SMOOTHNESS AND CLASSICALITY ON EIGENVARIETIES

CHRISTOPHE BREUIL, EUGEN HELLMANN AND BENJAMIN SCHRAEN

ABSTRACT. Let p be a prime number and f an overconvergent p-adic automorphic form on a
definite unitary group which is split at p. Assume that f is of “classical weight” and that its
Galois representation is crystalline at p, then f is conjectured to be a classical automorphic
form. We prove new cases of this conjecture in arbitrary dimensions by making crucial use
of the patched eigenvariety constructed in [13].
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1. INTRODUCTION

Let p be a prime number. In this paper we are concerned with classicality of p-adic
automorphic forms on some unitary groups, i.e. we are looking for criteria that decide whether
a given p-adic automorphic form is classical or not. More precisely we work with p-adic forms
of finite slope, that is, in the context of eigenvarieties.

Let F'* be a totally real number field and F' be an imaginary quadratic extension of F'*.
We fix a unitary group G in n variables over F'" which splits over F' and over all p-adic places
of F'™, and which is compact at all infinite places of F*. Associated to such a group G (and
the choice of a tame level, i.e. a compact open subgroup of G(A%Y)) there is a nice Hecke
eigenvariety which is an equidimensional rigid analytic space of dimension n[F't : Q] see e.g.
[15], [2] or [21]. One may view a p-adic overconvergent eigenform of finite slope, or simply
overconvergent form, as a point x of such an eigenvariety and one can associate to each
overconvergent form a continuous semi-simple representation p, : Gal(F/F) — GL,(Q,)
which is unramified outside a finite set of places of F' and which is trianguline in the sense
of [19] at all places of F' dividing p ([34]).

A natural expectation deduced from the Langlands and Fontaine-Mazur conjectures is
that, if p, is de Rham (in the sense of Fontaine) at places of F dividing p, then z is a
classical automorphic form (see Definition 3.2 and Proposition 3.4 for the precise definition).
However, the naive version of this statement fails for two reasons: (1) a classical automorphic
form for G(Ap+) can only give Galois representations which have distinct Hodge-Tate weights
(in each direction F' < @,) and (2) the phenomenon of companion forms shows that there
can exist classical and non-classical forms giving the same Galois representation. However,
we can resolve (1) by requiring p, to have distinct Hodge-Tate weights and (2) by requiring
x to be of “classical” (or dominant) weight. In fact, since the Hodge-Tate weights of p,
are related to the weight of x, requiring the latter automatically implies the former, once
pz is assumed to be de Rham. As a conclusion, it seems reasonable to expect that any
overconvergent form z of classical weight such that p, is de Rham at places of F' dividing p
is a classical automorphic form (see Conjecture 3.6 and Remark 3.7).

Such a classicality theorem is due to Kisin ([35]) in the context of Coleman-Mazur’s eigen-
curve, i.e. in the slightly different setting of GL,/Q. Note that, at the time of [35], the notion
of a trianguline representation was not available, and in fact [35] inspired Colmez to define
trianguline representations ([19]).

In the present paper we prove new cases of this classicality conjecture (in the above unitary
setting). In particular we are able to deal with cases where the overconvergent form z is
critical. Throughout, we assume that p, is crystalline at p-adic places. Essentially the
same proof should work if p, is only assumed crystabelline, but the crystalline assumption
significantly simplifies the notation.

To state our main results, we fix an overconvergent form x of classical weight such that
pz is crystalline at all places dividing p. Such an overconvergent form can be described by a
pair (pz,d;), where p, is as above and 0, = (0z,0)ves, is a locally Qp-analytic character of the
diagonal torus of G(F* ®q Q,) = [lyes, GLn(F,"). Here S, denotes the set of places of F'*
dividing p. There are nontrivial relations between p,., := p| Cal(FF /) and 9, ,, in particular
the character 9,, defines an ordering of the eigenvalues of the crystalline Frobenius on
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Deyis(pep). If we assume that these Frobenius eigenvalues are pairwise distinct, then this
ordering defines a Frobenius stable flag in Deis(pz0). We can therefore associate to x for
each v € S, a permutation w, , that gives the relative position of this flag with respect to the
Hodge filtration on Dyis(ps0), see §2.3 (where we rather use another equivalent definition of
w,, in terms of triangulations). Following [2, §2.4.3] we say that x is noncritical if, for each
v, the permutation w, , is trivial. The invariant (wx7v)vegp can thus be seen as “measuring”
the criticality of x.

In the statement of our main theorem, we need to assume a certain number of Working
Hypotheses (basically the combined hypotheses of all the papers we use). We denote by p,
the mod p semi-simplification of p,. These Working Hypotheses are:

(ii) the tame level of z is hyperspecial at all finite places of [ inert in F;

(ili) p,(Gal(F/F((,)) is adequate ([48]);

(iv) the eigenvalues of ¢ on Deis(p.») are sufficiently generic for any v € S, (Definition
2.13).

(i) The field F' is unramified over F© and G is quasi-split at all finite places of F'*;
1

Our main theorem is:

Theorem 1.1 (Cor. 3.12). Let p > 2 and assume that the group G and the tame level satisfy
(i) and (ii). Let x be an overconvergent form of classical weight such that p, is crystalline
at p-adic places and satisfies (iii) and (iv). If w,, is a product of distinct simple reflections
for all places v of F* dividing p, then x is classical.

Note that the assumption on the w,, in Theorem 1.1 is empty when n = 2, and already
this n = 2 case was not previously known (to the knowledge of the authors). The noncritical
case of Theorem 1.1, i.e. the special case where all the w, , are trivial, is already known and
due to Chenevier ([16, Prop.4.2]). Thus the main novelty, and difficulty, in Theorem 1.1 is
that it deals with possibly critical (though not too critical) points.

In fact we give a more general classicality criterion and prove that it is satisfied under the
assumptions of Theorem 1.1. This criterion is formulated in terms of the rigid analytic space
of trianguline representations X\ (p, ,) defined in [29] and [13, §2.2]. For every v € S, there

tri
is a canonical morphism from the eigenvariety to Xgi(p,.,,)-

Theorem 1.2 (Cor. 3.9, Rem. 3.13). Let p > 2 and assume that the group G and the tame
level satisfy (i) and (ii). Let x be an overconvergent form of classical weight such that p, is
crystalline at p-adic places and satisfies (iii) and (). If for any v € S, the image x, of x
in X(p,.,) is contained in a unique irreducible component of Xgi(p, ), then x is classical.

According to this theorem we need to understand the local geometry of the space Xg;(p,.,,)
at x,. It turns out that much of this local geometry is controlled by the Weyl group element
Wy, associated to z which only depends on the image x, of = in X, (Prp). Forv € S, denote
by lg(w, ) the length of the permutation w, , and by d, , the rank of the Z-module generated
by w,,(a) — e, as a ranges over the roots of (Resz+ o GL,) g, Q, = II.. rt g, GLn. Then
dyv < lg(wy,), with equality if and only if w,, is a product of distinct simple reflections
(Lemma 2.7).
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Theorem 1.3 (Th. 2.15, Cor. 2.16). Let v € S, and let X C Xi(p,,) be a union of
irreducible components that contain x, and satisfy the accumulation property of Definition

2.11 at x,. Then:
dim Tx ,, < dim X + 1g(wz0) — duw = dim X (7,.,) + 18(we ) — do,

where T 5, is the tangent space to X at x,. In particular X is smooth at x,, when wy, s a
product of distinct simple reflections.

The accumulation condition in Theorem 1.3 actually prevents us from directly applying
it to X = Xi(p,,) and thus directly deducing Theorem 1.1 from Theorem 1.2. Hence we

tri
have to sharpen Theorem 1. 2, see Theorem 3.9.

Assuming the classical modularity lifting conjectures for p, (in all weights with trivial

inertial type), there is a certain union X2 (7, ) of irreducible components of X{\(p, ,) such

that [T,cg, Xtri(pm) is (essentially) described by the patched eigenvariety X,(p,) defined in
[13] (see Remark 5.7). In the last section of the paper (§5), we prove (assuming modularity
lifting conjectures) that the inequality in Theorem 1.3 for X = X, XU (Prv) is an equality for

tri
all v e Sy

(1.1) dim T0 ,, = dim X2 (7, ) Flg(wew) — day (assuming modularity),

trl (pz 'u)

see Corollary 5.17. The precise computation (1.1) of the dimension of the tangent space
is intimately related to (and uses in its proof) the existence of many companion points on
the patched eigenvariety X,(p,). These companion points are provided by the following
unconditional theorem, which is of independent interest.

Theorem 1.4 (Th. 5.5). Let y = ((pv)ves,,€) be a point on X,(p,). Let T be the diagonal
torus in GL,, and let 6 be a locally Q,-analytic character of T(F* ®@q Q,) such that ed~! is
an algebraic character of T(F' ®q Q,) and such that € is strongly linked to ¢ in the sense
of [32, §5.1] (as modules over the Lie algebra of T(F* ®q Q,)). Then ((pv)ves,,0) is also a
point on X, (p,)-

We also prove that the equality (1.1) for all v € S, (and thus the modularity lifting
conjectures) implies that the initial Hecke eigenvariety is itself singular at x as soon as the
Weyl element w,, is not a product of distinct simple reflections for some v € .S, see Corollary
5.18.

Let us now outline the strategy of the proofs of Theorems 1.2 and 1.3.

The proof of Theorem 1.3 crucially uses results of Bergdall ([4]) and Liu ([41]), together
with a fine analysis of the various conditions on the infinitesimal deformations of p, , carried
by vectors in T ,,, see §4. Recently, Bergdall proved an analogous bound for the dimension
of the tangent space of the initial Hecke eigenvariety at x assuming standard vanishing
conjectures on certain Selmer groups ([5]).

The proof of Theorem 1.2 makes use of the patched eigenvariety X, (p,) constructed in [13]
by applying Emerton’s construction of eigenvarieties [21] to the locally analytic vectors of
the patched Banach G(F* ®gQ,)-representation I, of [18]. As usual with the patching phi-
losophy, the space X,(p,) can be related to another geometric object which has a much more
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local flavour, namely the space X;(p,,) = [lves, Xin(p,,) of trianguline representations.

More precisely, by [13, Th.3.21] there is a Zariski closed embeddlng
(1.2) Xp(P,) = X x U9 x X (P,,),

identifying the source with a union of irreducible components of the target. Here UY is an
open polydisc (related to the patching variables) and Xz is the rigid analytic generic fiber of
the framed deformation space of p, at all the “bad” places prime to p. Moreover the Hecke
eigenvariety containing = can be embedded into the patched eigenvariety X,(p,) (see [13,
Th.4.2]). As previously, we denote by x, the image of = in X{(p,,) via (1.2).

For v € S, let us write k, for the set of labelled Hodge-Tate weights of p,,, and
R%IZ”_CT for the quotient defined in [36] of the framed deformation ring of , , parametrizing

crystalline deformations of p, , of Hodge-Tate weight k,, and %gz’lz”*cr for the rigid space
(Spf RD ko=eryrig - We relate %Lj komer o XD

tri

(Pr.») by introducing a third rigid analytic space

.’fgxl:” er’ ﬁmte over .’%.ZD ko= parametmzmg crystalline deformations p, of 7, ,, of Hodge-Tate

weights k, together wzth an ordering of the Frobenius eigenvalues on D s(p, ), see §2.2 for a
precise definition. The space %ﬁuz’lz”*cr naturally embeds into Xgi(p,,,) and contains the point
x, (and is smooth at z,). We ﬁrove that there is a unique irreducible component Zi;(z,)
of Xgl(va) containing the unique irreducible component of i%g;lz“_cr passing through z,
(Corollary 2.5). Let Zyi(x) := [lyes, Zui(®y), which is thus an irreducible component of
Xii(p,,) containing . Then Theorem 1.2 easily follows from the following theorem (see (i)

of Remark 3.13):

Theorem 1.5 (Th. 3.9). Assume that X5 x U9 x Zyi(x) € X,(p,) via (1.2). Then the
point x is classical.

Let us finally sketch the proof of Theorem 1.5 (in fact, for the same reason as above, we
have to sharpen Theorem 1.5, see Theorem 3.9). Let R., be the usual patched deformation
ring of p,, there is a canonical morphism of rigid spaces X,(p,) — X := (Spf R ). Let
L(\) be the finite dimensional algebraic representation of G(F™ ®q Q,) associated (via the
usual shift) to the Hodge-Tate weights (k,).es,. Proving classicality of z turns out to be
equivalent to proving that the image of x in X, is in the support of the R,-module I (\)’
which is the continuous dual of:

Hoo(A) = Homy__ .0, (L(V), o).

By [18, Lem.4.17], the R,-module IT(\)’ is essentially a Taylor-Wiles-Kisin “usual” patched
module for the trivial inertial type and the Hodge-Tate weights (k,),cs,. Forgetting the
factors Xz and UY which appear in X, its support is a union of irreducible components of

Ok, —cr

the smooth rigid space [[,cg, X5 . It is thus enough to prove that the unique irreducible

Elkv cr

component Zeis(pz) of [1,c s, X5 passing through (p,,,)ves, contains a point which is in

the support of II.o(\). But it is easy to find a point y in Zy;(z) sufficiently close to 2 such
that (py.0)ves, € Zeris(pz) (in particular p,, is crystalline of the same Hodge-Tate weights as
pzw) and moreover p, ., is generic in the sense of [13, Def.2.8] for all v € S,,. The assumption
in Theorem 1.5 implies y € X,(p,) and it is now not difficult to prove that such a generic
crystalline point of X,,(p,) is always classical, i.e. is in the support of I ()"
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We end this introduction with the main notation of the paper.

If K is a finite extension of Q, we denote by Gx the absolute Galois group Gal(K/K)
and by 'k the Galois group Gal(K ((n,n > 1)/K) where ((pn),>1 is a compatible system of
primitive p"-th roots of 1 in K. We normalize the reciprocity map recy : K* — G2 of local
class field theory so that the image of a uniformizer of K is a geometric Frobenius element.
We denote by ¢ the p-adic cyclotomic character and recall that its Hodge-Tate weight is 1.

For a € L* (where L is any finite extension of K) we denote by unr(a) the unramified
character of G, or equivalently of G2 or K*, sending to a (the image by recy of) a uni-
formizer of K. For z € L, we let |z|g := p~H@lG) where val(p) = 1. We let Ky C K be
the maximal unramified subfield (we thus have (| |x)|xx = unr(p~ @)} = unr(g=!) where
q is the cardinality of the residue field of K).

If X = SpA is an affinoid space, we write R4 x for the Robba ring associated to K
with A-coefficients (see [34, Def.6.2.1] though our notation is slightly different). Given a
continuous character § : K* — A* we write R4 x(0) for the rank one (¢, 'x)-module on
Sp A defined by d, see [34, Construction 6.2.4]. If X is a rigid analytic space over L (a finite
extension of Q,) and x is a point on X, we denote by k(z) the residue field of = (a finite
extension of L), so that we have z € X (k(z)). If X and Y are two rigid analytic spaces over
L, we often write X x Y instead of X xg,7 Y.

If X is a “geometric object over Q,” (i.e. a rigid space, a scheme, an algebraic group, etc.),
we denote by Xk its base change to K (for instance if X is the algebraic group GL,, we write
GL,, k). If H is an abelian p-adic Lie group, we let H be the rigid analytic space over Q, which
represents the functor mapping an affinoid space X = Sp A to the group Homg, (H, A*) of
continous group homomorphisms (or equivalently locally Q,-analytic group homomorphisms)
H — A*. Finally, if M is an R-module and I C R an ideal, we denote by M[I] C M the
submodule of elements killed by I, and if S is any finite set, we denote by |S| its cardinality.

2. CRYSTALLINE POINTS ON THE TRIANGULINE VARIETY

We give several important definitions and results, including the key local statement bound-
ing the dimension of some tangent spaces on the trianguline variety (Theorem 2.15).

2.1. Recollections. We review some notation and definitions related to the trianguline
variety.

We fix two finite extensions K and L of @, such that:
Hom (K, L)| = [K : Q]

and denote by Ok, O their respective rings of integers. We fix a 1E1\iformizer wr € Ok
and denote by k;, the residue field of Op. We let T := KX and W := Oj;. The restriction of
characters to O induces projections 7 — W and Ty, — Wy. If k := (k;)r gop, € ZHOMUGL),
we denote by z¥ € T(L) the character:

(2.1) z— I ()

T€Hom(K,L)
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where z € K*. For k = (k. ;)i<i<cnr s € (ZM)HmEL " we denote by 6 € T"(L) the

character:
(21, 2p) — H 7(z;)km

1<i<n
7: K—L

where (21,...,2,) € (K*)". We also denote by dx its image in W"(L) (i.e. its restriction to
(Ox)™). We say that a point § € W} is algebraic if 6 = 0y for some k = (k;;)1<i<n.r koL €
(Zn)Hom(KSL) - We say that an algebraic § = 6y is dominant (vesp. strictly dominant) if
moreover k;; > k; 1 (vesp. kr; > kyi4q) fori € {1,...,n— 1} and 7 € Hom(K, L).

We write Treq C Tz, for the Zariski-open complement of the L-valued points 27, |z| g2,

with k = (k. )rxer € 29" 0. We write T2,
(01,...,0,) such that 6;/0; € Treg for i # j.

We fix a continuous representation 7 : Gx — GL,(k;) and let RE be the framed local
deformation ring of 7 (a local complete noetherian Op-algebra of residue field k). We
write XY := (Spf RY)™® for the rigid analytic space over L associated to the formal scheme
Spf RY. Recall that a representation r of Gx on a finite dimensional L-vector space is called
trianguline of parameter 6 = (01,...,d,) if the (¢, 'k )-module Dy, (7) over Ry x associated
to r admits an increasing filtration Fil, by sub-(¢, 'k )-modules over Ry x such that the
graded piece Fil;/Fil;_; is isomorphic to Ry, x(d;). We let X{;(7) be the associated framed
trianguline variety, see [13, §2.2] and [29]. Recall that X2(7) is the reduced rigid analytic
space over L which is the Zariski closure in X x T/ of:

(2.2)  Ugi(7) := {points (r,6) in X x Treg such that 7 is trianguline of parameter J}

tri

(the space U;(T) is denoted Ug(T)™® in [13, §2.2]). The rigid space X(T) is reduced
equidimensional of dimension n? + [K : Qp]"(”T“) and its subset UL\(F) C X5, (T) turns
out to be Zariski-open, see [13, Th.2.6]. Moreover by loc. cit. the rigid variety UZ.(F) is
smooth over L and equidimensional, hence there is a bijection between the set of connected
components of UZ(F) and the set of irreducible components of X (7).

We denote by w : X5 (T) — WP the composition X2\ (F) — XZ x T/ — T — Wr. If v is
a point of X;(7), we write z = (r,d) where r € XX and § = (61,...,0,) € T,*. We say that
a point x = (r,0) € X{;(7) is crystalline if r is a crystalline representation of G-

for the Zariski-open subset of characters

tri
tri

Lemma 2.1. Let v = (r,8) € XA(T) be a crystalline point. Then fori € {1,...,n} there

exist ki = (kr.i)r ksr € ZHOMUSD) and o, € k(z)* such that:
§; = ZMunr(p;).

Moreover the (k:;):r are the labelled Hodge-Tate weights of r and the ¢; are the eigenvalues
of the geometric Frobenius on the (unramified) Weil-Deligne representation WD(r) associated

tor (cf [25]).

Proof. The fact that the (k,;);, are the Hodge-Tate weights of r follows for instance from [13,
Prop.2.9]. By [34, Th.6.3.13] there exists for each ¢ a continuous character §; : K* — k(z)*
such that r is trianguline of parameter ¢’ := (07, ...,4,) and such that §;/6; is an algebraic
character of K* (i.e. of the form z¥ for some k € ZHomUSL)) Tt thus suffices to prove that
each 0/ is of the form zKiunr(ip;) for some ki € ZHomUSL) wwhere the ¢; € k(x)* are the
eigenvalues of the geometric Frobenius on WD(r), or equivalently (using the definition of
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WD(r)) are the eigenvalues of the linearized Frobenius p!50% on the Ky ®q, k(z)-module
Deis(1) == (Beris ®q, r)9%. By [6, Th.3.6] there is an isomorphism (recall ¢ is “Fontaine’s
2im”):

(23) Dcris(r) = Drig(r)[%]FKa

and a triangulation Fil, of D, (r) with graded pieces giving the parameter ¢’ induces a
complete p-stable filtration F, on Dgs(r) such that F;/F;_; is the filtered p-module as-
sociated to Ry x(6;) = Fil;/Fil,_; by the same recipee as (2.3). It follows from this and
from [34, Example 6.2.6(3)] that d/ is of the form zXiunr(a) where a € k(x)* is the unique
element such that p!50'®l acts on the underlying ¢-module of F;/F;_; by multiplication by
1 ®a € Ky ®q, k(x). This finishes the proof. O

Note that Lemma 2.1 implies that if x = (r,d) € X5:(7) is a crystalline point, then w(z) is
algebraic (= 0k for k := (k:;)1<i<n.r k-1 Where the k,; are as in Lemma 2.1). We say that
a point x = (r,8) € Xg}(T) such that w(z) is algebraic is dominant (vesp. strictly dominant)
if w(z) is dominant (resp. strictly dominant).

2.2. A variant of the crystalline deformation space. We define a certain irreducible
component Z; (x) of a sufficiently small open neighbouhood U C X\(F) containing a
crystalline strictly dominant point z (Corollary 2.5).

We fix k = (kr;)i<i<nr koL € (zr)Hom(L) guch that ky; > k;iq1 for all 7,7 and write

RE K= for the crystalline deformation ring of 7 with Hodge-Tate weights k, i.e. the reduced
and Z,-flat quotient of RY such that, for any finite extension L' of L, a morphism x :

Spec I/ — Spec RE factors through Spec RE K= it and only if the representation Gx —
GL, (L") defined by z is crystalline with labelled Hodge-Tate weights (kr.;)1<i<nr: k. That

this ring exists is the main result of [36]. We write %FD K7 for the rigid analytic space
associated to Spf R By [36], it is smooth over L.

