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Le Bois-Marie

35 route de Chartres
91440 Bures-sur-Yvette

France
breuil@ihes.fr

Vytautas Paškūnas
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1 Introduction

Fix a prime number p, an integer f ≥ 1 and let F be an unramified extension
of Qp of degree f . Let:

ρ : Gal(Qp/F )→ GL2(Fp)

be a continuous representation. Assuming ρ is “generic”, the main aim of this
paper is (i) to associate to ρ a (usually infinite) family of smooth admissible
representations π of GL2(F ) over Fp with fixed central character (matching
det(ρ) via local class field theory) and (ii) to prove that these representations
are all irreducible and supersingular ([4]) when ρ is irreducible. In the case
f = 1, i.e. F = Qp, one can naturally refine this process into a correspon-
dence and associate to ρ a single smooth admissible representation π(ρ) (see
[6], [17], [14] and the last section). However, when f > 1, this is not possible
anymore as the family becomes much too big. It is then not clear so far
how to formulate a correct “modulo p local Langlands correspondence” and
we content ourselves here with the construction and study of the family of
representations π associated to ρ.

During the genesis of this paper, the authors have experienced a succes-
sion of good and bad surprises (most of the time bad!). In particular, the
theory has revealed itself infinitely more complicated than expected at first.
Its origin is a conference which was held in February 2006 at the American
Institute of Mathematics in Palo Alto. During the open sessions, discussions
involving several mathematicians resulted in the construction for f = 2 and
for each irreducible ρ as above arising from a global Galois representation of
(at least) one new supersingular representation π of GL2(F ) via global (and
slightly heuristic) arguments ([10], [16]). This representation π was such
that:

socGL2(OF ) π = ⊕σ∈D(ρ)σ (1)

where D(ρ) is the set of weights σ associated to ρ|inertia ([11], [15]) and where
socGL2(OF ) π denotes the socle of π seen as a GL2(OF )-representation. Recall

that a weight is an irreducible representation of GL2(OF ) over Fp and that the
GL2(OF )-socle is the maximal semi-simple GL2(OF )-subrepresentation. Let
us emphasize that none of the smooth admissible representations of GL2(F )
that were known at the time ([25]) satisfied condition (1).

After the conference, the two authors tried to construct representations
π satisfying (1) via purely local means and, more generally, embarked on the
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project of trying to classify all smooth irreducible admissible representations
of GL2(F ) over Fp. The first good surprise was that, using a generalization
of the main construction of [25], it was indeed possible to construct for f = 2
new supersingular representations of GL2(F ) having property (1) for ρ irre-
ducible and “generic”. Unfortunately soon after, came the first bad surprise:
there was an infinity of such representations! Such a phenomena could not
happen for f = 1. A little later, we realized the situation was even worse: not
only were there infinitely many representations π satisfying (1), but a host
of other supersingular representations also existed for f = 2 with arbitrary
GL2(OF )-socles having nothing to do with that of (1) for any ρ. The näıve
hope for a simple 1-1 local Langlands correspondence as for the case f = 1
had gone away...

However, we still hoped for a simple classification of all admissible irre-
ducible representations of GL2(F ). All of the above new irreducible repre-
sentations for f = 2 were constructed via a general process (available for
any local field F with finite residue field) involving a finite group theoretic
structure called an irreducible “basic 0-diagram” (see below or §9). These ir-
reducible basic 0-diagrams turn out to be much more numerous when f > 1
(just as happens with representations), so our natural hope was: may-be
there are just as many irreducible basic 0-diagrams as irreducible admissible
representations of GL2(F ) over Fp, as happens for f = 1? More work soon
convinced us that for F unramified over Qp and distinct from Qp this was
not the case: one single irreducible basic 0-diagram could lead to an infinite
family of supersingular representations. Besides, a reducible basic 0-diagram
could also lead to irreducible representations. To have a glimpse at how com-
plicated the situation can be for f = 2 (compared to f = 1), the interested
reader should take a look at §10.

Since a full classification of smooth irreducible admissible representations
seemed too complicated, we decided to focus only on those representations
satisfying (1) and at least try to associate to ρ a reasonable (although usu-
ally infinite) family of such representations. Then came a good surprise. We
had noticed that extending our construction from f = 2 to f = 3 seemed to
involve reducible basic 0-diagrams even in the case where ρ is irreducible and
hence (following our previous hope) seemed to lead to reducible representa-
tions of GL2(F ). Just after we realized this hope was erroneous, we discov-
ered that the representations of GL2(F ) we could associate to ρ irreducible
for f = 3 were indeed irreducible even though the basic 0-diagrams were
not. This phenomena comforted us with the hope that we were constructing
interesting representations in that case. Finally, to extend these results from
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f = 2, 3 to arbitrary f (including the cases where ρ is reducible), we found
that the condition we needed on the basic 0-diagrams was a certain multi-
plicity one assumption together with a maximality condition (see below or
§13).

Let us now explain with more details the main results of this paper.

Let I ⊂ GL2(OF ) be the Iwahori subgroup of upper triangular matri-
ces modulo p, I1 ⊂ I its maximal pro-p subgroup, K1 ⊂ I1 the first con-
gruence subgroup of GL2(OF ) and K1 ⊂ GL2(F ) the normalizer of I in

GL2(F ). If χ : I → Fp is a smooth character, let χs := χ(
(

0 1
p 0

)
·
(

0 1
p 0

)−1
)

be the conjugate character. Our main idea to construct representations
π of GL2(F ) over Fp is to first construct what we ultimately hope to be
the “right” triple (πK1 , πI1 , can). Here πK1 is seen as a representation of
GL2(OF )/K1 = GL2(Fq) where Fq is the residue field of OF , πI1 is seen as a
representation of K1 and can is the canonical injection.

Theorem 1.1. Fix a Galois representation ρ as above and assume ρ is
generic (Definition 11.7).

(i) There exists a unique finite dimensional representation D0(ρ) of GL2(Fq)
over Fp such that:

(a) socGL2(Fq) D0(ρ) ' ⊕σ∈D(ρ)σ

(b) each irreducible σ in D(ρ) only occurs once as a Jordan-Hölder
factor of D0(ρ) (hence in the socle)

(c) D0(ρ) is maximal for properties (a) and (b).

(ii) Each Jordan-Hölder factor of D0(ρ) only occurs once in D0(ρ).

(iii) As an I-representation, one has:

D0(ρ)I1 '
⊕

certain (χ,χs)
χ6=χs

χ⊕ χs

(in particular D0(ρ)I1 is stable under χ 7→ χs).

(iv) Assume ρ is tamely ramified, that is either split or irreducible, then:

dimFp D0(ρ)I1 = 3f ± 1

with + in the reducible case and − in the irreducible case.
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(v) Assume ρ is reducible non-split and let d ∈ {0, · · · , f − 1} such that
|D(ρ)| = 2d, then:

dimFp D0(ρ)I1 = 2f−d3d.

Let us point out the following important comment concerning the above
theorem. First, (i) is a general fact that works for any set of distinct weights
(not just the sets D(ρ)), see §13. But (ii) seems quite specific to the combi-
natorics of the weights of D(ρ), see §12. In particular, when ρ is reducible
non-split, we rely in (ii) on a property of D(ρ) which we call being of Galois
type (see §11). Moreover, to construct and study the representation D0(ρ),
in particular to prove (iv) and (v) above, we need a fine knowledge of the
injective envelope of a weight that we couldn’t find in the literature (where
the results were not strong enough and only available for SL2(Fq)). We were
therefore forced to provide our own proofs (see §§2 to 4). For instance, let

σ := Symr0F2

p ⊗Fp (Symr1F2

p)
Fr ⊗ · · · ⊗Fp (Symrf−1F2

p)
Frf−1

be a weight with
all ri in {0, · · · , p − 2} (see below for notations) and let Vσ be the maximal
representation of GL2(Fq) with socle σ such that σ occurs only once in Vσ.
We completely determine the structure of the representation Vσ including its
socle and cosocle filtrations (see Proposition 3.6 and Theorem 4.7). We also
completely determine the structure of the GL2(Fq) representation D0(ρ) in
Theorem 1.1 when ρ is tamely ramified: see §13 and §14 for details.

Let us call a basic 0-diagram any triple D := (D0, D1, r) where D0 is a
smooth representation of GL2(OF )F× over Fp such that p ∈ F× acts trivially,
D1 a smooth representation of K1 over Fp and r : D1 ↪→ D0 an injection induc-
ing an IF×-equivariant isomorphism D1

∼→ DI1
0 . For instance (πK1 , πI1 , can)

for π a smooth representation of GL2(F ) over Fp is such a diagram. Let us
say that a basic 0-diagram is irreducible if it doesn’t contain any non-zero
strict basic subdiagram (in the obvious sense).

Theorem 1.2. Let D = (D0, D1, r) be a basic 0-diagram such that D0 is
finite dimensional and K1 acts trivially on D0.

(i) There exists at least one smooth admissible representation π of GL2(F )
over Fp such that:

(a) socK π = socK D0

(b) (πK1 , πI1 , can) contains D

(c) π is generated by D0.

(ii) Assume D is irreducible. Then any π satisfying (a), (b), (c) of (i) is
irreducible.
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This theorem has to be thought of as an existence theorem only, as unicity
in (i) is wrong in general. Moreover, it has nothing to do with F unramified
over Qp and works for any local field F with finite residue field, see §9 (it
is a special case of Theorem 9.8 by taking π to be the G-subrepresentation
generated by D0). The idea is to build π inside the injective envelope InjD0

of the GL2(OF )-representation D0 in the category of smooth representations
of GL2(OF ) over Fp. Roughly speaking, the main point is to prove one can
non-canonically extend the action of I on InjD0 to an action of K1 such
that (InjD0, InjD0, id) contains D (up to isomorphism), which is possible
as injective envelopes are very flexible. Then the two compatible actions of
GL2(OF ) and K1 on the same vector space InjD0 glue to give an action of
GL2(F ) and we define π as the subspace generated by D0. The whole pro-
cess is highly non-canonical both because the action of GL2(OF ) on InjD0

is only defined up to non-unique isomorphism and because the extension to
an action of K1 involves choices. Note also that the converse to (ii) is wrong
in general: reducible basic 0-diagrams (in the above sense) can lead to π as
in (i) being irreducible (we provide ample examples in the sequel). However,
one can prove under certain mild conditions that any admissible irreducible
π gives rise to an irreducible basic “e-diagram” for some e ≥ 0, see Theorem
9.13. Unfortunately, basic e-diagrams when e > 0 are much more difficult to
handle than basic 0-diagrams.

Let us now go back to the setting of the first theorem and assume that
p acts trivially on det(ρ) (via the local reciprocity map) which is always
possible up to twist. One can use (iii) of Theorem 1.1 to extend the action
of I on D0(ρ)I1 to an action of K1. Moreover, multiplicity 1 in (ii) implies
that this extension is unique up to isomorphism and we denote by D1(ρ) the
resulting representation of K1. The idea is then to use D0(ρ) and D1(ρ) to
associate a basic 0-diagram to ρ but one needs to choose an IF×-equivariant
injection r : D1(ρ) ↪→ D0(ρ). Up to isomorphisms of commutative diagrams,
it turns out there are infinitely many such injections as soon as f > 1. Denote
by D(ρ, r) := (D0(ρ), D1(ρ), r) any such basic 0-diagram. Most of the time,
D(ρ, r) is not irreducible, but one can prove the following structure theorem:

Theorem 1.3. Let ρ : Gal(Qp/F ) → GL2(Fp) be a continuous generic rep-
resentation such that p acts trivially on det(ρ) and let D(ρ, r) be one of the
basic 0-diagrams associated to ρ.

(i) Assume ρ is indecomposable, then D(ρ, r) cannot be written as the di-
rect sum of two non-zero basic 0-diagrams.
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(ii) Assume ρ is reducible split, then we have:

D(ρ, r) ∼=
f⊕
`=0

D(ρ, r`)

where D(ρ, r`) is a non-zero basic 0-diagram that cannot be written as
the direct sum of two non-zero basic 0-diagrams.

In fact, D(ρ, r`) = (D0,`(ρ), D1,`(ρ), r`) where D0,`(ρ) and D1,`(ρ) only de-
pend on ρ and not on r. When ` varies, the GL2(Fq)-representations D0,`(ρ)
do not have the same flavour. For instance D0,0(ρ) and D0,f (ρ) have an ir-
reducible socle but this is not the case for the other D0,`(ρ). Note that the
basic 0-diagrams D(ρ, r`) are usually not irreducible.

Applying (i) of Theorem 1.2 to the diagrams D(ρ, r), one gets:

Theorem 1.4. Keep the setting of Theorem 1.3.

(i) There exists a smooth admissible representation π of GL2(F ) such that:
(a) socK π =

⊕
σ∈D(ρ) σ

(b) (πK1 , πI1 , can) contains D(ρ, r)
(c) π is generated by D0(ρ).

(ii) If D(ρ, r) and D(ρ, r′) are two non-isomorphic basic 0-diagrams asso-
ciated to ρ, and π, π′ satisfy (a), (b), (c) respectively for D(ρ, r) and
D(ρ, r′), then π and π′ are non-isomorphic.

The proof of (ii) crucially relies on property (i) of Theorem 1.1 defining
D0(ρ). We also have an exactly similar theorem replacing everywhere π by
π` and D(ρ, r) by D(ρ, r`) for 0 ≤ ` ≤ f (see Theorem 19.9).

For a given generic ρ, the family of all π satisfying (i) of Theorem 1.4 for
all D(ρ, r) is the family of admissible representations of GL2(F ) we associate
to ρ in this paper. One big task, which we only start here, is to better under-
stand this family in order eventually to rule out some of the representations it
contains. For instance, some of the representations π in this family are such
that πI1 contains strictly D1(ρ) ([22]). One could thus only consider those
π in the family satisfying (πK1 , πI1 , can) ' D(ρ, r). L. Dembélé’s appendix
in [9] suggests that there should at least exist some π with πI1 = D1(ρ). In
another direction, [8] suggests a refinement based on the condition that a
certain (ϕ,Γ)-module associated to a π in this family should be exactly the
(ϕ,Γ)-module of the tensor induction of ρ from F to Qp. However, those
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two refinements are probably still not enough to select, e.g., a finite subset
of representations in the above infinite family of representations associated
to ρ (if F 6= Qp).

Theorem 1.3 suggests that the right GL2(F )-representations associated
to ρ should also somehow satisfy the same properties as D(ρ, r), i.e. should
be indecomposable (resp. semi-simple) if and only if ρ is. We at least have
the following irreducibility result:

Theorem 1.5. Keep the setting of Theorem 1.3.

(i) Assume ρ is irreducible. Then any π as in (i) of Theorem 1.4 is irre-
ducible and is a supersingular representation.

(ii) Assume ρ is reducible split. Then any π` as in (i) of Theorem 1.4 for
D(ρ, r`) is irreducible. Moreover, π` is a principal series if ` ∈ {0, f}
and is a supersingular representation otherwise.

