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Introduction

In this paper, building on work of Wiles [Wi] and of Wiles and one of us (R.T.) [TW], we will prove the
following two theorems (see §2.2).

Theorem A. If E/Q is an elliptic curve, then E is modular.

Theorem B. If ρ : Gal(Q/Q) → GL2(F5) is an irreducible continuous representation with cyclotomic
determinant, then ρ is modular.

We will first remind the reader of the content of these results and then briefly outline the method of proof.
If N is a positive integer then we let Γ1(N) denote the subgroup of SL2(Z) consisting of matrices that

modulo N are of the form (
1 ∗
0 1

)
.

The quotient of the upper half plane by Γ1(N), acting by fractional linear transformations, is the complex
manifold associated to an affine algebraic curve Y1(N)/C. This curve has a natural model Y1(N)/Q, which
for N > 3 is a fine moduli scheme for elliptic curves with a point of exact order N . We will let X1(N) denote
the smooth projective curve which contains Y1(N) as a dense Zariski open subset.

Recall that a cusp form of weight k ≥ 1 and level N ≥ 1 is a holomorphic function f on the upper half
complex plane H such that

• for all matrices (
a b
c d

)
∈ Γ1(N)

and all z ∈ H, we have f((az + b)/(cz + d)) = (cz + d)kf(z);
• and |f(z)|2(Im z)k is bounded on H.

The space Sk(N) of cusp forms of weight k and level N is a finite dimensional complex vector space. If
f ∈ Sk(N) then it has an expansion

f(z) =
∞∑
n=1

cn(f)e2πinz

and we define the L-series of f to be

L(f, s) =
∞∑
n=1

cn(f)/ns.
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For each prime p 6 |N there is a linear operator Tp on Sk(N) defined by

(f |Tp)(z) = p−1

p−1∑
i=0

f((z + i)/p) + pk−1(cpz + d)−kf((apz + b)/(cpz + d))

for any (
a b
c d

)
∈ SL2(Z)

with c ≡ 0 mod N and d ≡ p mod N . The operators Tp for p 6 |N can be simultaneously diagonalised on
the space Sk(N) and a simultaneous eigenvector is called an eigenform. If f is an eigenform then the
corresponding eigenvalues, ap(f), are algebraic integers and we have cp(f) = ap(f)c1(f).

Let λ be a place of the algebraic closure of Q in C above a rational prime ` and let Qλ denote the
algebraic closure of Q` thought of as a Q algebra via λ. If f ∈ Sk(N) is an eigenform, then there is a unique
continuous irreducible representation

ρf,λ : Gal(Q/Q) −→ GL2(Qλ)

such that for any prime p 6 |Nl, ρf,λ is unramified at p and tr ρf,λ(Frobp) = ap(f). The existence of ρf,λ is due
to Shimura if k = 2 [Sh2], to Deligne if k > 2 [De] and to Deligne and Serre if k = 1 [DS]. Its irreducibility
is due to Ribet if k > 1 [Ri] and Deligne and Serre if k = 1 [DS]. Moreover ρ is odd in the sense that
det ρ of complex conjugation is −1. Also, ρf,λ is potentially semi-stable at ` in the sense of Fontaine. We
can choose a conjugate of ρf,λ which is valued in GL2(OQλ

), and reducing modulo the maximal ideal and
semi-simplifying yields a continuous representation

ρf,λ : Gal(Q/Q) −→ GL2(F`),

which, up to isomorphism, does not depend on the choice of conjugate of ρf,λ.
Now suppose that ρ : GQ → GL2(Q`) is a continuous representation which is unramified outside finitely

many primes and for which the restriction of ρ to a decomposition group at ` is potentially semi-stable in
the sense of Fontaine. To ρ|Gal(Q`/Q`)

we can associate both a pair of Hodge-Tate numbers and a Weil-
Deligne representation of the Weil group of Q`. We define the conductor N(ρ) of ρ to be the product over
p 6= ` of the conductor of ρ|Gal(Qp/Qp)

and of the conductor of the Weil-Deligne representation associated
to ρ|Gal(Q`/Q`)

. We define the weight k(ρ) of ρ to be 1 plus the absolute difference of the two Hodge-Tate
numbers of ρ|Gal(Q`/Q`)

. It is known by work of Carayol and others that the following two conditions are
equivalent

• ρ ∼ ρf,λ for some eigenform f and some place λ|`;
• ρ ∼ ρf,λ for some eigenform f of level N(ρ) and weight k(ρ) and some place λ|`.

When these equivalent conditions are met we call ρ modular. It is conjectured by Fontaine and Mazur that
if ρ : GQ → GL2(Q`) is a continuous irreducible representation which satisfies

• ρ is unramified outside finitely many primes,
• ρ|Gal(Q`/Q`)

is potentially semi-stable with its smaller Hodge-Tate number 0,
• and, in the case where both Hodge-Tate numbers are zero, ρ is odd;

then ρ is modular [FM].
Next consider a continuous irreducible representation ρ : Gal(Q/Q) → GL2(F`). Serre [Se2] defines the

conductor N(ρ) and weight k(ρ) of ρ. We call ρ modular if ρ ∼ ρf,λ for some eigenform f and some place
λ|`. We call ρ strongly modular if moreover we may take f to have weight k(ρ) and level N(ρ). It is known
from work of Mazur, Ribet, Carayol, Gross, Coleman and Voloch and others that for ` ≥ 3, ρ is strongly
modular if and only if it is modular (see [Di1]). Serre has conjectured that all odd, irreducible ρ are strongly
modular [Se2].

Now consider an elliptic curve E/Q. Let ρE,` (resp. ρE,`) denote the representation of Gal(Q/Q) on the
`-adic Tate module (resp. the `-torsion) of E(Q). Let N(E) denote the conductor of E. It is known that
the following conditions are equivalent.
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(1) The L-function L(E, s) of E equals the L-function L(f, s) for some eigenform f .
(2) The L-function L(E, s) of E equals the L-function L(f, s) for some eigenform f of weight 2 and level

N(E).
(3) For some prime `, the representation ρE,` is modular.
(4) For all primes `, the representation ρE,` is modular.
(5) There is a non-constant holomorphic map X1(N)(C)→ E(C) for some positive integer N .
(6) There is a non-constant morphism X1(N(E))→ E which is defined over Q.

The implications (2) ⇒ (1), (4) ⇒ (3) and (6) ⇒ (5) are tautological. The implication (1) ⇒ (4) follows
from the characterisation of L(E, s) in terms of ρE,`. The implication (3) ⇒ (2) follows from a theorem of
Carayol [Ca1] and a theorem of Faltings [Fa2]. The implication (2) ⇒ (6) follows from a construction of
Shimura [Sh2] and a theorem of Faltings [Fa1]. The implication (5) ⇒ (3) seems to have been first noticed
by Mazur [Maz]. When these equivalent conditions are satisfied we call E modular.

It has become a standard conjecture that all elliptic curves over Q are modular, although at the time this
conjecture was first suggested the equivalence of the conditions above may not have been clear. Taniyama
made a suggestion along the lines (1) as one of a series of problems collected at the Tokyo-Nikko conference
in September 1955. However his formulation did not make clear whether f should be a modular form or some
more general automorphic form. He also suggested that constructions as in (5) and (6) might help attack
this problem at least for some elliptic curves. In private conversations with a number of mathematicians
(including Weil) in the early 1960’s, Shimura suggested that assertions along the lines of (5) and (6) might be
true (see [Sh3] and the commentary on [1967a] in [We2]). The first time such a suggestion appears in print
is Weil’s comment in [We1] that assertions along the lines of (5) and (6) follow from the main result of that
paper, a construction of Shimura and from certain “reasonable suppositions” and “natural assumptions”.
That assertion (1) is true for CM elliptic curves follows at once from work of Hecke and Deuring. Shimura
[Sh1] went on to check assertion (5) for these curves.

Our approach to Theorem A is an extension of the methods of Wiles [Wi] and of Wiles and one of us
(R.T., [TW]). We divide the proof into three cases.

(1) If ρE,5|Gal(Q/Q(
√

5)) is irreducible, we show that ρE,5 is modular.
(2) If ρE,5|Gal(Q/Q(

√
5)) is reducible, but ρE,3|Gal(Q/Q(

√
−3)) is absolutely irreducible, we show that ρE,3

is modular.
(3) If ρE,5|Gal(Q/Q(

√
5)) is reducible and ρE,3|Gal(Q/Q(

√
−3)) is absolutely reducible, then we show that

E is isogenous to an elliptic curve with j-invariant 0, (11/2)3, or −5(29)3/25 and so (from tables of
modular elliptic curves of low conductor) is modular.

In each of cases 1 and 2 there are two steps. First we prove that ρE,` is modular and then that ρE,` is
modular. In case 1 this first step is our Theorem B and in case 2 it is a celebrated theorem of Langlands
and Tunnell [L], [T]. In fact, in both cases E obtains semi-stable reduction over a tame extension of Q` and
the deduction of the modularity of ρE,` from that of ρE,` was carried out in [CDT] by an extension of the
methods of [Wi] and [TW]. In the third case we have to analyse the rational points on some modular curves
of small level. This we did, with Elkies’ help, in [CDT].

It thus only remained to prove Theorem B. Let ρ be as in that theorem. Twisting by a quadratic
character, we may assume that ρ|Gal(Q3/Q3)

falls into one of the following cases (see §2.2).

(1) ρ is unramified at 3.
(2) ρ(I3) has order 5.
(3) ρ(I3) has order 4.
(4) ρ(I3) has order 12 and ρ|Gal(Q3/Q3)

has conductor 27.
(5) ρ(I3) has order 3.
(6) ρ|Gal(Q3/Q3)

is induced from a character χ : Gal(Q3/Q3(
√
−3)) −→ F×25 such that χ(−1) = −1 and

χ(
√
−3) = χ(1 + 3

√
−3)− χ(1− 3

√
−3),

where we use the Artin map (normalised to take uniformisers to arithmetic Frobenius) to identify χ
with a character of Q3(

√
−3)×.
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We will refer to these as the f = 1,3,9,27, 81 and 243 cases respectively.
Using the technique of Minkowski and Klein (i.e. the observation that the moduli space of elliptic curves

with full level 5 structure has genus 0, see for example [Kl]), Hilbert irreducibility and some local computa-
tions of Manoharmayum [Man], we find an elliptic curve E/Q with the following properties (see §2.2)

• ρE,5 ∼ ρ,
• ρE,3 is surjective onto GL2(F3),
• and

(1) in the f = 1 case, either ρE,3|I3 ⊗ F9 ∼ ω2 ⊕ ω3
2 or

ρE,3|I3 ∼
(
ω ∗
0 1

)
and is peu ramifié;

(2) in the f = 3 case,

ρE,3|I3 ∼
(
ω ∗
0 1

)
;

(3) in the f = 9 case, ρE,3|I3 ⊗ F9 ∼ ω2 ⊕ ω3
2 ;

(4) in the f = 27 case,

ρE,3|I3 ∼
(
ω ∗
0 1

)
and is très ramifié;

(5) in the f = 81 case,

ρE,3|I3 ∼
(

1 ∗
0 ω

)
and is très ramifié;

(6) in the f = 243 case,

ρE,3|Gal(Q3/Q3)
∼
(
ω ∗
0 1

)
is non-split over Q

ker ρ

3 and is très ramifié.
(We are using the terms très ramifié and peu ramifié in the sense of Serre [Se2]. We are also letting ω denote
the mod3 cyclotomic character and ω2 the second fundamental character I3 → F×9 , i.e.

ω2(σ) ≡ σ( 8
√

3)/ 8
√

3 mod 8
√

3.

We will often use the equality ω = ω−1 without further remark.) We emphasise that for a general elliptic
curve over Q with ρE,5

∼= ρ, the representation ρE,3 does not have the above form, rather we are placing a
significant restriction on E.

In each case our strategy is to prove that ρE,3 is modular and so deduce that ρ ∼ ρE,5 is modular. Again
we use the Langlands-Tunnell theorem to see that ρE,3 is modular and then an analogue of the arguments of
[Wi] and [TW] to conclude that ρE,3 is modular. This was carried out in [Di2] in the cases f = 1 and f = 3,
and in [CDT] in the case f = 9. (In these cases the particular form of ρE,3|I3 is not important.) This leaves
the cases f = 27, 81 and 243, which are complicated by the fact that E now only obtains good reduction
over a wild extension of Q3. In these cases our argument relies essentially on the particular form we have
obtained for ρE,3|Gal(Q3/Q3)

(depending on ρE,5|I3). We do not believe that our methods for deducing the
modularity of ρE,3 from that of ρE,3 would work without this key simplification. It seems to be a piece of
undeserved good fortune that for each possibility for ρ|I3 we can find a choice for ρE,3|Gal(Q3/Q3)

for which
our methods work.

Following Wiles, to deduce the modularity of ρE,3 from that of ρE,3, we consider certain universal defor-
mations of ρE,3 and identify them with certain modular deformations which we realise over certain Hecke
algebras. The key problem is to find the right local condition to impose on these deformations at the prime
3. As in [CDT] we require that the deformations lie in the closure of the characteristic zero points which are
potentially Barsotti-Tate (i.e., come from a 3-divisible group over the ring of integers of a finite extension of
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Q3) and for which the associated representation of the Weil group (see for example Appendix B of [CDT])
is of some specified form. That one can find suitable conditions on the representation of the Weil group at
3 for the arguments of [TW] to work seems to be a rare phenomenon in the wild case. It is here we make
essential use of the fact that we need only treat our specific pairs (ρE,5, ρE,3).

Our arguments follow closely the arguments of [CDT]. There are two main new features. Firstly, in the
f = 243 case, we are forced to specify the restriction of our representation of the Weil group completely,
rather than simply its restriction to the inertia group as we have done in the past. Secondly, in the key
computation of the local deformation rings, we now make use of a new description (due to C.B.) of finite flat
group schemes over the ring of integers of any p-adic field in terms of certain (semi-)linear algebra data (see
[Br2] and the summary [Br1]). This description enables us to make these computations. As the persistent
reader will soon discover they are lengthy and delicate, particularly in the case f = 243. It seems miraculous
to us that these long computations with finite flat group schemes in §7, §8 and §9 give answers completely in
accord with predictions made from much shorter computations with the local Langlands correspondence and
the modular representation theory of GL2(Q3) in §3. We see no direct connection, but can’t help thinking
that some such connection should exist.
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Notation. In this paper ` denotes a rational prime. In §1.1, §4.1, §4.2 and §4.3 it is arbitrary. In the rest
of §1 and in §5 we only assume it is odd. In the rest of the paper we only consider ` = 3.

If F is a field we let F denote a separable closure, F ab the maximal subextension of F which is abelian
over F and GF the Galois group Gal(F/F ). If F0 is a p-adic field (i.e. a finite extension of Qp) and F ′/F0

a (possibly infinite) Galois extension we let IF ′/F0 denote the inertia subgroup of Gal(F ′/F0). We also let
IF0 denote IF 0/F0

, FrobF0 ∈ GF0/IF0 denote the arithmetic Frobenius element, and WF0 the Weil group of
F0, i.e. the dense subgroup of GF0 consisting of elements which map to an integer power of FrobF0 . We will
normalise the Artin map of local class field theory so that uniformisers and arithmetic Frobenius elements
correspond. (We apologise for this convention, which now seems to us a bad choice. However we feel it is
important to stay consistent with [CDT].) We let OF0 denote the ring of integers of F0, ℘F0 the maximal
ideal of OF0 and kF0 the residue field OF0/℘F0 . We write simply Gp for GQp

, Ip for IQp
and Frobp for

FrobQp
. We also let Qpn denote the unique unramified degree n extension of Qp in Qp. If k is any perfect

field of characteristic p we also use Frobp to denote the pth-power automorphism of k and its canonical lift
to the Witt vectors W (k).

We write ε for the `-adic cyclotomic character and sometimes ω for the reduction of ε modulo `. We write
ω2 for the second fundamental character I` → F×`2 , i.e.

ω2(σ) ≡ σ(`1/(`
2−1))/`1/(`

2−1) mod `1/(`
2−1).

We also use ω and ω2 to denote the Teichmuller lifts of ω and ω2.
We let 1 denote the trivial character of a group. We will denote by V ∨ the dual of a vector space V .
If g : A → B is a homomorphism of rings and if X/ SpecA is an A-scheme we sometimes write gX for

the pullback of X by Spec g. We adopt this notation so that g(hX) = ghX. Similarly if θ : X → Y is a
morphism of schemes over A we will sometimes write gθ for the pullback of θ by Spec g.

By finite flat group scheme we always mean commutative finite flat group scheme. If F0 is a field of
characteristic 0 with fixed algebraic closure F 0 we use without comment the canonical identification of finite
flat F0-group schemes with finite discrete Gal(F 0/F0)-modules, and we will say that such objects correspond.
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If R is an Dedekind domain with field of fractions F of characteristic 0 then by a model of a finite flat F -
group scheme G we mean a finite locally free R-group scheme G and an isomorphism i : G ∼→ G × F ′. As
in Proposition 2.2.2 of [Ra] the isomorphism classes of models for G form a lattice ((G, i) ≥ (G′, i′) if there
exists a map of finite flat group schemes G→ G′ compatible with i and i′) and we can talk about the inf and
sup of two such models. If R is also local we call the a model (G, i) local-local if its special fibre is local-local.
When the ring R is understood we sometimes simply refer to (G, i), or even just G, as an integral model of G.

We use Serre’s terminology peu ramifié and très ramifié, see [Se2].
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1. Types

1.1. Types of local deformations. By an `-type we mean an equivalence class of two-dimensional repre-
sentations

τ : I` → GL(D)

over Q` which have open kernel and which can be extended to a representation of WQ`
. By an extended

`-type we shall simply mean an equivalence class of two-dimensional representations

τ ′ : WQ`
→ GL(D′)

over Q` with open kernel.
Suppose that τ is an `-type and that K is a finite extension of Q` in Q`. Recall from [CDT] that a

continuous representation ρ of G` on a two dimensional K-vector space M is said to be of type τ if
(1) ρ is Barsotti-Tate over F for any finite extension F of Q` such that τ |IF is trivial;
(2) the restriction of WD(ρ) to I` is in τ ;
(3) the character ε−1 det ρ has finite order prime to `.

(For the definition of “Barsotti-Tate” and of the representation WD(ρ) associated to a potentially Barsotti-
Tate representation see §1.1 and Appendix B of [CDT].) Similarly if τ ′ is an extended `-type then we say
that ρ is of extended type τ ′ if

(1) ρ is Barsotti-Tate over F for any finite extension F of Q` such that τ ′|IF is trivial;
(2) WD(ρ) is equivalent to τ ′;
(3) the character ε−1 det ρ has finite order prime to `.

Note that no representation can have extended type τ ′ unless det τ ′ is of the form χ1χ2 where χ1 has finite
order prime to ` and where χ2 is unramified and takes an arithmetic Frobenius element to `; see Appendix
B of [CDT]. (Using Theorem 1.4 of [Br2], one can show that for ` odd one obtains equivalent definitions of
“type τ” and “extended type τ ′” if one weakens the first assumption to simply require that ρ is potentially
Barsotti-Tate.)

Now fix a finite extension K of Q` in Q`. Let O denote the integers of K and let k denote the residue
field of O. Let

ρ : G` → GL(V )

be a continuous representation of G` on a finite dimensional k-vector space V and suppose that Endk[G`] V =
k. One then has a universal deformation ring RV,O for ρ (see, for instance, Appendix A of [CDT]).
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We say that a prime ideal p of RV,O is of type τ (resp. of extended type τ ′) if there exist a finite extension
K ′ of K in Q` and an O-algebra homomorphism RV,O → K ′ with kernel p such that the pushforward of the
universal deformation of ρ over RV,O to K ′ is of type τ (resp. of extended type τ ′).

Let τ be an `-type and τ ′ an irreducible extended `-type. If there do not exist any prime ideals p of type
τ (resp. of extended type τ ′), we define RDV,O = 0 (resp. RD

′

V,O = 0). Otherwise, define RDV,O (resp. RD
′

V,O) to
be the quotient of RV,O by the intersection of all p of type τ (resp. of extended type τ ′). We will sometimes
write RτV,O (resp. Rτ

′

V,O) for RDV,O (resp. RD
′

V,O). We say that a deformation of ρ is weakly of type τ (resp.
weakly of extended type τ ′) if the associated local O-algebra map RV,O → R factors through the quotient
RDV,O (resp. RD

′

V,O). We say that τ (resp. τ ′) is weakly acceptable for ρ if either RDV,O = 0 (resp. RD
′

V,O = 0) or
there is a surjective local O-algebra map O[[X]] � RDV,O (resp. O[[X]] � RD

′

V,O). We say that τ (resp. τ ′) is
acceptable for ρ if RDV,O 6= 0 (resp. RD

′

V,O 6= 0) and if there is a surjective local O-algebra map O[[X]] � RDV,O
(resp. O[[X]] � RD

′

V,O).
If K ′ is a finite extension of K in Q` with valuation ring O′ and residue field k′, then O′ ⊗O RDV,O (resp.

O′⊗OR
D′

V,O) is naturally isomorphic to RDV⊗kk′,O′ (resp. RD
′

V⊗kk′,O′). Thus (weak) acceptability depends only
on τ (resp. τ ′) and ρ, and not on the choice of K. Moreover τ (resp. τ ′) is acceptable for ρ if and only if τ
(resp. τ ′) is acceptable for ρ⊗k k′.

Although it is of no importance for the sequel, we make the following conjecture, part of which we already
conjectured as conjecture 1.2.1 of [CDT].

Conjecture 1.1.1. Suppose that τ is an `-type and τ ′ an absolutely irreducible extended `-type. A defor-
mation ρ : G` → GL(M) of ρ to the ring of integers O′ of a finite extension K ′/K in Q` is weakly of type τ
(resp. weakly of extended `-type τ ′) if and only if M is of type τ (resp. of extended type τ ′).

If τ is a tamely ramified `-type then we expect that it is frequently the case that τ is acceptable for
residual representations ρ, as in Conjectures 1.2.2 and 1.2.3 of [CDT]. On the other hand if τ (resp. τ ′) is
a wildly ramified `-type (resp. wildly ramified extended `-type) then we expect that it is rather rare that τ
(resp. τ ′) is acceptable for a residual representation ρ. In this paper we will be concerned with a few wild
cases for the prime ` = 3 which do turn out to be acceptable.

1.2. Types for admissible representations. ¿From now on we assume that ` is odd. If F is a finite
extension of Q` we will identify F× with W ab

F via the Artin map. Let U0(`r) denote the subgroup of GL2(Z`)
consisting of elements with upper triangular mod `r reduction. Also let Ũ0(`) denote the normaliser of U0(`)
in GL2(Q`). Thus Ũ0(`) is generated by U0(`) and by

(1.2.1) w` =
(

0 −1
` 0

)
.

If τ is an `-type, set Uτ = GL2(Z`) if τ is reducible and Uτ = U0(`) if τ is irreducible. If τ ′ is an extended
`-type with τ ′|I` irreducible, set Uτ ′ = Ũ0(`). In this subsection we will associate to an `-type τ an irreducible
representation στ of Uτ over Q` with open kernel, and to an extended `-type τ ′ with τ ′|I` irreducible an
irreducible representation στ ′ of Uτ ′ over Q` with open kernel. We need to consider several cases, which we
treat one at a time.

First suppose that τ = χ1|I` ⊕ χ2|I` where each χi is a character of WQ`
. Let a denote the conductor of

χ1/χ2. If a = 0 then set
στ = St⊗(χ1 ◦ det) = St⊗(χ2 ◦ det),

where St denotes the Steinberg representation of PGL2(F`). Now suppose that a > 0. Let στ denote the
induction from U0(`a) to GL2(Z`) of the character of U0(`a) which sends(

α β
`aγ δ

)
7−→ (χ1/χ2)(α)χ2(αδ − `aβγ).

This is irreducible and does not depend on the ordering of χ1 and χ2.
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For the next case, let F denote the unramified quadratic extension of Q` and s the non-trivial automor-
phism of F over Q`. Suppose that τ is the restriction to I` of the induction from WF to WQ`

of a character
χ of WF with χ 6= χs. Let a denote the conductor of χ/χs, so that a > 0. Choose a character χ′ of WQ`

such that χ′|−1
WF

χ has conductor a. If a = 1 we set

στ = Θ(χ′|−1
WF

χ)⊗ (χ′ ◦ det),

where Θ(·) is the irreducible representation of GL2(F`) defined on page 532 of [CDT].
To define στ for a > 1 we will identify GL2(Z`) with the automorphisms of the Z`-module OF . If a is even

then we let στ denote the induction from O×F (1+`a/2OF s) to GL2(Z`) of the character ϕ of O×F (1+`a/2OF s),
where, for α ∈ O×F and β ∈ (1 + `a/2OF s),

ϕ(αβ) = (χ′|−1
WF

χ)(α)χ′(detαβ).

If a > 1 is odd, then we let στ denote the induction from O×F (1 + `(a−1)/2OF s) to GL2(Z`) of η, where η
is the ` dimensional irreducible representation of O×F (1 + `(a−1)/2OF s) such that η|O×F (1+`(a+1)/2OF s)

is the
direct sum of the characters

αβ 7−→ (χ′|−1
WF

χχ′′)(α)χ′(detαβ)

for α ∈ O×F and β ∈ (1 + `(a+1)/2OF s), where χ′′ runs over the ` non-trivial characters of O×F /Z
×
` (1 + `OF ).

Now suppose τ ′ is an extended type such that τ ′|I` is irreducible. There is a ramified quadratic extension
F/Q` and a character χ of WF such that the induction from WF to WQ`

of χ is τ ′ (see §2.6 of [G]). Let s
denote the non-trivial field automorphism of F over Q` and also let ℘F denote the maximal ideal of the ring
of integers OF of F . Let a denote the conductor of χ/χs, so a is even and a ≥ 2. We may choose a character
χ′ of WQ`

such that χ′|−1
WF

χ has conductor a. We will identify GL2(Q`) with the automorphisms of the Q`

vector space F . We will also identify U0(`) with the stabiliser of the pair of lattices ℘−1
F ⊃ OF . We define

στ ′ to be the induction from F×(1 + ℘
a/2
F s) to Ũ0(`) of the character ϕ of F×(1 + ℘

a/2
F s), where

ϕ(αβ) = (χ′|−1
WF

χχ′′)(α)χ′(detαβ),

with α ∈ F× and β ∈ (1 + ℘
a/2
F s), where χ′′ is a character of F×/(O×F )2 defined as follows. Let ψ be a

character of Q` with kernel Z`. Choose θ ∈ F× such that for x ∈ ℘a−1
F we have

(χ′|−1
WF

χ)(1 + x) = ψ(trF/Q`
(θx)).

We impose the following conditions which determine χ′′:

• χ′′ is a character of F×/(O×F )2;
• χ′′|O×F is non-trivial;
• and

χ′′(−θ(NF/Q`
$)a/2) =

∑
x∈Z/`Z

ψ(x2/NF/Q`
$),

where $ is a uniformiser in OF .

Finally if τ is an irreducible `-type, choose an extended `-type τ ′ which restricts to τ on I` and set
στ = στ ′ |U0(`).

We remark that these definitions are independent of any choices (see [G]).
Recall that by the local Langlands conjecture we can associate to an irreducible admissible representation

π of GL2(Q`) a two-dimensional representation WD(π) of WQ`
. (See §4.1 of [CDT] for the normalisation

we use.)

Lemma 1.2.1. Suppose that τ is an `-type and that τ ′ an extended `-type with τ ′|I` irreducible. Suppose
also that π is an infinite dimensional irreducible admissible representation of GL2(Q`) over Q`. Then:

(1) στ and στ ′ are irreducible.
9



(2) If WD(π)|I` ∼ τ (resp. WD(π) ∼ τ ′) then

HomUτ (στ , π) ∼= Q`

(resp.
HomUτ′ (στ ′ , π) ∼= Q`).

(3) If WD(π)|I` 6∼= τ (resp. WD(π) 6∼= τ ′) then

HomUτ (στ , π) = (0)

(resp.
HomUτ′ (στ ′ , π) = (0)).

Proof. The case that τ extends to a reducible representation of WQ`
follows from the standard theory of

principal series representations for GL2(Q`). The case that τ is reducible but does not extend to a reducible
representation of WQ`

follows from Theorem 3.7 of [G]. The case of τ ′ follows from Theorem 4.6 of [G].
Thus, suppose that τ is an irreducible `-type and that τ ′ is an extension of τ to an extended `-type. If δ

denotes the unramified quadratic character of WQ`
then τ ′ 6∼ τ ′ ⊗ δ and so we deduce that

στ ′ 6∼ στ ′⊗δ ∼ στ ′ ⊗ (δ ◦ det).

Thus στ ′ |Q×
` U0(`)

is irreducible. It follows that στ is irreducible. The second and third part of the lemma for
τ follow similarly. �

1.3. Reduction of types for admissible representations. We begin by reviewing some irreducible
representations of GL2(Z`), U0(`) and Ũ0(`). Let σ1,0 denote the standard representation of GL2(F`) over
F`. If n = 0, 1, ..., ` − 1 and if m ∈ Z/(` − 1)Z then we let σn,m = Symmn(σ1,0) ⊗ detm. We may think
of σn,m as a continuous representation of GL2(Z`) over F`. These representations are irreducible, mutually
non-isomorphic and exhaust the irreducible continuous representations of GL2(Z`) over F`.

If m1,m2 ∈ Z/(`− 1)Z we let σ′m1,m2
denote the character of U0(`) over F` determined by(

a b
`c d

)
7−→ am1dm2 .

These representations are irreducible, mutually non-isomorphic, and exhaust the irreducible continuous
representations of U0(`) over F`.

If m1,m2 ∈ Z/(` − 1)Z, a ∈ F
×
` and m1 6= m2 then we let σ′{m1,m2},a denote the representation of

Ũ0(`) over F` obtained by inducing the character of Q×
` U0(`) which restricts to σ′m1,m2

on U0(`) and which

sends −` to a. If m ∈ Z/(` − 1)Z and a ∈ F
×
` , then we let σ′{m},a denote the character of Ũ0(`) over F`

which restricts to σ′m,m on U0(`) and which sends w` to a. These representations are irreducible, mutually
non-isomorphic and exhaust the irreducible, finite dimensional, continuous representations of Ũ0(`) over F`.

We will say that a reducible `-type τ (resp. irreducible `-type, resp. extended `-type τ with irreducible
restriction to I`) admits an irreducible representation σ of GL2(Z`) (resp. U0(`), resp. Ũ0(`)) over F`, if στ
(resp. στ , resp. στ ′) contains an invariant OQ`

-lattice Λ and if σ is a Jordan-Hölder constituent of Λ⊗ F`.
We will say that τ (resp. τ , resp. τ ′) simply admits σ if σ is a Jordan-Hölder constituent of Λ ⊗ F` of
multiplicity one.

For each of the F`-representations of GL2(Z`), U0(`) and Ũ0(`) just defined, we wish to define notions of
“admittance” and “simple admittance” with respect to a continuous representation ρ : G` → GL2(F`). Let
ρ be a fixed continuous representation G` → GL2(F`).

• The representation σn,m admits ρ if either

ρ|I` ∼

(
ω

1−`n−m(`+1)
2 0

0 ω
`−n−m(`+1)
2

)
10



or

ρ|I` ∼
(
ω1−m ∗

0 ω−n−m

)
,

which in addition we require to be peu-ramifié in the case n = 0. (Note that σn,0 admits ρ if and
only if the Serre weight (see [Se2]) of ρ∨ ⊗ ω is n+ 2.)
• The representation σn,m simply admits ρ if σn,m admits ρ.
• The representation σ′m1,m2

admits ρ if either

ρ|I` ∼

(
ω

1−`mi−mj
2 0

0 ω
`−mi−`mj
2

)
where {mi,mj} = {m1,m2} and mi ≥ mj , or

ρ|I` ∼
(
ω1−m1 ∗

0 ω−m2

)
,

or

ρ|I` ∼
(
ω1−m2 ∗

0 ω−m1

)
.

(Note that σ′m1,m2
admits ρ if and only if some irreducible constituent of IndGL2(Z`)

U0(`)
σ′m1,m2

admits
ρ.)
• The representation σ′m1,m2

with m1 6= m2 simply admits ρ if either

ρ|I` ∼
(
ω1−m1 ∗

0 ω−m2

)
or

ρ|I` ∼
(
ω1−m2 ∗

0 ω−m1

)
.

• The representation σ′m,m simply admits ρ if

ρ|I` ∼
(
ω1−m ∗

0 ω−m

)
is très ramifié.
• The representation σ′{m1,m2},a with m1 6= m2 admits ρ if either σ′m1,m2

or σ′m2,m1
admits ρ and if

(ω−1 det ρ)|WQ`
equals the central character of σ′{m1,m2},a. (Note that in this case σ′{m1,m2},a|U0(`) =

σ′m1,m2
⊕ σ′m2,m1

.)
• The representation σ′{m1,m2},a with m1 6= m2 simply admits ρ if (ω−1 det ρ)|WQ`

equals the central
character of σ′{m1,m2},a and either

ρ|I` ∼
(
ω1−m1 ∗

0 ω−m2

)
,

or

ρ|I` ∼
(
ω1−m2 ∗

0 ω−m1

)
.

• The representation σ′{m},a admits ρ if
– σ′m,m admits ρ,
– (ω−1 det ρ)|WQ`

equals the central character of σ′{m},a,
– and, if

ρ|I` ∼
(
ω1−m ∗

0 ω−m

)
is très ramifié, then

ρ ∼
(
∗ ∗
0 ω−mχ

)
11



where χ is unramified and sends Frobenius to −a.
(Note that σ′{m},a|U0(`) = σ′m,m.)
• The representation σ′{m},a simply admits ρ if σ′{m},a admits ρ.

We remark that the definition of “σ admits the Cartier dual of ρ” might look more natural to the reader.
We are forced to adopt this version of the definition by some unfortunate choices of normalisations in [CDT].

We say that a reducible `-type τ (resp. irreducible `-type τ , resp. extended `-type τ ′ with τ ′|I` irre-
ducible) admits a continuous representation ρ : G` → GL2(F`) if τ (resp. τ , resp. τ ′) admits an irreducible
representation of GL2(Z`) (resp. U0(`), resp. Ũ0(`)) over F` which in turn admits ρ. We say that τ (resp.
τ , resp. τ ′) simply admits ρ if

• τ (resp. τ , resp. τ ′) admits a unique irreducible representation σ of GL2(Z`) (resp. U0(`), resp.
Ũ0(`)) over F` which admits ρ,

• τ (resp. τ , resp. τ ′) simply admits σ,
• and σ simply admits ρ.

Note that the concept of “simply admits” is strictly stronger than the concept “admits”.
The starting point for this work was the following conjecture, of which a few examples will be verified in

§2.1.

Conjecture 1.3.1. Let k be a finite subfield of F`, ρ : G` → GL2(k) a continuous representation, τ an
`-type and τ ′ an extended `-type with irreducible restriction to I`. Suppose that det τ and det τ ′ are tamely
ramified; that the centraliser of the image of ρ is k; and that the image of τ is not contained in the centre of
GL2(Q`).

(1) τ (resp. τ ′) admits ρ if and only if RDV,O 6= (0) (resp. RD
′

V,O 6= (0)), i.e. if and only if there is a finite
extension K ′ of Q` in Q` and a continuous representation ρ : G` → GL2(OK′) which reduces to ρ
and has type τ (resp. has extended type τ ′).