Let 7 : G — GL, (R ™) be the corresponding universal deformation. By [36, Th.2.5.5]

T

or [7, Cor.6.3.3] there is a coherent Ky ®g, Onx—«-module D that is locally on XK free
over Ko ®q, O%E,k—cr together with a ¢ ® id-linear automorphism @, such that:

(D, Pis) @05, b(@) = Deri (F ®pore k()

for all z € X% . Fixing an embedding 7 : Ky < L we can define the associated family

of Weil-Deligne representations:

(WD(/’;)a (p) = <D ®KO®QpOx9,k7cr7TO®id Oxg,kfor, @Lﬁg@p] ® ld)

on %E k= whose isomorphism class does not depend on the choice of the embedding 7.

Let T"& = (GH&)" be the rigid analytic space over Q, associated to the diagonal torus
T C GL, and let S, be the Weyl group of (GL,,T) acting on T, and thus on 7", in the
usual way. Recall that the map:

diag(p1, @2, ..., vn) — coefficients of (X — ¢1)(X —¢2)... (X — pn)
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induces an isomorphism of schemes over Q,:
~ -1
T/Sn — G: X Spec @y Gm

and also of the associated rigid analytic spaces. We deduce that the coefficients of the char-
acteristic polynomial of the Frobenius ® on WD(7) determine a morphism of rigid analytic
spaces over L:

O,k—cr rig

Let us define:

~O k— Ok—
F, cr:: 0, cr><

) rig
T Tzlg/sn TL .

Concretely %FD k=er barametrizes crystalline framed G -deformations r of 7 of labelled Hodge-
Tate weights k together with an ordering (1, ..., ¢,) of the eigenvalues of the geometric
Frobenius on WD(r).

FOk—cr
X7 is reduced.

Lemma 2.2. The rigid analytic space
Proof. 1t is sufficient to prove this result locally. Let Sp C' be an admissible irreducible affinoid

Ok— . . - : : . . .
open subspace of X=~“ whose image in 77 /S, is contained in an admissible affinoid open

irreducible subspace Sp A of T;¢/S,. As both 2% and T}#/S,, are smooth over L we can

find an admissible open affinoid covering of X2 by such Sp C'. The map T;& — T}2/S,
is finite flat being the rigidification of a map of affine schemes T, — T},/S,, which is finite
flat. Consequently the inverse image of Sp A in T}fg is an admissible affinoid open subspace
Sp B with B an affinoid algebra which is finite flat over A. As B is a finite A-algebra, we
have an isomorphism C®4B ~ C ®4 B. It follows, by definition of the fiber product of rigid
analytic spaces, that the rigid analytic spaces of the form Sp(C' ®4 B) form an admissible

%Fﬂ,k—cr O,k—cr

open covering of = X X prie g Tiig. It is sufficient to prove that rings C' ®4 B
L n

as above are reduced. From Lemma 2.3 below it is sufficient to prove that C'®4 B is a finite
flat generically étale C-algebra. As B is finite flat over A, the C-algebra C' ®4 B is clearly
finite flat. It is sufficient to prove that it is a generically étale C-algebra. As B is generically
étale over A, it is sufficient to prove that the map Spec C' — Spec A is dominant. It is thus
sufficient to prove that the map of rigid analytic spaces E hemer ng /S, is open. This
follows from the fact that it has, locally on X525 a factorization:

O,k—cr
T

— (Resk,/0,GLn ko Xspa, Flag)™ xg,0, SpL — T12/S,

where the first map is the smooth map in the proof of Lemma 2.4 below, and the second is
the projection on (Resg, g, GLn, K,) 78 followed by the base change to L of the rigidification
of the morphism Resg, /g, GLn x, — T/S, defined in [28, (9.1)]. The first map being smooth
is flat and thus open by [9, Cor.9.4.2], and the last two are easily seen to be open. 0

The following (well-known) lemma was used in the proof of Lemma 2.2.

Lemma 2.3. Let A a commutative noetherian domain and B a finite flat A-algebra. Then
the ring B has no embedded component, i.e. all its associated ideals are minimal prime ideals.
Moreover if B is generically étale over A, i.e. Frac(A)®4 B is a finite étale Frac(A)-algebra,
then the ring B is reduced.
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Proof. As B is flat over A, the map Spec B — Spec A has an open image, and A being a
domain it contains the unique generic point of Spec A, which implies that the natural map
A — B is injective. Moreover B being finite over A, the image of Spec B — Spec A is closed,
hence it is Spec A since Spec A is connected. In particular B is a faithfully flat A-algebra.
As B is a flat A-module, it follows from [10, §IV.2.6 Lem.1| applied with £ = A and F = B
that p € Ass(B) implies pN A =0 (A is a domain, so Ass(A) = {0}). It then follows from
[10, §V.2.1 Cor.1] that if p € Ass(B), then p is a minimal prime of B. Indeed, A being
noetherian and B a finite A-module, B is an integral extension of A. We can apply loc. cit.
to the inclusion q C p where q is a minimal prime ideal of B (both ideals q and p being
above the prime ideal (0) of A since pNA=qnNA=0).

Let 9,4 be the discriminant of B/A (its existence comes from the fact that B is a finite
faithfully flat A-algebra, hence a finite projective A-module). As the extension is generically
étale, we can find f € 0p/4 such that By is étale over Ay. As Ay is a domain, By is then
reduced. Thus the nilradical n of By is killed by some power of f. Replacing f by this power,
we can assume that the vanishing ideal of n contains f. Assume that n is nonzero and let p
be a prime ideal of B minimal among prime ideals containing Anng(n). It follows from [10,
§IV.1.3 Cor.1] that p is an associated prime of the B-module n and consequently of B. But
we have f € p which contradicts the fact that pN A = 0. 0J

C

We now embed this “refined” crystalline deformation space X= K7 into the space XH(7)

as follows. We define a morphism of rigid spaces over L:
(2-4) E’kicr XSpL ng — %FD XSpL TLn
(1,015, on) +— (r,2%unr(ey), ..., 2% unr(e,)).

This morphism is a closed embedding of reduced rigid spaces as both maps r — r and
(01,5 0n) = (Zunr(py), ..., 24munr(e,)) respectively define closed embeddings xR,
XY and 77® < T;*. We claim that the restriction of the morphism (2.4) to:

~Ok—cr O,k—cr rig
(2.5) 7 = Ay Xspr 17,

factors through X

(7)) € XP xg, 1, T, As the source of this restriction is reduced by Lemma

2.2, it is enough to check it on a Zariski-dense set of points of Xk,

T

Let r be an n-dimensional crystalline representation of Gy over a finite extension L’ of L
of Hodge-Tate weights k and let ¢4, ..., ¢, be an ordering of the eigenvalues of a geometric
Frobenius on WD(r), equivalently of the eigenvalues of ¢ 0@l on D (r) (that are assumed
to be in L'*). Assuming moreover that the ¢; are pairwise distinct, this datum gives rise to

a unique complete p-stable flag of free Ky ®q, L'-modules:
Ozfoc.FlC"'Cfn:Dcris(r)

on Deis(r) such that 0@ acts on F;/F;_; by multiplication by ¢; (this is a refinement in
the sense of [2, Def.2.4.1]). By the same argument as in the proof of Lemma 2.1 using Berger’s
dictionary between crystalline (¢, ' )-modules and filtered p-modules (see e.g. (2.3)), the
filtration F, induces a triangulation Fil, on Dy(r). If we assume that F, is noncritical
in the sense of [2, Def.2.4.5], i.e. the filtration F, is in general position with respect to
the Hodge filtration Fil*Dggr(r) on Dgr(r), that is, for all embeddings 7 : K < L and all
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1=1,...,n—1 we have:

(26) <_E ®KO®QleyT®id L/) EB (FilikﬂH’lDdR(lr) ®K®Qp[/,7’®id L/) = DCI‘iS(T) ®K0®QPL,T®id LI
= Dgr(7) QK ®q, L rid L,

then F;/F;_; is a filtered p-module of Hodge-Tate weights k;, or equivalently Fil;/Fil;, ; =
Rk (6;) with &; = zKiunr(e;).

Lemma 2.4. There are smooth (over L) Zariski-open and Zariski-dense subsets in X="" :

i 0k— rrk— A k—
‘/*F, CrCUF, CTC%—’ cr

T

such that:
(i) a point (r,¢1,...,on) € X2 lies in U= if and only if the o; are pairwise
distinct;
(ii) a point (r,@1,. .., on) € USS lies in VIK if and only if it satisfies assumption

(2.6) above and 2% iunr(p;p; ") € Treg for i # j.

Moreover the image of Vo'~ wvia (2.4) composed with (2.5) lies in ULL(T).
Proof. The idea of the proof is the same as that of [17, Lem.4.4]. Tt is enough to show that
all the statements are true locally on X k=T et us (locally) fix a basis of the coherent

locally free Ky ®q, Oyox-a-module D on X%~ By the choice of such a basis, the matrix

T

of the crystalline Frobenius ;s and the Hodge filtration define (locally) a morphism:
2K (Resk, /0, Gl ko Xspo, Flag)™ xs,q, Sp L

where Flag := (Resk/q,GLn i)/ (Resk g, B) (compare [28, §8]). By [28, Prop.8.12] and the

discussion preceding it, it follows that this morphism is smooth, hence so is the morphism:

@7 X% (Resisg, L)} X o s, T5%) Xsp1, Flag}®

e

where Resg,/q,GLy x, — T'/S, is the morphism defined in [28, (9.1)]. On the other hand,
using that the morphism 7" — T'/S,, is obviously smooth in the neighbourhood of a point
(¢1,-..,¢n) € T where the ¢, are pairwise distinct, we see that the conditions of (i), resp. (ii),
in the statement cut out smooth (over L) Zariski-open and Zariski-dense subspaces of:

(2.8) ((ResKo/QpGLn,Ko)rLig Xrrie/s, Tiig) X sp 1, Flag)®.

- : . mOk—or . o ROk
Their inverse images in X- " via (2.7) are thus smooth over L and Zariski-open in X-" .

Let us prove that these inverse images are also Zariski-dense in i?’k_cr. It is enough to
prove that they intersect nontrivially every irreducible component of %FD K= Let Sp A be
any affinoid open subset of X% it follows from [9, Cor.9.4.2] that the image of Sp A
by the smooth, hence flat, morphism (2.7) is admissible open in (2.8). In particular its
intersection with one of the above Zariski-open and Zariski-dense subspaces of (2.8) can’t
be empty, which proves the statement. The final claim of the lemma follows from (ii), the

discussion preceding Lemma 2.4 and the definition (2.2) of UZ(T) . O

tri



12 CHRISTOPHE BREUIL, EUGEN HELLMANN AND BENJAMIN SCHRAEN

Note that X2 is equidimensional of the same dimension as X2 . Indeed, by Lemma

T
2.4 it is enough to prove the same statement for

. But this is clear since the map
~[ k— Ok—cr . . . . , . Ok—
U= — X7 is smooth of relative dimension 0, hence étale, and since Xz~

- is equidi-
mensional ([36]). Lemma 2.4 also implies that (2.4) induces (as claimed above) a morphism:

(2.9) e X — XU ()

rrl k—cr
Ur

which is obviously a closed immersion as (2.4) is.

Corollary 2.5. Let x = (r,8) € XZ.(T) be a crystalline strictly dominant point such that
w(z) = 0k and the Frobenius eigenvalues (@1, ...,on) (cf. Lemma 2.1) are pairwise distinct
and let U be an open subset of X;L(T) containing x.

(i) The point = belongs to u (U ") and there is a unique irreducible component Zs(x)
of X% containing ut(x).

(i1) If U is small enough there is a unique irreducible component Zy;y(x) of U containing
Lk(Zcris(l’)) NU, and it is such that Zyiy(x) U’ = Zyi v (x) for any open U' C U containing
T

Proof. (i) The assumptions and Lemma 2.1 imply that = is in the image of the map ¢y in
(2.9) and the fact that the ; are pairwise distinct implies that z € 4 (U-""). In particular
Dk=er js smooth at ' (x) by Lemma 2.4 and thus ' () belongs to a unique irreducible
4 A0 k—cr
component Z;is(z) of X7 .

(ii)) We have that u(Zeis(x)) NU is a Zariski-closed subset of U, and it is easy to see
that it is still irreducible if U is small enough since 1y (Zes()) is smooth at x. Hence there
exists at least one irreducible component of U containing the irreducible Zariski-closed subset
Lk(Zcris(l’)) NU. If there are two such irreducible components, then in particular any point of
1k (Zeris(2))NU is singular in U, hence in XZ (7). But Lemma 2.4 implies Zys(2) VKT £ )
is Zariski-open and Zariski-dense in Zs(x), hence:

(Zeris(2) NV O (Zea() N1 (U)) #£ 0

from which we get ty(Zews(z) N VX" ") N U # 0. The last statement of Lemma 2.4 also
implies 1y (Zes(z) N VEK")Y N U C USL(F), which is then a contradiction since UD(F) is
smooth over L.

Finally, shrinking U again if necessary, we can assume that, for any open subset U’ C U
containing x, the map Z — Z N U’ induces a bijection between the irreducible components
of U containing = and the irreducible components of U’ containing x. It then follows from

the definition of Zi,; () that Zyip(x) NU' = Zyi v (). O

Remark 2.6. (i) Since the map X2 — X2* " is finite, hence closed, and since X2

XK are both equidimensional (of the same dimension), the image of any irreducible
%E,kfcr

Y

. . . O.k— . .

component of is an irreducible component of X7"“. In particular the image of
Ok— .
—" containing r.

Zeis(z) in (i) of Corollary 2.5 is the unique irreducible component of X
(i) Either by the same proof as that for (ii) of Corollary 2.5 or as a consequence of (ii) of
Corollary 2.5, we see that there is also a unique irreducible component Z;(z) of the whole

XD

tri

(7) which contains the irreducible closed subset ty(Zeis(z)).
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2.3. The Weyl group element associated to a crystalline point. We review the defini-
tion of the Weyl group element associated to certain crystalline points on X(T) (measuring
their “criticality”) and state a local conjecture (Conjecture 2.8).

We keep the notation of §2.2. We let W = []... k1. Si be the Weyl group of the algebraic

group:
(Resk/q,GLn, k) Xspecq, Spec L = H GL, 1
T: K—L

and X*((Resg/q,Tk) Xspecq, Spec L) = .. g, X*(T1) be the Z-module of algebraic char-
acters of (Resg/q,Tx) Xspecq, Spec L (recall T is the diagonal torus in GL,, and Tk, T} its
base change to K, L). We write lg(w) for the length of w in the Coxeter group W (for the
set of simple reflections associated to the simple roots of the upper triangular matrices).

Let x = (r,0) = (1,01, ...,0,) be a crystalline strictly dominant point on X::(7). Then by
Lemma 2.1 the characters §; are of the form §; = zXiunr(p;) where k; = (k.;),. k-, and the
i € k(x)* are the eigenvalues of the geometric Frobenius on WD(r). Assume that the ¢;
are pairwise distinct, then as in §2.2 the ordering (1, ..., ¢,) defines a complete p-stable
flag of free Ky ®q, k(z)-modules 0 = Fy C F; C -+ C Fpy = Deris(r) on Deyis(r) such that
go[KonP} acts on JF;/F;_1 by multiplication by ;. We view F; as a filtered ¢-module with the
induced Hodge filtration. If we write (k] ;);.x 1 for the Hodge-Tate weights of F;/F; 1, we
find that there is a unique w, = (Wyr)r.ksr € W = [1,.x1, Sn such that:

/ J—
(2.10) kri= k},w;L(z‘)

foralli € {1,...,n} and each 7 : K < L. We call w, the Weyl group element associated to
x. Note that F, is noncritical (see §2.2) if and only if w, , = 1 for all 7: K < L, in which
case we say that the crystalline strictly dominant point x = (r,d) is noncritical.

For w € W we denote by d,, € Z>( the rank of the Z-submodule of X*((Resx/q,Tx) Xspec,
Spec L) generated by the w(a) —a where o runs among the roots of (Resg g, GLn, k) Xspec@,
Spec L.

Lemma 2.7. With the above notations we have:
4, < 1gw) < [K: @)Y

and lg(w) = dy, if and only if w is a product of distinct simple reflections.

Proof. Note first that the right hand side inequality is obvious. Let us write in this proof
X = X*((Resk/q,Tk) Xspecq, Spec L), Xg := X ®z Q, and let us denote by S the subset
of simple reflections in W (thus dimg(Xq) = [K : Q,n and |S| = [K : Q,)(n — 1)). The
rank of the subgroup of X generated by the w(a) — « for a as above, or equivalently by the
w(a) — a for o € X, is equal to the dimension of the Q-vector space (w — id)Xg which,
by the rank formula, is equal to dimg(Xg) — dimg(ker(w — id)). Let I be the set of simple
reflections appearing in w, we have |I| < lg(w) and |I| = lg(w) if and only if w is a product
of distinct simple reflections. It is thus enough to prove dimg(ker(w —id)) > dimg(Xg) — |/
with equality when w is a product of distinct simple reflections. Note that ker(w — id)
obviously contains the Q-subvector space of Xg of fixed points by the subgroup W; of W
generated by the elements of I, and it follows from [31, Th.1.12(c)| that, when w is a product
of distinct simple reflections, then ker(w — id) is exactly this Q-subvector space. It is thus
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enough to prove that this Q-subvector space of Xg, which is just the intersection of the
hyperplanes ker(s —id) for s € I, has dimension dimg(Xgq) — |/|. However we know that for
any Q-subvector space V' C Xg and any reflection s of X, we have dimg(V Nker(s —id)) >
dimg(V') — 1 and thus by induction:

dimg (V) () ker(s —id)) ) > dimg(V) — |9
ses
with equality if and only if dimg (Vﬂ (ﬂsEJ ker(s — id))) = dimg(V) — |J| for all J C S.
As the QQ-subvector space X(S/ of fixed points by W has dimension [K : Q,] (it is generated
by the characters 7 o det for 7: K < L), we have:

dimg (X)) = () ker(s — id) = [K : Q] = dimg(Xg) — |S].

seES

Consequently we deduce (taking V = Xg):
dimg ( () ker(s — id)) = dimg(Xq) — ||

sel

which is the desired formula. O

Recall that, if X is a rigid analytic variety over L and z € X, the tangent space to X at
x is the k(x)-vector space:

(2.11) TX,:c = Homk(x) (mX@/mg(,m, k(l’)) = Homk($)_alg (OX@, ]{P(CL’) [5]/(52))

where my , is the maximal ideal of the local ring Ox, at  to X. If X is equidimensional,
recall also that dimy,) T'x , > dim X and that X is smooth at x if and only if dimy,) T'x » =
dim X.

We let XEL(7) € X5 (7) be the union of the irreducible components C' of XI\(7) such that
C NUEL(F) contains a crystalhne point. For instance it follows from Lemma 2.4 that all the

tri

closed embeddings (2.9) factor as closed embeddings u : X257 — XO.(F ") C X(7). In
particular any point z € X

tri

() which is crystalline strictly dominant is in XZ.(7).

The following statement is our local conjecture.

Conjecture 2.8. Let x € XZ(T) be a crystalline strictly dominant point such that the
Frobenius eigenvalues (p1,...,¢n) (cf. Lemma 2.1) are pairwise distinct, let w, be the Weyl
group element associated to x (cf. (2.10)) and let d, = d,,,. Then:

. . n-%l
dimy ) ngi(ﬂx = lg(w,) — d, + dim X3 (7) = lg(w,) — dp +n? + [K CQp——— n( )

In particular, since dim X,El( ) = dim XZ(F) =n? + [K : Q] ”(”“)
that XC.

tri

(7) should be smooth at z if and only if w, is a product of dlstlnct simple reﬂectlons

Remark 2.9. The reader can wonder why we don’t state Conjecture 2.8 with X, (T) instead
of XJ(F). The reason is that Conjecture 2.8 with XZ.(7) is actually implied by other

conjectures, see §5, and we don’t know if this is the case with X\(7).
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2.4. Accumulation properties. We define and prove some accumulation properties con-
cerning X1 (7) (Definition 2.11, Proposition 2.12). The definition is needed in order to state
our main local results (Theorem 2.15, Corollary 2.16) and the accumulation property we
prove is needed in §3.2 below (more precisely in the proof of Corollary 3.12).

We keep the previous notation. We call a point z = (r,d1,...,0,) € XL(T) saturated if
there exists a triangulation of the (¢, ' )-module D, (r) with parameter (d1,...,d,). Note
that, if x is crystalline strictly dominant with pairwise distinct Frobenius eigenvalues, then

x is saturated if and only if x is noncritical. Recall from §2.1 that if x is saturated and if
(61,...,0n) € Ti2, then x € Ugi(T).

Lemma 2.10. Letz = (r, 0y, ...,0,) € X5i(T) with w(x) = &y for some k= (k;;)1<i<nr sr €
(zn)Hom(KL) - Assume that:

(2.12) hri = kriar > [K 2 Kolval(01(@) - - 0i(wic) )

forie{l,...,n—1}, 7 € Hom(K, L). Then x is saturated and r is semi-stable. If moreover
(61,5 0n) € Ty, then r is crystalline strictly dominant noncritical.