For instance, when ρ is semi-simple split, (ii) of Theorem 1.3 together
with (ii) of Theorem 1.5 imply that the representations ⊕f`=0π` belong to the
family associated to ρ and are semi-simple. The proof of Theorem 1.5 is
too technical to be described here (in particular it can’t follow from (ii) of
Theorem 1.2 as the basic 0-diagrams involved are not irreducible). It relies
on controlling GL2(OF )-extensions between weights in certain quotients of

the compact induction c-Ind
GL2(F )

GL2(O)F× σ (see Lemma 18.4). This uses com-
putations with Witt vectors and we suspect that the argument here breaks
down when F is ramified over Qp. The existence of many non-split such
extensions, together with Theorem 1.3, is responsible for the irreducibility of
the above representations π or π` (see §19). Note that the proof requires one
to distinguish which GL2(OF )-extensions between two weights are actually
GL2(Fq)-extensions, which is done in detail in §5.

For some time, we hoped that, given a basic 0-diagram D(ρ, r) as in The-
orem 1.3, there was a unique smooth representation π of GL2(F ) generated
by its K1-invariants vectors and such that (πK1 , πI1 , can) ' D(ρ, r) (and we
even dared state this as a conjecture!). However, due to recent work of Y.
Hu ([22]), this statement is false when F 6= Qp (i.e. such a representation, if
it exists, is in general not unique). Hu went on in [21] to associate to π what
he calls a canonical diagram (which is not a basic 0-diagram in general) that
contains D(ρ, r) (more precisely that contains (〈GL2(OF ) ·D1(ρ)〉, D1(ρ), r))
and that uniquely determines π. However, the explicit computation of this
canonical diagram when F 6= Qp is still unknown.
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For F = Qp, everything works well: our basic 0-diagram determines π
and we have the following result:

Theorem 1.6. Assume F = Qp and keep the setting of Theorem 1.3.

(i) There exists a unique (up to isomorphism) smooth representation π(ρ, r)
of GL2(Qp) which is generated by its K1-invariant vectors and such
that:

(π(ρ, r)K1 , π(ρ, r)I1 , can) ∼= D(ρ, r).

(ii) If ρ is irreducible, this representation is irreducible.

(iii) If ρ is semi-simple, then π(ρ, r) ' π(ρ, r)0⊕π(ρ, r)1 where π(ρ, r)` (` ∈
{0, 1}) is a smooth irreducible admissible principal series of GL2(Qp)
such that (π(ρ, r)K1

` , π(ρ, r)I1` , can) ∼= D(ρ, r`).

(iv) If ρ is indecomposable, then π(ρ, r)ss ' π(ρss, rss)0⊕π(ρss, rss)1 where ρss

is the semi-simplification of ρ and π(ρss, rss)` (` ∈ {0, 1}) is a smooth
irreducible principal series as in (iii). Moreover, the GL2(Qp)-socle of
π(ρ, r) is π(ρss, rss)0.

Cases of this theorem were already known for a long time thanks to [6],
[14] or [17] but we provide here an essentially complete proof (§20). The
main novelty concerns the case (iv) (ρ reducible non-split) where we corre-
spondingly have a non-trivial extension between two principal series. The
existence of such extensions was already known (see [14] and [17]) but it was
not known that, when ρ is generic, they are completely determined by their
K1-invariants. Our proof relies on the computation of the first derived func-
tor H1(I1, π) of the functor π 7→ πI1 as a module over the Hecke algebra of I1

when π is a principal series (see Theorem 7.16). As the proof is not substan-
tially longer, we give it for all extensions F of Qp (even ramified) although
we only use it for F = Qp. An interesting fact is that this computation
shows the appearance of supersingular Hecke-modules ([33]) in H1(I1, π) if
and only if F is not Qp, which seems to be consistent with the appearance
of the D(ρ, r`) for 1 ≤ ` ≤ f − 1 in (ii) of Theorem 1.3 when f > 1. We are
confident that Theorem 7.16 will find other applications in the future. Our
method for computing extensions extends to supersingular representations
of GL2(Qp), (unlike [14] and [17]), see [27]. Let us add that, for f = 1, the
canonical diagram of [21] is exactly (〈GL2(OF ) ·D1(ρ)〉, D1(ρ), r).

An exegesis to this paper, much easier to read but lacking many techni-
cal proofs, is available in [7]. The reader will have realized that this paper
contains more questions than answers. Apart from understanding the family

10



of representations π we associate to a given ρ (that is, the representations
constructed in Theorem 1.4) it seems to us that the most important problem
is to prove that the representations of GL2(F ) that appear as subobject in
the étale cohomology modulo p of towers of p-power level Shimura varieties
(over totally real fields at places above p where the real field is unramified)
belong to such families. The papers [18] and [9] give first important steps
in that direction. If so, then comes the question of the cohomological mean-
ing of the various “parameters” r of the family (D(ρ, r))r: for instance can
several distinct r “occur” (via some π as in Theorem 1.4) on various coho-
mology groups for a given ρ? The paper [8] (see also [9, §8]) singles out a
few parameters r, but most of them remain mysterious. One can also wonder
how one can build the right GL2(F )-representations associated to ρ when ρ
is not generic (for example trivial). Also, can one extend the constructions
via (ϕ,Γ)-modules of the case F = Qp ([14], [5])? Despite partial results
([8], [34]), it is still not known how to (or if one can) produce functorially
a finite dimensional (ϕ,Γ)-module from a finite length admissible π. The
case where F is ramified over Qp is largely open although a set of weights
analogous to D(ρ) exists thanks to [28] (see however [19] and [29]). And
there still simply remains the open problem to classify all supersingular rep-
resentations of GL2(F ) over Fp when f > 1. Note that the non-supersingular
representations of GLn(F ) over Fp are now well understood thanks to [20] up
to understanding the supersingular representations of GLm(F ) for m < n.
Finally, let us point out that the p-adic theory is not expected to be simpler
(see [26]).

Let us now quickly describe the organization of the paper.

In §§2 to 4, we provide the necessary results or references on the repre-
sentation theory of the group GL2(Fq) over Fp. In §5, we study GL2(OF )-
extensions between two weights, in particular we explain which such exten-
sions are GL2(Fq)-extensions. In §6, we give preliminary material on the
Hecke modules for I1 associated to principal series of GL2(F ). This material
is used in §7 to compute the Hecke module H1(I1, π) when π is a principal
series. This computation is then used in §8 to construct extensions between
principal series for F = Qp and to show that, in that case, a principal se-
ries has no non-trivial extension with a supersingular representation. In §9,
we develop a general theory of diagrams for any local field F with finite
residue field and we prove Theorem 1.2. In §10, we give the most obvious
examples of basic 0-diagrams, in particular we list all irreducible such dia-
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grams for F = Qp, and we show that the situation gets more complicated
when F 6= Qp. In §11, we define generic Galois representations ρ and re-
call the set of weights D(ρ) associated to them in [11]. In §12, we prove a
combinatorial unicity Lemma involving these weights which is used in §13
to prove (ii) of Theorem 1.1. In §13, we also prove (i) and (iii) of Theorem
1.1 and define the basic 0-diagrams (D0(ρ), D1(ρ), r). In §14, we study more
closely the GL2(Fq)-representation D0(ρ) and prove (iv) and (v) of Theorem
1.1. In §15, we prove Theorem 1.3. In §16, we give explicitly the diagrams
(D0(ρ), D1(ρ), r) when f = 1 and f = 2. In §17, for each non-trivial weight σ

we define and study a GL2(OF )-subrepresentation R(σ) of c-Ind
GL2(F )

GL2(OF )F× σ.

We use these results in §18 to prove that R(σ) contains many non-split ex-
tensions between weights. In §19, we prove Theorem 1.4 and use the results
of §§17 and 18 to prove Theorem 1.5. Finally, in §20, we prove Theorem 1.6.

Let us now fix the main notations of the text.

Throughout the paper, we denote by OF a complete discrete valuation
ring with fraction field F , residue field Fq = Fpf , and maximal ideal pF .
We fix a uniformizer $ of OF which is p when F is unramified over Qp (so
pF = $OF ). We also fix once and for all an embedding Fpf ↪→ Fp.

We let Γ′ := SL2(Fq), Γ := GL2(Fq), B ⊂ Γ the subgroup of upper
triangular matrices, U ⊂ B the subgroup of upper unipotent matrices, H
the subgroup of diagonal matrices, K := GL2(OF ) and I ⊂ K the subgroup
of matrices that are sent to B via the reduction map K � Γ. Recall that
we have a group isomorphism H

∼→ B/U and a bijection K/I
∼→ Γ/B. We

also denote by U s the subgroup of lower unipotent matrices. For m ≥ 1, we
define the following subgroups of K:

Im :=

(
1 + pmF pm−1

F

pmF 1 + pmF

)
and Km :=

(
1 + pmF pmF

pmF 1 + pmF

)
.

For instance, I1 ⊂ I is the subgroup of matrices that are sent to U ⊂ B via
K � Γ. We set G := GL2(F ), Z := F× the center of G, K0 := KZ and K1

the normalizer of I in G. We let s := ( 0 1
1 0 ), ns := ( 0 −1

1 0 ) and Π := ( 0 1
$ 0 ). We

let P ⊂ G (resp. P s := sPs−1 ⊂ G) be the subgroup of upper (resp. lower)
triangular matrices and T := P ∩ P s the diagonal matrices. Recall that we
have K1 = IZ q IZΠ.

All representations are over Fp-vector spaces. We denote by RepΓ (resp.
RepG, RepK , RepI , RepKm , etc.) the category of finite dimensional (resp.
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smooth) representations of Γ (resp. G, K, I, Km, etc.) over Fp. If S ∈ RepΓ

(resp. RepG, RepK , etc.) and E ⊆ S is any subset, we denote by 〈Γ · E〉
(resp. 〈G · E〉, 〈K · E〉, etc.) the subrepresentation of S generated by E
under the action of the group. If S ∈ RepΓ, we denote by injS the injective
envelope of S in RepΓ ([31, §14], [25, §4]) and if S ∈ RepK (resp. RepI),
we denote by InjS the injective envelope of S in RepK (resp. RepI) ([25,

§6.2]). If χ : F× → F×p is a smooth character, we denote by RepG,χ (resp.
RepK,χ, RepI,χ) those smooth representations which have central character
χ. If S ∈ RepΓ is non-zero and indecomposable, we denote by (Si)0≤i (resp.
(Si)0≤i) the graded pieces of its socle filtration (resp. of its cosocle filtration,
also called its radical filtration) with S0 6= 0 (resp. S0 6= 0) (see e.g. [1,
§I.1]). We denote by socΓ S = S0 its socle and by cosocΓ S its cosocle, that
is, its maximal semi-simple quotient. If S ∈ RepK , we denote by socK S
its K-socle. If G′ ⊆ G is a closed subgroup and R a smooth representation
of G′ on an Fp-vector space, we denote by c-IndGG′ R the Fp-vector space of
functions f : G → R such that f(g′g) = g′ · f(g) (g′ ∈ G′, g ∈ G) and such
that the support of f is compact modulo G′. The group G acts on c-IndGG′ R

by right translation on functions. If χ : B → F×p is a smooth character,

we denote by IndΓ
B χ the Fp-vector space of functions f : Γ → Fp such that

f(bγ) = χ(b)f(γ) (b ∈ B, γ ∈ Γ) with left action of Γ by right translation on
functions. Likewise with IndKI χ.

If χ : H → F×p is a character, we denote by χs the character χs(h) :=

χ(shs) where h ∈ H. We denote by α : H → F×p the character:

α :

(
λ 0
0 µ

)
7→ λµ−1

that we also see as a character of B or I via I � B � H. If σ is an irre-
ducible representation of Γ over Fp and χ : I → F×p the character giving the

action of I on σI1 , we denote by σ[s] the unique irreducible representation
of Γ over Fp which is distinct from σ and such that I acts on (σ[s])I1 via χs

(we can’t use σs which denotes the conjugation of σ by s). For x ∈ F×p , we

let δx : G → F×p , g 7→ xval(det(g)) where val is the valuation normalized by
val($) := 1.

We call a weight an irreducible representation of K (hence of Γ) on Fp.
A weight can be written:

Symr0F2

p ⊗Fp (Symr1F2

p)
Fr ⊗ · · · ⊗Fp (Symrf−1F2

p)
Frf−1 ⊗Fp η (2)
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where the ri are integers between 0 and p − 1, η is a smooth character

O×F → F×p , Γ acts on the first Sym via the fixed embedding Fpf ↪→ Fp and
on the others via twists by powers of the Frobenius Fr where Fr(x) := xp

(x ∈ Fpf ). Throughout the text, we often denote by (r0, · · · , rf−1) ⊗ η the
representation (2) (although sometimes (r0, · · · , rf−1) just means the corre-
sponding f -tuple, the context avoiding any possible confusion). For instance

if σ = (r0, · · · , rf−1) then σ[s] = (p− 1− r0, · · · , p− 1− rf−1)⊗ det
∑f−1
i=0 p

iri .

We normalize the local reciprocity map so that it sends a geometric Frobe-
nius to a uniformizer. Using the fixed embedding Fpf ↪→ Fp, we define:

ω : OF � OF/$OF ' Fpf ↪→ Fp.

When F = Qpf is unramified, we define:

ωf : Gal(Qp/Qpf )→ F×p (3)

via the local reciprocity map as the unique character which is the reduction
modulo p on Z×

pf
and which sends p to 1.

The first author is very much indebted to the American Institute of Math-
ematics and the participants of the Palo Alto conference on p-adic represen-
tations and modularity held there in February 2006. In particular, he thanks
K. Buzzard, F. Diamond, M. Emerton, T. Gee and the organizers D. Savitt
and K. Kedlaya. Parts of the paper were written when the second author vis-
ited I.H.É.S., supported by the program “Large Infrastructures for European
Research”, and Université Paris-Sud, supported by Deutsche Forschungsge-
meinschaft. The second author would like to thank these institutions.

2 Representation theory of Γ over Fp I

In this section, we study the structure of the principal series of Γ over Fp.

Fix σ := (r0, · · · , rf−1)⊗ η a weight. Then B acts on σU by a character:

χ :

(
a ∗
0 d

)
7→ arη(ad)

where r :=
∑f−1

i=0 p
iri. Recall the space IndΓ

B χ (resp. IndΓ
B χ

s) has dimension
q+1 and is isomorphic to IndKI χ (resp. IndKI χ

s) in an obvious way. We now

14



recall results on the structure of IndΓ
B χ

s and IndΓ
B χ, mainly from [3]. First,

we give its Jordan-Hölder components.

Let (x0, · · · , xf−1) be f variables. We define a set P(x0, · · · , xf−1) of
f -tuples λ := (λ0(x0), · · · , λf−1(xf−1)) where λi(xi) ∈ Z ± xi as follows. If
f = 1, λ0(x0) ∈ {x0, p− 1− x0}. If f > 1, then:

(i) λi(xi) ∈ {xi, xi − 1, p− 2− xi, p− 1− xi} for i ∈ {0, · · · , f − 1}

(ii) if λi(xi) ∈ {xi, xi − 1}, then λi+1(xi+1) ∈ {xi+1, p− 2− xi+1}

(iii) if λi(xi) ∈ {p−2−xi, p−1−xi}, then λi+1(xi+1) ∈ {p−1−xi+1, xi+1−1}

with the conventions xf = x0 and λf (xf ) = λ0(x0).