(2) τ (resp. τ ′) simply admits ρ if and only if τ (resp. τ ′) is acceptable for ρ.

We remark that to check if τ or τ ′ simply admits ρ is a relatively straightforward computation. On the
other hand to show that τ or τ ′ is acceptable for ρ is at present a non-trivial undertaking. (The reader who
doubts us might like to compare §3 with §4, §5, §6, §7, §8 and §9. All the latter sections are devoted to
verifying some very special cases of this conjecture.)

1.4. The main theorems. With these definitions, we can state our two main theorems. The proofs very
closely parallel the proof of Theorem 7.1.1 of [CDT].

Theorem 1.4.1. Let ` be an odd prime, K a finite extension of Q` in Q` and k the residue field of K. Let

ρ : GQ −→ GL2(K)

be an odd continuous representation ramified at only finitely many primes. Assume that its reduction

ρ : GQ −→ GL2(k)

is absolutely irreducible after restriction to Q(
√

(−1)(`−1)/2`) and is modular. Further, suppose that
• ρ|G` has centraliser k,
• ρ|G` is potentially Barsotti-Tate with `-type τ ,
• τ admits ρ,
• and τ is weakly acceptable for ρ.

Then ρ is modular.

Proof. Note that the existence of ρ shows that τ is acceptable for ρ. Now the proof is verbatim the proof of
Theorem 7.1.1 of [CDT] (see §1.3, §1.4, §3, §4, §5 and §6 of that paper, and the corrigendum at the end of
this paper), with the following exceptions.

• On page 539 one should take US,` = Uτ , VS,` = kerστ and σS,l = στ .
12



• In the proof of Lemma 5.1.1 one must use Lemma 1.2.1 of this paper, in addition to the results
recalled in §4 of [CDT].
• On page 546 replace “Setting S = T (ρ)∪ {r} ...” to the end of the first paragraph by the following.

(Again the key component of this argument is very similar to the main idea of [Kh].)
“Set S = T (ρ) ∪ {r}; U ′S =

∏
p U

′
S,p where U ′S,p = U1(pcp) if p ∈ T (ρ) and U ′S,p = US,p oth-

erwise; V ′S =
∏
p V

′
S,p where V ′S,p = U1(pcp) if p ∈ T (ρ) and V ′S,p = VS,p otherwise; and L′S =

HomO[U ′S/V
′
S ](M`,H

1(XV ′S
,O))[I ′S ]. Then Γ = SL2(Z) ∩ (U ′SGL2(Z`)) satisfies the hypotheses of

Theorem 6.1.1. Furthermore

H1(YU ′SGL2(Z`),FM ) ∼= H1(Γ, Ln ⊗ k)

as a T̃
′
S-module where M is the module for US,` = GL2(Z`) defined by the action of GL2(F`) on

Ln ⊗ k. Therefore mS is in the support of H1(YU ′SGL2(Z`),FM ).
We now drop the special assumption on ρ|I` made in the last paragraph. Twisting we see that if

σ is an irreducible representation of GL2(Z`) over F` admitting ρ|G` then

H1(YU ′S GL2(Z`),Fσ∨)mS 6= (0).

Moreover if τ is irreducible and if σ′ is an irreducible representation of U0(`) over F` which admits
ρ|G` then we see using the definition of admits and Lemmas 3.1.1 and 6.1.2 of [CDT] that

H1(YU ′S ,Fσ∨)mS
∼= H1(YU ′S GL2(Z`),FInd

GL2(Z`)
U0(`) σ∨

)mS 6= (0).

It follows from the definition of admits and Lemma 6.1.2 of [CDT] that mS is in the support of
H1(YU ′S ,FHomO(M`,O)), so L′S is non-zero. Using the fact that lemma 5.1.1 holds with U ′S replacing
US and σ` replacing σS and the discussion on page 541 we conclude that NS is non-empty.”

�

Theorem 1.4.2. Let ` be an odd prime, K a finite extension of Q` in Q` and k the residue field of K. Let

ρ : GQ −→ GL2(K)

be an odd continuous representation ramified at only finitely many primes. Assume that its reduction

ρ : GQ −→ GL2(k)

is absolutely irreducible after restriction to Q(
√

(−1)(`−1)/2`) and is modular. Further, suppose that
• ρ|G` has centraliser k,
• ρ|G` is potentially Barsotti-Tate with extended `-type τ ′,
• τ ′ admits ρ,
• and τ ′ is weakly acceptable for ρ.

Then ρ is modular.

Proof. The existence of ρ shows that τ ′ is in fact acceptable for ρ. Again the proof now follows very closely
that of Theorem 7.1.1 of [CDT]. In this case we have to make the following changes. All references are to
[CDT] unless otherwise indicated.

• On page 539 one should take US,` = U0(`), VS,` = kerστ ′ |U0(`) and σS,` = στ ′ |U0(`). One should also
define ŨS to be the group generated by US and w` ∈ GL2(Q`) and σ̃S to be the extension of σS to
ŨS which restricts to στ ′ on Ũ0(`).
• In the statement of Lemma 5.1.1 one should replace HomUS (σS , π∞) by HomeUS (σ̃S , π∞).
• In the proof of Lemma 5.1.1 one must use Lemma 1.2.1 above in addition to the results recalled in
§4 of [CDT].
• Because τ ′ is acceptable for ρ, we know that det τ of a Frobenius lift is `ζ for some root of unity
ζ. Thus, στ ′(`s) = 1 for some s > 0. Hence, σ̃S factors through the finite group G̃S = ŨS/VS`

sZ,
where ` ∈ GL2(Q`).
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• In §5.3 choose M` so that it is invariant for the action of Ũ0(`)/VS,``sZ. Also, in the definition of LS
replace GS by G̃S .
• In the proof of Lemma 5.3.1 replace US by ŨS and σS by σ̃S .
• Note that w` acts naturally on YS and FS . In Lemma 6.1.3 we should replace the group H1

c (YS ,FS)
by H1

c (YS ,FS)w`=1 and the group H1(YS ,FS) by H1(YS ,FS)w`=1.
• Replace §6.2 with the proof of the required extension of Proposition 5.4.1 given below.
• On page 547 the isomorphism

H1
c (YS ,FS) −→ HomO(H1(YS ,FS),O)

on line 6 is T̃
′
S [wl]-linear. In the next line one should not only localise at m but restrict to the kernel

of w` − 1. Because w2
` = 1 on H1(YS ,FS)m we see that the natural map

H1(YS ,FS)w`=1
m −→ H1(YS ,FS)m/(w` − 1)

is an isomorphism, and so the map

LS −→ HomO(LS ,O)

is also an isomorphism.
• On page 547 the groups H1(YS ,FS)

m
(p)
S

and H1(YS′ ,FS′)m
(p)
S

should be replaced by their maximal
subgroups on which w` = 1.
• On page 549 one should also define Ṽ0 (resp. Ṽ1) to be the group generated by V0 (resp. V1) and
w` ∈ GL2(Q`). Similarly define σ̃ to be σ̃∅ ⊗ ψ−2

r′ .
• In Lemma 6.4.1 replace V0 by Ṽ0, V1 by Ṽ1 and σ by σ̃. In the proof of Lemma 6.4.1 also replace
U{r,r′} (resp. US∪{r,r′}) by Ũ{r,r′} (resp. ŨS∪{r,r′}) and σ{r,r′} (resp. σS∪{r,r′}) by σ̃{r,r′} (resp.
σ̃S∪{r,r′}).
• On line 20 of page 550 M should be chosen as a model of σ̃. This is possible because ker σ̃ has finite

index in Ṽ0, because in turn στ ′(`s) = 1 for some s > 0. One should also set Li = H1(YVi ,FM∨)w`=1
m .

On line 25, we must replace Vi by Ṽi.
• In the proof of Lemma 6.4.2, one must replace V1 by Ṽ1 and σ by σ̃.
• In line 2 of the proof of Lemma 6.4.3, to see that L1 is a direct summand of H1(YV1 ,FM∨) as an

O[∆S ]-module, one needs to note that H1(YV1 ,FM∨)w`=1
m is a direct summand of H1(YV1 ,FM∨)m,

because w2
` = 1 on H1(YV1 ,FM∨)m.

• On line 12 of page 551 replace R∅,DV,O by R∅,D
′

V,O .

Proof of extension of Proposition 5.4.1 of [CDT]. Let Θ =
⊗

p∈T (ρ)Mp.
First suppose that τ ′ admits σ′{m1,m2},a with m1 6= m2 and that σ′{m1,m2},a admits ρ. As in the proof of

Theorem 1.4.1 (especially §6.2 of [CDT] as modified above), we have

H1(Y{r},FΘ∨ ⊗ F(σ′m1,m2
)∨)m′{r}

6= (0).

On the other hand

H1(Y{r},FΘ∨ ⊗ F(σ′m1,m2
)∨)m′{r}

∼= H1(Y{r},FΘ∨ ⊗ F(σ′m1,m2
)∨)w

2
`=a

m′{r}
∼= H1(Y{r},FΘ∨ ⊗ F(σ′{m1,m2},a

)∨)w`=1
m′{r}

.

Thus, using the definition of “admits” and Lemma 6.1.2 of [CDT], we see that

H1(Y{r},F{r})
w`=1
m′{r}

6= (0),

so N∅ = N{r} 6= ∅.
Next suppose that τ ′ admits σ′{m},a which in turn admits ρ. Assume that ρ|G` is irreducible or peu

ramifié. By twisting we may reduce to the case m = 0. As in the proof of Theorem 1.4.1 (especially §6.2 of
[CDT] as modified above), we have

H1(YU{r}GL2(Z`),FΘ∨)m′{r}
6= (0).
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Thus
H1(YU{r}GL2(Z`),FΘ∨)w

2
`=ea2

m′{r}
6= (0),

where ã is the Teichmüller lift of a. Using the embedding

ã+ w` : H1(YU{r}GL2(Z`),FΘ∨)⊗Q` ↪→ H1(Y{r},FΘ∨)⊗Q`,

we deduce that
H1(Y{r},FΘ∨)w`=ea

m′{r}
6= (0),

and so
H1(Y{r},FΘ∨ ⊗ F(σ′{0},a)

∨)w`=1
m′{r}

6= (0).

Thus, using the definition of “admits” and Lemma 6.1.2 of [CDT], we see that

H1(Y{r},F{r})
w`=1
m′{r}

6= (0),

and so N∅ = N{r} 6= ∅.
Finally suppose that τ ′ admits σ{m},a which in turn admits ρ, and that ρ|G` is reducible and très ramifié.

By twisting we may reduce to the case m = 0. Note that ρI`(Frob`) = −a. As in the proof of Theorem 1.4.1
(especially §6.2 of [CDT] as modified above), we have

H1(Y{r},FΘ∨)m′{r}
6= (0).

Suppose that π is a cuspidal automorphic representation which contributes to H1(Y{r},FΘ∨)m′{r}
, so π is

a cuspidal automorphic representation of GL2(A) such that π∞ is the lowest discrete series with trivial
infinitesimal character, ρπ is a lift of ρ of type ({r}, 1), and hence of type (∅, 1), and dimπ

U0(`)
` = 1. As

ε−1 det ρπ has order prime to `, we see that w2
` acts on π

U0(`)
` by the Teichmüller lift of a2. As π` has a

U0(`)-fixed vector but no GL2(Z`)-fixed vector, we see that 1 + U`w
−1
` = 0 on π

U0(`)
` . On the other hand,

the eigenvalue of U` on πU0(`)
` reduces to −a. Thus, w` acts on πU0(`)

` by the Teichmüller lift of a, so w` acts
on H1(Y{r},FΘ∨)m′{r}

by the Teichmüller lift of a. We deduce that

H1(Y{r},FΘ∨ ⊗ F(σ′0,0)
∨)w`=am′{r}

6= (0).

Using the definition of “admits” and Lemma 6.1.2 of [CDT], we see that

H1(Y{r},F{r})
w`=1
m′{r}

6= (0),

so N∅ = N{r} 6= ∅. �

2. Examples and applications.

2.1. Examples. Now we will specialise to the case ` = 3. Fix an element ζ ∈ GL2(Z3) with ζ3 = 1 but
ζ 6= 1. The following definitions, which concern isomorphism classes of 2-dimensional representations into
GL2(Q3), do not depend on this choice. We will consider the following `-types. (These are in fact, up to
twist, a complete list of the wildly ramified types which can arise from elliptic curves over Q3, or, in the
case of conductor 243, the extended types. We will not need this fact. Rather the justification for studying
these particular types can be found in §2.2. More detailed information about the fixed fields of these types
can be found in §6.)

• τ1 corresponds to the order 3 homomorphism

Z×3 −→ Z3[ζ]×

determined by
−1 7−→ 1

4 7−→ ζ.
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• τ−1 corresponds to the order 3 homomorphism

Z3[
√
−1]× −→ Z3[ζ]×

determined by
4
√
−1 7−→ 1

4 7−→ 1
1 + 3

√
−1 7−→ ζ.

• τ3 is the unique 3-type such that τ3|IQ3(
√

3)
corresponds to the order 6 homomorphism

Z3[
√

3]× −→ Z3[ζ]×

determined by
−1 7−→ −1

4 7−→ 1
1 +
√

3 7−→ ζ.

• τ−3 is the unique 3-type such that τ−3|IQ3(
√
−3)

corresponds to the order 6 homomorphism

Z3[
√
−3]× −→ Z3[ζ]×

determined by
−1 7−→ −1

4 7−→ 1
1 + 3

√
−3 7−→ 1

1 +
√
−3 7−→ ζ.

For i ∈ Z/3Z, we will also consider the unique extended 3-types τ ′i whose restrictions to GQ3(
√
−3) correspond

to the homomorphisms
Q3(
√
−3)× → Q3(ζ)×

determined by

(2.1.1)

√
−3 7−→ ζ − ζ−1

−1 7−→ −1
4 7−→ 1

1 + 3
√
−3 7−→ ζ

1 +
√
−3 7−→ ζi.

Subsequent sections of this paper will be devoted to checking the following special cases of Conjecture
1.3.1.

Lemma 2.1.1. Suppose that ρ : G3 → GL2(F3) and

ρ|I3 ∼
(

1 ∗
0 ω

)
is très ramifié. Both τ1 and τ−1 simply admit ρ.

Theorem 2.1.2. Suppose that ρ : G3 → GL2(F3) and

ρ|I3 ∼
(

1 ∗
0 ω

)
is très ramifié. Both τ1 and τ−1 are weakly acceptable for ρ.

Lemma 2.1.3. Suppose that ρ : G3 → GL2(F3)

ρ|I3 ∼
(
ω ∗
0 1

)
is très ramifié. Both τ3 and τ−3 simply admit ρ.
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Theorem 2.1.4. Suppose that ρ : G3 → GL2(F3) and

ρ|I3 ∼
(
ω ∗
0 1

)
is très ramifié. Both τ3 and τ−3 are weakly acceptable for ρ.

Lemma 2.1.5. Let i ∈ Z/3Z. Suppose that ρ : G3 → GL2(F3) and

ρ ∼
(
ω ∗
0 1

)
is très ramifié. The extended 3-type τ ′i simply admits ρ.

Theorem 2.1.6. Let i ∈ Z/3Z. Suppose that ρ : G3 → GL2(F3) and

ρ ∼
(
ω ∗
0 1

)
is très ramifié. Then τ ′i is weakly acceptable for ρ.

We remark that in Theorems 2.1.2, 2.1.4 and 2.1.6 we could replace “weakly acceptable” by “acceptable”.
This can be shown by using elliptic curves to construct explicit liftings of the desired type. For Theorems
2.1.2 and 2.1.4 the results of [Man] suffice for this. For Theorem 2.1.6 a slightly more refined analysis along
the lines of §2.3 is required.

We also remark that it was Lemmas 2.1.1, 2.1.3, 2.1.5, and Conjecture 1.3.1 which originally suggested
to us that we try to prove Theorems 2.1.2, 2.1.4, and 2.1.6.

2.2. Applications. Conditional on the results stated in §2.1, which we will prove below, we prove the
following results.

Theorem 2.2.1. Any continuous absolutely irreducible representation ρ : GQ → GL2(F5) with cyclotomic
determinant is modular.

Proof. Choose an element ζ ∈ GL2(F5) with ζ
3

= 1 but ζ 6= 1. (The following classification will be
independent of the choice of ζ.) Then up to equivalence and twisting by a quadratic character, one of the
following possibilities can be attained.

(1) ρ is tamely ramified at 3.
(2) ρ|G3 is given by the character

Q×
3 −→ F5(ζ)×

determined by

3 7−→ ζ
i
(ζ − ζ−1

)
−1 7−→ 1

4 7−→ ζ,

where i ∈ Z/3Z.
(3) ρ|GQ3(

√
−1)

is given by the character

Q3(
√
−1)× −→ F5(ζ)×

determined by
3 7−→ 2

4
√
−1 7−→ 1

4 7−→ 1
1 + 3

√
−1 7−→ ζ.

17



(4) ρ|GQ3(
√

3)
is given by the character

Q3(
√

3)× −→ F5(ζ)×

determined by
√

3 7−→ ζ − ζ−1

−1 7−→ −1
4 7−→ 1

1 +
√

3 7−→ ζ.

(5) ρ|GQ3(
√
−3)

is given by the character

Q3(
√
−3)× −→ F5(ζ)×

determined by
√
−3 7−→ ζ − ζ−1

−1 7−→ −1
4 7−→ 1

1 + 3
√
−3 7−→ 1

1 +
√
−3 7−→ ζ.

(6) ρ|GQ3(
√
−3)

is given by the character

Q3(
√
−3)× → F5(ζ)×

determined by
√
−3 7−→ ζ − ζ−1

−1 7−→ −1
4 7−→ 1

1 + 3
√
−3 7−→ ζ

1 +
√
−3 7−→ ζ

i
,

where i ∈ Z/3Z.
To see that one of these cases can be attained, use the following facts, all of which are easy to verify.

• A subgroup of GL2(F5) with a non-trivial normal subgroup of 3-power order is, up to conjugation,
contained in the normaliser of F5(ζ)×.

• The intersection of SL2(F5) with the normaliser of ζ in GL2(F5) is generated by ζ and an element
α such that α2 = −1 and αζα−1 = ζ

−1
.

• If β ∈ F5(ζ)×, detβ = 3, and αβα−1 = −β, then β = ±(ζ − ζ−1
).

In each case, we may choose an elliptic curve E1/Q3 such that the representation ρE1,5 of G3 on E1[5](Q3)
is isomorphic to ρ|G3 and such that the representation ρE1,3 of G3 on E1[3](Q3) has the following form
(where we use the same numbering as above).

(1) We place no restriction on ρE1,3.
(2) The restriction of ρE1,3 to I3 has the form(

1 ∗
0 ω

)
and is très ramifié. (Use Theorem 5.3.2 of [Man].)

(3) The restriction of ρE1,3 to I3 has the form(
1 ∗
0 ω

)
and is très ramifié. (Use Theorem 5.3.2 of [Man].)
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(4) The restriction of ρE1,3 to I3 has the form(
ω ∗
0 1

)
and is très ramifié. (Use §5.4 of [Man].)

(5) The restriction of ρE1,3 to I3 has the form(
ω ∗
0 1

)
and is très ramifié. (Use §5.4 of [Man].)

(6) ρE1,3 has the form (
ω ∗
0 1

)
,

is très ramifié and remains indecomposable when restricted to the splitting field of ρ. (Use Corollary
2.3.2 below.)

In each case choose such an E1 and fix an isomorphism α : F2
5
∼→ E1[5](Q3), such that the Weil pairing on

E1[5] corresponds to the standard alternating pairing on F2
5, following the conventions in §1 of [SBT]. The

pair (E1, α) defines a Q3-rational point on the smooth curve denoted Xρ in [SBT]. We can find a 3-adic
open set U ⊂ Xρ(Q3) containing (E1, α) such that if (E2, β) defines a point in U then E2[3] ∼= E1[3] as
F3[G3]-modules.

Using Ekedahl’s version of the Hilbert Irreducibility Theorem (see Theorem 1.3 of [E]) and the argument
of §1 of [SBT] we may find an elliptic curve E/Q and an F5[GQ]-module isomorphism β of ρ with E[5](Q)
such that

• under β, the standard alternating pairing on F2
5 and the Weil pairing on E[5] agree;

• the representation ρE,3 of GQ on E[3](Q) is surjective onto Aut(E[3](Q));
• and (E, β) defines a point of U.

(See also §2 of [Man].)
Corresponding to the six types of ρ considered above, Proposition B.4.2 of [CDT] ensures that the repre-

sentation ρE,3 of GQ on the 3-adic Tate module of E is
(1) either, up to quadratic twist, ordinary in the sense of Wiles [Wi] or potentially Barsotti-Tate of some

tamely ramified type;
(2) potentially Barsotti-Tate of type τ1;
(3) potentially Barsotti-Tate of type τ−1;
(4) potentially Barsotti-Tate of type τ3;
(5) potentially Barsotti-Tate of type τ−3;
(6) potentially Barsotti-Tate of extended type τ ′i .

In the first case, E is modular by Theorem 7.2.1 of [CDT]. In the other cases we will simply write τ for
the type/extended type. We see that ρE,3(G3) has centraliser F3 and the results of §2.1 show that τ admits
ρE,3 and that τ is weakly acceptable for ρE,3. Moreover ρE,3|Gal(Q/Q(

√
−3)) is absolutely irreducible and, by

the Langlands-Tunnell theorem (see [Wi]), modular. Thus by Theorems 1.4.1 and 1.4.2 we see that ρE,3 is
modular. We deduce that E is modular, so ρ ∼= ρE,5 is modular. �

Combining this theorem with Theorem 7.2.4 of [CDT] we immediately obtain the following corollary.

Theorem 2.2.2. Every elliptic curve defined over the rational numbers is modular.

2.3. An extension of a result of Manoharmayum. The following facts follow at once from [Man],
particularly the classification given just before Theorem 5.4.2 of that paper. Consider elliptic curves E over
Q3 with minimal Weierstrass equation Y 2 = X3 +AX +B, where

A ≡ B + 3 ≡ 0 mod 9,
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so ρE,3 has the form
(
ω ∗
0 1

)
and is très ramifié. This leaves three possibilities for the equivalence class of

ρE,3. Fix ζ in GL2(F5) with ζ
3

= 1 but ζ 6= 1. The action of GQ3(
√
−3) on E[5](Q3) is via a representation

of the form √
−3 7→ δ(ζ − ζ−1

)
−1 7→ −1

4 7→ 1
1 +
√
−3 7→ ζ

i

1 + 3
√
−3 7→ ζ,

for some δ = ±1 and some i ∈ Z/3Z. All nine possibilities for the pair (ρE,3, i) satisfying these conditions
can arise for some such choice of A and B.

Lemma 2.3.1. With the above notation and assumptions, we have δ = 1.

Proof. Let F = Q3(
√
−3, β, α), where β2 = −

√
−3 and

α3 +Aα+B = 9
√
−3.

F is a totally ramified abelian extension of Q3(
√
−3) of degree 6, with uniformiser $ = α/β. The change

of coordinates Y 7→ $15Y , X 7→ $10X + α shows that E has good reduction over F , and the reduction is
isomorphic to

Y 2 = X3 −X − 1.

The arithmetic Frobenius of WF therefore has trace 3 on E[5]. Since

NF/Q3(
√
−3)($) ≡

√
−3(1− 3

√
−3) mod 9

√
−3

we conclude that
tr δ(ζ − ζ−1

)ζ
−1

= 3,

so δ = 1. �

Twisting by quadratic characters we immediately deduce the following corollary.

Corollary 2.3.2. Let ρ3 : G3 → GL3(F3) have the form(
ω ∗
0 1

)
or
(

1 ∗
0 ω

)
and be très ramifié. Let ρ5 : G3 → GL2(F5) have cyclotomic determinant and restriction to GQ3(

√
−3) given

by a character
Q3(
√
−3)× −→ F5(ζ)×

determined by
√
−3 7→ (ζ − ζ−1

)
−1 7→ −1

4 7→ 1
1 +
√
−3 7→ ζ

i

1 + 3
√
−3 7→ ζ,

for some i ∈ Z/3Z. There is an elliptic curve E/Q3 , with E[3](Q3) ∼ ρ3 and E[5](Q3) ∼ ρ5. In particular,
the action of I3 on T5E factors through a finite group and so E has potentially good reduction.

3. Admittance.

In this section we will check Lemmas 2.1.1, 2.1.3, and 2.1.5. We freely use the terminology introduced in
§1.2 and §1.3.
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3.1. The case of τ1. In this case στ1 is the induction from U0(9) to GL2(Z3) of a character of order 3. Its
reduction modulo a prime above 3 has the same Jordan-Hölder constituents as the reduction modulo 3 of
IndGL2(Z3)

U0(9)
1. Using Brauer characters, we see that the reduction modulo 3 of IndU0(3)

U0(9)
1 has Jordan-Hölder

constituents σ′0,0, σ
′
0,0 and σ′1,1. Thus, τ1 admits σ0,0, σ2,0, σ0,1 and σ2,1, the latter two simply. Lemma 2.1.1

follows in this case.

3.2. The case of τ−1. Let U denote the subgroup of GL2(Z3) consisting of matrices(
a b
c d

)
with a ≡ d mod 3 and b+ c ≡ 0 mod 3, so στ−1 is the induction from U to GL2(Z3) of a character of order 3.
Upon reduction modulo a prime above 3 this will have the same Jordan-Hölder constituents as the reduction
modulo 3 of IndGL2(Z3)

U 1. If ψ denotes the non-trivial character of F×3 and φ a character of F×9 of order 4,
then this latter induction splits up as the sum of the representations of GL2(Z3)→→ GL2(F3) denoted 1, spψ
and Θ(φ) in §3.1 of [CDT]. By Lemma 3.1.1 of [CDT] we see that τ−1 admits σ0,0, σ2,1 and σ0,1, the latter
two simply. Lemma 2.1.1 follows in this case.

3.3. The case of τ±3. Let U denote the subgroup of GL2(Z3) consisting of matrices(
a b
c d

)
with a ≡ d mod 3 and c ≡ 0 mod 3. Then στ±3 is the induction from U to U0(3) of a character of order 3.
Upon reduction modulo a prime above 3 this will have the same Jordan-Hölder constituents as the reduction
modulo 3 of IndU0(3)

U 1. Thus, τ±3 simply admits σ′0,0 and σ′1,1. Lemma 2.1.3 follows.

3.4. The case of τ ′i . Let χ be the character of Q3(
√
−3)× as in (2.1.1). Let ψ be a character of Q3 with

kernel Z3 and which sends 1/3 to ζ. If x ∈ (3
√
−3)Z3[

√
−3] we have

χ(1 + x) = ψ(trQ3(
√
−3)/Q3

(−x
√
−3/54)).

We deduce that if χ′′ is the character used to define στ ′i in §1.2, then χ′′(
√
−3) = (ζ − ζ−1)−1.

Let U denote the subgroup of GL2(Z3) consisting of matrices(
a b
3c d

)
with a ≡ d mod 3 and b+c ≡ 0 mod 3. Let Ũ be the group generated by w3 (see (1.2.1)) and U , so στ ′i is the
representation of Ũ0(3) induced from a character of Ũ which sends w3 to 1 and has order 3 when restricted
to U . Thus, the Jordan-Hölder constituents of the reduction of στ ′i modulo a prime above 3 are the same as

the Jordan-Hölder constituents of the reduction modulo 3 of Ind
eU0(3)eU 1.

Let V denote the subgroup of GL2(Z3) consisting of matrices(
a b
3c d

)
with a ≡ d mod 3. Let Ṽ be the group generated by w3 and V , and let ν denote the character of Ṽ /V which
sends w3 to −1. We have

Ind
eVeU (1) ∼ 1⊕ Ind

eV
VQ×

3
η

where η is a non-trivial character of V/U = (VQ×
3 )/(UQ×

3 ). The reduction modulo a prime above 3 of
this (3-dimensional) representation has the same Jordan-Hölder constituents as the reduction modulo 3 of
1⊕ 1⊕ ν. Thus, τ ′i admits σ′{0},1, σ

′
{1},1, σ

′
{0},−1 and σ′{1},−1, the latter two simply. Lemma 2.1.5 follows.
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4. New deformation problems.

In this section we begin the proof of Theorems 2.1.2, 2.1.4 and 2.1.6. One could approach this directly
by using the results of [Br2] to attempt to describe RDV,O (resp. RD

′

V,O). At least one of us (R.T.) thinks that
such an approach holds out more promise of attacking the non-acceptable case, and another of us (C.B.)
has indeed made several computations along these lines. However in the present case it seems to be easier
to proceed less directly.

To this end we will use ad hoc arguments to define deformation problems, which will be represented by
O-algebras S such that

• dimk mS/(℘K ,m2
S) ≤ 1

• and the map RV,O →→ RDV,O (resp. RD
′

V,O) factors through S.

An important advantage of this approach is that to calculate mS/(℘K ,m2
S) one need only work in the category

of finite flat group schemes killed by a prime. Breuil modules (see section §5) for finite flat group schemes
killed by an odd prime are significantly simpler than the general case (of prime power torsion). This is
particularly true when we also use descent data. On the other hand, to suitably define the new deformation
problems is rather delicate. That is what we will do in this section.

4.1. Some generalities on group schemes. In this section, and in §4.2, ` will again be an arbitrary
rational prime. Moreover R will denote a complete discrete valuation ring with fraction field F ′ of charac-
teristic zero and perfect residue field k of characteristic `. We will let Γ denote a finite group of continuous
automorphisms of R and we will let F0 denote the subfield of F ′ consisting of elements fixed by Γ. Thus
F ′/F0 will be finite and Galois with group Γ. In our applications of these results it suffices to consider
the case where F0 is a finite extension of Q3 (although we will occasionally pass to the completion of the
maximal unramified extension of F ).

Lemma 4.1.1. Let G be a finite flat R-group scheme. Scheme theoretic closure gives a bijection between
subgroup schemes of G× F ′ and finite flat closed subgroup schemes of G.

(See for instance §1.1 of [Co].)

Lemma 4.1.2. Let G1 and G2 be finite flat group schemes over R which have local-local closed fibre. Suppose
that G1 and G2 are the only finite flat R-group schemes with local-local closed fibre which have generic fibres
G1×F ′ and G2×F ′ respectively. Suppose also that we have an exact sequence of finite flat R-group schemes

(0) −→ G1 −→ G −→ G2 −→ (0).

Then G is the unique finite flat R-group scheme with local-local closed fibre and with generic fibre G× F .

Proof. Let G+ and G− denote the maximal and minimal local-local models for G× F . The proof that these
exist follows the of Proposition 2.2.2 of [Ra] and uses the fact that the Cartier dual of a local-local finite
flat group scheme is local-local. We must show that the canonical map G+ → G− is an isomorphism. The
scheme-theoretic closure of G1 × F in G± must be isomorphic to G1 (by uniqueness), so we have closed
immersions G1 ↪→ G± extending G1 × F ↪→ G± × F . Similarly G±/G1 must be isomorphic to G2. This gives
a commutative diagram with exact rows

0→ G1 → G+ → G2 → 0
↓ ↓ ↓

0→ G1 → G− → G2 → 0

The vertical maps G1 → G1 and G2 → G2 induce isomorphisms on the generic fibre and hence are isomor-
phisms. This is because some power of them is the identity on the generic fibre and hence is the identity.
Working in the abelian category of fppf abelian sheaves over SpecR, the middle map must also be an
isomorphism. �

When G has `-power order, we will let D(G) denote the classical (contravariant) Dieudonné module of
G× k. It is a W (k)-module equipped with a Frobenius operator F and a Verschiebung operator V. We have
FV = VF = ` and for all x ∈W (k), Fx = (Frob` x)F and Vx = (Frob−1

` x)V.
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If G is a finite flat R-group scheme, then by descent data for G over F0 we mean a collection {[g]} of group
scheme isomorphisms over R

[g] : G
∼−→ gG

for g ∈ Γ such that for all g, h ∈ Γ we have

[gh] = (g[h]) ◦ [g].

Note that this is not descent data in the sense of Grothendieck, since R/RΓ might be ramified. However,
SpecF ′/SpecF0 is étale, so by étale descent we obtain a finite flat group scheme (G, {[g]})F0 over F0 together
with an isomorphism

(G, {[g]})F0 ×F0 F
′ ∼= G×R F ′

compatible with descent data. We also obtain a natural left action of Γ on the Dieudonné module D(G),
semilinear with respect to the W (k)-module structure and commuting with F and V. We refer to the pair
(G, {[g]}) as an R-group scheme with descent data relative to F0. One defines morphisms of such objects to be
morphisms of R-group schemes which commute with the descent data. By a closed finite flat subgroup scheme
with descent data we mean a closed finite flat subgroup scheme such that the descent data on the ambient
scheme takes the subscheme to itself. Quotients by such subobjects are defined in the obvious way. Thus we
obtain an additive category with a notion of short exact sequence. Suppose that G is a finite flat F0-group
scheme. By a model with descent data (or simply model) for G over R we shall mean a triple (G, {[g]}, i), where
(G, {[g]}) is an R-group scheme with descent data relative to F0 and where i : (G, {[g]})F0

∼→ G. Sometimes
we will suppress i from the notation. It is easy to check that isomorphism classes of models admitting descent
data for G over R form a sublattice of the lattice of models for G/F ′ over R. The following lemma follows
without difficulty from Lemma 4.1.1.

Lemma 4.1.3. Let F ′/F0 be a finite Galois extension as above, and let (G, {[g]}) be a finite flat R-group
scheme with descent data relative to F0. Base change from F0 to F ′, followed by scheme theoretic closure,
gives a bijection between subgroup schemes of (G, {[g]})F0 and closed finite flat subgroup schemes with descent
data in (G, {[g]}).

We let FFF ′ denote the category of finite flat group schemes over R and FDF ′/F0 the category of finite
flat group schemes over R with descent data over F0. Let W (k)[F,V][Γ] denote the (non-commutative)
W (k)-algebra generated by elements F, V and [g] for g ∈ Γ satisfying

• [gh] = [g][h] for all g, h ∈ Γ;
• [g]F = F[g] and [g]V = V[g] for all g ∈ Γ;
• FV = VF = `;
• [g]x = (gx)[g] for all x ∈W (k) and g ∈ Γ;
• Fx = (Frob` x)F and Vx = (Frob−1

` x)V for all x ∈W (k).

If I is a two-sided ideal in W (k)[F,V][Γ], we will let FDF ′/F0,I denote the full subcategory of FDF ′/F0

consisting of objects (G, {[g]}) such that I annihilates D(G). If (G, {[g]}) is an object of FDF ′/F0,I and
if (H, {[g]}) ⊂ (G, {[g]}) is a closed finite flat subgroup scheme with descent data then (H, {[g]}) and
(G, {[g]})/(H, {[g]}) are again objects of FDF ′/F0,I.

Lemma 4.1.4. For I a two-sided ideal of the ring W (k)[F,V][Γ], choose objects (G1, {[g]}) and (G2, {[g]})
in FDF ′/F0,I so that (G1, {[g]})F0

∼= (G2, {[g]})F0 . Let G denote the base change of this F0-group scheme
to F ′, so G has canonical descent data relative to F ′/F0. Then the sup and inf of G1 and G2 in the lattice
of integral models for G are stable under the descent data on G and with this descent data are objects of
FDF ′/F0,I.

