Dn−1) (since ℓ′ > 0). Let L(x) ⊆ Mℓ be an arbitrary (irreducible) U(g)-
submodule, which induces a D(G)-submodule FGP

ℓ̂+1
(L(x), π∞

ℓ+1,ℓ+1)∨ ⊆ FGP
ℓ̂+1

(Mℓ, π
∞
ℓ+1,ℓ+1)∨.

By pullback and the induction hypothesis, (531) gives a short exact sequence

0→ Filℓ+1(Dn−1)→ ∗ → FGP
ℓ̂+1

(L(x), π∞
ℓ+1,ℓ+1)∨ → 0. (536)

It follows from (534) (and ℓ ≤ n− 3) that (536) is non-split and thus

Ext1
D(G)(FGP

ℓ̂+1
(L(x), π∞

ℓ+1,ℓ+1)∨,Filℓ+1(Dn−1)) ̸= 0. (537)

By Step 4 and a dévissage on Filℓ+1(Dn−1), we deduce x = wℓ+1,1 (hence
FGP

ℓ̂+1
(L(x), π∞

ℓ+1,ℓ+1)∨ = C∨
(1,ℓ+1,ℓ+1)) and that the surjection Filℓ+1(Dn−1) ↠ C∨

(1,ℓ+2,ℓ+2) in-
duces an isomorphism between (537) and the 1-dimensional vector space
Ext1

D(G)(C∨
(1,ℓ+1,ℓ+1), C

∨
(1,ℓ+2,ℓ+2)). In particular, socU(g)(Mℓ) ∼= L(wℓ+1,1) and the pushout of

(536) along Filℓ+1(Dn−1) ↠ C∨
(1,ℓ+2,ℓ+2) is a non-split extension

0→ C∨
(1,ℓ+2,ℓ+2) → ∗ → C∨

(1,ℓ+1,ℓ+1) → 0. (538)

If Mℓ
∼= L(wℓ+1,1), then both Filℓ(C)′ and Filℓ(Dn−1)′ fit into a non-split extension

0→ Filℓ+1(Dn−1)→ ∗ → C∨
(1,ℓ+1,ℓ+1) → 0,

which forces Filℓ(C)′ ∼= Filℓ(Dn−1)′ as (537) is 1-dimensional for x = wℓ+1,1. We now prove
that we must have Mℓ

∼= L(wℓ+1,1). Assume on the contrary that Mℓ is not L(wℓ+1,1),
then it contains a length 2 U(g)-submodule M ′

ℓ with socle L(wℓ+1,1) and cosocle some
L(x′) with DL(x′) ⊆ {ℓ + 1} (so x′ ̸= wℓ+2,1) and Ext1

Ob
alg

(L(x′), L(wℓ+1,1)) ̸= 0. By
(i) of Lemma 3.2.4 this implies x′ ̸= wℓ+1,1 and |ℓ(x′) − ℓ(wℓ+1,1)| odd. The pullback
of (531) along FGP

ℓ̂+1
(M ′

ℓ, π
∞
ℓ+1,ℓ+1)∨ ↪→ FGP

ℓ̂+1
(Mℓ, π

∞
ℓ+1,ℓ+1)∨ followed by the pushout along

Filℓ+1(Dn−1) ↠ C∨
(1,ℓ+2,ℓ+2) gives a short exact sequence

0→ C∨
(1,ℓ+2,ℓ+2) → ∗ → FGP

ℓ̂+1
(M ′

ℓ, π
∞
ℓ+1,ℓ+1)∨ → 0. (539)

Note that (539) is non-split as it restricts to (538) which is non-split. In particular, we have

Ext1
D(G)(FGP

ℓ̂+1
(M ′

ℓ, π
∞
ℓ+1,ℓ+1)∨, C∨

(1,ℓ+2,ℓ+2)) ̸= 0. (540)

Case 2.1: If x′ = 1, then Step 2 forces ℓ = 0. Note that M ′
0 is a quotient of M I(1) (using

(141) and [Hum08, Thm. 9.4(c)]) and that L(w2,1) /∈ JHU(g)(M I(1)) (by Lemma 3.1.1). Thus
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C∨
(1,2,2) is not a constituent of FGPI

(M I(1), π∞
1,1)∨ (by Lemma 5.1.1). Hence, the surjection

M I(1) ↠M ′
0 induces an injection

Ext1
D(G)(FGPI

(M ′
0, π

∞
1,1)∨, C∨

(1,2,2)) ↪→ Ext1
D(G)(FGPI

(M I(1), π∞
1,1)∨, C∨

(1,2,2)). (541)

Let ξI : Z(lI) → E be the unique infinitesimal character such that LI(1)ξI
̸= 0. Since

w2,1 /∈ W (LI), by exactly the same argument as in the paragraph following (214) we
have Hk(nI , L(w2,1))ξI

= 0 for k ≥ 0. By (126) and Lemma 3.1.3 this implies
ExtkU(g)(M I(1), L(w2,1)) = 0 for k ≥ 0. By (367) (applied with w = 1, note that the assump-
tion there is satisfed using (i) of Lemma 2.3.4) this forces the right hand side of (541) to be
zero, which contradicts (540) (when ℓ = 0).

Case 2.2: If x′ ̸= 1, then DL(x′) = {ℓ+ 1}. It follows from Lemma A.5 and Remark A.6
that DR(x′) = {1} and DL(x′) = {ℓ + 1} imply x′ = wℓ+1,1. Since we have x′ ̸= wℓ+1
(and x′ ̸= 1), we deduce DR(x′) ̸⊆ {1}. Choose j ∈ DR(x′) \ {1} ⊆ {2, . . . , n − 1}. As
|ℓ(x′)− ℓ(wℓ+1,1)| is odd, it follows that |ℓ(x′)− ℓ(wℓ+2,1)| is even. Since x′ ̸= wℓ+2,1, by (i),
(ii) of Lemma 3.2.4 we obtain Ext1

U(g)(L(x′), L(wℓ+2,1)) = 0 and thus by Proposition 5.1.14

Ext1
D(G)(FGP

ℓ̂+1
(L(x′), π∞

ℓ+1,ℓ+1)∨, C∨
(1,ℓ+2,ℓ+2)) = 0.

Let W def= FGP
ℓ̂+1

(L(x′), π∞
ℓ+1,ℓ+1), then (540) forces the existence of a uniserial coadmissible

D(G)-module D of length 3 with socle C∨
(1,ℓ+2,ℓ+2), cosocle W∨, and middle layer C∨

(1,ℓ+1,ℓ+1).
Fix µ′ ∈ Λ such that ⟨µ′ + ρ, α∨⟩ ≥ 0 for α ∈ Φ+ and the stabilizer of µ′ in W (G) for the
dot action is {1, w0sjw0}. As j ̸= 1, by (i) of Lemma 5.2.12 we have

Θw0sjw0(C∨
(1,ℓ+2,ℓ+2)) = 0 = Θw0sjw0(C∨

(1,ℓ+1,ℓ+1))

and by (ii) of Lemma 5.2.12 the canonical map Θw0sjw0(W∨) → W∨ is surjective. Then
the exactness of Θµ′ forces the canonical map Θµ′(D) → D to be a surjection, and we
have Θµ′(D) ∼= Θµ′(W∨). As x′ ̸= wℓ+2,1 and |ℓ(x′) − ℓ(wℓ+2,1)| is even, it follows from
Proposition 3.4.5 with (i) of Lemma 3.2.4 and (462) that C∨

(1,ℓ+2,ℓ+2) /∈ JHD(G)(Θµ′(W∨)) =
JHD(G)(Θµ′(D)), a contradiction to the surjection Θµ′(D) ↠ D.

From Step 5 and condition (ii), we deduce that both C and Dn−1 fit into a short exact
sequence 0 → Xn−1 = Fil0(Dn−1)′ → ∗ → (Stalg

n )∨ → 0. Moreover Dn−1 is the unique such
non-split extension by (i) of Theorem 5.3.11 (and the definition of Dn−1). But (534) implies
that C is also a non-split extension, hence we finally deduce C ∼= Dn−1.

From now on we assume E = K. We consider the Drinfeld space H/K of dimension n− 1
defined as in (1), i.e. H def= Pn−1

rig \
⋃

HH where H runs through the K-rational hyperplanes
inside Pn−1

rig . Recall from [SS91, Prop. 1.4] that H is quasi-Stein and that for any coherent
sheaf F on H we have Hk(F) = 0 for k > 0. We follow the convention of [ST202] and
[Or08] and endow H with the left action of G = GLn(K) coming from the left action of G
on Pn−1

rig given by (z0, . . . , zn−1) 7→ (z0, . . . , zn−1)g−1 (matrix product) for g ∈ G. This action
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in turn induces an action of G (which we will always take on the left) on the global sections
F(H) for any G-equivariant vector bundle F on H. Moreover if F is the restriction to H
of a G-equivariant vector bundle on Pn−1

rig , then by the argument in [Or08, p.593] F(H) is
naturally a coadmissible D(G)-module. For instance this applies to the sheaf of differential
k-forms on H.

We consider the global sections of the de Rham complex of H, which we denote (see (1.1))

Ω• = [Ω0 −→ Ω1 −→ · · · −→ Ωn−1]. (542)

By the above discussion this is a complex of coadmissible D(G)-modules. The action of G
induces an action on each cohomology group Hk(Ω•) for 0 ≤ k ≤ n − 1. We recall the
following seminal result of Schneider-Stuhler [SS91, Thm. 3.1, Lem. 4.1] (see also §1.1).

Theorem 5.4.5. We have a G-equivariant isomorphism Hk(Ω•) ∼= (V ∞
[1,n−k−1],∆)∨ for 0 ≤

k ≤ n− 1.

Given a finite dimensional U(pI)-module X over K, we can lift it to a finite dimen-
sional algebraic representation of PI ([OS15, Lem. 3.2]), and then consider the algebraic
G-equivariant vector bundle over G/PI ∼= Pn−1

/K

FX
def= (G×X)/PI

where pI ∈ PI acts on (g, x) ∈ G × X by pI(g, x) = (gpI , p−1
I x) (here we view G and

PI as algebraic groups over K rather than their K-points). We also denote by FX the
analytification of FX , which is a G-equivariant vector bundle over Pn−1

rig , hence by restriction
over H, and we denote its global sections (a coadmissible D(G)-module) by

DX
def= FX(H).

Note that, given a short exact sequence 0→ X1 → X2 → X3 → 0 of finite dimensional U(pI)-
modules, we have a short exact sequence 0 → FX1 → FX2 → FX3 → 0 of G-equivariant
vector bundles over H. As H is quasi-Stein, by taking global sections we obtain a short exact
sequence of coadmissible D(G)-modules

0→ DX1 → DX2 → DX3 → 0. (543)

Now we recall Schneider’s holomorphic discrete series ([S92]). For 1 ≤ k ≤ n − 1 we
define µk def= wn−1,n−k · µ0 ∈ Λdom

J where we recall that wn−1,n−k = sn−1sn−2 · · · sn−k. For
µ ∈ Λdom

J , we have w1,n−1(µ) ∈ Λdom
I (where w1,n−1 = s1s2 · · · sn−1 and we see LI(w1,n−1(µ))

as a finite dimensional algebraic representation of PI over K via the inflation PI ↠ LI . For
µ ∈ Λdom

J we define the coadmissible D(G)-module

Dµ
def= DLI(w1,n−1(µ)). (544)
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In [S92, §3], Schneider defines a complex denoted there (see [S92, Lem. 9] and its proof):

[Dλ(0) → Dλ(1) → · · · → Dλ(n−1)]. (545)

Unraveling the various conventions between [S92, §3] and this work, we can check that for
0 ≤ k ≤ n − 1 we have Dλ(k) = DLI(w1,n−1(µk)). Hence by (544), (545) is a complex of
coadmissible D(G)-modules

D•
µ0

def= [Dµ0 −→ Dµ1 −→ · · · −→ Dµn−1 ]. (546)

We recall the following results from [S92, §3].

