
INTEGRAL p-ADIC HODGE THEORY

CHRISTOPHE BREUIL1

Abstract. We give an overview of some questions and results in inte-
gral p-adic Hodge theory. A few proofs are supplied.
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0. Introduction

Fix a prime number p, an algebraic closure Qp of the field Qp of p-adic
numbers with ring of integers Zp, and a finite extension F of Qp inside Qp

with ring of integers OF .

Roughly speaking, p-adic Hodge theory (over F ) is the study of de Rham
and p-adic étale cohomologies of (proper smooth) schemes over F . The
research for relations between these two cohomology groups gave birth to
Fontaine’s theory of semi-stable (and potentially semi-stable) p-adic repre-
sentations of Gal(Qp/F ) and, in the course of time, p-adic Hodge theory
also included the study of these Galois representations.

Integral p-adic Hodge theory could be today defined as the study of Galois
stable Zp-lattices in semi-stable p-adic representations together with their
links with the various integral p-adic cohomologies of proper smooth schemes
over F . Integral p-adic Hodge theory gives back classical p-adic Hodge the-
ory (by inverting p), but it also gives rise to completely new characteristic
p phenomena (by reducing modulo p). Thus, it is richer than p-adic Hodge
theory. It is also much more complicated. Although p-adic Hodge theory is
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now mostly complete (by the work of many people including Tate, Raynaud,
Grothendieck, Bloch, Messing, Fontaine, Colmez, Faltings, Kato, Hyodo,
Tsuji...), integral p-adic Hodge theory is far from being as well understood
and there remains a great deal to be found before one has a complete theory.
Of course, if such a theory exists, it should also contain all the results of
p-adic Hodge theory.

This text tries to “take stock” of the situation of integral p-adic Hodge
theory so far, although it certainly couldn’t pretend to be fully exhaustive.
As a consequence, little of the material presented here is new. It is orga-
nized as follows. In section 1, we recall the basic definitions and results on
semi-stable p-adic representations. The key role here is played by weakly ad-
missible filtered (ϕ, N)-modules. In section 2, we give a conjectural descrip-
tion of Galois stable lattices in semi-stable p-adic representations with small
Hodge-Tate weights and we explain the known cases of this conjecture. The
idea is to define integral structures also on the filtered modules side called
strongly divisible lattices (or strongly divisible modules). In section 3, we
prove one case of the conjecture of section 2 using two ingredients: the first
is a link between some strongly divisible modules and p-divisible groups over
OF (Cor. 3.2.4), the second is a technical result on Galois representations
arising from finite flat group schemes that we prove via the theory of norm
fields (Th. 3.4.3). In section 4, we consider the “higher weight” cases and
give a link between strongly divisible modules and some cohomology groups
Hm’s with m < p− 1. Finally, in section 5, using strongly divisible lattices
we compute the reduction modulo p of Galois stable Zp-lattices in some two
dimensional semi-stable p-adic representations and show how variable this
reduction can be.

We have restricted ourselves to finite extensions F of Qp mainly for sim-
plicity. All the statements of this paper, except those of section 5, should
hold verbatim for any complete local field of characteristic 0 with perfect
residue field of characteristic p.

This text is an extended version of a talk given in July 2000 at the con-
ference “Algebraic Geometry 2000” in Azumino. I would like to thank the
organizers for inviting me to this conference, and thus giving me the oppor-
tunity to come to Japan for the first time. I also thank B. Conrad and A.
Mézard for their comments on an earlier version of this text.

1. Review of semi-stable p-adic representations

Let Fp be the residue field of Zp (an algebraic closure of the finite field
Fp) and F ⊂ Fp the residue field of F . Let f := [F : Fp] and e := [F : F0]
where F0 ⊂ F is the maximal unramified subfield of F . We write GF for
Gal(Qp/F ) and σ for the arithmetic Frobenius on F0. If ` is any prime
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number, an `-adic representation of GF is, by definition, a continuous linear
representation of GF on a finite dimensional Q`-vector space V .

Definition 1.1. ([14]) A p-adic representation V of GF is called semi-
stable if:

dimF0(Bst ⊗Qp V )GF = dimQpV.

Here, Bst is Fontaine’s ring of p-adic periods defined in [13] (see also
[20]). It is endowed with an action of GF . The exponent GF on the left
hand side means we take the elements of Bst ⊗Qp V which are fixed by
GF . If V is any p-adic representation of GF , one has only an inequality
dimF0(Bst ⊗Qp V )GF ≤ dimQpV ([14]).

Definition 1.1 is not very explicit. Fortunately, a recent result of Colmez
and Fontaine ([10]) gives an alternative description of semi-stable p-adic
representations which is very explicit and useful. Define a filtered (ϕ, N)-
module to be a finite dimensional F0-vector space D endowed with:
• a σ-linear injective map ϕ : D → D (the “Frobenius”)
• a linear map N : D → D such that Nϕ = pϕN (the “monodromy”)
• a decreasing filtration (FiliDF )i∈Z on DF := F ⊗F0 D by F -vector sub-
spaces such that FiliDF = DF for i� 0 and FiliDF = 0 for i� 0.
The conditions on ϕ and N imply that N is nilpotent. Let D be a filtered
(ϕ, N)-module and define:
• tH(D) :=

∑
i∈Z

idimF griDF where griDF = FiliDF /Fili+1DF

• tN (D) :=
∑
α∈Q

αdimQp
Dα where Dα is the sum of the characteristic sub-

spaces of Qp ⊗F0 D for the eigenvalues of Id⊗ ϕf having valuation α (here
the valuation is normalized so that pf has valuation 1).
It is clear that tH(D) ∈ Z and one can prove tN (D) ∈ Z (see e.g. [1]). By
definition a filtered (ϕ, N)-submodule of D is a filtered (ϕ, N)-module D′

equipped with an injection D′ ↪→ D that commutes with ϕ and N and for
which FiliD′

F = D′
F ∩ FiliDF .

Definition 1.2. ([14]) A filtered (ϕ, N)-module D is weakly admissible if
tH(D) = tN (D) and if tH(D′) ≤ tN (D′) for any filtered (ϕ, N)-submodule
D′ of D.

If V is a semi-stable p-adic representation of GF , one can prove that the
F0-vector space Dst(V ) := (Bst ⊗Qp V )GF is a weakly admissible filtered
(ϕ, N)-module in a natural, although not quite canonical, way (see [13]).
The aforementioned result of Colmez and Fontaine is:

Theorem 1.3. ([10]) The functor Dst : V 7→ (Bst⊗Qp V )GF establishes an
equivalence of categories between the category of semi-stable p-adic represen-
tations of GF and the category of weakly admissible filtered (ϕ, N)-modules.
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Note that the functor Dst is not canonical since it depends on a filtration
on F ⊗F0 Bst (or equivalently of an embedding F ⊗F0 Bst ↪→ BdR since
the filtration is induced via such an embedding by the filtration on BdR)
which itself depends on the choice of a uniformizer π in F . When N = 0 on
Dst(V ), V is said to be crystalline and in that case Dst(V ) is independant
of any choice.

In the sequel, we will instead use the contravariant functor D∗
st(V ) :=

Dst(V ∗), where V ∗ is the dual representation of V (crystalline/semi-stable
if and only if V is). The reason for this is that the Hodge-Tate weights of V
are exactly the i ∈ Z such that griD∗

st(V )F 6= 0 (with Dst, it would be the
−i such that griDst(V )F 6= 0, see [14]). A quasi-inverse to D∗

st is then given
by:

V ∗
st(D) := Homϕ,N (D,Bst) ∩HomFil·(DF , F ⊗F0 Bst),

that is to say the Qp-vector space of F0-linear maps f : D → Bst being
compatible with all the structures (GF acting by (g · f)(x) := g(f(x))). We
will use this quasi-inverse in the sequel.

To finish this section, we remind the reader that a description similar to
1.3 also exists for semi-stable `-adic representations of GF with ` 6= p (i.e.
`-adic representations such that the inertia acts unipotently) and that it is
essentially trivial: they are described by finite dimensional Q`-vector spaces
endowed with a continuous linear action of Gal(Fnr/F ) (which plays the role
of the Frobenius) and with a nilpotent endomorphism N (the monodromy)
such that Nϕ = pfϕN where ϕ is the geometric Frobenius of Gal(Fnr/F )
and Fnr the maximal unramified extension of F inside Qp. Recall that
g = exp(Nt`(g)) if g ∈ IF := Gal(Qp/Fnr) and t` : IF → Z`(1) ' Z` is the
tame `-component of IF .