Proof. By uniqueness of the inf and sup, they are stable under the descent data on the generic fibre. It follows
from Raynaud’s construction of the inf and sup (Proposition 2.2.2 of [Ra]) in terms of subgroupschemes and
quotients of G1 × G2 that the sup and inf are objects of FDF ′/F0,I. �
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Corollary 4.1.5. Let I be a two-sided ideal of the ring W (k)[F,V][Γ]. Let

(4.1.1) (0) −→ G1 −→ G −→ G2 −→ (0)

be an exact sequence of finite flat group schemes over F0. Let (G1, {[g]}) and (G2, {[g]}) be objects of FDF ′/F0,I

such that (G1, {[g]})F0
∼= G1 and (G2, {[g]})F0

∼= G2. Suppose that for all objects (G, {[g]}) of FDF ′/F0,I

with (G, {[g]})F0
∼= G, the filtration on (G, {[g]}) induced by the filtration on G has subobject isomorphic to

(G1, {[g]}) and quotient isomorphic to (G2, {[g]}) (without any assumed compatibility with (4.1.1) ). Then
there is at most model for G in FDF ′/F0,I.

Proof. By Lemma 4.1.4, it suffices to prove that if (G+, {[g]}, i+) and (G−, {[g]}, i−) are two such models
with a morphism between them, then the morphism between them must be an isomorphism. In such a case
we have a commutative diagram with exact rows

0→ G1 → G+ → G2 → 0
↓ ↓ ↓

0→ G1 → G− → G2 → 0

The vertical maps G1 → G1 and G2 → G2 induce isomorphisms on the generic fibre and hence are isomor-
phisms. This is because some power of them is the identity on the generic fibre and hence is the identity.
Working in the abelian category of fppf abelian sheaves over SpecR, the middle map must also be an
isomorphism. �

4.2. Filtrations. We keep the notation and assumptions of the previous section. Let Σ be a finite non-empty
set of objects (Gi, {[g]}) of FDF ′/F0,(I,`). (Note the ` in the subscript (I, `), which denotes the two-sided
ideal generated by I and `.) Suppose that

(4.2.1) Hom((Gi, {[g]}), (Gj , {[g]})) = Hom((Gi, {[g]})F0 , (Gj , {[g]})F0) =
{

0 if i 6= j
finite field if i = j

(in particular, the objects in Σ are non-zero and pairwise non-isomorphic). By a Σ-filtration on a finite flat F0-
group scheme G we mean an increasing filtration Filj G such that for all j the graded piece Filj G/Filj−1G is
isomorphic to (Gi(j), {[g]})F0 for a (unique) (Gi(j), {[g]}) ∈ Σ. The following lemma is proved by the standard
Jordan-Hölder argument.

Lemma 4.2.1. If G is a finite flat F0-group scheme which admits a Σ-filtration and if H is a quotient or
subobject of G which admits a Σ-filtration, then any Σ-filtration of H can be extended to a Σ-filtration of
G. In addition, all Σ-filtrations of G have the same length and the same set of successive quotients (with
multiplicities).

We say that an object (G, {[g]}) of FDF ′/F0,I is weakly filtered by Σ if there is some increasing filtration
Filj(G, {[g]}) of (G, {[g]}) by closed subobjects such that for all j, the graded piece

Filj(G, {[g]})/Filj−1(G, {[g]})

is isomorphic to an element of Σ. We say that an object (G, {[g]}) of FDF ′/F0,I is strongly filtered by Σ if
(G, {[g]}) is weakly filtered by Σ and if for every Σ-filtration of (G, {[g]})F0 the corresponding filtration of
(G, {[g]}) satisfies

Filj(G, {[g]})/Filj−1(G, {[g]})
is isomorphic to an element of Σ for all j. The following lemma follows at once from the definitions and from
Lemma 4.2.1.

Lemma 4.2.2. (1) If (G, {[g]}) and (G′, {[g]}) are objects of FDF ′/F0,I which are weakly filtered by Σ,
then (G, {[g]})× (G′, {[g]}) is also weakly filtered by Σ.

(2) Let (G, {[g]}) and (G′, {[g]}) be objects of FDF ′/F0,I with (G′, {[g]}) a closed subobject or quotient of
(G, {[g]}). Suppose that (G, {[g]}) is strongly filtered by Σ and that (G′, {[g]})F0 admits a Σ-filtration.
Then (G′, {[g]}) is strongly filtered by Σ.

24



If any object of FDF ′/F0,I which is weakly filtered by Σ is strongly filtered by Σ, then we will let
FDF ′/F0,I,Σ denote the full subcategory of FDF ′/F0,I consisting of objects which are weakly (and there-
fore strongly) filtered by Σ.

Lemma 4.2.3. Suppose that any object of FDF ′/F0,I which is weakly filtered by Σ is strongly filtered by
Σ. Let G be a finite flat F0-group scheme. If (G1, {[g]}) and (G2, {[g]}) are two objects of FDF ′/F0,I,Σ with
isomorphisms

ij : G ∼−→ (Gj , {[g]})F0

for j = 1, 2, then there is a unique isomorphism

φ : (G1, {[g]})
∼−→ (G2, {[g]})

such that on the generic fibre i2 = φ ◦ i1.

Proof. It follows from Raynaud’s construction of sup and inf that the sup and inf of ((G1, {[g]}), i1) and
((G2, {[g]}), i2) are again objects of FDF ′/F0,I,Σ. Thus we may suppose that there exists a map φ :
(G1, {[g]}) → (G2, {[g]}) such that on the generic fibre i2 = φ ◦ i1. We will argue by induction on the
rank of G that φ is an isomorphism.

If (G1, {[g]}) is isomorphic to an element of Σ then the result follows by our assumption on Σ.
If (G1, {[g]}) is not isomorphic to an element of Σ then choose an exact sequence

(0) −→ (G11, {g}) −→ (G1, {g}) −→ (G12, {g}) −→ (0),

where (G11, {g}) and (G12, {g}) are weakly filtered by Σ. Let (G21, {[g]}) denote the closed subobject of
(G2, {[g]}) corresponding to (G11, {[g]})F0 and define (G22, {[g]}) = (G2, {[g]})/(G21, {[g]}). Then we have a
commutative diagram with exact rows

0→ G11 → G1 → G12 → 0
↓ ↓ ↓

0→ G21 → G2 → G22 → 0

compatible with descent data, where the central vertical arrow is φ and where by inductive hypothesis the
outside vertical arrows are isomorphisms. Working in the abelian category of fppf abelian sheaves over
SpecR, we see that φ is an isomorphism. �

The following lemma and its corollary give criteria for the equivalence of the notions of being weakly
filtered by Σ and of being strongly filtered by Σ.

Lemma 4.2.4. Fix I and Σ as above. Suppose that for any pair of (possibly equal) elements (G′, {[g]}) and
(G′′, {[g]}) in Σ, the natural map

Ext1FDF ′/F0,(I,`)
((G′′, {[g]}), (G′, {[g]})) −→ Ext1F`[GF0 ]((G

′′, {[g]})F0 , (G
′, {[g]})F0)

is injective. Then any object (G, {[g]}) of FDF ′/F0,I which is weakly filtered by Σ is also strongly filtered by
Σ.

Proof. For brevity, we say ‘weakly/strongly filtered’ rather than ‘weakly/strongly filtered by Σ’ since the
data Σ is fixed for the entire proof. Also, we omit the specification of descent data from the notation, but
it should not be forgotten.

Suppose G is weakly filtered. In order to prove that G is strongly filtered, we argue by induction on the
length of a Σ-filtration of GF0 , this length being well-defined by Lemma 4.2.1. The case of length ≤ 1 is clear.
Otherwise, by the definition of being weakly filtered, there is a short exact sequence of finite flat R-group
schemes (with descent data relative to F0)

(0) −→ G′ −→ G −→ G′′ −→ (0)

with G′ ∈ Σ and G′′ weakly filtered (and hence, by inductive hypothesis, strongly filtered). Let H be any
closed subgroupscheme of G (with compatible descent data relative to F0) such that HF0 ' Gi0,F0 for some
Gi0 ∈ Σ and such that (G/H)F0 admits a Σ-filtration. We need to prove (in the category of finite flat group
schemes with descent data relative to F ′/F0) that
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• H ' Gi0 ,
• and G/H is weakly filtered.

If the composite map
H ↪→ G→ G′′

is zero, then H = G′ as closed subgroupschemes of G (with descent data) and likewise G/H = G′′ so we are
done. The interesting case is when the composite map is non-zero. The map Gi0,F0

∼= HF0 → G′′F0
is then non-

zero and therefore must be a closed immersion by the assumption (4.2.1) on Σ and a devissage with respect
to a Σ-filtration of G′′F0

. We conclude that the map of generic fiber étale group schemes H × F ′ → G′′ × F ′
is a closed immersion.

Taking scheme-theoretic closures, we obtain a closed subgroupscheme H′′ ↪→ G′′ (with unique compatible
descent data over F0) fitting into a commutative diagram of group schemes with descent data

H
α−→ H′′

↓ ↓
(0) −→ G′ −→ G −→ G′′ −→ (0)

in which the lower row is short exact, the vertical maps are closed immersions, and the top map H → H′′

induces an isomorphism on generic fibers. By Lemma 4.2.1 we may extend HF0 ↪→ G′′F0
to a Σ-filtration

on G′′F0
and so, because G′′ is strongly filtered by induction, we may extend H′′ ↪→ G′′ to a Σ-filtration. In

particular H′′ is isomorphic to an object in Σ and G′′/H′′ is strongly filtered.
Pulling back the short exact sequence

0→ G′ → G→ G′′ → 0

by H′′ → G′′, we get a diagram

H

↓
0→ G′ → G×G′′ H′′ → H′′ → 0

in which the row is a short exact sequence of fppf abelian sheaves and all of the terms are finite flat group
schemes (for the middle, this follows from the flatness of G → G′′). Thus, this bottom row is a short exact
sequence of finite flat group schemes (with descent data). As HF0

∼→ H′′
F0

, the sequence

0→ G′F0
→ (G×G′′ H′′)F0 → H′′

F0
→ 0

is split. In particular (G×G′′ H′′)F0 and hence G×G′′ H′′ are killed by `. By the hypothesis of the lemma

0→ G′ → G×G′′ H′′ → H′′ → 0

is also split, i.e. we have an isomorphism

G×G′′ H′′ ∼= G′ ×R H′′

such that G′ ↪→ G ×G′′ H′′ corresponds to injection to the first factor of G′ ×R H′′ and G ×G′′ H′′ →→ H′′

corresponds to projection onto the second factor. By our hypotheses on Σ we can find a morphism φ : H′′ →
G′ extending

H′′
F0

∼←− HF0 ↪→ G′F0
×H′′

F0

pr→→ G′F0
.

Then our closed immersion H ↪→ G′ ×R H′′ factors as

H −→ H′′ φ×1−→ G′ ×R H′′.

As H→ G′×RH′′ is a closed immersion α : H→ H′′ must be a closed immersion and hence an isomorphism.
Thus H is isomorphic to an object in Σ.

Now we turn to the proof that G/H is weakly filtered. Since α : H → H′′ is an isomorphism, it is clear
that the natural map

H ×R G′ −→ G×G′′ H′′

is an isomorphism, and hence that
H ×R G′ −→ G
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is a closed immersion. Thus, the finite flat group scheme G/(H × G′) makes sense and the natural map

G/(H × G′)→ G′′/H′′

is an isomorphism (as one sees by using the universal properties of quotients to construct an inverse map).
We therefore arrive at a short exact sequence

0→ G′ → G/H→ G′′/H′′ → 0

(compatible with descent data). Since G′′/H′′ is strongly filtered, as we noted above, and G′ ∈ Σ, it follows
that G/H is weakly filtered. �

Corollary 4.2.5. Fix I and Σ as above. Suppose that Σ = {(G, {[g]})} is a singleton. Suppose also that we
have a short exact sequence

(0) −→ (G1, {[g]}) −→ (G, {[g]}) −→ (G2, {[g]}) −→ (0)

in FDF ′/F0,I, where for any i, j (possibly equal)

Hom((Gi, {[g]}), (Gj , {[g]})) = Hom((Gi, {[g]})F0 , (Gj , {[g]})F0) =
{

0 if i 6= j
finite field if i = j

and the natural map

(4.2.2) Ext1FDF ′/F0,(I,`)
((Gi, {[g]}), (Gj , {[g]})) −→ Ext1F`[GF0 ]((Gi, {[g]})F0 , (Gj , {[g]})F0)

is injective. Then any object (H, {[g]}) of FDF ′/F0,I which is weakly filtered by Σ is also strongly filtered by
Σ.

Proof. As (H, {[g]}) is weakly filtered by Σ, it is weakly filtered by {(G1, {[g]}), (G2, {[g]})}, and so by
Lemma 4.2.4 is strongly filtered by {(G1, {[g]}), (G2, {[g]})}. Any Σ-filtration of (H, {[g]})F0 extends to
a {(G1, {[g]}), (G2, {[g]})}-filtration of (H, {[g]})F0 , which in turn gives rise to a {(G1, {[g]}), (G2, {[g]})}-
filtration of (H, {[g]}). By the injectivity of (4.2.2) we see that this yields a Σ-filtration of (H, {[g]}) that
induces to our chosen Σ-filtration of (H, {[g]})F0 . �

4.3. Generalities on deformation theory. Again in this section ` denotes an arbitrary rational prime.
We let K denote a finite extension of Q`, O the ring of integers K, ℘K the maximal ideal of O and k its
residue field. Note that k has a different meaning from the previous two sections. Let V be a two dimensional
k-vector space and ρ : G` → Autk(V ) a continuous representation. Suppose that the centraliser of G` in
Endk(V ) is k. Let ψ : G` → O× denote a continuous character such that (ψ mod ℘K) ∼= det ρ. Let S(ρ)
denote the full subcategory of the category of finite length (discrete) O-modules with a continuous O-linear
action of G` consisting of objects which admit a finite filtration so that each successive quotient is isomorphic
to V . Because Endk[G`](V ) = k, it follows from the usual Jordan-Hölder argument that S(ρ) is an abelian
category.

Let S be a full subcategory of S(ρ) stable under isomorphisms and which is closed under finite products,
S(ρ)-subobjects and S(ρ)-quotients, and which contains V . We will consider the following set-valued functors
on the category of complete noetherian local O-algebras R with finite residue field k.

• DV,O(R) is the set of conjugacy classes of continuous representations ρ : G` → GL2(R) such that
ρ mod mR is conjugate to ρ.

• D
ψ
V,O(R) is the set of conjugacy classes of continuous representations ρ : G` → GL2(R) such that

ρ mod mR is conjugate to ρ and det ρ = ψ.
• DS

V,O(R) is the set of conjugacy classes of continuous representations ρ : G` → GL2(R) such that
ρ mod mR is conjugate to ρ and such that for each open ideal a ⊂ R the action ρ makes (R/a)2 into
an object of S.

• D
ψ,S
V,O(R) is the set of conjugacy classes of continuous representations ρ : G` → GL2(R) such that

ρ mod mR is conjugate to ρ, such that det ρ = ψ, and such that for each open ideal a ⊂ R the action
ρ makes (R/a)2 into an object of S.
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Each of these deformation problems is representable by objects which we will denote RV,O, RψV,O, RS
V,O and

Rψ,SV,O, respectively.
Recall that the following sets are in natural (k-linear) bijection with each other.
• (mRV,O/(℘K ,m

2
RV,O

))∨.
• The set of deformations of ρ to k[ε]/(ε2).
• Ext1k[G`](V, V ).
• H1(G`, ad ρ).

These bijections give rise to an isomorphism

(mRψV,O
/(℘K ,m2

RψV,O
))∨ ∼= H1(G`, ad0 ρ),

as well as bijections between
• (mRS

V,O
/(℘K ,m2

RS
V,O

))∨,

• the set of deformations of ρ to k[ε]/(ε2) which make (k[ε]/(ε2))2 into an object of S,
• Ext1k[G`],S(V, V ), i.e. Ext1 in the category of discrete k[G`]-modules which are also objects of S.
• the subgroup H1

S(G`, ad ρ) ⊂ H1(G`, ad ρ) corresponding to Ext1k[G`],S(V, V ).

We will set H1
S(G`, ad0 ρ) = H1

S(G`, ad ρ) ∩H1(G`, ad0 ρ), so that we get an isomorphism

(mRψ,SV,O
/(℘K ,m2

Rψ,SV,O

))∨ ∼= H1
S(G`, ad0 ρ).

4.4. Reduction steps for Theorem 2.1.2. We now begin the proof of Theorem 2.1.2. Making an unram-
ified twist we may suppose that ρ has the form (

1 ∗
0 ω

)
.

We may also suppose that O = Z3.
Let F1 = F ′1 denote a totally ramified cubic Galois extension of Q3. Let F ′−1 denote the unique cubic

extension of Q3(
√
−1) such that F ′−1/Q3 is Galois but not abelian, and let F−1 denote a cubic subfield of

F ′−1, so F ′−1/F−1 is unramified.
Let S±1 denote the full subcategory S(ρ) consisting of Z3[G3]-modules X for which there exists a finite

flat OF ′±1
-group scheme (G, {[g]}) with descent data for F ′±1/Q3 such that X ∼= (G, {[g]})Q3(Q3) as a Z3[G3]-

module. By Lemma 4.1.3 we see that S±1 is closed under finite products, subobjects and quotients. Using
Tate’s theorem on the uniqueness of extensions of 3-divisible groups from F ′±1 to OF ′±1

(Theorem 4 of [T]),

we see that the map RV,Z3 →→ R
τ±1
V,Z3

factors through Rε,S±1
V,Z3

. Thus, Theorem 2.1.2 follows from the following
result which we will prove in §7.

Theorem 4.4.1. dimH1
S±1

(G3, ad0 ρ) ≤ 1.

4.5. Reduction steps for Theorem 2.1.4. We now begin the proof of Theorem 2.1.4. Making an unram-
ified twist, we may suppose that ρ has the form(

ω ∗
0 1

)
.

We may also suppose that O = Z3.
Let F ′±3 denote the degree 12 abelian extension of Q3(

√
±3) with norm subgroup in Q3(

√
±3)× topolog-

ically generated by ±3, 4 and 1 + 3
√
±3. Note that F ′±3/Q3 is Galois. We have an isomorphism

Gal(F ′±3/Q3(
√
±3)) ∼= C2 × C2 × C3.

Let γ2
4 ∈ IF ′±3/Q3(

√
±3) be the unique element of order 2. (In later applications this will be the square of an

element of order 4 in Gal(F ′±3/Q3).) We also let F±3 denote the fixed field of a Frobenius lift of order 2, so
F±3/Q3 is totally ramified.

We will let I±3 denote the two-sided ideal of W (F9)[F,V][Gal(F ′±3/Q3)] generated by
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• F + V
• and [γ2

4 ] + 1.
Let S±3 denote the full subcategory of S(ρ) consisting of objects X for which we can find an object

(G, {[g]}) of FDF ′±3/Q3,I±3 such that X ∼= (G, {[g]})Q3(Q3) as a Z3[G3]-module. By Lemma 4.1.3, we see
that S±3 is closed under finite products, subobjects and quotients.

Now choose a finite extension K/Q3 and continuous map of rings f : RV,Z3 → Q3 such that the corre-
sponding representation ρ : G3 −→ GL2(OK) is of type τ±3. Let G be the corresponding 3-divisible group
over Q3. By Tate’s theorem (Theorem 4 of [T]), the base change of G to F ′±3 has a unique extension to a
3-divisible group G over OF ′±3

. By the uniqueness of this extension, it is also equipped with descent data
{[g]} relative to F ′±3/Q3 and with an action of OK , compatible with the canonical structure on the generic
fibre.

Let γ̃2 ∈ Gal(Q3(
√
±3)ab/Q3(

√
±3)) correspond to

√
±3. We will use the notation of Appendix B of

[CDT] (in particular WD and D′(G)), except that we will write F and F′ in place of φ and φ′. Then
• WD(ρ)(γ2

4) = −1,
• WD(ρ)(γ̃2

2), but not WD(ρ)(γ̃2), is a scalar,
• and det WD(ρ)(γ̃2) = 3.

Thus WD(ρ)(γ̃2
2) = −3. Hence on D′(G)⊗Q3 we have

• [γ2
4 ] = WD(ρ)(γ2

4) = −1,
• and (F′)2 = [γ̃2

2 ]WD(ρ)(γ̃−2
2 ) = −1/3.

We conclude that on D(G) we have
• [γ2

4 ] = −1,
• F2 = −3,
• and so F = −V.

In particular I±3 annihilates D(G) and for all m ≥ 1 the map (f mod 3m) : RV,Z3 → OK/(3m) factors
through Rε,S±3

V,Z3
. Hence, the map RV,Z3 →→ R

τ±3
V,Z3

factors through Rε,S±3
V,Z3

and Theorem 2.1.4 follows from the
following result which we will prove in §8.

Theorem 4.5.1. dimH1
S±3

(G3, ad0 ρ) ≤ 1.

4.6. Reduction steps for Theorem 2.1.6. We now begin the proof of Theorem 2.1.6. We may suppose
that O = Z3.

Let F ′i denote the degree 12 abelian extension of Q3(
√
−3) with norms the subgroup of Q3(

√
−3)×

topologically generated by −3, 4, 1 + 9
√
−3 and 1 + (1 − 3ı̃)

√
−3, where ı̃ is the unique lift of i to Z with

0 ≤ ı̃ < 3. Note that F ′i/Q3 is Galois. We identify

Gal(F ′i/Q3(
√
−3)) ∼= 〈γ2〉 × 〈γ3〉 × 〈γ2

4〉,

where γ2 corresponds to
√
−3 and has order 2, γ3 corresponds to 1 − 3

√
−3 and has order 3, and γ2

4

corresponds to −1 and has order 2. We also let Fi denote the fixed field of {1, γ2}, so Fi/Q3 is totally
ramified.

We will let Ii denote the two-sided ideal of W (F9)[F,V][Gal(F ′i/Q3)] generated by
• F + V,
• [γ2

4 ] + 1,
• and ([γ3]− [γ−1

3 ])[γ2]− F.

We remark that the ideal Ii is unchanged if we change our choice of
√
−3.

In §9 we will prove the following result (and explain the unusual looking notation).

Theorem 4.6.1. There are objects (G, {[g]})(2,6), (G, {[g]})(6,10), (G, {[g]})(2,10) and (G, {[g]})(6,6) in the
category FDF ′i/Q3,Ii with the following properties.

(1) For (r, s) = (2, 6), (6, 10), (2, 10) and (6, 6), we have ρ ∼= ((G, {[g]})(r,s))Q3(Q3) as G3-modules.
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(2) For (r, s) = (2, 6), (6, 10), (2, 10) and (6, 6) there is a short exact sequence in FDF ′i/Q3,Ii ,

(0) −→ (G1, {[g]})(r,s) −→ (G, {[g]})(r,s) −→ (G2, {[g]})(r,s) −→ (0),

such that (G1, {[g]})(r,s) and (G2, {[g]})(r,s) have order 3 and for all a, b ∈ {1, 2} (possibly equal) the
natural map

Ext1FDF ′/Q3,(Ii,3)
((Ga, {[g]})(r,s), (Gb, {[g]}))(r,s) −→ Ext1F3[GQ3 ]((Ga, {[g]})(r,s),Q3 , (Gb, {[g]})(r,s),Q3)

is injective.
(3) If k/F3 is a finite field extension and if (G, {[g]}) is an object of FDF ′i/Q3,Ii with an action of k such

that (G, {[g]})Q3(Q3) is isomorphic to ρ ⊗ k, then for some (r, s) = (2, 6), (6, 10), (2, 10) or (6, 6)
the object (G, {[g]}) of FDF ′i/Q3,Ii is weakly filtered by {(G1, {[g]})(r,s), (G2, {[g]})(r,s)}.

(4) For (r, s) = (2, 6), (6, 10) and (2, 10) we have F = 0 on D(G(r,s)), while F 6= 0 on D(G(6,6)).

Note that for all a, b (possibly equal), we must have

Hom((Ga, {[g]})(r,s), (Gb, {[g]})(r,s)) = Hom((Ga, {[g]})(r,s),Q3 , (Gb, {[g]})(r,s),Q3) =
{

0 if a 6= b,
F3 if a = b.

For (r, s) = (2, 6), (6, 10), (2, 10) and (6, 6), we let Si,(r,s) denote the full subcategory of S(ρ) consisting
of objects X which are isomorphic to (H, {[g]})Q3 for some object (H, {[g]}) of FDF ′i/Q3,Ii,{(G,{[g]})(r,s)}.
By Lemma 4.2.2, Corollary 4.2.5 and Theorem 4.6.1 we see that Si,(r,s) is closed under finite products,
S(ρ)-subobjects and S(ρ)-quotients. In §9 we will also prove the following two results.

Theorem 4.6.2. For (r, s) = (2, 6), (6, 10), (2, 10) and (6, 6) we have

dimH1
Si,(r,s)

(G3, ad0 ρ) ≤ 1.

Theorem 4.6.3. For (r, s) = (2, 6), (6, 10) and (2, 10) and for any N ≥ 1 there exists a continuous
representation

ρN : GQ3 −→ GL2(F3[[T ]]/(TN ))
such that

• det ρN = ε,
• ρN ∼= (GN , {[g]})Q3(Q3) for some object (GN , {[g]}) of FDF ′i/Q3,(Ii,F),{(G,{[g]})(r,s)} (where (Ii,F)

denotes the two-sided ideal of W (F9)[F,V][Gal(F ′i/Q3)] generated by Ii and F),
• and ρ mod (T 2) 6∼= ρ⊗ k[[T ]]/(T 2).

(We are not asserting that ρN and GN are independent of the choice of (r, s), though in fact we believe
that ρN is independent of this choice.)

¿From these results we can easily draw the following consequence.

Corollary 4.6.4. For (r, s) = (2, 6), (6, 10) and (2, 10) we have

R
ε,Si,(r,s)
V,Z3

∼= F3[[T ]].

Proof. By Theorems 4.6.2 and 4.6.3 we see that Rε,Si,(r,s)V,Z3
/(3) ∼= F3[[T ]] and that if R is an Artinian

quotient of Rε,Si,(r,s)V,Z3
/(3) corresponding to a (necessarily unique, see Lemma 4.2.3) object (G, {[g]}) of

FDF ′i/Q3,(Ii,3),{(G,{[g]})(r,s)} then F = 0 on D(G).

Now suppose R is any Artinian quotient of Rε,Si,(r,s)V,Z3
which corresponds to an object (G, {[g]}) of the

category FDF ′i/Q3,Ii,{(G,{[g]})(r,s)}. Let G = (G, {[g]})Q3 and consider the exact sequences

(0) −→ G[3] −→ G −→ 3G −→ (0)

and
(0) −→ 3G −→ G −→ G/3G −→ (0).

By Lemma 4.2.3, we have exact sequences

(G, {[g]}) −→ (K, {[g]}) −→ (0)
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and
(0) −→ (K, {[g]}) −→ (G, {[g]}) −→ (H, {[g]}) −→ (0)

in FDF ′i/Q3,Ii,{(G,{[g]})(r,s)} such that the composite

(G, {[g]})→→ (K, {[g]}) ↪→ (G, {[g]})

is multiplication by 3. In particular we have exact sequences

(0) −→ D(K) −→ D(G)

and
(0) −→ D(H) −→ D(G) −→ D(K) −→ (0),

such that the composite
D(G)→→ D(K) ↪→ D(G)

is multiplication by 3. As F = −V = 0 on D(H) we see that F and V factor through maps D(K)→ D(G),
i.e. we can write F = 3F′ and V = 3V′ for some endomorphisms F′ and V′ of D(G). Thus 3 = 9F′V′ equals
zero on D(G)/9D(G) and so D(K) = 0. We conclude that K = (0), so that 3G = (0) and 3R = (0).

Thus
R
ε,Si,(r,s)
V,Z3

= R
ε,Si,(r,s)
V,Z3

/(3) = F3[[T ]].
�

We now modify the argument in §4.4. Choose a finite extension K/Q3 and continuous map of rings
f : RV,Z3 → Q3 such that the corresponding representation ρ : G3 −→ GL2(OK) is of extended type τ ′i . Let
G be the corresponding 3-divisible group over Q3. By Tate’s theorem (Theorem 4 of [T]) G has a unique
extension to a 3-divisible group G over OF ′i . By the uniqueness of this extension, G comes equipped with
descent data {[g]} relative to F ′i/Q3 and with an action of OK , compatible with the canonical structure on
the generic fibre.

Let γ̃2 ∈ Gal(Q3(
√
−3)ab/Q3(

√
−3)) correspond to

√
−3. We will use the notation of Appendix B of

[CDT] (in particular WD and D′(G)), except that we will write F and F′ in place of φ and φ′. Then
• WD(ρ)(γ2

4) = −1,
• WD(ρ)(γ̃2

2) = −3,
• and WD(ρ)(γ̃2)(WD(ρ)(γ3)−WD(ρ)(γ3)−1) = 3.

Thus on D′(G)⊗Q3 we have
• [γ2

4 ] = WD(ρ)(γ2
4) = −1,

• (F′)2 = [γ̃2
2 ]WD(ρ)(γ̃−2

2 ) = −1/3,
• and [γ2]([γ3]− [γ−1

3 ]) = 3F′.
We conclude that on D(G) we have

• [γ2
4 ] = −1,

• F2 = −3,
• and [γ2]([γ−1

3 ]− [γ3]) = 3F−1.
Hence also

• F = −V,
• and [γ2]([γ3]− [γ−1

3 ]) = F.
In particular Ii annihilates D(G).

Thus (G[℘K ], {[g]}) is an object of FDF ′i/Q3,Ii such that (G[℘K ], {[g]})Q3 corresponds to ρ ⊗ OK/℘K .
By Theorem 4.6.1 we see that (G[℘K ], {[g]}) is weakly filtered by {(G1, {[g]})(r,s), (G2, {[g]})(r,s)} for some
(r, s) = (2, 6), (6, 10), (2, 10) or (6, 6). We will prove (r, s) = (6, 6). By Theorem 4.6.1 and Lemma 4.2.4,
(G[℘K ], {[g]}) is strongly filtered by {(G1, {[g]})(r,s), (G2, {[g]})(r,s)}. As (G[℘K ], {[g]})Q3 is filtered by ρ,
using Theorem 4.6.1, we see that (G[℘K ], {[g]}) is weakly filtered by (G, {[g]})(r,s). For all m ≥ 1 we have

(G[℘mK ]/G[℘m−1
K ], {[g]}) ∼−→ (G[℘K ], {[g]}),
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so for all m ≥ 1 the object (G[℘mK ], {[g]}) is also weakly and hence strongly filtered by (G, {[g]})(r,s) for the

same (r, s). Thus, for all m ≥ 1, the map (f mod pm) : RV,Z3 → OK′/(3m) factors through R
ε,Si,(r,s)
V,Z3

. By

Corollary 4.6.4 we see that (r, s) = (6, 6), so the map RV,Z3 →→ R
τ ′i
V,Z3

factors through Rε,Si,(6,6)V,Z3
and Theorem

2.1.6 follows from Theorem 4.6.2.

4.7. Some Galois cohomology. In this section we will begin the proofs of Theorems 4.4.1, 4.5.1 and 4.6.2.
We will let S denote one of the categories S±1, S±3 or Si,(r,s). We will let χ = ω in the cases S±1 and χ = 1
otherwise. In all cases

ρ ∼
(
χω ∗
0 χ

)
is très ramifié.

The maps ω ⊗ χ ↪→ ρ and ρ→→ χ induce a commutative diagram with exact rows and columns

(0)
↓

Ext1F3[G3](ω ⊗ χ, ω ⊗ χ)
↓

Ext1F3[G3](ρ, ρ) −→ Ext1F3[G3](ω ⊗ χ, ρ)
↓ ↓

(0) −→ Ext1F3[G3](χ, χ) −→ Ext1F3[G3](ρ, χ) −→ Ext1F3[G3](ω ⊗ χ, χ).

We will let θ0 denote the composite map

Ext1F3[G3](ρ, ρ) −→ Ext1F3[G3](ω ⊗ χ, χ);

and θ1 (resp. θω) the induced mapping

ker θ0 −→ Ext1F3[G3](χ, χ)

(resp.
ker θ0 −→ Ext1F3[G3](ω ⊗ χ, ω ⊗ χ)).

We will also let θ1 (resp. θω) the induced mapping

ker θ0 −→ Ext1F3[G3](χ, χ) −→ Ext1F3[I3](χ, χ)

(resp.
ker θ0 −→ Ext1F3[G3](ω ⊗ χ, ω ⊗ χ) −→ Ext1F3[I3](ω ⊗ χ, ω ⊗ χ)).

If we reinterpret our Ext-groups as cohomology groups and use the isomorphism ρ∨ ∼ ρ ⊗ ω, our diagram
becomes

(0)
↓

H1(G3,F3)
↓

H1(G3, ad ρ) −→ H1(G3, ρ⊗ ω ⊗ χ)
↓ ↓

(0) −→ H1(G3,F3) −→ H1(G3, ρ⊗ ω ⊗ χ) −→ H1(G3, ω).

Fix a basis of F2
3 so that ρ takes the form (

ω ⊗ χ ∗
0 χ

)
.

Then any extension of ρ by ρ in characteristic 3 may be represented by a matrix(
ρ φρ
0 ρ

)
,
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where the cocycle

φ =
(
φ11 φ12

φ21 φ22

)
∈ Z1(G3, ad ρ)

represents the class of this extension in Ext1F3[G3](ρ, ρ)
∼= H1(G3, ad ρ). Moreover

• θ0([φ]) = [φ21] ∈ H1(G3, ω),
• if φ21 = 0 then θ1([φ]) = [φ22] ∈ H1(G3,F3) and θω([φ]) = [φ11] ∈ H1(G3,F3),
• and [φ] ∈ H1(G3, ad0 ρ) if and only if 0 = [φ11 + φ22] ∈ H1(G3,F3).

In particular we have θ1 = −θω on H1(G3, ad0 ρ) ∩ ker θ0.
We have an exact sequence

(0) −→ ρ⊗ χ −→ ad0 ρ −→ ω −→ (0)

where the first map sends (
x
y

)
7−→

(
−y/2 x

0 y/2

)
and the second map sends (

a b
c −a

)
7−→ c.

Thus we get an exact sequence

(0) −→ H1(G3, ρ⊗ χ) −→ H1(G3, ad0 ρ) θ0−→ H1(G3, ω)

and so we may identify H1(G3, ad0 ρ) ∩ ker θ0 with H1(G3, ρ⊗ χ). We also have an exact sequence

(4.7.1) (0) −→ ω −→ ρ⊗ χ −→ 1 −→ (0),

which gives rise to an exact sequence

(0) −→ F3 −→ H1(G3, ω) −→ H1(G3, ρ⊗ χ) −→ H1(G3,F3) −→ H2(G3, ω).

If we identify H1(G3, ρ⊗ χ) with H1(G3, ad0 ρ) ∩ ker θ0 then the latter map H1(G3, ρ⊗ χ) −→ H1(G3,F3)
is identified with θω = −θ1.

Lemma 4.7.1. The sequence

(0) −→ F3 −→ H1(G3, ω) −→ H1(G3, ρ⊗ χ) −→ H1(I3,F3)

is exact.

