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1 Lecture 1: Global setting and main result

I first thank Chol Park for inviting me to the K.I.A.S. and giving me the oppor-
tunity to give these lectures.

In all the talks, p is a prime number, E is a finite extension of Qp which
is tacitly assumed “sufficiently large”, OE the ring of integers of E and kE the
residue field. I normalize local class field theory so that uniformizers correspond
to geometric Frobeniuses. I denote by unr(a) the unramified character of Q×p
sending p to a and by ε the p-adic cyclotomic character (which has Hodge-Tate
1). For instance | | = unr(p−1) and ε(x) = x|x|.

The aim of these lectures is to explain a recent result, due to Eugen Hell-
mann, Benjamin Schraen and myself, unravelling a little bit the mysteries sur-
rounding the (socle of the) locally Qp-analytic representations occuring in Hecke
eigenspaces of the completed cohomology (for compact unitary groups).

1.1 Global setting

I fix a totally real number field F+ and a quadratic totally imaginary extension
F/F+ where each place v|p in F+ splits in F . For simplicity in these lectures
I will assume that p splits completely in F+ (and thus in F ) and denote by Sp
the places of F+ dividing p. I fix G a connected reductive algebraic group over
F+ which is an outer form of GLn (n ≥ 2) such that G ×F+ F

∼→ GLn/F and

G×F+ F+
v
∼→ Un(R) for each infinite place v of F+. I set Gp :=

∏
v∈Sp G(F+

v ) ∼=∏
v∈Sp GLn(Qp).

I fix a prime-to-p level Up =
∏

v Uv ⊂ G(Ap∞F+) where Uv is a compact open sub-
group of G(F+

v ) and a finite extension E of Qp (containing all Hecke eigenvalues

I will consider). I denote by Ŝ(Up, E) the p-adic Banach space over E of contin-
uous functions f : G(F+)\G(A∞F+)/Up −→ E endowed with the left continuous
action of Gp given by (g′f)(g) := f(gg′) (a special instance of Emerton’s com-
pleted cohomology groups). The action of Gp preserves the unit ball given by the

OE-submodule Ŝ(Up,OE) of continuous functions G(F+)\G(A∞F+)/Up −→ OE,

and Ŝ(Up, E) is called a unitary continuous representation of Gp. I denote

by Ŝ(Up, E)an ⊂ Ŝ(Up, E) the locally analytic representation of Gp defined

as the E-subvector space of Ŝ(Up, E) of locally analytic vectors for the ac-
tion of Gp, or equivalently the E-subvector space of locally analytic functions
G(F+)\G(A∞F+)/Up −→ E. This is an admissible locally analytic representation
of Gp over E in the sense of Schneider and Teitelbaum.

Let S = S(Up) be the finite set of finite places of F+ which is the union of
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Sp and of the finite places v - p that split in F such that Uv is not maximal. For
each v ∈ S, I choose ṽ one of the two places of F above v (this choice won’t
matter). One can define a commutative spherical Hecke OE-algebra T = T(Up)

(a polynomial ring over OE in the formal variables T
(j)
w for j ∈ {1, . . . , n} and w

a finite place of F dividing a split place of F+ not in S) which acts on Ŝ(Up, E)

and Ŝ(Up, E)an and commutes with Gp. For any ρ : Gal(F/F )→ GLn(E) which
is continuous and unramified outside the places above S one can associate a
maximal ideal mρ of T[1/p] by a standard recipee (looking at the characteristic
polynomials of Frobenius at the above places w).

One far reaching aim of the locally analytic Langlands program is to describe
the eigenspace Ŝ(Up, E)an[mρ] as a locally analytic representation of Gp (when it

is non-zero). In particular we would wish to relate Ŝ(Up, E)an[mρ] to the local
representations ρṽ := ρ|Gal(F ṽ/Fṽ)

for v ∈ Sp (recall Gal(F ṽ/Fṽ) = Gal(Qp/Qp)

for v ∈ Sp). Note that the assumption Ŝ(Up, E)an[mρ] 6= 0 forces ρc ∼= ρ∨ ⊗ ε1−n
where ρc(g) := ρ(cgc), c being the unique non-trivial element of Gal(F/F+). This
implies in particular ρṽc ∼= ρ∨ṽ ⊗ ε1−n if ṽc is the other place of F above v ∈ S,
which is the reason why the choice of ṽ is harmless.

1.2 Socle conjecture

From now on, I assume that ρṽ is crystalline for all v ∈ Sp. The Gp-representation

Ŝ(Up, E)an[mρ] can be a priori quite complicated (e.g. it presumably can have
even more constituents than Verma modules). As a first approximation, and
by analogy with the mod p theory and the important works on Serre weight
conjectures, I wish to understand its socle as a Gp-representation. More precisely,
since the only irreducible admissible locally analytic representations of Gp we
understand so far are irreducible locally algebraic representations and irreducible
subquotients of locally analytic principal series1, and since the locally algebraic
constituents in the socle are already known by the classical theory, I wish to know
for which irreducible subquotient C of a locally analytic principal series of Gp

one has:
HomGp(C, Ŝ(Up, E)an[mρ]) 6= 0.

Let χ : Tp −→ E× be a locally analytic character of the diagonal torus Tp of Gp,
that we see as a locally analytic character of Bp by inflation, where Bp ⊂ Gp

is the subgroup of lower triangular matrices (this normalization turns out to be

1apart when n = 2 where other constituents can be constructed via (ϕ,Γ)-modules or via
functions on the coverings of Drinfeld upper half plane by the work of Colmez and of Dospinescu-
Le Bras on the p-adic local Langlands correspondence for GL2(Qp)
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convenient). Then the locally analytic principal series (Ind
Gp

Bp
χ)an is:(

Ind
Gp

Bp
χ
)an

:= {f : Gp → E locally analytic, f(bg) = χ(b)f(g) ∀ b ∈ Bp, g ∈ Gp}

with the left action of Gp given by (g′f)(g) := f(gg′). The irreducible constituents

of
(

Ind
Gp

Bp
χ
)an

have been described by Orlik and Strauch using the theory of

Verma modules.

I now moreover assume that ρ is automorphic and absolutely irreducible. This
implies in particular that each (crystalline) ρṽ for v ∈ Sp has distinct Hodge-Tate
weights hṽ,1 < · · · < hṽ,n. I finally moreover assume that for each v ∈ Sp
the eigenvalues ϕṽ,i ∈ E of the crystalline Frobenius on Dcris(ρṽ) = (Bcris ⊗Qp
ρṽ)

Gal(Qp/Qp) are all distinct and such that
ϕṽ,i
ϕṽ,j
6= p for all i, j.

For v ∈ Sp I denote by Rv an ordering ϕṽ,j1 , . . . , ϕṽ,jn of the above eigenvalues
and I set R := (Rv)v∈Sp (R for refinement) and λṽ,i := hṽ,n+1−i + i − 1 (so
that λṽ,1 ≥ · · · ≥ λṽ,n). For R := (Rv)v∈Sp I define the smooth character δR =
(δRv)v∈Sp of Tp where δRv for each v is the following smooth character of the
diagonal torus Tv of G(F+

v ) ∼= GLn(Fṽ)= GLn(Qp):

unr(ϕṽ,j1)⊗ unr(ϕṽ,j2)| | ⊗ · · · ⊗ unr(ϕṽ,jn)| |n−1.