Proposition 5.4.6.

(i) For 0 ≤ k ≤ n − 1 we have an isomorphism of coadmissible D(G)-modules Ωk ∼=
Dwn−1,n−k·0 (with the convention wn−1,n = 1).

(ii) For any finite dimensional U(pI)-module X over K and any ν ∈ Λdom, we see X ⊗K
L(ν) as a (finite dimensional) U(pI)-module via the diagonal action of U(pI), then we
have an isomorphism of coadmissible D(G)-modules

DX⊗KL(ν) ∼= DX ⊗K L(ν).

Proof. We check that (i) (resp. (ii)) is the translation of [S92, Prop. 1] (resp. [S92, Lemma 5])
under our convention. Recall that the “diagonal” D(G)-action on DX ⊗K L(ν) is not com-
pletely straightforward, see [JLS21, §2.3.1].

Lemma 5.4.7. For µ ∈ Λdom
J , Z(g) acts on Dµ by ξµ where ξµ : Z(g) → E is the unique

infinitesimal character such that L(µ)ξµ ̸= 0.

Proof. We use results from [Schr11], where ρ there is denoted −δ and ξµ is denoted χµ−δ =
χµ+ρ. By the argument of [Schr11, Lemma 6.4] (which essentially follows from [Kna01,
Prop. 8.22]) this implies that Z(g) acts on Dµ (denoted Dw0(µ) in loc. cit.) by χw0(µ)+δ =
ξw0(µ)−2ρ = ξw0·µ = ξµ.

We will need the two following (somewhat technical) lemmas.

Lemma 5.4.8. Let L be a finite dimensional U(g)-module. Then there exist a decreasing
exhaustive separated filtration (Filℓ(L))ℓ∈Z of U(pI)-submodules on L, and an increasing ex-
haustive separated filtration (Filℓ(L))ℓ∈Z of U(p+

I )-submodules on L, such that for each ℓ ∈ Z
the U(lI)-modules grℓ(L) and grℓ(L) are either both zero or both simple and isomorphic.

Proof. We consider the decomposition L|U(lI) ∼=
⊕

ν1∈Λdom
I

Lν1 where Lν1 is the LI(ν1)-isotypic
component of L|U(lI). We fix an arbitrary total order ≤ on Λdom

I such that ν ′
1, ν

′′
1 ∈ Λdom

I

satisfy ν ′
1 ≤ ν ′′

1 only if ν ′
1 − ν ′′

1 ∈ Z≥0Φ+. For ν1 ∈ Λdom
I we define

Filν1(L) def=
⊕
ν′

1≥ν1

Lν′
1

and Filν1(L) def=
⊕
ν′

1≤ν1

Lν′
1
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which is a decreasing, respectively increasing, exhaustive separated filtration of L|U(lI) (by
U(lI)-submodules) indexed by the totally ordered set Λdom

I . The key observation (which
is easy to check) is that Filν1(L) (resp. Filν1(L)) is U(pI)-stable (resp. U(p+

I ))-stable in L
for each ν1 ∈ Λdom

I . Then we fix an arbitrary filtration on Lν1 for each ν1 ∈ Λdom
I with

graded pieces being either simple or zero, and we further refine and reindex (Filν1(L))ν1∈Λdom
I

(resp. (Filν1(L))ν1∈Λdom
I

) to get a decreasing filtration (Filℓ(L))ℓ∈Z by U(pI)-submodules (resp.
an increasing filtration (Filℓ(L))ℓ∈Z by U(p+

I )-submodules) as in the statement.

Recall that, for λ, µ ∈ Λ, T µλ is the translation functor on the category of Z(g)-finite
D(G)-modules, see above (461).

Lemma 5.4.9. Let ν ∈ Λdom
J and λ, µ ∈ Λ. Then there exist:

• a decreasing exhaustive separated filtration (Fili(T µλ (Dν)))i∈Z on T µλ (Dν) by (closed)
D(G)-submodules

• an increasing exhaustive separated filtration (Fili(T µλ (MJ(ν))))i∈Z on T µλ (MJ(ν)) by
U(g)-submodules

such that for i ∈ Z we have either gri(T µλ (Dν)) = gri(T
µ
λ (MJ(ν))) = 0, or gri(T µλ (Dν)) ∼= Dκi

and gri(T
µ
λ (MJ(ν))) ∼= MJ(κi) for some κi ∈ Λdom

J . Moreover gri(T µλ (Dν)) and
gri(T

µ
λ (MJ(ν))) are non-zero only for finitely many i ∈ Z.

Proof. By Lemma 5.4.7 we can assume ξν = ξλ otherwise we have T µλ (Dν) = T µλ (MJ(ν)) = 0
by definition of T µλ and there is nothing to prove. Let L be the unique finite dimensional
simple U(g)-module with highest weight in the W (G)-orbit of µ− λ (for the naive action of
W (G)). By definition of T µλ in [JLS21, (2)] and using (ii) of Proposition 5.4.6 we have

T µλ (Dν) = (DLI(w1,n−1(ν)) ⊗K L)ξµ
∼= (DLI(w1,n−1(ν))⊗KL)ξµ .

By Lemma 5.4.8 we fix on L a decreasing exhaustive separated filtration (Filℓ(L))ℓ∈Z by
U(pI)-submodules, and an increasing exhaustive separated filtration (Filℓ(L))ℓ∈Z by U(p+

I )-
submodules.

Step 1: We construct the decreasing filtration (Fili(T µλ (Dν)))i∈Z on T µλ (Dν).
We first choose an arbitrary decreasing exhaustive separated filtration
(Fili(LI(w1,n−1(ν))⊗K L))i∈Z of U(pI)-submodules on LI(w1,n−1(ν))⊗K L which refines the
filtration (LI(w1,n−1(ν))⊗K Filℓ(L))ℓ∈Z and with each graded piece gri(LI(w1,n−1(ν))⊗K L)
either simple (of the form LI(w1,n−1(κi)) for some κi ∈ Λdom

J ) or zero. By (543) the filtration
Fili(LI(w1,n−1(ν)) ⊗K L) induces a filtration Fili(DLI(w1,n−1(ν))⊗KL) def= DFili(LI(w1,n−1(ν))⊗KL)
by closed D(G)-submodules on DLI(w1,n−1(ν))⊗KL, which further induces a filtration
Fili((DLI(w1,n−1(ν))⊗KL)ξµ) def= Fili(DLI(w1,n−1(ν))⊗KL)ξµ on (DLI(w1,n−1(ν))⊗KL)ξµ . In particular,
for i ∈ Z, we have

gri((DLI(w1,n−1(ν))⊗KL)ξµ) = (Dgri(LI(w1,n−1(ν))⊗KL))ξµ ,
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which is non-zero if and only if gri(LI(w1,n−1(ν))⊗K L) ∼= LI(w1,n−1(κi)) for some κi ∈ Λdom
J

such that L(κi)ξµ ̸= 0 (using (544) and Lemma 5.4.7).

Step 2: We construct the increasing filtration (Fili(T µλ (MJ(ν))))i∈Z on T µλ (MJ(ν)).
We first note that LI(w1,n−1(ν))⊗K grℓ(L) (resp. LI(w1,n−1(ν))⊗K grℓ(L)) is a semi-simple
U(pI)-module (resp. a semi-simple U(p+

I )-module) and they are isomorphic as semi-simple
U(lI)-modules. Hence, it is possible to choose an increasing filtration (Fili(LI(w1,n−1(ν))⊗K
L))i∈Z of U(p+

I )-modules on LI(w1,n−1(ν)) ⊗K L such that for each i ∈ Z we have an iso-
morphism of U(lI)-modules gri(LI(w1,n−1(ν)) ⊗K L) ∼= gri(LI(w1,n−1(ν)) ⊗K L) (which by
Step 1 is either 0 or LI(w1,n−1(κi))). For µ′ ∈ Λ and w ∈ W (G), we write LI(µ′)w for the
finite dimensional simple U(w−1lIw)-module LI(µ′) where x ∈ U(w−1lIw) acts by wxw−1.
Using uJ = w−1

1,n−1uIw1,n−1 and t = w−1
1,n−1tw1,n−1, we have an isomorphism of U(t)-modules

((LI(w1,n−1(ν))w1,n−1)[uJ ])ν = ((LI(w1,n−1(ν))[uI ])w1,n−1(ν))w1,n−1 ̸= 0. As LI(w1,n−1(ν))w1,n−1

is a finite dimensional simple U(w−1
1,n−1lIw1,n−1) = U(lJ)-modules, this implies

LI(w1,n−1(ν))w1,n−1 ∼= LJ(ν) (547)

as U(lJ)-modules. Writing similarly (LI(w1,n−1(ν))⊗K L)w1,n−1 for the U(w−1
1,n−1p

+
I w1,n−1) =

U(pJ)-module on which x ∈ U(pJ) acts by w1,n−1xw
−1
1,n−1, we obtain the following isomor-

phisms of U(w−1
1,n−1p

+
I w1,n−1) = U(pJ)-modules

(LI(w1,n−1(ν))⊗K L)w1,n−1 ∼= LI(w1,n−1(ν))w1,n−1 ⊗K Lw1,n−1 ∼= LJ(ν)⊗K L.

In particular we deduce from (Fili(LI(w1,n−1(ν)) ⊗K L))i∈Z an increasing filtration
(Fili(LJ(ν)⊗K L))i∈Z of U(pJ)-modules on LJ(ν)⊗K L such that gri(LJ(ν)⊗K L) is either
0 or LJ(κi). Using the tensor identity (cf. [Hum08, §3.6])

U(g)⊗U(pJ ) (LJ(ν)⊗K L) ∼= (U(g)⊗U(pJ ) L
J(ν))⊗K L = MJ(ν)⊗K L

we obtain an increasing filtration of U(g)-submodules on MJ(ν)⊗K L

(Fili(MJ(ν)⊗K L))i∈Z
def= (U(g)⊗U(pJ ) Fili(LJ(ν)⊗K L))i∈Z

such that gri(MJ(ν) ⊗K L) is either 0 of MJ(κi). By exactness of the translation functor
T µλ (see (198)), we deduce an increasing filtration (Fili(T µλ (MJ(ν))))i∈Z

def= (Fili(MJ(ν) ⊗K
L))ξµ)i∈Z on T µλ (MJ(ν)) = (MJ(ν)⊗KL)ξµ which is non-zero if and only if gri(T

µ
λ (MJ(ν))) ∼=

MJ(κi) for some κi ∈ Λdom
J such that (MJ(κi))ξµ ̸= 0, or equivalently L(κi)ξµ ̸= 0. Compar-

ing with the end of Step 1, we obtain the statement.