For λ ∈ P(x0, · · · , xf−1), define:

e(λ) :=
1

2

( f−1∑
i=0

pi(xi − λi(xi))
)

if λf−1(xf−1) ∈ {xf−1, xf−1 − 1}

e(λ) :=
1

2

(
pf − 1 +

f−1∑
i=0

pi(xi − λi(xi))
)

otherwise.

The following straightforward lemma is left to the reader.

Lemma 2.1. One has e(λ) ∈ Z⊕
⊕f−1

i=0 Zxi.

Lemma 2.2. The irreducible subquotients of IndΓ
B χ or IndΓ

B χ
s are exactly

the (all distinct) weights:

(λ0(r0), · · · , λf−1(rf−1))⊗ dete(λ)(r0,··· ,rf−1)η

for λ ∈ P(x0, · · · , xf−1) forgetting the weights such that λi(ri) < 0 for some
i.

Proof. See [15, Prop. 1].

For λ ∈ P(x0, · · · , xf−1), we define:

J(λ) := {i ∈ {0, · · · , f − 1}, λi(xi) ∈ {p− 2− xi, p− 1− xi}}

and set `(λ) := |J(λ)|. If λ, λ′ ∈ P(x0, · · · , xf−1), we write λ′ ≤ λ if J(λ′) ⊆
J(λ). If τ is an irreducible subquotient of IndΓ

B χ
s and λ ∈ P(x0, · · · , xf−1)

its associated f -tuple by Lemma 2.2, we set `(τ) := `(λ). We also write
τ ′ ≤ τ if the corresponding f -tuples λ′, λ satisfy λ′ ≤ λ. The following
lemma is well known.
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Lemma 2.3. Assume χ = χs, then:

IndΓ
B χ = IndΓ

B χ
s ' (0, · · · , 0)⊗ η ⊕ (p− 1, · · · , p− 1)⊗ η.

The following theorem is easily derived from the results of [3]. It can also
be derived from Theorem 4.7 below.

Theorem 2.4. Assume χ 6= χs.

(i) The socle and cosocle filtrations (see e.g. [1, §I.1]) on IndΓ
B χ

s are the
same, with graded pieces:

(IndΓ
B χ

s)i =
⊕
`(τ)=i

τ

for 0 ≤ i ≤ f .

(ii) We have (IndΓ
B χ)i = (IndΓ

B χ
s)f−i.

(iii) Let τ be an irreducible subquotient of IndΓ
B χ

s and U(τ) the unique
subrepresentation with cosocle τ . Then the socle and cosocle filtrations
on U(τ) are the same, with graded pieces:

(U(τ))i =
⊕
`(τ ′)=i
τ ′≤τ

τ ′

for 0 ≤ i ≤ `(τ).

(iv) Let τ be an irreducible subquotient of IndΓ
B χ

s and Q(τ) the unique
quotient with socle τ . Then the socle and cosocle filtrations on Q(τ)
are the same, with graded pieces:

(Q(τ))i =
⊕

`(τ ′)=i+`(τ)

τ≤τ ′

τ ′

for 0 ≤ i ≤ f − `(τ).

Let φ ∈ IndΓ
B χ

s with support in B such that φ(u) = 1 for all u ∈ U . In
particular, φ is U -invariant and H acts on φ via the character χs (we recall

that χs : B → F×p is the character ( a ∗0 d ) 7→ drη(ad)). For 0 ≤ j ≤ q − 1, set:

fj :=
∑
λ∈Fq

λj
(
λ 1
1 0

)
φ

with the convention 00 = 1 and 0q−1 = 0. If χ 6= χs, or equivalently 0 < r <
q − 1, f0 is the “other” U -invariant element in IndΓ

B χ
s. The following two

easy lemmas are left to the reader.
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Lemma 2.5. (i) The group H acts on fj via the character χα−j = χsαr−j.
(ii) The set {fj, 0 ≤ j ≤ q − 1, φ} is a basis of IndΓ

B χ
s.

Lemma 2.6. Assume χ = χs. Then f0 + η(−1)φ is an H-eigenvector and a
basis of (0, · · · , 0)⊗ η, while {fj, 0 ≤ j ≤ q − 2, fq−1 + η(−1)φ} is a basis of
H-eigenvectors for (p− 1, · · · , p− 1)⊗ η.

We now describe the analogous result for χ 6= χs. Note that σ is then the
socle of IndΓ

B χ
s by Theorem 2.4.

Lemma 2.7. Assume χ 6= χs. With the notations of Lemma 2.2, let τ :=
(λ0(r0), · · · , λf−1(rf−1)) ⊗ dete(λ)(r0,··· ,rf−1)η be an irreducible subquotient of
IndΓ

B χ
s.

(i) Assume τ = σ. Then the following H-eigenvectors of IndΓ
B χ

s:

f∑f−1
i=0 p

idi
, 0 ≤ di ≤ ri not all di = ri; fr + η(−1)(−1)rφ

form a basis of H-eigenvectors of σ inside IndΓ
B χ

s.

(ii) Assume τ 6= σ. Then the following H-eigenvectors of IndΓ
B χ

s:

f∑f−1
i=0 p

idi
, 0≤di≤λi(ri) if i /∈J(λ), p−1−λi(ri)≤di≤p−1 if i∈J(λ)

map to a basis of H-eigenvectors of τ in any quotient of IndΓ
B χ

s where
τ is a subrepresentation.

Proof. Using the equality for λ 6= 0:(
δ 1
1 0

)(
λ 1
1 0

)
=

(
λ−1 + δ 1

1 0

)(
λ 0
0 −λ−1

)(
1 λ−1

0 1

)
and the fact that φ is U -invariant and an H-eigenvector of eigencharacter χs,
we get for δ ∈ Fq:(

δ 1
1 0

)
f0 = φ+ η(−1)

∑
λ∈F×q

(−λ−1)r
(
λ−1 + δ 1

1 0

)
φ

= φ+ η(−1)(−1)r
∑
λ∈Fq

(λ− δ)r
(
λ 1
1 0

)
φ (4)

and for 1 ≤ j ≤ q − 1:(
δ 1
1 0

)
fj = η(−1)

∑
λ∈F×q

(−λ−1)rλj
(
λ−1 + δ 1

1 0

)
φ

= η(−1)(−1)r
∑
λ∈Fq

(λ− δ)q−1+r−j
(
λ 1
1 0

)
φ. (5)
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We prove (i). As (IndΓ
B χ

s)U is generated by f0 and φ and as φ generates
IndΓ

B χ
s, we have that f0 generates σU . As f0 is U -invariant, it is enough to

compute ( δ 1
1 0 ) f0. By (4), we have:(

δ 1
1 0

)
f0 = (φ+ η(−1)(−1)rfr) + η(−1)(−1)r

∑
0≤di≤ri
d 6=r

(
r

d

)
(−δ)r−dfd

where d :=
∑f−1

i=0 p
idi. This implies (i) by varying δ in Fq. We prove (ii).

Let U(τ)0 := Ker(U(τ) � τ) (see (iii) of Theorem 2.4 for U(τ)), it is enough
to prove that the image of the elements (ii) in the quotient (IndΓ

B χ
s)/U(τ)0

form a basis of τ . Using the equality:(
1 δ
0 1

)(
λ 1
1 0

)
=

(
λ+ δ 1

1 0

)
,

one easily checks that f∑
i∈J(λ) p

i(p−1−λi(ri)) is U -invariant in (IndΓ
B χ

s)/U(τ)0.

By (i) of Lemma 2.5, B acts on it by χα−
∑
i∈J(λ) p

i(p−1−λi(ri)) which is also the
action of B on τU , hence it generates τ in (IndΓ

B χ
s)/U(τ)0. Now a calculation

shows that for λ ∈ Fq:

λq−1+r−
∑
i∈J(λ) p

i(p−1−λi(ri)) = λ
∑
i∈J(λ) p

i(p−1)+
∑
i/∈J(λ) p

iλi(ri),

hence, by (5), we have as previously in IndΓ
B χ

s:(
δ 1
1 0

)
f∑

i∈J(λ) p
i(p−1−λi(ri)) = η(−1)(−1)r

∑
0≤di≤λi(ri) if i/∈J(λ)
0≤di≤p−1 if i∈J(λ)

(
c

d

)
(−δ)c−dfd

where c :=
∑

i∈J(λ) p
i(p − 1) +

∑
i/∈J(λ) p

iλi(ri) and d =
∑f−1

i=0 p
idi. But in

(IndΓ
B χ

s)/U(τ)0 and arguing by induction on `(τ) = |J(λ)| starting from (i)
(where `(τ) = 0), we have in particular:

fr + η(−1)(−1)rφ = 0 (6)

fd = 0

for d =
∑f−1

i=0 p
idi with 0 ≤ di ≤ λi(ri) if i /∈ J(λ), 0 ≤ di ≤ p− 1 if i ∈ J(λ)

with at least one i ∈ J(λ) such that di < p−1−λi(ri) (one checks using (iii)
of Theorem 2.4 and (ii) above with the induction that these elements are in
U(τ)0). By (6), the only fd remaining in (IndΓ

B χ
s)/U(τ)0 are exactly those

in (ii). We get the result by varying δ in Fq.

18



3 Representation theory of Γ over Fp II

In this section, we study the structure of the injective indecomposable rep-
resentations of Γ over Fp and prove some useful technical results.

We start with the description of the irreducible components of these injec-
tive envelopes (without the multiplicities). Let (x0, · · · , xf−1) be f variables.
We define a set I(x0, · · · , xf−1) of f -tuples λ := (λ0(x0), · · · , λf−1(xf−1))
where λi(xi) ∈ Z±xi as follows. If f = 1, λ0(x0) ∈ {x0, p−1−x0, p−3−x0}.
If f > 1, then:

(i) λi(xi) ∈ {xi, xi − 1, xi + 1, p − 2 − xi, p − 3 − xi, p − 1 − xi} for i ∈
{0, · · · , f − 1}

(ii) if λi(xi) ∈ {xi, xi − 1, xi + 1}, then λi+1(xi+1) ∈ {xi+1, p− 2− xi+1}

(iii) if λi(xi) ∈ {p− 2− xi, p− 3− xi, p− 1− xi}, then λi+1(xi+1) ∈ {xi+1−
1, xi+1 + 1, p− 3− xi+1, p− 1− xi+1}

with the conventions xf = x0 and λf (xf ) = λ0(x0).

For λ ∈ I(x0, · · · , xf−1), define:

e(λ) :=
1

2

( f−1∑
i=0

pi(xi − λi(xi))
)

if λf−1(xf−1) ∈ {xf−1, xf−1 − 1, xf−1 + 1}

e(λ) :=
1

2

(
pf − 1 +

f−1∑
i=0

pi(xi − λi(xi))
)

otherwise.

The following straightforward lemma is left to the reader.

Lemma 3.1. One has e(λ) ∈ Z⊕
⊕f−1

i=0 Zxi.

Let σ := (r0, · · · , rf−1) ⊗ η be a weight. The following lemma makes
explicit the weights which are subquotients of injσ (counted without multi-
plicities).

Lemma 3.2. (i) Assume (r0, · · · , rf−1) 6= (0, · · · , 0) and (r0, · · · , rf−1) 6=
(p− 1, · · · , p− 1). The irreducible subquotients of injσ (without multi-
plicities) are exactly the (all distinct) weights:

(λ0(r0), · · · , λf−1(rf−1))⊗ dete(λ)(r0,··· ,rf−1)η

for λ ∈ I(x0, · · · , xf−1) forgetting the weights such that λi(ri) < 0 or
λi(ri) > p− 1 for some i.
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(ii) Assume (r0, · · · , rf−1) = (0, · · · , 0). The irreducible subquotients of
injσ (without multiplicities) are exactly the (all distinct) weights:

(λ0(r0), · · · , λf−1(rf−1))⊗ dete(λ)(r0,··· ,rf−1)η

for λ ∈ I(x0, · · · , xf−1) forgetting the weights such that λi(ri) < 0 for
some i and forgetting the weight (p− 1, · · · , p− 1)⊗ η.

(iii) Assume (r0, · · · , rf−1) = (p− 1, · · · , p− 1). Then we have injσ = σ =
(r0, · · · , rf−1)⊗ η.

Proof. See [32] or [2] for SL2(Fpf ) from which the case GL2(Fpf ) is easily
derived. It can also be derived from Proposition 3.7 and Theorem 4.7 below
(see proof of Corollary 4.11).

For r ≥ 0, recall we can identify SymrQ2

p with ⊕ri=0Qpx
r−iyi (see [4] or

[6] or [25]). Let Vr,Zp be the Zp-lattice in SymrQ2

p spanned by
(
r
i

)
xr−iyi,

0 ≤ i ≤ r and set:
Vr := Vr,Zp ⊗Zp Fp

with the convention Vr := 0 if r < 0. For convenience, we introduce the
following notation:

Definition 3.3. Given an f -tuple of integers r := (r0, · · · , rf−1) with 0 ≤ ri,
we define:

Vr :=

f−1⊗
i=0

V Fri

ri
.

One can easily verify that Vr,Zp and hence Vr is stable under the action

of K and that K1 acts trivially on Vr. Moreover, if 0 ≤ n ≤ p − 1 then
(
n
i

)
is a unit in Zp and hence Vr ∼= SymrF2

p. This isomorphism doesn’t hold in
general. Given an irreducible representation σ of Γ, there exists a unique pair
(r, a) where r is an f -tuple as above with 0 ≤ ri ≤ p− 1 for all i and where
0 ≤ a < q− 1 such that σ ∼= Vr⊗deta = (r0, · · · , rf−1)⊗deta. By expressing

a =
∑f−1

i=0 p
iai with 0 ≤ ai ≤ p − 1, one may reformulate this as follows:

given an irreducible representation σ of Γ, there exist unique f -tuples r (as
above) and (a0, · · · , af−1) with 0 ≤ ai ≤ p − 1 and not all of ai equal p − 1

such that σ ∼= ⊗f−1
i=0 (Vri ⊗ detai)Fri (see (2)).

We now recall more precise results on the structure of injective envelopes
in RepΓ, following [25] (which is based on [23]). If r = p− 1 we set Rp−1 :=
Vp−1. For 0 ≤ r < p− 1, Rr is an (explicit) Γ-invariant subspace of Vp−r−1⊗
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Vp−1 defined in [25, Def. 4.2.10] (we won’t really need its precise definition
here). Let r be an f -tuple such that 0 ≤ ri ≤ p − 1 for all i, then Rr :=
⊗f−1
i=0 R

Fri

ri
is an injective object in RepΓ. Moreover, if r 6= 0 then Rr is an

injective envelope of Vr ⊗ det−
∑f−1
i=0 p

iri and R0
∼= injV0 ⊕ Vp−1 ([25, Cor.

4.2.22 and Cor. 4.2.31]).

Lemma 3.4. For 0 ≤ r < p − 1, there exists an exact sequence of Γ-
representations:

0 // V2p−2−r // Rr
// Vr ⊗ detp−1−r // 0.

Proof. This follows directly from [25, Lem. 4.2.9 and Def. 4.2.10].