For w = (wv)v∈Sp ∈ S
|Sp|
n (the Weyl group of Gp) I define the algebraic character

ww0 · λ = (wvwv,0 · λṽ)v∈Sp of Tp where wvwv,0 · λṽ for each v is the following
algebraic character of Tv:

diag(t1, . . . , tn) 7−→ t
h
ṽ,w−1

v (1)

1 t
h
ṽ,w−1

v (2)
+1

2 · · · t
h
ṽ,w−1

v (n)
+n−1

n

(the notation comes from the fact that this is indeed ww0 · λ for · the dot action
with respect to the upper Borel Bp and w0 = (wv,0)v∈Sp the longest element of

S |Sp|n ). Then for each R and each w ∈ S |Sp|n , I finally define the following locally
analytic constituent:

CR,w := socle
(

Ind
Gp

Bp
(ww0 · λ)δR

)an
which turns out to be irreducible (using Orlik-Strauch’s theory). For a fixed R,
the CR,w are all distinct. But for a fixed w, they are not all distinct, for instance
the C(R, w0) are all isomorphic.

The refinement R defines for each v ∈ Sp a unique Frobenius stable flag on
Dcris(ρṽ). Taking the induced Hodge filtration on this flag in turn determines
a unique ordering hw−1

Rv (1)
, . . . , hw−1

Rv (n)
of the Hodge-Tate weights of ρṽ for some

unique wRv ∈ Sn. I set wR := (wRv)v∈Sp ∈ S
|Sp|
n . For instance, when the Hodge

filtration is very generic for each v ∈ Sp, one finds wR = w0.
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Conjecture 1.2.1. We have HomGp

(
CR,w, Ŝ(Up, E)an[mρ]

)
6= 0 if and only if

wR � w where � is the Bruhat order on S |Sp|n .

This statement is a quantitative version of the following qualitative statement:
“the more the Hodge filtration is degenerate, the more constituents appear in the
socle”. For instance when the Hodge filtration is very generic for each v ∈ Sp,
by which I now mean wR = w0, Conjecture 1.2.1 only predicts the constituent
C(R, w0). This is a well-known theorem in that case: (i) the constituent C(R, w0)
is locally algebraic (the only such one among the C(R, w)) and its existence easily
follows from the automorphy of ρ whatever wR is, (ii) the fact that no other
C(R, w) occurs when wR = w0 is a consequence of a result of Chenevier (or of
more recent results of Kedlaya-Pottharst-Xiao/Liu).

Remark 1.2.2. I do not conjecture that the CR,w for wR � w exhaust the

socle of Ŝ(Up, E)an[mρ], as the latter could contain some unknown constituents
of “supercuspidal nature” (even in this crystalline case). Note also that the socle
is not known so far to be of finite length.

1.3 Main result and beginning of the proof

The main result is a proof of Conjecture 1.2.1 under several extra assump-
tions, which essentially come from the Taylor-Wiles method. Recall that ρ :
Gal(F/F ) → GLn(E) is automorphic of prime-to-p level Up (which a fortiori

implies Ŝ(Up, E)an[mρ] 6= 0) and crystalline at v ∈ Sp with
ϕṽ,i
ϕṽ,j

/∈ {1, p} for i 6= j.

Theorem 1.3.1. Assume the following extra assumptions:

(i) p > 2 and F/F+ is unramified;

(ii) G is quasi-split at all finite places of F+;

(iii) ρ is residually absolutely irreducible and ρ(Gal(F/F ( p
√

1))) is adequate;

(iv) Up is small enough and Uv is maximal hyperspecial when v is inert in F .

Then Conjecture 1.2.1 is true.

The case n = 2 of this theorem was already known and due to Yiwen Ding.

Remark 1.3.2. One can also prove the following strengthening of Theorem 1.3.1
(under the same assumptions): the irreducible constituents of locally analytic

principal series of Gp which appear in the socle of Ŝ(Up, E)an[mρ] are the CR,w
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for all refinements R and all w such that wR � w (i.e. such constituents are

automatically of the form CR,w for someR and some w ∈ S |Sp|n ). Due to limitation
in the present status of Orlik-Strauch’s theory, this strengthening so far requires
that all local fields F+

v for v ∈ Sp are equal to Qp (which is our case, but here it
is not just for simplicity anymore!), though it is undoubtedly true without this
assumption.

I now start to sketch the proof of Theorem 1.3.1, that I have divided into
several steps. This proof, and the material it requires, will occupy us until the
end of these lectures. I adopt the following policy: technical complications which
are not crucial to the proof but could obscure its understanding will be overlooked.
I will explicitly mention in the course of the proof what is overlooked and from
where it starts to be. In practice this means that several statements in what
follows are (strictly speaking) wrong as stated, so be careful if you use them!

Step 1: The patched Gp-representation Π∞.

Let mρ be the maximal ideal of T of residue field kE associated to ρ (the ir-

reducible mod p reduction of ρ) and Ŝ(Up, E)anmρ the locally analytic vectors of
the p-adic completion of the corresponding localization. Let Rρ,S be the noethe-
rian complete local OE-algebra of residue field kE pro-representing the functor of
(usual) deformations of ρ that are unramified outside S and conjugate self-dual

(for instance ρ). Then Rρ,S naturally acts on Ŝ(Up, E)anmρ through a certain re-

duced quotient Rρ,S . Let Rloc be the reduced framed deformation ring at places
v ∈ S, that is, Rloc := ⊗̂v∈SRρṽ where Rρṽ is the reduced framed local deforma-
tion ring over OE of ρṽ := ρ|Gal(F ṽ/Fṽ)

. By the universal property of Rρṽ there is

a canonical map of local rings Rloc → Rρ,S .

Caraiani-Emerton-Gee-Geraghty-Paskunas-Shin applied a generalization of
Taylor-Wiles-Kisin’s patching method (by patching also at places above p) to pro-
duce a patched locally analytic representation Πan

∞ of Gp over E which is a module

overR∞ := Rloc[[x1, . . . , xg]] for some integer g ≥ 1 such that Πan
∞[I] ∼= Ŝ(Up, E)anmρ

asR∞[Gp]-modules where I is the kernel of a surjectionR∞[1/p] � Rρ,S [1/p] com-
patible with Rloc → Rρ,S . This is essentially the place were all hypothesis (i) to
(iv) in the main result above are used. Let m∞,ρ := ker(R∞[1/p] � Rρ,S [1/p] �
E) where the last surjection is given by the deformation ρ, since:

Πan
∞[m∞,ρ] = Πan

∞[I][m∞,ρ] ∼= Ŝ(Up, E)anmρ [mρ] ∼= Ŝ(Up, E)an[mρ]

it is enough to prove HomGp

(
CR,w,Π

an
∞[m∞,ρ]

)
6= 0 if and only if wR � w.