The last statement of the lemma just follows from the fact LI(w1,n−1(ν)) ⊗K L is finite
dimensional.
Remark 5.4.10. Lemma 5.4.9 is applied in Lemma 5.4.11 and Lemma 5.4.12 below to study
certain T µλ (Dν). Although more direct proofs probably exist without using Verma modules
(since ultimately it is a matter of decomposing LI(w1,n−1(ν))⊗K L, with the notation of the
proof of Lemma 5.4.9), the present proofs are more convenient for us as we can use standard
results on the translation or wall-crossing of Verma modules.
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Lemma 5.4.11. For 0 ≤ k ≤ n − 1 we have a canonical isomorphism of coadmissible
D(G)-modules

T w0·µ0
w0·0 (Ωk) ∼= Dµk

. (548)

Proof. Let ξ0 (resp. ξµ0) be the unique infinitesimal character such that L(0)ξ0 ̸= 0
(resp. L(µ0)ξµ0

̸= 0). By [Hum08, §7.8] the pair of functors Tw0·µ0
w0·0 and Tw0·0

w0·µ0 (see (198)) are
both left and right adjoint of each other, and gives an equivalence of categories (Ob

alg)ξ0
∼=

(Ob
alg)ξµ0

(where (Ob
alg)ξ for an infinitesimal character ξ is the subcategory of Ob

alg of M
such that M = Mξ (see above Lemma 3.1.3 and recall that [Hum08, §7.8] uses antidomi-
nant weights, whence this w0 everywhere). By [Hum08, Thm. 7.6] for w ∈ W (G) we have
Tw0·µ0
w0·0 (M(w · 0)) ∼= M(w · µ0) and Tw0·0

w0·µ0(M(w · µ0)) ∼= M(w · 0). Since OpJ
alg is stable un-

der subobjects and tensoring by finite dimensional U(g)-modules, Tw0·µ0
w0·0 and Tw0·0

w0·µ0 preserve
OpJ

alg, and thus induce an equivalence of categories (OpJ
alg)ξ0

∼= (OpJ
alg)ξµ0

(with obvious nota-
tion). Let k ∈ {0 . . . , n−1}, since MJ(wn−1,n−k ·0) (resp. MJ(wn−1,n−k ·µ0)) is the maximal
quotient of M(wn−1,n−k · 0) (resp. M(wn−1,n−k · µ0)) in OpJ

alg by [Hum08, Thm. 9.4(c)], the
isomorphism Tw0·µ0

w0·0 (M(wn−1,n−k ·0)) ∼= M(wn−1,n−k ·µ0) necessarily induces an isomorphism
Tw0·µ0
w0·0 (MJ(wn−1,n−k · 0)) ∼= MJ(wn−1,n−k · µ0). Since MJ(µ) for µ ∈ Λdom

J has cosocle L(µ),
any quotient of MJ(wn−1,n−k · µ0) of the form MJ(µ) for some µ ∈ Λdom

J is necessarily
MJ(wn−1,n−k · µ0) itself. In particular any increasing filtration on Tw0·µ0

w0·0 (MJ(wn−1,n−k · 0))
as in Lemma 5.4.9 has only one non-zero graded piece, which is MJ(wn−1,n−k · µ0). Then
Lemma 5.4.9 implies T w0·µ0

w0·0 (Dwn−1,n−k·0) ∼= Dµk
. Thus (548) follows from (i) of Proposi-

tion 5.4.6.

Applying T w0·µ0
w0·0 to the complex (542) we deduce from Lemma 5.4.11 an isomorphism of

complexes of coadmissible D(G)-modules:

T w0·µ0
w0·0 (Ω•) ∼= D•

µ0 .

This is essentially equivalent to what Schneider does in [S92, Thm. 3]: though there is no
mention of infinitesimal characters there, in [S92, p.643] he first defines a decreasing filtration
on the complex Ω• ⊗K L(1) (note that L(1) = L(µ0) is the unique finite dimensional simple
U(g)-module with highest weight in the W (G)-orbit of w0 · µ0 − w0 · 0 = µ0) and then in
the proof of [S92, Thm. 3] projects onto the unique graded piece with infinitesimal character
ξµ0 . As T w0·µ0

w0·0 is exact, we deduce from Theorem 5.4.5 for 0 ≤ k ≤ n− 1 (with the notation
of (485)

Hk(D•
µ0) ∼= Tw0·µ0

w0·0 (Hk(Ω•)) ∼= L(1)⊗K (V ∞
[1,n−k−1],∆)∨ = (V alg

[1,n−k−1],∆)∨. (549)

We need the following result on the wall-crossing of holomorphic discrete series.

Lemma 5.4.12. Let 1 ≤ k ≤ n − 1 and µ ∈ Λ such that ⟨µ + ρ, α∨⟩ ≥ 0 for α ∈ Φ+ and
the stabilizer of µ in W (G) for the dot action is {1, sk}. We have a short exact sequence of
coadmissible D(G)-modules

0 −→ Dµk
−→ Θµ(Dµk

) −→ Dµk−1 −→ 0. (550)
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Proof. Recall from above (462) that Θµ(Dµk
) = T w0·µ0

µ (T µw0·µ0(Dµk
)). By Lemma 5.4.9

applied with ν = µk and λ = w0 · µ0, we have a decreasing exhaustive separated filtra-
tion (Fili(D))i∈Z on D

def= T µw0·µ0(Dµk
), and an increasing exhaustive separated filtration

(Fili(M))i∈Z onM def= T µw0·µ0(MJ(µk)) such that for i ∈ Z we have either gri(D) = gri(M) = 0,
or gri(D) ∼= Dκi

and gri(M) ∼= MJ(κi) for some κi ∈ Λdom
J . Then we apply Lemma 5.4.9

again to T w0·µ0
µ (gri(D)) (i.e. with ν = κi, λ = µ, µ = w0 · µ0) for i ∈ Z such that

0 ̸= gri(D) ∼= Dκi
, and obtain a decreasing exhaustive separated filtration (Filj(Θµ(Dµk

)))j∈Z
on Θµ(Dµk

) = T w0·µ0
µ (D) which refines the decreasing filtration (T w0·µ0

µ (Fili(D)))i∈Z, and
an increasing exhaustive separated filtration (Filj(Θsk

(MJ(µk))))j∈Z on Θsk
(MJ(µk)) =

Tw0·µ0
µ (M) which refines the increasing filtration (Tw0·µ0

µ (Fili(M)))i∈Z) such that for each
j ∈ Z we have either grj(Θµ(Dµk

)) = grj(Θsk
(MJ(µk))) = 0, or grj(Θµ(Dµk

)) ∼= Dθj
and

grj(Θsk
(MJ(µk))) ∼= MJ(θj) for some θj ∈ Λdom

J . However, by (ii) of Lemma 3.4.15 and up
to some reindexation, the only such filtration on Θsk

(MJ(µk)) is

0 = Fil0(Θsk
(MJ(µk))) ⊊ Fil1(Θsk

(MJ(µk))) = MJ(µk−1) ⊊ Fil2(Θsk
(MJ(µk)))

= Θsk
(MJ(µk))

with gr1(Θsk
(MJ(µk))) ∼= MJ(µk−1) and gr2(Θsk

(MJ(µk))) ∼= MJ(µk). This forces
Θµ(Dµk

) to admit a filtration

Θµ(Dµk
) = Fil1(Θµ(Dµk

)) ⊋ Fil2(Θµ(Dµk
)) = Dµk

⊋ Fil3(Θµ(Dµk
)) = 0

with gr1(Θµ(Dµk
)) ∼= Dµk−1 and gr2(Θµ(Dµk

)) ∼= Dµk
. Hence we have (550).

Remark 5.4.13. We will see in the proof of Theorem 5.4.16 below that the injection Dµk
→

Θµ(Dµk
) in Lemma 5.4.12 is the canonical adjunction map.

We now slightly reformulate (a weak form of) [Or13, Thm. 2.2].

Theorem 5.4.14. Let µ ∈ Λdom
J . Then Dµ in (544) is a finite length coadmissible D(G)-

module which admits a decreasing filtration

Dµ = Fil0(Dµ) ⊇ Fil1(Dµ) ⊇ · · · ⊇ Filn−1(Dµ)

satisfying the following conditions:

(i) grn−1(Dµ) ̸= 0 if and only if µ ∈ Λdom, in which case grn−1(Dµ) ∼= L(µ);

(ii) for 0 ≤ ℓ ≤ n − 2, there exists Mℓ in O
p

ℓ̂+1
alg such that grℓ(Dµ) fits into a short exact

sequence of coadmissible D(G)-modules if wℓ+1,n−1 · µ ∈ Λdom

0→ FGP
ℓ̂+1

(Mℓ, π
∞
ℓ+1,ℓ+1)∨ → grℓ(Dµ)→ L(wℓ+1,n−1 · µ)⊗K (V ∞

[1,ℓ],∆)∨ → 0,

and grℓ(Dµ) ∼= FGP
ℓ̂+1

(Mℓ, π
∞
ℓ+1,ℓ+1)∨ otherwise.
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Proof. Recall from (544) that Dµ = Fµ(H) where Fµ is the analytification on Pn−1
rig of

the G-equivariant vector bundle FLI(w1,n−1(µ)) on Pn−1. It follows from [GS69, Thm. 6.1]
(see also [Kos61, Thm. 6.4]) and from the definition of Λdom (using w0 = wIw1,n−1) that
Hn−1−ℓ(Pn−1,FLI(w1,n−1(µ))) ̸= 0 if and only if wℓ+1,n−1 · µ ∈ Λdom, in which case
Hn−1−ℓ(Pn−1,FLI(w1,n−1(µ))) ∼= L(wℓ+1,n−1 · µ). Also recall that we have for 0 ≤ ℓ ≤ n − 2
(see the line below (95))

π∞
ℓ+1,ℓ+1

∼= 1ℓ+1 ⊠E St∞
n−1−ℓ = V ∞

[1,ℓ],̂ℓ+1.

Then (i) and (ii) follow from [Or13, Lemma 2.1], [Or13, Thm. 2.2] (based on [Or08, Thm. 1])
and the discussion that follows loc. cit. where for 0 ≤ ℓ ≤ n − 2 (see [Or13, (7)] and the
notation there)

Mℓ
def= ker

(
Hn−1−ℓ

Pℓ (Pn−1,FLI(w1,n−1(µ))) −→ Hn−1−ℓ(Pn−1,FLI(w1,n−1(µ)))
)
.

Recall that J = n̂− 1 and µk = wn−1,n−k · µ0 for 0 ≤ k ≤ n − 1 where µ0 is our fixed
weight in Λdom. We will need the following technical result.

Lemma 5.4.15. For 0 ≤ k ≤ n−1 and µ0 ∈ Λdom we have a D(LJ)-equivariant isomorphism

H0(NJ , Dµk
) ∼= LJ(µk) = LJ(wn−1,n−k). (551)

Proof. Note first that we have an equality of closed vector subspaces of Dµk

H0(NJ , Dµk
) = H0(NJ , H

0(nJ , Dµk
)). (552)

Recall that H is by definition contained in the rigid analytic space associated with the Zariski
open affine subscheme PJw0PI/PI of G/PI = Pn−1

/K . Using PJ = NJLJ , w0LJw0 = LI and
w0 = wn−1,1wI , we have (as affine schemes)

PJw0PI = NJLJw0PI = NJw0(w0LJw0)PI = NJw0PI

= NJwn−1,1PI ∼= NJ × (wn−1,1PI). (553)

Let LI def= LI(w1,n−1(µk)), the restriction FLI(w1,n−1(µk))|PJw0PI/PI
= FLI |PJw0PI/PI

is by defi-
nition the quotient (PJw0PI × LI)/PI where PI acts on PJw0PI × LI by

(PJw0PI × LI)× PI → PJw0PI × LI , ((x, v), h) 7→ (xh, h−1 · v).