Proof. By [34, Th.6.3.13] and [13, Prop.2.9] the representation r is trianguline with parameter
(01,...,0,) where J; = 8;250 1078 for some w = (Wr)rksr, €W =Tlrgesr Sne As Dyg(7),
and hence /\%zk(z)‘KDrig(T), are p-modules over Ry () x which are pure of slope zero (being
étale (p, 'x)-modules), it follows that for all

Si(@k) - 0@, -

1<
- K

Since (@) - - 6)(wi) = 61(wic) - - §i(wic) - Ty T (r(@ore) 7@ ™) we obtain:

(2.13) Val<51(w1<) e 5i(wK)> > [KilKo] 221 Z(kr,j - kT,w;l(j))-
]:

T

We now prove by induction on ¢ that w_'(i) = 4 for all 7. The inequality (2.13) for i = 1

gives val(dy(wg)) > mZT(k‘ﬂl — k. ,-11))- But assumption (2.12) with ¢ = 1 implies

val(d1(wk)) < ﬁZT(lﬁﬂ — k,;) for 7 € {2,...,n} which forces w; (1) = 1 for all 7.

Assume by induction that w;!(j) = j for all ; <4 — 1 and all 7. Then (2.13) gives:
val(0y (wg) - - - 6i(wwg)) > ﬁ > (ke — krw=10))

and again (2.12) implies val(0;(wk) -« - d;(wg)) < ﬁ Sor(kir — ki) for j € {i,...,n}

which forces w; (i) = ¢ for all 7. We thus have (dy,...,60,) = (d,...,0,) which implies
that the point x = (r,d1,...,d,) is saturated. Since ¢ is strictly dominant, we obtain that
r is semi-stable by the argument in the proof of [17, Th.3.14] (see also the proof of [30,
Cor.2.7(i)]). By a slight generalisation of the proof of Lemma 2.1 (that we leave to the
reader), we have §; = z¥unr(;) where the ; are the eigenvalues of the linearized Frobenius
@Bl on the Ky ®q, k(z)-module Dy (r) := (By®q, )9%. If in addition (1,...,d,) € Troe:
then it follows from Remark 2.14 that gpigpj_l £ p~ KBl for 1 <4 < j < n and the argument
of [17, Th.3.14], [30, Cor.2.7(i)] then shows that the monodromy operator N on Dg(r) must

be zero, i.e. that r is crystalline. This finishes the proof. U
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Definition 2.11. Let X be a union of irreducible components of an open subset of X.(T)
(over L) and let x € X{;(F) such that w(z) is algebraic. Then X satisfies the accumulation

property at = if © € X and if, for any positive real number C' > 0, the set of crystalline
strictly dominant points ' = (r',0") such that:

(i) the eigenvalues of 0l on Do (r') are pairwise distinct;
(ii) o’ is noncritical;
(iil) w(z) = 5’|(le()“ = 0w with k. ; — k. ;. > C forie{l,...,n—1}, 7 € Hom(K, L);
accumulate at x in X in the sense of [2, §3.3.1].

It easily follows from Definition 2.11 that X satisfies the accumulation property at x if
and only if each irreducible component of X containing z satisfies the accumulation property
at x. In particular, if x belongs to each irreducible component of X, we see that for every
C > 0 the set of points z’ in the statement of Definition 2.11 is also Zariski-dense in X.
Since UL(7) N X is Zariski-open and Zariski-dense in X, we also see that each irreducible

component of X containing z also contains points 2’ as in Definition 2.11 which are in UL (7),
hence each irreducible component of X containing x is in X.(7).

Proposition 2.12. Let x = (r,8) € XL\(F) be a crystalline strictly dominant point such that
the eigenvalues of the geometric Frobenius on WD(r) are pairwise distinct. Then there exists
a sufficiently small open neighbourhood U of x in XZ.(T) such that the irreducible component

tri

Zyiv(x) of U in (i7) of Corollary 2.5 is defined and satisfies the accumulation property at x.

Proof. We have to prove that, for any positive real number C', the set of points 2’ = (17,9) €
Zuyiv(z) such that r’ is crystalline with pairwise distinct geometric Frobenius eigenvalues on
WD(7’) and 2’ is noncritical with w(z’) = §y strictly dominant satisfying:

(2.14) kri— ki >C
foralle=1,...,n—1,7: K — L accumulates at x.

wi(7) as in (iii) of Corollary 2.5, i.e. such that for any
open U’ C U containing x we have Zy; y(x)NU' = Zyi v (). Let Zegis(z) as in (i) of Corollary

2.5, by Lemma 2.4, the space V := t(Zes(2) N VX" ) is Zariski-open and Zariski-dense
in 1 (Zeis(2)), hence accumulates in e (Zeis()) at any point of t(Zews(2)), in particular at
2. We claim that it is enough to prove that the points 2’ € U as above accumulate in U at
every point of V NU. Indeed, if U’ C U is an open neighbourhood containing x, then U’ also
contains a point v € V. By the accumulation statement at v € V N U, the Zariski closure in
U’ of the points 2’/ contains a small neighbourhood around v, hence contains an irreducible
component of U’ containing v. But since v is a smooth point of U’ (over L) as v € U (T)
by the last statement of Lemma 2.4, there is only one such irreducible component, and since
V€ tx(Zeyis(x)) NU' C Zyyi (), we see that this irreducible component must be Zy p ().
Thus the Zariski closure in U’ of the points 2" always contains Z,; (). This easily implies

the proposition since Zy; y/(x) = Zyip(x) NU'.

Let U be an open subset of z in X

Since UL, () is open in X(7), it is enough to prove that the crystalline points 2’ = (1, 4")

ri

in U N UZ(F) satisfying the conditions in the first paragraph of this proof accumulate at

tri
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+i(T). The condition on their Frobenius
eigenvalues is automatic using ¢’ € Tg,. Shrinking U further if necessary, we can take U

to be contained in some quasi-compact open neighbourhood of x in XZ,(7), and thus we

may assume that for ¢ € {1,...,n} the functions y = (ry, (6y1,-..,0yn)) — 0,:(wk) are
uniformly bounded on U. Hence by Lemma 2.10 we may assume that C'is sufficiently large
so that the points 2/ € U N UL(F) with w(z) = e algebraic satisfying (2.14) are in fact

tri

also automatically crystalline noncritical. Changing notation, we see that it is finally enough
to prove that the points 2’ € UL\(F) satisfying (2.14) for C' big enough accumulate at any

tri
crystalline strictly dominant point z of UL (7).

any crystalline strictly dominant point z of U N U

We now consider the rigid analytic spaces S,,, SY(F) appearing in the proof of [13, Th.2.6]
(to which we refer the reader for more details; do not confuse here S,, with the permutation
group!). In loc. cit. there is a diagram of rigid spaces over T,

/\

where 77 is a G"-torsor and g is a composition SY(7) — Sadm — Sadm <y G where the
first and last maps are open embeddings and the middle one is a GL,-torsor.

UD

trl

Let us choose a point & € 7> *(x). As 77 is a G" -torsor, it is enough to prove that the points
in SY(F) satisfying (2.14) accumulate at #. The same argument shows that it is enough to
prove that the points of S, satisfying (2.14) accumulate at ¢(Z). But the morphism S,, — 7"
is a composition of open embeddings and structure morphisms of geometric vector bundles
(compare the proof of [30, Th.2.4]). It follows that ¢(Z) has a basis of neighbourhoods (U;);er
in S, such that V; := w(U;) is a basis of neighbourhoods of w(z) in W} and such that the
rigid space Uj; is isomorphic to a product V; x B of rigid spaces over L where B is some closed
polydisc (compare [17, Cor.3.5] and [30, Lem.2.18]). Write w(x) = Jx, it is thus enough to
prove that the algebraic weights 0 € W} satisfying (2.14) accumulate at dy in W}, which
is obvious. U

We now state our main local results.

Definition 2.13. A crystalline strictly dominant point x = (r,8) € X:(F) is very regu-
lar if it satisfies the following conditions (where the (p;)i<i<n are the geometric Frobenius

eigenvalues on WD(r) ):
(D) pip; " ¢ {1l a} for 1 <i#j<n;

(il) @1p2...¢; is a simple eigenvalue of the geometric Frobenius acting on /\Z(I)WD(T’)
for1 <i<n.

Remark 2.14. If x = (r,9) is crystalline strictly dominant, it easily follows from the domi-
nance property that (i) of Definition 2.13 is equivalent to ¢; 6 ¢ {270 |2]k2P, |2|5'2", he

Zligm (K, L)} for 1 < i # j < n. In particular it implies § € T

regy Whence the termlnology

(compare also [4, §6.1]).

In §4 below we will prove the following theorem in the direction of Conjecture 2.8.
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Theorem 2.15. Let x € XU

i (T) be a crystalline strictly dominant very reqular point and let

X C X (7) be a union of irreducible components of an open subset of XL.(T) such that X
satisfies the accumulation property at x. Then we have:
. . n(n+1
dimy () Tx » < lg(w,) — d, + dim XE(7) = 1g(wy) —dy +n? + [K : Qp ——— n( 5 )

By Lemma 2.7 we thus deduce the following important corollary.

Corollary 2.16. Let x € X:.(T) be a crystalline strictly dominant very reqular point and
let X C X.(T) be a union of irreducible components of an open subset of X_.(T) such that
X satisfies the accumulation property at x. Assume that w, is a product of distinct simple

reflections. Then X is smooth at x.

Remark 2.17. Note that for X, x as above we only have dimy,) T, < dimg) 150 2
tri ’

thus Theorem 2.15 doesn’t give an upper bound on dimy,) T)'ZDA(?);(; (but Conjecture 2.8
implies Theorem 2.15). However Theorem 2.15 and Corollary 2.16 will be enough for our
purpose.

3. CRYSTALLINE POINTS ON THE PATCHED EIGENVARIETY

We state the classicality conjecture (Conjecture 3.6) and prove new cases of it (Corollary
3.12).

3.1. The classicality conjecture. We review the definition of classicality (Definition 3.2,
Proposition 3.4) and state the classicality conjecture (Conjecture 3.6).

We first recall the global setting, basically the same as [13, §2.4]. We fix a totally real field
F*, we write g, for the cardinality of the residue field of F'* at a finite place v and we denote
by S, the set of places of F* dividing p . We fix a totally imaginary quadratic extension F
of F'* that splits at all places of S, and let Gr := Gal(F/F). We fix a unitary group G in n
variables over F'* (with n > 2) such that G x p+ F' = GL,, r and G(F* ®gR) is compact. We
fix an isomorphism i : G X p+ F = GL,,  and, for each v € S,, a place v of F' dividing v. The
isomorphisms F,} = Fj and ¢ induce an isomorphism i; : G(F,}) = GL,(F};) for v € S,.
We let G, := G(F;') = GL,(F;) and G), = Tl,es, G(F\) = Tlpes, GLn(F5). We denote by
K, (resp. B,, resp. B,, resp. T,) the inverse image of GL,(OF,) (resp. of the subgroup of
upper triangular matrices of GL,,(F}), resp. of the subgroup of lower triangular matrices of
GL,(F5), resp. of the subgroup of diagonal matrices of GL,(F};)) in G, under i; and we let
Ky = [lyes, Ko (resp. By := [l,es, Bo, resp. By = Il,es, Bo, resp. T}, := [1,es, o). We let
) =T,NK, = [lues, (T ﬂK ).

We fix a finite extension L of Q, that is assumed to be large enough so that [Hom(Ff, L)| =

[F.fF Q) for v € S,. We let T preg C Tp 1 the open subspace of characters 0 = (d,)ves, =
(51,71,... v, )ves, such that 0,,/0y; € Toreg for all v € S, and all i # j, where Ty eq 18
defined as Tree of §2.1 but with F” = F}; instead of K.

We fix a tame level U? = [[,U, C G(A}Y) where U, is a compact open subgroup of

G(F;) and we denote by S(UP, L) the associated space of p-adic automorphic forms on
G(Ap+) of tame level UP with coefficients in L, that is, the L-vector space of continuous
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functions f : G(F+)\G(A%,)/U? — L. Since G(FT)\G(A%,)/U? is compact, it is a p-adic
Banach space (for the sup norm) endowed with the linear continuous unitary action of G,
by right translation on functions. In particular a unit ball is given by the Op-submodule
S(UP,0) of continuous functions f : G(F*)\G(A%)/UP — O and the correspond-
ing residual representation is the kp-vector space S(UP, k) of locally constant functions
[ G(FY)\G(A®)/U? — ki (a smooth admissible representation of G,). Note that

S(U?P, k) = MU,, S(UPU,, k1) where the inductive limit is taken over compact open sub-

groups U, of G, and where S(UPU,, k1) is the finite dimensional kz-vector space of functions
f: G(FO\G(A%R,)/UPU, — k. We also denote by S(U?, L)* ¢ S(UP, L) the L-subvector
space of locally Q,-analytic vectors for the action of G, ([46, §7]). This is a very strongly ad-
missible locally Q,-analytic representation of G, in the sense of [23, Def.0.12]. It immediately
follows from loc. cit. that its closed invariant subspaces are also very strongly admissible.

We fix S a finite set of finite places of F'* that split in F' containing S, and the set of finite
places v t p (that split in F') such that U, is not maximal. We consider the commutative
spherical Hecke algebra:

TS = liny (@ OL[UNG(F)/U,]),

vel

the inductive limit being taken over finite sets I of finite places of F'™ that split in F' such that
INS = (. This Hecke algebra naturally acts on the spaces §(Up, L), §(Up, L), §(Up, Or),
S(UP, kr) and S(UPU,, kz) (for any compact open subgroup U,). If C is a field, 6 : TS — C
a ring homomorphism and p : G — GL,(C) a group homomorphism which is unramified at
each finite place of F' above a place of F* which splits in F' and is not in S, we refer to [13,
§2.4] for what it means for p to be associated to 6.

Though we could state a more general classicality conjecture, it is convenient for us to
assume right now the following two extra hypothesis: p > 2 and G quasi-split at each
finite place of F* (these assumptions will be needed anyway for our partial results, note
however that they imply that 4 divides n[F't : Q] which rules out the case n =2, F* = Q).
We fix m® a maximal ideal of T® of residue field k; (increasing L if necessary) such that
S(UP, L)ws # 0, or equivalently S(U?P, Op)ws # 0, or S(UP, kz)ms = ling, . S(UPUp, kit )ms #
0, or S(UPU,, ki)ms # 0 for some U, (note that S(UP, L)s is then a closed subspace of
S(U?, L) preserved by G,). We denote by 7 = p,s : Gr — GLy(kz) the unique absolutely
semi-simple Galois representation associated to m® (see [48, Prop.6.6] and note that the
running assumption F/FT unramified in loc. cit. is useless at this point). We assume
m? non-FEisenstein, that is, p absolutely irreducible. Then it follows from [48, Prop.6.7]
(with the same remark as above) that the spaces S(U?, L)s, S(U?, O )ms and S(UP, kp)ms
become modules over R; g, the complete local noetherian Op-algebra of residue field k;, pro-
representing the functor of deformations p of p that are unramified outside S and such that

poc™p®e™ ! (where p is the dual of p and ¢ € Gal(F/F™) is the complex conjugation).
The continuous dual (S(U?,L)*%)" of S(UP, L)% = (S(U?, L)ys)*™ = (S(U?,L)™)ys
becomes a module over the global sections I'(X5s, Ox, ;) where X55 := (Spf Rj5)"® (see

for instance [13, §3.1]). We denote by Y (UP,p) the eigenvariety of tame level UP (over L)
defined in [21] (see also [13, §4.1]) associated to S(UP, L)%, that is, the support of the

mS»



20 CHRISTOPHE BREUIL, EUGEN HELLMANN AND BENJAMIN SCHRAEN

coherent Oxﬁ’sxfm—module (B, (S(U, L)) on X5 x T, where Jp, is Emerton’s locally
Q,-analytic Jacquet functor with respect to the Borel B, and (-)’ means the continuous dual.

This is a reduced closed analytic subset of X; g x T, ».r of dimension n[F't : Q] whose points
are:

(3.1) {m = (p,8) € X556 x T, 1, such that Homy, (6, JBP(§(U7’, L)is[po] @k, k:(x))) # 0}
where p, C Rjs denotes the prime ideal corresponding to the point p € X;g under the
identification of the sets underlying X5 ¢ = (Spf R; )" and Spm R}, s[1/p] ([33, Lem.7.1.9])
and where k(p,) is its residue field. We denote by w : Y(U?,p) — TO ', the composition
Y(Up,ﬁ) — %ﬁs X Tp,L —» TILL —» T;z?,L

Remark 3.1. If U'” C UP (and S contains S, and the set of finite places v { p that split in
F such that U is not maximal), then a point x = (p,d) of Y (U?, p) is also in Y (U'", p) since
S(UP, L)*[p,] € S(U”, L)*[p,] and Jp, is left exact.

We let Xii(p,) be the product rigid analytic variety [T,e S X(p;) (over L) where pj is
the restriction of p to the decomposition subgroup of G at ¢ (that we identify with Gp, =
Gal(F;/F5)) and where X.(p;) is as in §2.1. This is a reduced closed analytic subvariety
of (Spf R7 )“g x T, where RD = ®U€S R, Identifying B, (resp. T,) with the upper
trlangular (resp diagonal) matrlces of GL,(F, ) via i, we let 6p, = |- [} ' Q| [ 2@ @5 "

be the modulus character of B, and define as in [13, §2.3] an automorphlsm 1 Ty 5T, by:
1(01, .., 0p) :=0p, - (01,...,6; - (eorecy, ), ... 8, (eorecy )" ")

(the twist by dp, here ultimately comes from the same twist appearing in the definition of
Jg,). It then follows from [13, Th.4.2] that the morphism of rigid spaces:

(3.2) (Spf Rps)™® x T, — (SptR3)™ x T, 1
(p. (0)ues,) = (P Guts- - Bumdes,) > ((Plor, Jues,s (15 (o, Gum)ues, )

induces a morphism of reduced rigid spaces over L:
(33) Y(UP,*) — XtErll H Xtrl

vES)
(note that (3.3) is thus not compatible with the weight maps w on both sides). We say
that a point x = (p,6) = (p, (0v)ves,) € Y (UP,p) is crystalline (resp. dominant, resp.
strictly dominant, resp. crystalline strictly dominant very regular etc.) if for each v € S, its
image in Xt}(p;) via (3.3) is (see §2.1 and Definition 2.13). Due to the twist 2, beware that

= (p,d) € Y(UP,p) is strictly dominant if and only if d|r,~k, is (algebraic) dominant for
each v € S),.

Let § € T, ».r be any locally algebraic character. Then we can write = 0)dgy in fn L
where X = (\)yes, € [lyes, (Z")TmI5L) 6y = [L,es, O, (see §2.1 for 6, € T, 1) and Ggn
is a smooth character of T, with values in k(d) (the residue field of the point § € T}, 1).

Using the theory of Orlik and Strauch ([44]), we define as in [13, (3.7)] the following strongly
admissible locally Q,-analytic representation of G, over k(9):

F%((S) = FG”<(U(9L) Dy (~N)", domdz, )



SMOOTHNESS AND CLASSICALITY ON EIGENVARIETIES 21

where 65, = [l,es, 0, and where we refer to [13, §3.5] for the details and notation.

Recall that fgp (0) has the same constituents as the locally Q,-analytic principal series
(Ind%: 5A55m5]§;)a“ = (Ind%’; 65;;)3“ but in the “reverse order” (at least generically). If \ is

dominant (that is A\, is dominant for each v in the sense of §2.1), we denote by LA(6) the
locally algebraic representation:

(34) LA(9) = F"(L(N)', dmdp)) = For (LN, (Indg? 6050 )™)
= L()) @ (IndF? bl

where L(A) is the simple U(gy)-module over L of highest weight A relative to the Lie al-
gebra of B, (which is finite dimensional over L since X is dominant) that we see as an
irreducible algebraic representation of G, over L, where L(A) is its dual, and where (—)*™
denotes the smooth Borel induction over k(J) (the second equality in (3.4) following from
[44, Prop.4.9(b)]). Arguing as in [44, §6] (note that L(\)’ is the unique irreducible subobject
of (U(gr) ®y,) (—A))Y), it easily follows from [44, Th.5.8] (see also [11, Th.2.3(iii)]) and

(32, §5.1] that LA(0) is identified with the maximal locally Q,-algebraic quotient of fgp (0)

(or the maximal locally algebraic subobject of (Indgz 805, )™").

It follows from (3.1) together with [12, Th.4.3] that a point = = (p,d) € X5.5 X Tz, lies in
Y (UP,p) if and only if:
(3.5)
Homy, (8, T3, (S(U?, L) [p,] @4y, k(2))) = Hom, (F5"(8), S(UP, LYk p] ©ip,) () ) # 0.

Definition 3.2. A point x = (p,d) € Y(UP,p) is called classical if there exists a nonzero
continuous Gp,-equivariant morphism:

F5(8) — S(UP, L)s[p,] @iy, k()

mS

that factors through the locally Q,-algebraic quotient LA(S) of fg”(é) (equivalently (p,d) is

classical if Home, (LA(0), S(U?, L)ws[p,] @kp,) k(x)) # 0).

Remark 3.3. (i) This definition is [13, Def.3.15] when gy, is unramified.
(ii) It seems reasonable to expect that if x = (p,d) € Y(UP,p) is classical, then in fact any

continuous G-equivariant morphism ]:g:(d) — S(U», L)o%[po] @y, k(x) factors through
LA(0). See the last statement of Corollary 3.12 below for a partial result in that direction.
Note however that such a statement can’t be expected for more general algebraic groups, as

already follows from the main result of [42] in the case of SLs.

We fix an algebraic closure @p of L and embeddings j,, : Q < C, j, : Q — @p. Recall
that, if 7 = 7T ®c 7 is an automorphic representation of G(Ap+) over C where 7o, (resp.
ms) is a representation of G(F't ®g R) (resp. of G(A%,)), then due to the compactness of
G(F* ®gR), we have that 7, is a finite dimensional irreducible representation that comes
from an algebraic representation of Resp+ oG over C (argue as in |2, §§6.2.3,6.7]). Moreover,
arguing again as in loc. cit., T (resp. m;) has a Q-structure given by j,, which is stable
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under the action of (Resp+,0G)(Q) (resp. of G(A%,)). Hence the scalar extension of the Q-

structure of 7, to Q, via j, is endowed with an actlon of (Resp+,0G)(Q,), thus in particular
of (Resp+,0G)(Q,) = G(F'* ®g Qp) = Gp,. This latter representation of G, is easily seen to
be defined over L and of the form L(\) for a dominant A\ as above. We say that 7. is of
weight X if the resulting representation of G, is L(\).