I now write mρ instead of m∞,ρ (and forget the previous mρ). I set X∞ :=
(Spf R∞)rig (generic fiber à la Raynaud of the formal scheme Spf R∞) and denote
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by ÔX∞,ρ the (underlying ring of the) completion of X∞ at the point defined by
ρ. Then:

LR,w := lim←−
m

HomGp

(
CR,w,Π

an
∞[mm

ρ ]
)∨

where (−)∨ is the dual (each HomGp(CR,w,Π
an
∞[mm

ρ ]) is finite dimensional over E)

is an ÔX∞,ρ-module via the action of R∞ on each Πan
∞[mm

ρ ]. Since an eigenspace is
non-zero if and only if the corresponding generalized eigenspace is non-zero, we
see that it is equivalent to prove that the ÔX∞,ρ-module LR,w is non-zero if and
only if wR � w.
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2 Lecture 2: Eigenvarieties

I go on with the next steps in the (sketch of the) proof of Theorem 1.3.1, which
crucially involve eigenvarieties.

Step 2: An equality of cycles.

Consider the locally analytic Tp-representation JBp(Π
an
∞) where JBp is Emerton’s

locally analytic Jacquet functor with respect toBp := upper triangular matrices in
Gp. It follows from the admissibility of Πan

∞ that the continuous dual of JBp(Π
an
∞)

is the global section of a coherent sheaf M∞ on the quasi-Stein reduced rigid
analytic space X∞ × T̂p where T̂p is the rigid space over E parametrizing locally
analytic characters of Tp. The schematic support ofM∞ turns out to be a reduced

equidimensional Zariski-closed subvariety of X∞× T̂p that I denote by Xp(ρ). For

any locally analytic character χ ∈ T̂p, I denote by Xp(ρ)χ the fiber of Xp(ρ) above
χ. We have a closed immersion Xp(ρ)χ ↪→ X∞.

For any locally analytic character χ : Tp −→ E×, we have that:

lim←−
m

HomTp

(
χ, JBp(Π

an
∞[mm

ρ ])
)∨

(a projective limit of finite dimensional E-vector spaces with surjective transition
maps) is non-zero if and only if HomTp(χ, JBp(Π

an
∞[mρ])) is non-zero if and only if

(ρ, χ) ∈ Xp(ρ), and is isomorphic to ̂(M∞,χ)(ρ,χ):= completion at (ρ, χ) ∈ Xp(ρ)χ
of the pull-back of M∞ on Xp(ρ)χ (this completion being zero when (ρ, χ) /∈
Xp(ρ)). Applying this to χR,w := (ww0 · λ)δR for any refinement R and any

w ∈ S |Sp|n as in Lecture 1, I get finite type ÔXp(ρ)χR,w ,(ρ,χR,w)-modulesMR,w where

ÔXp(ρ)χR,w ,(ρ,χR,w) is the completed local ring of Xp(ρ)χR,w at (ρ, χR,w). Note that

ÔX∞,ρ � ÔXp(ρ)χR,w ,(ρ,χR,w).

Using Orlik-Strauch’s theory, one can define a finite length locally analytic
representation (see e.g. my 2013 lectures at Beijing):

FGp
Bp

(
U(gp)⊗U(bp)

−ww0 · λ, δR
)

(here gp, bp are the respective Lie algebras of Gp, Bp and U(−) their enveloping
algebra, so U(gp)⊗U(bp)

−ww0 ·λ is a Verma module with integral weights) which

has exactly the same irreducible constituents as (Ind
Gp

Bp
(ww0 · λ)δR)an but in

the “reverse order”. These constituents are precisely the CR,w′ for w′ � w and
from the theory of Verma modules one gets that CR,w′ occurs with multiplicity
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Pw0w,w0w′(1) ∈ Z≥1 where the Px,y ∈ Z≥0[q] for x � y are the Kazhdan-Lusztig
polynomials.

For d ∈ Z≥0 let Zd(Spec ÔX∞,ρ) be the free abelian group generated by the

irreducible closed subschemes of codimension d in Spec ÔX∞,ρ. If E is any finite

type ÔX∞,ρ-module such that its support has codimension ≥ d, set:

[E ] :=
∑
Z

m(Z, E)[Z] ∈ Zd(Spec ÔX∞,ρ)

where the sum runs over all irreducible subschemes Z of codimension d and
m(Z, E) ∈ Z≥0 is the length of the (ÔX∞,ρ)ηZ -module EηZ , ηZ being the generic

point of Z. For instance we can apply this to d = [F+ : Q]n(n+3)
2

and E =MR,w

(which can be proven to have support of codimension ≥ [F+ : Q]n(n+3)
2

).

There is an adjonction formula:

HomGp

(
FGp
Bp

(U(gp)⊗U(bp)
−ww0 ·λ, δR),Πan

∞[mm
ρ ]
) ∼= HomTp

(
χR,w, JBp(Π

an
∞[mm

ρ ])
)

from which, taking duals, lim←−m and making dévissage, one can deduce that each

ÔX∞,ρ-module LR,w′ (see Step 1) for w′ � w is of finite type with support of

codimension ≥ [F+ : Q]n(n+3)
2

and that:

[MR,w] =
∑
w′�w

Pw0w,w0w′(1)[LR,w′ ] in Z[F+:Q]
n(n+3)

2 (Spec ÔX∞,ρ).

In fact, this is not quite true. To have exact sequences in the dévissage, and thus
the above formula, one also needs to take everywhere the generalized eigenspace
on the smooth part δR. However this technical point is not crucial in understand-
ing the proof and I forget it here (as I explained in Lecture 1).

This finishes Step 2. Recall I want to prove LR,w′ 6= 0 if and only if wR � w′.
But there is no direct way to see which LR,w′ are non-zero. For this, I will first
need to introduce a new tool: a more tractable purely local version of the patched
eigenvariety Xp(ρ) (which doesn’t involve any patching).

Step 3: Link with the trianguline variety.

For v ∈ Sp I set Xρṽ := (Spf Rρṽ)
rig and T̂v the rigid space parametrizing locally

analytic characters on Tv. I set:

T̂v,reg := {δ = δ1 ⊗ · · · ⊗ δn, δi
δj
/∈ {x 7→ x−m, x 7→ xmε(x), m ∈ Z≥0} for i 6= j}

(a Zariski open subset of T̂v) and define Xtri(ρṽ) ⊂ Xρṽ×T̂v as the reduced Zariski-

closure of the points (r, δ) ∈ Xρṽ × T̂v,reg such that r is trianguline (in the sense
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of Colmez) and the locally analytic character δ comes from a triangulation on
Drig(r). I call these points on Xtri(ρṽ) saturated points. Here, recall that Drig(r)
is the étale (ϕ,Γ)-module over the Robba ring associated to r by the work of
Fontaine, Cherbonnier, Colmez, ... and that a triangulation - or equivalently
a flag by not-necessarily étale sub-(ϕ,Γ)-modules that are direct summands as
modules - gives rise to a locally analytic character δ (essentially) by local class
field theory. It turns out thatXtri(ρṽ) is equidimensional, and that many new non-
saturated points (r, δ) arise in this Zariski-closure. More precisely it follows from
work of Kedlaya-Pottharst-Xiao or Liu that any r that appears is still trianguline,
but that δ need not come from a triangulation on Drig(r).

I set Rρp := ⊗̂v∈S\SpRρṽ , Xρp := (Spf Rρp)
rig, Ug := (Spf OE[[x1, . . . , xg]])

rig

and I recall that there is a closed immersion:

Xp(ρ) ↪→ X∞ × T̂p ∼=
( ∏
v∈Sp

Xρṽ × T̂v
)
× Xρp × Ug.