Proof. The key point is that ρ is très ramifié (compare with Proposition 6.1 of [Di1]). It suffices to show
that the composite

H1(GF3 ,F3) −→ H1(G3,F3) −→ H2(G3, ω)

is injective. Suppose that x ∈ H1(G3,F3) maps to zero in H2(G3, ω), then by Tate duality x is annihilated
by the image of the map H0(G3,F3)→ H1(G3, ω) coming from the short exact sequence

(0) −→ ω −→ (ρ⊗ χ)∨ ⊗ ω −→ 1 −→ (0)

Cartier dual to (4.7.1). As (ρ⊗ χ)∨ ⊗ ω is très ramifié we see that the image of

H0(G3,F3) −→ H1(G3, ω) ∼= Q×
3 /(Q

×
3 )3

is not contained in Z×3 /(Z
×
3 )3. Thus

x ∈ Hom(Q×
3 /Z

×
3 ,F3) ∼= H1(GF3 ,F3) ⊂ H1(G3,F3) ∼= Hom(Q×

3 ,F3)

must be zero (see Proposition 3 of §1 of chapter XIV of [Se1]). �
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Corollary 4.7.2. The maps

θ1 : H1(G3, ad0 ρ) ∩ ker θ0 −→ H1(I3,F3)

and
θω : H1(G3, ad0 ρ) ∩ ker θ0 −→ H1(I3,F3)

have the same kernel and this has dimension 1 over F3.

Theorems 4.4.1, 4.5.1 and 4.6.2 now follow from the following results, which we will prove later. One
advantage of these new formulations is that, with one exception, they refer only to Ext1S(ρ, ρ) and make
no mention of the determinant or ad0 ρ, concepts which we found tricky to translate into the language of
integral models.

Theorem 4.7.3. (1) θ0 : Ext1S±1
(ρ, ρ) −→ H1(G3, ω) is the zero map.

(2) θω : Ext1S−1
(ρ, ρ) −→ H1(I3,F3) is the zero map.

(3) θω : H1
S1

(G3, ad0 ρ) −→ H1(I3,F3) is the zero map.

Theorem 4.7.4. (1) θ0 : Ext1S±3
(ρ, ρ) −→ H1(G3, ω) is the zero map.

(2) θω : Ext1S±3
(ρ, ρ) −→ H1(I3,F3) is the zero map.

Theorem 4.7.5. Suppose that i ∈ Z/3Z and (r, s) = (2, 6), (6, 10), (2, 10) or (6, 6).
(1) θ0 : Ext1Si,(r,s)(ρ, ρ) −→ H1(G3, ω) is the zero map.
(2) Either θω : Ext1Si,(r,s)(ρ, ρ) −→ H1(I3,F3) or θ1 : Ext1Si,(r,s)(ρ, ρ) −→ H1(I3,F3) is the zero map.

The deduction of Theorems 4.4.1, 4.5.1 and 4.6.2 from these results is immediate.

5. Breuil Modules.

In this section we recall some results from [Br2] (see also the summary [Br1]) and give some slight
extensions of them. Three of the authors apologise to the fourth for the title of this section, but they find
that the term “Breuil module” is much more convenient than “filtered φ1-module”.

Throughout this section, ` will be an odd rational prime and R will be a complete discrete valuation ring
with fraction field F ′ of characteristic zero and perfect residue field k of characteristic `.

5.1. Basic properties of Breuil modules. We will fix a choice of uniformiser π of R and let

Eπ(u) = ue − `Gπ(u)
be the Eisenstein polynomial which is the minimal polynomial of π over the fraction field of W (k), so
Gπ(u) ∈W (k)[u] is a polynomial with unit constant term Gπ(0) ∈W (k)× (and degree at most e− 1). The
`th power map on k[u]/ue` is denoted φ, and we define

(5.1.1) cπ = −φ(Gπ(u)) ∈ (k[u]/ue`)×.

It is very important to keep in mind that these definitions, as well as many of the definitions below, depend
on the choice of the uniformiser π.

The category of `-torsion Breuil modules (or “`-torsion Breuil modules overR”, or simply “Breuil modules”
or “Breuil modules over R”) is defined to be the category of triples (M,M1, φ1) where

• M is a finite free k[u]/ue`-module,
• M1 is a k[u]/ue`-submodule of M containing ue M,
• φ1 : M1 →M is φ-semilinear and has image whose k[u]/ue`-span is all of M.

(A morphism (M,M1, φ1)→ (N,N1, ψ1) is a morphism f : M→ N of k[u]/ue`-modules such that f M1 ⊂ N1

and ψ1 ◦ f = f ◦ φ1 on M1.) We define the rank of (M,M1, φ1) to be the rank of M over k[u]/ue`. Breuil
modules form an additive category (not abelian in general) in the obvious manner and this category does
not depend on the choice of π. It is denoted φ1−mod

R
or φ1−mod

F ′
. The induced φ-semilinear map of

k-vector spaces
φ1 : M1 /uM1 →M /uM
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is bijective (because it is onto and # M1 /uM1 = # M1[u] ≤ # M[u] = # M /uM). In particular, a map of
Breuil modules

(M,M1, φ1)→ (M′,M′
1, φ

′
1)

is an isomorphism if and only if the map M→M′ on underlying k[u]/ue`-modules is an isomorphism.

Lemma 5.1.1. Suppose that
0→M′ →M→M′′ → 0

is a complex of Breuil modules. The following are equivalent.
(1) The underlying sequence of k[u]/ue`-modules is exact.
(2) The underlying sequence of k[u]/ue`-modules is exact as is the sequence

0→M′
1 →M1 →M′′

1 → 0.

(3) The complex of vector spaces

0→M′ /u→M /u→M′′ /u→ 0

is exact.

Proof. The second statement clearly implies the first. The first implies the third as Breuil modules are free
over k[u]/ue`. It remains to show that the third condition implies the second. Using Nakayama’s lemma and
the freeness of Breuil modules we see that

0→M′ →M→M′′ → 0

is an exact sequence of k[u]/ue`-modules. Using the bijectivity of φ1, we see that the natural map

f1 : M1 →M′′
1

is surjective modulo u and therefore is surjective. It remains to check that the inclusion of k[u]/ue`-modules
M′

1 ⊆ ker(f1) is an equality. Since f1 is compatible with f : M→M′′ via the inclusions M1 ⊆M, M′′
1 ⊆M′′

and also via the maps φ1 and φ′′1 , it is obvious that ker(f1) ⊆ ker(f) = M′ and that φ1(ker(f1)) ⊆M′. Since
ker(f1) contains M′

1, which in turn contains ue M′, we see that (M′, ker(f1), φ1) is a Breuil module! Then
(M′,M′

1, φ
′
1)→ (M′, ker(f1), φ1) defined via the identity map on M′ is a map of Breuil modules which is an

isomorphism on underlying k[u]/ue`-modules, so it must be an isomorphism of Breuil modules. This forces
ker(f1) = M′

1. �

When the equivalent conditions of this lemma are met we call the sequence of Breuil modules

0→M′ →M→M′′ → 0

exact.
For any Breuil module (M,M1, φ1), we define the Frobenius endomorphism φ : M→M by

(5.1.2) φ(m) =
1
cπ
φ1(uem),

where cπ is defined as in (5.1.1). Note that this depends on our choice of uniformiser.
We let N : W (k)[[u]]→W (k)[[u]] denote the unique continuous W (k)-linear derivation satisfying Nu = u,

i.e. N = u d
du . This operator “extends” to any Breuil module. More precisely, we have the following lemma.

Lemma 5.1.2. Let M be an object of φ1−mod
R
. There is a unique additive operator N : M → M (the

monodromy operator) satisfying the three conditions:
(1) N(sx) = N(s)x+ sN(x), s ∈ k[u]/ue`, x ∈M,
(2) N ◦ φ1 = φ ◦N on M1,
(3) N(M) ⊂ uM.

Moreover, any morphism of Breuil modules M→M′ automatically commutes with N .
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Proof. Let’s start with unicity. Recall we have an isomorphism k[u]/ue` ⊗k[u`]/ue` φ1(M1)
∼→ M ([Br2],

2.1.2.1). Suppose there are two operators N and N ′ satisfying (1), (2) and (3) above, so ∆ = N − N ′ is
k[u]/ue`-linear and satisfies ∆φ1 = φ∆ and ∆(M) ⊂ uM. Thus,

∆φ1(M1) = φ∆(M1) ⊂ φ(uM) ⊂ u`M,

so ∆(M) = ∆(k[u]/ue` ⊗k[u`]/ue` φ1(M1)) ⊂ u`M. Iterating ∆φ1(M1) ⊂ φ∆(M) ⊂ u`
2
M so ∆(M) ⊂ u`

2
M,

and so on. As ue` = 0, we get ∆ = 0. For the existence, let N0 = N ⊗ 1 on

k[u]/ue` ⊗k[u`]/ue` φ1(M1) 'M,

and note N0 satisfies N0(sx) = N(s)x+ sN0(x). Call a derivation of M any additive operator satisfying this
relation and define successive derivations of M by the formula

Nj+1(s⊗ φ1(x)) = N(s)⊗ φ1(x) + sφ(Nj(x)),

for j ≥ 0. Note that Nj+1 is well defined by the following observations.

• N(u`s) = u`N(s) and Nj(ux) = ux+ uNj(x) imply that Nj+1(u`s⊗ φ1(x)) = Nj+1(s⊗ φ1(ux)).
• If φ1(x) = 0 then x ∈ ueM (see (1) of Lemma 2.1.2.1 of [Br1]) and so Nj(x) ∈ ueM and φ(Nj(x)) = 0.

As N0(M) ⊂ uM, we have (Nj+1 − Nj)(M) ⊂ u`
j+1

M, so Nj = Nj+1 for j � 0. This Nj satisfies (1), (2)
and (3). �

The reason for introducing Breuil modules (and putting the factor c−1
π in the definition of φ) is the

following theorem.

Theorem 5.1.3. (1) Given the choice of uniformiser π for R there is a contravariant functor Mπ from
finite flat R-group schemes which are killed by ` to φ1−mod

R
and a quasi-inverse functor Gπ.

(2) If G is a finite flat R-group scheme killed by `, then G has rank `r if and only if Mπ(G) has rank r.
(3) If G is a finite flat R-group scheme killed by `, then there is a canonical k-linear isomorphism

D(G)⊗k,Frob` k
∼= Mπ(G)/uMπ(G).

Under this identification, F⊗ Frob` corresponds to φ and V ⊗ Frob−1
` corresponds to the composite

VM : M /uM
φ
−1
1→ M1 /uM1 →M /uM .

(4) If

0→ G′ → G→ G′′ → 0

is a diagram of finite flat group schemes over R which are killed by ` and if

0→Mπ(G′′)→Mπ(G)→Mπ(G′)→ 0

is the corresponding diagram of Breuil modules, then the diagram of finite flat group schemes is a
short exact sequence if and only if the diagram of Breuil modules is a short exact sequence.

Proof. See §2.1.1, Proposition 2.1.2.2, Theorem 3.3.7, Theorem 4.2.1.6 and the proof of Theorem 3.3.5 of
[Br2]. In 3.3.5 of [Br2] it is shown that Mπ(G)/uMπ(G) can be k-linearly identified with the crystalline
Dieudonné module of G× k. In 4.2.14 of [BBM] the crystalline Dieudonné module of G× k is identified with
D(G) ⊗k,Frob` k. The equivalence of the two notions of exactness can be deduced from the compatibility of
Mπ with Dieudonné theory, from Lemma 5.1.1, and from the fact that a complex of finite flat group schemes
over R is exact if and only if its special fibre is exact (see for example Proposition 1.1 of [deJ]). �
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5.2. Examples. For 0 ≤ r ≤ e an integer and for a ∈ k×, define a Breuil module M(r, a) by
• M(r, a) = (k[u]/ue`)e,
• M(r, a)1 = (k[u]/ue`)ure,
• φ1(ure) = ae.

It is easy to check that φ1 is well defined (and uniquely determined by the given conditions). We will refer
to e as the standard generator of M(r, a) and write G(r, a) for Gπ(M(r, a)). The following lemma is easy to
check.

Lemma 5.2.1. (1) Any Breuil module of rank 1 over k[u]/ue` is isomorphic to some M(r, a).
(2) There is a non-zero morphism M(r, a) → M(r′, a′) if and only if r′ ≥ r, r′ ≡ r mod ` − 1 and

a/a′ ∈ (k×)`−1. All such morphisms are then of the form e 7→ bu`(r
′−r)/(`−1)e′, where b`−1 = a/a′.

(3) The modules M(r, a) and M(r′, a′) are isomorphic if and only if r = r′ and a/a′ ∈ (k×)`−1, or
equivalently if and only if there are non-zero morphisms M(r, a)→M(r′, a′) and M(r′, a′)→M(r, a).

(4) If we order the M(r, a) by setting M(r, a) ≥ M(r′, a′) if there is a non-zero morphism M(r′, a′) →
M(r, a), then the set of isomorphism classes of Mπ(G)’s as G runs over models of a fixed finite flat
F ′-group scheme G of order ` is well ordered.

(5) On M(r, a) we have Ne = 0, so N ◦ φ1 = 0.
(6) G(r, a) is étale (resp. multiplicative) if and only if r = e (resp. r = 0).
(7) G(0, 1) ∼= µ` and G(e,−Gπ(0)) ∼= Z/`Z.
(8) The Cartier dual of G(r,−Gπ(0)) is G(e− r, 1).

Proof. The first three parts are easy computations. For the fourth part note that two finite flat group
schemes G and G′ of order ` over R have isomorphic generic fibres if and only if there is a non-zero morphism
G→ G′ or G′ → G. The fifth part is another easy computation and the sixth part follows on computing the
Dieudonné module using Theorem 5.1.3.

By 3.1.2 of [Br2] we see that the affine R-algebra of the group scheme attached to M(r, a) is

R[X]/(X` +
πe−rã

Gπ(π)
X),

where ã is a lift of a to W (k). This has constant generic fiber if and only if −πe−rã/Gπ(π) ∈ F ′ is an
(` − 1)th power. This occurs if and only if r ≡ e mod ` − 1 and −a/Gπ(0) ∈ k is a (` − 1)th power. Thus
M(e,−Gπ(0)) corresponds to the étale group scheme Z/`Z over R.

Next, we show that the group scheme G corresponding to the Breuil module M(0, 1) is isomorphic to µ`.
By using the relation between Breuil modules and Dieudonné modules (see Theorem 5.1.3) we see that the
Dieudonné module of the closed fiber of G is isomorphic to the Dieudonné module of the closed fiber of µ`.
This forces G

∼→ µ`, since we may consider Cartier duals and observe that a finite flat R-group scheme G is
étale if and only if its special fibre is étale, and then §18.5.15 of book IV4 of [EGA] may be used.

This establishes the seventh part. The final part follows from parts four and seven. �

Now suppose that 0 ≤ r, s ≤ e are integers and choose a, b ∈ k×, f ∈ umax(0,r+s−e)k[u]/ue`. We can define
an extension class

(0) −→M(s, b) −→M(s, b; r, a; f) −→M(r, a) −→ (0)
in φ1−mod

R
by

• M(s, b; r, a; f) = (k[u]/ue`)e⊕ (k[u]/ue`)e′,
• M(s, b; r, a; f)1 = 〈use, ure′ + fe〉,
• φ1(use) = be and φ1(ure′ + fe) = ae′,
• the standard generator of M(s, b) maps to e,
• e maps to 0 and e′ maps to the standard generator in M(r, a).

The following lemma is also easy to check.

Lemma 5.2.2. (1) Any extension of M(r, a) by M(s, b) in φ1−mod
R

is isomorphic to M(s, b; r, a; f)
for some f ∈ umax(0,r+s−e)k[u]/ue`.
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(2) Two such extensions M(s, b; r, a; f) and M(s, b; r, a; f ′) are isomorphic as extension classes if and
only if

f ′ − f = ush− (b/a)urh`

for some h ∈ k[u]/ue`, in which case one such isomorphism fixes e and sends e′ to e′ − (b/a)h`e.

We remark that f ∈ umax(0,r+s−e)k[u]/ue` is required so that M(s, b; r, a; f)1 ⊃ ue M(s, b; r, a; f). We will
write G(s, b; r, a; f) for Gπ(M(s, b; r, a; f)).

We will also need some slight extensions of these results to allow for coefficients. To this end let k′/F` be
a finite extension linearly disjoint from k and write k′k for the field k′ ⊗F` k. For 0 ≤ r ≤ e an integer and
for a ∈ (k′k)×, define a Breuil module, M(k′; r, a), with an action of k′ by

• M(k′; r, a) = ((k′k)[u]/ue`)e,
• M(k′; r, a)1 = ((k′k)[u]/ue`)ure,
• φ1(ure) = ae.

We will let φ denote the automorphism of k′k[u], which is the identity on k′ and which raises elements of
k[u] to the `th power. The following lemma is easy to check.

Lemma 5.2.3. (1) Any Breuil module with an action of k′ which is free of rank [k′ : k] over k[u]/ue`

is isomorphic to some M(k′; r, a).
(2) There is a non-zero morphism M(k′; r, a)→M(k′; r′, a′) if and only if r′ ≥ r, r′ ≡ r mod `− 1 and

a/a′ ∈ φ(b)/b for some b ∈ (k′k)×. All such morphisms are then of the form e 7→ b′u`(r
′−r)/(`−1)e′,

where b ∈ (k′k)× and φ(b′)/b′ = a/a′.
(3) The modules M(k′; r, a) and M(k′; r′, a′) are isomorphic if and only if r = r′ and a/a′ ∈ ((k′k)×)φ−1.
(4) On M(k′; r, a) we have Ne = 0 and so N ◦ φ1 = 0.
(5) Gπ(M(k′; r, a)) is étale (resp. multiplicative) if and only if r = e (resp.r = 0).

Now choose 0 ≤ r, s ≤ e integers, a, b ∈ (k′k)×, and f ∈ umax(0,r+s−e)(k′k)[u]/ue`. We define an extension
class

(0) −→M(k′; s, b) −→M(k′; s, b; r, a; f) −→M(k′; r, a) −→ (0)

in φ1−mod
R

with an action of k′ by

• M(k′; s, b; r, a; f) = ((k′k)[u]/ue`)e⊕ ((k′k)[u]/ue`)e′,
• M(k′; s, b; r, a; f)1 = 〈use, ure′ + fe〉,
• φ1(use) = be and φ1(ure′ + fe) = ae′,
• the standard generator of M(k′; s, b) maps to e,
• e maps to 0 and e′ to the standard generators in M(k′; r, a).

Then the following lemma is easy to check.

Lemma 5.2.4. (1) Any extension of M(k′; r, a) by M(k′; s, b) in φ1−mod
R

with a compatible action of
k′ is isomorphic to M(k′; s, b; r, a; f) for some f ∈ umax(0,r+s−e)(k′k)[u]/ue`.

(2) Two such extensions M(k′; s, b; r, a; f) and M(k′; s, b; r, a; f ′) are isomorphic (as extensions) if and
only if

f ′ − f = ush− (b/a)urφ(h)

for some h ∈ (k′k)[u]/ue`, in which case one such isomorphism fixes e and sends e′ to e′−(b/a)φ(h)e.

We will write G(k′; r, a) and G(k′; r, a; s, b; f) for Gπ(M(k′; r, a)) and Gπ(M(k′; r, a; s, b; f)) respectively.

5.3. Relationship to syntomic sheaves. Let us first recall some of the notations of [Br1] and [Br2].
Let Spf(R)syn be the small `-adic formal syntomic site over R, S the `-adic completion of W (k)[u, u

ie

i! ]i∈N,
Sn = S/`nS, En = Spec(Sn) and for any X ∈ Spf(R)syn:

Ocrisn,π (X) = H0((Xn/En)cris,OXn/En)
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where Xn = X×R R/`n is viewed over En via the thickening (Spec(R/`n) ↪→ En, u 7→ π). It turns out Ocrisn,π

is the sheaf of Sn-modules on Spf(R)syn associated to the presheaf (cf. the proof of Lemma 2.3.2 in [Br2]):

(5.3.1) X 7→
(
Wn(k)[u]⊗φn,Wn(k)Wn(Γ(X1,OX1))

)DP
=
(
(Wn(k)[u]/ue`

n

)⊗φn,Wn(k)Wn(Γ(X1,OX1))
)DP

.

Here, the subscript “φn” means we twist by the nth power of the Frobenius when sending Wn(k) to Wn(k)[u]
and the exponent “DP” means we take the divided power envelope with respect to the kernel of the canonical
map:

Wn(k)[u]⊗φn,Wn(k) Wn(Γ(X1,OX1)) → Γ(Xn,OXn)
s(u)⊗ (w0, ..., wn−1) 7→ s(π)(ŵ`

n

0 + `ŵ`
n−1

1 + ...+ `n−1ŵ`n−1)
where ŵi is a local lifting of wi, these divided powers being required to be compatible with the usual divided
powers γi(`x) = `i

i! x
i (i.e. we take the divided power envelope relative to the usual divided power structure

on the maximal ideal of Wn(k)). Note that the latter map induces a canonical surjection of sheaves of
Sn-modules on Spf(R)syn:

Ocrisn,π → On,

where On(X) = Γ(Xn,OXn). We denote by Jcrisn,π the kernel of this surjection. For any n, let φ : Sn → Sn be

the unique lifting of Frobenius such that φ(u) = u` and φ(u
ie

i! ) = uie`

i! . The sheaf Ocrisn,π is equipped with the
crystalline Frobenius φ, which is also induced by the map s(u)⊗ (w0, ..., wn−1) 7→ φ(s(u))⊗ (w`0, ..., w

`
n−1) on

the above presheaf (5.3.1). (Here φ on Wn(k)[u] is Frobenius on Wn(k) and takes u to u`.) Since ` divides
φ(x)−x`, we get φ(Jcrisn,π ) ⊂ `Ocrisn,π for all n, so we can define an S1-linear φ1 = φ

` |Jcrisn,π
by the usual “flatness”

trick (see §2.3 of [Br2]). Let N : Sn → Sn be the unique Wn(k)-linear derivation such that N(u) = u and
N(γi(ue)) = eueγi−1(ue) = ieγi(ue). Finally define:

N : Ocrisn,π → Ocrisn,π

to be the uniqueWn(k)-linear morphism of sheaves which on the presheaf (5.3.1) is given byN(γi(
∑
s⊗w)) =

(
∑
N(s)⊗ w)γi−1(

∑
s⊗ w). Note that N ◦ φ = `φ ◦N , so N ◦ φ1 = φ ◦N on Jcrisn,π .

Let G be a finite flat group scheme over R, which is killed by `. Viewing G as a formal scheme over R,
it is an object in Spf(R)syn. Viewing it as a sheaf of groups on Spf(R)syn, its associated Breuil module is
defined as:

(1) Mπ(G) = Homsheaves of groups(G,Ocris1,π )⊗S1 k[u]/u
e`,

(2) Mπ(G)1 = image of Homsheaves of groups(G, Jcris1,π )⊗S1 k[u]/u
e` in Mπ(G),

(3) φ1 is induced by φ1 ⊗ φ,
where the S1-module structures are induced by the compatible S1 actions on Ocris1,π and Jcris1,π (see §3.2 and
§2.1.2.2 of [Br2]). Here S1 → k[u]/ue` is the surjection that sends u to u, γi(ue) to γi(ue) for i < l and
γi(ue) to 0 for i ≥ l.

We record for future reference the following straightforward observation.

Lemma 5.3.1. If we denote by ∆ (resp. pri, i ∈ {1, 2}) the coproduct (resp. the two projections)

G×Spec(R) G→ G,

then for any sheaf of commutative groups F on Spf(R)syn we have:

Homsheaves of groups(G,F) = {x ∈ F(G) | (∆∗ − pr∗1 − pr∗2)(x) = 0}.

The operator N on Ocris1,π induces an operator N on Homsheaves of groups(G,Ocris1,π ), hence on Mπ(G).

Lemma 5.3.2. The above operator N on Mπ(G) coincides with the operator N defined in Lemma 5.1.2.

Proof. By unicity in Lemma 5.1.2, we only have to prove that N satisfies N(Mπ(G)) ⊂ uMπ(G), since the
other conditions are automatically satisfied. It’s enough to prove that N(φ1(x)) = (φ ◦N)(x) ∈ uMπ(G) for
any x ∈Mπ(G)1. But ue`−`φ ◦N = 0 on Ocris1,π because it is so on (k[u]⊗ Γ(X1,OX1))

DP . Thus one also has
ue`−`φ ◦N = 0 on Homgroups(G,Ocris1,π ), hence on Mπ(G). This implies φ ◦N(Mπ(G)) ⊂ u`Mπ(G) ⊂ uMπ(G)
since Mπ(G) is free over k[u]/ue`. �
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5.4. Base change. In this section we will examine the relationship of the functor Mπ with two instances of
base change. First we consider unramified base change.

Let k′ be a perfect field of characteristic ` which is an extension of k and R′ = R ⊗W (k) W (k′). Choose
π′ = π ⊗ 1 as uniformiser in R′. If X ∈ Spf(R)syn, let X′ = Spf(R′)×Spf(R) X and define:

Ocris
′

n,π (X) = Ocrisn,π′(X
′) and Jcris

′

n,π (X) = Jcrisn,π′(X
′).

As in the proof of 2.3.2 of [Br2], we have that Ocris
′

n,π is the sheaf on Spf(R)syn associated to the presheaf:

X 7→
(
Wn(k′)[u]⊗φn,Wn(k′) Wn(Γ(X′1,OX′1

))
)DP

=
(
Wn(k′)[u]⊗φn,Wn(k′) Wn(k′ ⊗k Γ(X1,OX1))

)DP
.

Define S′n as Sn but with k′ instead of k. There is a canonical isomorphism of sheaves:

Ocrisn,π ⊗Sn S′n = Ocrisn,π ⊗Wn(k) Wn(k′)
∼→ Ocris

′

n,π

coming from the obvious isomorphism:

(Wn(k′)[u]/ue`
n

)⊗φn,Wn(k) Wn(Γ(X1,OX1))
∼→ (Wn(k′)[u]/ue`

n

)⊗φn,Wn(k′) Wn(k′ ⊗k Γ(X1,OX1))

and one easily sees it induces an isomorphism Jcrisn,π ⊗Wn(k)Wn(k′)
∼→ Jcris

′

n,π . Moreover, we have the following
obvious lemma.

Lemma 5.4.1. The diagram of sheaves on Spf(R)syn:

Jcrisn,π ⊗Wn(k) Wn(k′)
∼→ Jcris

′

n,π

↓ φ1⊗φ φ1 ↓
Ocrisn,π ⊗Wn(k) Wn(k′)

∼→ Ocris
′

n,π

is commutative.

Using the identification from §5.3, Lemma 5.3.1 and Lemma 5.4.1 (for n = 1), together with obvious
functorialities, we obtain after tensoring by k[u]/ue` the following corollary.

Corollary 5.4.2. Let G be a finite flat group scheme over R, which is killed by `. Let k′/k be an extension
of fields with k′ perfect and let π′ = π⊗ 1, a uniformiser for R′ = R⊗W (k)W (k′). Then there is a canonical
isomorphism in the category φ1−mod

R(
Mπ(G)⊗k k′,Mπ(G)1 ⊗k k′, φ1 ⊗ φ

)
∼→
(
Mπ′(G′),Mπ′(G′)1, φ1

)
compatible with composites of such residue field extensions.

We will now turn to the case of base change by a continuous automorphism g : R ∼→ R. For any
s =

∑
wiu

i ∈ W (k)[[u]], let (g)s =
∑
g(wi)ui and (φ)s =

∑
φ(wi)ui, where g and φ act on W (k) through

their action on k. Choose Hg(u) ∈ W (k)[[u]] such that g(π) = πHg(π). Notice that Hg(u) ∈ W (k)[[u]]×.
Define ĝ : W (k)[[u]] ∼→W (k)[[u]] by ĝ(

∑
wiu

i) =
∑
g(wi)uiHg(u)i.

Lemma 5.4.3. There is a unique element gt(u) ∈ W (k)[[u]] such that, if gφ is defined by gφ(
∑
wiu

i) =∑
φ(wi)(u`(1 + `gt(u)))i, one has ĝ ◦ gφ = φ ◦ ĝ.

Proof. One has to solve in W (k)[[u]]:

1 + `(g)g t(uHg(u)) =
(
Hg(u)−1

)`
(φ)Hg(u`)

(where the two sides clearly belong to 1 + `W (k)[[u]]). As Hg(u) ∈ W (k)[[u]]×, there is a unique Kg ∈
uW (k)[[u]]× such that Kg(u)Hg(Kg(u)) = u, so we have

1 + `(g)g t(u) =
(
Hg(Kg(u))−1

)`
(φ)Hg(Kg(u)`).

�
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For any object M of φ1−mod
R
, define gφ1 : M1 →M by the following formula:

(5.4.1) gφ1(x) = φ1(x) + gt(u)N(φ1(x))

where N is as in Lemma 5.1.2.
For any X ∈ Spf(R)syn, let gX = Spf(R)×g∗,Spf(R) X and define:

Ocris,(g)n,π (X) = Ocrisn,π (gX) and Jcris,(g)n,π (X) = Jcrisn,π (gX).

Then O
cris,(g)
n,π is the sheaf on Spf(R)syn associated to the presheaf:

X 7→
(
Wn(k)[u]⊗φn,Wn(k) Wn(Γ(gX1,OgX1))

)DP
=

(
Wn(k)[u]⊗φn,Wn(k) Wn(R⊗g,R Γ(X1,OX1))

)DP
.

Let ĝ : Sn → Sn be the unique ring isomorphism such that ĝ(wi u
ei+j

i! ) = g(wi)u
ei+j

i! Hg(u)ei+j for 0 ≤ j < e,
i ≥ 0. There is a canonical isomorphism of sheaves:

Ocrisn,π ⊗Sn,ĝ Sn
∼→ Ocris,(g)n,π

coming from the obvious ĝ-semi-linear isomorphism:

(Wn(k)[u]/ue`
n

)⊗φn,Wn(k) Wn(Γ(X1,OX1))
∼→ (Wn(k)[u]/ue`

n

)⊗φn,Wn(k) Wn(R⊗g,R Γ(X1,OX1))
s⊗ (w0, ..., wn−1) 7→ ĝ(s)⊗ (1⊗ w0, ..., 1⊗ wn−1)

and one easily sees it induces an isomorphism Jcrisn,π ⊗Sn,ĝ Sn
∼→ J

cris,(g)
n,π .

Define gφ : Sn → Sn as in Lemma 5.4.3 and define:

gφ : Ocrisn,π → Ocrisn,π

to be the unique morphism of sheaves which is induced by gφ(γi(
∑
s ⊗ w)) = γi(

∑
gφ(s) ⊗ φ(w)) on

the presheaf (5.3.1) (see §5.3 and note that this is well defined). Since gφ(Jcrisn,π ) ⊂ `Ocrisn,π , we can define

gφ1 = gφ
` |Jcrisn,π

.

Lemma 5.4.4. The diagram of sheaves on Spf(R)syn:

Jcrisn,π ⊗Sn,ĝ Sn
∼→ J

cris,(g)
n,π

↓ gφ1⊗φ φ1 ↓
Ocrisn,π ⊗Sn,ĝ Sn

∼→ O
cris,(g)
n,π

is commutative. Moreover we have on Jcrisn,π :

gφ1 =
∞∑
i=0

( log(1 + `gt(u))
`

)iN i

i!
◦ φ1

where N is defined as in §5.3.

Proof. By working modulo `n+1, i.e. with Jcrisn+1,π and gφ, and looking on the above presheaves, it is completely
straightforward. �

Let G be a finite flat group scheme over R which is killed by `. Note that thanks to Lemma 5.3.2 and the
formula for gφ1 in Lemma 5.4.4, the operator Mπ(G)1 → Mπ(G) induced by the map gφ1 : Jcrisn,π → Ocrisn,π is
precisely the operator denoted gφ1 earlier in this section (see (5.4.1)). Using this, together with Lemma 5.3.1,
Lemma 5.4.4 (for n = 1) and obvious functorialities, we obtain, after tensoring by k[u]/ue`, the following
corollary.

Corollary 5.4.5. Let g : R→ R be a continuous automorphism.
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(1) Let G be a finite flat group scheme over R, which is killed by `. Then there is a canonical isomorphism
in the category φ1−mod

R
:(

Mπ(G)⊗k[u]/ue`,ĝ k[u]/u
e`,Mπ(G)1 ⊗k[u]/ue`,ĝ k[u]/u

e`, gφ1 ⊗ φ
)

∼→
(
Mπ(gG),Mπ(gG)1, φ1

)
.

(2) If f : G→ G′ is a morphism of finite flat R-group schemes killed by ` and Mπ(f) is the corresponding
morphism in φ1−mod

R
, then Mπ(f) also commutes with the gφ1 and there is a commutative diagram

in φ1−mod
R
:

Mπ(G′)⊗k[u]/ue`,ĝ (k[u]/ue`)
Mπ(f)⊗1−→ Mπ(G)⊗k[u]/ue`,ĝ (k[u]/ue`)

o ↓ ↓ o
Mπ(gG′)

Mπ(gf)−→ Mπ(gG).

(3) If g1, g2 are two continuous automorphisms of R and if we choose the unique Hg2g1 ∈W (k)[[u]] such
that ĝ2g1 = ĝ2 ◦ ĝ1 on W (k)[[u]], then on

(Mπ(G)⊗k[u]/ue`,ĝ1 k[u]/u
e`)⊗k[u]/ue`,ĝ2 k[u]/u

e` 'Mπ(G)⊗k[u]/ue`, dg2g1 k[u]/ue`,
one has g2(g1φ1 ⊗ φ)⊗ φ = g2g1φ1 ⊗ φ.

Corollary 5.4.6. Let G be a finite flat group scheme over R, which is killed by `. To give a morphism of
schemes [g] : G→ G such that the diagram of schemes

G
[g]−→ G

↓ ↓
Spec(R)

Spec(g)−→ Spec(R)

is commutative and the induced morphism G→ Spec(R)×g,Spec(R) G is an morphism of group schemes over
R, is equivalent to giving an additive map ĝ : Mπ(G)→Mπ(G) such that both of the following hold.

(1) For all s ∈ k[u]/ue` and x ∈Mπ(G), ĝ(sx) = ĝ(s)ĝ(x).
(2) ĝ(Mπ(G)1) ⊂Mπ(G)1 and φ1 ◦ ĝ = ĝ ◦ φ1 + ĝ(gt(u))ĝ ◦N ◦ φ1 with gt as in Lemma 5.4.3 and N as

in Lemma 5.1.2.

Proof. Note that the last condition is equivalent to φ1 ◦ ĝ = ĝ ◦ gφ1. The first two conditions are equivalent
to giving a morphism ĝ : Mπ(gG) → Mπ(G) in φ1−mod

R
, which is equivalent to the last two by Corollary

5.4.5. �

Finally we make some computations that concern the dependence of the above compatibilities on the
choice of Hg(u). Let f(u) be an element of (k[u]/ue`)1 = ue(k[u]/ue`) and define, for any M in φ1−mod

R
,

the additive map 1f : φ1(M1)→M via

1f = 1 +
( `−1∑
i=1

(−1)i−1

i
f(u)i

)
N

where N is as in Lemma 5.1.2. Using k[u]/ue` ⊗k[u`]/ue` φ1(M1) ' M, we extend 1f to all of M by the
formula:

1f (uix) = ui(1 + f(u))i1f (x)
for x ∈ φ1(M1). If x ∈M1, one checks that:

1f (φ1(uix)) = ui`1f (φ1(x)) = 1f (ui`φ1(x))

so 1f is well defined. Moreover, it is clear that 1f (M1) ⊂M1. Let

1f : Ocris1,π
∼→ Ocris1,π

be the unique isomorphism of sheaves coming from the semi-linear isomorphism of presheaves:

(k[u]/ue`)⊗φ,k Γ(X1,OX1)
∼→ (k[u]/ue`)⊗φ,k (Γ(X1,OX1)

s(u)⊗ (w0, ..., wn−1) 7→ s(u(1 + f(u)))⊗ (w0, ..., wn−1)
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(see 5.3.1).
Let G be a finite flat group scheme over R killed by ` and recall that

Mπ(G) = Homsheaves of groups(G,Ocris1,π )⊗ k[u]/ue`.