For the sake of completeness, we recall the following proposition showing that Definition
3.2 coincides with the usual classicality definition.

Proposition 3.4. A strictly dominant point x = (p,6) € Y(UP,p), that is such that w(zx) =
0y for some dominant \ € Hvesp(Zn)Hom(Fﬁ’L), is classical if and only if there exists an
automorphic representation T = o ®c T @c 7, of G(Ap+) over C such that the following
conditions hold:

(i) the G(Ft ®g R)-representation m« is of weight X in the above sense;

(ii) the Gr-representation p is the Galois representation associated to 7 (see proof below);

(iii) the invariant subspace (7§)V" is nonzero;

(iv) the Gp-representation m, is a quotient of (Ind%:55;15§;)sm o T,

If moreover F is unramified over F* and U, is hyperspecial when v is inert in F, then such
a T is unique and appears with multiplicity 1 in L*(G(FT)\G(Ap+),C).

Proof. Let W be any linear representation of G, over an L-vector space and U any compact
open subgroup of G(A%,), we define S(U,W) to be the L-vector space of functions f :
G(F*)\G(A%) — W such that f(gu) = u,"(f(g)) for g € G(A,) and u € U, where u,, is
the projection of w in G,. Fixing U? as previously, we define S(UP, W) := ligU S(UPU,, W)
(inductive limit taken over compact open subgroups U, of G,) endowed with the linear left
action of G, given by (h, - f)(g) := hy(f(ghy)) (hy € Gp, g € G(A¥,)) where the second h,
is seen in G(A%,) in the obvious way. Note that T also naturally acts on S(UP, W) (the
representation W here playing no role since this action is “outside p”). Then it follows from
[24, §7.1.4] that there is an isomorphism of smooth representations of G, over Q,:

(3.6) S(UP, L)) @ Q, = @ [( ®Q Wp) 9., Q ]@m(w)

where the direct sum is over the automorphic representations m = 7., ®¢ 1, of G(Ap+) such
that 7o is of weight A and ()" # 0 (we take the Q-structures) and where m(x) is the
multiplicity of 7w in L*(G(F*)\G(Ap+),C). We then say that a point p € X5 ¢ is the Galois
representation associated to m (with 7., of weight A) if we have:

()Y @5 ™) ®5,, T C S(UP, LN )ws[py] @rr) Q,

where p, is as in (3.1) (and R;s acts on S(UP, L(\)'),s again using [48, Prop.6.7]). Note
that S(UP, L(A) )ms[Ps] @k, Q # 0 (equivalently S(UP, L(A))ns[p,] # 0) if and only if
there exists an automorphic representation 7 such that m, is of weight A, (7 ) # 0 and p
is the Galois representation associated to .

:|EBm7r
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Let S (UP, L)Ma ¢ S (UP, L)* be the closed G,-subrepresentation of locally L(\)-algebraic
vectors, that is the L-subvector space of S(U?, L)* (or equivalently of S(U?, L)) of vectors v
such that there exists a compact open subgroup U, of G, such that the U,-subrepresentation
generated by v in S(U?, L)|v, is isomorphic to (L(A)|y,)®* for some positive integer d. Note
that the subspace S (UP, L)*! is preserved under the action of T (since the latter commutes
with G,). Then it follows from [21, Prop.3.2.4] and its proof that there is an isomorphism
of locally Q,-algebraic representations of G, over L which is T®-equivariant (with the action
of T% on the right hand side given by its action on S(U?, L()\)")):

S(UP, L)Y = L(\) @, S(UP, L(\)).
We then deduce a Gj,-equivariant isomorphism of Rj; s-modules:
(3.7) S(UP, L)X = L) @r S(UP, L) )
where S(U?, L))5" := (S(UP, L)* ™) ys = (S(UP, L)ps) 2.

mS
Now let x = (p,d) € Y(U?,p) with w(xz) = 0, for A dominant and define p, as in (3.1).
From Definition 3.2 and the definition of S(U?, L)*2) we get that the point x is classical if

and only if there exists a nonzero G,-equivariant morphism:
L) @, (IndF" 66,105 ) — S(U7, L) [p,] ©xip,) k()
if and only if by (3.7) there exists a nonzero G,-equivariant morphism:
(Ind57665 105, )" — SUP, L Jws ] xir,) k()

if and only if by (3.6) there exists an automorphic representation m = 7o, ®c¢ 7T? ®c mp of
G(Ap+) such that 7y is of weight A, (7)"" # 0, p is the Galois representation associated to

7 and 7, is a quotient of (Ind%’: (5(5;1(553)““ R(s) Qp.

Now let us prove the last assertion. According to [39, Cor.5.3], there exists an isobaric
representation II = II; H --- HII, where n = m; + --- + m, and II; nonzero automorphic
representations of GL,,, (Ar) occuring in the discrete spectrum such that II is a weak base
change of 7 in the sense of [39, §4.10]. Since p, hence p, are absolutely irreducible, we have
r = 1 and II = II; cuspidal. The equality m(7) = 1 then follows from [39, Th.5.4] (which
uses the extra assumption F'/FT unramified). The uniqueness of 7 is a consequence of the
strong base change theorem [39, Th.5.9] together with the fact that m, is unramified at finite
places v of F™ which are inert in F' (which uses the extra assumption U, hyperspecial for
v inert) and the fact that the L-packets at finite places of F* which are split in F' are

singletons. O

Remark 3.5. With the notation of Proposition 3.4, write 55;1 = (6smv,15 - - > Osmovyn Jves, if
MOTeOVer gn.vi/0smoj & {1, ] |5} for 1 <i# j <nand v € S,, then we see from (iv) of
Proposition 3.4 that 7, = (Indgﬁéﬁl)sm R(s) Qp-

We then have the following conjecture, which by Proposition 3.4 is essentially a conse-
quence of the Fontaine-Mazur conjecture and the Langlands philosophy, and which is the
natural generalization in the context of definite unitary groups of the main result of [35] for
GL2/Q (in the crystalline case).
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Conjecture 3.6. Let x = (p,0) € Y(UP,p) be a crystalline strictly dominant point. Then x
is classical.

Remark 3.7. We didn’t seek to state the most general classicality conjecture. Obviously,
the assumptions that p > 2 and G is quasi-split at each finite place of F'™ shouldn’t be
crucial, and one could replace crystalline by de Rham.

3.2. Proof of the main classicality result. We prove a criterion for classicality (Theorem
3.9) in terms of the patched eigenvariety of [13], which itself builds on the construction in [18]
of a “big” patching module M,,. We use it to prove our main classicality result (Corollary
3.12).

We keep the notation of §3.1 and make the following extra assumptions (which are required
for the construction of M,): F' is unramified over F'*, U, is hyperspecial if v is inert in F
and p(Gr(c,)) is adequate in the sense of [48, Def.2.3]. For instance if p > 2n + 1 and plg, ,
is (still) absolutely irreducible, then p(Gp(,)) is automatically adequate ([27, Th.9]). We
first briefly recall some notation, definitions and statements and refer to [13, §3.2] for more
details on what follows.

We let R%j be the maximal reduced and Z,-flat quotient of the framed local deformation
ring R and set:

—

RIOC : ® ves p ) ﬁp = ®UES\S Da Rﬁp = ® ES = Rloc[[xl . ,l’g]]

where g > 1 is some integer which will be fixed below. We let %pp = (Spf Rp)"®, X5, :=
(SpfRp,)"® and X := (Spf Roo)'™® so that:

(38) xoo = %ﬁp X %ﬁp X Ug
where U := (Spf O [y])"¢ is the open unit disc over L. We also define S, := Or[y1, - - -, v
where t := g+ [FT : Q]@ +|S|n? and a := (yi,...,y:) (an ideal of S.).

Thanks to Remark 3.1 and Proposition 3.4 we can (and do) assume that the tame level
UP is small enough so that we have:

(3.9) G(F)N (hUPK,h™") = {1} for all h € G(A¥,)

(indeed, let w 1 p be a finite place of F* that splits in F' such that U, is maximal, replace
UP by U? := U, I,z Uy, where U}, is small enough so that U satisfies (3.9), and use
Proposition 3.4 and local-global compatibility at w to deduce classicality in level U? from
classicality in level U"). Then there is a quotient R; s — R5 s such that the action of R; g

on §(Up, L)ys factors through R; s, an integer g > 1 and:

(i) a continuous R.-admissible (see [13, Def.3.1]) unitary representation Il,, of G, over
L together with a Gp-stable and R-stable unit ball 113 C II;

(ii) a morphism of local Op-algebras S,, — Ro such that M. = Home, (II2,,Or) is
finite projective as an S [K,]-module;
(ili) a surjection Ry /aRs — Rz s and a compatible G-equivariant isomorphism I [a] =

S(UP, L) s
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We then define the patched eigenvariety X,(p) as the support of the coherent O, & e
oo P,

module Mo, = (Jp, (II5>72"))" on X X T, (see [13, Def.3.2] for TTE>=—2": strictly speaking
(Jp, (I1Ee—am))" s the global sections of the sheaf M,). This is a reduced closed analytic
subset of X, x T}, 1, ([13, Cor.3.20]) whose points are ([13, Prop.3.7]):

(3.10) {x = (y,6) € X x T, 1, such that Homy, ((5, I, (I [p,] @pp,) k(x))) # O}

where p, C Ro denotes the prime ideal corresponding to the point y € X, (under the
identification of the sets underlying X, and Spm R..[1/p]) and k(p,) is the residue field of
p,. It follows from the proof of [13, Th.4.2] that we can recover the eigenvariety Y (U?,p)
as the reduced Zariski-closed subspace of X,(p) underlying the vanishing locus of the ideal
aF(%oo, Oxoo)

Lemma 3.8. The coherent sheaf Mo, is Cohen-Macaulay over X, (p).

Proof. From the proof of [13, Prop.3.11] (to which we refer the reader for more details) we
deduce that there exists an admissible affinoid covering (U;); of X,(p) such that I'(U;, M) is
a finite projective module over a ring Oy, (W;) whose action on I'(U;, M) factors through
a ring homomorphism Ow,_ (W;) — Ox,)(U;). Consequently we can deduce from [26,
Prop.16.5.3] that I'(U;, M) is a Cohen-Macaulay Oy, ) (U;)-module. O

It follows from [13, Th.3.21] that the isomorphism of rigid spaces:
%Oo X Tp,L = %oo X j;p,L
(x7 (57.))1)651)) = (SC, (51),17 e 7§U,H>U€Sp) — (I’, (7‘171(51),17 e 751),n))U€Sp)

induces via (3.8) a morphism of reduced rigid spaces over L:
(3.11) Xp(p) — Xpp x Xii(p,) x U

which identifies the source with a union of irreducible components of the target. Note that
the composition:

B _\ (3.11)
Y(UP,5) = Xp(p) = Xp x Xii(p,) ¥ U7 Xi5(p,)

is the map (3.3). An irreducible component of the right hand side of (3.11) is of the form
XP x Z xUY where X? (resp. Z) is an irreducible component of Xz (resp. Xg;(p,)). Given an
irreducible component X” C Xz, we denote by X *"(p,) € X{%(p,) the union (possibly
empty) of those irreducible components Z C XtDH(pp) such that XP x Z x UY is an irreducible
component of X,(p) via (3.11). The morphism (3.11) thus induces an isomorphism:

(3.12) X,(p) = U (27 x XFE " (5,) x 1)

tri

the union (inside Xz x X{;

(p,) x U7) being over the irreducible components X? of Xz

We now state and prove the main result of this section, which gives a criterion for clas-
sicality on Y (U?,p). Recall that, given a crystalline strictly dominant point z, = (r,,d,) €
Xt (p5) such that the geometric Frobenius eigenvalues on WD(r,) are pairwise distinct and
V, € Xt (p;) a sufficiently small open neighbourhood of z,,, we have constructed in Corollary
2.5 an irreducible component Z,; v, (z,) of V, containing z,.
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Theorem 3.9. Let x = (p,0) € Y(UP,p) be a crystalline strictly dominant point such that
the eigenvalues @s1, ..., 0sn of the geometric Frobenius on the (unramified) Weil-Deligne
representation WD(plg,. ) satisfy QO{)’Z‘(’O,E} ¢ {1,q,} foralli # j and allv € S,. Let XP C Xz

be an irreducible component such that x € XP x X3, ~*"(p,) x U? C X,(p) via (3.12), let
v € Xiii(p5) (for v € S,) be the image of x via:

tri
X x XE (5 ) x U9 — X5 (5,) — X5(5,) - X5i(75)

tri tri

and let V, C Xi(p5) (for v € S,) be a sufficiently small open neighbourhood of ., so that

Zwiv,(xy) C 'V, is defined. If we have:

H Ztri,Vv (xv) C thrf aut(pp)

vES)

then the point x is classical.

Proof. Let us write p, C R for the prime ideal corresponding to the image y of z in X
via Y (UP,p) — X, (p) — X X fp,L — X and p, C R; g for the prime ideal corresponding
to the global representation p. Then it follows from property (iii) above that we have
aR. C p, and S(UP, L) s [p,] = Il[p,]. From Definition 3.2 we thus need to show that
Homg, (LA(6), o [py] @k, k(2)) # 0.

As in §3.1 let us write § = d0sm With A = (X,)yes, and:

)\v = <>\v,‘r,i)1§i§n,T€Hom(Fg,L) S (Zn)Hom(Ff,,L)

(recall that each A, is dominant with respect to B,). Consider the usual induction with
compact support indf(i (L(N)|k,) (vesp. ind%* (L(A\,)|k,)) where L()\,) (resp. L()\,)) is the ir-
reducible algebraic representation of G, (resp. G,,) over L of highest weight A (resp. \,) with
respect to B, (resp. B,). Let H(A) := Endg, (indg’;L()\)) and H(),) := Endg, (ind% L(\,))
be the respective convolution algebras (which are commutative L-algebras), we have H(\) =
[lves, H(Ay). Moreover by Frobenius reciprocity:

Mo () := Homy, (L(A), Tlo) & Home, (ind5 L(A), Tl )

carries an action of H(A). For v € Sy, set k, := (Kyri)1<i<nretom(ry,r) With K, ,; =
Apri— (i —1) and note that w(z,) = dx,. By a slight extension of [18, Lem.4.16(1)] (see the

proof of [13, Prop.3.16]), the action of RD on I ()\) via REﬁ — R°¢ — R, factors through
the quotient RD komer of Rpr,

These two actions of H(A,) and RD K= o0 the L-vector space Il ()) are related. By [18,
Th.4.1] and a slight extension of [18 Lem.4. 16(2)] (see the proof of [13, Prop.3.16]), there is
a unique L-algebra homomorphism 7, : H(\,) — RfD kv=er(1 /p] which interpolates the local
Langlands correspondence (in a sense given in [18, Th 4.1]) and such that the above action
of H(A,) on I1(\) agrees with the action induced by that of RD ke=er] /p] composed with

the morphism 7,.

In order to show that LA(J) admits a nonzero Gp-equivariant morphism to Il [py] @k(p,)
k(z), we claim it is enough to show that IT..(\)[p,] = Homgp(de L(\), II[p,]) is nonzero.
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Indeed, by what we just saw, any nonzero G,-equivariant morphism ind%" (A) = Io[p,]
induces a nonzero G,-equivariant morphism:

indi L) @1 () — Tclpy] Ok, b()
which factors through indIG{; L(X) @u(n) Op, where 0, is the character:

by, : HO) "2 @, R [1/p] — k(p,) C k(a),
the last morphism being the canonical projection to the residue field k(p,) at p, (the map
R; < Ro — R /p, factoring through ®v€5’p Skv=er 1oy the assumption on p). But by
the compatibility with the local Langlands correspondence in [18, Th.4.1] together with the
assumption g,;/ps; # ¢ for 1 < 4,7 < n and v € S,, we have indIG(’; (A) @neny bp, =
LA(5) @ k().

By the same proof as that of [18, Lem.4.17(2)], the Ry, Qr;, @vespRﬁDﬁ’k”_cr—module oo (A

is supported on a union of irreducible components of:
X x [ 57 x U7
vES),

and we have to prove that y is a point on one of these irreducible components. Since
y € XP X lpes, Zeris(ps) x U9 where Zeis(ps) is the unique irreducible component of %D o
containing p; = plg,, (recall Z{El kv~ is smooth over L by [36]), it is enough to prove that
X? X [lyes, Zeris(ps) x U is one of the irreducible components in the support of 1. (A)’, or

equwalently that XP X [[,es, Zeris(ps) X U7 contains at least one point which is in the support
of I (M)

For each v € S, let 2/, = (r/,8,) be any point in u,(Zeis(z,)) NV, € V, € XZ.(5,)
where Z.s(x,) is as in (i) of Corollary 2.5 (so in particular z/ is crystalline strictly dominant
of Hodge-Tate weights k, and r] lies on Zuis(ps) by (i) of Remark 2.6). Then we have

xl, € Zyiv,(z,) for v € S, by (ii) of Corollary 2.5. From the assumption:
I Zuiv, (@) € X557 (p,)

vES)

it then follows that there exists:

(3.12)

o =(y,€) € X x [ Zuiv, (o) x U7 C X2 x X ™4(5,) x U? C X,(p) C Xoo x Tp

tri
vES)
(with 3/ € Xo, € € T,) mapping to z/, via X7 x XX ~2u( p,) X UY — X3 "(p,)
XEI(pp) — Xii(p;) (so €, =1,'(6,)) and where y/ still belongs to X X [[,es, Zaris(ps) X
It is thus enough to prove that vy is in the support of IIo(\)’, i.e. that IIo(\)[p,
Hompg, (L(A), IIo[p,]) is nonzero.

||zd£

]

We conclude by a similar argument as in the proof of [13, Prop.3.28]. By (the proof of) [17,
Lem.4.4] and the same argument as at the end of the proof of Lemma 2.4 (using the smooth-
ness, hence flatness, of U [k —er %D ko= ~), we may choose z! € LkU<Zcris(xv>>m% such that
the crystalline Galois representatlon 7! is generic in the sense of [13, Def.2.8]. Then we claim
that the nonzero G-equivariant morphism fg:(e’ ) = I[Heemanp /] ®k(p,) k(') corresponding
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by [12, Th.4.3] to the nonzero Tp-equivariant morphism ¢ — Jp (II%>~*"[p,/| R(p,) k(2'))
given by the point 2’ factors through its locally Q,-algebraic quotient LA(€") (which provides
a nonzero K,-equivariant morphism L(\) — Il [p,/]). Indeed, if it doesn’t, then the com-

putation of the Jordan-Holder factors of .ng(e’) ([12, Cor.4.6]) together with [11, Cor.3.4]

show that there exists a point 2" = (v/,€") € X,(p) such that €” is locally algebraic of non-
dominant weight. In particular there is some v € S, such that the image of " in X3} (p5) is

of the form (r], 2,1 (€!)) with 1, *(¢/) locally algebraic not strictly dominant. This contradicts

v

[13, Cor.2.12]. O

Before stating our main consequence of Theorem 3.9, we need yet another proposition.
Similarly to Definition 2.11, we say that a union X of irreducible components of an open
subset of Xi(p,) = [lues, Xini(p5) satisfies the accumulation property at a point z € X
if, for any positive real number C' > 0, X contains crystalline strictly dominant points
1" = (2} )ves, with pairwise distinct Frobenius eigenvalues, which are noncritical, such that
w(z,) = 0w, with &k, . —Fk, .y >Cforve S, ie{l,...,n—1}, 7€ Hom(Fj;, L) and that
accumulate at z in X.

XP—aut

Proposition 3.10. Let X? C Xz be an irreducible component and v € Xg; ~*™(p,) be a

crystalline strictly dominant point. Then X X7 —aut

ot (ﬁp) satisfies the accumulation property at
T.

Proof. Tt is enough to show that, for C' large enough, the points of X? x X% —2u¢ (p,) x U7

tri
such that their projection to X7y ~*"*(p,) is a point ' = (2/,),es, of the same form as above

accumulate at any point of XP x X5 1 (7,) x U? mapping to x in Xt (p,). Using (3.12)
this claim is contained in the proof of [13, Th.3.19] (which itself is a consequence of [13,

Prop.3.11]). O

Remark 3.11. It is obvious from the definition that if a union X of irreducible components
of XtDri(ﬁp) = [lves, XH.(p;) satisfies the accumulation property at some point z € X, then
for each v € S, the image of X in X{(p;) (which is a union of irreducible components of
XD

.(p,)) satisfies the accumulation property at the image of x in X (p;).

Let x = (p,0) € Y(U?,p) be a crystalline strictly dominant point such that for all v € S,
the eigenvalues of the geometric Frobenius on WD(p|g,, ) are pairwise distinct. Recall that

we have associated in §2.3 a Weyl group element w,, to the image z, of x in XJ.(p;) via
(3.3). We write:

(3.13) we = (wy,)oes, € ] ( I Sn>

UESP Fy—L

for the corresponding element of the Weyl group of (Resp+/0G)r = [loe s, (Resr, 0, GLn k) L-
We then obtain the following corollary, which is our main classicality result.