Using that crystalline points with a very generic Hodge filtration (in the sense of
Lecture 1) are Zariski-dense in Xp(ρ) and that the image of those points on the
right hand side lie in (

∏
v∈Sp Xtri(ρṽ))×Xρp×Ug, one can deduce by density that

the above closed immersion factors as a closed immersion:

Xp(ρ) ↪→
( ∏
v∈Sp

Xtri(ρṽ)
)
× Xρp × Ug.

There is a small technical point here: in order to see points of Xp(ρ) as points of

the right hand side, one actually needs to make the following shift on T̂v for each
v ∈ Sp:

χ1 ⊗ · · · ⊗ χn 7−→ χ1 ⊗ χ2ε
−1 ⊗ · · · ⊗ χnε−(n−1).

Set Xtri(ρp) :=
∏

v∈Sp Xtri(ρṽ), it can be checked that the two equidimensional

reduced rigid spaces Xp(ρ) and Xtri(ρp)×Xρp×Ug have the same dimension, and
thus Xp(ρ) is a union of irreducible components of Xtri(ρp) × Xρp × Ug. Since
Xρp ×Ug never plays a key role in the rest of the proof, I will forget it from now
on and do as if Xp(ρ) is a union of irreducible components of Xtri(ρp). It can
be checked that the (usual) automorphy conjectures in all Hodge-Tate weights
imply that Xp(ρ) should be exactly the union of those irreducible components of
Xtri(ρp) containing a saturated crystalline point, but fortunately we won’t need
this in the sequel.

I would like to emphasize that the two definitions of Xp(ρ) and Xtri(ρp) are
very different: the first one is the support of the coherent sheaf defined by apply-
ing the Jacquet-Emerton functor to the locally analytic representation Πan

∞ of Gp,
whereas the second one is the Zariski-closure of triangulations on (ϕ,Γ)-modules
of n-dimensional p-adic representations of Gal(Qp/Qp). There is so far (unfortu-
nately!) no purely local analogue of the locally analytic representation Πan

∞ from
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which one could try to obtain Xtri(ρp) by the Jacquet-Emerton functor method
(except maybe for GL2(Qp)).

Since I decided to forget Xρp × Ug, I have now to replace X∞ by Xρp :=∏
v∈Sp Xρṽ and ÔX∞,ρ by ÔXρp ,ρp

where ρp := (ρṽ)v∈Sp . One idea in order to

understand the ÔXρp ,ρp
-modules LR,w′ of Step 1 is to look for a purely local Galois-

theoretic definition of ÔXρp ,ρp
-modules (for instance coming from Xtri(ρp)) which

would be more tractable than the LR,w′ and hopefully ultimately equal (the
hope being that all these constructions from the patched Πan

∞ should anyway be
essentially local at p). What I will do is close to that: I will give a purely local

definition of cycles CR,w′ ∈ Z[F+:Q]
n(n+3)

2 (Spec ÔXρp ,ρp
) and prove that [LR,w′ ] and

CR,w′ are closely related. But before going into this, I need material concerning
(i) companion points on Xtri(ρṽ) and (ii) the local description of Xtri(ρṽ) around
companion points.

Step 4: Local companion points.

Fix v ∈ Sp. For any ordering Rv as in Lecture 1 and any wv ∈ Sn, let δRv ,wv ∈ T̂v
be the shift of (wvwv,0 · λṽ)δRv defined in Step 3 and set:

xRv ,wv := (ρṽ, δRv ,wv) ∈ Xρṽ × T̂v

(see Lecture 1 for the notation). We know that xRv ,wRv ∈ Xtri(ρṽ) ⊂ Xρṽ × T̂v
since by definition of wRv it is a saturated point (the Frobenius stable flag on
Dcris(ρṽ) defined by Rv gives rise to a triangulation on Drig(ρṽ) which, unravelling
the definitions, gives rise to δRv ,wv). But it is not clear which other xRv ,wv for
wv ∈ Sn belong to Xtri(ρṽ).

Let Rhṽ−cr
ρṽ

be the reduced quotient of Rρṽ parametrizing (framed) cristalline

deformations of ρṽ with Hodge-Tate weights hṽ,i. Set Xhṽ−cr
ρṽ

:= (Spf Rhṽ−cr
ρṽ

)rig

and:
X̃hṽ−cr
ρṽ

:= Xhṽ−cr
ρṽ

×T rig/Sn T
rig

where T rig ∼= (Grig
m )n is the rigid diagonal torus (over E) and the morphism

Xhṽ−cr
ρṽ

→ T rig/Sn ∼= An,rigE sends a crystalline deformation to the coefficients of
the characteristic polynomial of its crystalline Frobenius. One can check that
X̃hṽ−cr
ρṽ

is a reduced (equidimensional) rigid space.

There is a morphism X̃hṽ−cr
ρṽ

→ (GLn /B)rig given by the Hodge filtration (in
fact, this morphism is only defined locally, but this is enough for what follows and
I overlook that). For wv ∈ Sn, the inverse image of the Bruhat cell (BwvB/B)rig

in X̃hṽ−cr
ρṽ

via this morphism can be embedded into the saturated locus of Xtri(ρṽ)
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(this embedding depends on wv). Since Xtri(ρṽ) is closed in Xρṽ × T̂v, the Zariski-

closure in Xρṽ × T̂v of the inverse image of (BwvB/B)rig still lies in Xtri(ρṽ),
but now contains new non-saturated points. Using that the Zariski-closure of
(BwvB/B)rig in (GLn /B)rig is ∪w′v�wv(Bw′vB/B)rig, one can explicitely describe
these non-saturated points (the new positions of the Hodge filtration is given by
the w′v, and it is not saturated when w′v 6= wv). We deduce in particular that the
points xRv ,wv for wRv � wv are in Xtri(ρṽ) (wRv is one of the w′v).

Fixing Rv, I call companion point (implicitly of xRv ,wv,0) any point xRv ,wv ∈
Xtri(ρṽ). From what I just proved we have the companion points xRv ,wv for wRv �
wv but we do not know so far that there can’t be some other xRv ,wv ∈ Xtri(ρṽ)
for some other wv not satisfying wRv � wv. This is true, but the proof of this
fact is surprisingly difficult and will follow from the next lecture (no direct proof
is known when n > 3).

To make a link with Theorem 1.3.1, note that the companion points xRv ,wv
for wRv � wv (for each v ∈ Sp) can be seen as a “sign” that the constituents CR,w
for wR � w are in Πan

∞[mρp ]. Indeed, assuming this is the case, then JBp(CR,w) ⊆
JBp(Π

an
∞[mρp ]) and since χR,w = (ww0 ·λ)δR ⊆ JBp(CR,w), we deduce (ρp, χR,w) ∈

Xp(ρ), and from the embedding Xp(ρ) ↪→ Xtri(ρp) of Step 3 that all the above
xRv ,wv should indeed be there. Unfortunately, it is not possible to go back in
general because (i) we don’t know a priori that the points (xRv ,wv)v∈Sp ∈ Xtri(ρp)
lie in the subspace Xp(ρ) and (ii) even if they do, this wouldn’t imply that they
come from embeddings CR,w ↪→ Πan

∞[mρp ].
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3 Lecture 3: A formal local model

I continue the proof of Theorem 1.3.1. One key result is that it turns out one can
describe the local geometry of Xtri(ρṽ) at a companion point xRv ,wv , more pre-

cisely one can describe the formal completion X̂tri(ρṽ)xRv,wv of Xtri(ρṽ) at xRv ,wv .
But in order to do so, I need to recall material from geometric representation
theory.