Lemma 5.4.7. The operator 1f on Mπ(G) is induced by the operator 1f on Ocris1,π .

Proof. One can check that the operator 1f on Ocris1,π satisfies 1f ◦ φ1 = φ1 + log(1 + f)N ◦ φ1 where N
is defined as in §5.3 and log(1 + f) is the usual expansion of log in S1, which makes sense because of the
assumption that ue|f and because of the divided powers γi(ue) = uei

i! . After tensoring with k[u]/ue`, we get

1f = 1 + (
∑`−1
i=1

(−1)i−1

i f(u)i)N on φ1(Mπ(G)1) which clearly implies the two 1f ’s are the same. �

Let g = 1 and choose Hg(u) = 1+f(u) for some f ∈ Eπ(u)W (k)[[u]] (see the start of §5.1 for the definition
of Eπ(u)). Recall from Corollary 5.4.5 that we have a canonical isomorphism Mπ(G)⊗k[u]/ue`,bg (k[u]/ue`) ∼→
Mπ(gG).

Lemma 5.4.8. The map 1f is the composite Mπ(G) ∼→ Mπ(gG) ∼→ Mπ(G) where the first map is the one
in Corollary 5.4.5 and the second comes from the obvious isomorphism G

∼→ gG. In other words, once
Hg(u) = 1+f(u) has been chosen, 1f : Mπ(G)→Mπ(G) is the map corresponding to the identity 1G : G→ G

under the equivalence of Corollary 5.4.6.

The proof is straightforward by looking at the usual presheaves and using Lemma 5.4.7. We remark that
1f is not necessarily the identity even though 1G is. However, with f = 0, 1f is the identity.

5.5. Reformulation. In this section, we will reformulate Corollary 5.4.6.

Lemma 5.5.1. There is a unique element tg(u) ∈ W (k)[[u]] such that if φg is defined by φg(
∑
wiu

i) =∑
φ(wi)(u`(1 + `tg(u))i, one has ĝ ◦ φ = φg ◦ ĝ.

Proof. One has to solve in W (k)[[u]]:

u`Hg(u)` = u`(1 + `tg(u))(φ)Hg(u`(1 + `tg(u))).

As Hg(u) ∈ W (k)[[u]]×, there is a unique Lg ∈ uW (k)[[u]]× such that Lg(uHg(u)) = u. Applying Lg to
u = Kg(u)Hg(Kg(u)) (cf. the proof of Lemma 5.4.3), we get Lg(u) = Kg(u). We must solve:

1 + `tg(u) =
(φ)Kg(u`Hg(u)`)

u`
.

�

Lemma 5.5.2. There is a unique λg(u) ∈ 1 + uW (k)[[u]] such that if Ng = λgN , then Ng ◦ ĝ = ĝ ◦ N .
Similarly, there is a unique gλ(u) ∈ 1 + uW (k)[[u]] such that if gN = gλN , then ĝ ◦ gN = N ◦ ĝ. Moreover,
Ng ◦ φg = `φg ◦Ng and gN ◦ gφ = `gφ ◦ gN .

Proof. Since N is a derivation, so is λN for any λ ∈W (k)[[u]]. One has to solve λg(u)N(uHg(u)) = uHg(u)
and (g)

g λ(uHg(u)) = 1 + N(Hg(u))
Hg(u) , which amounts to:

λg(u) =
(
1 +

N(Hg(u))
Hg(u)

)−1

,

(g)
g λ(u) = 1 +

N(Hg)(Kg(u))
Hg(Kg(u))

,

where Kg is as in the proof of Lemma 5.4.3. The commutation relations with the Frobenius follow from
N ◦ φ = `φ ◦N , φg ◦ ĝ = ĝ ◦ φ, Ng ◦ ĝ = ĝ ◦N , ĝ ◦ gφ = φ ◦ ĝ, ĝ ◦ gN = N ◦ ĝ and the fact ĝ is bijective on
W (k)[[u]]. �
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We also denote by gN = gλN and Ng = λgN the corresponding derivations on k[u]/ue`. For any object
M of φ1−mod

R
, define φ1,g : M1 →M by the formula:

φ1,g(x) = φ1(x) + tg(u)N(φ1(x))

where N is as in Lemma 5.1.2, and we recall that we defined gφ1 in (5.4.1). One checks that φ1,g(ue) =
gφ1(u

e) = φ1(ue) = cπ (see (5.1.1)). Note that we also have φ1,g ◦ ĝ = ĝ ◦ gφ1, Ng ◦ ĝ = ĝ ◦N , ĝ ◦ gφ1 = φ1 ◦ ĝ,
ĝ ◦ gN = N ◦ ĝ in k[u]/ue`.

Lemma 5.5.3. Let M be an object of φ1−mod
R
, then there is a unique operator Ng : M → M satisfying

the three conditions:
(1) Ng(sx) = Ng(s)x+ sNg(x), s ∈ k[u]/ue`, x ∈M,
(2) Ngφ1,g(x) = φgNg(x), x ∈M1 where φg(y) = 1

cπ
φ1,g(uey) if y ∈M,

(3) Ng(M) ⊂ uM.
The same statement holds for gN , gφ, and gφ1.

Proof. The proof is the same as for Lemma 5.1.2, using the fact we still have isomorphisms

k[u]/ue` ⊗k[u`]/ue` φ1,g(M1)
∼→M

(resp. with gφ1 replacing φ1,g). �

Lemma 5.5.4. For M an object of φ1−mod
R
, Ng = λgN and gN = gλN where Ng, gN are as in Lemma

5.5.3, λg, gλ as in Lemma 5.5.2 and N as in Lemma 5.1.2.

Proof. By unicity of Ng, one has to check λgN satisfies the three conditions of Lemma 5.5.3. The first and
last are obvious. Note that Nφ1(uex) = φN(uex) = 0 so φ1,g(uex) = φ1(uex), which implies φ = φg on M

(φg is as in Lemma 5.5.3). One computes:

(λg(u)N) ◦ φ1,g = λg(u)(1 +N(tg(u)))φ ◦N
φg ◦ (λg(u)N) = (φ)λg(u`)φ ◦N.

But the equality Ng ◦ φg(u) = `φg ◦Ng(u) in W (k)[[u]] (from Lemma 5.5.2) yields

λg(u)(1 +N(tg(u)))− (φ)λg(u`) ∈ `W (k)[[u]].

We thus get (λgN) ◦ φ1,g = φg ◦ (λgN) hence condition (2). For gN , the proof is completely similar. �

Lemma 5.5.5. Let M be an object of φ1−mod
R

and ĝ : M → M be an additive map such that for all
s ∈ k[u]/ue` and x ∈ M, ĝ(sx) = ĝ(s)ĝ(x) and ĝ(M1) ⊂ M1. If ĝ ◦ φ1 = φ1,g ◦ ĝ, then ĝ ◦ N = Ng ◦ ĝ.
Similarly, if φ1 ◦ ĝ = ĝ ◦ gφ1, then N ◦ ĝ = ĝ ◦ gN .

Proof. We prove the first case, the other one being the same. As in the proof of Lemma 5.1.2, we define
Ng,0, Ng,1,..., with Ng = Ng,i for i large enough, using k[u]/ue` ⊗k[u`]/ue` φ1,g(M1)

∼→ M. It is enough to
show ĝ ◦Ni = Ng,i ◦ ĝ for all i. Suppose ĝ ◦Ni−1 = Ng,i−1 ◦ ĝ and let s ∈ k[u]/ue` and x ∈M1, then:

Ng,iĝ(sφ1(x)) = Ng,i(ĝ(s)φ1,g(ĝ(x)))
= Ng(ĝ(s))φ1,g(ĝ(x)) + ĝ(s)φ1,gNg,i−1(ĝ(x))
= ĝ(N(s)φ1(x)) + ĝ(s)φ1,g ĝ(Ni−1(x))
= ĝ(N(s)φ1(x)) + ĝ(sφ1(Ni−1(x)))
= ĝNi(sφ1(x)),

so ĝ ◦Ni = Ng,i ◦ ĝ by linearity. One easily checks by a similar computation that Ng,0 ◦ ĝ = ĝ ◦N0, hence
the result follows by induction. �

Lemma 5.5.6. Let M be an object of φ1−mod
R

and ĝ : M → M an additive map such that for all
s ∈ k[u]/ue` and x ∈ M, ĝ(sx) = ĝ(s)ĝ(x) and ĝ(M1) ⊂ M1. Then the following two conditions are
equivalent:
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(1) φ1 ◦ ĝ = ĝ ◦ φ1 + ĝ(gt(u))ĝ ◦N ◦ φ1

(2) and ĝ ◦ φ1 = φ1 ◦ ĝ + tg(u)N ◦ φ1 ◦ ĝ.

Proof. One has to show φ1 ◦ ĝ = ĝ ◦ gφ1 is equivalent to ĝ ◦ φ1 = φ1,g ◦ ĝ. We prove (1) ⇒ (2), the other
case being the same. On M, we have ĝ ◦ φ = φ ◦ ĝ, because φ = φg = gφ, as in the proof of Lemma 5.5.4.
By Lemmas 5.5.4 and 5.5.5, we have ĝ ◦N = ĝ(gλ−1)N ◦ ĝ. Thus we get from (1), using Nφ1 = φN ,

ĝ ◦ φ1 = φ1 ◦ ĝ − ĝ(gt(u))ĝ(gλ(u)−1)`N ◦ φ1 ◦ ĝ.
Playing the same game over W2(k)[[u]] with the relation φ ◦ ĝ = ĝ ◦ φ + ĝ(gt(u))ĝ ◦ N ◦ φ, which is easily
checked to hold in W2(k)[[u]], we again end up with ĝ ◦φ = φ◦ ĝ− ĝ(gt(u))ĝ(gλ(u)−1)`N ◦φ◦ ĝ in W2(k)[[u]].
But we also have in W2(k)[[u]] the equality:

ĝ ◦ φ = φ ◦ ĝ + tg(u)N ◦ φ ◦ ĝ.
Thus −ĝ(gt(u))ĝ(gλ(u)−1)` = tg(u) in k[u]/ue`, so relation (2) holds. �

We can now derive the variant of Corollary 5.4.6 which we will use.

Corollary 5.5.7. Let G be a finite flat R-group scheme killed by `. Let g : R ∼→ R be a continuous
automorphism, choose Hg(u) ∈ W (k)[[u]] such that g(π) = πHg(π) and define ĝ : k[u]/ue` → k[u]/ue` by
ĝ(Σwiui) = Σg(wi)uiHg(u)i. To give a morphism of schemes [g] : G→ G such that the diagram of schemes

G
[g]−→ G

↓ ↓
Spec(R)

Spec(g)−→ Spec(R)

is commutative and the induced morphism G→ Spec(R)×g,Spec(R) G is an morphism of group schemes over
R, is equivalent to giving an additive map ĝ : Mπ(G)→Mπ(G) such that both of the following hold.

(1) For all s ∈ k[u]/ue` and x ∈Mπ(G), ĝ(sx) = ĝ(s)ĝ(x).
(2) ĝ(Mπ(G)1) ⊂ Mπ(G)1 and ĝ ◦ φ1 = (1 + tg(u)N) ◦ φ1 ◦ ĝ, with tg as in Lemma 5.5.1 and N as in

Lemma 5.1.2.
Moreover, [g] is an isomorphism if and only if ĝ is. Assume these are isomorphisms. Choose Hg−1 such that
ĝ−1(u) = ĝ−1(u) on W (k)[[u]], i.e. Hg−1(u) = ĝ−1(u)/u. Then the map ĝ−1 that corresponds to [g]−1 is
equal to ĝ−1. Also, if g1, g2 are two automorphisms of R and if we choose Hg1 ,Hg2 as above, then [g1] ◦ [g2]
corresponds to ĝ2 ◦ ĝ1 provided we choose Hg2g1 such that ĝ2(ĝ1(u)) = uHg2g1(u).

Proof. The equivalence is clear thanks to Corollary 5.4.6 and Lemma 5.5.6. The fact that [g1] ◦ [g2] corre-
sponds to ĝ2 ◦ ĝ1 is automatic using Corollary 5.4.5 and the functor G 7→ Mπ(G). Applying this to g1 = g

and g2 = g−1, we see that 1G = [g] ◦ [g]−1 corresponds to ĝ−1 ◦ ĝ. But by Lemma 5.4.8, 1G corresponds to
1f with f defined by (ĝ−1 ◦ ĝ)(u) = u(1 + f) in W (k)[[u]]. We see that f = 0 and that 1f is the identity on
Mπ(G). Thus ĝ−1 = ĝ−1 on Mπ(G). �

5.6. Descent data. Assume now that R is endowed with a continuous left faithful action of a finite group
Γ. Then Γ becomes the Galois group of the fraction field F ′ of R over some subfield. For each g ∈ Γ, choose
Hg(u) ∈ W (k)[u] so that g(π) = πHg(π), with the one condition that H1(u) = 1. Recall from Lemma 5.5.1
that this uniquely determines elements tg(u) ∈W (k)[[u]] such that

u`Hg(u)` = u`(1 + `tg(u))(φ)Hg(u`(1 + `tg(u))).

Moreover for any pair g1, g2 ∈ Γ, there is obviously a unique fg1,g2(u) ∈ Eπ(u)W (k)[[u]] such that

ĝ1 ◦ ĝ2(u) = ĝ1 ◦ g2(u(1 + fg1,g2(u))).

If M is an object of φ1−mod
R
, then we will denote by 1g1,g2 the unique k-linear map M→M such that for

x ∈M1 we have

• 1g1,g2(φ1(x)) =
(
1 + (

∑`−1
i=1

(−1)i−1

i fg1,g2(u)
i)N

)
(φ1(x)), where N is as in Lemma 5.1.2;
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• and 1g1,g2(u
iφ1(x)) = ui(1 + fg1,g2(u))

i1g1,g2(φ1(x)).
(See §5.4 where we denoted 1g1,g2 by 1fg1,g2 .)

Suppose that G is a finite flat R-group scheme. Recall that by descent data on G for Γ we mean isomor-
phisms of finite flat group schemes

[g] : G
∼→ gG

for g ∈ Γ, such that
[gh] = (g[h]) ◦ [g]

for all g, h ∈ Γ. Equivalently we may think of [g] as a map of schemes G → G over g∗ : SpecR → SpecR
which induces an isomorphism of group schemes G→ gG. In this picture the compatibility condition simply
becomes

[gh] = [h][g].

Theorem 5.6.1. Suppose that G is a finite flat R-group scheme killed by `. Fix Hg(u) as above for all g ∈ Γ.
(1) To give descent data on G relative to Γ is equivalent to giving additive bijections ĝ : Mπ(G)→Mπ(G)

for all g ∈ Γ so that ĝ takes Mπ(G)1 into Mπ(G)1 and:
• ĝ(wuim) = g(w)(uHg(u))iĝ(m) for m ∈Mπ(G), w ∈ k,
• ĝ ◦ φ1 = (1 + tg(u)N) ◦ φ1 ◦ ĝ on Mπ(G)1,
• 1̂Γ = 1 and ĝ1 ◦ ĝ2 = ĝ1g2 ◦ 1g1,g2 .

(2) The above equivalence is functorial in G and is compatible with classical Dieudonné theory in the
following sense: if the action {ĝ}g∈Γ on Mπ(G) corresponds to descent data {[g]} on G, then the
g-semilinear map D([g]) induced on the contravariant Dieudonné module D(G) and the g-semilinear
map ĝ mod u induced on Mπ(G)/uMπ(G) are compatible via the isomorphism of Theorem 5.1.3.

Proof. Part (1) is a consequence of Corollary 5.5.7, Lemma 5.4.8 and the choice H1 = 1. The functoriality in
(2) follows from Corollary 5.4.5, and the last statement there comes from g(G× k) ∼= gG×k, the functoriality
of the isomorphism in Theorem 5.1.3, and the reduction modulo u of Corollary 5.4.5. �

Suppose that π ∈ RΓ. Then we may take Hg(u) = 1 for all g ∈ Γ. With this choice we see that tg1 = 0,
fg1,g2 = 0 and 1g1,g2 = 1 for all g1, g2 ∈ Γ. In this case to give bijections ĝ : Mπ(G)→Mπ(G) as in the lemma
is equivalent to giving an R-semilinear Γ-action on Mπ(G) which commutes with u and φ1 and preserves
Mπ(G)1. Thus (Mπ(G)Γ,Mπ(G)Γ1 , φ1) is a Breuil module over RΓ from which we can recover Mπ(G) by
tensoring with W (k) over W (kΓ). In other words, étale descent for group schemes translates in the obvious
manner for Breuil modules if we choose π to be Γ-invariant.

To build an action of Γ on G using Theorem 5.6.1, the conditions ĝ1 ◦ ĝ2 = ĝ1g2 ◦ 1g1,g2 are not very
convenient to check in practice since there are too many of them. It is useful to have the following variant.
Choose d ∈ Z>0 and a group surjection θ : Γd → Γ, where Γd is the free group on d generators γ1, ..., γd.
The group Γd still acts on R (via its quotient Γ) and for each i ∈ {1, ..., d}, choose elements Hγi(u) ∈
W (k)[[u]] such that πHγi(π) = γi(π). This determines isomorphisms γ̂i on W (k)[[u]] and k[u]/ue` and, by
composition, isomorphisms γ̂ for all γ ∈ Γd. Note that if γ ∈ ker(θ), then Hγ(u) = u(1 + fγ(u)) for some
fγ ∈ Eπ(u)W (k)[[u]]. For such γ, denote by 1γ the unique k-vector space endomorphism of any object M of
φ1−mod

R
such that for x ∈M1 we have

• 1γ = 1 +
(∑`−1

i=1
(−1)i−1

i fγ(u)i
)
N on the image of φ1,

• and 1γ(uiφ1(x)) = ui(1 + fγ(u))i1γ(φ1(x)),
where N is as in Lemma 5.1.2. (See §5.4, where we denoted 1γ by 1fγ .) Let R be a subset of ker(θ) such
that ker(θ) is the smallest normal subgroup of Γd containing R.

Corollary 5.6.2. With the above notation, to give descent data on G for Γ is equivalent to giving additive
bijections γ̂j : Mπ(G)→Mπ(G) for j ∈ {1, ..., d} so that γ̂j takes Mπ(G)1 into Mπ(G)1 and:

• γ̂j(wuim) = γj(w)(uHγj (u))
iγ̂j(m) for m ∈Mπ(G), w ∈ k,

• γ̂j ◦ φ1 = (1 + tγj (u)N) ◦ φ1 ◦ γ̂j on Mπ(G)1,
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• if γ = γn1
i1
· · · · · γnmim ∈ R, where ij ∈ {1, . . . , d}, nj ∈ Z, and ij 6= ij+1 for 1 ≤ j < m, and if we

define γ̂ = γ̂n1
i1
◦ · · · ◦ γ̂nmim , then γ̂ = 1γ .

Proof. Straightforward from Corollary 5.5.7 and Lemma 5.4.8. �

We define a category φ1DDF ′/(F ′)Γ
of Breuil modules with descent data for Γ in the obvious way. This

category is additive but not necessarily abelian. We call a complex in φ1DDF ′/(F ′)Γ
exact if the under-

lying complex in φ1−mod
R

is exact. In the natural way, we extend Mπ to a functor from FDF ′/(F ′)Γ to
φ1DDF ′/(F ′)Γ

.

5.7. More examples. In this section we will determine the possible descent data on a rank one Breuil
module. Let Γ be as in section §5.6.

Lemma 5.7.1. Suppose that G is a finite flat R-group scheme of order ` and that its generic fibre admits
descent data over (F ′)Γ. Then there is unique descent data on G over (F ′)Γ extending any choice of descent
data on G× F ′ over (F ′)Γ. If Mπ(G) ∼= M(r, a) and if γ ∈ Γ satisfies γ(π)/π ≡ 1 mod (π), then

γ̂(e) = Hγ(u)−r`/(`−1)e,

where Hγ(u)−r`/(`−1) denotes the unique (`− 1)th root of Hγ(u)−r` in k[u]/ue` with constant term 1.

We remark that since Aut(M(r, a)) = (Z/`Z)× by consideration of the geometric generic fibre, the choice
of isomorphism Mπ(G) ∼= M(r, a) does not matter.

Proof. We first claim two such finite flat group schemes G and G′ have isomorphic generic fibres if and only
if there is a non-zero morphism G → G′ or G′ → G. By Lemma 5.2.1 we see that if G is a finite flat F ′-
group scheme then the lattice of models for G over R is well ordered. Suppose all the integral models are
G1 < ... < Gn. For γ ∈ Γ, any isomorphism [γ] : G ∼→ γG must then induce isomorphisms [γ] : Gi

∼→ γGi for
all i = 1, ..., n. The first part of the lemma follows.

Let M = M(r, a), so M is a free k[u]/ue`-module of rank 1 with the usual basis element e. The submodule
M1 is spanned by ure and φ1(ure) = ae. From Theorem 5.2.1, we have N ◦ φ1 = 0, which implies that

γ̂ ◦ φ1 = φ1 ◦ γ̂.
For γ ∈ Γ1, Hγ(0) ≡ 1 mod `. Clearly

γ̂ : cuie 7→ cuiHγ(u)iγ̂(e)

is a bijection if and only if γ̂(e) = ξγe for some unit ξγ ∈ (k[u]/ue`)×. Evaluating γ̂ ◦ φ′1 = φ′1 ◦ γ̂ on the
element ure ∈M1, we get

ξγ = Hγ(u)r`ξ`γ
in k[u]/ue`. Thus,

ξγ = εγH
−r`/(`−1)
γ

for some unit εγ ∈ F×` .
Since Breuil module descent data always induces a k-linear action of the inertia group on the k-vector

space M /uM and in this case dimk M /uM = 1, the action of the element γ of `-power order on M /uM

must be trivial. Thus εγ = 1. �

6. Some local fields.

In order to apply the methods of §5, we need some more explicit information about the fields F ′ introduced
in §4. In this section we will collect this essentially elementary information. In each case we will give an
explicit description of the Galois group Gal(F ′/Q3). This is needed to carry out the delicate Breuil module
calculations in subsequent sections. We will also specify a uniformiser π of F ′ and partially calculate the
following polynomials and power series (depending on our choice of π).

• G(u) ∈W (kF ′)[u] a polynomial of degree at most e(F ′/Q3)− 1 such that π has minimal polynomial
ue(F

′/Q3) − 3G(u) over Q3.
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• cπ ≡ −G(u)3 mod (3, u3e(F ′/Q3)).
• For γ ∈ Gal(F ′/Q3), the unique polynomial Hγ(u) ∈W (kF ′)[u] of degree at most e(F ′/Q3)−1 such

that γ(π)/π = Hγ(π).
• In some cases power series tγ and fγ,γ′ as in §5.6.

6.1. The case of F ′1. Recall that τ1 corresponds to the order 3 homomorphism

Z×3 −→ GL2(Q3)

is determined by
−1 7−→ 1

4 7−→ ζ,

where det ζ = 1 and ζ3 = 1 but ζ 6= 1. Recall also that F ′1 = F1 is any totally ramified cubic Galois extension
of Q3. We may take F ′1 = F1 = Q3[π], where π is a root of X3 − 3X2 + 3. One may check that the other
roots of X3 − 3X2 + 3 are π2 − 2π and 3 + π − π2, so Gal(F ′1/Q3) is generated by one element γ3, which
sends π to π2 − 2π and satisfies γ3

3 = 1. Also, π is a uniformiser for F ′1, so
• G(u) = u2 − 1,
• cπ ≡ 1− u6 mod (3, u9),
• Hγ3(u) = u− 2.

6.2. The case of F ′−1. Recall that τ−1 corresponds to the order 3 homomorphism

Z3[
√
−1]× −→ GL2(Q3)

determined by
4
√
−1 7−→ 1

4 7−→ 1
1 + 3

√
−1 7−→ ζ,

where det ζ = 1 and ζ3 = 1 but ζ 6= 1. Recall also that F ′−1/Q3(
√
−1) is the unique cubic extension such that

F ′−1/Q3 is Galois but not abelian and that F−1 is any cubic subfield. We may take F−1 = Q3(π) and F ′−1 =
F−1(

√
−1), where π is a root ofX3−3X2+6. The other roots ofX3−3X2+6 are (

√
−1π2−π+3(1−

√
−1))/2

and (−
√
−1π2− π+ 3(1 +

√
−1))/2. Thus, Gal(F ′−1/Q3) is generated by two elements γ2 and γ3 defined by

• γ2(π) = π,
• γ2(

√
−1) = −

√
−1,

• γ3(π) = (
√
−1π2 − π + 3(1−

√
−1))/2

• and γ3(
√
−1) =

√
−1.

We have γ2
2 = γ3

3 = 1 and γ2γ3 = γ2
3γ2, and π is a uniformiser for F ′−1. Thus

• G(u) = u2 − 2,
• cπ ≡ −1− u6 mod (3, u9),
• Hγ2(u) = 1,
• Hγ3(u) = ((

√
−1− 1)u2 + (3−

√
−1)u− 2)/4.

6.3. The case of F ′3. Recall that τ3 is the unique 3-type such that τ3|IQ3(
√

3)
corresponds to the order 6

homomorphism
Z3[
√

3]× −→ GL2(Q3)
determined by

−1 7−→ −1
4 7−→ 1

1 +
√

3 7−→ ζ,

where det ζ = 1 and ζ3 = 1 but ζ 6= 1. Recall also that F ′3 is the degree 12 abelian extension of Q3(
√

3) with
norm subgroup in Q3(

√
3)× topologically generated by 3, 4 and 1 + 3

√
3. We also let γ2

4 denote the unique
element of IF ′3/Q3(

√
3) of order 3 and we let F3 denote the fixed field of some Frobenius lift of order 2.
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We claim that F ′3 = Q3(
√

3)(
√
−1, α, β) where α is a root ofX3−3X+3 and β a root ofX2−

√
3. To verify

this, set F ′′ = Q3(
√

3)(
√
−1, α, β). We must check that F ′′/Q3(

√
3) is abelian and that NF ′′/Q3(

√
3)(F

′′)×

contains 3, 4, and 1+3
√

3. To see that F ′′/Q3(
√

3) is abelian, note that if α is one root ofX3−3X+3 then the
other roots are (2

√
3α2−(−3

√
3+
√
−5)α−4

√
3)/2
√
−5 and (−2

√
3α2−(3

√
3+
√
−5)α+4

√
3)/2
√
−5 (where

for definiteness we choose
√
−5 ∈ 1 + 3Z3). Note that NF ′′/Q3(

√
3)(α/β) = 3 and NF ′′/Q3(

√
3)(1 + α) = 54.

Note that Gal(F ′3/Q3(
√

3)) is generated by three commuting elements γ2, γ2
4 and γ3 of respective orders

2, 2 and 3. They may be defined by
• γ2

√
−1 = −

√
−1, γ2β = β and γ2α = α;

• γ2
4

√
−1 =

√
−1, γ2

4β = −β and γ2
4α = α;

• γ3

√
−1 =

√
−1, γ3β = β and γ3α = (−2

√
3α2 − (3

√
3 +
√
−5)α+ 4

√
3)/2
√
−5.

Choose an element γ ∈ IF ′3/Q3 − IF ′3/Q3(
√

3). Then γ2 ∈ 〈γ2
4 , γ3〉. As γγ3γ

−1 = γ2
3 we may alter our choice

of γ so that γ2 ∈ 〈γ2
4〉. As γ

√
3 = −

√
3 we see that γβ = ±

√
−1β, so γ2 = γ2

4 . We will rename γ as γ4 and
suppose it chosen so that γ4β =

√
−1β. Thus, Gal(F ′3/Q3) is generated by elements γ2, γ3 and γ4 satisfying

• γ2
2 = γ3

3 = γ4
4 = 1,

• γ2γ3 = γ3γ2,
• γ4γ2 = γ2γ

−1
4 ,

• and γ4γ3 = γ2
3γ4.

The element γ2
4 is the unique element of IF ′3/Q3(

√
3) of order 2 and hence coincides with our previous definition.

The element γ2 is a Frobenius lift of order 2 and so we may take F3 to be its fixed field, i.e. F3 = Q3(π),
where π = α/β is a uniformiser for F ′3. (We are not asserting that γ2 equals the element denoted γ̃2 in
section 4.) One can check that

γ3(π)/π ≡ 1 + π2 mod π4.

Note also that 〈γ2, γ4〉 projects isomorphically to the quotient of Gal(F ′3/Q3) by the wild inertia subgroup.
We conclude
• G(0) = 1,
• cπ ≡ −1 mod (3, u),
• Hγ2(u) = 1,
• Hγ4(u) = −

√
−1,

• Hγ3(u) ≡ 1 + u2 mod (3, u4),
• tg = fg,g′ = 0 for g, g′ ∈ 〈γ2, γ4〉.

6.4. The case of F ′−3. Recall that τ−3 is the unique 3-type such that τ−3|IQ3(
√
−3)

corresponds to the order
6 homomorphism

Z3[
√
−3]× −→ GL2(Q3)

determined by
−1 7−→ −1

4 7−→ 1
1 + 3

√
−3 7−→ 1

1 +
√
−3 7−→ ζ,

where det ζ = 1 and ζ3 = 1 but ζ 6= 1. Recall also that F ′−3 is the degree 12 abelian extension of Q3(
√
−3)

with norm subgroup in Q3(
√
−3)× topologically generated by −3, 4 and 1 + 3

√
−3. We also let γ2

4 denote
the unique element of IF ′−3/Q3(

√
−3) of order 3 and we let F−3 denote the fixed field of some Frobenius lift of

order 2.
We claim that F ′−3 = Q3(

√
−3)(

√
−1, α, β) where α is a root of X3 − 4 and β a root of X2 +

√
−3.

To verify this, set F ′′ = Q3(
√
−3)(

√
−1, α, β). Then F ′′/Q3(

√
−3) is abelian and so we must check that

NF ′′/Q3(
√
−3)(F

′′)× contains −3, 4, and 1 + 3
√
−3. But note that we have the identities NF ′′/Q3(

√
−3)((α−

1)/β) = −3, NF ′′/Q3(
√
−3)(α) = 44 and NF ′′/Q3(

√
−3)(1− β) = (1 +

√
−3)6.
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Note that Gal(F ′3/Q3(
√
−3)) is generated by three commuting elements γ2, γ2

4 and γ3 of respective orders
2, 2 and 3. They may be defined by

• γ2

√
−1 = −

√
−1, γ2β = β and γ2α = α;

• γ2
4

√
−1 =

√
−1, γ2

4β = −β and γ2
4α = α;

• γ3

√
−1 =

√
−1, γ3β = β and γ3α = (−1−

√
−3)α/2.

Choose an element γ ∈ IF ′−3/Q3 − IF ′−3/Q3(
√
−3), so γ2 ∈ 〈γ2

4 , γ3〉. As γγ3γ
−1 = γ2

3 , we may alter our choice

of γ so that γ2 ∈ 〈γ2
4〉. As γ

√
−3 = −

√
−3 we see that γβ = ±

√
−1β, so γ2 = γ2

4 . We will rename γ as
γ4 and suppose it chosen so that γ4β =

√
−1β. Thus, Gal(F ′3/Q3) is generated by elements γ2, γ3 and γ4

satisfying
• γ2

2 = γ3
3 = γ4

4 = 1,
• γ2γ3 = γ3γ2,
• γ4γ2 = γ2γ

−1
4 ,

• and γ4γ3 = γ2
3γ4.

The element γ2
4 is the unique element of IF ′−3/Q3(

√
−3) of order 2 and hence coincides with our previous

definition. The element γ2 is a Frobenius lift of order 2 and so we may take F−3 to be its fixed field, i.e.
F−3 = Q3(π), where π = α/β is a uniformiser for F ′−3. (We are not asserting that γ2 equals the element
denoted γ̃2 in section 4.) One can check that

γ3(π)/π ≡ 1 + π2 mod π4.

Note also that 〈γ2, γ4〉 lifts tame inertia.
We conclude
• G(0) = −1,
• cπ ≡ 1 mod (3, u),
• Hγ2(u) = 1,
• Hγ4(u) = −

√
−1,

• Hγ3(u) ≡ 1 + u2 mod (3, u4),
• tg = fg,g′ = 0 for g, g′ ∈ 〈γ2, γ4〉.

6.5. The case of F ′i . Here i ∈ Z/3Z and we will let ı̃ denote the unique lifting of i to Z with 0 ≤ ı̃ < 3.
Recall that τ ′i is the unique extended 3-type whose restrictions to GQ3(

√
−3) correspond to the homomorphism

Q3(
√
−3)× → GL2(Q3)

determined by √
−3 7−→ ζ − ζ−1

−1 7−→ −1
4 7−→ 1

1 + 3
√
−3 7−→ ζ

1 +
√
−3 7−→ ζi,

where det ζ = 1 and ζ3 = 1 but ζ 6= 1. Recall also that F ′i is the degree 12 abelian extension of Q3(
√
−3)

with norms the subgroup of Q3(
√
−3)× topologically generated by −3, 4, 1 + 9

√
−3 and 1 + (1 − 3ı̃)

√
−3.

We let γ2, γ3 and γ2
4 denote the elements of Gal(F ′i/Q3) which correspond respectively to

√
−3, 1− 3

√
−3

and −1.
We claim that F ′i = Q3(

√
−3)(

√
−1, α, β) where α is a root of X3 − 3(1 + 3ı̃) and β a root of X2 +√

−3. To verify this, set F ′′ = Q3(
√
−3)(

√
−1, α, β), so F ′′/Q3(

√
−3) is abelian and we must check that

NF ′′/Q3(
√
−3)(F

′′)× contains −3, 4, 1 + 9
√
−3, and 1 + (1 − 3ı̃)

√
−3. But note that NF ′′/Q3(

√
−3)(α/β) =

−3(1 + 3ı̃)4, NF ′′/Q3(
√
−3)(1 + α) = (4 + 9ı̃)4 and

NF ′′/Q3(
√
−3)(β(

√
−3− α)/α) = (1 +

√
−3 + 3ı̃)/(1 + 3ı̃)4 ≡ 1 + (1− 3ı̃)

√
−3 mod 9.

Note that γ2
4 is an element of IF ′i/Q3(

√
−3) of order 2, γ2 6= γ2

4 but also has order 2, and γ3 is an element
of IF ′i/Q3(

√
−3) of order 3. Thus,
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• γ2
4

√
−1 =

√
−1, γ2

4β = −β and γ2
4α = α;

• γ2

√
−1 = −

√
−1 and γ2α = α;

• γ3

√
−1 =

√
−1 and γ3β = β.

Moreover
√
−3 is a norm from Q3(

√
−3)(α, β), because α/β has norm

√
−3(1 + 3ı̃)2, so

• γ2(β) = β.