Lemma 3.5. For 0 ≤ r < p − 1, there exists an exact sequence of Γ-
representations:

0 // Vr ⊗ detp−1−r // V2p−2−r // Vp−r−2 ⊗ V Fr
1

// 0.

Proof. The injection is given by [25, Prop. 4.2.13]. We denote the quotient by
Q. If 0 ≤ r < p− 1, then it follows from [32, Prop. 2] that Q ∼= Vp−r−2⊗V Fr

1

as a representation of Γ′. Without loss of generality we may assume that q
is arbitrarily large, in particular that Vp−r−2 ⊗ V Fr

1 is irreducible. Then the
image of x2p−r−2 spans QU . And since:(

λ 0
0 µ

)
x2p−r−2 = λ2p−r−2x2p−r−2 λ, µ ∈ F×q ,

we obtain Q ∼= Vp−r−2 ⊗ V Fr
1 as Γ-representation.

Given r an f -tuple of integers as in Definition 3.3 with 0 ≤ ri ≤ 2p − 2,
we define 2p− 2− r := (2p− 2− r0, · · · , 2p− 2− rf−1).

Proposition 3.6. Let r be an f -tuple with 0 ≤ ri ≤ p − 1 for all i and
let τ be a representation of Γ such that σ := socΓ τ is isomorphic to Vr ⊗
det−

∑f−1
i=0 p

iri = (r0, · · · , rf−1) ⊗ det−
∑f−1
i=0 p

iri and σ occurs in τ with multi-
plicity 1. Then there exists a Γ-equivariant injection τ ↪→ V2p−2−r.

Proof. Since Rr contains (and is isomorphic to if r 6= 0) an injective envelope
of socΓ τ , there exists a Γ-equivariant embedding τ ↪→ Rr. For 0 ≤ i ≤ f − 1
set:

Wi :=
i−1⊗
j=0

RFrj

rj
⊗

f−1⊗
j=i+1

V Frj

2p−2−rj .
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Suppose that ri 6= p− 1 so that Rri 6= V2p−2−ri . Twisting and tensoring the
exact sequence of Lemma 3.4, we obtain an exact sequence:

0 // V Fri

2p−2−ri⊗Wi
// RFri

ri
⊗Wi

// (Vr ⊗ detp−1−r)Fri⊗Wi
// 0. (7)

It follows from Lemmas 3.4 and 3.5 that we can embed (Vr⊗detp−1−r)Fri⊗Wi

into Rr. Hence, if r 6= 0 then socΓ((Vr ⊗ detp−1−r)Fri ⊗Wi) ∼= σ. Since σ
occurs in τ with multiplicity 1, we obtain an isomorphism:

HomΓ(τ, V Fri

2p−2−ri ⊗Wi) ∼= HomΓ(τ, RFri

ri
⊗Wi).

Applying this identity recursively we obtain that the image of τ is contained
in V2p−2−r. If r = 0 then socΓ((Vr ⊗ detp−1−r)Fri ⊗Wi) ⊆ σ ⊕ Vp−1. Since
Vp−1 is irreducible, injective (and projective) and does not appear in socΓ τ ,
Vp−1 cannot be a subquotient of τ . The same argument as above implies the
assertion.

Proposition 3.7. Let r be an f -tuple with 0 ≤ ri ≤ p−1 for all i. Then σ is
an irreducible subquotient of Rr if and only if it is an irreducible subquotient

of V2p−2−r. In particular, if r 6= 0, σ appears in injVr ⊗ det−
∑f−1
i=0 p

iri if and
only if it appears in V2p−2−r.

Proof. We keep the notation of the proof of Proposition 3.6. Lemma 3.5
implies that there exists a Γ-equivariant injection (Vri⊗detp−1−ri)Fri⊗Wi ↪→
V Fri

2p−2−ri ⊗ Wi. It follows from (7) that σ is an irreducible subquotient of

V Fri+1

2p−2−ri+1
⊗Wi+1 if and only if σ is an irreducible subquotient of V Fri

2p−2−ri⊗Wi.
This implies the assertion.

We need to study more closely the structure of V2p−2−r when 0 ≤ ri ≤
p − 2. Let r := (r0, · · · , rf−1) be an f -tuple of integers with 0 ≤ ri ≤ p − 1
for all i and set:

Sr := {i ∈ {0, · · · , f − 1}, ri 6= p− 1}.

For a subset J ⊆ Sr, we define WJ := ⊗f−1
i=0 W

Fri

J,i where WJ,i := Vri⊗detp−1−ri

if i 6∈ J and WJ,i := Vp−ri−2 ⊗ V Fr
1 if i ∈ J . If f > 1 then by shifting V1 to a

neighbouring component we obtain that WJ
∼= ⊗f−1

i=0 U
Fri

J,i where:

(i) if i ∈ J and i− 1 ∈ J then UJ,i := Vp−ri−2 ⊗ V1

(ii) if i ∈ J and i− 1 6∈ J then UJ,i := Vp−ri−2

(iii) if i 6∈ J and i− 1 ∈ J then UJ,i := Vri ⊗ detp−1−ri ⊗ V1
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(iv) if i 6∈ J and i− 1 6∈ J then UJ,i := Vri ⊗ detp−1−ri .

Assume 0 ≤ ri < p− 1, we define a filtration on V2p−2−ri by:

Fil0V2p−2−ri := V2p−2−ri

Fil1V2p−2−ri := Vri ⊗ detp−ri−1

Fil2V2p−2−ri := 0.

If ri = p−1, we define a filtration on Vp−1 by Fil0Vp−1 := Vp−1 and Fil1Vp−1 :=
0. This induces the usual tensor product filtration on V2p−2−r. It follows from
[2, §1] that:

FiliV2p−2−r

Fili+1V2p−2−r

∼=
⊕
J⊆Sr

|J|=|Sr|−i

WJ . (8)

Lemma 3.8. (i) Assume 0 ≤ r ≤ p − 2, we have an isomorphism of Γ-
representations Vr ⊗ V1

∼= Vr+1 ⊕ (Vr−1 ⊗ det).
(ii) We have V1 ⊗ Vp−1

∼= Rp−2.

Proof. If 0 ≤ r ≤ p− 2 then it follows from [2, Lem. 2.5] that there exists a
Γ′-equivariant isomorphism Vr ⊗ V1

∼= Vr+1 ⊕ Vr−1. Since the order of Γ/Γ′

is prime to p, Vr ⊗ V1 is a semi-simple representation of Γ. Hence there exist
integers a, b such that 0 ≤ a, b < q − 1 and:

Vr ⊗ V1
∼= (Vr+1 ⊗ deta)⊕ (Vr−1 ⊗ detb).

One may verify that xr ⊗ x and xr ⊗ y − xr−1y ⊗ x are fixed by U . This
implies that a = 0 and b = 1. If r = p − 1 then Rp−2 is a 2p-dimensional
subspace of V1 ⊗ Vp−1 by [25, Prop. 4.2.11]. Since dim(V1 ⊗ Vp−1) = 2p, we
get V1 ⊗ Vp−1

∼= Rp−2.

Proposition 3.9. Assume 0 ≤ r ≤ p − 2 and let Lr := (Vr ⊗ detp−1−r) ⊕
(Vr ⊗ detp−r−1 ⊗ V1)⊕ Vp−r−2 ⊕ (Vp−r−2 ⊗ V1).

(i) Lr is isomorphic to:

(Vr ⊗ detp−1−r)⊕ (Vr+1 ⊗ detp−r−1)⊕ (Vr−1 ⊗ detp−r)⊕ Vp−r−2⊕
Vp−r−1 ⊕ (Vp−r−3 ⊗ det).

(ii) Suppose that q > 3, then Lr is multiplicity free.
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Proof. The hypothesis on r ensures that 0 ≤ p− r−2 ≤ p−2 and (i) follows
from Lemma 3.8. So Lr is semi-simple. Let us assume q > 3. We will deduce
(ii) from the fact that if 0 ≤ r, s ≤ p− 1 then:

Vr ⊗ deta ∼= Vs ⊗ detb ⇐⇒ r = s and a ≡ b (q − 1).

Since r− 1, r, r + 1 are distinct the representation (Vr ⊗ detp−1−r)⊕ (Vr+1 ⊗
detp−1−r)⊕ (Vr−1 ⊗ detp−r) is multiplicity free. Similarly Vp−r−2 ⊕ Vp−r−1 ⊕
(Vp−r−3 ⊗ det) is multiplicity free. So if Lr is not multiplicity free then one
of the following must hold:

(a) r − 1 = p− r − 1 (b) r = p− r − 1 (c) r + 1 = p− r − 1
(d) r + 1 = p− r − 2 (e) r + 1 = p− r − 3.

In cases (a), (c) and (e), p is even, hence p = 2 and r = 0 so that:

L0
∼= (V0 ⊗ det)⊕ (V1 ⊗ det)⊕ V0 ⊕ V1.

Since q > 2 we have 1 6≡ 0 (q − 1) hence L0 is multiplicity free. In case (b),
p 6= 2 and r = (p− 1)/2 hence:

Lr ∼= (Vr⊗ detr)⊕ (Vr+1⊗ detr)⊕ (Vr−1⊗ detr+1)⊕Vr−1⊕Vr⊕ (Vr−2⊗ det).

Since r 6≡ 0 (q − 1) and r+ 1 6≡ 0 (q − 1) as q > 3, Lr is multiplicity free. In
case (d), p 6= 2 and r = (p− 3)/2 hence Lr is isomorphic to:

(Vr ⊗ detr+2)⊕ (Vr+1 ⊗ detr+2)⊕ (Vr−1 ⊗ detr+3)⊕ Vr+1 ⊕ Vr+2 ⊕ (Vr ⊗ det).

Now r + 2 6≡ 1 (q − 1) as this would imply p−3
2
≡ p − 2 (p − 1) which is

impossible. Also r + 2 6≡ 0 (q − 1) as q > 3. Hence Lr is always multiplicity
free.

Proposition 3.10. Let r and s be f -tuples such that 0 ≤ ri, si ≤ p − 1 for
all i. If p 6= 2 then assume that if ri = p − 1 then si = p − 1 or si = 0. If
p = 2 then assume that if ri = p − 1 then si = p − 1. Then Vs ⊗ deta can
occur in V2p−2−r with multiplicity at most 1.

Proof. Note first that if r = p− 1, then V2p−2−r = Vp−1 which is irreducible,
hence we can assume r 6= p− 1. If f = 1 this is either trivial or follows from
Lemma 3.5. Assume f > 1. We argue by induction on:

n(r) := |{i ∈ {0, · · · , f − 1}, ri = p− 1 and si = 0}|.

Assume n(r) = 0 and suppose that Vs ⊗ deta occurs in V2p−2−r. It follows
from (8) that Vs ⊗ deta occurs in WJ for some J ⊆ Sr. We claim that if
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ri = p − 1 then i − 1 6∈ J . If i − 1 ∈ J then ri−1 6= p − 1 by definition of
Sr and UJ,i = Vp−1 ⊗ V1. Lemma 3.8 implies that V1 ⊗ Vp−1

∼= Rp−2 and it
follows from Lemmas 3.4 and 3.5 that the irreducible subquotients of Rp−2

are Vp−2 ⊗ det and V Fr
1 . Hence if Vs ⊗ deta is a subquotient of WJ then

either si = p − 2 or si = 0. But both are impossible: the first because of
our assumptions and the second because of n(r) = 0. This proves the claim.
Let P be the set of subsets of Sr such that J ∈ P if and only if for all i,
ri = p − 1 implies that i − 1 6∈ J . If ri = p − 1 set Mri := Vp−1, if i ∈ Sr

and ri+1 = p − 1 set Mri := (Vri ⊗ detp−1−ri) ⊕ (Vri ⊗ detp−1−ri ⊗ V1) and
if i ∈ Sr and ri+1 6= p − 1 set Mri := Lri . Proposition 3.9 implies that
the representation ⊗f−1

i=0 M
Fri

ri
is semi-simple and multiplicity free. Hence, if

J ∈ P then WJ is semi-simple and multiplicity free. Now, suppose Vs⊗ deta

occurs at least twice in V2p−2−r. From what we have just proven, this means
there exists I, J ∈ P with I 6= J such that Vs ⊗ deta is a subquotient of WI

and WJ . If j ∈ I and j 6∈ J , it follows from the definitions that UJ,j 6= UI,j.

Then Vs⊗deta is a subquotient of UFrj

I,j ⊗ (⊗i 6=jMFri

ri
) and UFrj

J,j ⊗ (⊗i 6=jMFri

ri
).

Since UFrj

I,j 6= UFrj

J,j , this implies that Vs ⊗ deta appears in ⊗f−1
i=0 M

Fri

ri
at least

twice, which cannot happen as ⊗f−1
i=0 M

Fri

ri
is multiplicity free. This proves

our statement for n(r) = 0. Assume n(r) > 0 i.e. there exists i such that
ri = p − 1 and si = 0 and hence p > 2 from our assumption. Suppose that
Vs ⊗ deta is a subquotient of WJ for some J ⊆ Sr. The only possibility for
having si = 0 with ri = p− 1 is to have:

WJ,i ⊗ V Fri

1 = (Vri ⊗ detp−1−ri)Fri ⊗ V Fri

1 = (Vp−1 ⊗ V1)Fri

appear as a ⊗-factor of a subquotient of WJ and this implies either ri−1 =
p − 1 and si−1 = 0 or ri−1 6= p − 1 and i − 1 ∈ J . By an obvious induction
and as r 6= p− 1, this implies that there exists j such that rj 6= p− 1, j ∈ J
and rj+1 = p− 1, sj+1 = 0. From the definition of WJ , we see that Vs⊗ deta

is then a subquotient of:

(Vp−2−rj ⊗V Fr
1 )Frj ⊗ (⊗k 6=jV Frk

2p−2−rk)
∼= V Frj

p−2−rj ⊗R
Frj+1

p−2 ⊗ (⊗k 6∈{j,j+1}V
Frk

2p−2−rk)

where the isomorphism follows from Lemma 3.8. Every irreducible subquo-
tient of V Frj

p−2−rj ⊗ (Vp−2 ⊗ det)Frj+1 ⊗ (⊗k 6∈{j,j+1}V
Frk

2p−2−rk) has its (j + 1)-th
digit equal to p − 2. Since p > 2 and sj+1 = 0, Vs ⊗ deta cannot be such a
subquotient. Lemma 3.4 then implies that Vs ⊗ deta occurs in V2p−2−r with

the same multiplicity as in V Frj

p−2−rj ⊗ V Frj+1

p ⊗ (⊗k 6∈{j,j+1}V
Frk

2p−2−rk). Let r′

be the f -tuple r′j := p − 2 − rj, r′j+1 := p − 2, r′k := rk for k 6∈ {j, j + 1}.
Since 2p − 2 − (p − 2) = p and n(r′) = n(r) − 1, the induction hypothesis

implies that Vs ⊗ deta can occur in V Frj

p−2−rj ⊗ V Frj+1

p ⊗ (⊗k 6∈{j,j+1}V
Frk

2p−2−rk)
with multiplicity at most 1. This finishes the proof.
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Corollary 3.11. Let r be an f -tuple such that 0 ≤ ri ≤ p−2. Then V2p−2−r

is multiplicity free and the graded pieces of the filtration (8) are semi-simple.