Step 5: Grothendieck’s simultaneous resolution.

Let g, b, t the respective Lie algebras of GLn, B (upper Borel) and T (diagonal
torus) that we see as affine schemes over E and recall that GLn /B is the moduli
space of complete flags F1 ⊂ F2 ⊂ · · · ⊂ Fn. I define the following subscheme of
GLn /B × g:

g̃ := {(F1 ⊂ F2 ⊂ · · · ⊂ Fn, u) ∈ GLn /B × g, u(Fi) ⊆ Fi}

or equivalently:

g̃ = {(gB, u) ∈ GLn /B × g, g−1ug ∈ b}.

This is a smooth irreducible scheme over E and the natural projection g̃ −→ g
is called Grothendieck’s simultaneous resolution (though g is already smooth).

More interesting is the fiber product X := g̃×g g̃ over the natural projection.
Its points are triples (g1B, g2B, u) where u respects the two flags associated to
g1B and g2B (i.e. g−11 ug1 ∈ b and g−12 ug2 ∈ b). It is reduced but not irreducible
anymore: one can check that X = qw∈SnVw = ∪w∈SnXw where Xw is the Zariski-
closure of the locus Vw := {(gB, gwB, u) ∈ X} where the two flags are in relative
position w. The Xw have the same dimension (= n2) and are known to be
Cohen-Macaulay (a result of Bezrukavnikov-Riche). One can moreover prove
that they are normal (by proving that their singularities have codimension ≥ 2
and applying Serre’s criterion since they are Cohen-Macaulay). Hence they are
also locally irreducible. This local irreducibility will be a key result.

The natural projection X −→ GLn /B×GLn /B (coming from the projections
g̃ → GLn /B of the two copies of g̃) sends surjectively Vw to the Bruhat cell
Uw := {(gB, gwB) ∈ GLn /B ×GLn /B} and Xw to the Zariski-closure of Uw in
GLn /B ×GLn /B which is known to be:⋃

w′�w

{(gB, gw′B) ∈ GLn /B ×GLn /B}.

In particular if a point in Xw also belongs to some Vw′ then this implies w′ � w.
This, again, will be quite important.
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Step 6: Another equality of cycles.

There is a surjection g̃ � t given by (gB, u) 7→ g−1ug where g−1ug is the image
of g−1ug ∈ b in the quotient t, and thus there are two distinct surjections X =
g̃×g g̃ � t depending on which copy of g̃ one first projects to. If (g1B, g2B, u) ∈ X
the two elements g−11 ug1, g

−1
2 ug2 are not necessarily equal in t, but they are

equal in t/Sn
∼→ AnE (the morphism here being given by the coefficients of the

characteristic polynomial), hence there is a well-defined unique surjection κ :
X � t/Sn.

Denote by Z := κ−1(0)red the reduced fiber of κ over 0 ∈ t/Sn. It is again
equidimensional with irreducible components Zw parametrized by Sn. Denote by
Z0(Z) := ⊕w∈SnZ[Zw] the free abelian group on the irreducible components Zw.
For each closed subscheme Y of the (non-reduced) fiber κ−1(0), define (compare
Step 2):

[Y ] :=
∑
w∈Sn

m(Zw, Y )[Zw] ∈ Z0(Z)

where m(Zw, Y ) ∈ Z≥0 is the length of the localized ring OY,ηZw as a module over
itself (ηZw being the generic point of Zw).

It turns out that the fibers Xw := Xw×t/Sn {0} for w ∈ Sn are far from being
reduced in general (even if Xw is) and so it is interesting to consider [Xw] ∈
Z0(Z). Using Beilinson-Bernstein’s theory of localization of Verma modules as
D-modules on the flag variety GLn /B, one has the following remarkable formula,
which is “well-known” to specialists:

[Xw] =
∑
w′�w

Pw0w,w0w′(1)Cw′ in Z0(Z)

where Cw′ ∈ Z0(Z) are certain non-zero cycles which only depend on w′ (not
on w). The cycle Cw′ is close to [Zw′ ], e.g. [Zw′ ] is always in its support with
multiplicity 1 (one even has Cw′ = [Zw′ ] if n ≤ 7), but Cw′ can be non-irreducible
in general (if n ≥ 8) though its support is always contained in {[Zw′′ ], w′′ � w′}.

Step 7: A formal local isomorphism I.

I now fix v ∈ Sp, Rv an ordering of the ϕṽ,i and wv ∈ Sn such that xRv ,wv ∈
Xtri(ρṽ). The formal completion of Xρṽ at the point ρṽ is easily checked to be iso-
morphic to the formal scheme Xρṽ pro-representing the fonctor of (equal charac-
teristic 0) framed deformations of ρṽ on local artinian E-algebras. The projection
Xtri(ρṽ) −→ Xρṽ induces a morphism of formal schemes:

X̂tri(ρṽ)xRv,wv −→ Xρṽ .
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As briefly seen in Step 4, the ordering Rv defines a unique triangulation on
the (ϕ,Γ)-module Drig(ρṽ) and I denote by M• = M1 ⊂ M2 ⊂ · · · ⊂ Mn the
associated flag on Drig(ρṽ)[

1
t
] where t is Fontaine’s p-adic 2iπ (this only depends

on Rv, not on any wv). For any local artinian E-algebra A, let RA be the Robba
ring with A-coefficients. I denote by Xρṽ ,M• the formal scheme pro-representing
the functor of framed deformations of ρṽ and of the flagM• on Drig(ρṽ)[

1
t
], that is,

the functor sending a local artinian E-algebra A to the set of (ρṽ,A,MA,•) where
ρṽ,A is a framed deformation of ρṽ and MA,• is a triangulation on Drig(ρṽ,A)[1

t
]

deformingM•. It is still pro-representable because of the framing on ρṽ,A (which
makes all automorphisms trivial). Using the genericity assumptions on the ϕṽ,i,
one can check that the obvious forgetful functor Xρṽ ,M• −→ Xρṽ is a closed
immersion of formal schemes (one shows that there is a unique way to deform
M• in Drig(ρṽ,A)[1

t
]).

From the work of Kedlaya-Pottharst-Xiao or of Liu, one can deduce a global
triangulation in a neighbourhood of xRv ,wv ∈ Xtri(ρṽ) provided one inverts t
(without inverting t, this would be true only when wv = wRv , i.e. only when

xRv ,wv is saturated). This implies that the morphism X̂tri(ρṽ)xRv,wv → Xρṽ factors
as:

X̂tri(ρṽ)xRv,wv −→ Xρṽ ,M• ↪→ Xρṽ .