The determination of γ3(α) is more delicate. Let δ be a root of X3− (1+3
√
−3), so δ = 1+

√
−3µ where

µ is a root of Y 3 −
√
−3Y 2 − Y + 1. Thus Q3(

√
−3)(δ)/Q3(

√
−3) is unramified and

Frob3(δ)/δ ≡ (1 +
√
−3µ3)/(1 +

√
−3µ) ≡ (−1 +

√
−3)/2 mod 3.

The norms from Q3(
√
−3)(δ)× to Q3(

√
−3)× are generated by Z3[

√
−3]× and 3

√
−3. The norms from

Q3(
√
−3)(α)× to Q3(

√
−3)× are generated by 1 + 9Z3[

√
−3], 1 + (1− 3ı̃)

√
−3, 4, −1 and

√
−3. The norms

from Q3(
√
−3)(α, δ)× to Q3(

√
−3)× are generated by 1 + 9Z3[

√
−3], 1 + (1 − 3ı̃)

√
−3, 4, −1 and 3

√
−3.

Thus
(γ3,Frob3) ∈ Gal(Q3(

√
−3)(α)/Q3(

√
−3))×Gal(Q3(

√
−3)(δ)/Q3(

√
−3))

∼= Gal(Q3(
√
−3)(α, δ)/Q3(

√
−3))

corresponds to
√
−3(1−3

√
−3) ∈ Q3(

√
−3)×. As δα has norm to Q3(

√
−3) the product of (

√
−3(1−3

√
−3))2

and −(1+3ı̃)(1+3
√
−3)/(1−3

√
−3)2, we conclude that (γ3,Frob3) fixes δα. Thus γ3(α)/α = δ/Frob3(δ) =

(−1−
√
−3)/2. In other words

• γ3(α) = (−1−
√
−3)α/2.

Choose an element γ ∈ IF ′i/Q3 − IF ′i/Q3(
√
−3). Then γ2 ∈ 〈γ2

4 , γ3〉. As γγ3γ
−1 = γ2

3 we may alter our
choice of γ so that γ2 ∈ 〈γ2

4〉. As γ
√
−3 = −

√
−3 we see that γβ = ±

√
−1β and so γ2 = γ2

4 . We will rename
γ as γ4 and suppose it chosen so that γ4β =

√
−1β. Thus, Gal(F ′i/Q3) is generated by elements γ2, γ3 and

γ4 satisfying

• γ2
2 = γ3

3 = γ4
4 = 1,

• γ2γ3 = γ3γ2,
• γ4γ2 = γ2γ

−1
4 ,

• and γ4γ3 = γ2
3γ4.

The element γ2 is a Frobenius lift and it has fixed field Fi = Q3(π), where π = α/β is a uniformiser for F ′i .
One can check that

γ±1
3 (π)/π = −(1∓ (1 + 3ı̃)−2π6)/2.

We conclude

• G(u) = −(1 + 3ı̃)4,
• cπ ≡ 1 mod (3, u36),
• Hγ2(u) = 1,
• Hγ4(u) = −

√
−1,

• Hγ±1
3

(u) ≡ 1∓ u6 mod 3,
• tγ±1

3
(u) ≡ −1∓ u6 mod (3, u12),

• tg = fg,g′ = 0 for g, g′ ∈ 〈γ2, γ4〉,
• fγ±1

3 ,γ±1
3

(u), fγ±1
3 ,γ∓1

3
(u) ≡ 0 mod (3, u12).

7. Proof of Theorem 4.4.1.

In this section we will keep the notation of §4.4 and either §6.1 or §6.2 (depending if we are working with
S1 or S−1). We will set δ = ±1 in the case of S±1. We will write F for F±1 and F ′ for F ′±1. If G (resp. M) is
a finite flat OF -group scheme (resp. Breuil module over OF ) we will write G′ (resp. M′) for the unramified
base change to OF ′ .
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7.1. Rank one calculations. We recall from Lemma 5.2.1 that the only OF -models for (Z/3Z)/F are
G(3, δ) ∼= (Z/3Z)/OF and G(1, δ), and the only OF -models for (µ3)/F are G(0, 1) ∼= (µ3)/OF and G(2, 1). In
each case, by Lemma 5.7.1, the base change to OF ′ admits unique descent data over Q3 compatible with the
canonical descent data on the generic fibre of Z/3Z (resp. µ3) over Q3. We will refer to this descent data
as the standard descent data on these finite flat group schemes.

7.2. Rank two calculations.

Lemma 7.2.1. The group of extensions of M(2, 1) by M(1, δ) over OF is parametrised by c ∈ F3. The
Breuil module M(1, δ; 2, 1; c) corresponding to c is free of rank two over F3[u]/u9 with a basis {e1, eω} such
that

• M1 = 〈ue1, u
2eω + ce1〉,

• φ1(ue1) = δe1, φ1(u2eω + ce1) = eω,
• N(e1) = 0, N(eω) = cu6e1.

The standard descent data on M(2, 1)′ and M(1, δ)′ extends uniquely to descent data on M(1, δ; 2, 1; c)′. The
corresponding representations G3 → GL2(F3) are of the form(

ω ∗
0 1

)
and are peu ramifié. Any such peu-ramifié extension arises for a suitable choice of c.

Proof. The classification of extensions of Breuil modules follows from Lemma 5.2.2. Next, we compute N
on M = M(1, δ; 2, 1; c). (We will not in fact need the result of this computation of N , but the calculation
is given here as a representative sample of calculations needed later in more complicated settings.) By the
last part of Lemma 5.2.1, N(e1) = 0 and N(eω) = ge1 for some g ∈ F3[u]/ue` divisible by u. In F3[u]/u9

we compute
cπ = −φ(Gπ(u)) = −(u2 − δ)3 = −u6 + δ,

so
δu6

cπ
= u6.

Using the defining properties of N , we compute in F3[u]/u9

N(eω) = N ◦ φ1(u2eω + ce1)
= φ ◦N(u2eω + ce1)
= φ(−u2eω + u2N(eω))

=
φ1

cπ
(−u5eω + u5N(eω))

=
φ1

cπ
(−u3(u2eω + ce1) + cu3e1 + u5Neω))

=
φ1

cπ
(cu3e1)

since u5N(eω) ∈ u6 M = u3 · u3M ⊆ u3M1 and the Frobenius-semilinear φ1 must kill u3 M1. Thus,

N(eω) =
φ1

cπ
(cu2 · ue1) =

cu6

cπ
φ1(ue1) =

cδu6

cπ
e1 = cu6e1.

To see existence and uniqueness of the descent data on M(1, δ; 2, 1; c)′ compatible with the standard descent
data on M(1, δ)′ and M(2, 1)′ we will work on the side of finite flat group schemes. Because G(1, δ; 2, 1; c)′ is
the unique extension of G(1, δ)′ by G(2, 1)′ with generic fibre G(1, δ; 2, 1; c)′×F ′ (by Lemma 4.1.2), uniqueness
reduces to the corresponding questions on the generic fibre, which follows from the injectivity of

H1(G3, ω) −→ H1(GF ′ , ω).
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For existence it suffices to exhibit a continuous representation G3 → GL2(F3) of the form(
ω ∗
0 1

)
which is peu ramifié but not split, with restriction to GF corresponding to a local-local finite flat OF -group
scheme G. By Theorem 5.3.2 of [Man] we can find an elliptic curve E/Q3 such that E[3] furnishes the desired
example. This also proves the final two assertions of the lemma. �

Lemma 7.2.2. Suppose that F̃1 is a totally ramified abelian cubic extension of Q3 and suppose that G is
a local-local finite flat O eF1

-group scheme killed by 3 such that G × F̃1 is an extension of Z/3Z by µ3. Then
G×O eF1

F̃1
∼= G×Q3 F̃1 for some finite flat Q3-group scheme G.

Proof. As in the proof of the last lemma we see that Mπ(G) ∼= M(1, 1; 2, 1; c) for some c ∈ F3. As the only
action of Gal(F̃1/Q3) on a one dimensional F3-vector space is trivial, we see that each such c gives a class
in H1(G eF1

, ω) which is invariant by Gal(F̃1/Q3). But

H1(G3, ω) ∼−→ H1(G eF1
, ω)Gal( eF1/Q3),

and so the lemma follows. �

Lemma 7.2.3. The group of extensions of M(1, δ) by M(2, 1) over OF is isomorphic to the group of linear
polynomials c+ c′u in F3[u]. The Breuil module M(2, 1; 1, δ; c+ c′u) corresponding to c+ c′u is free of rank
two over F3[u]/u9 with a basis {eω, e1} such that

• M(2, 1; 1, δ; c+ c′u)1 = 〈u2eω, ue1 + (c+ c′u)eω〉,
• φ1(u2eω) = eω, φ1(ue1 + (c+ c′u)eω) = δe1,

Each M(2, 1; 1, δ; c+ c′u)′ admits unique descent data compatible with the standard descent data on M(1, δ)′

and M(2, 1)′. As c, c′ vary over F3 the corresponding descent to Q3 of the generic fibre of Gπ(M(2, 1; 1, δ; c+
c′u)′) runs over all 9 extensions of µ3 by Z/3Z. The corresponding representation of G3 is peu ramifié if
and only if c = 0.

Proof. The classification of extensions of Breuil modules follows from Lemma 5.2.2. The uniqueness of
the descent data on M(2, 1; 1, δ; c + c′u)′ follows from Lemma 4.1.2 and the injectivity of H1(G3, ω

−1) −→
H1(GF ′ , ω−1) as in the proof of Lemma 7.2.1. Note that Frobenius vanishes on the Dieudonné module of
G(2, 1; 1, δ; c + c′u) if and only if c = 0. Thus the lemma will follow if for each 3-torsion extension G of µ3

by Z/3Z over Q3 which is très ramifié, we can find a finite flat OF -group scheme G such that
• the generic fibre of G is isomorphic to G× F ,
• the closed fibre of G is local-local
• and Frobenius is not identically zero on D(G).

The splitting field of G contains a cube root of 3v for some v ≡ 1 mod 3, where the three choices of v mod 9
correspond to the three choices of très ramifié ρ. The calculations in §5.3 of [Man] give explicit additive
reduction elliptic curves E and E′ over Q3 with E[3] ' E′[3] ' G, where E acquires good supersingular
reduction over the non-Galois cubic ramified extension

Q3[X]/(X3 − 3X + 2b),

with b2 = 1 + 3v, and E′ acquires good supersingular reduction over the abelian cubic ramified extension of
Q3 with norm group generated by 3v mod (Q×

3 )3. The appropriate G are provided by the 3-torsion on the
Néron models of E or E′ over OF . �

Corollary 7.2.4. Suppose that G is a finite flat OF -group scheme and that {[g]} is descent data on G′ =
G× OF ′ such that (G′, {[g]})Q3(Q3) corresponds to ρ. Then

Mπ(G) ∼= M(2, 1; 1, δ; c+ c′u)

for some c, c′ ∈ F3 with c 6= 0.
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Proof. From the connected-étale exact sequence and its dual we see that G × F3 must be local-local. The
corollary now follows from Lemma 7.2.3 and the discussion of §7.1. �

Lemma 7.2.5. The group of extensions of M(1, δ) by M(1, δ) over OF is isomorphic to the group of linear
polynomials b+ b′u in F3[u]. The Breuil module M(1, δ; 1, δ; b+ b′u) corresponding to b+ b′u is free rank two
over F3[u]/u9 with a basis {e, e′} such that

• M(1, δ; 1, δ; b+ b′u)1 = 〈ue, ue′ + (b+ b′u)e〉,
• φ1(ue) = δe, φ1(ue′ + (b+ b′u)e) = δe′,

This extension splits over an unramified extension if and only if b = 0. If F ′/Q3 is non-abelian, then any
descent data on M(1,−1; 1,−1; b+ b′u)′ compatible with the standard descent data on M(1,−1)′ satisfies

γ̂2e = e, γ̂2e′ = e′, γ̂±1
3 (e) = Hγ±1

3
(u)3e, γ̂±1

3 (e′) = Hγ±1
3

(u)3e′ + hγ±1
3

(u)e

where
hγ±1

3
(0) = −bH ′

γ±1
3

(0).

Proof. The classification of extensions of Breuil modules follows from Lemma 5.2.2. The computation of
which of these split over an unramified extension follows from Lemma 5.2.2 and Corollary 5.4.2.

Now suppose that F ′/Q3 is non-abelian. By Lemma 5.7.1, the only issue is to compute hγ3(0). Since
Hγ3(0) ≡ 1 mod 3, by evaluating the congruence

γ̂3 ◦ φ′1 ≡ φ′1 ◦ γ̂3 mod uM(1,−1; 1,−1; b+ b′u)′

on ue′ + (b+ b′u)e and comparing constant terms of the coefficients of e on both sides we get

hγ3(0) = hγ3(0)3 + b

(
1−Hγ3(u)

u

)3

|u=0 = hγ3(0)3 − bH ′
γ3(0)3 = hγ3(0)3 + bH ′

γ3(0)

in F9, where we have used the equality H ′
γ3(0)2 ≡ −1 mod 3 (see §6.2).

In other words hγ3(0) is a root of T 3 − T + bH ′
γ3(0) = 0. Since H ′

γ3(0)2 = −1, we must have hγ3(0) =
−bH ′

γ3(0) + a for some a ∈ F3. Since γ2(Hγ3(u)) = Hγ−1
3

(u) and γ2(hγ3(u)) = hγ−1
3

(u) are forced by the
identity γ2(π) = π, we see that hγ−1

3
(0) = −bH ′

γ−1
3

(0) + a for the same a ∈ F3. The identity

γ̂3 ◦ γ̂−1
3 ◦ φ′1 ≡ φ′1 mod uM(1,−1; 1,−1; b+ b′u)′

then implies hγ3(0) + hγ−1
3

(0) = 0, so a = 0. �

Lemma 7.2.6. The group of extensions of M(2, 1) by M(2, 1) over OF is isomorphic to the group of quadratic
polynomials vanishing at 0, (b+ b′u)u, in F3[u]. The Breuil module M(2, 1; 2, 1; (b+ b′u)u) corresponding to
(b+ b′u)u is free rank two over F3[u]/u9 with a basis {e, e′} such that

• M(2, 1; 2, 1; (b+ b′u)u)1 = 〈u2e, u2e′ + (b+ b′u)ue〉,
• φ1(u2e) = e, φ1(u2e′ + (b+ b′u)ue) = e′,

This extension splits over an unramified extension if and only if b = 0. If F ′/Q3 is non-abelian, then any
descent data on M(2, 1; 2, 1; (b+ b′u)u)′ compatible with the standard descent data on M(2, 1)′ satisfies

γ̂3(e) = Hγ3(u)
6e, γ̂3(e′) = Hγ3(u)

6e′ + hγ3(u)e

where
hγ3(0) = −bH ′

γ3(0).

The sign in hγ3(0) = −bH ′
γ3(0) will be very important in §7.4. The proof of this lemma is essentially the

same as that of Lemma 7.2.5, but we repeat it anyway.

Proof. The classification of extensions of Breuil modules follows from Lemma 5.2.2. The computation of
which of these split over an unramified extension follows from Lemma 5.2.2 and Corollary 5.4.2.
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Now suppose that F ′/Q3 is non-abelian. By Lemma 5.7.1, the only issue is to compute hγ3(0). Since
Hγ3(0) ≡ 1 mod 3, by evaluating the congruence

γ̂3 ◦ φ′1 ≡ φ′1 ◦ γ̂3 mod uM(2, 1; 2, 1; (b+ b′u)u)′

on ue′ + (b+ b′u)e and comparing constant terms of the coefficients of e on both sides we get

hγ3(0) = hγ3(0)3 + b

(
1−Hγ3(u)

u

)3

|u=0 = hγ3(0)3 − bH ′
γ3(0)3 = hγ3(0)3 + bH ′

γ3(0)

in F9, where we have used the equality H ′
γ3(0)2 = −1 (see §6.2).

In other words hγ(0) is a root of T 3 − T + bH ′
γ3(0) = 0. Since H ′

γ3(0)2 = −1, we must have hγ3(0) =
−bH ′

γ3(0) + a for some a ∈ F3. Since γ2(Hγ3(u)) = Hγ−1
3

(u) and γ2(hγ3(u)) = hγ−1
3

(u) are forced by the
identity γ2(π) = π we see that hγ−1

3
(0) = −bH ′

γ−1
3

(0) + a for the same a ∈ F3. The identity

γ̂3 ◦ γ̂−1
3 ◦ φ′1 ≡ φ′1 mod uM(2, 1; 2, 1; b+ b′u)′

then implies hγ3(0) + hγ−1
3

(0) = 0, so a = 0. �

7.3. Rank three calculations.

Lemma 7.3.1. Suppose that G is a finite flat group scheme over OF which is killed by 3. Suppose that there
is a filtration by closed finite flat subgroupschemes G1 ⊂ G2 ⊂ G such that G1

∼= G(1, δ), G2/G1
∼= G(2, 1)

and G/G2
∼= G(1, δ). Suppose finally that G2 ×OF F

′ descends to Q3 in such a way that it is a très ramifié
extension of µ3 by Z/3Z. Then

G/G1
∼= G(2, 1)⊕ G(1, δ)

compatibly with the extension class structure.

Proof. Let M = Mπ(G) and N = Mπ(G/G1). Using Lemmas 7.2.1 and 7.2.3 we see that we can write
• M = (F3[u]/u9)e1 ⊕ (F3[u]/u9)eω ⊕ (F3[u]/u9)e′1,
• M1 = 〈ue1, u

2eω + be1, ue′1 + (c+ c′u)eω + fe1〉
for b, c, c′ ∈ F3 with c 6= 0 and with f ∈ F3[u]/u9. It suffices to show b = 0. Since we must have u3 M ⊆M1,
we see that

(c+ c′u)(u2eω + be1)− u2(ue′1 + (c+ c′u)eω + fe1) + u3e′1 = (bc+ bc′u− u2f)e1 ∈M1 .

The Breuil module N is spanned as a F3[u]/u9-module by e1 and eω, so by Lemma 7.2.1 u must divide
bc+ bc′u− u2f . As c 6= 0 we must have b = 0, as desired. �

Combining this with Lemma 7.2.1 and the injectivity of H1(G3, ω) → H1(GF ′ , ω) we get the following
corollary, which is also the first part of Theorem 4.7.3.

Corollary 7.3.2. The natural map

θ0 : Ext1S±1
(ρ, ρ) −→ H1(G3, ω)

is zero.

7.4. Conclusion of proof of Theorem 4.4.1. Consider first the case of F1. We still have to explain why

θω : H1
S1

(G3, ad0 ρ) −→ H1(I3,F3)

is zero. Suppose x ∈ H1
S1

(G3, ad0 ρ) does not map to zero in H1(I3,F3).
By our hypothesis on x we may choose a totally ramified abelian cubic extension F̃1/Q3 such that x

restricts to zero under the natural map H1(G3, ad0 ρ) → H1(G eF1
,F3). Then the image of x under the

natural map H1(G3, ad0 ρ) → H1(G eF1
, ρ⊗ ω) is the image of some x̃ ∈ H1(G eF1

, ω) under the natural map
H1(G eF1

, ω) → H1(G eF1
, ρ ⊗ ω). The element x̃ parametrises a finite flat F̃1-group scheme H which is an

extension of µ3 by Z/3Z and which is a subquotient of the restriction to G eF1
of the extension of ρ by itself

paramitrised by x. It follows that H has a finite flat model H/O eF1
(see Lemma 4.1.1) and the special fibre of
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H must be local-local (if x̃ = 0 then the extension of ρ by itself parametrised by x splits over F̃1 and this is
clear, while if x̃ 6= 0 we would otherwise get a contradiction from the connected-étale sequence). By Lemma
7.2.2, we may therefore lift x̃ to H1(G3, ω). Using the commutative diagram

H1(G3, ω) −→ H1(G3, ρ⊗ ω)
res ↓ ↓ res

H1(G eF1
, ω) −→ H1(G eF1

, ρ⊗ ω)

and noting that the right hand vertical map is injective we conclude that

x ∈ H1
S1

(G3, ad0 ρ) ⊂ H1(G3, ρ⊗ ω)

is in the image of H1(G3, ω) → H1(G3, ρ ⊗ ω), a contradiction with the hypothesis that even the image of
x in H1(I3,F3) is non-zero.

Now consider the case F ′ = F ′−1 which is nonabelian over Q3. We must show that

θω : Ext1S−1
(ρ, ρ) −→ H1(I3,F3)

is zero.
An element x ∈ Ext1S−1

(ρ, ρ) gives rise to a finite flat OF−1-group scheme G killed by 3 and descent data
{[g]} for F ′−1/Q3 on G′ = G ×OF ′−1

F ′−1, such that (G′, {[g]})Q3 corresponds to the extension of ρ by itself

classified by x. Let N denote the Breuil module for G and let N′ = N ⊗ F9. According to Lemmas 7.2.1,
7.2.3, 7.2.5, 7.2.6 and 7.3.1 we see that we can write

N = (F3[u]/u9)eω ⊕ (F3[u]/u9)e1 ⊕ (F3[u]/u9)e′ω ⊕ (F3[u]/u9)e′1
with

(7.4.1) N1 = 〈u2eω, ue1 + (c+ c′u)eω, u2e′ω + (au+ a′u2)eω, ue′1 + (c+ c′u)e′ω + (b+ b′u)e1 + heω〉

where h ∈ F3[u]/u9 is some polynomial and where a, a′, b, b′, c, c′ ∈ F3 with c 6= 0 (as ρ is très ramifié). By
Lemma 7.2.6 what we must show is that a = 0.

Note that H ′
γ3(0) 6= 0 in F9 by §6.2. By Lemmas 5.7.1 and 7.2.1, the action γ̂3 is determined by

γ̂3(eω) = Hγ3(u)
6eω, γ̂3(e1) = Hγ3(u)

3e1 + gγ3(u)e
′
ω, γ̂3(e′ω) = Hγ3(u)

6e′ω + hγ3,ω(u)eω,

γ̂3(e′ω) = Hγ3(u)
3e′1 + gγ3(u)e

′
ω + hγ3,1e1 +Gγ3(u)eω,

where gγ3(u), Gγ3(u) ∈ F9[u]/u9 and hγ3,ω and hγ3,1 are as in Lemmas 7.2.6 and 7.2.5 respectively.
Due to the requirement γ̂3(N′

1) ⊆ N′
1, we must have

γ̂3(ue′1 + (c+ c′u)e′ω + (b+ b′u)e1 + h(u)eω) ∈ N′
1,

and this element is obviously equal to

(uHγ3)(H
3
γ3e

′
1 + gγ3e

′
ω + hγ3,1e1 +Gγ3eω) + (c+ c′uHγ3)(H

6
γ3e

′
ω + hγ3,ωeω)+

+(b+ b′uHγ3)(H
3
γ3e1 + gγ3eω) + h(uHγ3)H

6
γ3eω.

We now try to express this as a linear combination of the generators of N′
1 listed in (7.4.1), while working

modulo 〈u3 N′, u2eω〉 ⊆ N′
1. Using that Hγ3(0) = 1 in F9 and h(uHγ3) ≡ h(u) mod u2, we arrive at the

expression

Hγ3(ue
′
1 + (c+ c′u)e′ω + (b+ b′u)e1 + heω) +

(
c((1−Hγ3)/u) + gγ3

u

)
(u2e′ω + (au+ a′u2)eω)

+
(
Hγ3hγ3,1 + b

(
1−Hγ3

u

))
(ue1 + (c+ c′u)eω) + Fγ3(u)eω,

where

Fγ3(u) = uHγ3Gγ3 + (c+ c′uHγ3)hγ3,ω + (b+ b′uHγ3)gγ3 + h(u)(1−Hγ3)
−(a+ a′u)(c(1−Hγ3)/u+ gγ3)− (c+ c′u)(Hγ3hγ3,1 + b((1−Hγ3)/u))
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in F9[u]/u9. In particular, c(1 − Hγ3(u))/u + gγ3 ≡ 0 mod u and Fγ3(u) ≡ 0 mod u2. The condition
c((1−Hγ3)/u) + gγ3 ≡ 0 mod u can be reformulated as

gγ3(0) = cH ′
γ3(0).

Since Fγ3(u) ≡ 0 mod u2, we have to have Fγ3(0) = 0. But a direct calculation using gγ3(0) = cH ′
γ3(0)

and the definition of Fγ3 gives

Fγ3(0) = 0 + chγ3,ω(0) + bgγ3(0) + 0− 0− c(hγ3,1(0)− bH ′
γ3(0)) = c(hγ3,ω(0)− hγ3,1(0)− bH ′

γ3(0)),

so the non-vanishing of c forces
hγ3,ω(0)− hγ3,1(0) = bH ′

γ3(0).
Lemmas 7.2.6 and 7.2.5 give us the values

hγ3,ω(0) = −aH ′
γ3(0), hγ3,1(0) = −bH ′

γ3(0).

Thus (−a + b)H ′
γ3(0) = bH ′

γ3(0), and so a = 0. This completes the proof of Theorem 4.7.3 and hence of
Theorem 4.4.1.

8. Proof of Theorem 4.5.1.

In this section we will keep the notation of §4.5 and either §6.3 or §6.4 (depending if we are working with
S3 or S−3). We will set δ = ±1 in the case of S∓3 (so that cπ ≡ δ mod (3, u). Note the signs. We will write
F for F±3, F ′ for F ′±3 and I for I±3. If G (resp. M) is a finite flat OF -group scheme (resp. Breuil module
over OF ) we will write G′ (resp. M′) for the base change to OF ′ .

8.1. Rank one calculations. We remark that with our choice of polynomials Hg(u) in §6.3 and §6.4, any
object M in φ1DDF ′/Q3

has an action of 〈γ2, γ4〉 (via γ̂2 and γ̂4, the action of γ2 being Frob3-semilinear).

Also, since γ3 and γ2 commute, Hγ2 = 1 and Hγ±1
3

(u) ∈ Z3[u], we see that γ̂2 must commute with γ̂±1
3 by

Corollary 5.6.2.
We recall from Lemma 5.2.1 that the only models for (Z/3Z)/F over OF are G(r, δ) for r = 0, 2, 4, 6, 8, 10, 12

with G(12, δ) ∼= (Z/3Z)/OF , and the only models for (µ3)/F over OF are G(r, 1) for r = 0, 2, 4, 6, 8, 10, 12
with G(0, 1) ∼= (µ3)/OF . In each case, the base change to OF ′ admits unique descent data over Q3 such
that descent of the generic fibre to Q3 is Z/3Z (resp. µ3). (See Lemma 5.7.1.) We will write G′r,1 (resp.
G′r,ω) for the corresponding pair (G(r, δ) × OF ′ , {[g]}) (resp. (G(r, 1) × OF ′ , {[g]})). We will also let M′

r,1

(resp. M′
r,ω) denote the corresponding object of φ1DDF ′/Q3

. In particular, for χ = 1 or ω, the underlying

F9[u]/u36-module has the form (F9[u]/u36)eχ with eχ the standard generator, though we write e rather
than eχ if χ is understood.

We have the following useful lemma.

Lemma 8.1.1. Let 0 ≤ r ≤ e = 12 be an even integer. The descent data on M′
r,1 is determined by

γ̂2(e) = e, γ̂4(e) = −(−
√
−1)r/2e, γ̂±1

3 (e) = Hγ±1
3

(u)−3r/2e,

and the descent data on M′
r,ω is determined by

γ̂2(e) = e, γ̂4(e) = (−
√
−1)r/2e, γ̂±1

3 (e) = Hγ±1
3

(u)−3r/2e.

In particular, γ2
4 = −1 on D(G′r,1) if and only if γ2

4 = −1 on D(G′r,ω) if and only if r = 2, 6 or 10.

Proof. Certainly γ̂2(e) = e. We have already seen in Lemma 5.7.1 that descent data must exist in each case,
so our task is to compute the unique units ξγ4 , ξγ3±1 ∈ (F9[u]/u36)× so that

γ̂4(e) = ξγ4e, γ̂3
±1(e) = ξγ3±1e

corresponds to generic fiber descent data for the mod 3 cyclotomic or trivial character on G3. The case of
γ3
±1 follows from Lemma 5.7.1.

57



¿From the condition
γ̂4 ◦ φ′1(ure) = φ′1 ◦ γ̂4(ure)

we get ξ2γ4(u) = (−
√
−1)r, so

ξγ4(u) = ±(−
√
−1)r/2.

The non-zero morphisms Mr,1 →M12,1 are given by e 7→ ±u3(12−r)/2e and the non-zero morphisms M0,ω →
Mr,ω are given by e 7→ ±u3r/2e. Thus, it suffices to check that γ̂4e = e on M′

12,1 and γ̂4e = e on M′
0,ω. In

both cases we have shown that γ̂4e = ±e and so we only need to check that γ4 = 1 on D(G′12,1) and D(G′0,ω).
That is, we have to show that the OF ′ -group scheme maps Z/3Z → γ4(Z/3Z) and µ3 → γ4µ3 arising from
the canonical generic fibre descent data induce the identity on the special fibres. This is easy. �

Lemma 8.1.2. Let M be an object of φ1−mod
F

corresponding to a finite flat group scheme G and let {[g]}
be descent data on G′ = G× OF ′ relative to Q3. Assume that (G′, {ĝ})Q3 can be filtered so that each graded
piece is isomorphic to Z/3Z or µ3 and so that the corresponding filtration of (M′, {ĝ}) in φ1DDF ′/Q3

has

successive quotients of the form M′
rj ,χj with rj ∈ {2, 6, 10} and χj ∈ {1, ω}. Then γ2

4 = −1 on M′ /uM′ and
there exists a basis {ej} of M over F3[u]/u36 so that for all j

• ej ∈ φ1(M1),
• ej is an eigenvector of the F9-linear map γ̂4 on M′,
• ej lies in the part of the filtration of M′ which surjects onto M′

rj ,χj and this surjection sends ej onto
the standard basis vector e of M′

rj ,χj over F9[u]/u36.

Proof. Since γ2
4 acts linearly on M′ /uM′ and (γ2

4)2 = 1, the action of γ2
4 must be semisimple. The eigenvalues

of γ2
4 are all equal to −1, so necessarily γ2

4 = −1 on M′ /uM′.
We now argue by induction on the number of Jordan-Hölder factors in the generic fiber, the case of length

1 being clear. Thus, we can assume we have a short exact sequence in φ1DDF ′/Q3

0→ N′ →M′ →M′
r,χ → 0,

so the lemma is known for N′. We just have to find e0 ∈ φ1(M1) mapping onto the standard basis vector
e in M′

r,χ such that e0 is an eigenvector of γ̂4. Since φ′1(M
′
1) → φ′1((M

′
r,χ)1) is a surjective map of F9-

vector spaces which is compatible with the semisimple F9-linear endomorphism γ̂4 on each side, we can find
e′0 ∈ φ′1(M

′
1) mapping onto e with e′0 an eigenvector of γ̂4, say γ̂4(e′0) = (

√
−1)±1e′0. Since

γ̂4 ◦ γ̂2(e′0) = γ̂2 ◦ γ̂3
4(e′0) = γ̂2(

√
−1

∓1
e′0) =

√
−1

±1
γ̂2(e′0),

the element e0 = (1/2)(e′0 + γ̂2(e′0)) maps to e and is an an eigenvector for γ̂4. Also, e0 ∈ φ′1(M
′
1) is

γ̂2-invariant and γ̂2 commutes with φ′1, so e0 ∈ φ1(M1). �

8.2. Models for ρ.

Proposition 8.2.1. There exists a unique object (G′, {[g]}) of FDF ′/Q3,I such that (G′, {[g]})Q3 corre-
sponds to ρ. If we set (M(ρ)′, {ĝ}) = Mπ(G′, {[g]}) then (M(ρ)′, {ĝ}) is an extension of M′

2,ω by M′
10,1 in

φ1DDF ′/Q3
. Moreover Frobenius is not identically zero on D(G′).

Proof. Let (G′, {[g]}) be an object of FDF ′/Q3,I such that (G′, {[g]})Q3 corresponds to ρ, and set (M′, {ĝ}) =
Mπ(G′, {[g]}). As in the discussion following Theorem 5.6.1, we have canonically M′ ' F9⊗F3 M for a Breuil
module M over OF , with γ̂2 acting as γ2 ⊗ 1. By Lemma 8.1.1, there is a short exact sequence of Breuil
modules over OF

0→M(s, δ)→M→M(r, 1)→ 0
with r, s ∈ {2, 6, 10} and this is compatible with descent data after base change to OF ′ in the sense that we
obtain an exact sequence

0→M′
s,1 →M′ →M′

r,ω → 0
compatible with descent data. Because ρ is très ramifié, it follows that ρ|GF ′ is non-split, so the sequence

0→M(s, δ)→M→M(r, 1)→ 0
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is non-split.
We first show that we must have (r, s) = (2, 10). Since ρ is self-dual, in order to prove (r, s) = (2, 10) we

may use Cartier duality (and Lemma 5.2.1) in order to reduce to the case where r + s ≤ e = 12. We will
first rule out cases with r ≥ s and then the case (r, s) = (2, 6).

By Lemmas 8.1.1 and 8.1.2, we can write

M = (F3[u]/u36)e1 ⊕ (F3[u]/u36)e′ω, M1 = 〈use1, u
re′ω + he1〉

for some h ∈ F3[u]/u36 so that

φ1(use1) = δe1, φ1(ure′ω + he1) = e′ω

and
γ̂4(e1) = −(−

√
−1)s/2e1, γ̂4(e′ω) = (−

√
−1)r/2e′ω.

Recall from Lemma 5.2.2 that the ‘parameter’ h gives an isomorphism of abstract groups

(F3[u]/u36)/{ust− δurt3|t ∈ F3[u]/u36} ' Ext1φ1−mod
F
(M(r, 1),M(s, δ)).

It is easy to see that
γ̂4(M′

1) ⊆M′
1, γ̂4 ◦ φ′1 = φ′1 ◦ γ̂4 on M′

1

if and only if γ̂4(ure′ω + he1) ∈M′
1 and γ̂4(e′ω) = φ′1 ◦ γ̂4(ure′ω + he1), or equivalently

(
√
−1)r/2h(u) ≡ −(−

√
−1)s/2h(−

√
−1u) mod u12+s.

This says exactly that

(8.2.1) j ≡ 2− (r + s)/2 mod 4

for any j < 12 + s with a non-zero uj term appearing in h.
If (r, s) = (6, 2) this would force h ≡ 0 mod u2, yet {u2t − δu6t3|t ∈ F3[u]/u36} contains all multiples of

u2, so
0→M(2, δ)→M→M(6, 1)→ 0

is split, a contradiction.
When (r, s) = (10, 2) or (r, s) = (2, 2) we see that h ≡ h(0) mod u4, yet

u4(F3[u]/u36) ⊆ {ust− δurt3|t ∈ F3[u]/u36},

so the choice of e′ω may be changed in order to arrange that

h ∈ F3

(though making this change of basis of M may destroy the ‘diagonal’ form of γ̂4). Since

0→M(s, δ)→M→M(r, 1)→ 0

is non-split, necessarily h 6= 0, so by rescaling e′ω it can be assumed that h = 1. Then VM(e′ω) ≡ e1 mod uM

(by Theorem 5.1.3) and

φ(e′ω) ≡ −(δ/cπ)u3(12−r−s)e1 ≡ −u3(12−r−s)e1 mod uM .