Using (553), we write each x ∈ PJw0PI as x = awn−1,1b for some a ∈ NJ and b ∈ PI
(uniquely determined by x). We consider the following isomorphism

PJw0PI × LI
∼−→ PJw0PI × LI , (awn−1,1b, v) 7→ (awn−1,1b, b · v)

which descends to an isomorphism

(PJw0PI × LI)/PI ∼−→ (PJw0PI)/PI × LI , (awn−1,1b, v)PI 7→ (awn−1,1bPI , b · v). (554)
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We have a (left) PJ -action on (PJw0PI × LI)/PI given by

PJ × ((PJw0PI × LI)/PI)→ (PJw0PI × LI)/PI , (g, (x, v)PI) 7→ (gx, v)PI . (555)

For g = g′g′′ ∈ NJLJ = PJ and x = awn−1,1b ∈ NJwn−1,1PI = PJw0PI , we have

gx = g′(g′′a(g′′)−1)wn−1,1(w1,n−1g
′′w−1

1,n−1)b

with g′(g′′a(g′′)−1) ∈ NJ and (w1,n−1g
′′w−1

1,n−1) ∈ LI . Hence, the PJ -action (555) translates
via (554) into the PJ -action (with the above notation)

PJ × ((PJw0PI)/PI × LI)→ (PJw0PI)/PI × LI , (g, (xPI , v))
7→ (gxPI , (w1,n−1g

′′w−1
1,n−1) · v). (556)

Recall from the notation in §1.4 that (LI)w1,n−1 is the LJ = w−1
1,n−1LIw1,n−1-representation

with same underlying space as LI and g′′ ∈ LJ acting as w1,n−1g
′′w−1

1,n−1 on LI . It follows
from the above discussion that (554) gives a PJ -equivariant isomorphism of PJ -equivariant
algebraic vector bundles on PJw0PI/PI (with the PJ -action (555) on the left and the PJ -
action (556) on the right):

FLI |PJw0PI/PI
∼= OPJw0PI/PI

× (LI)w1,n−1 .

As in (547), we have (LI)w1,n−1 ∼= LJ(µk) as LJ -representations. Taking rigid analytic
sections over H, we obtain a PJ -equivariant topological isomorphism of Fréchet spaces

Dµk

(544)= FLI (H) ∼= O(H)⊗K LJ(µk) = Ω0 ⊗K LJ(µk). (557)

The NJ -equivariant isomorphism of schemes PJw0PI/PI = NJw0PI/PI
∼−→ NJ induces a

NJ -equivariant isomorphism between their algebraic de Rham complexes Ω•
PJw0PI/PI

∼= Ω•
NJ

.
As NJ is the affine space AdimNJ

/K , Ω•
NJ

is naturally identified with the Chevalley-Eilenberg
complex HomK(∧•nJ ,ONJ

) ∼= HomK(∧•nJ ,OPJw0PI/PI
). Taking rigid analytic sections over

H, we can identify the de Rham complex (542) with HomK(∧•nJ ,Ω0), which is the Chevalley-
Eilenberg complex of Ω0 (see also [S92, p.635] for the isomorphism Ωj ∼= HomK(∧jnJ ,Ω0)
for 0 ≤ j ≤ n− 1). In particular, we obtain an equality of closed vector subspaces of Ω0

H0(nJ ,Ω0) = H0(Ω•) ∼= 1∨
G

(where the second isomorphism follows from Theorem 5.4.5). With (557) (and as nJ acts
trivially on (LI)w1,n−1 ∼= LJ(µk)) this gives a PJ -equivariant isomorphism of Fréchet spaces

H0(nJ , Dµk
) ∼= H0(nJ ,Ω0)⊗K LJ(µk) = LJ(µk)

with NJ acting trivially on LJ(µk). This together with (552) gives (551).

We actually only use Theorem 5.4.14 for µ = µn−1, and likewise Lemma 5.4.15 for
k = n− 1, in order to prove the key result that follows.
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Theorem 5.4.16. For 0 ≤ k ≤ n− 1 we have an isomorphism of finite length coadmissible
D(G)-modules

Dk
∼= Dµk

. (558)
Moreover, for 0 ≤ k ≤ n− 2, the differential map Dµk

→ Dµk+1 is the unique (up to scalar)
non-zero map Dk → Dk+1 with image Xk+1.

Proof. We prove the first statement. Note first that Dµn−1 = Dwn−1,1·µ0 is a finite length
coadmissible D(G)-module by the first statement of Theorem 5.4.14. Condition (i) of The-
orem 5.4.4 holds for C = Dµn−1 by Lemma 5.4.15. Condition (ii) of Theorem 5.4.4 holds
for C = Dµn−1 by Theorem 5.4.14, noting that wℓ+1,n−1 · µn−1 ∈ Λdom if and only if ℓ = 0
(in which case it is µ0). Hence Dn−1 ∼= Dµn−1 by Theorem 5.4.4. One easily checks from
(510) and (512) that the (irreducible) cosocle of Dn−1 does not appear in Dn−2, hence
HomG(Dn−1, Dn−2) = 0. Then it follows from (iii) of Theorem 5.4.1 (for k = n − 1) that
there is (up to a non-zero scalar) a unique injection Dn−1 ↪→ Θµ(Dn−1) (with the notation
of loc. cit.). In particular this must be the injection in (550) for k = n − 1. Then it fol-
lows from (iii) of Theorem 5.4.1 and (550) again (both applied with k = n − 1) that we
have Dn−2 ∼= Dµn−2 . Since we again have HomG(Dn−2, Dn−3) = 0, the same argument for
k = n − 2 instead of k = n − 1 gives Dn−3 ∼= Dµn−3 . By descending induction we deduce
(558) for all k.

We prove the second statement. For 0 ≤ k ≤ n − 2, as Hk+1(D•
µ0) ∼= (V alg

[1,n−k−2],∆)∨

(see (549)) and (V alg
[1,n−k−2],∆)∨ does not show up in socD(G)(Dµk+1) ∼= socD(G)(Dk+1) (using

(512)), we deduce that the differential map Dµk
→ Dµk+1 is non-zero. Therefore it must be

the unique (up to scalar) non-zero map Dk → Dk+1 with image Xk+1 (see the discussion
above (526)).

Remark 5.4.17. By the definition of Dn−1 below (524), we have cosocD(G)(Dn−1) = (Stalg
n )∨.

When µ0 = (0, · · · , 0), we have Dn−1 ∼= Ωn−1 by Theorem 5.4.16 and (i) of Proposition 5.4.6.
Thus we obtain cosocD(G)(Ωn−1) = (St∞

n )∨. Then, by an argument parallel to [Schr11,
Cor. 6.11] using [IS01], one can expect to deduce from this that Ωn−1 is a quotient of the dual
of the locally K-analytic Steinberg (Stan

n )∨, and thus a subquotient of FGB (U(g)⊗U(b) 0, 1T )∨.
Using Theorem 5.4.16, Lemma 5.4.11 and (461), it would follow that Dn−1 ∼= Dµn−1

∼=
T w·µ0
w·0 (Ωn−1) is a subquotient of T w·µ0

w·0 (FGB (U(g)⊗U(b)0, 1T )∨) ∼= FGB (U(g)⊗U(b)µ0, 1T )∨, which
by Lemma 5.4.12 (or (iii) of Theorem 5.4.1) would imply that Dk

∼= Dµk
is a subquotient of

Θsk+1 · · ·Θsn−1(FGB (U(g)⊗U(b) µ0, 1T )∨) ∼= FGB (Qk, 1T )

where Qk
def= Θsk+1 · · ·Θsn−1(U(g)⊗U(b) µ0) ∈ Ob

alg.

Recall that we have defined an explicit complex of finite length coadmissible D(G)-
modules with Orlik-Strauch constituents D̃• in (527).

Corollary 5.4.18. For µ0 ∈ Λdom we have two morphisms of complexes of finite length
coadmissible D(G)-modules with Orlik-Strauch constituents

Hn−1(D•
µ0)[−(n− 1)]←− D̃• −→ D•

µ0
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which give an explicit section to the morphism of complexes D•
µ0 ↠ Hn−1(D•

µ0)[−(n − 1)]
in the derived category of finite length coadmissible D(G)-modules with Orlik-Strauch con-
stituents.

Proof. This follows directly from (526), Theorem 5.3.13, (546) and Theorem 5.4.16.

One also has statements analogous to Proposition 5.3.14 and Corollary 5.3.15 with D•
µ0

instead of D•. In particular, if we define Ω̃• def= D̃• when µ0 = (0, · · · , 0), we at last obtain
one of our main results.

Corollary 5.4.19. We have two morphisms of complexes of finite length coadmissible D(G)-
modules with Orlik-Strauch constituents.

Hn−1(Ω•)[−(n− 1)]←− Ω̃• −→ Ω•

which give an explicit section to the morphism of complexes Ω• ↠ Hn−1(Ω•)[−(n−1)] in the
derived category of finite length coadmissible D(G)-modules with Orlik-Strauch constituents.

Remark 5.4.20. Assume µ0 = (0, · · · , 0) and, changing notation, denote by Ω̃n−1 the unique
coadmissible D(G)-module with cosocle ((St∞

n )⊕n)∨ which sits in a short exact sequence

0 −→ Zn−1 −→ Ω̃n−1 −→
(
(St∞

n )⊕n
)∨
−→ 0

(see (529)). Then the complex [Ω̃0 → Ω̃1 → · · · → Ω̃n−2 → Ω̃n−1] (the same as in (527) except
that we have modified the term in degree n− 1) is canonical, exact in degrees < n− 1 and
its Hn−1 is ((St∞

n )⊕n)∨. That is, we have “made exact” the de Rham complex Ω• in degrees
< n−1 at the expense of replacing Hn−1(Ω•) = (St∞

n )∨ by ((St∞
n )⊕n)∨. These properties look

similar to the properties of the complexes obtained as χ-isotypic direct factors of the (global
sections of the) de Rham complex of the first covering of H, where χ is a smooth character of
O×
D and D is the division algebra over K of invariant 1/n, see for instance [Jun24]. Finally,

note that, by (v) of Theorem 5.4.1, with this modified complex (iv) of Theorem 5.4.1 now
also holds when k = n− 1.
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A Combinatorics in W (G)
We prove several technical combinatorial lemmas involving specific elements of W (G) that
are used throughout this work.

We equip the set Z × Z with the partial order (a, b) ≤ (a′, b′) if and only if a ≤ a′ and
b ≤ b′. Let Σ ⊆ Z×Z be a finite subset such that 1 ≤ a− b ≤ n− 1 for each (a, b) ∈ Σ. For
k ∈ Z, we set

xΣ,k
def=

∏
(a,b)∈Σ,a+b=k

sa−b. (559)

One easily checks that sa−bsa′−b′ = sa′−b′sa−b for (a, b), (a′, b′) ∈ Σ satisfying a+b = a′+b′ = k,
so the definition of xΣ,k is independent of the order of the sa−b in (559). Note that

ℓ(xΣ,k) = #{(a, b) ∈ Σ | a+ b = k}.

As Σ is a finite set, we have xΣ,k ̸= 1 only for finitely many k ∈ Z, so we can define

xΣ
def= · · ·xΣ,k · xΣ,k−1 · · · ∈ W (G).

Definition A.1. Let Σ ⊆ Z×Z be a finite subset such that 1 ≤ a− b ≤ n−1 for (a, b) ∈ Σ.

(i) We say that Σ is an expansion of xΣ if ℓ(xΣ) = ∑
k∈Z ℓ(xΣ,k) (= #Σ).

(ii) We say that Σ is saturated if the following extra condition holds: for (a, b), (a′, b′) ∈ Σ
and (a′′, b′′) ∈ Z× Z such that (a, b) ≤ (a′′, b′′) ≤ (a′, b′), we have (a′′, b′′) ∈ Σ.

(iii) We say that a saturated Σ is connected if for each pair of saturated subsets Σ1 and Σ2
satisfying Σ1 ∩ Σ2 = ∅ and Σ = Σ1 ⊔ Σ2, there exists (a1, b1) ∈ Σ1 and (a2, b2) ∈ Σ2
such that |(a1 − b1)− (a2 − b2)| ≤ 1.

(iv) We say that x ∈ W (G) is saturated if x = xΣ for a saturated Σ.

(v) We say a saturated xΣ is connected if Σ can be moreover taken connected.

We define the saturated closure of any subset Σ ⊆ Z × Z to be the minimal saturated
subset of Z × Z which contains Σ, if it exists. Note that the saturated closure can contain
elements (a′′, b′′) such that a′′ − b′′ /∈ {1, . . . , n − 1} (see Example A.3 below). Note also
that there is an obvious way to decompose an arbitrary saturated subset Σ ⊆ Z×Z into its
connected components.