Proof. Since 0 ≤ ri ≤ p − 2, the conditions on s in Proposition 3.10 are
empty and P as in the proof of Proposition 3.10 is the set of all subsets of
Sr. It follows from the proof of Proposition 3.10 that if J ⊆ Sr then WJ is
semi-simple.

Corollary 3.12. Let σ and τ be two irreducible representations of Γ over
Fp. Assume σ = (r0, · · · , rf−1)⊗ η with 0 ≤ ri ≤ p− 2 for all i and assume
there exist finite dimensional representations of Γ over Fp with socle σ and
cosocle τ .

(i) Among these indecomposable representations, there is a unique one
I(σ, τ) such that σ appears with multiplicity 1 (hence as subobject).

(ii) The representation I(σ, τ) is multiplicity free.

Proof. Let κ be a representation of Γ such that socΓ κ ∼= σ and cosocΓ κ ∼= τ .
Since socΓ κ is irreducible there exists an injection κ ↪→ injσ. In particular,
τ is a subquotient of injσ and hence by Proposition 3.7 τ is a subquotient of
V2p−2−r. Corollary 3.11 implies that τ occurs in V2p−2−r with multiplicity 1.
Since Γ is a finite group, an injective envelope of τ is also its projective enve-
lope (see Ex.14.1 in [31, §14]) hence dimFp HomΓ(inj τ, V2p−2−r) = 1. Choose
a non-zero φ ∈ HomΓ(inj τ, V2p−2−r) and set I(σ, τ) := Imφ. Since I(σ, τ) is
a quotient of inj τ , cosocΓ I(σ, τ) ∼= τ and since I(σ, τ) is a subrepresentation
of V2p−2−r, socΓ I(σ, τ) ∼= σ. Since V2p−2−r is multiplicity free so is I(σ, τ).
Let λ be a representation of Γ such that socΓ λ ∼= σ, σ occurs in λ with mul-
tiplicity 1 and cosocΓ λ ∼= τ . Then λ is a quotient of inj τ and Proposition
3.6 implies that λ is isomorphic to a subrepresentation of V2p−2−r. Since
dimFp HomΓ(inj τ, V2p−2−r) = 1, λ is isomorphic to I(σ, τ).

4 Representation theory of Γ over Fp III

We prove important results on the socle filtration and B-invariants of Γ-
representations with irreducible socle appearing only once.

Let r := (r0, · · · , rf−1) be an f -tuple of integers such that 0 ≤ ri ≤ p− 2
for all i. Let Σ be the set consisting of f -tuples ε = (ε0, · · · , εf−1) where
εi ∈ {−1, 0, 1}. For ε ∈ Σ, we set |ε| := |{i, εi 6= 0}|. Let Σr be the subset of
Σ consisting of f -tuples ε such that if ri = 0 then εi−1 6= −1 and if ri = p−2
and εi 6= 0 then εi−1 6= −1 (as usual f = 0 and −1 = f − 1). In particular,
Σr = Σ if 1 ≤ ri ≤ p− 3 for all i.
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Definition 4.1. Let ε, δ ∈ Σr we write ε ≺ δ if there exists k ∈ {0, · · · , f −
1} such that the following hold:

(i) εk = 0, δk 6= 0

(ii) δk−1 = −εk−1

(iii) δi = εi for all i 6∈ {k − 1, k}

(iv) if rk = p− 2 then εk−1 6= 1.

We write ε < δ if there exists a sequence ε0, · · · , εj in Σr with j > 0 such
that ε = ε0, δ = εj and εi ≺ εi+1 for 0 ≤ i < j. We write ε ≤ δ if ε = δ or
ε < δ.

To ε ∈ Σr we associate an f -tuple r(ε) = (r(ε)0, · · · , r(ε)f−1) such that

0 ≤ r(ε)i ≤ p− 1 and an integer e(ε) :=
∑f−1

i=0 p
ie(ε)i as follows:

(i) if εi 6= 0, r(ε)i := p− 2− ri + εi−1

(ii) if εi = 0, r(ε)i := ri + εi−1

(iii) if εi 6= 0, e(ε)i :=

{
1 if εi−1 = −1
0 otherwise

(iv) if εi = 0, e(ε)i :=

{
p− ri if εi−1 = −1

p− 1− ri otherwise.

Lemma 4.2. Let J ⊆ {0, · · · , f − 1} then:

WJ
∼=
⊕
ε∈Σr
|ε|=|J|

Vr(ε) ⊗ dete(ε).

Proof. This follows from Lemma 3.8 and the definition of WJ (see §3).

In the next lemmas, we sometimes use some results that will be proved
in §5 (the reader can check that these results do not depend on the ones we
prove below using them!).

Lemma 4.3. Let ε, δ ∈ Σr with |ε| < |δ|, then Ext1
Γ(Vr(δ) ⊗ dete(δ), Vr(ε) ⊗

dete(ε)) 6= 0 if and only if ε ≺ δ.
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Proof. If f = 1 this follows from (i) of Corollary 5.6. Assume f > 1. If
ε ≺ δ, a straightforward computation yields r(δ)k = p−2− r(ε)k, r(δ)k+1 =
r(ε)k+1 + δk, e(δ)k = e(ε)k + r(ε)k + 1 − p and e(δ)k+1 = e(ε)k+1 + 1 if
δk = −1, e(δ)k+1 = e(ε)k+1 if δk = 1. By (i) of Corollary 5.6, we have
Ext1

Γ(Vr(δ)⊗dete(δ), Vr(ε)⊗dete(ε)) 6= 0. Conversely suppose that Ext1
Γ(Vr(δ)⊗

dete(δ), Vr(ε) ⊗ dete(ε)) 6= 0, let j ∈ {0, · · · , f − 1} be an index as in (i) of
Corollary 5.6 and set k := j − 1. If i 6∈ {k, k + 1} then this corollary implies
that r(ε)i = r(δ)i, e(ε)i = e(δ)i. We claim that this implies εi−1 = δi−1

for i 6∈ {k, k + 1}. If εi and δi are either both zero or both non-zero then
r(ε)i = r(δ)i implies that εi−1 = δi−1. If one of them is zero and the other
non-zero then e(ε)i = e(δ)i implies that ri = p− 2 and r(ε)i = r(δ)i implies
that either ri = (p−2 + δi−1− εi−1)/2 or ri = (p−2 + εi−1− δi−1)/2. If p > 3
this is impossible. If p = 3, a case by case analysis shows that this is also
impossible. If p = 2 we get εi−1 = δi−1. Hence εi = δi for all i 6∈ {k − 1, k}.
By (i) of Corollary 5.6, we have r(δ)k = p − 2 − r(ε)k. If εk 6= 0 then
r(δ)k = rk − εk−1. This together with exponent considerations imply that
δk = 0 and hence δk−1 = −εk−1. However this contradicts |ε| < |δ|. Hence
εk = 0. The same argument gives δk 6= 0 and δk−1 = −εk−1. Since r(δ)k ≥ 0
we get that r(ε)k ≤ p− 2 and hence if rk = p− 2 then εk−1 6= 1. Putting this
together gives ε ≺ δ.

Lemma 4.4. We have Vp−1 ⊗ V Fr
1
∼= V2p−1.

Proof. We may assume that f > 1. The image of x2p−1 in V2p−1 (see §3 for
notations) is fixed by U and we have

(
λ 0
0 µ

)
x2p−1 = λp−1+px2p−1 in V2p−1.

This implies that Vp−1 ⊗ V Fr
1 occurs as an irreducible subquotient of V2p−1.

However, both have dimension 2p, hence they are isomorphic.

Lemma 4.5. Let r be an integer such that 0 ≤ r ≤ p− 2, we have:

V2p−2−r ⊗ V1
∼= (V2p−3−r ⊗ det)⊕ V2p−1−r.

Proof. We may assume f > 1 since by restricting to GL2(Fp) ⊆ GL2(Fq) = Γ
we get the result for f = 1. Tensoring with V1 the exact sequence of Lemma
3.5 and using Lemma 3.8 gives an exact sequence:

0→ (Vr+1 ⊗ detp−r−1)⊕ (Vr−1 ⊗ detp−r)→ V2p−2−r ⊗ V1 →
(Vp−r−1 ⊗ V Fr

1 )⊕ (Vp−r−3 ⊗ det⊗V Fr
1 )→ 0

where one forgets the term involving p − r − 3 (resp. r − 1) if r = p − 2
(resp. r = 0). It follows from (i) of Corollary 5.6 below that Ext1

Γ(Vp−r−1 ⊗
V Fr

1 , Vr+1 ⊗ detp−r−1) = 0 and Ext1
Γ(Vp−r−3 ⊗ det⊗V Fr

1 , Vr−1 ⊗ detp−r) = 0.
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Moreover, dimFp Ext1
Γ(Vp−r−3 ⊗ det⊗V Fr

1 , Vr+1 ⊗ detp−r−1) = 1 if r < p − 2
and the unique non-split extension is given by the representation V2p−3−r ⊗
det (Lemma 3.5). Likewise dimFp Ext1

Γ(Vp−r−1 ⊗ V Fr
1 , Vr−1 ⊗ detp−r) = 1

if r > 0 and the unique non-split extension is given by V2p−1−r. Now an
irreducible representation σ can occur in the socle of V2p−2−r⊗V1 if and only
if HomΓ(σ ⊗ V ∗1 , V2p−2−r) 6= 0. Since Vr ⊗ detp−1−r is the socle of V2p−2−r,
Lemmas 5.3 and 3.8 imply that Vs ⊗ V Fr

1 ⊗ detb cannot occur in the socle of
V2p−2−r⊗V1 if 0 ≤ s ≤ p−2. Putting this together we obtain V2p−2−r⊗V1

∼=
(V2p−3−r ⊗ det) ⊕ V2p−1−r if 1 ≤ r ≤ p − 3. If r = p − 2 the same proof
gives Vp ⊗ V1

∼= (Vp−1 ⊗ det) ⊕ Vp+1. Finally if r = 0 we get V2p−2 ⊗ V1
∼=

(Vp−1⊗V Fr
1 )⊕(V2p−3⊗det) ∼= V2p−1⊕(V2p−3⊗det) where the last isomorphism

is given by Lemma 4.4.

Proposition 4.6. Let ε, δ ∈ Σr with ε ≺ δ and let E(ε, δ) be the unique
non-split extension (see Lemma 4.3):

0 // Vr(ε) ⊗ dete(ε) // E(ε, δ) // Vr(δ) ⊗ dete(δ) // 0.

Then there exists a Γ-equivariant injection:

E(ε, δ) ↪→ Filf−|δ|V2p−2−r

Filf−|δ|+2V2p−2−r

.

Proof. Let J := {i, εi 6= 0} then there exists an injection:

τ := V Frj

2p−2−rj ⊗ (⊗i 6=jWFri

J,i ) ↪→ Filf−|δ|V2p−2−r

Filf−|δ|+2V2p−2−r

.

It follows from Lemma 3.8 that if j − 1 6∈ J then V Frj

2p−2−rj ⊗ (⊗i 6=j(Vr(ε)i ⊗
dete(ε)i)Fri) is a summand of τ and if j − 1 ∈ J then (V1 ⊗ V2p−2−rj)

Frj ⊗
(⊗i 6=j(Vr(ε)i ⊗ dete(ε)i)Fri) is a summand of τ . Lemmas 3.8 and 4.5 imply
that E(ε, δ) is a summand of τ , and hence we obtain an injection as in the
statement.

Recall that an ideal A of a partially ordered set (P,≤P ) is a subset such
that x ∈ A and y ≤P x imply y ∈ A.

Theorem 4.7. Let r := (r0, · · · , rf−1) be an f -tuple of integers with 0 ≤
ri ≤ p − 2, then V2p−2−r is multiplicity free and the set Σr parametrizes its
composition factors. For each subrepresentation τ of V2p−2−r let Σr(τ) be the
set of composition factors of τ , then Σr(τ) is an ideal of the partially ordered
set (Σr,≤). The mapping τ 7→ Σr(τ) defines a lattice isomorphism between
the lattice of subrepresentations of V2p−2−r and the lattice of ideals, ordered
by inclusion, of the partially ordered set (Σr,≤).
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Proof. The first assertion is given by Corollary 3.11, (8) and Lemma 4.2.
We identify in the sequel the irreducible subquotients of V2p−2−r with the
elements of Σr. Let us define a new partial ordering ≤′ on Σr as follows:
ε ≤′ δ if and only if there exists a subrepresentation τ of V2p−2−r such that
cosocΓ τ ∼= δ and ε occurs as an irreducible subquotient of τ . Tautologically
the lattice of ideals of (Σr,≤′) is isomorphic to the lattice of subrepresenta-
tions of V2p−2−r. Now if ε ≤′ δ it follows from Corollary 3.11 and Lemma

4.2 that ε occurs in Filf−|δ|−1V2p−2−r. Hence |ε| ≤ |δ| by (8) and Lemma
4.2. Lemma 4.3 and Proposition 4.6 imply then that the partial orderings ≤′
and ≤ coincide.

Corollary 4.8. Let τ be a subrepresentation of V2p−2−r. If r = 0 assume
that Vp−1 is not a direct factor of τ . Then the graded pieces of the socle
filtration of τ are given by:

τi ∼=
⊕

ε∈Σr(τ)
|ε|=i

Vr(ε) ⊗ dete(ε).

Proof. Let δ ∈ Σr then the number of ε ∈ Σr such that ε ≺ δ is |δ|−|{i, δi 6=
0, δi−1 = 1, ri−1 = 0}|. This implies that, unless r = 0 and δ = 1, there will
exist ε ∈ Σr such that ε ≺ δ. The case r = 0 and δ = 1 corresponds to
Vp−1 and we have excluded it here. It follows from Definition 4.1 that ε ≺ δ
implies |ε|+ 1 = |δ|. Theorem 4.7 gives then the assertion.

Corollary 4.9. Let τ be a subrepresentation of V2p−2−r. Assume that there

exists an integer k ∈ {0, · · · , f} such that, if Vr(ε)⊗dete(ε) occurs in cosocΓ τ ,
then |ε| = k. Then the graded pieces of the cosocle filtration of τ are given
by:

τ i ∼=
⊕

ε∈Σr(τ)
|ε|=k−i

Vr(ε) ⊗ dete(ε).

Proof. This follows again from Theorem 4.7 together with ε ≺ δ ⇒ |ε| =
|δ| − 1.

Definition 4.10. Let λ, λ′ ∈ I(x0, · · · , xf−1) (see §3). We say λ and λ′

are compatible if, whenever λi(xi) ∈ {p − 2 − xi − ±1, xi ± 1} and λ′i(xi) ∈
{p − 2 − xi − ±1, xi ± 1} for the same i, then the signs of the ±1 are the
same in λi(xi) and λ′i(xi).