Corollary 3.12. Let x = (p,0) € Y(UP,p) be a crystalline strictly dominant very reqular
point. Assume that the Weyl group element w, in (3.13) is a product of pairwise distinct
simple reflections. Then x is classical. Moreover all eigenvectors associated to x are classical,
that is we have (see the proof of Proposition 3.4 for g(Up, L)N5%):

mS

Homy, (8, J5,(S(U, L)25"p,] @k(p,) k(x))) — Homy, (3, 5, (S(U?, L) [p,) @xey,) k(2)))-

mS
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Proof. Keep the notation of Theorem 3.9. By Proposition 2.12, for each v € S, there is a
sufficiently small open neighbourhood V,, of x,, in X".(p;) such that the irreducible component

Ziiv, (xy) of V,, in (ii) of Corollary 2.5 is defined and satisfies the accumulation property at
x, (Definition 2.11).

Seeing x in X,(p) via the closed embedding Y (U?,5) — X,(p), by (3.12) there exist
irreducible components X of Xz and Z = [,eg, Zy of X{}i(p ) = lyes, Xini(P;) such that:

»_ 3:12)
T EXP x Z x U9 CXP x XH2p )ng C X,(p).

tri

Then it follows from Proposition 3.10 and Remark 3.11 that Z, satisfies the accumulation
property at z, for all v € S,. Let Y, C Z, NV, be a nonempty union of irreducible
components of V,, then X, := Y, U Zyiy,(z,) satisfies the accumulation property at z,
since both Y, and Zyv,(z,) do. But X, is smooth at z, by the assumption on w,, and
Corollary 2.16 applied with (X,z) = (X,,z,), hence there can only be one irreducible
component of X, passing through z,. We deduce in particular Zy; v, (x,) C Y, C Z,, hence
[Tves, Zuiv,(2v) € Tlves, Zv C Xoi ™(p,) and z is classical by Theorem 3.9. We also

deduce that the only possible Z = [],cg, Z, passing through (z,).es, is smooth at (z,).es,,
hence that X7 ~*"(p,) is smooth at (z,).es, -

tri

Let us now prove the last statement. From the injection:
Homy, (8, T, (S(U?, L)ns™p,] @k(p,) k(x))) = Homu, (8, Js, (S(U, L)s[p,] @) k()

it is enough to prove that these two k(x)-vector spaces have the same (finite) dimension.
Recall from [13, §3.2] that for any =’ = (v/,d’) € X,(p) we have an isomorphism of k(z')-
vector spaces:

(3.14) Homy, (8, Jp, (I~ p,] @4y, k(1)) = Moo @0, k(2.

If moreover 2’ = (o, ") € Y(U?, ) < X,(p) we have S(UP, L)ys[py] = Ia[p,], hence an
isomorphism of k(x’)-vector spaces:
(3.15)

Homy, (8, J5,(S(U”, L) [p ] @y, ) k(")) ~ Homg, (8, T, (152" [p,] @4y, ) K(2))).

We first claim that x is a smooth point of X,(p). Indeed, by what we proved above, it is
enough to show that its component y? = (yv)ves\g in Xz» is a smooth point. As z is ClaSSI—
cal, by Proposition 3.4 (in particular the end of the proof) it corresponds to an automorphic
representation 7 of G(Ap+) with cuspidal strong base change IT to GL,, (Ar). It then follows
from [14, Th.1.2] that II is tempered, in particular generic, at all finite places of F'. Then
[8, Lem.1.3.2(1)] implies that y, for v € S\, is a smooth point of (Spf R7 )™8. As M is
Cohen-Macaulay (Lemma 3.8) and x is smooth on X, (), we conclude from [26, Cor.17.3.5(i)]
that M, is actually locally free at x. Consequently there exists an open affinoid neighbour-
hood of x in X,(p) on which the dimension of the fibers of M is constant. Intersecting this
neighbourhood with Y (U?, p) and using (3.14) and (3.15), we obtain an open affinoid neigh-
bourhood V; of z in Y/(U?,p) on which dimy, Homg, (6", Jp, (S(U, L)slpo] @k ) k("))
is constant for 2’ = (p/, ") € V.

Now let 2/ € V, be a very classical point in the sense of [13, Def.3.17] and write w(z") =
with dominant X' € [],cg, (Z")mFw5) 1t follows from loc. cit. and [12, Th.4.3] that we
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have:
Homz, (&, Js, (WP, o, 10k Ma)) 2 Home, (LA®), SWP.L1 b yleu, k")

~J ~ ! _la
= Homg, (LA(J’), S(UP,L);S1 [pp/]®k<pp/)k(x’))

~

'_la
=  Homr, (5/, Ty ( (Up,L)jnS1 [pp/]®k(pp,)k(a:/))).

From what is proved above, it is thus enough to find a very classical point 2’ in V, such that:

(3.16)  dimy(r) Homy, (5/, T, (S(UP, L) ™ [por] @, ) k’(xl)» =
dimy(y) Homa, (8, J5, (S(U”, L)2s™[p,) @1y, k(2))).

mS

Let 2" = (p”,8") € Y(UP,p) be any classical crystalline strictly dominant point and let
w(z") = 0y». By Proposition 3.4 it corresponds to a unique automorphic representation
7" which moreover has multiplicity 1, hence we have (with the notation of the proof of
Proposition 3.4):

T, (SWUP, LY ™ [p) @rip,0 @) 2 T, (LX) @1 @ 1) ®5 (n77)Y" @5, @y
vES)
From the definition of S together with [22, Prop.4.3.6] and property (iv) in Proposition 3.4,
it then easily follows that:

(3.17)  dimyoy Hom, (87, Ji, (S(U7, L)Y [pyr] 1,0 K") = dimg ( @ 7).
veS\Sp

Let Z be the union of z and of the very classical points in V, by [13, Thm.3.19] this set

Z accumulates at x. By [14, Th.1.2], we can apply [16, Lem.4.5(ii)] to the intersection of

Z with one irreducible component of V,, and obtain that, for v { p, the value dimgm, U

v
is constant on this intersection. In particular dimg(®,cs\s, 7y Y)Y is also constant on this

intersection, which finishes the proof by (3.17) and (3.16). O

Remark 3.13. (i) Keeping the notation of Theorem 3.9, we actually think that there should
always be a unique irreducible component Z of X{(p,) (smooth or not) passing through the
image of  in Xi;(, ), or equivalently that for each v € S, there should be a unique irreducible
component of X (p,) passing through z,. If this is so, then x is classical. Indeed, in that case
there is an irreducible component X? of X, such that € XPx Zx U9 = XPx X/~ (p,)xU".
In particular, for a sufficiently small open neighbourhood V, of z, in X (p;), we have
[loes, Vo € Z = Xﬁf’a‘lt(pp) and we see that the assumption in Theorem 3.9 is a fortiori
satisfied.

(ii) Let us recall the various global hypothesis underlying the statements of Theorem 3.9 and
Corollary 3.12: p > 2, GG is quasi-split at all finite places of F'*, F//F* is unramified, U, is

hyperspecial if v is inert in F" and p(Gr(c,)) is adequate.

4. ON THE LOCAL GEOMETRY OF THE TRIANGULINE VARIETY

This section is entirely local and devoted to the proof of Theorem 2.15 above giving an
upper bound on some local tangent spaces. We use the notation of §2.
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4.1. Tangent spaces and local triangulations. We first recall some of the results of [4]

and [41]. Then we use them to prove a technical statement on the image of T, in Extg_(r,r)
(Corollary 4.3).

We fix a point x = (r,0) = (1,01,...,0,) € X

i (T) which is crystalline strictly dominant
very regular and a union X of irreducible components of an open subset of X:(7) such that
X satisfies the accumulation property at z (Definition 2.11). It obviously doesn’t change the
tangent space Ty, of X at zx if we replace X by the union of its irreducible components that
contain x, hence we may (and do) assume that x belongs to each irreducible component of

X. Taking a look at [4, §§5.1,6.1], it is easy to see from the properties of X{:(7) and from

tri

Definition 2.11 (together with the discussion that follows) that one can apply all the results
of [4, §7] at X and the point x (called the “center” and denoted by x¢ in loc. cit.). We let
Wy = (Wer)r kst € g1 Sn be the Weyl group element associated to z (§2.3).

Recall that Dyg(r) is the étale (¢, 'k )-module over Ry, x = k(2) ®g, Rk associated to r.
We denote by ExtéK (r,7) the usual k(x)-vector space of Gx-extensions 0 = r — x —r — 0
and note that Extg_(r,r) = Ext%%FK)(Drig(r), D¢ (7)) where the right hand side denotes the
extension in the category of (¢, I'k)-module over Ry, i (see [2, Prop.5.2.6] for K = Q,, the
proof for any K is analogous). We write w(x) = 0y for k = (k;)1<icnr gesp € (Z7)HomUEL),
Let @ € Tx 4, seeing the image of ¥ in Extg (r,7) as a k(z)[]/(c?)-valued representation of
Gk, we can write its Sen weights as (k;; + ed;;#)1<i<nr Kk for some d.;z € k(z). The
tangent space Tyn o, (z) to Wi at w(x) is isomorphic to E(z)5Qlm and the k(z)-linear map
of tangent spaces dw : Tx ; — Tyyp u(x) induced by the weight map w|x sends U to the tuple
(dr.i5)1<i<nr: k. The following theorem is a direct application of [4, Th.7.1].

Theorem 4.1. For any v € Tx ,, we have d.; 5z = d “L(0),7 forl1<i<mnandt: K — L.

Let U € Tx ., we can see ¥ as a k(z)[e]/(¢?)-valued point of X, and the composition:

Sp k(x)[e] /(%) <= X = XGi(F) — 7!

gives rise to continuous characters &; 7 : K* — (k(z)[g]/(€?))* for 1 < i < n. The following
theorem is an easy consequence of [41, Prop.4.1.13] (see also the proof of [4, Th.7.1]).

Theorem 4.2. For any v € Tx, and 1 < i < n we have an injection of (p,I'k)-modules
over Rk(x)[a}/(ez) K = k)(:ﬁ)[&:]/(t??) ®@p RK
Ri@)e/e). (51 7025 5”7) Drig(Nyayiey/e)75) = MRy D7)

where the left hand side is the rank one (¢, FK)-module defined by the character 61 5025 - - 0; 5
(134, Cons.6.2.4]) and where 1y is the k(x)[e]/(?)-valued representation of G associated to
.

From |2, Prop.2.4.1] (which readily extends to K # Q,) or arguing as in §2.2, the (¢, I'k)-
module D,i,(7) has a triangulation Fil, for @ € {1,--- ,n}, the graded pieces being:

k _ k
(4.1) Rk(x)yK(Z ww1<1)unr(cp1)>, ce ,R k(z), K(Z wx1<n)unr(g0n))
where k-1 := (k-1 ) ks (see (2.1) for 2%). Note that we have:

(4.2) 5.(2) = 2o (Zer ounr ().
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For 1 < i < n we let Dyg(r)=" := Fil; C Dyig(r), and we set Dyi(r)=? := 0. We thus have
for 1 <3 <mn:

i i k-1,
88 Drig(r) = Dig(r) =/ Dugg (r) <" = Ry e (2 Orune (i) ).

For 7 : K — L we fix a Lubin-Tate element ¢, € Ry x as in [34, Not.6.2.7] (recall that
the ideal ¢, R x is uniquely determined). If k := (k;)r.xer € Zggm(K’L), we let tK =
[L kesr th. We set for 1 <i < n:
: Hom(K,L
Eik,w,) = Z(kj - kwgl(j)) € L e

=1

(where nonnegativity comes from k,; > k, ;41 for every i, 7) and we can thus define tillkws) ¢

Rp k. In particular we deduce from (4.2) (and the properties of the ¢, ):

(43) Rk(m),K((Sl T (51) = tzi(k’wz) /\%k(z),K Drig(T)Si — /\%k(z),KDrig(T)'
We consider for 1 < i < n the cartesian square (which defines V;):

EXt%‘P:FI() (Drig(r)a Drig('f’)) —_— Ext%
V;

where the first horizontal map is the restriction map and where the injection on the right
follows  from the very regularity assumption. Indeed, its  kernel is
Hom ) (8518 Disy (r)S%, Dyig (r)/ Dyig(r)<)  which is 0 by dévissage since
Hom, ) (z%unr(y;), 2Xunr(p;)) = 0 for k, k' € Zggm(K’L) and j # j' using Definition 2.13
(in a similar way Definition 2.13 will imply many Hom-spaces to vanish in what follows).
Equivalently we have:

(tzi (k’wz)Drig (7’) <i 5 Drig (T))

@7FK)

Eixt () (15 07) Dysg (1)<, Dyig (r) <))

(4.4)
Vi 2 ler(Bxtl g (Ds(r): Deg(r)) — Bty (P54 D)=, D7)/ D)) )

<z

where the map is defined by pushforward along Diis(r) — Diig(r)/Diig(r)=" and pullback
along tZikwe) Do (r)ST s Dy (r).

Corollary 4.3. The image of any ¥ € Ty, in Extg_(r,r) = Ext%@jrk)(Dﬁg(r), Diyig(7)) is in
Vin---NV,_1 (where the intersection is within Ext%%FK)(Drig(r), Dig(r))).

Proof. Note that VinVen---NV, =ViNnVon---NV,_y. Let v € Tx,, ry the associated
k(z)[e]/(?)-deformation and see Diiy(rs) as an element of Ext%%FK)(Drig(r),Drig(r)). We
have to prove that the image of Di(rz) in Ext%%FK)(tzi(k’“’I)Drig(T)gi, Diig(7)/ Dyig(r)=") is
zero for any 1 <i <mn (see (4.4)). The proof is by induction on i > 1.
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For the case i = 1, we deduce from Theorem 4.2 (applied with ¢ = 1) a commutative
diagram:

Dig(75)

J

0 —— Ri(a),k (61) — R[]/ (2),k (61,5) — Ri(a),x (61)— 0

0~ Dig(1) Dyg(r) —— 0

where the left and right vertical injections are unique by Definition 2.13. Let Diz(r5)1 be
the inverse image of (the right hand side) Ry (), x(01) in Dryig(rs), then an obvious diagram
chase shows that there is a canonical isomorphism:

Diig(7) ©Ry0 1 (61) R(a)lel/(e2).5 (01,5) — Diig(T)1
which exactly means that the image of Dng(rv) in Extwr )(tzl(k we) Dy (1)SY, Dyig (1)) =
Ext(w ') (Rk(x i (61), Dyig(r)) comes from Ext (o) (Rk(x & (01), Ri(e),x(01)), and is thus 0 in
Ext (oK) (Rk(x k(01), Dyig(1) / R,k (01)) hence in Ext (oK) (Rk ),k (01), Diig(1)/ Dyig(r)=1).
Assume ¢ > 2 and that the image of Dyy(77) in:
Bt o) (157100 Dy (1), D () / Dy (r) =)
is zero. Then by Corollary 4.10 below the image of D;is(r5) in:
EXtp ) (175" Dyig(r) <™, Dysg (1) / Dag (r) <)
is also zero. From the exact sequence:
0 = Bxt{,, ) (£ ®"gr, Dyig(r), Diig(r)/ Drig(r) =) —
Bt o) (150 Dysg ()=, Dysg(r) / Drsg(r) =) —
Ext rye) (170" Doy (1), Dusg(r)/ D (r) )

(where the injectivity on the left follows from Definition 2.13), we see that the image of
Die(77) in Ext%%FK) (tzi(k’wI)Drig(r) Diig () / Dyig (r )J) comes from a unique extension:

Drig(rs)? € Extl, o) (850" gr, Dysg (1), Drig(r)/ Dsg (r)<').
We thus have to prove that Dng(rv) =0.

<i—1

The twist by the rank one (¢, 'k )-module /\Rk( .. . Drig(1)=""" is easily seen (by elementary

linear algebra) to induce an isomorphism:

~

(45) Bxtly g (850 gr, Dy, (1), Disg(r)/ Desg () =')
it rye) (70 A Dig(r) <", (Dug(r)/ Diag (r) <) A (N Digg(1)<71))

where we write A" Dy (1) for NRoior + Drig(r) and where (Duig(7)/ Drig (7 )<Y A (AT Dy (r)S11)
stands for the quotient:

(Drig(r> (N ang( )= 1))/<Drig(7’)<i (A~ lDrlg( )<i—1)) ~
(Dusg(r) A (N7 Dy (r)=71) ) / AT Dy (1)<,
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(here, Dyig (1) A (A" Dyig (1)="~"1) and Dyig (r)=' A (A" Dyig (r)='"") are seen inside A’ Dyig(r)).
Moreover the injective map A" Dy (r)="1 < A1 Dy, ()= still induces an injection (using
Definition 2.13):

Ext o) (%0 A Drig (1)<, (Dig(r)/ Drig (1)) A (N Digg (r)57)) =
Ext{,, o) (70 AT Dysg (1)<, (Dasig () / Daig(r) =) A (N Dysg(r) <)) .
Denote by:

(46) Duglra)® € Extlp ) (507 A Dy (1), (D) Dsg (r)=5) A (N~ Dygg (1))
the image of Dy, (75)® (using the isomorphism (4.5)). It is thus equivalent to prove that
g g g p q p

Dyig(r5)® = 0. Note that:
(4-7) ( rlg( )/Drlg( ) )/\ (/\i_lDrig(T)Si) = (Drig(r) N (/\i_lDrig( ) ))/ N rlg( )<i‘

For 1 < i < n, we have a k(z)-linear map Extj (r,r) — ExtéK(/\Z(m)r, Niy?) de-
fined by mapping a k(z)[e]/(?)-valued representation of Gx to its i-th exterior power over
k(z)[g]/(e*). This induces a k(z)-linear map:

Ext{, ) (Drig(r), Daig(r)) — Ext, 1) (A" Drig(r), A Dy (1) ).
Let Dyig(A'rg) € Ext, p ) (A'Dyig(r), A'Dysg(r)) be the image of Dyg(ry). The pull-back along
A'Dyig(1)=" < A"Dyig (1) sends Dyig(A'ry) to an element in Ext%%FK)(/\iDrig( )= A" Dyig (1))
Elementary linear algebra (recall €2 = 0!) shows this element in fact belongs to:
EXt (1) ( A Diig ()=, Drig(r) A (N Dysg(r) =)

(which embeds into EXt%%FK)(/\lDrig(T)Sl, A'Dyig(r)) again by Definition 2.13). The pushfor-
ward along:

Der) A (N~ Dag(r)=) = (Deiglr) A (N Du(r) <))/ A Digglr)
now gives by (4.7) an element in:
Extlp ) (A Drig(r) <, (Dig (r)/ Drsg(r) <) A (N D (r) <))

and further pull-back along t¥i(kw=) A" Dy (1) < A'Dyy, (r)=* finally gives an element:
(4.8) 5rig(/\irﬁ) € EXt%¢,FK)<tEi(k7wz) N Drig(r)giv< Drig(r)/ Dyig(r ) )/\ (/\i_lDrig(T)Si)>-
Now, again manipulations of elementary linear algebra show we recover the element ZN)rig(rg) @
of (4.6), that is, we have D,z (A'rg) = Diyg(rz).

But we know from Theorem 4.2 (using (4.3) and Definition 2.13) that the image of
Diig(A'rg) (by pullback) in Ext, (tzi(k’“’z) A" Dyig (1)<, /\iDrig(T)) actually sits in:

Bty r) (70 AY Dig (1)<, A" Digg (r) <)

(in fact even in the image of Extao’FK) (tRilew) AL D (r)SE TR w) ATD L (1)S7)). In particular
its image 5rig(Airg) in:

EXt{pr0) (70 A" Digg(r) <", (Disg(r) A (N7 Disg (1)) N Disg(r) <)
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must be zero. Since Erig(/\im) = Erig(rg)(i), we obtain Erig(rg)(i) =0. O

4.2. Calculation of some dimensions. We compute various dimensions that will be used
in the proof of Theorem 2.15 in §4.4. These computations themselves use some technical
results of Galois cohomology which are proven in §4.3 below.

We keep the notation of §4.1. Recall that a (p,I'x)-module D over Ry, x is called
crystalline if D[1/[1,. gxp t-]"% is free over Ky ®q, k(x) of the same rank as D. If D, D’
are two crystalline (¢,'x)-module over Ry ik, one can define the k(z)-subvector space
of crystalline extensions Ext!. (D, D') C Ext(lw,FK)(D,D’) Note that Ext!; (-,-) respects
surjectivities on the right entry (resp. sends injectivities to surjectivities on the left entry)
as there is no Ext?,,, see [3, Cor.1.4.6].

cris?