For x ∈ W (G) we let Supp(x) ⊆ ∆ be the set of j ∈ {1, . . . , n−1} such that sj appears in
one (and thus all) reduced decomposition of x. Recall that x ∈ W (G) is called Coxeter if it is
a product of all distinct simple reflections (each with multiplicity 1). We say that x ∈ W (G)
is partial-Coxeter if there exists a reduced decomposition of x which is multiplicity free, i.e.
sj shows up at most once for each j ∈ ∆. One easily checks from the braid relations that
any reduced decomposition of a partial-Coxeter element is multiplicity free.
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Lemma A.2. Let Σ ⊆ Z× Z be a saturated subset.

(i) We have ℓ(xΣ) = #Σ, i.e. Σ is an expansion of xΣ. Moreover, there exists a natural
bijection between the set of reduced decompositions of xΣ and the set of total orders on
Σ refining the partial order on Σ induced by the one on Z× Z.

(ii) We have j ∈ DL(xΣ) (resp. j ∈ DR(xΣ)) if and only if there exists a maximal
(resp. minimal) element (a, b) ∈ Σ such that j = a− b.

(iii) If Σ is connected and Σ′ ⊆ Z×Z is another saturated subset such that xΣ = xΣ′, there
exists c ∈ Z such that Σ′ = {(a− c, b− c) | (a, b) ∈ Σ}.

(iv) The element xΣ is partial-Coxeter if and only if the map

Σ −→ Supp(xΣ), (a, b) 7−→ a− b (560)

is bijective. Moreover, all partial-Coxeter elements have the form xΣ for a saturated Σ.

Proof. We start with several preliminaries. We first fix an arbitrary finite Σ ⊆ Z × Z such
that 1 ≤ a− b ≤ n− 1 for (a, b) ∈ Σ. We write ≤∗ for a total order on Σ which refines the
fixed partial order ≤.

For each total order ≤∗ on Σ that refines ≤, we consider the word

xΣ(≤∗) def=
∏

(a,b)∈Σ,≤∗

sa,b (561)

where sa,b shows up at the right of sa′,b′ whenever (a, b) <∗ (a′, b′). Here we use the symbol
sa,b for the copy of sa−b corresponding to (a, b) inside the word (561).

There exists a total order ≤∗ on Σ that refines ≤ such that xΣ is the image of the word
xΣ(≤∗) in W (G). This is obvious as we can fix an arbitrary total order on {(a, b) ∈ Σ |
a + b = k} for each k ∈ Z, and then glue them to a total order ≤∗ on Σ by requiring that
(a, b) ≤∗ (a′, b′) whenever a+ b ≤ a′ + b′.

For two different total orders ≤∗
1 and ≤∗

2 on Σ which refine ≤, we say that ≤∗
1 and ≤∗

2
are adjacent if there exists exactly one pair (a, b), (a′, b′) ∈ Σ such that (a, b) <∗

1 (a′, b′) and
(a′, b′) <∗

2 (a, b). If both words (561) have the same image in W (G), we see that xΣ(≤∗
1) is

reduced if and only if xΣ(≤∗
2) is reduced (since then both have length #Σ).

Given two total orders ≤∗
1 and ≤∗

2 on Σ which refine ≤, we say that ≤∗
1 and ≤∗

2 are
equivalent if there exist an integer t ≥ 0 and total orders ≤∗

1,t′ on Σ for 0 ≤ t′ ≤ t which
refine ≤ such that ≤∗

1,0=≤∗
1, ≤∗

1,t=≤∗
2 and ≤∗

1,t′ is adjacent to ≤∗
1,t′−1 for 1 ≤ t′ ≤ t.

We now prove that all total orders on Σ which refine ≤ are equivalent. It suffices to prove
that any total order ≤∗ is equivalent to the total order ≤∗

0 defined by (a, b) ≤∗
0 (a′, b′) if and

only if a + b ≤ a′ + b′ and a ≤ a′ (which refines ≤). As a total order on Σ corresponds to
a bijection between Σ and the set {1, . . . ,#Σ}, ≤∗ differs from ≤∗

0 by a permutation, and
we write ℓ(≤∗) for the length of this permutation (with ℓ(≤∗

0) = 0). We prove that ≤∗ is
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equivalent to ≤∗
0 by induction on ℓ(≤∗). If ℓ(≤∗) = 0, there is nothing to prove. If ℓ(≤∗) > 0,

then the subset

{(a, b) ∈ Σ such that ∃ (a′, b′) ∈ Σ with (a′, b′) <∗
0 (a, b) and (a, b) <∗ (a′, b′)}

has a maximal element under ≤∗
0. We choose such a maximal element (a, b), and we choose

(a′, b′) in the above subset to be minimal under≤∗. Assume that there exists (a′′, b′′) ∈ Σ such
that (a, b) <∗ (a′′, b′′) <∗ (a′, b′). We can assume (a′′, b′′) to be the minimal such element
under ≤∗. The minimality of our choice of (a′, b′) forces (a, b) <∗

0 (a′′, b′′), which in turn
contradicts the maximality of (a, b) (as (a′′, b′′) <∗ (a′, b′) and (a′, b′) <∗

0 (a, b) <∗
0 (a′′, b′′)).

Hence, there is no element between (a, b) and (a′, b′) under ≤∗, and we can define ≤∗
1 by

interchanging (a, b) and (a′, b′) in the total order ≤∗. Then ℓ(≤∗
1) = ℓ(≤∗) − 1 by [BB05,

Prop. 1.5.8], so ≤∗
1 is equivalent to ≤∗

0 by induction. As ≤∗
1 is adjacent to ≤∗, it follows that

≤∗ is also equivalent to ≤∗
0.

We now assume that Σ is saturated. We prove that if we modify the word xΣ(≤∗) using
a braid relation, the new word is xΣ(≤′∗) for another total order ≤′∗ on Σ (refining ≤) which
is adjacent to ≤∗. As the braid relations are sjsj′ = sj′sj for some |j − j′| ≥ 2 or sjsj−1sj =
sj−1sjsj−1 for some 2 ≤ j ≤ n − 1, from the definition of adjacent it is enough to rule out
the second possibility. Assume on the contrary that there exist (a, b) <∗ (a′, b′) <∗ (a′′, b′′)
in Σ such that the only element in Σ between (a, b) and (a′′, b′′) (under ≤∗) is (a′, b′) and
such that a − b = j = a′′ − b′′ = j and a′ − b′ = j − 1 for some 2 ≤ j ≤ n − 1. Since
a− b = j = a′′− b′′ = j and a′− b′ = j−1, and since ≤∗ refines ≤, it is easy to check that we
must have (a, b) < (a′, b′) < (a′′, b′′). Then it is also easy to see that the saturated condition
on Σ forces the existence of at least another (a′′′, b′′′) ∈ Σ such that (a, b) < (a′′′, b′′′) < (a′′, b′′)
and a′′′ − b′′′ = j + 1. But this contradicts the fact that (a′, b′) is the only element between
(a, b) and (a′′, b′′) under ≤∗. An analogous argument shows that we cannot have elements
(a, b) <∗ (a′, b′) <∗ (a′′, b′′) in Σ such that the only element between (a, b) and (a′′, b′′) is
(a′, b′) and such that a− b = j − 1 = a′′− b′′ = j − 1 and a′− b′ = j for some 2 ≤ j ≤ n− 1.
Hence, the only braid relations that can be used to modify xΣ(≤∗) are sjsj′ = sj′sj for some
|j − j′| ≥ 2. This implies that the new word has the form xΣ(≤′∗) for some ≤′∗ which is
adjacent to ≤∗.

We now prove (i). From the previous statements, we only have to prove that xΣ(≤∗) is
a reduced word for one (equivalently any) total order ≤∗ on Σ refining ≤. Note first that if
two copies of sj occur in xΣ(≤∗), they come from two distinct elements (a1, b1), (a2, b2) ∈ Σ
such that a1 − b1 = a2 − b2 = j. We can assume a1 < a2, and we see that (a1 + 1, b1) also
belongs to Σ as Σ is saturated. We deduce that sj+1 occurs in xΣ(≤∗) between these two
sj. In particular, the two sj cannot cancel after applying the braid relations. It follows that
xΣ(≤∗) is reduced.

We prove (ii). An element (a, b) ∈ Σ is the unique maximal (resp. minimal) element
under some total order ≤∗ if and only if (a, b) is a maximal (resp. minimal) element under
the partial order ≤. Then the statement follows from ℓ(xΣ) = #Σ and [BB05, Cor. 1.4.6].

We prove (iii). Let Σ′ ⊆ Z × Z be another saturated subset such that xΣ = xΣ′ , we
argue by induction on #Σ. If #Σ = 1, the claim is obvious. If #Σ > 1, there exists
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(a0, b0) ∈ Σ which is either minimal or maximal (for ≤), such that Σ \ {(a0, b0)} is still
saturated and connected. Let j def= a0 − b0. If (a0, b0) is minimal (resp. maximal) in Σ, we
have j ∈ DR(xΣ) = DR(xΣ′) (resp. j ∈ DL(xΣ) = DL(xΣ′)) (using (ii)), which gives a unique
minimal (resp. maximal) element (a′

0, b
′
0) ∈ Σ′ satisfying a′

0 − b′
0 = j. By our induction

assumption, there exists c ∈ Z such that

Σ′ \ {(a′
0, b

′
0)} = {(a− c, b− c) | (a, b) ∈ Σ \ {(a0, b0)}}.

Thus we only need to prove (a′
0, b

′
0) = (a0 − c, b0 − c). Assume that (a0, b0) is maximal in

Σ. Then as Σ is connected, either (a0 − 1, b0) or (a0, b0 − 1) is in Σ \ {(a0, b0)} but none of
(a0+1, b0), (a0, b0+1). Thus Σ′\{(a′

0, b
′
0)} contains either (a0−c−1, b0−c) or (a0−c, b0−c−1)

but not (a0−c+1, b0−c), (a0−c, b0−c+1). As (a′
0, b

′
0) is maximal in Σ′ and Σ′ is saturated,

this forces (a′
0, b

′
0) = (a0 − c, b0 − c). The proof for (a0, b0) minimal is analogous.

We prove (iv). As xΣ(≤∗
0) is a reduced word, the map (560) takes values in Supp(xΣ) ⊆

{1, . . . , n−1} and is clearly surjective. Hence, (560) is a bijection if and only if it is injective
if and only if any reduced decomposition of xΣ is multiplicity free, which is equivalent to
xΣ being partial-Coxeter by definition. We now prove that any partial-Coxeter element
x ∈ W (G) has the form xΣ for some saturated Σ by induction on ℓ(x). The case ℓ(x) = 0 is
trivial. Let 1 ̸= x ∈ W (G) be partial-Coxeter and choose j ∈ Supp(x) such that j′ /∈ Supp(x)
for j′ > j. We set x′ def= sjx (resp. x′ def= xsj) if j ∈ DL(x) (resp. if j ∈ DR(x)). We have
j ∈ DL(x) ∩DR(x) if j − 1 /∈ Supp(x), j ∈ DR(x) \DL(x) if sj−1sj ≤ x, j ∈ DL(x) \DR(x)
if sjsj−1 ≤ x, and ℓ(x′) = ℓ(x) − 1 in all cases. By our induction assumption, there is a
saturated subset Σ′ such that x′ = xΣ′ . When j−1 ∈ Supp(x′) let (a′, b′) ∈ Σ′ be the unique
element such that a′ − b′ = j − 1. Then we claim that x = xΣ for Σ def= Σ′ ⊔ {(a, b)} with
(a, b) described as follows:

• if j − 1 /∈ Supp(x), then x = sjx
′ = x′sj and we take (a, b) to be any element of Z×Z

satisfying a− b = j;

• if sj−1sj ≤ x, then x = x′sj and we take (a, b) def= (a′, b′ − 1) ≤ (a′, b′);

• if sjsj−1 ≤ x, then x = sjx
′ and we take (a, b) def= (a′ + 1, b′) ≥ (a′, b′).