For λ ∈ I(x0, · · · , xf−1), set S(λ) := {i ∈ {0, · · · , f −1}, λi(xi) = p−2−
xi −±1, xi ± 1} and `(λ) := |S(λ)|.
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Corollary 4.11. Let σ and τ be two irreducible representations of Γ over
Fp. Assume σ = (r0, · · · , rf−1) ⊗ η with 0 ≤ ri ≤ p − 2 for all i and
let I(σ, τ) be the Γ-representation with socle σ and cosocle τ constructed
in Corollary 3.12 (assuming it exists). Let λ ∈ I(x0, · · · , xf−1) such that

τ = (λ0(r0), · · · , λf−1(rf−1))⊗ dete(λ)(r0,··· ,rf−1)η by Lemma 3.2. Then:

I(σ, τ)i =
⊕

S(λ′)⊆S(λ)

`(λ′)=i
λ′ compatible with λ

(λ′0(r0), · · · , λ′f−1(rf−1))⊗ dete(λ
′)(r0,··· ,rf−1)η

forgetting the weights such that λ′i(ri) < 0 for some i.

Proof. To an element λ′ ∈ I(x0, · · · , xf−1), we associate an element ε′ ∈ Σ
as follows:

(i) if λ′i(xi) ∈ {p−2−xi, p−3−xi, p−1−xi} then ε′i−1 := λ′i(xi)−(p−2−xi)

(ii) if λ′i(xi) ∈ {xi, xi − 1, xi + 1} then ε′i−1 := λ′i(xi)− xi.

This defines a map I(x0, · · · , xf−1)→ Σ which is bijective, the inverse map
being given by λ′i(xi) := p− 2− xi + ε′i−1 if ε′i 6= 0 and λ′i(xi) := xi + ε′i−1 if
ε′i = 0. The reader can then easily check that the following properties hold:

(i) 0 ≤ λ′i(ri) ≤ p − 1 for all i if and only if ε′ ∈ Σr ⊆ Σ where r :=
(r0, · · · , rf−1)

(ii) (λ′0(r0), · · · , λ′f−1(rf−1))⊗ dete(λ
′)(r0,··· ,rf−1) ∼= Vr(ε′) ⊗ dete(ε

′)+
∑f−1
i=0 p

iri

(iii) if λ 7→ ε and λ′ 7→ ε′ with ε, ε′ ∈ Σr, we have ε′ ≤ ε if and only if
S(λ′) ⊆ S(λ) and λ′ is compatible with λ.

By Proposition 3.6 and the definition of I(σ, τ) (Corollary 3.12), we may

embed I(σ, τ) into V2p−2−r ⊗ det
∑f−1
i=0 p

iriη. Let ε ∈ Σr correspond to λ as
in the statement. From (iii), (i) and Theorem 4.7, we get that Σr(I(σ, τ))
corresponds to the f -tuples λ′ ∈ I(x0, · · · , xf−1) such that 0 ≤ λ′i(ri) ≤ p−1
for all i, S(λ′) ⊆ S(λ) and λ′ is compatible with λ. The result follows then
from Corollary 4.8 together with (ii) and the fact `(λ′) = |ε′| if λ′ 7→ ε′.

Let r := (r0, · · · , rf−1) be an f -tuple of integers with 0 ≤ ri ≤ p−1 for all
i this time. Let Σ′ be the subset of Σ consisting of f -tuples ε = (ε0, · · · , εf−1)
such that εi ∈ {0, 1} for all i. Let Σ′r be the subset of Σ′ consisting of f -tuples
ε such that if ri = p−1 then εi = 0. In particular, Σ′r = Σ′ if 0 ≤ ri ≤ p−2 for

all i. Define χ : H → F×p by χ(
(
λ 0
0 µ

)
) := µ−

∑f−1
i=0 p

iri , so that B acts on the U -

invariants of Vr⊗det−
∑f−1
i=0 p

iri by χ. For ε ∈ Σ′r set χε := χα
∑f−1
i=0 p

iεi(p−1−ri).
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Then χε = χδ implies ε = δ or r = 0 and {ε, δ} = {0,1}. Moreover, [25,
Lem. 4.2.33] implies that χε 6= χsε unless r = 0, ε ∈ {0,1} or r = p− 1 (and
ε = 0). To ε ∈ Σ′r we associate an f -tuple r(ε) = (r(ε)0, · · · , r(ε)f−1) such

that 0 ≤ r(ε)i ≤ p− 1 and an integer e(ε) :=
∑f−1

i=0 p
ie(ε)i as follows:

(i) if r = 0 and ε = 0 then r(0) := 0 and e(0) := 0

(ii) if r = 0 and ε = 1 then r(1) := p− 1 and e(1) := 0

(iii) if r = p− 1 (and ε = 0) then r(0) := p− 1 and e(0) := 0

(iv) in all other cases, r(ε) and e(ε) are such that H acts on the U -invariants
of Vr(ε) ⊗ dete(ε) by χε.

Note that (r(ε), e(ε)) in (iv) is well defined since χε 6= χsε.

Lemma 4.12. Let ε ∈ Σ′r. If r = 0 or r = 1, assume that ε 6∈ {0,1}. Then
r(ε) is determined by:

f−1∑
i=0

pir(ε)i ≡
f−1∑
i=0

pi(ri + 2εi(p− 1− ri)) (q − 1)

and we have e(ε)i = (1− εi)(p− 1− ri) for all i. In particular, if ri = p− 1
then r(ε)i = p − 1 or r(ε)i = 0. Moreover, if 0 ≤ ri ≤ p − 2 for all i then
the definition of r(ε) and e(ε) coincides with the previous one.

Proof. This follows from:

χε

((λ 0
0 λ−1

))
= λ

∑f−1
i=0 p

i(ri+2εi(p−1−ri))

χε

((1 0
0 λ

))
= λ

∑f−1
i=0 p

i(1−εi)(p−1−ri).

If τ is any representation of Γ, we denote by Σ(τ) the set of its irre-
ducible subquotients and by Σ(τ) ∩ Σ′r the subset of Σ′r of ε corresponding
to irreducible representations Vr(ε) ⊗ dete(ε) that are also in Σ(τ).

Proposition 4.13. Let τ be a representation of Γ. Suppose that socΓ τ ∼=
Vr⊗det−

∑f−1
i=0 rip

i

and that socΓ τ occurs in τ with multiplicity 1. If p = 2 we
additionally assume r = 0 or r = p− 1. Then we have:

τU ∼=
⊕

ε∈Σ(τ)∩Σ′r

χα
∑f−1
i=0 p

iεi(p−1−ri).

In particular dimFp τ
U = |Σ(τ) ∩ Σ′r|.
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Proof. By Proposition 3.6, we may embed τ into V2p−2−r and we denote the
quotient by Q. It follows from [25, Lem. 4.2.19] and [25, Lem. 4.2.20] that:

RU
r
∼= V U

2p−2−r
∼= ⊕ε∈Σ′rχε = ⊕ε∈Σ′rχα

∑f−1
i=0 p

iεi(p−1−ri). (9)

If r = p− 1 we necessarily have τ ∼= Vp−1 and Σ′r = {0}: the assertion
follows trivially. Assume r 6= p− 1, then the assumption on socΓ τ im-
plies that Vp−1 can’t occur in τ and we are left to prove that χε occurs
in τU if and only if ε ∈ Σ(τ) ∩ Σ′r. Assume r = 0 and χε = χsε, which
implies ε ∈ {0,1} and χε = 1. We have that 1 occurs in τU (as socΓ(τ)
is the trivial representation) and that {0,1} ∩ Σ(τ) ∩ Σ′0 = {0}: the as-
sertion follows in that case. Assume now χε 6= χsε. If χε occurs in τU

then HomΓ(IndΓ
B χε, τ) 6= 0. Since Vr(ε) ⊗ dete(ε) is the cosocle of IndΓ

B χε,
it must be a subquotient of τ . We thus have ε ∈ Σ(τ) ∩ Σ′r. Conversely,
assume ε ∈ Σ(τ) ∩ Σ′r i.e. Vr(ε) ⊗ dete(ε) ∈ Σ(τ). Equivalently, we have

HomΓ(injVr(ε) ⊗ dete(ε), τ) 6= 0 (using the fact that injVr(ε) has cosocle Vr(ε)

and is a projective object). It follows from Proposition 3.10, Lemma 4.12 and
(9) that dimFp HomΓ(injVr(ε) ⊗ dete(ε), V2p−2−r) = 1. As injVr(ε) ⊗ dete(ε) is

projective, this implies HomΓ(injVr(ε)⊗dete(ε), Q) = 0 i.e. Vr(ε)⊗dete(ε) can’t
occur in Q. This implies in particular HomΓ(IndΓ

B χε, Q) = 0 as IndΓ
B χε has

cosocle Vr(ε) ⊗ dete(ε). We thus have an isomorphism:

HomΓ(IndΓ
B χε, τ) ∼= HomΓ(IndΓ

B χε, V2p−2−r).

But the right hand side is non-zero by (9) and we are done.

5 Results on K-extensions

In this section, we assume F is a finite extension of Qp. We determine Γ-
extensions between two weights and give partial results on K-extensions for
p > 2 which are not Γ-extensions.

Proposition 5.1. Let τ be a representation of K such that K1 acts trivially.
Then there exists an isomorphism of K-representations:

H1(K1, τ) ∼=
f−1⊕
i=0

(
τ ⊗ (V2 ⊗ det−1)Fri

)
⊕

d⊕
i=1

τ,

where if p 6= 2 then d := dimFp Hom(1 + pF ,Fp) and if p = 2 then d :=

dimFp Hom(1 + pF ,Fp)− f .
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Proof. It is enough to prove the claim when τ is the trivial representation of
K (as K1 acts trivially on τ). We have H1(K1, 1) ' Hom(K1,Fp) (continuous
group homomorphisms) with the action of K given by:

(gψ)(h) = ψ(g−1hg), g ∈ K, ψ ∈ Hom(K1,Fp), h ∈ K1.

For 0 ≤ i ≤ f − 1, define κui , κ
l
i, εi ∈ Hom(K1,Fp) as follows:

κui (A) := ω(b)p
i

, κli(A) := ω(c)p
i

, εi(A) := ω(a− d)p
i

where A :=
(

1+$a $b
$c 1+$d

)
∈ K1 (see §1 for ω). Since:(

1 −α
0 1

)(
a b
c d

)(
1 α
0 1

)
=

(
a− cα b+ (a− d)α− cα2

c d+ cα

)
the action of I1 fixes κli and for all α ∈ Fq we get:(

1 [α]
0 1

)
κui = κui + αp

i

εi − α2piκli(
1 [α]
0 1

)
εi = εi − 2αp

i

κli.

Moreover we have:(
[λ] 0
0 [µ]

)
κli = (λµ−1)p

i

κli, λ, µ ∈ F×q .

One may then check that the map:

y2 7→ κui ,

(
2
1

)
xy 7→ εi, x2 7→ −κli

induces a K-equivariant isomorphism (V2 ⊗ det−1)Fri ∼= 〈κui , εi, κli〉. As K2 ∩
U ⊂ [K1 ∩ T,K1 ∩ U ], K2 ∩ U s ⊂ [K1 ∩ T,K1 ∩ U s] (where square brackets
denote the subgroup generated by the commutators) and:{(

x 0
0 x−1

)
, x ∈ 1 + p2

F

}
⊂ 〈K1 ∩ U s, K1 ∩ U〉,

we deduce that every ψ ∈ Hom(K1,Fp) can be written as a linear combination
of κui , εi, κ

l
i for 0 ≤ i ≤ f − 1 and a homomorphism which factors through

the determinant. If ψ factors through the determinant then K acts trivially
on ψ. Let x ∈ Fq and α ∈ [x] + pF then:

εi

((
1 +$α 0

0 (1 +$α)−1

))
= (2x)p

i

.

Hence, εi factors through det if and only if p = 2. This implies the claim.
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Corollary 5.2. Let σ and τ be finite dimensional representations of Γ over
Fp. Suppose that HomΓ(σ, τ) = 0 and HomΓ(σ, (V2 ⊗ det−1)Fri ⊗ τ) = 0 for
0 ≤ i ≤ f − 1. Then Ext1

Γ(σ, τ) ∼= Ext1
K(σ, τ).

Proof. Since for all representations π of K (over Fp) we have HomK(σ, π) '
HomΓ(σ, πK1), the Grothendieck spectral sequence gives an exact sequence:

0 // Ext1
Γ(σ, τ) // Ext1

K(σ, τ) // HomΓ(σ,H1(K1, τ)) .

The result follows then from Proposition 5.1.

We now use notations from §3.

Lemma 5.3. For 0 ≤ r ≤ p− 1 we have HomFp(Vr,Fp) ' Vr ⊗ det−r.

Proof. Exercise.

Proposition 5.4. Assume p > 2.

(i) For 0 ≤ r < p− 2 we have an isomorphism of Γ-representations:

V2 ⊗ Vr ∼= Vr+2 ⊕ (Vr ⊗ det)⊕ (Vr−2 ⊗ det2).

(ii) We have an isomorphism of Γ-representations (recall Vr = 0 if r < 0):

V2 ⊗ Vp−2
∼= Rp−2 ⊕ (Vp−4 ⊗ det2)

V2 ⊗ Vp−1
∼= Rp−3 ⊕ (Vp−1 ⊗ det).

Proof. The assumption p > 2 ensures that 1 < p − 1. Hence by Lemma 3.8
we have V1 ⊗ V1

∼= V2 ⊕ (V0 ⊗ det). If r < p− 2 then using Lemma 3.8 twice
we obtain that V1 ⊗ V1 ⊗ Vr is isomorphic to:

V1 ⊗ (Vr+1 ⊕ (Vr−1 ⊗ det)) ∼= Vr+2 ⊕ (Vr ⊗ det)⊕ (Vr ⊗ det)⊕ (Vr−2 ⊗ det2),

hence V2 ⊗ Vr ∼= Vr+2 ⊕ (Vr ⊗ det) ⊕ (Vr−2 ⊗ det2), which proves (i). If
r = p− 2 the same argument gives V2 ⊗ Vp−2

∼= (V1 ⊗ Vp−1)⊕ (Vp−4 ⊗ det2)
and Lemma 3.8 implies V1 ⊗ Vp−1

∼= Rp−2. If r = p − 1 then by [25, Prop.
4.2.11], Rp−3 is a 2p-dimensional subspace of V2 ⊗ Vp−1. The restrictions of
Rp−3 and V2 ⊗ Vp−1 to GL2(Fp) are injective objects in RepGL2(Fp). Hence
there exists a GL2(Fp)-equivariant isomorphism:

V2 ⊗ Vp−1
∼= Rp−3 ⊕ J,

where J is an injective object in RepGL2(Fp). Since dimFp J = 3p − 2p = p,
we have J ' Vp−1 ⊗ deta as an GL2(Fp) representation. Now since J is
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irreducible as GL2(Fp) representation, there exists an exact sequence of Γ-
representations:

0 // Rp−3
// V2 ⊗ Vp−1

// V Fri

p−1 ⊗ deta // 0. (10)

for some 0 ≤ i ≤ f−1 and some 0 ≤ a < q−1. By dualizing and using Lemma
5.3, we obtain an injection V Fri

p−1 ⊗ detb ↪→ V2 ⊗ Vp−1 for some 0 ≤ b < q − 1.