Lemma 4.4. For 1 <i </ <n we have:

dimy (o) Exct, p o (1, D (r) /(7 0"), Dy (r)/ Disg(r) =) =
S e {041, b ki) < wi k)]

T KoL
Proof. 1t follows from Proposition 4.9 below (applied with (i,¢) = (¢,7) and (i,¢) = (i —1,1))
together with the two exact sequences:
0 = Ext{, ) (81: Drig(r)/ (1% 0")), Dysg (1) / Drig (r)=') —
Ext{, r o) (Dia(r)/ (%), Dysg(r)/ Drig(r)=') —
EXt{p0) (De(r) </ (1900), Digg (1) Dusg(r) <),

O — EXtCI‘lS (griDﬁg( ) r1g< )/Drlg( ) ) - EXtcrls (Drlg7 Dr ( )/Drlg( ) ) —
EXt iy ( Drie (1)< ™", Drig(r) / Drig(r) <)

(injectivity on the left following again from Definition 2.13), that we have:

(4.9) Ext{, o) (g1, Daig(r)/ (£%0")), Dysg(r) / Dy (r)=") =
E crls(gr Dl‘lg( ) r1g< )/Drlg( ) )

By dévissage on Diig(1)/Dyig(r)=* using that Ext. . respects here short exact sequences (by

Definition 2.13 and the discussion above), we have:

dlmk( ) EXtcrls (griDrig( ) Tlg( )/Drlg ) Z dlmk EXtcrls (griDTig (7”), gril Dﬂg (T)) .
i1=0+1

The result follows from (4.19) below. O

Proposition 4.5. We have:
n(n —1)

dimy () <V1 NVan---nN Vn_l) = dimy(y) EXtéK(T, r) — ([K : Q) 5
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Proof. To lighten notation in this proof, we write D, instead of Dy,(r) and drop the sub-
script (p, k). We first prove that, for 1 < ¢ < n, we have an isomorphism of k(x)-vector
spaces:

(4.10) Vin---NViy/Vin---NV;, =
Ext' (gr, Drig, Duig/ Dy ) /Ext! (g1, Duig/ (7 0)), Dyse/ D5;)

where V; N ---NVi_; := Ext! (Drig, Drig) if i = 1. We first define the map. We have the
following commutative diagram:

0 0 0
0 — Ext!(gr; Dyg/(t%i(w2)) Dysy /DY) — Ext!(D5L/(t%i00we)), Dig /D3 — Ext! (D52~ (#%iwa)) Dyig /D5 — 0
0 — Ext!(gr; DrlgyDrlg/Dng) — Ext? (Dmg,Drlg/D“g) — Ext? (D“g Dng/Dmg) —- 0

0 — Ext!(t¥i&wa)gr, Dy, Dyig /D, - Ext!(tZilows) pSt Dng/D —  Ext!'(tile wx)D " Dug/DSH = 0

rlg) rlg) rig

where the injections on top and left and the surjections on the two bottom lines all follow
from Definition 2.13, and where the surjection on the top right corner follows from Corol-

lary 4.11 below. Denote by E; the inverse image of Ext'(D5. '/(t%(w)) Dy, /D5)) in

Ext (Dflé, D,/ Drlg) then we have an isomorphism:

(4.11)  Ext'(gr, Duig, Drig/ Dt ) /Exct" (gr, Dysg / (£7:0)), ng/Drlg)
E; [Ext' (D53 /(#70")), Dyyg/ D5}).

We consider the composition:

(4.12) Vin---NViy < Ext'(Dyg, Duig) — Ext' (D5, Dng/DHg)

rig»
Ext'(D5;, Dug/Di5y) /Ext! (D53/ (£%®")), Dyse/ D))

and note that the image of Vy N -.- N V,_; falls in E’/Ext1 rig (i dowa)y I'lg/Drlg>

Corollary 4.10 below. If v € ViN---NV;_; is also in V}, then its image in Ext! (D!, D,/ Drlg)

rig>
maps to 0 in Ext' (%) DS Dy, /DS, hence belongs to Ext' (D5, /(#%&w=)), Dy /D3

By (4.11), we thus have a canonical induced map:
(413) vin---NnV,y/Vin---NV;, —

Ext' (gr, Drig, Duig/ Dy ) /Ext" (g1, Daig/ (%)), Dysg/ D5;)
Let us prove that (4.13) is surjective. One easily checks that Ext'(D,/D5. ", D

rig I‘lg) g
Vin---NViy and that the natural map Ext'(Dug/D5s ', Dusg) — Ext' (g, Disg, Duig/ D55

rig

is surjective (again by Definition 2.13). This implies that a fortiori (4.13) must also be
surjective. Let us prove that (4.13) is injective. Ifv € V1N ---N VZ 1 maps to zero, then the
image of v in Ext (D<Z Dng/Dfng) belongs to Ext!(D3! (tZ (k wa)), rlg/D“g) by (4.11), i.e.

rigs ] rig
maps to zero in Ext' (t%&w) DS Dy, /D31, ie. v € Vi by (4.4), hence v € ViN---N V.

rig»
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We now prove the statement of the proposition. From (4.10) and Lemma 4.4, we obtain
for 1 <3 <mn:

dimk(x) (%m"'m‘/i—l/‘/lm"'m‘/z) =
K:Qln—i)— > |[eli+1...,n}uw () <wl(@)} =

T K—L
> [ elit . onhwilG) <wil()}
T:K—L

Summing up dim) (ViN---N Vi /Vin---NV;) for i =1 to n — 1 thus yields:
dimg(a) Ext' (Dyig, Drig ) — dimyy (Vi N -+ N V,0) =

> {1 <in <y <my wpk(in) < wpk(in)}:
T: K—L
But {1 <4y < iy < n, wyi(in) < wyr(iz)}| = mn ) g(w,,) (see eg. [32, §0.3]), and
thus we get:

. . n(n—1
dimpy(Vin---NV,1) = dimgy Ext! (Drig, Drig) - Z ((2) - lg(wxﬁ))
T K—L
. n(n—1
= dimp(e) Bxt (Drig, Dg) — ([K : @p](Q) — lg(w,))
which finishes the proof. U

Seeing an element of ExtéK(r, r) as a k(z)[e]/(e?)-valued representation of G, we can
write its Sen weights as (k.; + ed:;)1<i<nr k1 for some d.; € k(z). We let V be the
k(z)-subvector space of Extg_(r,r) (or of Ext%%FK)(Drig(r), D,ig(r))) of extensions such that
d.; =d 1) forl<i:<nand7: K < L.

T,We (T

Proposition 4.6. We have dimy(,) V' = dimy(, Exték (ry7) — ds.

Proof. The Sen map ExtéK(r, r) = Ext%%FK)(Drig(r),Drig(r)) — k(2)K@I" sending an
extension to (d;)i1<i<nr k1 is easily checked to be surjective (by a dévissage argument
using Definition 2.13, we are reduced to the rank one case where it is obvious). The k(x)-

subvector space of k(z)E®In of tuples (d,;)i<i<nr kesr such that d,; = d, -1 for
1<i<nand7: K < L has dimension [K : Qyn — d, (argue as in the beginning of the
proof of Lemma 2.7). The result follows. O
Proposition 4.7. We have:
. . n(n—1
dimy(,) (V NVin---nN Vn_l)) = dimy () BExtg, (r,r) —d, — ([K : Qp]<2) - lg(wx)).

Proof. Consider the following cartesian diagram which defines W;:

Ext%%FK)<Drig(T), Drig(r)) — Ext%%FK)<Drig(r)9, Drig(r)) ,

| J

Wi EXt%@,FK) <Drig(r>gi7 Drig(’r)gi>
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then W; C V;, hence Wi N---NW,_1 CViN---NV,_q. In fact, Wy N---NW,_; is the k(z)-
subvector space of Ext%%FK)(Drig(r), D,is(7)) of extensions which respect the triangulation
(Drig(r)=")1<i<n on Dyig(r). A dévissage argument (using Definition 2.13) that we leave to
the reader then shows that the composition:

Wi A Woaiy < Extlyp) (Diig(r), Diig(r)) — k(z) %

(where the second map is the Sen map in the proof of Proposition 4.6) remains surjective.
A fortiori, ViN---N Vg — Ext%%FK)(Drig(r), Diig(r)) — k()@ i5 also surjective. By
the same proof as that of Proposition 4.6 we get:

dimk(z) (V N (Vi N---N Vn_1)> dlmk (‘/1 n- Vn—l) —d,

and the result follows from Proposition 4.5. O

To sum up the result of Proposition 4.7, we see that [K Qp]n n) _1g(w,) corresponds
to the “splitting conditions” and d, corresponds to the “weight Condltlons”

4.3. Calculation of some Ext groups. We prove several technical but crucial results of
Galois cohomology that were used in §4.2.

For a continuous character § : K* — L* and 7 : K — L, we define its (Sen) weight
wt,(0) € L in the direction 7 by taking the opposite of the weight defined in [4, §2.3]. For
instance wt,(7(2)*) =k, (k, € Z).

Lemma 4.8. Let 7: K — L and k; € Zo.

(i) For j € {0,1} we have Ext{, )(RLK,RLK((S)/(tﬁT)) # 0 if and only if wt.(0) €
{=(k:—=1),...,0} and we have Ext (oK) (RL K RL K(5)/(t§T)> =0 for all §.

(ii) For j € {1 2} we have Extj (RLK@)/@’?),RL,K) # 0 if and only if wt.(0) €
{=k;,...,—1} and we have Ext (RL K(5)/(t’j7),RL,K) =0 for all 9.

(iii) When one of these spaces is nonzero, it has dimension 1 over L.

Proof. The first part of (i) is in [4, Prop.2.14] (and initially in [19, Prop.2.18] for K = Q,,
see also [43, Lem.2.16]) and the second part in [40, Th.3.7(2)]. The second part of (ii) is
obvious, let us prove the first. We have an exact sequence:

(414) 0— ’R,LjK(éil) — RL,K(T<2)7]€7571) — ’R,L’K(T(Z)ik'r(sil)/(tﬁ'r) — 0.
The cup product with (4.14) yields canonical morphisms of L-vector spaces:
Ext(, o) (Reac/(87), R (r(2) 6 ) /() = Extl,po (Rex/(7), Rex(67))
Ext{, 00 (Rei/(857), R (7(2) 507 J(#5)) = Bxt,po) (Roxe/(H57), Rk (671)).
There is an obvious isomorphism of L-vector spaces:

Xty (R Rese ((2) #7867 /(157)) 2= ExtQp (Re/ (57), Rex(r(z) 671 /(857))

and an analysis of the cokernel of the multiplication by t*~ map on a short exact sequence
0 = Rox(r(z) ™6 1)/(th) - & = Rrx — 0 of (¢,['kx)-module over Ry i yields a
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canonical morphism of L-vector spaces:

EXt{, p o) (Reac Reac(7(2) 7767 /(t57)) = Bxt{, po (Reae/(857), Rese(r(2) 75671 /(t50)).

Thus we have canonical morphisms of L-vector spaces:
(4.15) Ext @FK)(RL K, Rk (7(2 )_kf(g_l)/(tl?)) — EXt%@,FK)(RL,K/@f—T)a RL,K(5_1))
Ext @FK)(RL K Rk (7(2 )_kT(S_l)/(t]:T)) — EXt%@,FK)(RL,K/(tiT)a RL,K(5_1))-

It is then a simple exercise of linear algebra to check that the morphisms in (4.15) fit
into a natural morphism of complexes of L-vector spaces from the long exact sequence
of Ext%%FK)(RL, K, ) applied to the short exact sequence (4.14) to the long exact sequence
of Ext{%FK)(-,RL,K(é_l)) applied to the short exact sequence 0 — t*"Rpx — Rpx —
Rr.x /(") — 0 (note that there is a shift in this map of complexes). Since all the morphisms
are obviously isomorphisms except possibly the morphisms (4.15), we deduce that the latter
are also isomorphisms. Twisting by R x(0) on the right hand side of (4.15) and using (i)
applied to the left hand side, the first part of (ii) easily follows. Finally (iii) follows from [4,
Prop.2.14] and from the previous isomorphisms (4.15). O

Recall that for ¢,¢ € {1,...,n} we have an exact sequence:
(4.16) 0 = Ext{, p,o (Daig(r)='/£20") Doy (1)<, Dy (r) / Drsg () =) —

EXt{, ry0) ( Drig(r) =7, Diig(r) / Drig (r)=*) —
Extly, ) (75" Dusg(r) =", Dasg(r)/ Dusg(r))
where the injection on the left follows as usual from Definition 2.13.

Proposition 4.9. For 1 <i < /{ <mn, we have an isomorphism of subspaces of
Exct (1) (Drig (1) =", Drig(r)/ Drig (1))

EXt (1) ( Dasg (1)< /£20) Dy (1)), Dy (1) / Dy (r) =) =
EXtlyss( Drig (1)<, Diig(r)/ Disg () =)

Proof. To lighten notation, we write D,y instead of Dng( ) and drop the subscript (¢, k).
By the exact sequence (4.16) and a dévissage on D5, and D,/ Dﬁg{ (recall from Definition
2.13 and the discussion preceding Lemma 4.4 that Ext!

here), it is enough to prove (i) that the composition:

Extly (D Drig/ Diiy) © Ext! (D5, Dusg/ D5t ) — Exct! (1% ®*) D5} Dy, / DY)

rig» rig»

ois Tespects short exact sequences

is zero and (ii) that:
Ext! (grg/Drig/ (D)) o, Drig) Ext! ;. (gr@/ Diig, g0 Drig)
(inside Ext'(gry Dyig, g6y Dyig)) for all £/, ¢ such that ¢/ < £ and ¢ > + 1.
We prove (i). The map clearly factors through:
Extly, (£%%") D5}, Diig/ D),

cris rig?
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let us prove that the latter vector space is zero. By dévissage again, it is enough to prove
that:

Ext!

cris

(tz‘f(k’“’”) g1y Dyig, grﬁ,,Drig) =0

for ¢/, ¢" such that ¢ < ¢ and ¢ > ¢+ 1. It is enough to prove that, for all 7: K — L, we
have wt, (t=¢&ws)gr, Di,) > wt, (g Dyg) (using Definition 2.13 when these two weights are
equal). This is equivalent to:

¢
(4.17) _l(km' — Frwzi) F Frwriey 2 Kt

j
which indeed holds for ¢, ¢" as above because k;1 > ko > -+ > k.
We prove (ii). From (i) we have in particular an inclusion:
(4.18) Extlyi, (270 Drig, 870 Drig) € Exct (gry Dusg/ (8% %)), g1y Dysg )
It is an easy (and well-known) exercise that we leave to the reader to check that:

(4.19)  dimg,) Ext,

cris

(grlerig7gr£//Drig) = ’{T t K= Lowr(0") < w;i(ﬁ/)}‘

On the other hand, from (ii) and (iii) of Lemma 4.8, using (4.17) and Ry, x(8)/(ththe) =
Rrx(0)/(th) x Rpx(8)/(the) if T # o, we deduce:

(4.20)  dimg(e) Exct! (gr Duig/ (% ®), g1 D) = {7+ K < LawgH(") < wyH(E)}].

(4.18), (4.19) and (4.20) imply Extl . (gry Diig, €1 Dyig) = Ext' (gry Dyig/ (t7¢%%)), g1, Dyiy )
which finishes the proof. O

Corollary 4.10. Let i € {1,...,n}, £ € Ext%%FK)(Drig(r),Drig(r)) and assume that the
image of € (by pullback and pushforward) in:

EXt{,pp0) (877109 Dyig (r) 5", Dysg (1) / Disg (1))
is zero. Then the image of € in:
EXt%(p,FK) (tzi(kMZ)Drig(T)Si_la Drig(r>/Drig(T)Si)

is also zero.
Proof. By Proposition 4.9 applied with (i,¢/) = (i — 1,7 — 1), the image of & in
Ext(, ) (Drig (1) 7", Diig(r) / Drig(r)<=1) sits in:

Ext ey (Drig (r)="7", Dyig(r)/ Drig (7’)§Fl>-
Hence its image in Ext%%FK)(Drig(r)S"*I, Diig(1)/ Drig(r)=") sits in:

Ext, (Du(r) 5", Dug(r)/ Do (r)=").

It follows from Proposition 4.9 again applied with (i,¢) = (i —1,7) that it maps to
2610 i Exth 0 (P55 Dyg (15", Do)/ D)), 0
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Corollary 4.11. For 2 <1 < n we have a surjection:

Extl ) (Diig (1) = /850) Dy (1)55, Dy (r)/ Dagg (1)) —
EXtg 1) (Drig (1)< /6509 Dy (1) 57, Doy (1) / Dy (1))
where the map s the pullback along:
Dy (r) =1 /150609 Dy () 5171 e Digg ()= /505 Dy () =,

Proof. This follows from Proposition 4.9 (applied with (i,¢) = (i,7) and (i,¢) = (i — 1,7))
and the fact that the map:

Ext! i, (Drig(r) =%, Diig (1) Drig(r) =) — Extly, (Drig(r) <", Dyig(r)/ Dig (1))

is surjective. 0

4.4. End of proof of Theorem 2.15. We use the results of §4.1 and §4.2 to prove Theorem
2.15.

We keep the previous notation.

Corollary 4.12. The image of Tx , in ExtéK(r, r) has dimension smaller or equal than:

dimy ) ExtéK(r, r)—d, — ([ cQp ———— (n —1)

—lg(w,)).
Proof. 1t follows from Theorem 4.1 that the image of any v € Tx, in Ext(le (r,r) is in

V. It follows from Corollary 4.3 that the image of any v € Tk, in EXtéK(T, ) is also in
Vin---NV,_1. One concludes with Proposition 4.7. O

Lemma 4.13. Let 2/ = (r',0') € X2i(T) be any point, then there is an evact sequence

of k(z')-vector spaces 0 — K(1') — Tyo,, — Exth(r,r) — 0 where K(r') is a k(z')-
subvector space of Txo . of dimension dimy(y Endyen (r') — dimgen Endg, (') = n? —

dimy,) Endg, (r').

Proof. Tt easﬂy follows from [37, Lem.2.3.3 & Prop.2.3.5] that there is a topological isomor-
phism Oxu , = RS where the former is the completed local ring at ' to the rigid analytic

variety %D and the latter is the framed local deformation ring of 7’ in equal characteristic
0. In particular from (2.11) we have Ty, = Homk(x/)(RE,k(x’)[g]/(é‘Q)). Then the re-
sult follows by the same argument as in [37, §2.3.4], seeing an element of Extg _(r',7') as a
deformation of v’ with values in k(2/)[e]/(g?). O
Lemma 4.14. Let 2/ = (r',8') € X5i(7) be any point such that H*(Gr, Endyn (1)) = 0,
then dimy,) Extg (r', ') = dimy() Endg, (') + n?[K : Q).

Proof. This follows by the usual argument computing dimy, H'(Gx, Endy)(r')) from the
Euler characteristic formula of Galois cohomology using dimy,) H Q(QK,Endk(x,)(r’ ) =0
and dlmk(x/) HO(QK, Endk(x/)(r’)) = dlmk(x/) EndgK (T/). L]
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Remark 4.15. Lemma 4.14 for instance holds if 2’ is crystalline and the Frobenius eigen-
values (¢})1<i<n (see Lemma 2.1) satisfy ¢}~ ' £ gfor 1 <i,j <n. In particular it holds
for 2’ = x.

Lemma 4.16. There is an injection of k(x)-vector spaces Tx , < Txo,.

Proof. The embedding X — X

H(F) — XY x T/ induces an injection on tangent spaces
(with obvious notation):

TX@ — Txg,r D TTL",é-
We thus have to show that the composition with the projection 7' = ®Trrs — TxE,r remains
injective. Let ¥ € T'x, which maps to 0 € Txo,, and thus a fortiori to 0 in Extg (r,r) via
the surjection in Lemma 4.13. We have to show that the image of ¥ in T7» 5 is also 0. We
know that the image of ' in Tyyn 4, (x) is zero since the Hodge-Tate weights don’t vary (that
is, the d,; 7 are all zero). To conclude that the image in TTL”,J is also 0, we can for instance

use Theorem 4.2 (which uses the accumulation property of X at x) together with an obvious
induction on . U

Corollary 4.17. Theorem 2.15 is true.

Proof. From Lemma 4.16 and Lemma 4.13 we obtain a short exact sequence:
(4.21) 0 — K(r)NTx, — Tx. — Extg (r,7)
which by Corollary 4.12 gives the bound:

—1
dimy ) Tx e < dimye) K(r) +1g(w,) — dy + dimy ExtéK (r,r) — [K : Q) ———— (n )

But from Lemma 4.13 and Lemma 4.14 + Remark 4.15 we have:

. . nn—1
dimy ) K (1) +1g(w,) — dy + dimy g ExtéK (r,r) — [K : Q) ——— n 5 ) _ =

lg(w,) — dy +n* + [K  Qpl———
which gives Theorem 2.15. U

(n+1)

5. MODULARITY AND LOCAL GEOMETRY OF THE TRIANGULINE VARIETY

We prove that the main conjecture of [13] (see [13, Conj.3.23]), and thus the classical
modularity conjectures by [13, Prop.3.27], imply Conjecture 2.8 when 7 “globalizes” and z
is very regular.

5.1. Companion points on the patched eigenvariety. We prove that the existence
of certain points (e.g. companion points) on the patched eigenvariety X,(p) implies the
existence of others (which are “less companion”), see Theorem 5.5. This result, which can
be seen as an “un-companioning” process, is used in the proof of Proposition 5.9 below.

We use the notation of §3. We denote by g (resp. b, resp. t) the Q,-Lie algebra of G,
(resp. B,, resp. T,). We also denote by n (resp. n) the Q,-Lie algebra of the inverse image
N, in B, (resp. N, in B,) of the subgroup of upper (resp. lower) unipotent matrices of



SMOOTHNESS AND CLASSICALITY ON EIGENVARIETIES 43

[Tves, GLn(F3). We add an index L for the L-Lie algebras obtained by scalar extension
- ®q, L (e.g. gr, etc.) and we denote by U(-) the corresponding enveloping algebras.

For v € 5, we denote by t, the Q,-Lie algebra of the torus T, so that t = [[,cg, tu-
Recall that t, is an Fj-vector space, and thus t,;, = t, ®q, L = [I;. gt ®F, 7 L. We
can see any 7 = (M)ves, = (Mo1s-- - Mon)ves, € fp,L as an L-valued additive character
of t, and thus of t; by L-linearity, via the usual derivative action (3,,1,...,3vn)ves,
Doves, Dt %nv,i(exp(tg,v7i))|t:0. Recall that the character 3,,; € F; — %nv,i(exp(tgv,i))h:o is
nothing else than Y- . p. .1 7(3v,:) Wt (70,:) € L.

In what follows we use notation and definitions from [46] concerning L-Banach represen-
tations of p-adic Lie groups and their locally @Q,-analytic vectors. If II is an admissible
continuous representation of GG, on a L-Banach space we denote by II*" C II its invariant
subspace of locally Q,-analytic vectors.

Lemma 5.1. Let Il be an admissible continuous representation of G, on a L-Banach space
and assume that the continuous dual II' is a finite projective OL[K,][1/p]-module. Let X\, p
be L-valued characters of t;, that we see as L-valued characters of by, by sending ny to 0. If
U(gr) @uee,) b = U(gL) @uy) A is an injection of U(gr)-modules, then the map:

Homy g, (U(82) @us,) A TI™) — Homue,) (U (82) @u,) 1, 1)

induced by functoriality is surjective.