Example A.3. We take g = gln. For n = 4, the partial-Coxeter elements of length 3
are s3s2s1, s1s2s3, s1s3s2, s2s1s3. The element s2s1s3s2 is saturated and connected (take
for instance Σ = {(2, 0), (2, 1), (3, 0), (3, 1)}) but not partial-Coxeter (and is in fact the
only such element for gl4). The elements s1s2s1 and s1s2s3s2s1 are not saturated (for the
first one, one could think of Σ = {(2, 0), (2, 1), (3, 2)} or Σ = {(2, 1), (3, 1), (3, 2)} or Σ =
{(2, 0), (2, 1), (3, 1)} but their saturated closure contains the extra element (2, 2) for the
first two, the extra element (3, 0) for the third). More generally, for n sufficiently large,
sjsj−1sj+1sjsj+2sj+1sj+3sj+2 and its inverse are examples of saturated connected elements.
Lemma A.4. Let Σ ⊆ Z×Z be a saturated subset with a unique minimal element (a1, b1) and
a unique maximal element (a2, b2). Assume there is j ∈ Supp(xΣ) such that |j−(a2−b2)| = 1.
Then we have

{a1 − b1} ⊊ DR(sjxΣ). (562)
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Proof. It follows from (ii) of Lemma A.2 that DR(xΣ) = {a1 − b1} and DL(xΣ) = {a2 − b2}.
This forces sjxΣ > xΣ > xΣsa1−b1 (recall from the proof of Proposition A.2 that the braid
relations in xΣ are only of the type sjsj′ = sj′sj), which implies ℓ(sjxΣsa1−b1) ≤ ℓ(xΣsa1−b1)+
1 = ℓ(sjxΣ) − 1 and thus sjxΣ > sjxΣsa1−b1 . Hence a1 − b1 ∈ DR(sjxΣ). Now we prove
that (562) is a strict inclusion by increasing induction on #Σ. If #Σ = 1, then Supp(xΣ) =
{a2 − b2} and there is nothing to prove. We can assume j = a2 − b2 + 1 as the proof for
j = a2 − b2 − 1 is symmetric. We have the following two possibilities.

Case 1: If a2 − b2 − 1 /∈ Supp(xΣ), then we must have a1 = a2 and Σ = {(a1, b) | b1 ≤
b ≤ b2}. Hence, we have

sjxΣ = sa2−b2+1sa2−b2sa2−b2+1xΣ′ = sa2−b2sa2−b2+1sa2−b2xΣ′ = sa2−b2sa2−b2+1xΣ′sa2−b2

with Σ′ def= Σ \ {(a2, b2), (a2, b2− 1)}. This implies {a1− b1} ⊊ {a2− b2, a1− b1} ⊆ DR(sjxΣ).

Case 2: If a2 − b2 − 1 ∈ Supp(xΣ), then we must have (a1, b1) ≤ (a2 − 1, b2) ∈ Σ. Let
Σ′ be the saturated closure of {(a1, b1), (a2 − 1, b2)}, which is a (saturated) subset of Σ.
Moreover, Σ \ Σ′ = {(a2, b) | b1 ≤ b ≤ b2} is also a non-empty saturated subset of Σ. It
is not difficult to check that xΣ = xΣ\Σ′xΣ′ . As j = a2 − b2 + 1 ∈ Supp(xΣ), we also have
(a1, b1) ≤ (a2, b2 − 1) ∈ Σ, and we set Σ′′ def= (Σ \ Σ′) \ {(a2, b2), (a2, b2 − 1)}, which is yet
another saturated subset of Σ. We observe that

sjxΣ = sa2−b2+1sa2−b2sa2−b2+1xΣ′′xΣ′ = sa2−b2sa2−b2+1sa2−b2xΣ′′xΣ′

= sa2−b2sa2−b2+1xΣ′′sa2−b2xΣ′ (563)

where each decomposition in 563 is reduced. As (a1, b1) ≤ (a2−1, b2) and (a1, b1) ≤ (a2, b2−
1), we have (a1, b1) ≤ (a2 − 1, b2 − 1) ≤ (a2 − 1, b2), which implies (a2 − 1, b2 − 1) ∈ Σ′ and
a2 − b2 = (a2 − 1) − (b2 − 1) ∈ Supp(xΣ′). By our induction assumption applied to Σ′ and
a2− b2, we have {a1− b1} ⊊ DR(sa2−b2xΣ′), which together with (563) finishes the proof.

Lemma A.5. Let x ∈ W (G) and j ∈ ∆ with DR(x) = {j}. Then there exists a saturated
connected subset Σ ⊆ Z × Z such that x = xΣ. Moreover, Σ contains a unique minimal
element (a, b) that satisfies a− b = j.

Proof. Connectedness is clear otherwise we would have #DR(x) > 1. We prove the statement
by induction on ℓ(x). If ℓ(x) = 1, then we deduce from DR(x) = {j} that x = sj. So we
can take Σ = {(a, b)} for an arbitrary (a, b) ∈ Z × Z satisfying a − b = j. We assume
from now on ℓ(x) ≥ 2. We choose an arbitrary j′ ∈ DL(x) and set x′ def= sj′x which satisfies
ℓ(x′) = ℓ(x) − 1 ≥ 1. For each j′′ ∈ DR(x′), we have x = sj′x′ > x′ > x′sj′′ which
implies ℓ(sj′x′sj′′) ≤ ℓ(x′sj′′) + 1 = ℓ(sj′x′) − 1 and thus x = sj′x′ > sj′x′sj′′ = xsj′′ ,
equivalently j′′ ∈ DR(x). As DR(x) = {j}, we conclude that DR(x′) = {j}, which together
with our induction assumption gives a saturated subset Σ′ ⊆ Z × Z such that x′ = xΣ′ .
Our induction assumption also says that Σ′ contains a unique minimal element (a0, b0) that
satisfies a0−b0 = j. We now construct Σ from Σ′, according to the following two possibilities.
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Assume Supp(x′) ∩ {j′ + 1, j′ − 1} = ∅. Then x = sj′x′ = x′sj′ and thus j′ ∈ DR(x),
which forces j = j′. Thus x = x′sj which contradicts DR(x) = DR(x′) = {j}.

We thus have Supp(x′)∩{j′ + 1, j′− 1} ≠ ∅. Since Σ′ contains a unique minimal element
(a0, b0), it is easy to see that, for each saturated subset Σ′′ ⊆ Σ′ containing (a0, b0), Σ′ \ Σ′′

is another saturated subset of Σ′ and that xΣ′ = xΣ′\Σ′′xΣ′′ . We choose such Σ′′ to be the
saturated closure of the following subset

{(a0, b0)} ⊔ {(a, b) ∈ Σ′ | |(a− b)− j′| ≤ 1} ⊆ Σ′.

As sj′sa′−b′ = sa′−b′sj′ for each (a′, b′) ∈ Σ′ \ Σ′′, we have

x = sj′xΣ′ = xΣ′\Σ′′sj′xΣ′′ (564)

with both sides being reduced (using (i) of Lemma A.2). As sj′xΣ′ > xΣ′ , we have sj′xΣ′′ >
xΣ′′ and thus a maximal element (a, b) ∈ Σ′′ cannot satisfy a − b = j′. As Supp(x′) ∩ {j′ +
1, j′ − 1} ̸= ∅, any maximal element (a, b) ∈ Σ′′ must satisfy |a− b− j′| = 1. We now have
the following 3 cases.

• Assume that Σ′′ has two different maximal elements (a1, b1), (a2, b2), and we can assume
a1 ≥ a2. If a1−b1 ≤ a2−b2, then a1 ≥ a2 forces (a1, b1) ≥ (a2, b2) which contradicts the
fact that both (a1, b1) and (a2, b2) are maximal in Σ′′. So we must have a1− b1 = j′ + 1
and a2 − b2 = j′ − 1. If a1 ≥ a2 + 2, this implies b1 ≥ b2 and thus (a1, b1) > (a2, b2),
another contradiction. If a1 = a2, then b1 = b2 − 2 and thus (a1, b1) < (a2, b2), also
a contradiction. So the only possibility is a1 = a2 + 1 and b1 = b2 − 1, in which case
we simply take Σ def= Σ′ ⊔ {(a1, b2)} which is easily seen to be saturated and satisfies
x = sj′x′ = xΣ.

• Assume that Σ′′ has a unique maximal element (a1, b1) and j′ /∈ Supp(x′). We can
assume a1 − b1 = j′ + 1 as the case a1 − b1 = j′ − 1 is similar. Then Σ′′ is the
saturated closure of {(a0, b0), (a1, b1)}. Since j′ /∈ Supp(x′), we must have a0 = a1
and Σ′′ = {(a1, b) | b0 ≤ b ≤ b1}. Hence, it is clear that Σ′′ ⊔ {(a1, b1 + 1)} is
saturated. Using that Σ′′ contains the unique minimal element of Σ′, we also deduce
that Σ def= Σ′ ⊔ {(a1, b1 + 1)} is saturated. As (a1, b1 + 1) must also be maximal in Σ
and a1 − (b1 + 1) = j′, we conclude that xΣ = sj′xΣ′ = x.

• Assume that Σ′′ has a unique maximal element (a1, b1) and j′ ∈ Supp(x′). Here again
we can assume a1 − b1 = j′ + 1. As Σ′′ is the saturated closure of {(a0, b0), (a1, b1)}
and j′ ∈ Supp(x′), we must have j′ ∈ Supp(xΣ′′) and a0 < a1 which forces (a0, b0) ≤
(a1 − 1, b1) ≤ (a1, b1) and (a1 − 1, b1) ∈ Σ′′. But then it follows from Lemma A.4 that
{a0 − b0} ⊊ DR(sj′xΣ′′), which together with (564) implies that {a0 − b0} = {j} ⊊
DR(sj′x′) = DR(x) = {j}, a contradiction.

We have constructed the desired Σ from Σ′ in all possible cases, which finishes the proof.
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Remark A.6. It is an easy check that if a (non-empty) saturated subset Σ ⊆ Z×Z admits
a unique minimal element (a0, b0) and moreover a0 − b0 = 1, then Σ must have the form
{(a0 + c, b0) | 0 ≤ c ≤ c0} for some 0 ≤ c0 ≤ n − 2. Similarly, if a (non-empty) saturated
subset Σ ⊆ Z× Z admits a unique maximal element (a1, b1) and moreover a1 − b1 = n− 1,
then Σ must have the form {(a1 − c, b1) | 0 ≤ c ≤ c1} for some 0 ≤ c1 ≤ n− 2.

In the lemmas below we use without comment notation related to the Kazhdan-Lusztig
polynomials, see the beginning of §3.2.

Lemma A.7. Let j ∈ ∆ and x,w ∈ W (G) such that DL(x) = DL(w) = {j}. Then there
does not exist x′ such that x ≺ x′ ≺ w and j /∈ DL(x′).