2. Lattices in semi-stable representations with low Hodge-Tate
weights

On the side of p-adic representations of GF , there is an obvious integral
structure, namely the Zp-lattices that are preserved by the action of GF

(which always exist because GF is compact). Thus, granting Theorem 1.3,
one can ask whether there also exists a corresponding integral structure on
the filtered module side.

2.1. Basic assumptions. Let us first examine the `-adic situation. Let V
be a semi-stable `-adic representation of GF and D the associated (Gal(Fnr/F ), N)-
vector space defined at the end of the previous section. If N ` = 0, there
are nice integral structures on D that correspond to GF -stable lattices in V ,
namely the Z`-lattices in D that are preserved by Gal(Fnr/F ) and N . But
if N ` 6= 0, this doesn’t work anymore because we cannot use the operators
N i

i! when i ≥ ` to rebuild the unipotent action of inertia on the Galois side
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(and in that case, one usually works directly with Galois lattices). As the
p-adic side is much more involved than the `-adic one, one can expect to
need, at least, the assumption Np = 0 on D .

Definition 2.1.1. (1) A weakly admissible filtered (ϕ, N)-module D such
that Fil0DF = DF , FilmDF 6= 0, and Film+1DF = 0 (for some m ∈ N) is
unipotent if, inside the abelian category of weakly admissible modules, D has
no non zero weakly admissible quotient D such that FilmDF = DF .
(2) A semi-stable p-adic representation V of GF with positive Hodge-Tate
weights is unipotent if D∗

st(V ) is unipotent.

The reason for the terminology “unipotent” is that, in case m = 1, fil-
tered (ϕ, N)-modules arising from unipotent p-divisible groups over OF (i.e.
p-divisible groups with connected Cartier dual) are unipotent in the sense of
the above definition. It must be stressed that the semi-stable representations
corresponding to unipotent filtered modules are not unipotent in the usual
sense, i.e. they are not successive extensions of the trivial representation.

It turns out that in the p-adic setting, one is naturally led to either the
hypothesis:

Basic Assumption 2.1.2. Either the Hodge-Tate weights of the semi-
stable p-adic representation V are between 0 and m with m < p− 1 or they
are between 0 and p− 1 and V is unipotent.

or its equivalent filtered variant:

Basic Assumption 2.1.3. Either the filtration on the weakly admissible
filtered module D is such that Fil0DF = DF and Film+1DF = 0 with m <
p− 1 or it is such that Fil0DF = DF and FilpDF = 0 and D is unipotent.

Equivalently, one could just say Filp−1DF = 0 in the first case of 2.1.3, but
it’s convenient to have an integer m as in 2.1.2 and 2.1.3. Twisting by the
cyclotomic character, one could also weaken Assumption 2.1.2 (resp. 2.1.3)
to just require that the difference between the extreme Hodge-Tate weights
(resp. the length of the filtration) is smaller than m. Without assumption
on m, it is not yet known how Galois lattices can be described in general in
terms of integral structures on the filtered (ϕ, N)-modules. The link with
our `-adic prelude is provided by:

Lemma 2.1.4. Let D be a weakly admissible filtered (ϕ, N)-module such
that Fil0DF = DF and FilpDF = 0. Then Np = 0 on D.

Proof. Let PH(D) (resp. PN (D)) be the Hodge (resp. Newton) polygon
associated to D, i.e. the convex polygon such that the part of slope i ∈ N
(resp. α ∈ Q+) is of length dimF griDF (resp. dimQp

Dα, see §1). The weak
admissibility condition implies that PH(D) lies under PN (D) and that they
have the same endpoints (see [15]). From the corresponding drawing and
the assumptions on D, one must have α ≤ p − 1 if Dα 6= 0 (since p − 1
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is the highest possible slope on PH(D)). But from Nϕ = pϕN , we get
N(Dα) ⊂ Dα−1 if α ≥ 1 and N(Dα) = 0 otherwise. Thus, Np(Dα) = 0 for
all α, i.e. Np = 0. �

Note that Assumptions 2.1.2 or 2.1.3 here are really stronger than just
Np = 0 (for instance, in the crystalline case, N = 0 but m can be arbitrary).

2.2. Strongly divisible modules. In this section, we define integral struc-
tures for filtered (ϕ, N)-modules satisfying Assumption 2.1.3 and we state
the main conjecture.

From now on, we fix a uniformizer π in F and denote by E(u) its mini-
mal polynomial (an Eisenstein polynomial of degree e). Let S be the p-adic
completion of W (F)[u, uie

i! ]i∈N where u is an indeterminate and endow S
with the following structures:
• a continuous σ-linear Frobenius still denoted σ : S → S such that σ(u) =
up

• a continuous linear derivation N : S → S such that N(u) = −u
• a decreasing filtration (FiliS)i∈N where FiliS is the p-adic completion of∑
j≥i

S E(u)j

j! (one checks E(u)j

j! ∈ S).

Note that Nσ = pσN , N(Fili+1S) ⊂ FiliS for i ∈ N and σ(FiliS) ⊂ piS for
i ∈ {0, ..., p− 1}.

Let D be a weakly admissible filtered (ϕ, N)-module and assume that
Fil0DF = DF . Let:

D := S ⊗W (F) D

and define :
• ϕ := σ ⊗ ϕ : D → D
• N := N ⊗ Id + Id⊗N : D → D
• Fil0D := D and, by induction:

Fili+1D := {x ∈ D | N(x) ∈ FiliD and fπ(x) ∈ Fili+1DF }
where fπ : D � DF is defined by s(u)⊗ x 7→ s(π)x.

One can show the map fπ induces surjections FiliD � FiliDF ([8]). The
filtered module D has the advantage over the filtered module D that all
of its data are defined at the same level (no need to extend scalars to F ).
Moreover, one can prove that the knowledge of D is equivalent to that of D
([8]). It turns out the integral structures will naturally live inside the D’s.
But first, we note that there is a “Bst-counterpart” to this construction, i.e.
there is a “period S-algebra”, first introduced by Kato in [22] and that the
author named B̂st, such that the couple (Bst, B̂st) is somewhat analogous
to the couple (D,D). More precisely, if t denotes Fontaine’s analogue of 2πi

(see [13]), then B̂st = Âst[1/t] where Âst is (non canonically) isomorphic to
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the p-adic completion of Acris[X, Xi

i! ]i∈N. Here, Acris is the integral version
of Bcris ([13]), X is an indeterminate, and Acris[X, Xi

i! ]i∈N is an S-module
via the map u 7→ [π](1 + X)−1 where [π] is a specific element of Acris made
out of a compatible system of pn-th roots of π in Qp. See [3] for details,
where it is also explained how to endow Acris[X, Xi

i! ]i∈N with a continuous
action of GF (which is non trivial on X), Frobenius and monodromy maps,
and a decreasing filtration, with all of these structures inducing the previous
structures on S, the usual structures on Acris, and ultimately only depend-
ing, up to isomorphism, on the choice of π and not on any other choice.

Now, let us go back to the initial problem of defining integral structures:

Definition 2.2.1. Let D be a weakly admissible filtered (ϕ, N)-module
such that Fil0DF = DF and Film+1DF = 0 with m < p. A strongly divisible
lattice (or module) in D is an S-submodule M of D such that:
(1) M is free of finite rank over S and M[1p ] ∼→ D
(2) M is stable under ϕ and N
(3) ϕ(FilmM) ⊂ pmM where FilmM :=M∩ FilmD.

One can show this definition doesn’t depend on m (provided of course
Film+1DF = 0 and m < p). Using the weak admissibility of D, one can
also show that condition (3) in Definition 2.2.1 is actually equivalent to the
apparently stronger condition that ϕ(FilmM) spans pmM over S (see §2.1
of [3]).

Examples 2.2.2. (1) Let D be the trivial filtered module (i.e. D = F0

with Fil1DF = 0, N = 0 and ϕ = σ). Then S is a strongly divisible lattice
in D = S[1p ].

(2) Let D be as in 2.2.1 and assume F = F0 = W (F)[1/p] and N = 0.
Recall ([17]) that a strongly divisible module in the sense of Fontaine and
Laffaille is a W (F)-lattice M in D such that ϕ(FiliM) ⊂ piM for all i ∈ N
where FiliM := M ∩ FiliD. As previously, because D is weakly admissible,
this is equivalent to M =

∑
i

ϕ
pi (FiliM). Let M := S ⊗W (F) M ⊂ D, then

M is a strongly divisible lattice in D in the sense of 2.2.1.