Proof. We have as in [46, Prop.6.5] a K,-equivariant isomorphism:

(5.1) I 2 lim 11,

r—1
r<l

where each II, C II*" is a Banach space over L endowed with an admissible locally Q,-analytic
action of K. In particular each I, is stable under U(gy) in II*. If f: U(gr) ®ue,) A — 11"
is a U(gy)-equivariant morphism, the source, being of finite type over U(gy ), factors through
some II,. by (5.1). Moreover the action of U(gy) on II, extends to an action of the L-Banach
algebra U,.(g;) which is the topological closure of U(gy,) in the completed distribution algebra
D, (K,, L) (see [46, §5]). Consequently f extends to a U, (gr)-equivariant morphism:

fr 1 Un(81) ®ugr) (U(8L) @ueey) A) = Un(9L) @up(or) A — 1

where U, (by,) is the closure of U(by) in D,(K,, L) and the first isomorphism follows from
the isomorphism A = U,(br) ®p,) A (which holds since its image is dense and A is finite
dimensional). We deduce from [44, Prop.3.4.8] (applied with w = 1) that the injection
U(92)®u)A — U(9L)@u e, )1 extends to an injection of U, (g )-modules U, (g1)®u, (b,)A —
Ur(9L) ®u, (o) - Moreover, as U,(gr) @u,,) A and U, (gr) ®u, s, i are Uy, (gr)-modules of
finite type, they have a unique topology of Banach module over U,(g;) and every U, (gr)-
linear map of one of them into II, is automatically continuous (see [46, Prop.2.1]). We deduce
from all this isomorphisms:

~

Homy (g, (U(QL) Qv (or) A Han) —  lim Homyg,,) (U(QL) Quioy) A, Hr)

= hﬂ HomUT(gL)fcont (UT(gL) ®Ur(bL) )\’ Hr)
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where Homy, (g, )—cont Means continuous homomorphisms of U,(gr)-Banach modules, and
likewise with u instead of A. By exactitude of lignw we see that it is enough to prove that II,
is an injective object (with respect to injections which have closed image) in the category of
U, (g1 )-Banach modules with continuous maps.

By assumption the dual I’ is a projective module of finite type over O [K,][1/p], hence a
direct summand of O [K,[[1/p]®* for some s > 0. From the proof of [46, Prop.6.5] together
with [46, Th.7.1(iii)], we also know that II, is the continuous dual of the D, (K, L)-Banach
module:

H; = Dr<Kp, L) ®0L[[Kp]][1/17] H/.

We get that the D, (K, L)-module II’ is a direct summand of D, (K, L)®*. Now it easily
follows from the results in [38, §1.4] that D, (K, L) is itself a free U,(gz)-module of finite
rank. Dualizing, we finally obtain that there is a finite dimensional L-vector space W such
that the left U,(gr)-Banach module II, is a direct factor of the left U,(g;)-Banach module
Homon (U (g1) @1 W, L) (which is seen as a left U,.(gz)-module via the automorphism on
U,(g1) extending the multiplication by —1 on g ). Since direct summands and finite sums of
injective modules are still injective, it is enough to prove the injectivity of Homeon (U, (g1), L)
in the category of U, (g, )-Banach modules with continuous maps.

If V is any U,(gr)-Banach module, it is not difficult to see that there is a canonical
isomorphism of Banach spaces over L:

(52) HomUr(gL)—cont (‘/7 Homcont<Ur(gL)a L)) — Homcont(‘/a L)

so that the required injectivity property is a consequence of the Hahn-Banach Theorem (see
for example [45, Prop.9.2]). O

We go on with two technical lemmas which require more notation. Fix a compact open
uniform normal pro-p subgroup H,, of K, such that H, = (N, N H,)(T, N H,)(N, N H,).
For example H, can be chosen of the form [],¢ s, Ho where H, is the inverse image in K,
of matrices of GL,(OF,) congruent to 1 mod p™ for m big enough. Let Ny := N, N H,,
T,0 = T, N H,, No:= N,N H, (which are still uniform pro-p-groups) and T = 1{te
T, such that tNot™" € No} (which is a multiplicative monoid in T},). We also fix z € T}
such that zNyz=! C N§ and we assume moreover z 'H,z C K, so that the elements of
2z~ 'H,z normalize H, (as H, is normal in K,). Note that such a z always exists, for instance
take z such that zNgz~' C N{, choose r such that H?" C 2K,z and replace H, by H?":
with this new choice we still have zNyz=1 C NJ.

For any uniform pro-p-group H we denote by C(H, L) the Banach space of continuous L-
valued functions on H and, if h > 1, by C""(H, L) the Banach space of h-analytic L-valued
functions on H defined in [20, §0.3]. We have C(H,, L) = C(Ny, L)®1C(T,0, L)®1C(Ny, L)
and likewise with C)(-, L).

Lemma 5.2. Let f € C(H,, L) such that for each left coset (zH,2~' N H,)n C H,, there
exists f, € CM(H,, L) such that f(gn) = fa.(27'g2) for g € zH,z"* N H,. Then we have:

f € PNy, L)& LM (T0, L)ELC(No, L).

Proof. Representatives of the quotient (2H,z"' N H,)\H, can be chosen in Ny, whence the
above notation n (do not confuse with the n of GL,!). Restricting f to the left coset
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(zH,2"' N H,)n for some n € Ny and translating on the right by n we can assume that the
support of f is contained in zH,z~' N H,. Then if g € zH,2"* N H,, we have by assumption
f(g) = F(27'gz) for some F € C"(H,, L). Consequently f|,p .-1nm, can be extended to an
h-analytic function on zH,z' and f can be extended (by 0) on zH,2"*Ny = 2N¢z T, o No
as an element of:
CM 2Nz, L)&.C" (Ty0, L)®LC( N, L).

We deduce that f is in the image of the restriction map (note that zNyz=! C Ny implies
Ny C 2Nz~ 1):

CM(zNoz™, L)&,C M (T, 0, L)RLC(Ny, L) — CM (N, L)&,.CM (T, 0, L)®LC(Ny, L).

Now the stronger condition zNgz~' C N implies No C 2Ng" 27! = (2Noz~1)P. But by [20,
Rem.IV.12] the restriction to (2Noz~")? (and a fortiori to Ng) of an h-analytic function on
2zNyz"!is (h — 1)-analytic and we can conclude. O

If IT is an admissible continuous representation of GG, on a L-Banach space and if h > 1,
we denote by HS%) the H,-invariant Banach subspace of I1*" defined in [20, §0.3]. If V' is any
(left) U(t,)-module over L and A : t;, — L is a character, we let V) be the L-subvector space
of V on which t acts via the multiplication by A. Recall that if V' is any L|G,]-module, the
monoid T} acts on VN via v — t-v 1= dp,(£) X geny/enge-1 Tolv (v € VOt € TF see §3.1
for 6p,). This T,/ -action respects the subspace (II§")" of (IT*")™ (use that tNot~' = Ny for
teT)).

We don’t claim any originality on the following lemma which is a variant of classical results
(see e.g. [22]), however we couldn’t find its exact statement in the literature.

Lemma 5.3. Let II be an admissible continuous representation of G, on a L-Banach space,
A an L-valued character of t;, and h > 1. Then the action of z on (II*")No preserves the

subspace (H%ﬁ)f\v‘) = (H%}?)NO NIIE™ and is a compact operator on this subspace.

Proof. Let lq,...,l; be a system of generators of the continous dual II' as a module over
the algebra Or[H,][1/p]. Define a closed embedding of II into C(H,, L)®® via the map
v (g li(gv))1<i<s- This embedding is Hj,-equivariant for the left action of H, on C(H,, L)

by right translation on functions. By [20, Prop.IV.5], we have Hg}p =T1INCM™(H, L)®. If

vE Hg?g, n € Npand g € H,NzH,z"', we have [;(gnzv) = [;(2(27'g2) (2 'nz)v). Letv € H%Lp

and n € Ny. As z7'Nyz normalizes H, (by the choice of z) we have w := (27 'nz)v € Hg}p
(see [20, Prop.IV.16]). As l;(z-) is a continuous linear form on II, using [20, Thm.IV.6(i)]
the function f, : H, — L, g = fu(g) := li(zgw) is in CW(H,, L) and l;(gnzv) = f.(27'g2)
for g € 2H,z"' N H,. We deduce from Lemma 5.2 applied to the functions f : H, — L,
g — li(gzv) for 1 < i < s that:

(5.3) A1) € (0D (N, L)ELC™ (T, L)E1C(No, L))

Let v € (Hg)NO, the space on the right hand side of (5.3) being stable under Ny (acting by
right translation on functions), it still contains z - v = 32, < n, enge-1 T02v. Since z - v is fixed
under Ny, we deduce:

zov € (c<h—1>(m,L)@th)(:ﬁp,o,L))@S c c™(H,, L)%
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In particular z- (H%ﬁ)ivo C (TIg")NonC™W(H,, L)®* = (H%ﬁ)f\% which shows the first statement.
We also deduce:

J— —~ PHs N —~
2+ (EHY € (CP D (No, L)BL.CM (T, 1)), = CH D (No, L)B1 (CM(T0, L)F).

But by [20, Prop. IV.13.(i)], we have C"(T, ¢, L) ~ D,(T,0,L) for r = p~'/7" where
D, (T,0,L) is as in [46, §4]. Let U,.(t;) be the closure of U(ty) in D,(T,p, L), then (as
in the proof of Lemma 5.1) D, (1,0, L) is a finite free U, (t;)-module ([38, §1.4]). Using
A = Utn) ®uy) A, it follows that (C™ (T, L),)’, and hence C™ (T, o, L)$®, are finite
dimensional L-vector spaces. We denote the latter by W,.

We thus have z - (H%ﬁ)f\vo C C"=Y(Ny, L) @, Wy: the endomorphism induced by z on
(H%ﬁ)f\vo factors through the subspace (HE,?Z){\VO N (C(h_l)(ﬁo, L)®p W,\). As the inclusion of
C"=Y(Ny, L) into C™ (N, L) is compact and W), is finite dimensional over L, the inclusion
of (Hgﬁ)f\vo N (C(h_l)(ﬁo, L)®r W) into (H%ﬁ)f\v‘) is compact, which proves the result. [

If 6,,¢, € ﬁ,yL, we write €, Ty, 0, if, seeing d,,€, as U(t, )-modules, we have €, T d,
in the sense of [32, §5.1] with respect to the roots of the upper triangular matrices in
(Resg,/0,GLn,F, ). Likewise if 6, € € T, 1, we write € ¢ ¢ if, seeing 4, € as U(t;,)-modules, we
have € 1 § in the sense of [32, §5.1] with respect to the roots of the upper triangular matrices
in [Tyes, (Resr, /g, GLn k). Thus writing 6 = (6,)ves,, € = (€)ves,, we have € T ¢ if and
only if €, Ty, 0, for all v € S),.

Definition 5.4. Let J,¢ € fp,L, we write € T 0 if € ¢ 6 and if 6~* is an algebraic character
of Ty, i.e. €671 =6y for some X = (Ay)ves, € [lyes, (Z")HomUrL).

We can now prove the main theorem of this section.

Theorem 5.5. Let m C R [1/p| be a mazimal ideal, 0,¢ € fp,L such that € T 6 and L' a
finite extension of L containing the residue fields k(0) = k(e) and k(m). Then we have:

Homy, (e, Jp, (5> ~""[m] @) L)) # 0 = Homg, (6, Jp, (152" [m] @pm) L')) # 0.

Proof. We assume first k(0) = k(¢) = L and L' = k(m), so that we can forget about L’. Let
IT be a locally Q,-analytic representation of B, over L. The subspace II"* of vectors killed
by ny, is a smooth representation of the group Ny and we denote by my, : II"t — [TV C [1"
the unique Ny-equivariant projection on its subspace IT™o. It is preserved by the action of
T, inside II, hence also by the action of t; and one easily checks that:

(5.4) TN, or=tromy, (r€tr)

(use tNot™t = N, for t € TISJ). The subspace II}* := I, N II"* C II"% is still preserved
by T, and by (5.4) the projection 7y, sends IT}* onto IT3° := TN N TI5: C TI5:. We have
t-v=my(tv) fort € T.F, v € I1}° and in the rest of the proof we view I1\° as an LTy}
module via this monoid action.

The locally @Q,-analytic character § : T, — L* determines a surjection of L-algebras
L|T,] — L and we denote its kernel by m; (a maximal ideal of the L-algebra L[T,]). We
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still write ms for its intersection with L[TF], which is then a maximal ideal of L[T,]. Let
A :t;, — L be the derivative of §, arguing as in [22, Prop.3.2.12] we get for s > 1:

(5.5) Jp, (I1)[mg] = I [m3] == I3 [m],
(in particular Homg, (6, Jp, (I1)) = II%[ms] = I13°[ms]). Likewise we have Jp (II)[mg] =
1% [m?] = IV [m?] if o : ¢, — L is the derivative of €.

Let 3 C Swo[1/p] be an ideal such that dimp(S«[1/p]/J) < oo and define II; := I1[J].

As the continuous dual IT/_ is a finite projective Sy [K,][1/p]-module (property (ii) in §3.2),
the continuous dual I1,,[J]" of the G,-representation II[J], which is isomorphic to II’_/J by
the discussion at the end of [13, §3.1], is a finite projective Soo[K,][1/p]/TSs[K,][1/p] =
OL[K,][1/p]-module (in particular it is an admissible continuous representation of G, over
L). Moreover it is immediate to check that ITf=~2"[7] is isomorphic to the subspace H%n of
locally Q,-analytic vectors of II5.

Taking the image of a vector in (the underlying L-vector space of) A or p gives natural
isomorphisms:

Homy (g, ) (U (91) ®ue,) A ") = (T3")3 and Homygy,) (U(91) @ue,) 1, 115") < (T35

As by assumption we have p 1T A in the sense of [32, §5.1] (for the algebraic group
(Resp, j0,GLy,p, ) With respect to the roots of the upper triangular matrices), [32, Th.5.1]
implies the existence of a unique (up to L-homothety) U(g.)-equivariant injection:

(5.6) bt U(8L) ®uer) b= U(8L) ®u(er) A
which induces an L-linear map:
(5.7) b+ (TI57)Y — (TI5") 5

We claim that (5.7) maps the subspace (I13")}° to the subspace (T1g™) . Tt is enough to
prove:

* *
(5.8) L) O TNy = TN © Ly -

Let v be the image by (5.6) of a nonzero vector v in the underlying L-vector space of p.
Writing U(gr) ®@ue,) A = U(ng) we see that v € U(ny),—x (Wlth obvious notation), that
v is killed by ny in U(gr) ®ue,) A and that the morphism L, 1s given by the action (on
the left) by v. To get (5.8) it is enough to prove my, o = o 7TNO on (I13")3F, which itself
follows from nov = v on for n € Ny (n acting via the underlying G,-action on II3"), or
equivalently Ad(n)(v) = v on (II8")}*. Writing n = exp(m) with m € n; (do not confuse
here with the maximal ideal m!), recall we have Ad(n)(v) = exp(ad(m))(v) (using standard
notation). Since v is killed by left multiplication by ny, in U(gL) ®ue,) A, we have:

exp(ad(m))(v) € v + U(gr)(ng + ker(N))
where ker(\) :=ker(U(gr) = U(gL) ®ue,) A &+ r®@wv). The action of Ad(n)(v) on (II3")}*

is thus the same as that of v.

We still write:
(5.9) s (B0 — (I15),°

m
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for the map induced by (5.7). Using v € U(n}),_» together with (5.8), it is easy to check that
voaot= (6 ) (t)(tory,) for t € T,F (for the previous L[T,/]-module structure). Moreover,
it follows from Lemma 5.1 that (5.7) is surjective, hence the top horizontal map and the two
vertical maps are surjective in the commutative diagram:

an\n (5.7) an\n
(Hj ),\L - (H3 )ML

’7TN0 l \L 7'(']\]0

an (5.9) an
(Hj )f\Vo - (Hj )f)fo

which implies that (5.9) is also surjective. Note also that both (5.7) and (5.9) trivially
commute with the action of R, (which factors through R, /IR).

From [20, §0.3] we have I13" = limj_, thl){p and thus:

an\No ~ () \N an\Ny ~ (R) \N
(I57)5° = hETOO<HJ,Hp),\O and (II5"),° = hl_l)r_{loo(HJ,Hp>uO'
By Lemma 5.3 there is z € T which acts compactly on (thl){ )3 and (H ) . We deduce
from this fact together with [47, Prop.9] and [47, Prop.12] that the map l,m 5 in (5.9) remains
surjective at the level of generalized eigenspaces for the action of T; (twisting this action by
the character de! on the right hand side). Consequently ¢, » induces a surjective map:

U (5730 [m3] = (J (T15°),° [m?].

s>1 s>1

As both the source and target of this map are unions of finite dimensional L-vector spaces
(as follows from the admissibility of 15", [22, Th.4.3.2] and (5.5)) which are stable under
Ry and as ¢}, , is Ro-equivariant, the following map induced by ¢}, \ remains surjective:

(5.10) U (530w, m'] - {J (I13") 0 [m, m'].

s,t>1 s,t>1
Since m’ is an ideal of cofinite dimension in R[1/p], the inverse image J of m’ in S [1/p]

is a fortiori of cofinite dimension in S.[1/p] and we can apply (5.10) with such an J. But
we have for this J:

(I57)3° [mg, m'] = (=730 [mg, m', 3] = (T57") 5 [mj, m']
and likewise with m,, so that (5.10) is a surjection:

U &) [m3, m] = U ([ 7"),0 [m?, m'].

s,t>1 s,t>1

Looking at the eigenspaces on both sides, we obtain Homg, (0, Jp, (II>"*"[m])) # 0 if
Homr, (¢, Jp, (II%= 2" [m])) # 0.

Finally, when k(J) = k(e) is larger than L, we replace 11, by II. = Il ®1 L', Sy[1/p]
by Se[1/p] ®1 L', m by m" := ker(R[1/p] ® L' — k(m) ®, L' — L') (the last surjection
coming from the inclusion k(m) C L’) and the reader can check that all the arguments of
the previous proof go through mutatis mutandis. 0
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5.2. A closed embedding. Assuming the main conjecture of [13] and using Theorem 5.5
we construct a certain closed embedding in the trianguline variety (Proposition 5.9).

We fix a continuous representation 7 : G — GL, (k) as in §2.1 and keep the local notation
of §2 and §4. We also assume that there exist number fields F'//F*, a unitary group G/FT,
a tame level UP, a set of finite places S and an irreducible representation p as in §3.1 such
that all the assumptions in §3.1 and §3.2 are satisfied, and such that for each place v € 5,
there is a place v of F' dividing v satisfying F; = K and p; = 7. Note that this implies in
particular (2n,p) = 1 (as p > 2 and as (n,p) = 1 by the proof of [27, Th.9]). Assuming
(2n,p) = 1, it follows from [18, Lem.2.2] and [18, §2.3] that such (F/F*,G,UP, S, p) always
exist if n = 2 or if 7 is (absolutely) semi-simple (increasing L if necessary).

We recall the statement of [13, Conj.3.23] (see §2.3 for XL.(7)).

Conjecture 5.6. The rigid subvariety Xy, **(p,) of X&i(p,) doesn’t depend on X7 and is

isomorphic to XtDrl(,Op) = Ilves, j\{gi(pﬁ)'

Remark 5.7. (i) By (3.12), Conjecture 5.6 is thus equivalent to X, (p) = Xz X Xm(pp) x UY.

(ii) The authors do not know if Xm(pp) is really strictly smaller than X{(,).
(iii) Finally, recall that Conjecture 5.6 is equivalent to the classical modularity lifting con-
jectures for p (in all weights with trivial inertial type), see [13, Prop.3.27 & Prop.3.28|.

Let k := (k;)1<i<n Where k; = (k. ;). sy, € ZHmUEGD) s such that k,; > Ky ;4 for all i
and 7. For w = (w;)r. ks, € W = [I;.xp Sn, denote by Wiy C W] the Zariski-closed
(reduced) subset of characters (11, ...,n,) defined by the equations:

(5.11) Whe (T, (7 ) = Fri = Krriyy 1<i<m, 7: KL
For instance one always has:
(5.12) (Zk“’_l(l)Xh oy et Xn) €E Wk

where x; € Wy, are finite order characters. Note that W', ; = W}. We define an automor-

phism kT = T/ 0=, 1) = Jux(N) = Jux(M, - .., 1) by:

ki—k k

jw,k(”h v 777n) = (Z wil(l)’fh, o, R n_kwfl(n)f/]n)

which we extend to an automorphism g,k : X5 x T 5 X2 < T, (r,n) = (r, Jwx(n)). We
will be particularly interested in applying j,, k to points whose image in WY lies in Wy, |,

Example 5.8. Consider the case [K : Q,] = 2 (so Hom(K,L) = {r,7'}), n = 3 and
w = (wy,w,) with w, = 818281, Wy = $281 (81, S2 being the simple reflections in S3). Then
W3 1 is the set of characters of the form:

0= (m, 1) = (7(2)27'(2)2xa, T(2)Fr2r (2) 0 xs, T(2)F ! (2)F 0 xs)

where wt,(y1) = wt (x3) and wt(x1) = wtr(x2) = wt(x3). Note that there is no
condition on wt,(x2) (so one could as well rewrite the middle character as just 7/(z)"3xy).
One has (when the 7;, or equivalently the y;, come from characters in 7T7):

Jo) = (@7 (), T(2)ar (2) e xe, ()T (2)rax).
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Let U2 (7) := UR(F)NXC(7) (a union of connected components of U (7)), then U (7 T) X
wrp

k. is reduced (since it is smooth over Wy, ;) and Zariski-open (but not necessarily
Zariski-dense) in (X2

(7)) Xy Wity 1)7! where (—)™? means the associated reduced closed

analytic subvariety. We denote by (751(?) Xwr Wiy 1, its Zariski-closure, so that we have a
chain of Zariski-closed embeddings:

th?i(T) XWZ Wg,k,L C ()A(/t[rl1<?) XWE Wl?),k, )red C th‘l( ) XWE Wu) k,L C XL:r’l( )
C X2(7) C XY x T

tri

Proposition 5.9. Assume Conjecture 5.6, then for w € W the automorphism 3, : X5 X
T = X2 x T induces a closed embedding of reduced rigid analytic spaces over L:

Jwk * Utrl( ) XWE Wlnu,k,L — :)Zt ( ) C XEI( )

Proof. Since USL(T) Xwn Wy i 1, 18 Zariski-dense in UEL(T) Xwn Wi k1> it is enough to prove
Jka(ﬁgi(?) Xp W37k7L) C th( ), i.e. that any point 2’ = (1,d’) in UEI( ) with w(z') €
W 1 is such that j,,(z') s still in X (7).