Moreover one can check that X̂tri(ρṽ)xRv,wv −→ Xρṽ ,M• is also a closed immersion

(thus so is X̂tri(ρṽ)xRv,wv → Xρṽ) and that the two formal schemes X̂tri(ρṽ)xRv,wv
and Xρṽ ,M• have the same dimension.

Step 8: A formal local isomorphism II.

Now I relate Xρṽ ,M• and X̂tri(ρṽ)xRv,wv to the variety X of Step 5.

I start with Xρṽ ,M• . From the (decreasing) Hodge filtration Fil• on the n-
dimensional E-vector space DdR(ρṽ), I define the flag:

Fil• = Fil1 := Fil−hṽ,1 ⊂ Fil2 := Fil−hṽ,2 ⊂ · · · ⊂ Filn := Fil−hṽ,n .

I denote by F• the Frobenius stable flag on DdR(ρṽ) = Dcris(ρṽ) coming from the
ordering Rv. To these two flags I associate the point:

yRv := (F•,Fil•, 0) ∈ X(E)

i.e. the endomorphism u is here 0. Going back to the definition of the variety
X in Step 5, one can see that, strictly speaking, yRv is not well-defined as one
should also fix an E-basis of DdR(ρṽ) so that one can identify flags on DdR(ρṽ)
with GLn /B and endomorphisms of DdR(ρṽ) with g, that is, one should fix a
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framing on DdR(ρṽ). However, this is a non-crucial technical complication that I
overlook everywhere in the sequel.

Let A be a local artinian E-algebra and (ρṽ,A,MA,•) ∈ Xρṽ ,M•(A). I would

like to define a morphism of formal schemes Xρṽ ,M• → X̂yRv
, and one could think

of considering DdR(ρṽ,A) for that (since we considered DdR(ρṽ) above). However,
in general, ρṽ,A is not a de Rham deformation of ρṽ. To see this, consider the baby
case n = 1, ρṽ = 1 (trivial representation) and A = E[x]/(x2) (dual numbers).
Then in that case the deformation of ρṽ = 1 over A given by the p-adic logarithm
certainly appears on (the analogue of) Xtri(ρṽ), and it is clearly not de Rham (not
even Hodge-Tate). However, Fontaine has defined a slightly more general notion
than de Rham representations which turns out to be exactly what is needed here.

Replace BdR by the larger ring BpdR := BdR[log(t)] with an obvious action
of Gal(Qp/Qp) on log(t), and say r is an almost de Rham representation of

Gal(Qp/Qp) if dimQp DpdR(r) = dimQp r where DpdR(r) := (BpdR⊗Qp r)Gal(Qp/Qp).

The BdR-linear derivation with respect to log(t) commutes with Gal(Qp/Qp) and
yields a nilpotent endomorphism ν on DpdR(r) which is zero if and only if r is
de Rham if and only if DdR(r)

∼→ DpdR(r). Moreover the decreasing filtration
(tiB+

dR[log(t)]) on BpdR induces a filtration Fil• on DpdR(r) that can be rescaled as
a flag Fil• on DpdR(r) as I did above. Finally, any extension of almost de Rham
representations remains almost de Rham (e.g. any trianguline representation
with integral Sen weights is almost de Rham), which implies that the previous
problem with Galois deformations now disappears.

Berger has defined a covariant exact functor from (ϕ,Γ)-modules over the
Robba ring to semi-linear representations of Gal(Qp/Qp) over free B+

dR-modules.
Inverting t, one can show that his functor sends Drig(ρṽ,A)[1

t
] (for ρṽ,A as above)

to BdR⊗Qp ρṽ,A. I can now define a morphism of formal schemes Xρṽ ,M• −→ X̂yRv

by sending (ρṽ,A,MA,•) to (FA,•,FilA,•, νA) where:

(i) FA,• is the flag on the free A-module DpdR(ρṽ,A) = (BpdR ⊗BdR
(BdR ⊗Qp

ρṽ,A))Gal(Qp/Qp) functorially induced by the flag MA,• on Drig(ρṽ,A)[1
t
];

(ii) FilA,• is the flag onDpdR(ρṽ,A) induced by the Hodge filtration onDpdR(ρṽ,A)
rescaled as at the beginning of Step 8;

(iii) νA is the nilpotent A-linear endomorphism on DpdR(ρṽ,A).

Using (again) the genericity of the ϕṽ,i together with Berger’s description of
(ϕ,Γ)-modules in terms of B-pairs, one can prove that the above morphism

Xρṽ ,M• −→ X̂yRv
is formally smooth. It follows by formal smoothness that the ir-

reducible components of Xρṽ ,M• are the inverse image of those of X̂yRv
(or rather

of Spec ÔX,yRv where ÔX,yRv is the underlying completed local ring). But the ir-

reducible components of X̂yRv
are the (̂Xw′v)yRv

for w′v ∈ Sn such that yRv ∈ Xw′v
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(we crucially use here that the normality of the Xw′v implies that they remain

locally irreducible after completion at any point). I denote by X
w′v
ρṽ ,M• the inverse

image of (̂Xw′v)yRv
. In particular Xρṽ ,M• is equidimensional.

Now recall from Step 7 that we have a closed immersion of equidimensional

formal schemes of the same dimension X̂tri(ρṽ)xRv,wv ↪→ Xρṽ ,M• (here xRv ,wv ∈
Xtri(ρṽ) as in Step 7). Hence X̂tri(ρṽ)xRv,wv is a union of some X

w′v
ρṽ ,M• . Which are

these w′v? One can characterize Xw′v by looking at its image via Xw′v ↪→ X −→
t ×t/Sn t (see beginning of Step 6). Using this characterization and unravelling
the definition of wv, it is then not too hard to check that there can only be one
w′v as above which is in fact wv. I thus finally have my formal local isomorphism
(or formal local model):

X̂tri(ρṽ)xRv,wv
∼−→ Xwv

ρṽ ,M• −→ (̂Xwv)yRv

where the last morphism is formally smooth. Note that this implies in particular
yRv ∈ Xwv(E) ⊂ X(E) for any wv ∈ Sn such that xRv ,wv ∈ Xtri(ρṽ).

Steps 4 to 8 have several crucial outcomes that I will state in the next and
last lecture.
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4 Lecture 4: End of proof

I am now in a position to put everything together to deduce Theorem 1.3.1. I fix
ρp := (ρṽ)v∈Sp ∈

∏
v∈Sp X

hṽ−cr
ρṽ

with each ρṽ satisfying the assumptions of Lecture
1, so that I can define and use all the previous material. Note that I don’t need
to assume that ρp comes from a global ρ.

I first state direct consequences of the formal local isomorphism of Lecture 3.

Step 9: First consequences of the local isomorphism.

Since Xwv is normal, so is (̂Xwv)yRv (normality is preserved by completion), hence

also Xwv
ρṽ ,M• (as it is formally smooth over (̂Xwv)yRv ), and thus also X̂tri(ρṽ)xRv,wv .

We then have the following first consequence:

Theorem 4.1. The rigid analytic variety Xtri(ρṽ) is irreducible in the neighbour-
hood of any companion point xRv ,wv . In particular, if (ρp, χR,w) ∈ Xp(ρ), then
we have Xp(ρ)

∼−→ Xtri(ρp) in the neighbourhood of (ρp, χR,w).