(3) Assume F = F0 and let D = F0e1 ⊕ F0e2 with ϕ(e1) = pre1, ϕ(e2) =
pr−1e1 (r ∈ N, 2r ≤ (p− 1)), N(e1) = e2, N(e2) = 0, FiliD = F0(e1 + Le2)
if 1 ≤ i ≤ 2r − 1 (L ∈ W (F)) and FiliD = 0 if i ≥ 2r. Then one can check
that Se1 ⊕ S(e2/p) is a strongly divisible lattice in D.

(4) Assume F = F0(π) with πp−1 = −p and let D = F0e1 ⊕ F0e2 with
ϕ(e1) = pe1, ϕ(e2) = pe2, N = 0, Fil1DF = Fil2DF = F (e1+πe2), FiliDF =
0 if i ≥ 3 and assume p ≥ 5. Then one can check that Se1⊕S

(
e2+ up(p−2)

pU e1

)
is a strongly divisible lattice in D where U = p−2

p−1

(
up(p−1)

p + 1
)
− 1 ∈ S×.
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For m ∈ N consider the category Cm of S-modules M endowed with
a σ-linear endomorphism ϕ, a W (F)-linear endomorphism N satisfying
N(sx) = N(s)x + sN(x) (s ∈ S, x ∈ M), and an S-submodule FilmM,
with morphisms being S-linear maps that preserve Film and commute with
ϕ and N . For m < p, we define the category of strongly divisible modules
of weight ≤ m as the full subcategory of Cm consisting of objects that are
isomorphic to a strongly divisible module in some S ⊗W (F) D for D weakly
admissible as in 2.2.1. It turns out one can directly describe this category:

Theorem 2.2.3. The category of strongly divisible modules of weight ≤ m
(m < p) is the full subcategory of Cm of objects M satisfying the following
conditions:
(1) M is free of finite rank over S
(2) (FilmS)M⊂ FilmM
(3) FilmM∩ pM = pFilmM
(4) ϕ(FilmM) spans pmM
(5) Nϕ = pϕN
(6) (Fil1S)N(FilmM) ⊂ FilmM.

The point is to prove that M[1/p] ' S ⊗W (F) D for a (unique) filtered
(ϕ, N)-module D and that this D is weakly admissible. This is done in [8]
and [3] for m < p − 1 but the proof readily extends to the case m < p.
Of course, when m grows, these categories are full subcategories one of the
other.

Definition 2.2.4. A strongly divisible module of weight ≤ m is unipotent
if the corresponding weakly admissible D is unipotent (cf. 2.1.1).

To a strongly divisible module M of weight ≤ m one can associate the
Zp[GF ]-module:

T ∗st(M) := HomS,ϕ,N,Film(M, Âst)

where one considers S-linear maps fromM to Âst that commute with ϕ, N
and preserve Film (this doesnt depend on m < p such that M is of weight
≤ m). The group GF acts by (g · f)(x) := g(f(x)).

Proposition 2.2.5. Let M be a strongly divisible module of weight ≤ m
(m < p) and D the corresponding weakly admissible filtered (ϕ, N)-module.
Then T ∗st(M) is a Galois stable Zp-lattice in V ∗

st(D) (see §1 for V ∗
st).

Proof. We only give a sketch here and refer the reader to [3] or [8] for
details. Let D := M[1/p] = S ⊗W (F) D. As T ∗st(M) is clearly a Galois
stable Zp-lattice in V ∗

st(D) := HomS,ϕ,N,Film(D, Âst[1/p]), the real issue is
to prove that V ∗

st(D) is isomorphic as a Galois representation to V ∗
st(D).

Note first that an S-linear map f : D → Âst[1/p] preserves Film if and only
if it preserves Fili for 0 ≤ i ≤ m. There is a ring morphism commuting
with GF and compatible with the filtration Âst[1/p] → BdR, X 7→ [π]

π − 1
where [π] is the “specific” element of Acris previously mentionned. Using
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that D = {x ∈ D | Nn(x) = 0 for some n ∈ N}, one gets any f ∈ V ∗
st(D)

sends D to B+
cris[log(1 + X)] ⊂ Âst[1/p]. Composing with the above ring

morphism and using the surjectivity of FiliD → FiliDF , one ends up with an
F0-linear map f : D → B+

st ⊂ BdR that commutes with ϕ and N , preserves
the filtration after extending scalars to F and is such that the diagram:

D f−→ Âst[1/p]
fπ ↓ ↓

DF
1⊗f→ F ⊗F0 B+

st ↪→ BdR

commutes. This gives an injective Qp-linear map V ∗
st(D)→ V ∗

st(D) which is
easily checked to be surjective. �

Our main conjecture is:

Conjecture 2.2.6. (1) If m < p−1, the functorM 7→ T ∗st(M) establishes
an anti-equivalence of categories between the category of strongly divisible
modules of weight ≤ m and the category of GF -stable lattices in semi-stable
representations of GF with Hodge-Tate weights in {0, ...,m}.
(2) If m = p − 1, the functor M 7→ T ∗st(M) establishes an anti-equivalence
of categories between the category of unipotent strongly divisible modules of
weight ≤ m and the category of GF -stable lattices in unipotent semi-stable
representations of GF with Hodge-Tate weights in {0, ...,m}.

In particular, if V is a semi-stable p-adic representation of GF with Hodge-
Tate weights in {0, ...,m} (unipotent if m = p − 1), then Galois lattices in
V should exactly correspond to strongly divisible modules in the associated
S⊗W (F)D. The following theorem summarizes the known cases of conjecture
2.2.6:

Theorem 2.2.7. Conjecture 2.2.6 is true in the following two cases:
(1) m < p− 1 and e = 1
(2) m < p− 1 and m ≤ 1.

Case (1) is proven in [4] using results of [3]. The method is a genera-
lization of that of Fontaine and Laffaille who did the subcase m < p − 1,
e = 1, N = 0 ([17]). At the time of [17], the ring S and S-modules like D
and M were not yet defined, but in that case one can manage with W (F)-
lattices only, namely those lattices defined in Example (2) of 2.2.2. In the
other cases, one can not dispense with S, which makes the theory much
more complicated, even when e = 1. Case (2) is proven in the next section
using the theory of p-divisible groups.

There are two other partial results in the direction of 2.2.6. The first
is that if em < p − 1, then D at least always contains a strongly divisible
lattice ([3]). The second is that for m < p − 1 the restriction of T ∗st to the
subcategory of “filtered-free” strongly divisible modules of weight ≤ m is
fully faithful ([12]). Here, by filtered free, we mean there is a basis (ei)1≤i≤d
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of the underlying S-module M and integers 0 ≤ r1 ≤ ... ≤ rd ≤ m such
that:

FilmM =
(⊕

i

E(u)riSei

)
+ (FilmS)M.

Unfortunately, most of the strongly divisible modules are not filtered free,
but they are if m ≤ 1 ([5]) or if e = 1 and N = 0 ([17]). In particular, the
full faithfulness of T ∗st in case (2) of 2.2.7 was thus proven in [12] (we will
derive it below from Tate’s full faithfulness theorem).

3. Finite flat group schemes, p-divisible groups, and norm
fields

In this section, we prove statement (2) of Theorem 2.2.7. We first deal
with the case of lattices in crystalline representations using results on p-
divisible groups (§3.2). Then we derive the general case using the theory of
norm fields (§3.3, §3.4 and §3.5). We assume m < p − 1 and m ≤ 1. This
implies p 6= 2 if m = 1.

3.1. The case m = 0. This is the case of unramified p-adic representa-
tions of GF . Define the category of étale (ϕ, W (F))-modules as the category
of free W (F)-modules of finite rank equipped with a bijective σ-linear en-
domorphism ϕ. Then it has long been known (see [16] for instance) that
the functor M 7→ HomW (F),ϕ(M,W (Fp)) establishes an anti-equivalence of
categories between étale (ϕ, W (F))-modules and GF -stable lattices in un-
ramified p-adic representations of GF .

View W (F) as an S-module by sending u and its divided powers to 0. To a
strongly divisible moduleM of weight 0, one can associate M :=M⊗SW (F)
and endow it with the image of ϕ (the image of N being 0). It is clear M is
then an étale (ϕ, W (F))-module. Statement (2) of 2.2.7 in the case m = 0
comes down to:

Proposition 3.1.1. The functorM 7→M⊗S W (F) establishes an equiv-
alence of categories between strongly divisible modules of weight 0 and étale
(ϕ, W (F))-modules.

This is the well-known “Dwork’s trick” ([21]) in a divided power context.

3.2. Classification of group schemes and consequences. From now
on, we assume m = 1 (and thus p 6= 2). We connect some of the strongly
divisible modules of weight ≤ 1 to p-divisible groups over OF .