Recall that by assumption:

(312)
(5.13) Xo(p) = X X Xm(pp) x U9 C Xpr x (X5, ¥ T,1) x UY.

Let ¢’ € X, (p) be any point such that its image in XtDn(pp) by (5.13) is (2')yes,. Write again w
for the element (w),es, € [Tyes, (I1r,— . Sn) (that is, for each v we have the same element w =
(W )7 ke, € HT ks Sn), K for (K)yes, € Tlies, ZHom(KL) (ihid.), Juwx for the automorphism
(Jwx)ves, of T L = les, TUL = Jlyes, T7' and (again) 7,x for the automorphism id x
(id X guwx) x id of Xz x (X5, x T,.) x U9. Then it is enough to prove that 7, (y') €
X,(p) (via (5.13)). Writing 3/ = (m',€) € X,(p) C Xao x Tz where m’ C R [1/p] is the
maximal ideal corresponding to the projection of y' in X and ¢ = (2,(¢’))ves,, we have
Homr, (¢, Jp, (I~ [m'] @k k(y))) # O (see (3.10)) and we have to prove (note that
Jwk 025" =151 0 Juic on Ty and that k(y') = k(Jux(¥))):

(5.14) Homy, (Jux(€'), Jp, (T2 (0] @k k(y))) # 0.

From Theorem 5.5, it is enough to prove € 1 7, x(€') in the sense of Definition 5.4. Since
€ 70x (€)1 is clearly an algebraic character of T}, by definition of j,, it is enough to prove
1,(0") T, Jwk(1(0")) (with the notation of §5.1) for one, or equivalently all here, v € S,,.
From (5.11), we see that we can write:

& = (g, 2o xg) and Ju(20(8) = (25, - -, 25 x)

where wt,(x;) = Wtr(Xw,(s)) for 1 <i < nand 7: K = F; — L (compare Example 5.8).
As we only care about the t, -action, setting s,; := wt,.(x;) € L and using usual additive
notation, we can write 2,(0")], , = (zv(é’)T)T:Fﬁe_}L and Ju 1 (20(6) e, . = (Gwx(2(0"))7)r mor
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with:
w(0)r = (b o1y +Sntk i) F8r2+ Lo ko) + Sen + 0 — 1)

YT aws

]w,k(zv((sl))r = (kT,l + Sr.1, k7,2 + Sr,2 + 17 s 7k7,n + Srn +n— 1)

(see the beginning of §5.1). Since s,; = s —1(; for all ¢, 7, we can rewrite:

T, Wy

w(0"), = (kT,w;la) + 5wty Frwste) TSty T Bty F S rwsty T 1)
hence we have 1,(0), = w; - Jux(2,(d")), for the “dot action” - with respect to the upper
triangular matrices in GL, g, X g, » L (see [32, §1.8]). Let us write the permutation w, on
{1,...,n} as a product of commuting cycles ¢; o --- o ¢,, with pairwise disjoint support
supp(¢;) € {1,...,n}. Let us denote by S,,; C S, the subgroup of permutations which fixes
the elements in {1,...,n} not in supp(¢;) and set S, 4, = [17% Spni € S, Then, arguing in
each supp(¢;), it is not difficult to see that one can write w, as a product:

Wr = SagSag_1 """ S

where the «; are (not necessarily simple) roots of the upper triangular matrices in GL,, g, X g -
L, the associated reflections s,, are in S,,,,, and where s,,1154, - *Sa; > Sa; - * - Say, for the
Bruhat order in S,, (1 <i <n—1). By an argument analogous mutatis mutandis to the one
in [32, §5.2], it then follows from the above assumptions (in particular s,; = St (i) for all
i) that we have for 1 <i < n — 1 with obvious notation:

(Sait1+ San)  Jw((8))r < (S0 Son) - Jwse(10(0")) -

By definition this implies that w; - J, x(2,(8"))- is strongly linked to J,x(2,(6"))- ([32, §5.1]).
As this holds for all 7, we have 2,(0") 11, Juwx(2,(0")). O

Remark 5.10. It would be interesting to find a purely local proof of the local statement of
Proposition 5.9 without assuming Conjecture 5.6.

5.3. Tangent spaces on the trianguline variety. We prove that Conjecture 5.6 implies
Conjecture 2.8 (when 7 “globalizes” and x is very regular) and give one (conjectural) appli-
cation.

We keep the notation and assumptions of §5.2. We fix z = (r,8) € XL\(7) C XL\ (F) which
is crystalline strictly dominant very regular. Recall from Lemma 2.1 that § = (d1...,0,)
where §; = ZXunr(p;) with k; = (krg)r sz € ZHmUELD and o; € k(x)*. The following

result immediately follows from Proposition 3.10 and Theorem 2.15 applied to X = XZ.().
Corollary 5.11. Assume Conjecture 5.6, then we have:

1
<lg(w,) — dy + dim XZ\(7) = g(w,) — d, +n? + [K : @p]w.

dimk(x) T 5

XEi(?),z

The rest of this section is devoted to the proof of the converse inequality (still assuming
Conjecture 5.6).
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As in the proof of Proposition 4.7, we consider for 1 < i < n the cartesian diagram which
defines W; (with the notation of §4.1):

Ext{, ) ( Drig(r), Drig(r)) ——= Ext{,, 1) (Drig ()=, Disg(r))

| J

Wi EXt{,, o) ( Dig (1) <7, Dasg(r)<7).

We define Weis; € Extl(Drig(r), Diig(r)) as W; but replacing everywhere EX'E%%FK) by its

subspace Extl. . Note that Weis,i € Wi for 1 <4 <mn.

cris*

Proposition 5.12. For 1 < i < n, we have isomorphisms of k(x)-vector spaces:
(5.15) Wi AWy /Win-nWi =5 Extl, o (erDug(r), Drig(r)/ Daig(r)=)
Wcris,l n---N Wcris,i—l/Wcris,l n---N Wcris,i _> EXtcnS (griDrig(r)a I‘lg( )/Dr1g< ) )

where WiN - N W, := Ext%%FK)(Drig(r),Drig(r)) (resp. Wepis1 N -+ N Wepigi1 1=
Ext!io(Drig(r), Drig(r))) if i = 1.

Proof. We write Dy, instead of Dy (r) and drop the subscript (¢,I'x) in this proof. We
start with the first isomorphism, the proof of which is analogous to (though simpler than)
the proof of (4.10) in §4.2. We have the exact sequence (using Definition 2.13):

(5.16)

0 — Ext' (g1, Duig. Drig/ D5s) — Ext' (Dfiy, Dusg/ Dit) — Ext! (D5y™", Disg/ DL) — 0.

rig rig» rig

The composition:

W1 N---N VVZ‘_l — Fxt (Drlg, Drlg) —» EXt (D<Z Drlg/Drlg)

rig»

lands in Ext'(gr, Drlg,Dng/Dng) by (5.16). If v € Wiy n--- N W;_y is also in W, then its

image in Ext' (D5}, Dyig/D5e) is 0. We thus deduce a canonical induced map:

(5.17) Wi A Wiy /Wi N0 Wi — Ext' (gr, Dusg, Diig/ D551 )-

. . . . <i—1
Let us prove that (5.17) is surjective. One easily checks that Ext'(Dyg/Dss ' Dyig) C

Win---NW,_; and that the natural map Extl(Drig / ng ! , Dyig) — Ext'(gr; Diig, Dyig/ Drlg)
is surjective (again by Definition 2.13). This implies that a fortior: (5.17) must also be
surjective. Let us prove that (5.17) is injective. If w € Wi N--- N W;_; maps to zero, then

the image of w in Ext (D;g, Dng/Dng) is also zero, i.e. w € W; hence w € Wy N---NW,.

The proof for the second isomorphism is exactly the same replacing everywhere W; by
Weis,; and Ext by Ext} O

cris®

Corollary 5.13. We have:
. nn—1
dimyey (Win--NWoiy) = dimp) Bxtiy, o (Dig(r), Dug(r)) — [K : @p]<2)
dlmk(z) (Wcris71 NN Wcris,n—l) = dlmk( ) EXtCrlS (Drig(r)v Drig(r)) - lg(wx)
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Proof. This follows from Proposition 5.12 together with (4.9) and Lemma 4.4 (both for ¢ = i)
by the same argument as at the end of the proof of Proposition 4.5. U

Remark 5.14. Note that W, N---NW,,_; ﬂExth(Drig(T), Diig(7)) = Werisa N+ N Wepisn—1-

Now consider =’ := (r,d0") = (r,d},...,d)) with 0] := zk“fa?l(')unr(gpi) then 2’ € UEI( ) by
(4.1). We also have w(z’) € Wy ; by (5.12), thus 2’ € Ut (7) Xwn Wiy xer, © UD\(7) and
Jwk(?') = x. Recall from §4.1 and the smoothness of ULi(T) over WP that the weight map

tri
w induces a k(z)-linear surjection on tangent spaces (note that k(z') = k(z)):

<5'18) dew : T)?Ei(?),x’ =Txp XD TW" wla') = k( )KQP]H7 U — (dT,i,ﬁ)léiSn,T:K‘%L-

Proposition 5.15. We have an isomorphism of k(x)-subvector spaces of T X070

T(Xtm(r)XWZWZxJ(’L)red’x/ —
{v € T30 gy such that drjg=d 15 1 <i<n, 70 K= L}.
In particular dimy,,) TR0 (rysyymn . yred g = = dim X3(7) — ds.
tri L wg,k,L T

Proof. We write Hom instead of Homy(,)_ae in this proof. Let Umw k(7)== Ug(7) Xyyn

Wi L, We have:
(519) OUEI s, k(?) = & Oﬁgi(?)’x/ ®0Wn Jw(@!) OWTL X L,w(m/)
and note that T( XL OxpnWn_ e’ = TUtDn e . Recall that, if A, B,C, D are commuta-

tive k(z)-algebras with B, C' being A-algebras, we have:
(5.20) Hom (B @4 C, D) — Hom(B, D) Xtom(4.p) Hom(C, D).
From (5.19) and (5.20) we deduce:

(5:21) Tgo )

= Hom(OUD k(?),m'7k<x)[5]/(52>) o T)?D.(F),x' X Tyyn (e ngz’kyL,w(g;/).

tri,wg tri

But from (5.11) we have:
TWZ (@) = {(dTyi)1§i§n7T;Kc_>L S ng,m(z’) such that dTﬂ' = dq—,w;1 N Vi, Vv ’7'}

whence the first statement. The last statement comes from dimy,) 750 7). = dim XtDn( )=
dim XZ.(T) (since 2’ is smooth on XT:(F) as 2/ € UL(F)), the surjectiwty of Txo —

J0(F) — W} is smooth by [13, Th.2.6(iii)]) and the same
argument as in the proof of Proposition 4.6. O

trl() /
Ty weny (since the morphism U

Recall from the discussion just before Conjecture 2.8 that we have a closed embedding

e X o XOL(F) with 2 € 4 (X5FT). We deduce an injection of k(x)-vector spaces:

TLk(’%“?D,k—cr) — T

trl(r)7

Likewise we deduce from Proposition 5.9 (assuming Conjecture 5.6) another injection of
k(x)-vector spaces:

T — — T5no (P
Jwg k (Um (F)XWZ Wg,k,L) e
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Taking the sum in T'xo of these two subspaces of T' we have an injection of k(x)-

t11(7) T D (T) z’

vector spaces:

(5.22) T

70 +T E\k cr — T"'
]wx,k( t“('l‘)XWnW kL> x ( - )7

Xtrl( )

Proposition 5.16. Assume Conjecture 5.6, then we have:

dimk(x) (T

JU)Zak( trl(T)XWnW ,k,L

) +T ((FDe, )zlg(wm) — d, + dim X;(7).

Proof. The composition X5;(7) < X¥2x T — XD induces a k(z)-linear morphism 150

tri

trl( )
Txo,. Since 2’ € US(F) € UL(7), it follows from [34, Th.Cor.6.3.10] (arguing e.g. as in

the proof of [13 Lem.2.11]) that the triangulation (D3

’L)
rig
a: tri

;=

1<i<n globalizes” in a small neigh-

~

(F), or equivalenty in UZ (7). In particular, for any ¢ € Thy 0 (7) .0

TXtEr'l( .o We have a triangulation of Dig(r7) by free (¢,I'k)-submodules over Rk(x el (e2), K

such that the associated parameter is (d14,...,0,5) (see §4.1 for the notation). This
has two consequences: (1) the proof of Lemma 4.16 goes through and the above map

T30 5y — Txo, is an injection of k(x)-vector spaces and (2) the image of the composition
tri T
TXEI(T) = Tho, — Ext%%FK)(Drig('r), Diyig(r)) (see Lemma 4.13) lies in Wy n---NW,_1 C

Ext(%FK)(Drig(r), Di,ig(r)). From Lemma 4.13 we thus obtain an exact sequence:

0— K(r)NTso — T

%0 e = WD N Wy,

Xei(™)a!

But dimy,) TXDA(?) o = dim XtDr1

Lemma 4.14 and Corollary 5.13, we have:

(7) since XU

tri

(7) is smooth at 2/, and from Lemma 4.13,

1
dimk(x) K(T) -+ dimk(x) (Wl N---N Wn—l) = n2 + [ Qp] (n * ) = dim X51( )

which forces a short exact sequence 0 — K(r) — Tso P wWin---NnW,_1 — 0. It then
tri ’
follows from Proposition 5.15 that we have a short exact sequence of k(x)-vector spaces:

(523) O—)K()—)T —>W1ﬂ--~ﬂWn_1ﬁV—>0

trl( )Xwnwn Lk, L)er’x/

where V' C Ext%%FK)(Drig(r), Dyig(7)) is as in the end of §4.2 (the intersection on the right
hand side being in Ext%%FK)(Drig(T), Dig(17))).

Arguing as in [37, §2.3.5] we also have a short exact sequence (see [36, (3.3.5)]):

(5.24) 0— K(r)— Txl;,k—cr — Extms(Drig(r), Dig(r)) — 0.
Using T' L (ROeery & Tiox-o , (which easily follows from the fact that the Frobenius eigen-
values (901, o) are pairwise distinct) and:

T, ~ Ty =T 5T - ,

O d — _
(Xtri(r)xwzwg,k,L)re x! trl(T)XW”Ww Xk, J R UtDTi(T)XWZWZ,k,L7I/ ]wzvk(UtDri(T)XWZWZ,k,LLx
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we deduce from (5.23) and (5.24) a short exact sequence of k(x)-vector spaces:

0—K(r)—T

e ( m(r)anw kL) ﬂT (2 FOk-er) o —

Wlﬂ ﬂWnlﬂVﬂEXt

the intersection in the middle being in Tyo,. But we have:

(Drig(r), Drig(r)) = 0,

cris

Win-- AW, NV N Ext i (Drig(r), Diig(1)) = Werisa 0 -+ N Wegigno1 NV
:> Wcris,l n---N Wcris,nfl

where  the  first  isomorphism is Remark 5.14 and the second fol-
lows from Extl . (Dyig(7), Dig(r)) € V (since the Hodge-Tate weights don’t vary at all in
Ext!io(Drig(r), Drig(r))). From Corollary 5.13 we thus get:

525) dinues (T, (5 ) Tieee.) =

Jwy k UtDri(F)XWZWZ,hL
dimg(e) K (r) + ditgge) Extly (Drig(r), Drig(r)) — lg(ws).
We now compute using Proposition 5.15, (5.24) and (5.25):

dimk(x) (T

sz,k(UEI(r)XW”W KL
(dlmk(x) K (1) + dimy(y) Extl (Drig(r), Drig(r))> -
((dimga) K (r) + dimgga) Extlyy, (Drig(r), Drig(r)) — lg(w,)) =
dim X (7) — dp + 1g(w,).
0

) +T Neals cr)x) (dlthDn( ) — dm)—f—

Corollary 5.17. Conjecture 5.6 implies Conjecture 2.8 for 7 =py (v € S,), i.e.:
dimy ) T)?D.(F),z = lg(w,) — d, + dim X;(7).

In particular x is smooth on XtDrl( ) if and only if w, is a product of distinct simple reflections.

Proof. Tt follows from (5.22) and Proposition 5.16 that we have lg(w,) — d, + dim X{;(7) <
dimy,) T3 %07, . The equality follows from Corollary 5.11 which gives the converse inequality.

Note that we also deduce T’ - +7T F0k-o — Tko . Finally, as we
Jwz k UEi(?)XWZWg’k,L) r k(X5 ) (e
have already seen, the last statement follows from Lemma 2.7. O

We end up with an application of Corollary 5.17 (thus assuming Conjecture 5.6) to the
classical eigenvariety Y (UP,p) of §3.1. We keep the notation and assumptions of §3.1 and
§3.2 and we consider a point € Y (UP, p) which is crystalline strictly dominant very regular.
In a recent preprint ([5]), Bergdall, inspired by the upper bound in Theorem 2.15, proved
an analogous upper bound for dimy) Ty @wr5)., and obtained in particular that Y (U, p)
is smooth at x when the Weyl group element w, in (3.13) is a product of distinct simple
reflections and when some Selmer group (which is always conjectured to be zero) vanishes.
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As a consequence of Corollary 5.17 we prove that this should not remain so when w, is not
a product of distinct simple reflections.

Corollary 5.18. Assume Conjecture 5.6 and assume that w, is not a product of distinct
simple reflections. Then the eigenvariety Y (UP, p) is singular at x.

Proof. For v € S, denote by x, the image of z in X{;(p;) via (3.3). Since Y (UP,p) — X,(p),
we have x, € )A(Ei (P5)- It follows from Corollary 5.17 that it is enough to prove the following:
if Y/(U?,p) is smooth at z then XL,
X0 (Py) = Iles, XU(7,) is smooth at (7y)ves,. The point x is very regular, consequently it
follows from [13, Thm. 4.8] that we have:

(5.26) Y(U, D) = Xp(P) X (spt scrie SP L

at the neighborhood of & where the map Sy, — L is Sy — (Sw/a)[1/p] and where X,(p) —
X — (SpfSy) is induced by the morphism S,, — Ry. Let weo(x) be the image of z in
(Spf Ss )8, by an argument similar to the one in the proof of Proposition 5.15 we deduce
from (5.26):

(p5) is smooth at x, for all v € S, or equivalently

Ty wr )z = {17 € Tx,(p),. mapping to 0 in T{gpf 5.0 )18 wes (2) Ok(weo (z)) k(:v)} )
This obviously implies:

(5.27) dimy(z) Ty e )0 = dimyz) Tx,5),0 — Ak @) T(Spt Swo)ris woo (@) -

But dimpw., @) L(spf so)riswa(@) = 9 + [F7T - Q]% + |S|n? (see beginning of §3.2) and

dimy(e) Ty (e 5). = dimY (UP,p) = n[F* : Q] since z is assumed to be smooth on Y (U?,p),
hence we deduce from (5.27):

dimyy Tx, e < 9+ [FF: Q2% 1+ |S1n? = dim X, (p)

where the last equality follows from [13, Cor.3.12]. We thus have dimyy) T'x, 7). = dim X,(p)
which implies that z is smooth on X,(p), and thus by (i) of Remark 5.7 that (z,).eg, is

smooth on X{;(p,)- O

Remark 5.19. (i) Singular crystalline strictly dominant points on eigenvarieties are already
known to exist by [1, §6]. However, the singular points of loc. cit. are different from the
points x of Corollary 5.18 since they have reducible associated global Galois representations.
(ii) Following (i) of Remark 3.13 and since the image of x in X3» should be a smooth point (use
that = should be classical by (iii) of Remark 5.7 and argue as in the proof of Corollary 3.12),
we thus think that the rigid analytic variety X,(p) should be irreducible in a neighbourhood
of z. Though this is not a statement about the variety Y (UP, p), it seems reasonable to us
to also expect that Y (UP,p) should be irreducible at z (and singular if w, is not a product
of distinct simple reflections).

6. ERRATUM TO [13]

It was pointed to our attention by Toby Gee that the isomorphism R, /aR., ~ R;s
claimed to exist in [13, Thm. 3.5.(ii)] is not a consequence of [18]. Consequently the correct
statement of [13, Thm. 3.5.(ii)] should be that there exists a surjective morphism Ry, /aR., —

R;s and a compatible isomorphism Il [a] & S(U?, L)y,
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However this mistake does not affect the other results of [13]. Here is the point of proof
which should be modified.

In the proof of [13, Thm. 4.8], the equality in the displayed formula should be a priori
replaced by an inclusion C of closed rigid analytic subspaces. However it follows from [13,
Thm. 4.2] that the corresponding reduced analytic subspaces are equal and it follows from
the remaining part of the proof of [13, Thm. 4.8] (which does not used that equality) that
the right hand side is reduced. This justifies a posteriori the equality of rigid analytic spaces
in the displayed formula.

We thank Toby Gee for drawing this fact to our attention.
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