This forces r + s = 12. In particular, (r, s) = (2, 2) is ruled out.
For (r, s) = (10, 2), a splitting of the generic fiber ρ|F is induced by the Breuil module map

M(0, 1)→M

defined by
e 7→ u15e′ω + u3fe1 = u5(u10e′ω + e1) + (uf − u3)u2e1,

where f ∈ F3[u]/u36 satisfies f3 − δf = u6 (i.e., f = −δu6 − u18, and a constant c ∈ F3 can even be added
to this if δ = 1). But ρ|GF ′ must be non-split, so this rules out (r, s) = (10, 2).
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The remaining case with r ≥ s is (r, s) = (6, 6). In this case {ust − δurt3|t ∈ F3[u]/u36} contains all
multiples of u8. But we have j ≡ 0 mod 4 for all j < 12 + s = 18 such that a non-zero uj term appears in
h, so again (at the expense of possibly making the γ̂4-action non-diagonal) we may assume

h = c+ c′u4

for some c, c′ ∈ F3. Writing γ̂4(e′ω) = (
√
−1)e′ω + hγ4(u)e1, the commutativity of γ̂4 and φ′1 amounts to

hγ4 = −δh3
γ4 , so hγ4(u) = b

√
−δ for some b ∈ F3. The condition γ̂4

4(e′ω) = e′ω forces b = 0, so γ̂4 still has
diagonal action. This analysis shows that the map of F3-vector spaces

Ext1φ1DD
F ′/Q3

(M′
6,ω,M

′
6,1)→ Ext1φ1−mod

F
(M(6, 1),M(6, δ))

has at most a 2-dimensional image. If c′ + δc = 0, then the Breuil module map

F9 ⊗M(0, 1)→M′

defined by
e 7→ cδu7e1 + u3(u6e′ω + (c+ c′u4)e1),

gives a splitting of the corresponding representation of GF ′ . Thus the image of

(8.2.2) Ext1φ1DD
F ′/Q3

(M′
6,ω,M

′
6,1)→ Ext1F3[GF ′ ]

(1, ω)

is at most one dimensional and, because ρ|GF ′ is non-split, the pair (c, c′) corresponding to a model of ρ
satisfies c′ + δc 6= 0.

At this point, we treat the cases δ = ±1 separately. Consider first the case δ = 1. We must have

γ̂3(e1) = Hγ3(u)
−9e1, γ̂3(e′ω) = Hγ3(u)

−9e′ω + hγ3(u)e1,

where hγ3(u) ∈ F9[u]/u36 lies in F3[u]/u36 because γ̂3 commutes with γ̂2. Evaluating γ̂3 ◦ φ′1 ≡ φ′1 ◦
γ̂3 mod uM′ on u6e′ω + (c+ c′u4)e1 ∈M′

1 and using our knowledge of Hγ3(u) mod 3, we arrive at

hγ3(0) = δ(hγ3(0)3 + (c+ c′)),

which is impossible for hγ3(0) ∈ F3 with δ = 1 because c+ c′ = c+ δc′ ∈ F×3 .
Now let us turn to the case δ = −1, still in the case (r, s) = (6, 6). In this case Ext1F3[G3](1, ω) →

Ext1F3[GF ′ ]
(1, ω) is injective and so by (8.2.2) we see that the image of

Ext1φ1DD
F ′/Q3

(M′
6,ω,M

′
6,1)→ Ext1F3[G3](1, ω)

is at most one dimensional. Thus to exclude the case (r, s) = (6, 6) and δ = −1, it suffices to show that this
image contains the peu ramifié line (as ρ is très ramifié). By Proposition 5.2.1 of [Man], there is an elliptic
curve E′/Q3

which has supersingular reduction over Q3(
√
−1, β), with ρE′,3 a non-split, peu ramifié extension

of 1 by ω. The representation ρE′,3|F ′ is non-split (again because H1(G3, ω)→ H1(GF ′ , ω) is injective in the
δ = −1 case). Let N′ be the Breuil module corresponding to the 3-torsion on the Néron model of E′×Q3 F

′,
so N′ admits descent data {ĝ′} via the universal property of Néron models. The filtration of ρ induces a
short exact sequence in φ1DDF ′/Q3

0→M′
a,1 → (N′, {ĝ′})→M′

b,ω → 0

for some even a, b with 2 ≤ a, b ≤ 10. The Néron model of E′×Q3 Q3(
√
−1, β) has local-local 3-torsion, and

the induced local-local integral models Gω and G1 of the diagonal characters ω|Q3(
√
−1,β) and 1|Q3(

√
−1,β)

must be the unique local-local models (uniqueness follows from Corollary 1.5.1 of [Ra]). Moreover, Corollary
1.5.1 of [Ra] makes it clear that base change to OF ′ takes the order 3 group schemes Gω and G1 to the
integral models that lie in the middle of the well-ordered sets of integral models of ω|F ′ and 1|F ′ . It follows
that a = b = 6, so the map

Ext1φ1DD
F ′/Q3

(M′
6,ω,M

′
6,1)→ Ext1F3[G3](1, ω)

indeed hits the peu ramifié line.
60



We next exclude the case (r, s) = (2, 6). As a first step, we check that there is at most one possibility for
the underlying Breuil module M (ignoring the extension class structure) if (r, s) = (2, 6). We can write

M = (F3[u]/u36)e1 ⊕ (F3[u]/u36)e′ω, M1 = 〈u6e1, u
2e′ω + he1〉

for some necessarily non-zero h ∈ F3[u]/u36 with

φ1(u6e1) = δe1, φ1(u2e′ω + he1) = e′ω
and

γ̂4(e1) = −
√
−1e1, γ̂4(e′ω) = −

√
−1e′ω.

The combined conditions γ̂4(M′
1) ⊆M′

1 and φ′1 ◦ γ̂4 = γ̂4 ◦ φ′1 on M′
1 are equivalent to

h(u) ≡ −h(−
√
−1u) mod u18.

Since {u6t−δu2t3|t ∈ F3[u]/u36} contains u6−δu2 and all multiples of u9, we may change e′ω (at the expense
of possibly losing the diagonal form for γ̂4) so that h = cu2 for some c ∈ F3. Since h is necessarily non-zero,
we may rescale to get h = u2, so there is indeed at most one possibility for the underlying Breuil module M

when (r, s) = (2, 6).
Again we treat the cases δ = ±1 separately. Consider first the case δ = −1. We have seen above that

there is an extension E6,6 = (N′, {ĝ′}) of M′
6,ω by M′

6,1 in φ1DDF ′/Q3
corresponding to a non-split, peu

ramifié extension of 1 by ω. Pulling back E6,6 by a non-zero map

M′
2,ω →M′

6,ω

in φ1DDF ′/Q3
given by e 7→ ±u6e, we get an extension E2,6 of M′

2,ω by M′
6,1 in φ1DDF ′/Q3

corresponding
to a non-split, peu ramifié extension of 1 by ω. The underlying Breuil module of E2,6 must be isomorphic to
F9 ⊗F3 M for our uniquely determined M (with h = u2). By the injectivity of H1(G3, ω) → H1(GF ′ , ω) in
the δ = −1 case, we conclude that F9⊗F3 M cannot admit descent data giving rise to a très ramifié element
in Ext1F3[G3](1, ω). This rules out the case (r, s) = (2, 6) and δ = −1.

Now turn to the case (r, s) = (2, 6) and δ = 1. We will show that with the Breuil module M constructed
above (with h = u2), the Breuil module M′ = F9 ⊗F3 M does not admit descent data relative to F ′/Q3

(with γ̂2 = γ2 ⊗ 1, without loss of generality). One checks that N(e1) = N(e′ω) = 0, so

N ◦ φ1 = 0.

We must have
γ̂3(e1) = Hγ3(u)

−9e1, γ̂3(e′ω) = Hγ3(u)
−3e′ω + hγ3(u)e1

for some hγ3 ∈ F9[u]/u36. As usual, since γ̂3 and γ̂2 must commute, we have hγ3 ∈ F3[u]/u36. The condition
γ̂3(M′

1) ⊆M′
1 is equivalent to

γ̂3(u2e′ω + u2e1) ∈M′
1,

which amounts to
hγ3(u) ≡ H−3

γ3 −H
−9
γ3 ≡ 0 mod u4,

so

γ̂3(u2e′ω + u2e1) = Hγ3(u)
−1(u2e′ω + u2e1) +

(
hγ3 −H−3

γ3 +H−9
γ3

u4

)
H2
γ3u

6e1.

As N ◦ φ1 = 0, we have
γ̂3 ◦ φ′1 = φ′1 ◦ γ̂3

on M′
1. Evaluating this identity on u2e′ω + u2e1 ∈M1 gives

hγ3 = H6
γ3 ·

(
hγ3 −H−3

γ3 +H−9
γ3

u4

)3

,

so hγ3 is a cube. Thus, hγ3 = u6gγ3 for some gγ3 ∈ F3[u]/u36.
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Since H3
γ3 ≡ 1 + u6 mod u12, we compute

H−9
γ3 −H

−3
γ3 ≡ u

6 mod u12,

so

hγ3 ≡ H6
γ3 ·

((
hγ3
u4

)3

+ u6

)
mod u7

and
gγ3(0) = gγ3(0)3 + 1

in F3. This is absurd. This rules out all possibilities for (r, s) aside from (r, s) = (2, 10). Uniqueness now
follows from Corollary 4.1.5.

¿From Theorem 5.4.2 of [Man] and Proposition B.4.2 of [CDT] we see that there is an elliptic curve E/Q3

such that E[3](Q3) ∼= ρ and ρE,3 has type τ±3. Let E denote the Néron model of E×Q3 F
′ over OF ′ . By the

Néron property of E/OF ′ we see that E[3∞] has descent data over Q3. As in §4.5 we see that I annihilates
the Dieudonné module of E[3∞]×F9. Thus M(ρ)′ ∼= Mπ(E[3]) in φ1DDF ′/Q3

and it follows that Frobenius
is non-zero on D(G′). �

8.3. Completion of proof of Theorem 4.5.1.

Lemma 8.3.1. Let (G′, {[g]}) be the unique object of FDF ′/Q3,I such that (G′, {[g]})Q3 corresponds to ρ.
Set (M(ρ)′, {ĝ}) = Mπ(G′, {[g]}). The natural map of groups

Ext1φ1DD
F ′/Q3

((M(ρ)′, {ĝ}), (M(ρ)′, {ĝ}))→ Ext1φ1DD
F ′/Q3

(M′
10,1,M

′
2,ω),

using pushout by (M(ρ)′, {ĝ})→M′
2,ω and pullback by M′

10,1 → (M(ρ)′, {ĝ}), is zero.

Proof. Let (M̃
′
, {ĝ}) represent a class in Ext1φ1DD

F ′/Q3
((M(ρ)′, {ĝ}), (M(ρ)′, {ĝ})) and let (M′, {ĝ}) be its

image in Ext1φ1DD
F ′/Q3

(M′
10,1,M

′
2,ω). By Lemma 5.2.2, M′ = F9 ⊗M with γ̂2 = γ2 ⊗ 1 and

M = (F3[u]/u36)eω ⊕ (F3[u]/u36)e′1, M1 = 〈u2eω, u10e′1 + (c+ c′u)eω〉,
with c, c′ ∈ F3. Also,

φ1(u2eω) = eω, φ1(u10e′1 + (c+ c′u)eω) = δe′1,
and

γ̂4(eω) = −
√
−1eω, γ̂4(e′1) =

√
−1e′1 + hγ4(u)eω

for some hγ4 ∈ F9[u]/u36.
The properties γ̂4(M′

1) ⊆M′
1 and γ̂4 ◦ φ′1 = φ′1 ◦ γ̂4 on M′

1 amount to

c′ = 0, hγ4 = −δh3
γ4u

24,

so hγ4 = 0. If c = 0 then N ◦ φ1 = 0, so γ̂3 ◦ φ′1 = φ′1 ◦ γ̂3 on M′
1. From this we readily see that (M′, {ĝ}) is

split in φ1DDF ′/Q3
, as desired.

Now assume c 6= 0; we will deduce a contradiction. Consider the rank three Breuil module with descent
data

(N, {ĝ}) = (M̃
′
, {ĝ})/(M′

10,1, {ĝ}),

where M′
10,1 ↪→M(ρ)′ ↪→ M̃

′
. Then N has an ordered basis {eω, e′1, e′ω} with respect to which

N1 = 〈u2eω, u10e′1 + eω, u2e′ω + he′1 + (b+ b′u)eω〉
for some b, b′ ∈ F9 and h = a+ a′u4 + a′′u8 ∈ F9[u]/(u36) defined modulo {u10t− δu2t3} (see 8.2.1). Since
our base field F ′ has absolute ramification degree 12, N1 contains

u12e′ω = u10(u2e′ω + he′1 + (b+ b′u)eω)− h(u10e′1 + eω) + (h− u10(b+ b′u))eω.

¿From the list of generators of N1, it is not difficult to check that in the above expression for u12e′ω ∈ N1,
u2 must divide the coefficient of eω. Thus a = 0.

62



We must have N /〈eω〉 ∼= M(ρ)′. Since a = 0, M(ρ) has basis {e′1, e′ω} and

M(ρ)1 = 〈u10e′1, u
2e′ω + (a′u4 + a′′u8)e′1〉.

Since φ1 for M(ρ) satisfies

φ1(u10e′1) = δe′1, φ1(u2e′ω + (a′u4 + a′′u8)e′1) = e′ω,

it follows immediately that φ ≡ 0 mod uM(ρ), which (using Theorem 5.1.3) contradicts Proposition 8.2.1. �

Corollary 8.3.2. The natural map

θ0 : Ext1S±3
(ρ, ρ) −→ H1(G3, ω)

is zero.

Theorem 4.7.4, and hence Theorem 4.4.1, now follow from the first case of the following lemma. We
include the second case to simplify the proof.

Lemma 8.3.3. The maps of groups

Ext1φ1DD
F ′/Q3

(M′
10,1,M

′
10,1)→ Ext1F3[G3](1, 1), Ext1φ1DD

F ′/Q3
(M′

2,ω,M
′
2,ω)→ Ext1F3[G3](ω, ω)

have images inside the line of extension classes that split over an unramified extension of Q3.

Proof. Since
H1(G3,Z/3) −→ H1(GF ′ ,Z/3)

is injective and induces an isomorphism between the subgroups of unramified classes, it suffices to check that

Ext1φ1DD
F ′/Q3

(M′
10,1,M

′
10,1)→ Ext1φ1−mod

F
(1, 1), Ext1φ1DD

F ′/Q3
(M′

2,ω,M
′
2,ω)→ Ext1φ1−mod

F
(ω, ω)

have images consisting of elements split over an unramified extension of F . By Cartier duality it suffices to
consider only the second map.

Consider a representative (M′, {ĝ}) of an element in Ext1φ1DD
F ′/Q3

(M′
2,ω,M

′
2,ω). Lemma 5.2.2 ensures

that we can write

M = (F3[u]/u36)eω ⊕ (F3[u]/u36)e′ω, M1 = 〈u2eω, u2e′ω + heω〉

for some h = c+ c′u+ c′′u2 with c, c′, c′′ ∈ F3 and

φ1(u2eω) = eω, φ1(u2e′ω + heω) = e′ω.

We have
γ̂4(eω) = −

√
−1eω, γ̂4(e′ω) = −

√
−1e′ω + hγ4(u)eω

for some hγ4 ∈ F9[u]/u36, and the condition γ̂4(M′
1) ⊆M′

1 is equivalent to

h(u) ≡ −h(−
√
−1u) mod u2,

so c = c′ = 0. The Breuil module extension class M over OF (ignoring descent data) therefore only depends
on the parameter c′′ ∈ F3. We then have a splitting F3 ⊗F3 M(2, 1)→ F3 ⊗F3 M determined by

e 7→ aeω + e′ω

where a ∈ F3 satisfies a3 = a+ c′′. �

9. Proof of Theorems 4.6.1, 4.6.2 and 4.6.3.

In this section we will keep the notation of §4.6 and §6.5. We will write F for Fi, F ′ for F ′i and I for Ii.
If G (resp. M) is a finite flat OF -group scheme (resp. Breuil module over OF ) we will write G′ (resp. M′)
for the base change to OF ′ .
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9.1. Rank one calculations. We remark that with our choice of polynomials Hg(u) in §6.5, any object M

in φ1DDF ′/Q3
has an action of 〈γ2, γ4〉 via γ̂2 and γ̂4. (The action of γ2 is Frob3-semilinear). Since γ3 and

γ2 commute and Hγ±1
3

(u) ∈ Z3[u] we see that γ̂2 must commute with γ̂±1
3 (see Corollary 5.6.2).

By Lemma 5.2.1, the only models for (Z/3Z)/F over OF are G(r, 1) for r = 0, 2, 4, 6, 8, 10, 12 with G(12, 1) ∼=
(Z/3Z)/OF , and the only models for (µ3)/F over OF are G(r, 1) for r = 0, 2, 4, 6, 8, 10, 12 with G(0, 1) ∼=
(µ3)/OF . Lemma 5.7.1 ensures that the base changes to OF ′ admit unique descent data over Q3 such that
descent of the generic fibre to Q3 is Z/3Z (resp. µ3). We will write G′r,1 (resp. G′r,ω) for the corresponding
pair (G(r, 1) ×OF OF ′ , {[g]}) (resp. (G(r, 1) ×OF OF ′ , {[g]})). We will also let M′

r,1 (resp. M′
r,ω) denote the

corresponding object of φ1DDF ′/Q3
.

We have the following useful lemmas, for which the proofs are identical to the proofs of Lemmas 8.1.1
and 8.1.2.

Lemma 9.1.1. Let 0 ≤ r ≤ e = 12 be an even integer. The descent data on Mr,1 is determined by

γ̂2(e) = e, γ̂4(e) = −(−
√
−1)r/2e, γ̂±1

3 (e) = Hγ±1
3

(u)−3r/2e,

and the descent data on Mr,ω is determined by

γ̂2(e) = e, γ̂4(e) = (−
√
−1)r/2e, γ̂±1

3 (e) = Hγ±1
3

(u)−3r/2e.

In particular, γ2
4 = −1 on D(Gr,1) if and only if γ2

4 = −1 on D(Gr,ω) if and only if r = 2, 6 or 10.

Lemma 9.1.2. Let M be an object of φ1−mod
F

corresponding to a finite flat group scheme G and let {[g]}
be descent data on G′ = G ×OF OF ′ over Q3. Assume that (G′, {ĝ})Q3 can be filtered so that each graded
piece is isomorphic to Z/3Z or µ3 and so that the corresponding filtration of (M′, {ĝ}) in φ1DDF ′/Q3

has

successive quotients of the form M′
rj ,χj with rj ∈ {2, 6, 10} and χj ∈ {1, ω}. Then γ2

4 = −1 on M′ /uM′ and
there exists a basis {ej} of M over F3[u]/u36 so that for all j

• ej ∈ φ1(M1),
• ej is an eigenvector of the F9-linear map γ̂4 on M′,
• ej lies in the part of the filtration of M′ which surjects onto M′

rj ,χj and this surjection sends ej onto
the standard basis vector e of M′

rj ,χj over F9[u]/u36.

9.2. Models for ρ. Recall that we are assuming that ρ has the très ramifié form(
ω ∗
0 1

)
,

and is not split over F ′. We will let φ1DDF ′/Q3,I
denote the full subcategory of φ1DDF ′/Q3

consisting of

objects M′ for which the ideal I acts trivially on (M′/uM′)⊗F9,Frob3 F9.

Proposition 9.2.1. Suppose that (M′, {ĝ}) is an object of φ1DDF ′/Q3,I
such that (M′, {ĝ})Q3 is an exten-

sion of Z/3Z by µ3. Then we have an exact sequence

(0) −→M′
s,1 −→M′ −→M′

r,ω −→ (0)

with (r, s) = (2, 6), (6, 10), (2, 10) or (6, 6). Moreover we can write M′ = M ⊗F3 F9 with γ̂2 = 1 ⊗ Frob3,
where M has an F3[u]/(u36)-basis {e1, e′ω} with e1 the standard basis element of M(s, 1) and e′ω mapping to
the standard basis element of M(r, 1). More precisely we have the following exhaustive list of extension class
possibilities, all of which are well-defined. (N denotes the monodromy operator described in Lemma 5.1.2.)

(1) (r, s) = (2, 6): The natural map

Ext1φ1DD
F ′/Q3,I

(M′
2,ω,M

′
6,1)→ Ext1F3[G3](1, ω)

is an isomorphism, with elements parameterized by pairs (c, c1) ∈ F2
3 corresponding to

M1 = 〈u6e1, u
2e′ω + cu2e1〉, φ1(u6e1) = e1, φ1(u2e′ω + cu2e1) = e′ω
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(so N ◦ φ1 = 0) with
γ̂4(e1) = −

√
−1e1, γ̂4(e′ω) = −

√
−1e′ω,

γ̂±1
3 (e1) = e1, γ̂

±1
3 (e′ω) = (1± u18)(e′ω ± c1u6e1).

The pairs with c = 0 are the ones which generically split over F ′. In all cases φ ≡ 0 mod uM.
(2) (r, s) = (6, 10): The natural map

Ext1φ1DD
F ′/Q3,I

(M′
6,ω,M

′
10,1)→ Ext1F3[G3](1, ω)

is an isomorphism, with elements parameterized by pairs (c, c1) ∈ F2
3 corresponding to

M1 = 〈u10e1, u
6e′ω + cu6e1〉, φ1(u10e1) = e1, φ1(u6e′ω + cu6e1) = e′ω

(so N ◦ φ1 = 0) with
γ̂4(e1) =

√
−1e1, γ̂4(e′ω) =

√
−1e′ω,

γ̂±1
3 (e1) = (1∓ u18)e1, γ̂

±1
3 (e′ω) = e′ω ± c1u6e1.

The pairs with c = 0 are the ones which generically split over F ′. In all cases φ ≡ 0 mod uM.
These cases are Cartier dual to the (2, 6) cases above.

(3) (r, s) = (2, 10): The natural map

Ext1φ1DD
F ′/Q3,I

(M′
2,ω,M

′
10,1)→ Ext1F3[G3](1, ω)

is an isomorphism, with elements parameterized by pairs (c, c1) ∈ F2
3 corresponding to

M1 = 〈u10e1, u
2e′ω + cu8e1〉, φ1(u10e1) = e1, φ1(u2e′ω + cu8e1) = e′ω

(so N ◦ φ1 = 0) with
γ̂4(e1) =

√
−1e1, γ̂4(e′ω) = −

√
−1e′ω,

γ̂±1
3 (e1) = (1∓ u18)e1, γ̂

±1
3 (e′ω) = (1± u18)(e′ω ± c1u12e1).

The pairs with c = 0 are the ones which generically split over F ′. In all cases φ ≡ 0 mod uM.
(4) (r, s) = (6, 6): The natural map

Ext1φ1DD
F ′/Q3,I

(M′
6,ω,M

′
6,1)→ Ext1F3[G3](1, ω)

is an isomorphism, with elements parameterized by pairs (c, c′) ∈ F2
3 corresponding to

M1 = 〈u6e1, u
6e′ω + (c+ c′u4)e1〉, φ1(u6e1) = e1, φ1(u6e′ω + (c+ c′u4)e1) = e′ω

(it is easily checked that N(e1) = 0 and N(e′ω) = c′u30e1) and

γ̂4(e1) = −
√
−1e1, γ̂4(e′ω) =

√
−1e′ω,

γ̂±1
3 (e1) = e1, γ̂

±1
3 (e′ω) = e′ω + (±c∓ c′u12 − c′u30)e1.

In particular, φ ≡ 0 mod uM if and only if c = 0.
In the first three cases, the peu ramifié condition on a class in Ext1F3[G3](1, ω) is equivalent to the vanishing

of c1. In the fourth case it is equivalent to the vanishing of c.

Proof. By Lemma 9.1.1 we have an exact sequence

(0) −→M′
s,1 −→M′ −→M′

r,ω −→ (0)

with r, s ∈ {2, 6, 10}. As usual
M1 = 〈use1, u

re′ω + he1〉.
In the cases (r, s) = (2, 2) and (6, 2) as in the proof of Proposition 8.2.1 we may take h = 0. We will show

that in the case (r, s) = (10, 2) we also have h = 0. Following the proof of Proposition 8.2.1 we may suppose
that h ∈ F3. Without loss of generality we can take h = 1 and look for a contradiction. Again following the
proof of Proposition 8.2.1 and using

M1 = 〈u2e1, u
10e′ω + e1〉
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we find that φe′ω ≡ −e1 mod uM. Also

γ̂±1
3 e1 = (1± u18)e1

γ̂±1
3 e′ω = (1∓ u18)e′ω + h±1(u)e1

for some h±1(u) ∈ F9[u]/(u36), which must actually lie in F3[u]/(u36) (using, as usual, the fact that γ̂2 and
γ̂3 commute). Thus

−e1 ≡ φe′ω
≡ (γ̂3γ̂2 − γ̂−1

3 γ̂2)(e′ω)

≡ (γ̂3 − γ̂−1
3 )(e′ω)

≡ (h1(0)− h−1(0))e1 mod uM′.

The inverse linear maps γ̂±1
3 on M′/uM′ have matrices(

1 h±1(0)
0 1

)
with respect to the basis {e1, e′ω}, so that h−1(0) = −h1(0). Thus h1(0) = 1. On the other hand evaluating
γ̂3φ

′
1 ≡ φ′1γ̂3 mod uM′ on u10e′ω + e1 and comparing coefficients of e1 gives h1(0) = 0, a contradiction.

Thus if any case (r, 2) arises, the underlying Breuil module must be a split extension

M = (F3[u]/(u36))e1 ⊕ (F3[u]/(u36))e′ω, M1 = 〈u2e1, u
re′ω〉

φ1(u2e1) = e1, φ1(ure′ω) = e′ω
(so N ◦ φ1 = 0), with

γ̂2e1 = e1, γ̂2e′ω = e′ω
γ̂4e1 =

√
−1e1, γ̂4e′ω = (−

√
−1)r/2e′ω.

We also have
γ̂±1
3 e1 = Hγ±1

3
(u)−3e1 γ̂±1

3 e′ω = Hγ±1
3

(u)−3r/2e′ω + h±1(u)e1

for some h±1 ∈ F3[u]/(u36). Since N ◦ φ1 = 0 we have γ̂±1
3 φ′1 = φ′1γ̂

±1
3 on M′

1. Evaluating this on ure′ω and
comparing coefficients of e1 gives h±1(u) = u3(r−2)h±1(u)3Hγ±1

3
(u)3r. This forces h±1(u) = 0 if r 6= 2. If

r = 2 it forces h±1(u) = c±1(1± u18) for some c±1 ∈ F3. We will show c−1 = c1 = 0. Indeed, evaluating the
congruence

φ ≡ (γ̂3γ̂2 − γ̂−1
3 γ̂2) mod uM′

on e′ω gives
0 = φ(e′ω) ≡ (c1 − c−1)e1 mod uM′

so that c−1 = c1. On the other hand the congruence

γ̂3γ̂4 ≡ γ̂4γ̂
−1
3 mod uM′

gives (
1 c1
0 1

)( √
−1 0
0 −

√
−1

)
=
( √

−1 0
0 −

√
−1

)(
1 c−1

0 1

)
in M2(F3), so c−1 = −c1. Thus c−1 = c1 = 0 and h±1 = 0 for r = 2 as well. Thus for r = 2, 6, and 10 the
Breuil module with descent data M′ is split, so ρ is split, a contradiction.

This rules out the possibilities (2, 2), (6, 2) and (10, 2). Using Cartier duality we can also rule out (10, 10)
and (10, 6). We are left with the four possible pairs (r, s) as asserted in the proposition and must determine
which possibilities arise in each case.

Next consider the case (r, s) = (2, 6). Using the same analysis as in the (r, s) = (2, 6) case in Proposition
8.2.1, we find that the possibilities for the Breuil module M are the ones in the statement of the proposition
(and N ◦ φ1 = 0 is easy to check), though we only know that

γ̂4(e1) = −
√
−1e1, γ̂4(e′ω) = −

√
−1e′ω + hγ4(u)e1
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for some hγ4(u) ∈ F9[u]/u36. The conditions

γ̂4(M′
1) ⊆M′

1, γ̂4 ◦ φ′1 = φ′1 ◦ γ̂4 on M′
1

are equivalent to

hγ4 ≡ 0 mod u4, hγ4 = −
(
hγ4
u4

)3

.

The solutions to this are hγ4 = a
√
−1u6 for a ∈ F3. Replacing e′ω by e′ω + au6e1 preserves our standardized

form but makes hγ4 = 0:
γ̂4(e1) = −

√
−1e1, γ̂4(e′ω) = −

√
−1e′ω.

The wild descent data must have the form

γ̂±1
3 (e1) = e1, γ̂±1

3 (e′ω) = (1± u18)e′ω + h±1(u)e1

for some h±1 ∈ F9[u]/u36. The conditions

γ̂±1
3 (M′

1) ⊆M′
1, γ̂±1

3 ◦ φ′1 = φ′1 ◦ γ̂±1
3 on M′

1

(recall N ◦ φ1 = 0) are equivalent to

h±1 ≡ 0 mod u4, h±1 = (1± u18)
(
h±1

u4

)3

,

whose solutions are
h±1 = c±1u

6(1± u18)
for some c±1 ∈ F3. Since N ◦ φ1 = 0, we have

γ̂±1
3 ◦ γ̂∓1

3 ◦ φ′1 = φ′1,

so
c−1 = −c1.

Using Lemma 5.2.2 and Corollary 5.6.2, we see that all of these possibilities are well-defined. We also
see that I annihilates M/uM ⊗ F9. It is straightforward to check that generic splitting over F ′ (which is
equivalent to generic splitting over F ) is equivalent to c = 0, and that such splitting is compatible with
descent data (i.e., descends to Q3) if and only if c = c1 = 0. For dimension reasons, the map on Ext1’s is
therefore an isomorphism.

Now consider the case (r, s) = (2, 10). Here we have

M1 = 〈u10e1, u
2e′ω + he1〉

for some h ∈ F3[u]/u36, with
φ1(u10e1) = e1, φ1(u2e′ω + he1) = e′ω

and
γ̂4(e1) =

√
−1e1, γ̂4(e′ω) = −

√
−1e′ω.

In order that
γ̂4(M′

1) ⊆M′
1, γ̂4 ◦ φ′1 = φ′1 ◦ γ̂4 on M′

1,

it is necessary and sufficient that
h ≡ h(−

√
−1u) mod u22.

But {u10t − u2t3|t ∈ F3[u]/u36} is spanned by u13 − u11, u12 − u8, u11 − u5, u10 − u2, and all multiples of
u15, so we may suppose

(9.2.1) h = c′′ + c′u4 + cu8,

for some c′′, c′, c ∈ F3, at the expense of possibly losing the diagonal form of γ̂4.
The monodromy operator satisfies

N(e1) = 0, N(e′ω) = (c′′u6 − c′u18 + c′′u30)e1.
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Since the wild descent data must take the form

γ̂±1
3 (e1) = (1∓ u18)e1, γ̂±1

3 (e′ω) = (1± u18)e′ω + h±1e1

for some h±1 ∈ F9[u]/u36, we compute

γ̂±1
3 (u2e′ω + he1) = H2

γ±1
3

(u)(1± u18)(u2e′ω + he1) + f±1(u)e1,

where

(9.2.2) f±1(u) = −hH2
γ±1
3

(u)(1± u18) + u2H2
γ±1
3
h±1 + (1∓ u18)h(uHγ±1

3
).

Thus, in order that γ̂±1
3 (M′

1) ⊆M′
1, it is necessary and sufficient that f±1 satisfies

f±1 ≡ 0 mod u10.

Using (9.2.1) and Hγ±1
3
≡ 1∓ u6 mod 3, this amounts to

(9.2.3) h±1 ≡ ±c′′u4 mod u8.

However, N ◦ φ1(M1) ⊆ u6 M, so

γ̂±1
3 ◦ φ′1 ≡ φ′1 ◦ γ̂±1

3 mod u6 M′

when evaluated on M′
1. This gives

h±1 ≡
(
f±1

u10

)3

mod u6.

Since h±1 is a cube modulo u6, by (9.2.3) we must have c′′ = 0, and so N ◦ φ1 ≡ 0 mod u18 M. Thus, γ̂±1
3

and φ′1 commute modulo u18 M′ when evaluated on M′
1, so we get

(9.2.4) h±1 ≡
(
f±1

u10

)3

mod u18,

and h±1 is a cube modulo u18.
On the other hand, with c′′ = 0, we see from (9.2.3) that

h±1 ≡ 0 mod u8.

Because h±1 is a cube modulo u18, so we get the slight improvement

h±1 ≡ 0 mod u9.

Combining this with the vanishing of c′′, we deduce from (9.2.2) that f±1 ≡ ±c′u10 mod u11, so by (9.2.4)

h±1 ≡ ±c′ mod u.

This forces c′ = 0, so N ◦ φ1 = 0. Thus, γ̂±1
3 and φ′1 commute on M′

1, so

h±1 =
(
f±1

u10

)3

.

in F9[u]/u36. Using h = cu8 this becomes (via (9.2.2))

h±1 = (1± u18)
(
h±1

u8

)3

,

so
h±1 = c±1u

12(1± u18)
for some c±1 ∈ F3. As before, we get c−1 = −c1.

Now we “diagonalise” γ̂4. Since we have

γ̂4(e1) =
√
−1e1, γ̂4(e′ω) = −

√
−1e′ω + hγ4(u)e1

for some hγ4 ∈ F9[u]/u36, the conditions

γ̂4(M′
1) ⊆M′

1, γ̂4 ◦ φ′1 = φ′1 ◦ γ̂4 on M′
1

68



are equivalent to

hγ4 ≡ 0 mod u8, hγ4 = −
(
hγ4
u8

)3

,

which is to say
hγ4 = a

√
−1u12

for some a ∈ F3. Replacing e′ω by e′ω + au12e1 then puts us in a setting with a = 0. Thus all extensions
have the form asserted in the proposition. It is easy to check that in each case I annihilates (M/uM)⊗ F9.

Pushout by the non-zero map M′
6,1 →M′

10,1 in φ1DDF ′/Q3
induced by e 7→ u6e takes our (2,6) examples

to our (2,10) examples (compatibly with the labelling of parameters c, c1 as in the statement of the proposi-
tion). Thus all 9 possibilities for (c, c1) do occur and we get an isomorphism of Ext1’s as asserted. Moreover,
generic splitting over F ′ (which is equivalent to generic splitting over F ) is equivalent to c = 0, and such
splitting is compatible with descent data (i.e., descends to Q3) if and only if c = c1 = 0.

Using Cartier duality and the case (r, s) = (2, 6), we see that in the case (r, s) = (6, 10) the map of Ext1’s
is an isomorphism. It is easy to check that the objects in our asserted list of 9 possibilities for (r, s) = (6, 10)
are well-defined and that pullback by the non-zero map M′

2,ω → M′
6,ω induced by e 7→ u6e takes these to

our (2, 10) examples (compatibly with the labelling of parameters c, c1).
Finally, we turn to the case (r, s) = (6, 6). Choosing a basis with respect to which γ̂4 has a diagonal

action, the conditions

(9.2.5) γ̂4(M′
1) ⊆M′

1, γ̂4 ◦ φ′1 = φ′1 ◦ γ̂4 on M′
1

are equivalent to
h(u) ≡ h(−

√
−1u) mod u18.

Since {u6t− u6t3|t ∈ F3[u]/u36} consists of multiples of u7, we may change e′ω to get

h = c+ c′u4

for some c, c′ ∈ F3, with
γ̂4(e1) = −

√
−1e1, γ̂4(e′ω) =

√
−1e′ω + hγ4(u)e1

for some hγ4 ∈ F9[u]/u36. Feeding this into (9.2.5) we get hγ4 = −h3
γ4 , so hγ4 =

√
−1a for some a ∈ F3.