As with Galois lattices, it is tempting, using the alternative definition of
strongly divisible modules given by Theorem 2.2.3, to reduce strongly divis-
ible modules of weight ≤ m modulo arbitrary powers of p. For m = 1, we
are led to the following categoryM1

0.
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An object ofM1
0 is a triple (M,Fil1M, ϕ1) where:

(1) M is an S-module of finite type isomorphic to ⊕n∈Z>0(S/pnS)rn for
integers rn which are almost all equal to 0
(2) Fil1M is an S-submodule ofM containing (Fil1S)M
(3) ϕ1 : Fil1M→M is an additive map such that:

ϕ1(sx) =
σ
p (s)

σ
p (E(u))

ϕ1(E(u)x)

where s ∈ Fil1S and x ∈ M (note that σ
p (E(u)) ∈ S×) and such that M

is generated by ϕ1(Fil1M) as an S-module.

A morphism between two objects of M1
0 is an S-linear map sending Fil1

to Fil1 and commuting with ϕ1. The map ϕ1 has to be thought as the
p-torsion version of the map ϕ

p |Fil1 . The condition Fil1M∩ pM = pFil1M
turns out to be automatically satisfied on an object ofM1

0. We could define
a similar category by requiring the existence of a “monodromy map” N
on the S-modules M (as for strongly divisible modules), but Lemma 3.2.1
below shows that the objects of M1

0 are already endowed with a canonical
N , and there will be no need here to consider more general torsion objects.

Lemma 3.2.1. Let M be an object of M1
0. There is a unique additive

map N :M→M such that:
(1) N(sx) = N(s)x + sN(x) for s ∈ S and x ∈M
(2) ϕ1

(
E(u)N(x)

)
= σ

p (E(u))N
(
ϕ1(x)

)
for x ∈ Fil1M

(3) N(M) ⊂ uM.

Proof. Assume two such N exist and let ∆ be their difference. Let x ∈
Fil1M, from conditions (2) and (3) we get:

∆(ϕ1(x)) =
(σ

p

(
E(u)

))−1
ϕ1

(
E(u)∆(x)

)
∈ upM.

SinceM is spanned by the image of ϕ1 and ∆ is S-linear, one has ∆(M) ⊂
upM. An obvious induction then yields ∆ = 0. For the existence of N , there
are 3 possible proofs: (1) one can (tediously) build it by pure linear algebra;
(2) one can use 3.2.2 below which implies by [2] that there must exist a
connection ∇ :M→M⊗S Sdu and N is defined by u∇(x) = −N(x)⊗ du;
(3) one easily builds explicitly such an N whenM is free over S ([5]), then,
using 3.2.2 below and the fact any commutative finite flat group scheme is
the kernel of an isogeny between p-divisible groups, one gets that any object
of M1

0 is the quotient of two strongly divisible modules and one takes the
quotient N . �

Note that any morphism inM1
0 automatically commutes with the respec-

tive N given by 3.2.1. The main purpose in defining the category M1
0 lies

in:
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Theorem 3.2.2. ([5]) There is an anti-equivalence of categories between
M1

0 and the category of commutative finite flat group schemes G over OF

such that Ker(pn
G) = G for some n ∈ N and Ker(pn

G) is flat over OF for all
n ∈ N (where pn

G is multiplication by pn on G).

One can dispense with the last flatness assumption on the kernels Ker(pn
G),

but the price is that one has to consider more complicated S-modules than
just ⊕(S/pnS)rn for which I do not know the explicit structure (see [5]).
This assumption is automatically satisfied if e < p− 1.

Remark 3.2.3. More general objects than those of M1
0, e.g. objects of

M1
0 endowed with an additive map N satisfying (1) and (2) of 3.2.1 but

not (3), may correspond to “log-group schemes” (i.e. group objects in the
category of log-schemes).

Taking the projective limit in 3.2.2 and using 3.2.1 yields:

Corollary 3.2.4. ([5]) There is an anti-equivalence of categories be-
tween the category of strongly divisible modules M of weight ≤ 1 such that
N(M) ⊂ uM and the category of p-divisible groups over OF .

Using this corollary, one can prove the following special case of (2), 2.2.7:

Theorem 3.2.5. The functorM 7→ T ∗st(M) establishes an anti-equivalence
of categories between the category of strongly divisible modules M of weight
≤ 1 such that N(M) ⊂ uM and the category of GF -stable lattices in crys-
talline representations of GF with Hodge-Tate weights in {0, 1}.

Proof. The full faithfulness is a well-known theorem of Tate ([27]). By [5],
one knows that any crystalline V with Hodge-Tate weights in {0, 1} contains
at least one lattice which is isomorphic to the Tate module of some p-divisible
group over OF . But Raynaud’s argument ([24]) then shows this must hold
for any lattice in such a V . Using 3.2.4, this ensures the essential surjectivity.

�

The rest of §3 will be devoted to the rest of the proof of (2), 2.2.7, i.e.
the case of semi-stable non-crystalline representations.

3.3. Group schemes of type (p, ..., p) and norm fields. In this section,
we state a variant of 3.2.2 for group schemes killed by p in terms of mod-
ules over the ring of integers of the norm field of an infinite wildly ramified
extension of F . This variant will be used in the next section to prove a
result on representations of GF coming from group schemes. Recall that
a group scheme of type (p, ..., p) is by definition a commutative finite flat
group scheme killed by p.

Choose (πn)n∈N ∈ QN
p such that π0 = π, πp

n+1 = πn and let Fn := F (πn),
OFn its ring of integers, F∞ := ∪Fn and GF∞ := Gal(Qp/F∞) (in particular
F0 = F ). It is proven in [30] that the projective limit lim←−Fn (resp. lim←−OFn)
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with the norms as transition maps is in a natural way a field (resp. a ring) of
characteristic p which can be identified with F((π)) (resp. F[[π]]). Here, π is
the element (..., πn, πn−1, ..., π0) ∈ lim←−OFn . Such fields as lim←−Fn are called
norm fields in [30]. Let F((π))sep be a separable closure of F((π)). The main
result of [30] is a canonical identification GF∞ ' Gal

(
F((π))sep/F((π))

)
which gives a surprising alternative description of the Galois group GF∞ .

Let σ be the Frobenius on F((π)) and F[[π]]. We introduce two kinds of
modules:
• The category of étale (ϕ,F((π)))-modules is the category of finite dimen-
sional F((π))-vector spaces D endowed with a σ-linear map ϕ : D → D
inducing an isomorphism (or equivalently a surjection):

F((π))⊗σ,F((π)) D
1⊗ϕ−→ D

(with obvious morphisms between objects).
• The category of (ϕ,F[[π]])-modules of height ≤ 1 is the category of free
F[[π]]-modules of finite rank M endowed with a σ-linear map ϕ : M → M
such that πeM is contained in the F[[π]]-submodule of M generated by ϕ(M)
(ibid.).

If M is an object of the second category, then M[1/π] is obviously an
object of the first. The following two theorems give alternative descriptions
of these two categories:

Theorem 3.3.1. ([16]) The functor:

D 7→ T ∗(D) := HomF((π)),ϕ(D,F((π))sep)

establishes an anti-equivalence of categories between the category of étale
(ϕ,F((π)))-modules and the category of continuous representations of GF∞ '
Gal
(
F((π))sep/F((π))

)
on finite dimensional Fp-vector spaces.

Theorem 3.3.2. There is an anti-equivalence of categories between the cat-
egory of (ϕ,F[[π]])-modules of height ≤ 1 and the category of group schemes
of type (p, ..., p) over OF . Moreover, if G is such a group scheme and
M(G) is the corresponding F[[π]]-module, one has an Fp[GF∞ ]-module iso-
morphism: T ∗(M[1/π]) ' G(Qp)|GF∞ .

Proof. Granting 3.2.2, it is enough to prove that there is an equivalence
of categories between (ϕ,F[[π]])-modules of height ≤ 1 and objects of M1

0

killed by p, commuting with the functors to Galois representations. Let M
be a (ϕ,F[[π]])-module of height ≤ 1 and view S/pS as an F[[π]]-algebra via
Π : F[[π]]→ S/pS,

∑
xiπ

i 7→
∑

xiu
i. One associates to M an object M of

M1
0 as follows:

• as an S-module,M := S/pS ⊗σ◦Π,F[[π]] M

• Fil1M := {y ∈M | (Id⊗ ϕ)(y) ∈ Fil1S/pS ⊗F[[π]] M}
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• ϕ1 : Fil1M→M is defined as the composite:

Fil1M Id⊗ϕ−→ Fil1S/pS ⊗F[[π]] M
σ
p
⊗Id
−→ S/pS ⊗σ◦Π,F[[π]] M 'M.