Since socΓRp−3 ' Vp−3 ⊗ det2, we can’t have V Fri

p−1 ⊗ detb ↪→ Rp−3. Thus
(10) must split and we have b = a. Now the element xy ⊗ xp−1 − x2 ⊗ xp−2y
is fixed by U in V2 ⊗ Vp−1 (with obvious notations) and it follows from [25,
Prop. 4.2.13 and Lem. 4.2.14] that it does not lie in Rp−3. Hence, the image

of xy ⊗ xp−1 − x2 ⊗ xp−2y spans the U -invariants of V Fri

p−1 ⊗ deta. Since:(
λ 0
0 µ

)
(xy⊗xp−1−x2⊗xp−2y) = λpµ(xy⊗xp−1−x2⊗xp−2y), λ, µ ∈ F×q ,

we must have i = 0 and a = 1. Hence V2 ⊗ Vp−1 ' Rp−3 ⊕ (Vp−1 ⊗ det).

Corollary 5.5. Assume p > 2 and let r and s be f -tuples such that 0 ≤
rj, sj ≤ p− 1 for all j.

(i) For 0 ≤ i ≤ f − 1 and all integers a, b we have:

dimFp HomΓ(Vs ⊗ detb, V Fri

2 ⊗ Vr ⊗ deta) ≤ 1.

(ii) We have HomΓ(Vs ⊗ detb, V Fri

2 ⊗ Vr ⊗ deta) 6= 0 if and only if sj = rj
for all j 6= i and one of the following holds:

(a) si = ri + 2 and b ≡ a (q − 1)

(b) si = ri and b ≡ a+ pi (q − 1)

(c) si = ri − 2 and b ≡ a+ 2pi (q − 1)

(d) f = 1, p = 3, s0 = r0 = p− 1 and b ≡ a (q − 1).

Proof. The result is obvious from Proposition 5.4 if 0 ≤ ri < p−2 (note that
if ri < 2 or ri > p−3, some cases are empty as we must have 0 ≤ si ≤ p−1).
If ri = p− 2, there exists an injection:

RFri

p−2 ⊗
(⊗

j 6=i

V Frj

rj

)
↪→ RFri

p−2 ⊗
(⊗

j 6=i

(Rrj ⊗ detrj−p+1)Frj
)
.

As r 6= 0 (because ri = p− 2 and p > 2), we have (see §3):

RFri

p−2 ⊗
(⊗

j 6=i

(Rrj ⊗ detrj−p+1)Frj
)
∼= inj

(
(Vp−2 ⊗ det)Fri ⊗

⊗
j 6=i

V Frj

rj

)
,
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which implies in particular:

socΓ

(
RFri

p−2 ⊗
(⊗

j 6=i

V Frj

rj
)
))
∼= (Vp−2 ⊗ det)Fri ⊗

(⊗
j 6=i

V Frj

rj

)
.

Using Proposition 5.4, we then deduce the result in that case. If (ri = p− 1
and p > 3) or (ri = p− 1, p = 3 and f > 1), the proof is analogous using:

socΓ

(
RFri

p−3 ⊗
(⊗

j 6=i

V Frj

rj
)
))
∼= (Vp−3 ⊗ det)Fri ⊗

(⊗
j 6=i

V Frj

rj

)
.

Finally, if ri = p − 1 and p = q = 3, the result follows from R0 ' inj(V0) ⊕
Vp−1.

We finally obtain the main result of that section:

Corollary 5.6. Let σ := (r0, · · · , rf−1)⊗deta and τ := (s0, · · · , sf−1)⊗detb

be two weights (0 ≤ ri, si ≤ p− 1 and 0 ≤ a, b).

(i) We always have dimFp Ext1
Γ(τ, σ) ≤ 1. If f = 1, p > 2 and (r0, s0) 6=

(0, p − 1), we have Ext1
Γ(τ, σ) 6= 0 if and only if s0 = p − 2 − r0 ± 1

and b ≡ a + r0 + 1 − p (1±1)
2

(p − 1). If f > 1, we have Ext1
Γ(τ, σ) 6= 0

if and only if there exists j ∈ {0, · · · , f − 1} such that si = ri for all
i /∈ {j−1, j} (with the convention −1 = f−1) and one of the following
holds:

(a) sj−1 = p− 2− rj−1, sj = rj − 1 and b ≡ a+ pj−1(rj−1 + 1) (q− 1)

(b) sj−1 = p−2−rj−1, sj = rj+1 and b ≡ a+pj−1(rj−1+1)−pj (q−1).

(ii) Assume p > 2. If Ext1
Γ(τ, σ) 6∼= Ext1

K(τ, σ) then there exists j ∈
{0, · · · , f − 1} such that si = ri for all i 6= j and one of the following
holds:

(a) sj = rj − 2 and b ≡ a+ pj (q − 1)

(b) sj = rj and b ≡ a (q − 1)

(c) sj = rj + 2 and b ≡ a− pj (q − 1)

(d) f = 1, p = 3, s0 = r0 = p− 1 and b ≡ a− 1 (q − 1).

Proof. We start with (i). The case f = 1 is a direct consequence of Lemmas
3.4 and 3.5. Assume f > 1. Twisting everything by det−a, we can assume
σ = Vr (with obvious notations). Let τ be as in (a) or (b), then Lemma 3.8
together with (8) imply that τ occurs in the socle of:

Fil|Sr|−1(V2p−2−r ⊗ detr)/Fil|Sr|(V2p−2−r ⊗ detr)
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where r :=
∑f−1

i=0 rip
i. As Fil|Sr|(V2p−2−r ⊗ detr) ∼= Vr

∼= σ, the inverse

image of τ by the surjection Fil|Sr|−1(V2p−2−r ⊗ detr) � Fil|Sr|−1(V2p−2−r ⊗
detr)/Vr gives an element in Ext1

Γ(τ, σ). Moreover, this element is non-zero
as socΓ(V2p−2−r ⊗ detr) = Vr by Lemmas 3.4 and 3.5. Now we have:

Ext1
Γ′(τ, σ) ∼= Ext1

Γ(IndΓ
Γ′ τ, σ) ∼=

q−1⊕
c=1

Ext1
Γ(τ ⊗ detc, σ).

By [2, Cor. 4.5], Ext1
Γ′(τ, σ) 6= 0 if and only if there exists j such that

si = ri for i 6∈ {j − 1, j}, sj−1 = p − 2 − rj−1 and sj = rj ± 1. In that
case, dimFp Ext1

Γ′(τ, σ) = 1 unless f = 2 and r = ((p − 3)/2, (p − 1)/2) or
r = ((p−1)/2, (p−3)/2) in which case the dimension is 2. If the dimension is
1 we are done. If f = 2 and r = ((p−3)/2, (p−1)/2) then case (a) with j = 1
and case (b) with j = 0 give the same 2-tuple s but a different exponent b,
which implies the assertion. The other case is analogous. Finally (ii) follows
from Corollary 5.2 and Corollary 5.5.

The second part of Corollary 5.6 is presumably not optimal in the sense
that there might exist σ and τ satisfying one of the conditions in (ii) with
Ext1

K(τ, σ) = 0.

Corollary 5.7. Assume p > 2 and let W be a representation of K on a
finite dimensional Fp-vector space. Assume W is multiplicity free and for any
pair of distinct irreducible constituents (σ, τ) of W , none of the conditions
(a) to (d) in (ii) of Corollary 5.6 are satisfied for any j. Then W is a
Γ-representation.

Proof. We argue by induction on n(W ) := the number of irreducible sub-
quotients of W . If n(W ) = 1 then W is irreducible and so K1 acts trivially.
Suppose that n(W ) > 1 and let σ be an irreducible quotient of W . Consider
an exact sequence 0 → W1 → W → σ → 0. Since n(W1) = n(W ) − 1, K1

acts trivially on W1. Moreover, our assumptions imply:

HomΓ(σ,W ss
1 ) = HomΓ(σ, (V2 ⊗ det−1)Fri ⊗W ss

1 ) = 0

for all i, where ss denotes semi-simplification. This implies:

HomΓ(σ,W1) = HomΓ(σ, (V2 ⊗ det−1)Fri ⊗W1) = 0

for all i. By Corollary 5.2 we have Ext1
Γ(σ,W1) ∼= Ext1

K(σ,W1) and hence K1

acts trivially on W .
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6 Hecke algebra

We recall certain results on the representation theory of the Hecke algebra of
I1. We follow (most of) the notations of [25, §2] and don’t assume anything
on F .

Let H := EndG(c-IndGI1 1). The algebra H has an Fp-basis indexed by
the double cosets I1\G/I1. We write Tg for the element corresponding

to the double coset I1gI1. For a character χ : H → F×p , we set eχ :=
|H|−1

∑
h∈H χ(h)Th. The elements Tns , TΠ, TΠ−1 and the idempotents eχ for

all characters χ : H → F×p generate H as an algebra. For relations see [25,
Lem. 2.0.12].

Let I : RepG → ModH be the functor:

I(π) := πI1 ∼= HomG(c-IndGI1 1, π).

Let T : ModH → RepG be the functor:

T (M) := M ⊗H c-IndGI1 1.

One checks that (I, T ) is a pair of adjoint functors i.e. HomH(M, I(π)) ∼=
HomG(T (M), π). Let Rep$=1

G be the full subcategory of RepG with objects
G-representations on which the fixed uniformizer $ acts trivially. Then the
functors restrict to I : Rep$=1 → ModH$=1 and T : ModH$=1 → Rep$=1

where H$=1 := H/(T 2
Π − 1).

Let r := (r0, · · · , rf−1) be an f -tuple such that 0 ≤ ri ≤ p − 1 for all i.
We consider Vr (see Definition 3.3) as a representation of K0 by lifting it to
a representation of K and letting $ act trivially. It is shown in [4, Prop. 8]
that there exists an isomorphism of algebras:

EndG(c-IndGK0
Vr) ∼= Fp[T ]

for a certain T ∈ EndG(c-IndGK0
Vr) defined in [4, §3]. Fix ϕ ∈ c-IndGK0

Vr

such that Suppϕ = K0 and ϕ(1) spans V I1
r . Since ϕ generates c-IndGK0

Vr as
a G-representation, T is determined by Tϕ.

Lemma 6.1. (i) If r = 0 then Tϕ = Πϕ+
∑

λ∈Fq(
$ [λ]
0 1

)ϕ.

(ii) If r 6= 0 then Tϕ =
∑

λ∈Fq(
$ [λ]
0 1

)ϕ.
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Proof. In the notation of [4] this is the calculation of T ([1, e~0]). The claim
follows from the formula (19) in the proof of [4, Th. 19].

Definition 6.2. Let r :=
∑f−1

i=0 p
iri with ri ∈ {0, · · · , p − 1} and r the f -

tuple (r0, · · · , rf−1). Let λ ∈ Fp and η : F× → F×p be a smooth character.
We define an H-module M(r, λ) by the exact sequence:

0 // (c-IndGK0
Vr)

I1 T−λ // (c-IndGK0
Vr)

I1 // M(r, λ) // 0.

We define a G-representation π(r, λ) be the exact sequence:

0 // c-IndGK0
Vr

T−λ // c-IndGK0
Vr

// π(r, λ) // 0.

We set π(r, λ, η) := π(r, λ)⊗ η ◦ det and M(r, λ, η) := M(r, λ)⊗ η ◦ det.

For r, η as in Definition 6.2, let χ : H → F×p be the character given by

χ
(
( λ 0

0 µ )
)

:= µrη([λµ]). Set γ := {χ, χs} and eγ :=
∑

ψ∈γ eψ ∈ H. The
idempotents eγ are central in H. If |γ| = 1 (i.e. if r = 0 or r = q − 1), set
Zγ := TnsTΠ +TΠTns +TΠ. Otherwise set Zγ := TnsTΠ +TΠTns . The elements
Zγ are central in eγH and were used in [33].

Proposition 6.3. Letting λη := λη(−$−1), there exist exact sequences of
H-modules:

(i) if r = 0:

0 //(1 + Tns)eχH$=1
Zγ−λη//(1 + Tns)eχH$=1

//M(0, λ, η) //0

(ii) if r 6= 0:

0 //TnseχsH$=1
Zγ−λη//TnseχsH$=1

//M(r, λ, η) //0.

Proof. We prove the statement in the (harder) case when r 6= 0 and r 6=
q − 1. We can assume η = 1, since twisting by η has no effect on the
action by Tns and (v ⊗ 1)TΠ = Π−1(v ⊗ 1) = (vTΠ) ⊗ η(−$−1). We claim
that (c-IndGK0

Vr)
I1 ∼= TnseχsH$=1. It follows from [25, Rem. 3.1.6] that the

image Im( c-IndGIZ χ
s

Tns // c-IndGIZ χ ) is isomorphic to c-IndGK0
Vr, where we

consider χ and χs as representations of IZ with $ acting trivially. Now
(c-IndGIZ χ)I1 ∼= eχH$=1 as an H-module, hence TnseχsH$=1 is a submodule
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of (c-IndGK0
Vr)

I1 . This is an isomorphism since T 2
nseχ = 0 and it can be

deduced from [25, Lem. 2.0.15] that:

Ker( eχH$=1
Tns // eχsH$=1 ) ∼= TnseχsH$=1.

Let ϕχs ∈ c-IndGIZ χ
s be the function such that Suppϕ = IZ and ϕχ(g) :=

χs(g) for all g ∈ IZ, then:

ZγTnsϕχs = TnsTΠTnsϕχs =
∑
µ∈Fq

(
1 [µ]
0 1

)
n−1
s Π−1Tnsϕχs .

It follows from Lemma 6.1 that Zγ = T .

Corollary 6.4. (i) There exists a basis {v1, v2} of the underlying vector
space of M(r, λ, η) such that:

v1eχs = v1, v1TΠ = v2, v2eχ = v2, v2TΠ = v1

and such that v1Tns = −v1 if r = q − 1 and v1Tns = 0 otherwise.

(ii) We have v2(1 + Tns) = η(−$−1)λv1 if r = 0 and v2Tns = η(−$−1)λv1

otherwise.

Proof. One may show that if r 6= 0 (resp. r = 0) the images of Tnseχs ,
TnseχsTΠ (resp. (1 + Tns)eχ, (1 + Tns)eχTΠ) form a basis of M(r, λ). One
may then immediately verify the assertions.

One can deduce from Corollary 6.4 that M(r, λ) is irreducible unless
(r, λ) = (0,±1) or (r, λ) = (q− 1,±1) (see [33]). Moreover, there exist exact
non-split sequences of H$=1 modules:

0 // I(δ±1) // M(q − 1,±1) // I(St⊗δ±1) // 0

0 // I(St⊗δ±1) // M(0,±1) // I(δ±1) // 0

where St denotes the Steinberg representation of G over Fp.

Corollary 6.5. Let M be a subquotient of M(s, µ, ωa) in ModH$=1. Assume
that Ext1

H$=1
(M,M(r, λ)) 6= 0, then λ = (−1)aµ and either r = s and a ≡

0 (q − 1) or r = q − 1− s and a ≡ r (q − 1).