Note that (ρp, χR,w) is sent to xR,w := (xRv ,wv)v∈Sp = ((ρṽ, δRv ,wv))v∈Sp under
the shift of Step 3.

Let wv ∈ Sn such that xRv ,wv ∈ Xtri(ρṽ). From the definition of wRv , we have
yRv ∈ VwRv (recall wRv measures the relative position of the two flags F• and Fil•
on DdR(ρṽ)). From the end of Step 5 we have yRv ∈ Xw′v(E)⇒ wRv � w′v (using
that u = 0 on yRv one can check that the converse also holds: yRv ∈ Xw′v(E)⇔
wRv � w′v). Since yRv ∈ Xwv(E) (see the end of Step 8, recall this statement
comes from the study of deformations) we deduce wRv � wv, thus completing
the description of local companion points in Step 4. Using the argument at the
end of Step 4 together with Step 1, we then have the second consequence, which
is one implication in Theorem 1.3.1:

Theorem 4.2. If HomGp

(
CR,w,Π

an
∞[mρp ]

)
6= 0, then we have wR � w.

Step 10: Yet another equality of cycles.

For any δ ∈ T̂v denote by Xtri(ρṽ)δ the fiber of Xtri(ρṽ) above δ via Xtri(ρṽ)δ ↪→
Xρṽ × T̂v � T̂v. We have yRv ∈ Xwv(E) ⊆ Xwv(E) for wv as before (as u = 0 on
yRv) and from the end of Step 8 we deduce by base change a formally smooth
morphism:

̂(Xtri(ρṽ)δRv,wv )
xRv,wv

−→ (̂Xwv)yRv .
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Consider the cycle Cw′v ∈ Z0(Z) in Step 6 for some w′v ∈ Sn. Recall that the
support of Cw′v consists of some Zw′′v with w′′v � w′v containing Zw′v and that
yRv ∈ Zw′′v (E) ⊆ Xw′′v (E) ⊂ Xw′′v (E) if and only if wRv � w′′v . So yRv is in the
support of Cw′v if and only if wRv � w′v. When w′v � wv, the cycle Cw′v appears in
Xwv (see Step 6) and I denote by CRv ,w′v the pull-back of its formal completion at
yRv along the above formally smooth morphism (the formal completion of Cw′v at
yRv is the cycle obtained by taking the sum of the completion of each irreducible
component2 at yRv keeping the same multiplicities). Then CRv ,w′v is a cycle in

Z
n(n+3)

2 (Spec ÔXρṽ ,ρv
) (see Step 2 for the notation) which only depends on Rv

and w′v (if we change wv such that w′v � wv and do the same procedure with this

new wv, we still get the same cycle CRv ,w′v in Z
n(n+3)

2 (Spec ÔXρṽ ,ρv
)).

Now, the formal local isomorphism at the end of Step 8 together with the
equality of cycles in Step 6 and CRv ,w′v 6= 0 ⇔ wRv � w′v imply an equality of

cycles in Z
n(n+3)

2 (Spec ÔXρṽ ,ρv
):

[ÔXtri(ρṽ)δRv,wv
,xRv,wv

] =
∑

wRv�w′v�wv

Pwv,0wv ,wv,0w′v(1)[CRv ,w′v ]

where all terms in the sum are non-zero. Finally, taking the product over v ∈ Sp
we get an equality of cycles for any refinement R and any w such that wR � w:

[ÔXtri(ρp)δR,w ,xR,w
] =

∑
wR�w′�w

Pw0w,w0w′(1)[CR,w′ ] ∈ Z[F+:Q]
n(n+3)

2 (Spec ÔXρp ,ρp
)

where all the terms in the sum are non-zero.

Step 11: End of proof of Theorem 1.3.1 I.

I now give the argument of the proof of Theorem 1.3.1 but assuming that the
ÔXp(ρ)χR,w ,(ρp,χR,w)-module MR,w in Step 2 is free of rank 1 when it is non-zero,

i.e. when (ρp, χR,w) ∈ Xp(ρ) or equivalently ÔXp(ρ)χR,w ,(ρp,χR,w) 6= 0 (recall that

χR,w is δR,w “unshifted”, see Step 3). In general, this is presumably not the case
(i.e. MR,w might not even be free), however the proof is easier in that case, and
the modifications in order to bypass this appear more natural (they will be given
in the next and last step).

From the end of Step 1 and the theorem at the end of Step 9 we have LR,w′ = 0
if wR � w′. From the end of Step 2 the above assumption onMR,w then implies

2note that we do not know the normality of the irreducible components Zw′′ , thus their
completion might not remain irreducible
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an equality of cycles for any refinement R and any w such that wR � w:

[ÔXp(ρ)χR,w ,(ρp,χR,w)] =
∑

wR�w′�w

Pw0w,w0w′(1)[LR,w′ ] ∈ Z[F+:Q]
n(n+3)

2 (Spec ÔXρp ,ρp
).

Note that we don’t know so far which terms in this sum are non-zero, or even
when [ÔXp(ρ)χR,w ,(ρp,χR,w)] is non-zero. By the first consequence in Step 9, if

(ρp, χR,w) ∈ Xp(ρ) then we have [ÔXp(ρ)χR,w ,(ρp,χR,w)] = [ÔXtri(ρp)δR,w ,xR,w
]. From

the end of Step 10 we thus deduce the equalities for any refinement R and any
w such that wR � w and (ρp, χR,w) ∈ Xp(ρ):∑

wR�w′�w

Pw0w,w0w′(1)[CR,w′ ] =
∑

wR�w′�w

Pw0w,w0w′(1)[LR,w′ ].

Assume first that all (ρp, χR,w) are in Xp(ρ) for wR � w. Then I claim that
the above equalities imply LR,w′ 6= 0 for wR � w′. Indeed, by this assumption
we have for wR � w:∑

wR�w′�w

Pw0w,w0w′(1)
(
[CR,w′ ]− [LR,w′ ]

)
= 0.

Since Pw0w,w0w(1) = 1 for all w, this is a system of “upper triangular” linear
equations (the “unknowns” being the [CR,w′ ] − [LR,w′ ] for wR � w′) with coef-
ficients in Z which are 1 on the diagonal. It is thus invertible and we deduce
[CR,w′ ] − [LR,w′ ] = 0 for wR � w′, which implies [LR,w′ ] = [CR,w′ ] 6= 0 and thus
LR,w′ 6= 0 for wR � w′.

I now assume that (ρp, χR,w0) ∈ Xp(ρ) (this assumption is satisfied in the
global situation we started with, see Lecture 1) and I prove by induction that
(ρp, χR,w) ∈ Xp(ρ) for wR � w.

I denote by lg be the length function on S |Sp|n and I consider the following
induction hypothesis (H`) for ` ≤ lg(w0) and all ρp, R as at the beginning of this
lecture such that (ρp, χR,w0) ∈ Xp(ρ):

(H`) When lg(wR) ≥ ` then (ρp, χR,w′) ∈ Xp(ρ) for all w′ such that wR � w′.

The hypothesis (H`(w0)) is satisfied by assumption since lg(wR) ≥ `(w0) im-
plies wR = w0. Assuming (H`), I now prove (H`−1).