Using the fact M is of height ≤ 1, it is easy to see that the image of ϕ1

generates everything. This process obviously defines a functor to M1
0. It

turns out this functor is an equivalence of categories on objects killed by p.
Using [5], Lemma 2.1.2.1 and [5], Proposition 2.1.2.2, the proof is almost
verbatim the proof of [6], Theorem 4.1.1. The only difference is that here
Ker(Π) = (πep) and Ker(σ ◦ Π) = (πe) instead of (πp) and (π) in loc.cit.
and this doesn’t change the argument. For the Galois actions, let R be the
projective limit

...
Frob−→ Zp/pZp

Frob−→ Zp/pZp
Frob−→ Zp/pZp

and RDP the Divided Power envelope of R with respect to the ideal gen-
erated by the image of πe i.e. by the element (..., πe

2, π
e
1, π

e
0) ∈ R where πi

is the image of πi in Zp/pZp (see [29] for instance). One can endow RDP

with a Fil1 and a ϕ1 ([29]) and view it as an S-module via u 7→ image(π).
By [5] and [3] Lemma 2.3.1.1, the restriction to GF∞ of the Galois rep-
resentation associated to M is isomorphic to HomS,ϕ1,Fil1(M, RDP ) (with
left action of GF∞ on RDP and obvious notations). Thus, one has to com-
pare HomF((π)),ϕ(M[1/π],F((π))sep) and HomS,ϕ1,Fil1

(
M, RDP

)
. Using [6],

Lemma 2.3.3, the proof is again (almost) verbatim the proof of [6], Proposi-
tion 4.2.1. �

Remark 3.3.3. Theorem 3.3.2 implies that representations of GF∞ coming
from (ϕ,F[[π]])-modules of height ≤ 1 can be extended to GF . We will see
in the next section that this extension is essentially unique.

Remark 3.3.4. Let Z/pZ and µp be the usual group schemes of rank
p. Using [5] and the above proof, one can see that M(Z/pZ) = F[[π]]e1

with ϕ(e1) = e1 and that M(µp) = F[[π]]e2 with ϕ(e2) = −F (0)−1πee2

where F (0) = −E(0)
p (recall E(u) is the minimal polynomial of π). One

of the problems with the category M1
0 for p = 2 is that there is no map

corresponding to the non-trivial morphism of group schemes Z/2Z → µ2

sending 1 to −1. However, for p = 2, there is a non-trivial map M(µ2) →
M(Z/2Z) that commutes with ϕ, namely: e2 7→ F (0)−1πee1 (this map would
give 0 inM1

0 by the functor in the proof of 3.3.2). So, one can ask whether
statement 3.3.2 still holds for p = 2 although statement 3.2.2 doesn’t...

3.4. A full faithfulness result.

Lemma 3.4.1. Let D′ ↪→ D (resp. D′ � D) be an injection (resp. a sur-
jection) of étale (ϕ,F((π)))-modules and assume D (resp. D′) is generated
by a (ϕ,F[[π]])-module M (resp. M′) of height ≤ 1. Then M ∩ D′ (resp.
image(M′)) is a (ϕ,F[[π]])-module of height ≤ 1.
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Proof. The surjection case is obvious. For the injection, it is clear that
M′ := M ∩D′ is stable under ϕ and is a direct factor of M. Let (f1, ..., fd)
be a basis of M (over F[[π]]) such that (f1, ..., fd′) is a basis of M′ and
denote by (fd′+1, ..., fd) the image basis of M/M′. By assumption, there are
sij ∈ F[[π]] such that πefi =

∑d
j=1 sijϕ(fj) for 1 ≤ i ≤ d. For d′+1 ≤ i ≤ d,

this implies that (ϕ(fd′+1), ..., ϕ(fd)) is a basis of (M/M′)[1/π] since it
generates this module, and for 1 ≤ i ≤ d′ this implies 0 =

∑d
j=d′+1 sijϕ(f j);

i.e. sij = 0 for d′ + 1 ≤ j ≤ d (and 1 ≤ i ≤ d′). Hence, ϕ(M′) generates
πeM′. �

Lemma 3.4.2. Let G1 and G2 be two group schemes of type (p, ..., p)
over OF . Then any Fp[GF∞ ]-isomorphism G1(Qp)|GF∞ ' G2(Qp)|GF∞ is
an Fp[GF ]-isomorphism.

Proof. Fix such an Fp[GF∞]-isomorphism. Let Mi be the (ϕ,F[[π]])-module
of height ≤ 1 associated to Gi by 3.3.2 and let D := Mi[1/π], which doesn’t
depend on i ∈ {1, 2} by assumption and 3.3.1. Then M := M1 + M2 ⊂ D
is obviously still a (ϕ,F[[π]])-module of height ≤ 1 and thus corresponds
to a group scheme G/OF . The two injections Mi ↪→M give morphisms of
group schemes G→ Gi such that G(Qp)|GF∞

∼→ Gi(Qp)|GF∞ by 3.3.2. This
implies G1(Qp) ' G(Qp) ' G2(Qp) and all of these isomorphisms obviously
commute with GF since they come from morphisms of group schemes. �

We say a representation of GF on a finite length Zp-module is finite flat if
it is isomorphic to the representation of GF on G(Qp) for some commutative
finite flat group scheme G over OF killed by some power of p. The process
of schematic closure ([24]) then shows this category is abelian and stable
under formation of subobjects and quotients.

Theorem 3.4.3. The fonctor “restriction to GF∞” from finite flat rep-
resentations of GF to representations of GF∞ is fully faithful. Its essential
image is stable under formation of subobjects and quotients.

Proof. We first start with the full faithfulness. By a standard devissage, one
is reduced to the case of representations on Fp-vector spaces. Let G1, G2 be
two group schemes of type (p, ..., p), M1, M2 the corresponding (ϕ,F[[π]])-
modules of height ≤ 1 and Di := Mi[1/π] (i = 1, 2). Assume there is an
Fp[GF∞ ]-morphism G2(Qp)|GF∞ → G1(Qp)|GF∞ i.e. by 3.3.1 a morphism
f : D1 → D2. By 3.4.1, f(M1) and M2 ∩ f(D1) are two (ϕ,F[[π]])-modules
of height ≤ 1 that generate f(D1). They correspond to two group schemes
G′

1, G′
2 such that G′

2(Qp)|GF∞ ' G′
1(Qp)|GF∞ and we have morphisms of

group schemes G′
1 → G1 and G2 → G′

2 by 3.3.2. Hence the morphism
G2(Qp)|GF∞ → G1(Qp)|GF∞ factorizes through:

G2(Qp)|GF∞ −→ G′
2(Qp)|GF∞ ' G′

1(Qp)|GF∞ −→ G1(Qp)|GF∞ .
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By 3.4.2, G′
2(Qp) ' G′

1(Qp) as Fp[GF ]-modules from which we get that
the map G2(Qp) → G1(Qp) commutes with GF . This gives the full faith-
fulness. For the rest of the statement, it is enough to prove that any
GF∞-subrepresentation of a finite flat GF -representation T is preserved by
GF (and hence is finite flat). We proceed by induction on n ∈ N such
that pnT = 0. For n = 1, this is a consequence of 3.4.1 (together with
3.3.1 and 3.3.2). Assume this holds for n − 1 and let T ′ ⊂ T be a GF∞-
subrepresentation with pnT = 0. Then T/(T ′ + pT ) is a quotient of T/pT ,
hence is preserved by GF by the case n = 1. By the full faithfulness, the
morphism T → T/(T ′ + pT ) commutes with GF hence T ′ + pT is preserved
by GF . Now (T ′ + pT )/T ′ is a quotient of pT , hence is preserved by GF by
the case n− 1. By the full faithfulness applied to T ′ + pT → (T ′ + pT )/T ′,
T ′ is preserved by GF . �

Corollary 3.4.4. Let V be a crystalline representation of GF with Hodge-
Tate weights in {0, 1} and T ⊂ V a Zp-lattice which is stable under GF∞.
Then T is stable under GF .

Proof. Let T ′ be a Zp[GF ]-lattice containing T and recall that by 3.2.4 and
3.2.5, T ′ is the Tate module of a p-divisible group over OF . By 3.4.3 any
Zp[GF∞ ]-submodule of T ′/pnT ′ is stable under GF for any n ∈ N. Thus,
T/T ∩ pnT ′ is stable under GF , i.e. g(T ) ⊂ T + pnT ′ for any g ∈ GF and
n ∈ N, which implies g(T ) ⊂ ∩n(T + pnT ′) = T . �

3.5. Lattices in semi-stable representations with Hodge-Tate weights
in {0, 1}. We finish the proof of (2), 2.2.7 using Corollary 3.4.4 above. We
choose (πn)n∈N as in §3.3 and define F∞ and GF∞ in the same way.