Replacing e′ω by e′ω−ae1 returns us to the setting with ‘diagonal’ γ̂4-action and preserves the standardizations
we have made so far.

It is easy to compute N(e′ω) = c′u30e1 (and we know N(e1) = 0). The ‘wild’ descent data is

γ̂±1
3 (e1) = e1, γ̂

±1
3 (e′ω) = e′ω + h±1e1

for some h±1 ∈ F9[u]/u36. Using the congruence for tγ±1
3

in §6.5, the identity

γ̂±1
3 ◦ φ′1 = (1 + tγ±1

3
·N) ◦ φ′1 ◦ γ̂±1

3

on M′
1 amounts to the condition

h±1 = h3
±1 ∓ c′u12 − c′u30,

whose solutions are
h±1 = c±1 ∓ c′u12 − c′u30

for some c±1 ∈ F3. The identity

γ̂±1
3 ◦ γ̂∓1

3 ≡ 1 mod uM′

implies c−1 = −c1. Thus

−VM′(e′ω) ≡ φ(e′ω) ≡ −ce1 mod uM′, (γ̂3 ◦ γ̂2 − γ̂−1
3 γ̂2)(e′ω) ≡ −c1e1 mod uM′ .

Thus I annihilates (M/uM)⊗F3 F9 if and only if c1 = c.
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By Lemma 5.2.2 and Corollary 5.6.2, it is easy to see that all of these objects are well-defined. The kernel
of

(9.2.6) Ext1φ1DD
F ′/Q3,I

(M′
6,ω,M

′
6,1)→ Ext1F3[GF ](1, ω)

consists of pairs (c,−c), where generic splittings are induced by any of the (non-zero) Breuil module maps

M(0, 1)→M

defined by
e 7→ u9e′ω + (c̃u9 + cu3)e1 = u(c+ u2c̃)u6e1 + u3(u6e′ω + (c− cu4)e1)

with c̃ ∈ F3. Thus, the pairs (c, c′) corresponding to the ρ which are split over F (or equivalently, split over
F ′) are exactly those for which c+ c′ = 0. The map

Ext1φ1DD
F ′/Q3,I

(M′
6,ω,M

′
6,1)→ Ext1F3[G3](1, ω)

is therefore injective, because the splitting given above respects descent data if and only if c̃ = c1 = 0.
It remains to establish which of the given extensions of Breuil modules correspond to peu ramifié extensions

of Z/3Z by µ3 over Q3. We noted above that the maps among the Ext1φ1DD
F ′/Q3

’s in the (2,6), (6,10), (2,10)

cases induced by pushout/pullback along e 7→ u6e are compatible with the parameterization by pairs (c, c1).
With a little more care, one checks that the maps

Ext1φ1DD
F ′/Q3,I

(M′
2,ω,M

′
6,1)← Ext1φ1DD

F ′/Q3,I
(M′

6,ω,M
′
6,1)→ Ext1φ1DD

F ′/Q3,I
(M′

6,ω,M
′
10,1)

induced by e 7→ u6e send the pair (c, c′) in the middle to the pair (c+ c′, c) on either end (to construct the
necessary commutative diagrams of short exact sequences in the two cases, use the maps

(e′ω, e1) 7→ (u6e′ω − c′e1, e1), (e′ω, e1) 7→ (e′ω + c′e1, u
6e1)

respectively). This reduces us to checking the (6, 6) case.
By Corollary 2.3.2, the two très ramifié extensions, ρ1 and ρ2, of 1 by ω which are non-split over F arise

from elliptic curves, E1 and E2, over Q3 for which ρEj ,3 is potentially Barsotti-Tate with extended type τ ′i
(see §6.5). Let Gj denote the 3-torsion in the Néron model of Ej over OF . From the universal property of
Néron models we see that G′j = Gj ×OF OF ′ inherits descent data {[g]} over Q3. By the same argument used
at the end of §4.6 we see that (G′j , {[g]}) is an object of φ1DDF ′/Q3,I

. Moreover we see that F 6= 0 on D(Gj).
Since all non-(6, 6) cases above have φ ≡ 0 mod uM, by the parts of Proposition 9.2.1 which we have already
proved we see that Mπ(G′j , {[g]}) is an extension of M′

6,ω by M′
6,1 and correspond to a pair (c, c′) with c 6= 0

(since F 6= 0) and c + c′ 6= 0 (by our analysis of (9.2.6), since ρi is not-split over F ). Hence Mπ(G′1, {[g]})
and Mπ(G′2, {[g]}) must correspond in some order to the lines c′ = 0 and c = c′ in F2

3.
As a non-split peu ramifié extension of 1 by ω remains non-split over F ′, we see that the peu ramifié line

in
Ext1φ1DD

F ′/Q3,I
(M′

6,ω,M
′
6,1) ∼= Ext1F3[G3](1, ω)

cannot correspond to c+ c′ = 0. By the above analysis it cannot correspond to c′ = 0 or c− c′ = 0. Thus it
must correspond to the remaining line c = 0. �

The properties of φ in the cases listed in Proposition 9.2.1 make it clear that the (6, 6) case there is
“different”. We will see further manifestations of this difference later.

9.3. Further rank two calculations.

Lemma 9.3.1. For (r, s) = (2, 6), (6, 10) and (2, 10) we have

Ext1φ1DD
F ′/Q3,I

(M′
s,1,M

′
r,ω) = (0).
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Proof. The (6,10) case follows from the (2,6) case by Cartier duality. Thus, we assume r = 2, s ∈ {6, 10}.
Let (M′, {ĝ}) be such an extension. By Lemma 8.1.2, (M′, {ĝ}) arises from a Breuil module over OF of the
form

M = (F3[u]/u36)eω ⊕ (F3[u]/u36)e′1, M1 = 〈u2eω, use′1 + heω〉
with

φ1(u2eω) = eω, φ1(use′1 + heω) = e′1
and

γ̂4(eω) = −
√
−1eω, γ̂4(e′1) = −(−

√
−1)s/2e′1,

where h ∈ F3[u]/u36.
The combined conditions

γ̂4(M′
1) ⊆M′

1, γ̂4 ◦ φ′1 = φ′1 ◦ γ̂4 on M′
1

are equivalent to
(
√
−1)s/2h(u) ≡ (

√
−1)h(−

√
−1u) mod u14.

Treating the cases s = 6 and s = 10 separately, we conclude from Lemma 5.2.2 that we may change e′1 so
that h = 0 when s = 6 and h ∈ F3 when s = 10. As a result of this change, we only have

γ̂4(eω) = −
√
−1eω, γ̂4(e′1) = −(−

√
−1)s/2e′1 + hγ4(u)eω.

However, with h ∈ F3 when s = 10 and h = 0 when s = 6, the condition

γ̂4 ◦ φ′1 = φ′1 ◦ γ̂4 on M′
1

forces hγ4 = −u3(s−2)h3
γ4 , so that in fact hγ4 = 0 after all.

When h = 0, so M is split in φ1−mod
F

(compatibly with γ̂4 on M′), and it is easy to check (using N = 0)

that the ‘wild’ descent data γ̂±1
3 must also be diagonal, so we have the desired splitting in φ1DDF ′/Q3

.
It remains to consider the case (r, s) = (2, 10) with h = c ∈ F3. It is easy to compute

N(eω) = 0, N(e′1) = −cu30eω.

The wild descent data must have the form

γ̂±1
3 (eω) = (1± u18)eω, γ̂±1

3 (e′1) = (1∓ u18)e′1 + h±1eω
with h±1 ∈ F9[u]/u36.

It is straightforward to check that γ̂±1
3 (M′

1) ⊆M′
1, and then the condition

γ̂±1
3 ◦ φ′1 = (1 + tγ±1

3
·N) ◦ φ′1 ◦ γ̂±1

3

on M′
1 gives

h±1 = ±cu12 + h3
±1u

24(1∓ u18) + cu30.

The unique solution to this is
h±1 = c(±u12 + u30).

Thus γ̂3γ̂2− γ̂−1
3 γ̂2 ≡ 0 mod u, while φ(e′1) ≡ −ceω mod u. This forces c = 0. With c = 0 we obviously have

only the split extension class. �

Lemma 9.3.2. The natural map

Ext1φ1DD
F ′/Q3,I

(M′
6,1,M

′
6,ω)→ Ext1F3[G3](ω, 1)

is an isomorphism, with elements parametrised by pairs (c, c′) ∈ F2
3 corresponding to

M = (F3[u]/u36)eω ⊕ (F3[u]/u36)e′1, M1 = 〈u6eω, u6e′1 + (c+ c′u4)eω〉,
where

φ1(u6eω) = eω, φ1(u6e′1 + (c+ c′u4)eω) = e′1, N(eω) = 0, N(e′1) = c′u30eω
and the descent data is

γ̂4(eω) =
√
−1eω, γ̂4(e′1) = −

√
−1e′1,
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γ̂±1
3 (eω) = eω, γ̂±1

3 (e′1) = e′1 + (±c∓ c′u12 − c′u30)eω.

Proof. The proof is identical to the proof of the case (r, s) = (6, 6) in Proposition 9.2.1, except
√
−1 is

everywhere replaced by −
√
−1 and when we study splitting we give M(0, 1) the descent data for the trivial

mod 3 character (which amounts to using γ̂4(e) = −e rather than γ̂4(e) = e). �

Lemma 9.3.3. For r ∈ {2, 10}, the maps

Ext1φ1DD
F ′/Q3

(M′
r,ω,M

′
r,ω)→ Ext1F3[G3](ω, ω)

and
Ext1φ1DD

F ′/Q3
(M′

r,1,M
′
r,1)→ Ext1F3[G3](1, 1)

are injective and have image consisting of the 1-dimensional space of classes which split over an unramified
extension of Q3.

Proof. The cases r = 10 follow from the cases r = 2 using Cartier duality. Thus we suppose r = 2. We treat
only the case of M′

2,ω, the case M′
2,1 being exactly the same except that −

√
−1 replaces

√
−1 everywhere.

Let (M′, {ĝ}) represents an element in Ext1φ1DD
F ′/Q3

(M′
2,ω,M

′
2,ω). Lemma 8.1.2 ensures the existence of

an ordered F3[u]/u36-basis eω, e′ω of M such that

M1 = 〈u2eω, u2e′ω + heω〉, φ1(u2eω) = eω, φ1(u2e′ω + heω) = e′ω

with
γ̂4(eω) = −

√
−1eω, γ̂4(e′ω) = −

√
−1e′ω.

Carrying out the usual calculation,

(9.3.1) γ̂4(M′
1) ⊆M′

1, φ
′
1 ◦ γ̂4 = γ̂4 ◦ φ′1 on M′

1

if and only if
h ≡ −h(−

√
−1u) mod u14.

Combining this with Lemma 5.2.2, we may change e′ω so that h = cu2, with c ∈ F3, at the expense of
possibly losing the diagonal form of γ̂4. But with h = cu2 and γ̂4(e′ω) = −

√
−1e′ω +hγ4(u)eω, the conditions

(9.3.1) imply hγ4 = −h3
γ4 , and so hγ4(u) = (

√
−1)a for some a ∈ F3. Then γ̂4

4 = 1 forces a = 0, so γ̂4 still
has diagonal form.

It is easy to check that N(e′ω) = 0, so N ◦ φ1 = 0. Thus, we must have

(9.3.2) γ̂±1
3 ◦ φ′1 = φ′1 ◦ γ̂±1

3

on M′
1. Since the wild descent data has to be of the form

γ̂±1
3 (eω) = (1± u18)eω, γ̂±1

3 (e′ω) = (1± u18)e′ω + h±1eω

for some h±1 ∈ F3[u]/u36, evaluation of (9.3.2) on u2e′ω + cu2eω ∈ M1 gives h±1 = (1 ± u18)h3
±1, so

h±1 = c±1(1± u18) for some c±1 ∈ F3. The relation γ̂±1
3 ◦ γ̂4 ◦ γ̂±1

3 ◦ γ̂3
4(e′ω) = e′ω forces c±1 = 0.

We now have described all possibilities in terms of the single parameter c ∈ F3, and it is straightforward
to use Corollary 5.6.2 to check that all of these examples are in fact well-defined. Generic splittings over
unramified extension of Q3 correspond to the maps

F3 ⊗F3 M(0, 1)→ F3 ⊗F3 M

given by
e 7→ au3eω + u(u2e′ω + cu2eω),

where a ∈ F3 satisfies a3 = a+ c. Such generic splittings can be defined over Q3 (i.e. without extending the
residue field) if and only if c = 0. �
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Lemma 9.3.4. (1) The map of groups

Ext1φ1DD
F ′/Q3

(M′
6,1,M

′
6,1)→ Ext1F3[G3](1, 1)

is an isomorphism.
Explicitly, the group Ext1φ1DD

F ′/Q3
(M′

6,1,M
′
6,1) is parameterized by pairs (c, c′) ∈ F2

3 correspond-
ing to

M = (F3[u]/u36)e1 ⊕ (F3[u]/u36)e′1, M1 = 〈u6e1, u
6e′1 + (cu2 + c′u6)e1〉,

with

φ1(u6e1) = e1, φ1(u6e′1 + (cu2 + c′u6)e1) = e′1, N(e1) = 0, N(e′1) = −cu24e1

and descent data
γ̂4(e1) = −

√
−1e1, γ̂4(e′1) = −

√
−1e′1,

γ̂±1
3 (e1) = e1, γ̂

±1
3 (e′1) = e′1 + c(±u6 ± u18 − u24 ± u30)e1.

The classes in Ext1F3[G3](1, 1) which split over an unramified extension of Q3 correspond to the pairs
with c = 0.

(2) The map of groups

Ext1φ1DD
F ′/Q3

(M′
6,ω,M

′
6,ω)→ Ext1F3[G3](ω, ω)

is an isomorphism.
Explicitly, the group Ext1φ1DD

F ′/Q3
(M′

6,ω,M
′
6,ω) is parameterized by pairs (c, c′) ∈ F2

3 correspond-
ing to

M = (F3[u]/u36)eω ⊕ (F3[u]/u36)e′ω, M1 = 〈u6eω, u6e′ω + (cu2 + c′u6)eω〉,
with

φ1(u6eω) = eω, φ1(u6e′ω + (cu2 + c′u6)eω) = e′ω, N(eω) = 0, N(e′ω) = −cu24eω

and descent data
γ̂4(eω) =

√
−1eω, γ̂4(e′ω) =

√
−1e′ω,

γ̂±1
3 (eω) = eω, γ̂±1

3 (e′ω) = e′ω + c(±u6 ± u18 − u24 ± u30)eω.
The classes in Ext1F3[G3](ω, ω) which split over an unramified extension of Q3 correspond to the pairs
with c = 0.

Proof. We treat the first part of the lemma; replacing
√
−1 with −

√
−1 throughout gives the proof of the

second part.
As usual, we can find an ordered F3[u]/u36-basis e1, e′1 of M so that

M1 = 〈u6e1, u
6e′1 + he1〉, φ1(u6e1) = e1, φ1(u6e′1 + he1) = e′1,

and γ̂4(e1) = −
√
−1e1, γ̂4(e′1) = −

√
−1e′1. The conditions γ̂4(M′

1) ⊆ M′
1 and γ̂4 ◦ φ′1 = φ′1 ◦ γ̂4 on M′

1

amount to
h(u) ≡ −h(−

√
−1u) mod u18.

Since {u6t− u6t3|t ∈ F3[u]/u36} consists of multiples of u7, we can change the choice of e′1 so that

h = cu2 + c′u6

for some c, c′ ∈ F3, where we may a priori lose the diagonal form of γ̂4. But the same kind of calculation as
in Lemma 9.3.3 shows γ̂4(e′1) = −

√
−1e′1 + a

√
−1e1 for some a ∈ F3, so the condition γ̂4

4 = 1 forces a = 0
(i.e. γ̂4 still has diagonal action).

It is straightforward to compute the asserted formula for N , and then the wild descent data can be
computed exactly as in our previous computations of wild descent data; this yields the formulas

γ̂±1
3 (e1) = e1, γ̂

±1
3 (e′1) = e′1 + (c±1 + c(±u6 ± u18 − u24 ± u30))e1,
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where c±1 ∈ F3. Modulo u, the linear action of γ±1
3 γ4γ

±1
3 γ3

4 sends e′1 to e′1− c±1e1, but γ±1
3 γ4γ

±1
3 γ3

4 = 1, so
cε = 0 for ε = ±1. Thus, we obtain the asserted list of possibilities. The well-definedness of these examples
follows from Lemma 5.2.2 and Corollary 5.6.2.

It is easy to see that there is a non-zero map F3 ⊗F3 M(0, 1) → F3 ⊗F3 M if and only if c = 0, in which
case such non-zero maps are precisely those induced by

e 7→ au9e1 + u3(u6e′1 + c′u6e1),

where a ∈ F3 satisfies a3 = a+ c′. The verification that c = c′ = 0 corresponds to being in the kernel of our
map of Ext1’s is now clear, since X3 = X + c′ has a solution in F3 if and only if c′ = 0. �

9.4. Completion of the proof of Theorem 4.6.1. Everything in Theorem 4.6.1 is now clear except for
the third assertion, to the proof of which we now turn. Let (G′, {[g]}) be as in the third part of that theorem.
We may suppose that G′ = G×OF OF ′ for some G/OF . The filtration on ρ⊗F3 k gives a filtration

(0) −→ Gω −→ G −→ G1 −→ (0),

which is compatible with the descent data over Q3. According to Lemma 5.2.3 we have Mπ(Gω) ∼=
M(k; rω, fω) and Mπ(G1) ∼= M(k; r1, f1) for some 0 ≤ r1, rω ≤ 12 and some f1, fω ∈ k[u]/u36. We will
let χ denote either 1 or ω. In particular Mπ(Gχ)1 = urχMπ(Gχ) for χ = 1, ω. From this one can conclude
that if H is an subquotient of Gχ then Mπ(H)1 = urχMπ(H). Quite generally, for any Breuil module M

over OF with M1 = ur M and any short exact sequence of Breuil modules

0→M′ →M→M′′ → 0,

we must also have

M′
1 = ur M′, M′′

1 = ur M′′ .

Indeed, M → M′′ is a surjection taking M1 onto M′′
1 , so the assertion for M′′ is clear. Since M′ is a

F3[u]/u36-module direct summand of M and

M′
1 = M′ ∩M1 = M′ ∩ur M,

the assertion for M′ is likewise clear. We conclude that (Mπ(Gχ)′, {ĝ}) admits a filtration with successive
quotients M′

rχ,χ. Thus rχ ∈ {2, 6, 10}.
Consider a fixed surjection of F3[G3]-modules

ρ⊗ k � ρ.

This gives rise to a finite flat OF -group scheme H with descent data on H′ = H×OF ′ over Q3 corresponding
to ρ and an epimorphism

G→→ H

compatible with descent data. Consider the commutative diagram

0→ Mπ(H1) → Mπ(H) → Mπ(Hω) → 0
↓ ↓ ↓

0→ Mπ(G1) → Mπ(G) → Mπ(Gω) → 0

where the top row corresponds to the non-split filtration of ρ. The middle vertical map is an isomorphism
of the source onto a F3[u]/u36-module direct summand of the target, so the left vertical map is as well,
because an injection of F3[u]/u36 into a free F3[u]/u36-module must be an identification with such a direct
summand (consider torsion). This forces Mπ(H1)′ = M′

r1,1 and so, by Proposition 9.2.1, we see that r1 6= 2.
Repeating the analogous argument applied to a submodule ρ ⊆ ρ⊗ k one sees that rω 6= 10.

Thus (G′, {[g]}) is weakly filtered by {Gs,1,Gr,ω} for (r, s) = (2, 6), (6, 10), (2, 10) or (6, 6), as desired.
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9.5. Completion of the proof of Theorem 4.6.3. Write AN for F3[[T ]]/(TN ). For (r, s) = (2, 6),
(6, 10) and (2, 10), we will define a Breuil module MN,(r,s) over OF and descent data {ĝ} for Gal(F ′/Q3)
on M′

N,(r,s) = MN,(r,s) ⊗F3 F9 such that MN,(r,s) and (M′
N,(r,s), {ĝ}) have compatible actions of AN (and

γ̂2 = 1⊗ Frob3). More specifically set t = 2, 6 or 8 according as (r, s) = (2, 6), (6, 10) or (2, 10). Viewing ρ
as an extension class, it corresponds to a particular pair (c, c1) ∈ F2

3 in Proposition 9.2.1. Fix these values.
Motivated by the idea of deforming the formulae in Proposition 9.2.1, we are led to define

MN,(r,s) = (AN [u]/u36)e1 ⊕ (AN [u]/u36)e′ω, (MN,(r,s))1 = 〈use1, u
re′ω + (c+ T )ute1〉

with
φ1(use1) = e1, φ1(ure′ω + (c+ T )ute1) = e′ω.

It is straightforward to check that N ◦φ1 = 0 on MN,(r,s). We may define AN -linear descent data on M′
N,(r,s)

by setting γ̂2 = 1⊗ Frob3 and using the following formulae.
(1) When (r, s) = (2, 6), set

γ̂4(e1) = −
√
−1e1, γ̂4(e′ω) = −

√
−1e′ω,

γ̂±1
3 (e1) = e1, γ̂

±1
3 (e′ω) = (1± u18)(e′ω ± c1u6e1).

(2) When (r, s) = (6, 10), set

γ̂4(e1) =
√
−1e1, γ̂4(e′ω) =

√
−1e′ω,

γ̂±1
3 (e1) = (1∓ u18)e1, γ̂

±1
3 (e′ω) = (e′ω ± c1u6e1).

(3) When (r, s) = (2, 10), set

γ̂4(e1) =
√
−1e1, γ̂4(e′ω) = −

√
−1e′ω,

γ̂±1
3 (e1) = (1∓ u18)e1, γ̂

±1
3 (e′ω) = (1± u18)(e′ω ± c1u12e1).

It is readily checked that this defines an object of φ1DDF ′/Q3,I
with an action of AN . Let GN,(r,s) and

(G′N,(r,s), {[g]}) be the corresponding finite flat OF -group scheme and finite flat OF ′ -group scheme with
descent data.

If 1 ≤M < N then we have a short exact sequence in φ1DDF ′/Q3,I

(0) −→M′
M,(r,s) −→M′

N,(r,s) −→M′
N−M,(r,s) −→ (0),

where the first map is induced by multiplication by TN−M . The case M = 1 shows that

(GN,(r,s), {[g]})Q3/T (GN,(r,s), {ĝ})Q3

corresponds to ρ. Thus we get a surjection of AN [G3]-modules A2
N →→ GN,(r,s)(Q3), which must in fact be an

isomorphism (count orders). Thus (GN,(r,s), {[g]})Q3 defines a deformation ρN,(r,s) of ρ to A2
N . For N ≥ 2

we have ρN,(r,s) mod T 2 ∼= ρ2,(r,s).
We also have an exact sequence

(0) −→M′
s,1 ⊗F3 AN −→ (M′

N,(r,s), {ĝ}) −→M′
r,ω ⊗F3 AN −→ (0)

in φ1DDF ′/Q3
, from which we obtain an exact sequence of AN [G3]-modules

(0) −→ Xω −→ ρN −→ X1 −→ (0).

Note that X1
∼= FN3 and Xω

∼= F3(ω)N as F3[G3]-modules. Moreover, this sequence must split as a sequence
of AN -modules. (Use, for instance, the kernel of ρN (σ) − 1 for any σ ∈ G3 − GQ3(

√
−3).) Thus X1

∼= AN
and Xω

∼= AN (ω) as AN [G3]-modules, so det ρN = ω.
Finally, we must check that the exact sequence

(0) −→ ρ −→ ρ2 −→ ρ −→ (0)
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is not split. We have maps of Breuil modules

f1 : Ms,1 −→ M2,(r,s)

e 7−→ e1

and
f2 : M2,(r,s) −→ Mr,ω

e1 7−→ 0
Te1 7−→ 0
e′ω 7−→ 0

Te′ω 7−→ e
compatible with descent data. These give rise to maps

f∗1 : ρ2 −→ 1

and
f∗2 : ω −→ ρ2,

such that the composites

ρ ↪→ ρ2
f∗1−→ 1

and
ω

f∗2−→ ρ2 →→ ρ

are non-zero.
To check that

(0) −→ ρ −→ ρ2 −→ ρ −→ (0)
is non-split, it suffices to check that

(9.5.1) (0) −→ ω −→ ker f∗1 / Im f∗2 −→ 1 −→ (0)

is non-split. However ker f∗1 / Im f∗2 corresponds to an object (N′, {ĝ}) of φ1DDF ′/Q3,I
satisfying

N′ = (F9[u]/u36)(Te1)⊕ (F9[u]/u36)e′ω, N′
1 = 〈us(Te1), ure′ω + ut(Te1)〉

with
φ1(us(Te1)) = (Te1), φ1(ure′ω + ut(Te1)) = e′ω.

By Lemma 5.2.2, the sequence of Breuil modules with descent data

(0) −→M′
s,1 −→ N′ −→M′

r,ω −→ (0)

is not split. This sequence recovers (9.5.1) under generic fibre descent, so by Proposition 9.2.1

(0) −→ ω −→ ker f∗1 / Im f∗2 −→ 1 −→ (0)

is not split.

9.6. Completion of the proof of Theorem 4.6.2. Suppose first that (r, s) = (2, 6), (6, 10) or (2, 10). By
Lemma 9.3.1

θ0 : Ext1Si,(r,s)(ρ, ρ) −→ H1(G3, ω)

is the zero map. Lemma 9.3.3 then tells us that if r 6= 6 then

θ1 : Ext1Si,(r,s)(ρ, ρ) −→ H1(I3,F3)

is the zero map; while if s 6= 6 then

θω : Ext1Si,(r,s)(ρ, ρ) −→ H1(I3,F3)

is the zero map. Thus Theorem 4.7.5, and hence Theorem 4.6.2, follows in these cases.
Now consider the case (r, s) = (6, 6). Choose x ∈ H1

Si,(6,6)
(G3, ad0 ρ). Let G denote the corresponding

rank 81 finite flat OF -group scheme with descent data {[g]} on G′ = G ×OF OF ′ . Set M = Mπ(G). Let
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H ⊂ G denote the closed subgroup scheme (with descent data) corresponding to the kernel of the map
(G′, {[g]})Q3 →→ ρ→→ F3 and let N = Mπ(H). Then N has F3[u]/u36-basis eω, e′1, e

′
ω with respect to which

N1 = 〈u6eω, u6e′1 + (b+ b′u4)eω, u6e′ω + (c+ c′u4)e′1 + feω〉,
where b, b′, c, c′ ∈ F3, f ∈ F3[u]/u36, and φ1 sends the indicated generators of N1 to eω, e′1, e

′
ω respectively.

Also, the descent data has the form

γ̂4(eω) =
√
−1eω, γ̂4(e′1) = −

√
−1e′1, γ̂4(e′ω) =

√
−1e′ω + hγ4(u)eω

for some hγ4 ∈ F9[u]/u36, and

γ̂±1
3 (eω) = eω, γ̂±1

3 (e′1) = e′1 + (±b− b′(±u12 + u30))eω, γ̂±1
3 (e′ω) = e′ω + (±c− c′(±u12 + u30))e′1 + h±1eω,

where h±1 ∈ F9[u]/u36. Also, as ρ is très ramifié, we see that c 6= 0 by Proposition 9.2.1 and Lemma 9.3.4.
The requirement that u12 N ⊆ N1 forces N1 to contain

u12e′ω = u6(u6e′ω + (c+ c′u4)e′1 + feω)− (c+ c′u4)(u6e′1 + (b+ b′u4)eω) + ((b+ b′u4)(c+ c′u4)− fu6)eω,

so N1 must contain (b+ b′u4)(c+ c′u4)eω. As c 6= 0 we get (b+ b′u4)eω ∈ N1, and since eω, u4eω 6∈ N1, we
must have b = b′ = 0. We conclude that the natural map

θ0 : Ext1Si,(6,6)(ρ, ρ) −→ H1(G3, ω)

is the zero map.
Let us further analyse N. Replacing e′ω by e′ω + t3eω for t ∈ F3[u]/u36 causes f to be replaced by

f−u6t3 +u6t and otherwise leaves our standardized form unchanged (except that hγ4 and h±1 may change).
Using a suitable choice of such t, we may assume f has degree at most 6. On the other hand,

γ̂4(u6e′ω+(c+c′u4)e′1 +feω) = −
√
−1(u6e′ω+(c+c′u4)e′1 +feω)+(

√
−1(f(u)+f(−

√
−1u))−u6hγ4(u))eω,

so γ̂4(N′
1) ⊆ N′

1 if and only if
f(u) + f(−

√
−1u) ≡ 0 mod u6,

which forces
f = a2u

2 + a6u
6

for some a2, a6 ∈ F3. ¿From the wild descent data formulae derived in the proof of Lemma 9.3.4 we also see
that h±1 ≡ 0 mod u6.

Now M has an ordered basis e1, eω, e′1, e
′
ω with respect to which

(9.6.1) M1 = 〈u6e1, u
6eω + (c+ c′u4)e1, u

6e′1 + he1, u
6e′ω + (c+ c′u4)e′1 + (a2u

2 + a6u
6)eω + ge1〉,

where g, h ∈ F3[u]/u36 and φ1 sends the indicated generators of M1 to e1, eω, e′1, e
′
ω. If we try to expand

out u12e′ω as a linear combination of the indicated generators of M1, we find that

u12e′ω ≡ ((c+ c′u4)h+ ca2u
2)e1 mod M1 .

It follows that u12e′ω ∈M1 if and only if

(c+ c′u4)h+ ca2u
2 ≡ 0 mod u6.

Since ρ is très ramifié, the last part of Proposition 9.2.1 tells us that c 6= 0. Thus, u12e′ω ∈M1 if and only if
h ≡ −a2u

2 mod u6. We can now use Lemma 9.3.4 to see that the wild descent data action is determined by

γ̂±1
3 (e1) = e1, γ̂

±1
3 (eω) = eω + (±c− c′(±u12 + u30))e1, γ̂

±1
3 (e′1) = e′1 + f±1e1

(with f±1 ≡ 0 mod u6), and

γ̂±1
3 (e′ω) = e′ω + (±c− c′(±u12 + u30))e′1 + h±1eω + g±1e1

where g±1 ∈ F9[u]/u36 and h±1 ≡ 0 mod u6.
We must have

(9.6.2) γ̂±1
3 (u6e′ω + (c+ c′u4)e′1 + (a2u

2 + a6u
6)eω + g(u)e1) ∈M′

1,
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and this expression is easily computed to equal

u6H6
γ±1
3
· (e′ω + (±c− c′(±u12 + u30))e′1 + h±1eω + g±1e1) + (c+ c′u4H4

γ±1
3

)(e′1 + f±1e1)

+(a2u
2H2

γ±1
3

+ a6u
6H6

γ±1
3

)(eω + (±c− c′(±u12 + u30))e1) + g(uHγ±1
3

)e1.

Remembering that 〈u6e1, u
12 M′〉 ⊆M′

1, (9.6.2) becomes

u6(e′ω ± ce′1) + (c+ c′u4H4
γ±1
3

)e′1 + (a2u
2H2

γ±1
3

+ a6u
6)eω ± a2cu

2e1 + g(u)e1 ∈M′
1.

Using the explicit generators of M1 given in (9.6.1) and recalling that h ≡ −a2u
2 mod u6, this simplifies to

±a2cu
2e1 ∈M′

1 .

Thus a2cu
2 is divisible by u6, so a2 = 0.

The image of the class x in Ext1F3[G3](ω, ω) under θω corresponds to a finite flat OF -group scheme with
Breuil module Mx free of rank two over F3[u]/u36 with basis eω, e′ω, and with

(Mx)1 = 〈u6eω, u6e′ω + a6u
6eω〉,

where φ1 sends the indicated generators of (Mx)1 to eω and e′ω respectively. According to the proof of Lemma
9.3.4 this implies that the image of the class x in Ext1F3[G3](ω, ω) is split over an unramified extension of Q3.
Thus,

θω : Ext1Si,(6,6)(ρ, ρ) −→ H1(I3,F3)

is the zero map. This completes the proof of Theorem 4.7.5, and hence of Theorem 4.6.2.

10. Corrigenda for [CDT].

We would like to take this opportunity to record a few corrections to [CDT].
• Page 532, line -6: “The semisimplicity of σn follows from that of σ1” is false and should be deleted.

This assertion was not used anywhere in the rest of the paper.
• Page 537, line 7: replace GL2(C) by GL2(R).
• Page 538, line -10: replace “of type (S, τ)” by “such that ρ|G` is of type τ and ρ is of type (S, τ)”.
• Page 539, lines 18-20: replace each ω1 by η1 and each ω2 by η2.
• Page 541, line 14: replace each of the three occurences of A by A∞.
• Page 544, line -6: “the discrete topology on Vp” should read “the `-adic topology on Mp”.
• Page 545, part 4 of Lemma 6.1.2: V ′ should be assumed to be a normal subgroup of V .
• Page 546, line 1: We should have noted that the key component of this argument is very similar to

the main idea of [Kh].
• §6.2: There are two significant errors in this section. The assertion “Γ = SL2(Z) ∩ US satisfies the

hypotheses of Theorem 6.1.1” is false and Hom(Ln, k) should be Ln⊗k. The argument of this section
can be repaired by making the following changes.

– Page 546, lines 5 and 6: Replace “Setting S = T (ρ)∪{r}, we find that the group Γ = SL2(Z)∩US
satisfies the hypotheses of Theorem 6.1.1.” by “Set S = T (ρ) ∪ {r}; U ′S =

∏
p U

′
S,p where

U ′S,p = U1(pcp) if p ∈ T (ρ) and U ′S,p = US,p otherwise; V ′S =
∏
p V

′
S,p where V ′S,p = U1(pcp)

if p ∈ T (ρ) and V ′S,p = VS,p otherwise; and L′S = HomO[U ′S/V
′
S ](M`,H

1(XV ′S
,O))[I ′S ]. Then

Γ = SL2(Z) ∩ U ′S satisfies the hypotheses of Theorem 6.1.1.”
– Page 546, lines 7-13: Replace YS by YU ′S , Hom(Ln, k) by Ln⊗k, MS by M`, FS by FHomO(M`,O)

and LS by L′S .
– Page 546, line 13: Replace “ and NS is non-empty.” by “. Using the fact that lemma 5.1.1

holds with U ′S replacing US and σ` replacing σS and the discussion on page 541 we conclude
that NS is non-empty.”

• Page 549, line -15: Replace U{r,r′},p by U{r},p.
• Page 549, line -11: Replace U ′S/U

′
0,S by V0/V1.
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• Page 552, line 4: The assertion is false in the case ` ≥ 5. It can be corrected by adding “and
j(E) 6≡ 1728 mod ` (which is true if, for instance, E has potentially supersingular reduction and
` ≡ 1 mod 4)” after “if ` ≥ 5”.
• Page 554, line 11: replace “jE ∈” by “E is isogenous to an elliptic curve with j-invariant in the set”.
• Page 554, line 11: replace 5(29)3/25 by −5(29)3/25.
• Page 554, line 17: replace the paremthetical comment “(and j = 5(29)3/25)” by “(and isogenous to

one with j-invariant −5(29)3/25)”.
• Page 554, line -5: replace p by q and q by p.
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