Proof. Assume on the contrary that such a triple x,w, x′ exist. By applying Lemma A.5 to
x−1 and w−1 (with DR(x−1) = DR(w−1) = {j}) we know that both x and w are saturated,
i.e. there exist saturated subsets Σ1,Σ2 ⊆ Z × Z such that x = xΣ1 and w = xΣ2 . As
j ∈ DL(w) \DL(x′) and w ≺ x′, by Lemma 3.2.5 we have w = sjx

′ > x′ and in particular x′

is saturated with x′ = xΣ2\{(a,b)} where (a, b) is the maximal element of Σ2 satisfying a−b = j.
Note that DL(w) = {j} forces DL(x′) ⊆ {j−1, j+1}∩∆. As DL(x) = {j} and j /∈ DL(x′) ̸=
∅, by Lemma 3.2.5 we have x′ = sj′x > x for some j′ ∈ DL(x′) ⊆ {j − 1, j + 1} ∩ ∆. If
we write (a′, b′) for the maximal element of Σ2 \ {(a, b)} that satisfies a′ − b′ = j′, then we
can choose Σ1 = Σ2 \ {(a, b), (a′, b′)}. Let (a′′, b′′) be the unique maximal element of Σ1 such
that a′′ − b′′ = j (using DL(x) = {j} and (ii) of Lemma A.2). As (a′′, b′′) ∈ Σ1, we have
(a′′, b′′) = (a− c, b− c) for some c ≥ 1, and in particular (a− 1, b), (a, b− 1) ∈ Σ2 \ {(a, b)} as
Σ2 is saturated. Hence, either (a − 1, b) or (a, b − 1) remains in Σ1 = (Σ2 \ {(a, b), (a′, b′)},
contradicting the maximality of (a′′, b′′) in Σ1.

For j1, j2 ∈ ∆ with |j1 − j2| = 1 and x ∈ W (G) with #(DL(x) ∩ {j1, j2}) = 1, we define
θj1,j2(x) as the unique element in {sj1x, sj2x} such that #(DL(θj1,j2(x)) ∩ {j1, j2}) = 1. It is
clear that ji ∈ DL(x) for i ∈ {1, 2} if and only if j3−i ∈ DL(θj1,j2(x)).

Lemma A.8. Let x,w ∈ W (G) and j1, j2 ∈ ∆ with |j1 − j2| = 1. Assume w /∈ W (L{j1,j2})x
and #(DL(θj1,j2(x)) ∩ {j1, j2}) = 1 = #(DL(θj1,j2(w)) ∩ {j1, j2}). Then we have x ≺ w if
and only if θj1,j2(x) ≺ θj1,j2(w), in which case µ(x,w) = µ(θj1,j2(x), θj1,j2(w)).

Proof. This is [KL79, Thm. 4.2(i)].

For j, j′ ∈ ∆, recall that wj,j′ ∈ W (G) is defined in (201).

Lemma A.9. Let x,w ∈ W (G) with x ≺ w. If x = 1, then w = sj for some j ∈ ∆.
If x = wj,j′, then ℓ(w) > ℓ(x) + 1 if and only if x = sj and w = sjsj+1sj−1sj for some
2 ≤ j ≤ n− 2, in which case we have µ(x,w) = 1.

Proof. The claim when x = 1 is clear. Assume from now that x = wj,j′ and w satisfies
x ≺ w and ℓ(w) > ℓ(x) + 1. We can assume j ≥ j′ (the case j ≤ j′ is similar). By
Lemma 3.2.5 we must have DL(w) = DL(x) = {j} and DR(w) = DR(x) = {j′}. By
Lemma A.5 we know that w is saturated, i.e. w = xΣ for some saturated subset Σ ⊆ Z× Z.
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By (ii) of Lemma A.2 the set Σ admits a unique maximal element (a, b) with a − b = j
and a unique minimal element (a′, b′) with a′ − b′ = j′. If either a = a′ or b = b′, then
it is easy to check that w = wj,j′ which contradicts ℓ(w) > ℓ(x) + 1. Hence, we must
have a′ < a and b′ < b and in particular (a − 1, b − 1), (a − 1, b), (a, b − 1) ∈ Σ (and
j − 1, j + 1 ∈ ∆). One checks that the only x′ ∈ W (L{j,j+1})x satisfying DL(x′) = {j}
and DR(x′) = {j′} is x′ = x, and in particular w /∈ W (L{j,j+1})x. This together with
x ≺ w, DL(x) = DL(w) = {j} and Lemma A.8 implies θj,j+1(x) ≺ θj,j+1(w). We check
that θj,j+1(x) = sj+1x = wj+1,j′ with DL(θj,j+1(x)) = {j + 1} and θj,j+1(w) = sjw < w
with DL(θj,j+1(w)) = {j − 1, j + 1} (as Σ \ {(a, b)} has maximal elements (a − 1, b) and
(a, b− 1)), which together with Lemma 3.2.5 forces θj,j+1(w) = sj−1θj,j+1(x) = sj−1sj+1wj,j′ .
Equivalently, we have x = wj,j′ = xΣ′ with Σ′ def= Σ \ {(a, b), (a − 1, b), (a, b − 1)} (which
admits (a − 1, b − 1) as the unique maximal element). This together with j ≥ j′ forces
b′ = b− 1 and Σ′ = {(a′′, b− 1) | a′ ≤ a′′ ≤ a− 1}. As Σ = Σ′ ⊔ {(a, b), (a− 1, b), (a, b− 1)}
is saturated, we must also have a′ = a − 1, i.e. x = sj and w = sjsj−1sj+1sj (for some
2 ≤ j ≤ n− 2). Finally, note that µ(x,w) = µ(θj,j+1(x), θj,j+1(w)) = 1 by Lemma A.8 (and
ℓ(θj,j+1(w)) = ℓ(θj,j+1(x)) + 1).

Remark A.10. Let j0, j1, j
′
0, j

′
1 ∈ ∆ and consider wj1,j0 , wj′

1,j
′
0
∈ W (G). It is easy to check

(using [BB05, Thm. 2.2.2]) that wj1,j0 ≤ wj′
1,j

′
0

if and only if either j′
1 ≥ j1 ≥ j0 ≥ j′

0 or
j′

1 ≤ j1 ≤ j0 ≤ j′
0. Combined with Lemma A.9, we observe that wj1,j0 ≺ wj′

1,j
′
0

if and only if
wj1,j0 < wj′

1,j
′
0

and ℓ(wj′
1,j

′
0
) = ℓ(wj1,j0) + 1, in which case |j0 − j′

0|+ |j1 − j′
1| = 1.

Lemma A.11. Let j, j′ ∈ ∆ and x ∈ W (G) such that DL(x) = {j1} for some j1 ̸= j.

(i) We have x ≺ wj,j′ if and only if x = wj+1,j′ with j′ > j, or x = wj−1,j′ with j′ < j.

(ii) We have wj,j′ ≺ x if and only if x = wj+1,j′ with j′ ≤ j, or x = wj−1,j′ with j′ ≥ j.

(iii) We have Ext1
U(g)(L(wj,j′), L(x)) ̸= 0 if and only if x = wj1,j′ with j1 ∈ {j−1, j+1}∩∆,

in which case dimE Ext1
U(g)(L(wj,j′), L(x)) = 1.

(iv) We have wj,j′ ≺ w with j′ /∈ DR(w) if and only if w = wj,j′+1 with j ≤ j′, or w = wj,j′−1
with j ≥ j′.

Proof. We prove (i). As x ≺ wj,j′ and j ∈ DL(wj,j′) \ DL(x), by Lemma 3.2.5 we have
wj,j′ = sjx. As DL(x) ̸= ∅, we have x ̸= 1 and thus j ̸= j′. So either we have j′ > j and
x = wj+1,j′ , or we have j′ < j and x = wj−1,j′ . The other direction is obvious.

We prove (ii). As wj,j′ ≺ x and j1 ∈ DL(x) \ DL(wj,j′), by Lemma 3.2.5 we have
x = sj1wj,j′ . As DL(x) = {j1}, by Lemma A.5 (applied to x−1) we know that x = xΣ
for some saturated subset Σ ⊆ Z × Z. By (ii) of Lemma A.2 we know that Σ admits a
unique maximal element (a1, b1) with a1− b1 = j1, and that xΣ\{(a1,b1)} = wj,j′ . In particular,
Σ \ {(a1, b1)} admits a unique maximal element (a, b) with a− b = j and a unique minimal
element (a′, b′) with a′ − b′ = j′, with a = a′ and b ≥ b′ (resp. a ≥ a′ and b = b′) if j ≥ j′

(resp. if j ≤ j′). As Σ is saturated and (a, b) is the unique maximal element of Σ\{(a1, b1)},
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either we have (a, b) = (a1− 1, b1) with (a1, b1− 1) /∈ Σ, or we have (a, b) = (a1, b1− 1) with
(a1 − 1, b1) /∈ Σ. In other words, either we have (a, b) = (a1 − 1, b1), a ≥ a′ and b = b′ (with
j1 = j + 1 and j ≥ j′), or we have (a, b) = (a1, b1 − 1), a = a′ and b ≥ b′ (with j1 = j − 1
and j ≤ j′). This finishes the proof of (ii) as the other direction is trivial.

(iii) follows directly from (i), (ii) and from (ii) of Lemma 3.2.4.
We prove (iv). First DR(wj,j′) = {j′} and j′ /∈ DR(w) together with Lemma 3.2.5

force w = wj,j′sj′′ for some j′′ ̸= j′. If |j′′ − j′| ≠ 1, then sj′sj′′ = sj′′sj′ and thus j′ ∈
DR(w), a contradiction. Hence j′′ ∈ {j′ − 1, j′ + 1}. If j ≤ j′ (resp. j ≥ j′), then we
have DR(wj,j′sj′+1) = {j′ + 1} (resp. DR(wj,j′sj′−1) = {j′ − 1}), which gives the two cases
of the statement. If j < j′ and j′′ = j′ − 1 (resp. j > j′ and j′′ = j′ + 1), then we
have wj,j′sj′−1 = sj′wj,j′−1sj′ (resp. wj,j′sj′+1 = sj′wj,j′+1sj′) and thus j′ ∈ DR(wj,j′sj′−1)
(resp. j′ ∈ DR(wj,j′sj′+1)), a contradiction. Here again the other direction is obvious.

Lemma A.12. Let x,w ∈ W (G) with x < w.

(i) If w is partial-Coxeter, then L(w) has multiplicity 1 in M(x).

(ii) If w = sjwn−1,1 and x = wj,1 for some j < n−1, then L(w) has multiplicity 1 in M(x).

Proof. It is enough to prove Pw0xw0,w0ww0 = 1 for both (i) and (ii) (cf. [Hum08, §8.4]). We
write w′ def= w0ww0 and x′ def= w0xw0 and note that x′ < w′.

We prove Px′,w′ = 1 for (i). As w is partial-Coxeter, so are w′ and x′. Let j ∈ DL(w′),
since w′ is partial-Coxeter we have sjz > z for z ≺ sjw

′ < w′. We deduce from [KL79,
(2.2.c)] the following two possibilities. If j ∈ Supp(x′), then j ∈ DL(x′) since x′ < w′ (and
w′ is partial-Coxeter), and we have Px′,w′ = Psjx′,sjw′ in this case. If j /∈ Supp(x′), then
x′ ≤ sjw

′, sjx′ > x′ and we have Px′,w′ = Px′,sjw′ in this case. A simple induction on ℓ(w′)
thus shows Px′,w′ = 1.

We prove Px′,w′ = 1 for (ii). As w = sjwn−1,1 and x = wj,1, we have w′ = sj′w1,n−1 and
x′ = wj′,n−1 with j′ def= n − j > 1. We consider any z satisfying x′ ≤ z ≺ sj′w′ = w1,n−1
and sj′z < z. As w1,n−1 is partial-Coxeter, the proof of (i) shows that Pz,sj′w′ = 1, which
together with z ≺ sj′w′ = w1,n−1 forces ℓ(z) = ℓ(wn−1,1) − 1. Using [Bre03, Thm. 2.2.2], it
is easy to check that the only z satisfying z < wn−1,1, ℓ(z) = ℓ(wn−1,1) − 1 and sj′z < z is
z = wn−1,j′+1wj′,1. By the proof of (i) we see that Px′,sj′w′ = Psj′x′,sj′w′ = Px′,z = 1, which
together with [KL79, (2.2.c)] gives Px′,w′ = Psj′x′,sj′w′ + qPx′,sj′w′ − qPx′,z = 1.