Let D be a weakly admissible filtered (ϕ, N)-module such that
Fil0DF = DF and Fil2DF = 0. Let V := V ∗

st(D) as in §1 andD := S⊗W (F)D
as in §2.2. Recall we have defined V ∗

st(D) in the proof of Proposition 2.2.5
and shown that V ∗

st(D) ∼→ V ∗
st(D). Define:

V ∗
cris(D) := Homϕ(D,Bcris) ∩HomFil·(DF , F ⊗F0 Bcris)

and V ∗
cris(D) := HomS,ϕ,Fil1(D, Bcris) where we view Bcris as an S-algebra

by sending u to the element [π] corresponding to the pn-th roots πn (§2.2).
We have ring morphisms Bst → Bcris and Âst[1/p] → Bcris obtained by
sending log [π]

π and X to 0.

Lemma 3.5.1. (1) The map f 7→ f |D induces an isomorphism of Qp-
vector spaces V ∗

cris(D) ∼→ V ∗
cris(D).

(2) The ring homomorphisms Bst → Bcris and Âst[1/p]→ Bcris induce iso-
morphisms of Qp-vector spaces V ∗

st(D) ∼→ V ∗
cris(D) and V ∗

st(D) ∼→ V ∗
cris(D).

(3) The diagram
V ∗

st(D) ∼→ V ∗
cris(D)

o ↓ ↓ o
V ∗

st(D) ∼→ V ∗
cris(D)

is commutative.
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Proof. (3) follows from the definition of the various maps. To prove (1)
and (2), we first note that we can replace everywhere Bcris by B+

cris and
Bst by B+

st. For Bcris, this is a direct consequence of [13], Th.5.3.7(i). For
Bst, one can argue as follows. Let f ∈ V ∗

st(D), x ∈ D\{0} and r ∈ Z≥0

such that N r+1(x) = 0 but N r(x) 6= 0. Then f(ϕs(N r(x))) ∈ Fil0Bcris

for all s ∈ Z which implies f(N r(x)) ∈ B+
cris by [13], Th.5.3.7(i). Hence

f(N r−1(x)) ∈ Fil0Bcris + B+
cris log [π]

π . Since ϕ(log [π]
π ) = p log [π]

π , the same
argument shows f(N r−1(x)) ∈ B+

cris+B+
cris log [π]

π and we deduce f(x) ∈ B+
st

by induction. The isomorphism in (1) comes from the facts that Fil1D =
f−1

π (Fil1DF ) and [π] − π ∈ Fil1(F ⊗F0 B+
cris) where fπ : D → DF is the

map of §2.2. Note that it exists because there is just Fil1. One checks the
ring homomorphisms B+

st → B+
cris and Âst[1/p] → B+

cris deduced from the
ones without + commute with ϕ and preserve Fil1 and hence induce maps
of vector spaces as in (2). Since we know that V ∗

st(D) ∼→ V ∗
st(D), we only

have to prove V ∗
st(D) ∼→ V ∗

cris(D) thanks to (1) and the commutativity in
(3). The inverse map V ∗

cris(D) → V ∗
st(D) is given by f 7→ f + log [π]

π f ◦ N

(using B+
cris ⊂ B+

st). �

Remark 3.5.2. One can prove that the above isomorphism V ∗
st (D) ∼→

V ∗
cris(D) does not require Fil2DF = 0. Also, all the isomorphisms in Lemma

3.5.1 commute with GF∞ although they do not commute with GF .

Lemma 3.5.3. Let D′ be the same filtered (ϕ, N)-module as D but with
N = 0. Then D′ is also weakly admissible.

Proof. With the notations of §1, we have:

Qp ⊗F0 N(D) = ⊕αN(Dα)

with N(Dα) ⊂ Dα−1 (since Nϕf = pfϕfN). But Dα = 0 if α /∈ [0, 1] (weak
admissibility condition) so N(D) ⊂ D0 which implies tN (N(D)) = 0 and
also tH(N(D)) = 0 since 0 ≤ tH(N(D)) ≤ tN (N(D)). Note that N2 = 0
(same proof as for 2.1.4). Let D0 ⊂ D be a F0-vector subspace stable under
ϕ but not necessarily under N with the induced filtration FiliD0

F := D0
F ∩

FiliDF (i = 0, 1). Define D1 := D0 + N(D0). From the exact sequence 0→
N(D0) → D1 → D0/(D0 ∩ N(D0)) → 0, the weak admissibility condition
for D1 ⊂ D, and the additivity property of tH and tN , we have:

t1H(D0/(D0 ∩N(D0))) ≤ tN (D0/(D0 ∩N(D0)))

where by t1H we mean the tH computed with the filtration on D0/(D0 ∩
N(D0)) coming from the quotient filtration of D1. From the exact sequence
0 → D0 ∩ N(D0) → D0 → D0/(D0 ∩ N(D0)) → 0, we deduce tH(D0) =
t0H(D0/(D0 ∩ N(D0))) and tN (D0) = tN (D0/(D0 ∩ N(D0))) where by t0H
we mean the tH computed with the filtration on D0/(D0 ∩N(D0)) coming
from the quotient filtration of D0. From the inclusion D0 ⊂ D1 and the



18 C. BREUIL

above inequality, we get:

t0H(D0/(D0 ∩N(D0))) ≤ t1H(D0/(D0 ∩N(D0))) ≤ tN (D0/(D0 ∩N(D0)))

hence tH(D0) ≤ tN (D0). This gives the desired result. �

Let D′ := S ⊗W (F) D′ (with its usual structures) and note that D′ ' D
except for the operator N . We have V ∗

cris(D
′) = V ∗

cris(D) and V ∗
cris(D′) =

V ∗
cris(D) since the definition of these vector spaces do not use N . Using

(2), Lemma 3.5.1, we deduce isomorphisms V ∗
st(D

′) ' V ∗
st(D) and V ∗

st(D′) '
V ∗

st(D) such that the diagram:

V ∗
st(D) ∼→ V ∗

st(D′)
o ↓ ↓ o

V ∗
st(D) ∼→ V ∗

st(D
′)

commutes. We call V the commun underlying Qp-vector space and ρ′, ρ the
two different Galois actions GF → Aut(V ) corresponding to D′ and D re-
spectively. Let D(−1) be the filtered (ϕ, N)-module defined by FilmD(−1)F :=
Film+1DF , ϕD(−1) := p−1ϕD and ND(−1) := ND. The operator N induces
a morphism of filtered modules N : D(−1) → D and thus a morphism of
Galois representations:

N : (V, ρ)→ (V ⊗Qp(−1), ρ⊗ χ−1)

where Qp(−1) is the Qp-dual of Qp(1) :=
(
lim←−µpn(Qp)

)
⊗Qp and χ is the

p-adic cyclotomic character. Working out the isomorphism V ∗
st(D

′) ' V ∗
st(D)

from the proof of 3.5.1, we easily obtain:

Lemma 3.5.4. Let tp : GF → lim←−µpn(Qp) = Zp(1) be the 1-cocycle defined
by tp(g) :=

(
g(πn)/πn

)
n∈N

. Then:

ρ = (Id + tp ⊗N) ◦ ρ′.

From this and the results of §3.4, we obtain the following key corollary:

Corollary 3.5.5. Let T ⊂ V be a Zp-lattice which is stable under ρ. Then
T is also stable under ρ′, or equivalently N(T ) ⊂ T ⊗ Zp(−1).

Proof. Since tp(g) = 0 if g ∈ GF∞ , it follows from 3.5.4 that T is preserved
by ρ′(GF∞) = ρ(GF∞). By 3.4.4, T is stable under ρ′. �

Now, let M be a strongly divisible lattice in D. We denote by M′ the
image of M in D′ under the identification D ' D′. In particular, as S-
modules,M and Fil1M are just the same as M′ and Fil1M′.

Lemma 3.5.6. (1) The S-module M′ is preserved N in D′, i.e. M′ is a
strongly divisible lattice in D′.
(2) Under the isomorphism V ∗

st(D) ' V ∗
st(D

′), the lattice T ∗st(M) corresponds
to the lattice T ∗st(M′).