I first deduce from (H`) that we have (ρp, χR,w′) ∈ Xp(ρ) for wR � w′ and
lg(w′) ≥ ` whatever wR is. The argument is mutatis mutandis the same Zariski-
closure argument as that of Step 4 in order to show the existence of local com-
panion points. Let w′ such that lg(w′) ≥ `. The hypothesis (H`) implies that the

inverse image of the Bruhat cell (Bw′B/B)rig in
∏

v∈Sp X̃
hṽ−cr
ρṽ

(with the notation
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of Step 4) can be embedded into Xp(ρ)χR,w′ ⊂ Xp(ρ) ⊂ Xρp × T̂p (note that the
corresponding points are saturated, i.e. we are in the case wR = w′ to which we
apply (H`)). Since Xp(ρ)χR,w′ is closed in Xρp × T̂p, the Zariski-closure of this
inverse image remains in Xp(ρ)χR,w′ , and as in Step 4 this Zariski-closure now
contains the points (ρp, χR,w′) for wR � w′. Applying this to all w′ such that
lg(w′) ≥ `, we get the result.

Now I prove (H`−1). I can assume lg(wR) = ` − 1 and from what was just
proven, it only remains to check (ρp, χR,wR) ∈ Xp(ρ). For that it is enough to
prove [LR,wR ] 6= 0. Since (ρp, χR,w) ∈ Xp(ρ) for wR � w and wR 6= w we have
for such w: ∑

wR�w′�w

Pw0w,w0w′(1)
(
[CR,w′ ]− [LR,w′ ]

)
= 0.

Assume first ` = lg(w0), then w = w0 is the only such w and this gives:

[CR,wR ]− [LR,wR ] + [CR,w0 ]− [LR,w0 ] = 0.

But it is not difficult to check that the cycle [CR,w0 ] is irreducible and closed in∏
v∈Sp X

hṽ−cr
ρṽ

⊂ Xρp . Since [LR,w0 ] corresponds to the locally algebraic constituent
CR,w0 , results of Caraiani-Emerton-Gee-Geraghty-Paskunas-Shin then imply that
either [LR,w0 ] = 0 or [LR,w0 ] = [CR,w0 ]. Assume now [LR,wR ] = 0, then we
have either [CR,wR ] + [CR,w0 ] = 0 or [CR,wR ] = 0, both being impossible. Hence
[LR,wR ] 6= 0.

Assume now ` ≤ lg(w0) − 1 so that lg(wR) ≤ lg(w0) − 2. Then by standard

facts one can find 3 elements w1, w2, w3 in S |Sp|n such that wR � wi � w3 (i = 1, 2)
with lg(w1) = lg(w2) = lg(wR) + 1 and lg(w3) = lg(wR) + 2. Moreover w1, w2 are
the only elements strictly between wR and w3. We can apply the above equality
with w ∈ {w1, w2, w3}. Since all relevant values Pw0w,w0w′(1) are 1 in that case
this gives the equalities:{

[CR,wR ]− [LR,wR ] + [CR,wi ]− [LR,wi ] = 0, i = 1, 2

[CR,wR ]− [LR,wR ] +
∑3

i=1([CR,wi ]− [LR,wi ]) = 0.

Assuming [LR,wR ] = 0 this implies [CR,w3 ] = [LR,w3 ] + [CR,wR ]. But properties
of the cycles Cw′ make it impossible for Cw′′ to appear in Cw′ when w′′ � w′ and
lg(w′′) = lg(w′) − 2, hence this equality can’t hold no matter what [LR,w3 ] is.
This again implies [LR,wR ] 6= 0.

This finishes the proof of Theorem 1.3.1 under the assumption on MR,w.
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Step 12: End of proof of Theorem 1.3.1 II.

I indicate now how one can modify the previous arguments in order to dispense
with the assumption onMR,w. This modification will also make the proof slightly
more direct.

One can prove (using input from the patching process) that the coherent
moduleM∞ in Step 2 is Cohen-Macaulay, hence if Xp(ρ) is smooth at the point
(ρp, χR,w) (assumed to be in Xp(ρ)) then M∞ is locally free at (ρp, χR,w), and

thus (by taking fibers and completing)MR,w is a free ÔXp(ρ)χR,w ,(ρp,χR,w)-module

of finite rank ≥ 1. Unfortunately, it turns out that Xtri(ρp) is in general not
smooth at xR,w, hence from Step 9 Xp(ρ) usually won’t be smooth at (ρp, χR,w).
But Xtri(ρp) is smooth at xR,w when lg(w)− lg(wR) ∈ {0, 1, 2} (and wR � w) and
this gives sufficiently many smooth points so that a modification of the previous
argument can be carried through, as I indicate now.

However, I will still make a simplifying assumption (but much weaker than
the previous one) and finish the lecture by indicating how one can dispense also
with this one. This simplifying assumption is: if lg(w)− lg(wR) ∈ {0, 1, 2}, then

the free ÔXp(ρ)χR,w ,(ρp,χR,w)-module MR,w has rank exactly 1 if non-zero. The
modification consists in considering now the stronger induction hypothesis:

(Hstrong
` ) When lg(wR) ≥ ` then [LR,w′ ] 6= 0 for all w′ such that wR � w′.

The hypothesis (Hstrong
lg(w0)

) is satisfied since (ρp, χR,w0) ∈ Xp(ρ) is smooth and

thus one has the equality [CR,w0 ]− [LR,w0 ] = 0 so that [LR,w0 ] 6= 0.

Let w′ such that lg(w′) ≥ ` and recall from Step 2 that the fiber Xp(ρ)χR,w′ is

the support of the continuous dual of HomGp

(
FGp
Bp

(U(gp)⊗U(bp)
−w′w0·λ, δR),Πan

∞
)
.

Assuming (Hstrong
` ), an analogous Zariski-density argument replacing Xp(ρ)χR,w′

by the support of the continuous dual of HomGp(CR,w′ ,Π
an
∞) (Zariski-closed in

Xp(ρ)χR,w′ ) gives that [LR,w′ ] 6= 0 for all w′ such that wR � w′ and lg(w′) ≥ `,
no matter what wR is.

Then in order to prove (Hstrong
`−1 ) we can as before assume lg(wR) = `− 1 and

prove [LR,wR ] 6= 0. But this statement is in fact already what we proved in order
to deduce (H`−1)! Note that the argument goes through verbatim because the
points xR,wi , i = 1, 2, 3 we used are still smooth on Xtri(ρp).

Now, to finish, we have to deal with the fact that, for w such that lg(w) −
lg(wR) ∈ {0, 1, 2}, the free ÔXp(ρ)χR,w ,(ρp,χR,w)-modules MR,w may have various

ranks ≥ 1. Even when (ρp, χR,w) ∈ Xp(ρ) is not smooth, there is an open and
irreducible neighbourhood of (ρp, χR,w) in Xp(ρ) (here, we use again Step 9)
consisting of smooth points on which M∞ is locally free of constant rank dR,w.
One problem is that dR,w may vary with w. However, one can then consider the
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even stronger induction hypothesis:

(Hsuper strong
` ) When lg(wR) ≥ ` then [LR,w′ ] 6= 0 for all w′ such that wR � w′

and one has dR,w′ = dR,w0 .

Then all the previous arguments can go through, proving finally Theorem 1.3.1.
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