Lemma A.13. Let j0, j1 ∈ ∆ with j1 ≥ j0.

(i) If x ≺ wj1,j0 and x ≺ wj1+1,j0+1, then we have x = wj1,j0sj0 = sj1+1wj1+1,j0+1.

(ii) If wj1,j0 ≺ x and wj1+1,j0+1 ≺ x, then we have x = wj1+1,j0 when j1 > j0, and x ∈
{wj0+1,j0 , wj0,j0+1} when j1 = j0.

Proof. Note that wj1,j0 and wj1+1,j0+1 are both partial-Coxeter and satisfy ℓ(wj1,j0) =
ℓ(wj1+1,j0+1) ≥ 1.
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We prove (i). By the proof of (i) of Lemma A.12 we have Px,wj1,j0
= Px,wj1+1,j0+1 = 1,

which together with x ≺ wj1,j0 and x ≺ wj1+1,j0+1 forces ℓ(x) = ℓ(wj1,j0)−1 = ℓ(wj1+1,j0+1)−
1. As Supp(x) ⊆ Supp(wj1,j0) ∩ Supp(wj1+1,j0+1), we deduce from [Bre03, Thm. 2.2.2] that
x = wj1,j0sj0 = sj1+1wj1+1,j0+1.

We prove (ii). If ℓ(x) > ℓ(wj1,j0) + 1 = ℓ(wj1+1,j0+1) + 1, then by Lemma 3.2.5 we have
DR(x) ⊆ {j0}∩{j0+1} = ∅, a contradiction. So we have ℓ(x) = ℓ(wj1,j0)+1 = ℓ(wj1+1,j0+1)+1
and Supp(x) ⊇ Supp(wj1,j0) ∪ Supp(wj1+1,j0+1) = [j1 + 1, j0]. If j1 > j0, then x > wj1,j0 ,
ℓ(x) = ℓ(wj1,j0) + 1 and Supp(x) ⊇ [j1 + 1, j0] together with [Bre03, Thm. 2.2.2] imply
x ∈ {wj1+1,j0 , wj1,j0sj1+1}. Together with x > wj1+1,j0+1 (and [Bre03, Thm. 2.2.2]) this
implies x = wj1+1,j0 . If j1 = j0, a similar argument shows that x ∈ {wj0+1,j0 , wj0,j0+1}.

Recall that the partially-ordered set J∞ is defined at the the beginning of §2.3, and that,
for each (j1, j2) ∈ J∞, xj1,j2 is the element of maximal length in the set (97).
Lemma A.14. Let (j1, j2) ∈ J∞. The element xj1,j2 is saturated. More precisely, for each
(a1, b1) ∈ Z× Z satisfying a1 − b1 = j1, we have xj1,j2 = xΣ with

Σ = {(a, b) | a1 − j1 + 1 ≤ a ≤ a1, b1 − j2 + j1 + 1 ≤ b ≤ b1} ⊆ Z× Z. (565)

Proof. As DL(xj1,j2) = {j1} by definition, we have DR(x−1
j1,j2) = {j1}, so x−1

j1,j2 is saturated by
Lemma A.5, and thus xj1,j2 is saturated. We write xj1,j2 = xΣ and let (a1, b1) be the unique
maximal element in Σ (see (ii) of Lemma A.2). It remains to check the equality (565). We
observe that Σ as in (565) is the maximal possible saturated subset of Z× Z which admits
(a1, b1) as its unique maximal element and satisfies a − b ≤ j2 − 1 for each (a, b) ∈ Σ. In
particular, if (a, b) ≤ (a1, b1) satisfies 1 ≤ a′ − b′ ≤ j2 − 1 for each (a, b) ≤ (a′, b′) ≤ (a1, b1),
then we have (a, b) ≥ (a1 − j1 + 1, b1 − j2 + j1 + 1).
Remark A.15. Let j′ ≤ j ≤ j′′ ∈ ∆. Then by a straightforward generalization of
Lemma A.14, the element of maximal length x satisfying DL(x) = {j} and Supp(x) ⊆ [j′, j′′]
is saturated, and we have x = xΣ with Σ = {(a′, b′) | a− j+ j′ ≤ a′ ≤ a, b− j′′ + j ≤ b′ ≤ b},
for any (a, b) satisfying a− b = j.

Recall that wI for I ⊆ ∆ is the element of W (LI) of maximal length (see §1).
Lemma A.16. Let (j1, j2) < (j′

1, j
′
2) in J∞.

(i) If j′
1 > j1 and j′

2− j′
1 > j2− j1, then xj′

1,j
′
2
̸≤ xxj1,j2 where x is the element of maximal

length in W ĵ1∩ĵ′
1,∅(L

ĵ1
) (see above (39) for the notation).

(ii) If j1 = j′
1, then w[1,j′

2−1]w
−1
[1,j2−1] ∈ W (L

ĵ1
)sj1W (L

ĵ1
) if and only if either j1 = 1 or

j′
2 = j2 + 1.

Proof. We prove (i). Let (a1, b1) ∈ Z× Z with a1 − b1 = j1. We define

Σ1
def= {(a, b) | a1 − j1 + 1 ≤ a ≤ a1, b1 − j2 + j1 + 1 ≤ b ≤ b1}

Σ2
def= {(a, b) | a1 − j1 + 1 ≤ a ≤ a1 + j′

1 − j1, b1 − j′
2 + j′

1 + 1 ≤ b ≤ b1}
Σ3

def= {(a, b) | a1 + 1 ≤ a ≤ a1 + j′
1 − j1, b1 − n+ j′

1 + 1 ≤ b ≤ b1}.
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By Lemma A.14 (and Remark A.15 applied to x) we see that xj1,j2 = xΣ1 , xj′
1,j

′
2

= xΣ2 and
x = xΣ3 . It is easy to check that Σ1 ⊔ Σ3 is still saturated with a unique maximal element
(a1 + j′

1 − j1, b1). Since Σ2 also admits (a1 + j′
1 − j1, b1) as its unique maximal element,

we see that xΣ2 = xj′
1,j

′
2
≤ xxj1,j2 = xΣ3xΣ1 = xΣ1⊔Σ3 if and only if Σ2 ⊆ Σ1 ⊔ Σ3. But

j′
2− j′

1 > j2− j1 implies that the minimal element (a1− j1 + 1, b1− j′
2 + j′

1 + 1) is not inside
Σ1 ⊔ Σ3. So we must have xj′

1,j
′
2
̸≤ xxj1,j2 .

We prove (ii). Let y be the element of maximal length such that DR(y) = {j2} and
Supp(y) ⊆ [1, j′

2 − 1], which satisfies w[1,j′
2−1] = yw[1,j2−1]w[j2+1,j′

2−1] with ℓ(w[1,j′
2−1]) =

ℓ(y) + ℓ(w[1,j2−1]) + ℓ(w[j2+1,j′
2−1]) and in particular w[1,j′

2−1]w
−1
[1,j2−1] ≥ y. If j1 = 1, then

W ĵ1 ,̂j1 = {1, sj1}. As 1 = j1 ∈ Supp(y), we have y ∈ W (L
ĵ1

)sj1W (L
ĵ1

) which together with
w[1,j′

2−1]w
−1
[1,j2−1] ≥ y (and [BB05, Prop. 2.5.1]) implies w[1,j′

2−1]w
−1
[1,j2−1] ∈ W (L

ĵ1
)sj1W (L

ĵ1
).

If j′
2 = j2 + 1, then we have w[1,j′

2−1]w
−1
[1,j2−1] = y = w1,j2 ∈ W (L

ĵ1
)sj1W (L

ĵ1
) as j1 ≤ j2.

We assume from now j1 > 1 and j′
2 > j2 + 1. Let (a, b) ∈ Z × Z with a − b = j2. Ap-

plying Remark A.15 to y−1, we see that y−1 is saturated and y−1 = xΣ for Σ = {(a′, b′) |
a − j2 + 1 ≤ a′ ≤ a, b − j′

2 + j2 + 1 ≤ b′ ≤ b}. Since we have j2 − 1 > j2 − j1 and
j′

2 > j2 + 1, we observe that Σ contains the saturated subset Σ′ = {(a′, b′) | a− j2 + j1− 1 ≤
a′ ≤ a − j2 + j1, b − 1 ≤ b′ ≤ b}, which implies y−1 ≥ xΣ′ and moreover w[1,j′

2−1]w
−1
[1,j2−1] ≥

y ≥ x−1
Σ′ = xΣ′ ∈ W ĵ1 ,̂j1 (using (ii) of Lemma A.2). By [BB05, Prop. 2.5.1], we know that

w[1,j′
2−1]w

−1
[1,j2−1] ∈ W (L

ĵ1
)wW (L

ĵ1
) for some w ∈ W ĵ1 ,̂j1 such that w ≥ xΣ′ > sj1 , and in

particular w[1,j′
2−1]w

−1
[1,j2−1] /∈ W (L

ĵ1
)sj1W (L

ĵ1
).
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B Some figures for GL5

We assume G = GL5(K) and draw many of the previous finite length D(G)-modules.

In the drawings, as usual a bullet • means an irreducible constituent (the socle being at
the bottom of the page and the cosocle being at the top) and a line between two irreducible
constituents, that is between two •, means a non-split extension as subquotient (whether
it is dotted or not). For clarity in the three-dimensional drawings, we draw the non-split
extensions which are “behind” as dotted lines.

We first draw the complex of D(G)-modules D• of (526) in Figure 1. Then we draw
the D(G)-modules Yk (V alg

[1,5−k],∆)∨ for 1 ≤ k ≤ 4 in Figure 2, with Yk defined in (510),
V alg

[1,5−k],∆ in (485) and where the red bullets are the duals of locally algebraic constituents.
We draw the D(G)-module D̃4 of (525) in Figure 3, and then the D(G)-modules D̃3 (Figure
4), D̃2 (Figure 5), D̃1 (Figure 6) and D̃0 (Figure 7) of (524). Note that D̃0 is just the “top”
of D̃1 (keeping in mind that the drawings are 3-dimensional). Note also that, to save place,
we sometimes write V alg

[1,5−k−1] instead of V alg
[1,5−k−1],∆.

The reader can have (a bit of) fun guessing on the drawings what are the morphisms
dkD : Dk → Dk+1, the surjections D̃k ↠ Dk and the morphisms dk

D̃
: D̃k → D̃k+1.
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Figure 1: D• for GL5
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Figure 6: D̃1 for GL5
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I, Ann. Sci. École Norm. Sup. 10, 1977, 441-472.

[Bez] R. Bezrukavnikov, Canonical basis and representation categories, course at MIT, 2013.

[BB05] A. Björner, F. Brenti, Combinatorics of Coxeter groups, Graduate Texts in
Math. 231, 2005.

[BW00] A. Borel, N. Wallach, Continuous Cohomology, Discrete Subgroups, and Represen-
tations of Reductive Groups: Second Edition, Mathematical Surveys and Monographs
67, 2000.

[Bo] N. Bourbaki, General Topology: Chapters 1-4, Springer, 2013.

[BCGP] G. Boxer, F. Calegari, T. Gee, V. Pilloni, in preparation.

[Bre03] F. Brenti, Kazhdan-Lusztig polynomials: History Problems, and Combinatorial In-
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184.

[Fro03] H. Frommer, The locally analytic principal series of split reductive groups, preprint
SFB 478/265, 2003.

[GS69] P. Griffiths, W. Schmid, Locally homogeneous complex manifolds, Acta Mathematica
123, 1969, 253-302.
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