INTEGRAL p-ADIC HODGE THEORY 19

Proof. For (1), we have to prove N(M) ⊂ M with N being N ⊗ 1 on
D′ = S ⊗ D′ = S ⊗ D. By Lemma 3.2.1 or by [5] Prop. 5.1.3, there
is a unique additive map N ′ : M → M such that N ′(sx) = N(s)x +
sN ′(x), N ′(M) ⊂ uM and N ′ϕ = pϕN ′. As D = ∩n∈Nϕn(D) (this is
easily checked), the last commutativity condition implies N ′(D) ⊂ D and
the condition N ′(M) ⊂ uM implies N ′|D = 0. Hence, onM[1/p] = S ⊗D,
N ′ is exactly N ⊗ 1. This proves (1). Recall from Lemma 3.5.1 and the
foregoing that we have a commutative diagram:

V ∗
st(D) ∼→ V ∗

st(D′)
o ↓ ↓ o

V ∗
cris(D) = V ∗

cris(D′)
where the top arrow is the identification V ∗

st(D) ' V ∗
st(D

′). In order to
prove (2), it is enough to prove that the two lattices T ∗st(M) ⊂ V ∗

st(D) and
T ∗st(M′) ⊂ V ∗

st(D′) map to the same Zp-module in V ∗
cris(D) = V ∗

cris(D′). De-
fine T ∗cris(M) := HomS,ϕ,Fil1(M, Acris) ⊂ V ∗

cris(D) and likewise for T ∗cris(M′).
Since N is not involved, we have T ∗cris(M) = T ∗cris(M′). By [3] Lemma
2.3.1.1, T ∗st(M) (resp. T ∗st(M)) exactly maps to T ∗cris(M) (resp. T ∗cris(M′))
under V ∗

st(D) ∼→ V ∗
cris(D) (resp. V ∗

st(D′)
∼→ V ∗

cris(D′)). This gives (2). �

Corollary 3.5.7. Statement (2) of 2.2.7 holds.

Proof. We can assume m = 1. We first prove the full faithfulness. Let
M1, M2 be two strongly divisible modules of weight ≤ 1, T1, T2 their
corresponding lattices and f : T2 → T1 a Galois morphism. Let Vi := Ti⊗Qp,
Di := D∗

st(Vi), D′
i as before and V ′

i := V ∗
st(D

′
i) (i ∈ {1, 2}). Recall Vi ' V ′

i
as vector spaces. The map f induces f : V2 → V1 and f : V ′

2 → V ′
1 which

is GF -equivariant for both actions of GF (look at the corresponding map
on Di and D′

i). By 3.5.5, Ti is Galois stable in V ′
i and thus f : T2 → T1

commutes with this “crystalline” Galois action. By 3.5.6 and 3.2.5, it induces
a morphismM1 →M2. It remains to prove this morphism commutes with
the original N , but this is obvious since this is so for M1[1/p] →M2[1/p].
Let us now prove the essential surjectivity. Let V be a semi-stable p-adic
representation with Hodge-Tate weights in {0, 1} and T ⊂ V a Galois stable
lattice. Let D := D∗

st(V ) and D′, V ′ as before. Since T is also Galois stable
in V ′ (Corollary 3.5.5, this is the key point), by 3.2.5 it corresponds to a
strongly divisible lattice M in D′ := S ⊗D′. By statement (2) of 3.5.6, it
remains to prove that M is stable under N in D := S ⊗D. Denote by N ′

the S-derivation on M induced by D′, by N(V ) the unramified quotient of
V corresponding to N(D) ⊂ D (see the proof of 3.5.3) and by N(T ) the
image of T in N(V ). One has an injection of crystalline representations
with Hodge-Tate weights in {0, 1}, N(V ) ⊗ Qp(1) ↪→ V , which induces
N(T ) ⊗ Zp(1) ↪→ T by 3.5.5. If M0 denotes the strongly divisible lattice
in S ⊗N(D) corresponding to N(T ) (case m = 0) and M0(1) the obvious
one corresponding to N(T )⊗Zp(1), then by 3.2.5 we have morphismsM→
M0(1) and M0 → M, the composite of which is N − N ′ : M → M(1)
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(with obvious notation, one checks this by looking over S[1/p]). Forgetting
the twist “(1)”, this implies N(M) ⊂M. �

4. Integral p-adic cohomologies

In this section, we suggest a cohomological interpretation of strongly di-
visible modules.

We fix a proper smooth scheme X over Spec(F ) and we assume X admits
a proper semi-stable model X over OF (i.e. étale-locally X is smooth over
OF [X1, ..., Xr]/(X1 · · ·Xr − π) for some r). Let Y := X ×Spec(OF ) Spec(F)
and X1 := X ×Spec(OF ) Spec(OF /pOF ). Endow X , Y and X1 with their
natural log-structure ([22]) and for m ∈ N denote by:

Hm
ét (X ×F Qp,Zp) := lim←−Hm((X ×F Qp)ét,Z/pnZ)

Hm
ét (X ×F Qp,Qp) := Hm

ét (X ×F Qp,Zp)⊗Zp Qp

the usual p-adic étale cohomology groups of X. By [28], Hm
ét (X ×F Qp,Qp)

is a semi-stable p-adic representation of GF with Hodge-Tate weights in
{−m, ..., 0}. Moreover, if V m := Hm

ét (X ×F Qp,Qp)∗ (Qp-dual) and Dm :=
D∗

st(V
m) is the associated filtered (ϕ, N)-module (see §1), then:

Dm ' Hm
log−cris(Y/W (F))⊗ F0(1)

where:
Hm

log−cris(Y/W (F)) := lim←−Hm
log−cris

(
Y/Spec(Wn(F))

)
is the log-crystalline cohomology of Y with respect to the base scheme
Spec(Wn(F)) endowed with the log-structure

(
N → Wn(F), 1 7→ 0

)
. More

precisely this cohomology is naturally endowed with operators ϕ and N and
one has an isomorphism (depending on the choice of π):

F ⊗W (F) Hm
log−cris(Y/W (F)) ' Hm

dR(X)

where Hm
dR(X) is the usual de Rham cohomology of X endowed with its

Hodge filtration. Then (1) is an isomorphism of filtered (ϕ, N)-modules (see
[19], [22] and [28] for details).

Now, let:
Dm := S ⊗W (F) Dm

and endow it with the same structures as in section 2.2. It is shown in [19]
that there is an isomorphism of S[1/p]-modules:

Dm ' Hm
log−cris(X1/S)⊗ F0

where:
Hm

log−cris(X1/S) := lim←−Hm
log−cris

(
X1/Spec(S/pnS)

)
is the log-crystalline cohomology of X1 with respect to the base scheme
Spec(S/pnS) endowed with the log-structure

(
N→ S/pnS, 1 7→ u

)
. Here the
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log-scheme X1 is viewed over Spec(S/pnS) via the embedding Spec(OF /pOF ) ↪→
Spec(S/pnS), u 7→ π. Assume m < p− 1 and consider:

Tm := Zp−dual of
(
Hm

ét (X ×F Qp,Zp)/torsion
)
.

Then Tm is a Galois stable lattice in V m. Conjecture 2.2.6 predicts there
should exist a corresponding strongly divisible lattice in Dm. Consider:

Mm := Hm
log−cris(X1/S)/torsion.

One can prove that Mm ⊂ Dm and that it is stable under ϕ and N ([19]).

Question 4.1. Assume m < p− 1.
(1) IsMm a strongly divisible lattice in Dm in the sense of Definition 2.2.1?
(2) If this is so, is T ∗st(Mm) isomorphic to Tm?

The following theorem summarizes the known answers to these questions:

Theorem 4.2. The answer to questions (1) and (2) of 4.1 is yes in the
following two cases:
(1) e = 1
(2) m ≤ 1.

Case (1) is proven in [7]. The method is a generalization of that of
Fontaine and Messing (syntomic cohomology) who did the subcase e = 1,
N = 0 ([18]). However, the proofs are more involved because strongly di-
visible modules when N 6= 0 are much more complicated than when N = 0,
even if e = 1 (see [9] for instance). Case (2) is a special case of results of
Faltings and is proven in [12] using his theory of almost étale extensions.

5. A glimpse at reduction modulo p

Integral p-adic Hodge theory has the virtue that we can form its reduc-
tion modulo p. We provide here some samples of such reductions (Prop.
5.2, 5.3 and Th. 5.4). More precisely we reduce modulo p lattices in some
2-dimensional (over Qp) semi-stable representations of GF for F = Qp. This
is the simplest case, although not so simple! In the sequel, we denote by
IQp the inertia subgroup of GQp , by val the p-adic valuation normalized
by val(p) = 1 and by Frob(λ) the unramified character of GQp sending the
arithmetic Frobenius to λ.

Let us consider semi-stable p-adic representations V of GQp endowed with
an embedding E ↪→ AutGQp

(V ) where E is a finite (arbitrarily large) ex-
tension of Qp inside Qp such that dimEV = 2. In that case, D := Dst(V ∗)
is also a 2-dimensional E-vector space with E-linear ϕ, N and filtration.
We assume moreover Fil0D = D and Fil1D 6= 0, and we denote by k ≥ 2
the smallest integer such that FilkD = 0. Since dimED = 2, we have
Fil1D = Fil2D = ... = Filk−1D. We denote by OE the ring of integers of E
and by mE its maximal ideal.
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Examples 5.1. We will focus on the following three examples:

(1)



D = Ee1 ⊕ Ee2

ϕ(e1) = pk−1(λe1 + µe2)
ϕ(e2) = λ−1e2

N = 0
Filk−1D = Ee1

(λ, µ) ∈ O×E × E

(2)



D = Ee1 ⊕ Ee2

ϕ(e1) = pk−1e2

ϕ(e2) = −e1 + µe2

N = 0
Filk−1D = Ee1

µ ∈ mE

(3)



ϕ(e1) = pk/2λe1

ϕ(e2) = pk/2−1λe2

Filk−1D = E(e1 − Le2)
N(e1) = e2

N(e2) = 0
k ∈ 2Z>0

(λ,L) ∈ {±1} × E

(The reader can check that the above filtered (ϕ, N)-modules are all weakly
admissible.)

Following Serre ([26]), define for n ∈ Z>0 and g ∈ IQp :

θpn−1(g) :=
g(p1/(pn−1))
p1/(pn−1)

∈ µpn−1(Qp) ' F×pn ↪→ F×p .

This turns out to be independent of the choice of p1/(pn−1) and defines a
tamely ramified character θpn−1 : IQp → F×p . Let T ⊂ V be a Galois
stable OE-lattice and T := T ⊗OE

(OE/mE) its reduction “modulo p”. By
[26] the semi-simplification of this reduction can be described in terms of
powers of the characters θpn−1. For instance, by noticing that the Galois
representations associated to the filtered modules of Example 5.1 (1) are
reducible, one immediately gets:

Proposition 5.2. ([17]) Let V be a semi-stable p-adic representation of
GQp such that D∗

st(V ) is as in Example 5.1 (1). Let T ⊂ V be a Galois
stable OE-lattice. Then:

T '

(
θk−1
p−1Frob(λ) ∗

0 Frob(λ−1)

)
.

For cases (2) and (3) of 5.1, one needs integral p-adic Hodge theory. By
computing explicit strongly divisible lattices in S ⊗ D for D as in 5.1 (2),
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(3) and reducing them modulo p, one gets, assuming of course k < p + 1
(Basic Assumption):

Proposition 5.3. ([17]) Let V be a semi-stable p-adic representation of
GQp such that D∗

st(V ) is as in Example 5.1 (2) and assume k < p + 1. Let
T ⊂ V be a Galois stable OE-lattice. Then:

T |IQp
⊗ Fp '

(
θk−1
p2−1

0

0 θ
p(k−1)
p2−1

)
.

and, finally, the semi-stable non-crystalline case, which is somewhat more
involved:

Theorem 5.4. ([9]) Let V be a semi-stable p-adic representation of GQp

such that D∗
st(V ) is as in Example 5.1 (3) and assume k < p+1. Let T ⊂ V

be a Galois stable OE-lattice. Define ` := val(L), [`] the greatest integer ≤ `,
and, if ` ∈ Z, α := L/p`. Let H0 := 0 and, for n ∈ Z>0, Hn :=

∑n
i=1

1
i .

Define also:

a := (−1)
k
2

(
− 1 +

k

2

(k

2
− 1
)(
L+ 2Hk/2−1

))
and if ` ∈ {−k

2 + 2,−k
2 + 1, ...,−1}:

b := (−1)
k
2
−`
(k

2
− `
)(k

2 − 1− `

−2` + 1

)
α.

(1) If val(a) = 0, then:

T '

θ
k
2
p−1Frob(a−1λ) ∗

0 θ
k
2
−1

p−1 Frob(aλ)


or

T '

θ
k
2
−1

p−1 Frob(aλ) ∗

0 θ
k
2
p−1Frob(a−1λ)

 .

(2) If val(a) > 0, then:

T |IQp
⊗ Fp '

θ
k
2
−1+p k

2

p2−1
0

0 θ
k
2
+p( k

2
−1)

p2−1

 .

(3) If val(a) < 0 (i.e. ` < 0), then:

• if ` < −k
2 + 2, then T |IQp

⊗ Fp '

(
θk−1
p2−1

0

0 θ
p(k−1)
p2−1

)
,

• if −k
2 + 2 ≤ ` < 0 and ` /∈ Z, then:

T |IQp
⊗ Fp '

θ
k
2
−[`]+p( k

2
+[`]−1)

p2−1
0

0 θ
k
2
+[`]−1+p( k

2
−[`])

p2−1

 ,
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• if −k
2 + 2 ≤ ` < 0 and ` ∈ Z, then:

T '

θ
k
2
−`

p−1 Frob(b−1
λ) ∗

0 θ
k
2
+`−1

p−1 Frob(bλ)


or

T '

θ
k
2
+`−1

p−1 Frob(bλ) ∗

0 θ
k
2
−`

p−1 Frob(b−1
λ)

 .

Remark 5.5. Proposition 5.3 and Theorem 5.4 are wrong in general for
k > p + 1.

These results can be applied to modular forms. Fix an embedding Q ↪→
Qp. Let f be a cuspidal eigenform on Γ0(N) of weight k ≥ 2 and ρf :
Gal(Q/Q) → GL2(Ef ) the p-adic global representation associated to f

where Ef ⊂ Qp is a finite extension of Qp. Denote by ρf the semi-
simplification modulo p of ρf and let ρf,p := ρf |GQp

. By [28] and [25],
one easily deduces from Propositions 5.2, 5.3 and Theorem 5.4:

Corollary 5.6. (Deligne) Let f be a cuspidal eigenform of weight k for
Γ0(N) with (p, N) = 1. Let ap be the eigenvalue of the Hecke operator Tp

and assume val(ap) = 0. Then ρf,p is as in 5.2 with λ ∈ O×Ef
such that

pk−1λ + λ−1 = ap.

Corollary 5.7. (Fontaine, Serre) Let f be a cuspidal eigenform of weight
k for Γ0(N) with (p, N) = 1 and 2 ≤ k ≤ p. Let ap be the eigenvalue of the
Hecke operator Tp and assume val(ap) 6= 0. Then ρf,p is as in 5.3.

Corollary 5.8. ([9]) Let f be a cuspidal eigenform of weight k for Γ0(N)
with p‖N and 2 ≤ k ≤ p. Assume f is new at p. Let ap be the eigenvalue of
the Hecke operator Tp and Lp(f) ∈ Ef the invariant associated to f ([23]).
Then ρf,p is as in 5.4 with L = Lp(f) and λ = ap/pk/2−1 ∈ {±1}.

Remark 5.9. Corollaries 5.6 and 5.7 were originally proven in several
letters (letter from Deligne to Serre (28/05/74) for the first and letters from
Serre to Fontaine (27/05/79) and Fontaine to Serre (25/06/79 and 10/07/79)
for the second). One can find published alternative proofs of these corollaries
in [11] which don’t use neither p-adic Hodge theory nor integral p-adic Hodge
theory, i.e. don’t use nor prove Prop. 5.2 and 5.3, but show that Corollary
5.7 also holds in weight k = p + 1 (integral p-adic Hodge theory cannot yet
deal directly with this case because of Assumption 2.1.2).

As a conclusion, let us mention the following fact. In [9], it is proven
that there is a surprising link between the various cases of Theorem 5.4 and
the Jordan-Hölder decomposition of the representation Symk−2F2

p ⊗Fp
St

of GL2(Zp). Here St is the Steinberg representation of GL2(Zp) in char-
acteristic p, i.e. the inflation to GL2(Zp) of the natural representation
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of GL2(Fp) on the space of functions P1(Fp) → Fp with average value 0
(with g ∈ GL2(Fp) acting on a function through the usual action of g−1 on
P1(Fp)). This gives a mysterious link between integral p-adic Hodge the-
ory and the representation theory of GL2(Zp). I hope more is true in that
direction.
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poles, Astérisque 223, Soc. Math. de France, 1994, 221-268.
[20] L. Illusie, Cohomologie de de Rham et cohomologie étale p-adique [d’après G. Faltings,
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