Proof. Let 0 → M(r, λ) → E → M → 0 be a non-split extension. Set
γ := {χ, χs}. Since eγ and Zγeγ are central in H$=1, the maps E → E,
v 7→ v(1 − eγ), v 7→ v(Zγeγ − λ) are maps of H$=1 modules and factor
through M → E. Since E is not split, M(1 − eγ) = 0 and hence s = r and
a ≡ 0 (q − 1) or s = q − 1 − r and a ≡ r (q − 1). Since Zγ has eigenvalue
µ(−1)a on M(s, µ, ωa), we obtain λ = µ(−1)a.
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Corollary 6.6. Assume that r 6= 0, r 6= q − 1. Set M := M(r, λ) and
M ′ := M(q − 1− r, λ(−1)r, ωr), if λ 6= 0 then:

dimFp Ext1
H$=1

(M,M) = 1, dimFp Ext1
H$=1

(M,M ′) = 0.

If λ = 0 then M ∼= M ′ and dimFp Ext1
H$=1

(M,M) = 2.

Proof. Consider an exact sequence of H$=1-modules:

0 // M // TnseχsH$=1/(Zγ − λ)2 // M // 0 . (11)

If the sequence was split then Zγ−λ would kill TnseχsH$=1/(Zγ−λ)2, which is
not the case. Hence, dimFp Ext1

H$=1
(M,M) ≥ 1. Set E := eχsH$=1/(Zγ−λ)

then we have an exact sequence of H$=1-modules:

0 // eχsH$=1
Zγ−λ // eχsH$=1

// E // 0. (12)

Since eχsH$=1 is a direct summand of a free module, (12) is a projective
resolution of E in ModH$=1 . In particular, for all H$=1-modules N , we have
ExtiH$=1

(E,N) = 0 for i > 1 and an exact sequence:

0 // HomH$=1(E,N) // Neχs
Zγ−λ // Neχs // Ext1

H$=1
(E,N) // 0.

(13)
Since 0 < r < q − 1 we have χ 6= χs and so it follows from Proposition 6.3
and (12) that:

dimFp HomH$=1(E,M) = dimFp HomH$=1(E,M ′) = 1. (14)

One may verify that the images of eχs , eχsTΠ, eχsTns , eχsTΠTns form a basis
of E, so dimFp E = 4. If λ 6= 0 then M 6∼= M ′ and as M and M ′ are
irreducible and 2-dimensional we obtain E ∼= M ⊕M ′. It follows from (13)
that dimFp Ext1

H$=1
(E,M) = 1. Since Ext1

H$=1
(M,M) 6= 0, if λ 6= 0 we

obtain:
Ext1

H$=1
(M ′,M) = 0, dimFp Ext1

H$=1
(M,M) = 1.

After replacing r with q−r−1 and twisting, we also obtain Ext1
H$=1

(M,M ′) =
0. Assume that λ = 0 then M ∼= M ′. One may check that the subspace of E
spanned by the images of eχsTns , eχsTΠTns is an H$=1-module isomorphic to
M and the corresponding quotient is isomorphic to M . It follows from (14)
that the exact sequence of H$=1-modules:

0 // M // E // M // 0 (15)
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is non-split. The classes of extensions (11) and (15) are linearly independent
in Ext1

H$=1
(M,M) since one of them is killed by Zγ and the other one by Z2

γ .

So dimFp Ext1
H$=1(M,M) ≥ 2. From (15) we obtain an exact sequence:

HomH$=1(M,M) ↪→ Ext1
H$=1

(M,M)→ Ext1
H$=1

(E,M).

Since dimFp Ext1
H$=1

(E,M) = 1, we get dimFp Ext1
H$=1(M,M) ≤ 2.

Corollary 6.7. Assume r = 0 or r = q − 1. Set M := M(r, λ) and M ′ :=
M(q − 1− r, λ), then dimFp Ext1

H$=1
(M,M) = dimFp Ext1

H$=1
(M,M ′) = 1.

Proof. Since −e1Tns is an idempotent in H, the exact sequences in Proposi-
tion 6.3 are projective resolution forM . If r = q−1 then for allH$=1-modules
N we have ExtiH$=1

(M,N) = 0 for i > 1 and an exact sequence:

0 −→ HomH$=1(M,N) −→ Ne1Tns
Zγ−λ−→ Ne1Tns −→ Ext1

H$=1
(M,N) −→ 0.

The assertion for r = q− 1 follows from this exact sequence. The case r = 0
is analogous.

Proposition 6.8. Assume λ 6= 0 then we have:

T (M(r, λ, η)) ∼= π(r, λ, η), I(π(r, λ, η)) ∼= M(r, λ, η).

Proof. It is enough to consider the case η = 1. Let K be the kernel of the
natural map α : T (I(c-IndGK0

Vr)) → c-IndGK0
Vr. If r = 0 or r = q − 1 then

−Tnse1 is an idempotent which implies that K = 0. The first isomorphism
then follows by applying T to the exact sequence defining M(r, λ). Assume
r 6= 0 and r 6= q − 1. It follows from the proof of Proposition 6.3 that
(c-IndGK0

Vr)
I1 ∼= TnseχH$=1. Hence every v ∈ K can be written v = Tnseχ⊗f

with Tnseχf = Tnsf = 0. Now we have:

Zγv = TnsTΠTnseχ ⊗ f = Tnseχ ⊗ (TΠTnsf) = 0.

Since λ 6= 0, multiplication by Zγ − λ induces thus an isomorphism K ∼→ K.
Since α is surjective, we deduce the first isomorphism from a diagram chase.
Applying I to the exact sequence defining π(r, λ, η), we obtain an injection
M(r, λ, η) ↪→ I(π(r, λ, η)). It follows from [4, Th. 30] that this map is an
isomorphism.

Corollary 6.9. Let τ be a smooth admissible irreducible non-supersingular
representation of G over Fp, then T I(τ) ∼= τ .
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Proof. It follows from [4, Cor. 36] that either τ ∼= π(r, λ, η) with (r, λ) 6=
(0,±1), (r, λ) 6= (q− 1,±1), or τ ∼= η ◦det, or τ ∼= St⊗η ◦det. The assertion
follows from Proposition 6.8, [4, Th. 30] and right exactness of T .

Corollary 6.10. Let M = M(r, λ) with λ 6= 0, or M = I(1), or M = I(St).
Then L1T (M) = 0.

Proof. We prove the statement when M = M(r, λ) and λ 6= 0. Assume that
r = 0 or r = q− 1 then −e1Tns is an idempotent. Hence the exact sequences
in Proposition 6.3 are projective resolutions. Moreover, T (Tnse1H$=1) ∼=
c-IndGK0

Vp−1 and T ((1 + Tns)e1H$=1) ∼= c-IndGK0
V0. Hence, applying T to

the exact sequence defining M(r, λ), we obtain an exact sequence defining
π(r, λ) and thus L1T (M) = 0. Applying T to the exact sequences:

0 // I(1) // M(q − 1, 1) // I(St) // 0

0 // I(St) // M(0, 1) // I(1) // 0

we obtain L1T (I(1)) = L1T (I(St)) = 0. Assume r 6= 0, r 6= q−1 and λ 6= 0.
Let E be an H$=1-module defined by the exact sequence:

0 // eχsH$=1
Zγ−λ // eχsH$=1

// E // 0.

Since eχs is an idempotent, this is a projective resolution of E. Applying T ,
we obtain an exact sequence using T (eχsH$=1) ∼= c-IndGIZ χ

s:

0 // L1T (E) // c-IndGIZ χ
s
Zγ−λ // c-IndGIZ χ

s // T (E) // 0.

Now Zγ−λ is an injection since it is an injection on I(c-IndGIZ χ
s) ∼= eχsH$=1.

Hence L1T (E) = 0 and T (E) ∼= c-IndGIZ χ
s/(Zγ − λ). Set π′ := π(q − 1 −

r, λ(−1)r, ωr), π := π(r, λ) and M ′ := M(q − 1− r, λ(−1)r, ωr). Applying T
to the exact sequence 0 // M ′ // E // M // 0 we obtain an exact
sequence:

0 // L1T (M) // π′ // T (E) // π // 0.

Since r 6= 0 and r 6= q−1, π′ is irreducible and thus T (E) ∼= π if L1T (M) 6= 0.
But this is impossible as I(π) has dimension 2 and I(T (E)) has dimension
at least 4.
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7 Computation of R1I for principal series

We assume F is a finite extension of Qp. Let χ : P � T → F×p be a smooth
character. We also denote by χ the restriction of χ to Z. We compute R1I(π)
in RepG,χ for π = IndGP χ.

Set Z1 := I1 ∩ Z. Since Z1 is pro-p and χ is smooth, we have χ(Z1) =
1. Hence Z1 acts trivially on all the representations in RepG,χ. Forgetting
the H-module structure gives an isomorphism of vector spaces R1I(π) ∼=
H1(I1/Z1, π).

Lemma 7.1. For a cocycle f ∈ Z1(I1/Z1, IndGP χ) define functions ψu and
ψl as follows:

ψu(u) := [f(u)](1), u ∈ I1 ∩ P, ψl(u) := [f(u)](ns), u ∈ I1 ∩ P s.

Then the map f 7→ (ψu, ψl) induces an isomorphism:

H1(I1/Z1, IndGP χ)
∼−→ Hom((I1 ∩ P )/Z1,Fp)⊕ Hom((I1 ∩ P s)/Z1,Fp). (16)

Proof. Since G = PI1 q PnsI1, we have an isomorphism:

IndGP χ|I1 ∼= IndI1I1∩P 1⊕ IndI1I1∩P s 1.

As Z1 acts trivially on both sides, we may rewrite this as Ind
G/Z1

P/Z1
χ|I1/Z1

∼=
Ind

I1/Z1

(I1∩P )/Z1
1⊕ Ind

I1/Z1

(I1∩P s)/Z1
1. It follows from [30, §2.5] that:

H1(I1/Z1, IndGP χ) ∼= H1((I1 ∩ P )/Z1, 1)⊕H1((I1 ∩ P s)/Z1, 1)

which implies the assertion.

Fix ψu ∈ Hom((I1 ∩ P )/Z1,Fp) and ψl ∈ Hom((I1 ∩ P s)/Z1,Fp) (the
superscripts u and l stand for “upper” and “lower”). We consider the pair
(ψu, ψl) as an element of R1I(IndGP χ) via (16).

Lemma 7.2. There exists a locally constant function ϕ : G→ Fp satisfying
the following equalities:

(i) ϕ(pgu)− ϕ(pg) = χ(p)(ϕ(gu)− ϕ(g)), p ∈ P, g ∈ G, u ∈ I1

(ii) ϕ(u)− ϕ(1) = ψu(u), u ∈ I1 ∩ P

(iii) ϕ(nsu)− ϕ(ns) = ψl(u), u ∈ I1 ∩ P s
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(iv) ϕ(zg) = χ(z)ϕ(g), z ∈ Z, g ∈ G.

Proof. Consider the exact sequence of G-representations:

0 // IndGP χ
ι // IndGZ χ

// Q // 0

where ι is the natural inclusion. For all τ in RepG,χ, we have:

HomG(τ, IndGZ χ) ∼= HomZ(τ, χ) ∼= HomFp(τ,Fp)

and hence IndGZ χ is an injective object in RepG,χ. Applying I we obtain an
exact sequence of H-modules:

0 // I(IndGP χ)
ι // I(IndGZ χ) // I(Q) // R1I(IndGP χ) // 0.

Let ϕ be a preimage of (ψu, ψl) in I(Q) and ϕ be a preimage of ϕ in IndGZ χ.
Then ϕ satisfies (iv). Since ϕ is fixed by I1, for all u ∈ I1 we get (u− 1)ϕ ∈
IndGP χ and hence ϕ satisfies (i). Moreover, (ψu, ψl) is the class of the cocycle
u 7→ (u− 1)ϕ. Lemma 7.1 implies then that ϕ satisfies (ii) and (iii).

Proposition 7.3. Let n ∈ G and, for each coset c ∈ I1/(I1 ∩ n−1I1n),
fix a representative c ∈ I1. With the notations of Lemma 7.2, set ϕTn :=∑

c cn
−1ϕ and:

θu(u) := [ϕTn](u)− [ϕTn](1) =
∑
c

(ϕ(ucn−1)− ϕ(cn−1))

θl(u) := [ϕTn](nsu)− [ϕTn](ns) =
∑
c

(ϕ(nsucn
−1)− ϕ(nscn

−1))

where u is respectively in I1 ∩ P and I1 ∩ P s, and where the sum is taken
over all cosets c ∈ I1/(I1 ∩ n−1I1n). Then the action of H on R1I(IndGP χ)
is given by (ψu, ψl)Tn = (θu, θl).

Proof. It follows from [25, Cor. 2.0.7] that the action of H on I(Q) is given
by ϕTn =

∑
c cn

−1ϕ. As ϕTn is a preimage of ϕTn in IndGZ χ, (ψu, ψl)Tn is
the class of the cocycle u 7→ (u−1)(ϕTn). The assertion follows from Lemma
7.1.

We now fix an integer r such that 0 < r ≤ q − 1 and λ ∈ F×p . Let

χ : T → F×p be the character:

χ
(($na 0

0 $md

))
:= λm−nω(d)r (a, d ∈ O×F , m, n ∈ Z). (17)
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It follows from [4, Th. 30] that I(IndGP χ) ∼= M(r, λ).

Fix ψu ∈ Hom((I1 ∩P )/Z1,Fp), ψl ∈ Hom((I1 ∩P s)/Z1,Fp) and let ϕ be
a function as in Lemma 7.2. We may choose coset representatives so that

ϕTns =
∑

α∈Fq(
1 [α]
0 1

)n−1
s ϕ, ϕTΠ = Π−1ϕ and so that, for all ξ : H → F×p :

ϕeξ = |H|−1
∑

λ,µ∈F×q

ξ

((
λ−1 0
0 µ−1

))(
[λ] 0
0 [µ]

)
ϕ.

We consider (ψu, ψl) as an element of R1I(IndGP χ) via (16). We are going to
determine (ψu, ψl)Tns , (ψu, ψl)TΠ and (ψu, ψl)eξ using Proposition 7.3.

Lemma 7.4. Let µ ∈ F×q then ( 1 0
−[µ] 1 )( 1 [µ]−1

0 1
) = ( −[µ]−1 1

0 −[µ]
)ns.

Lemma 7.5. Let c ∈ $OF then:

[ϕTns ]

(
ns

(
1 0
c 1

))
− [ϕTns ](ns) =

∑
µ∈F×q

µrψl
((

1 0
[µ2]c 1

))
.

Proof. Note that the left hand side is equal to
∑

µ∈Fq

(
ϕ
(
( 1 −c

0 1 )( 1 0
−[µ] 1 )

)
−

ϕ
(
( 1 0
−[µ] 1 )

))
. Since ( 1 pF

0 1 ) is contained in the derived subgroup of I1∩P , the
term corresponding to µ = 0 is:

ϕ

((
1 −c
0 1

))
− ϕ(1) = ψu

((
1 −c
0 1

))
= 0.

If µ ∈ F×q , using (i) of Lemma 7.2 with p := ( 1 −c
0 1 ), g := ( 1 0

−[µ] 1 ), u := ( 1 [µ]−1

0 1
)

and Lemma 7.4 we get:

ϕ
(
( 1 −c

0 1 )( 1 0
−[µ] 1 )

)
−ϕ
(
( 1 0
−[µ] 1 )

)
= ϕ

(
( 1 −c

0 1 )(−[µ]−1 1
0 −[µ]

)ns
)
− ϕ

(
(−[µ]−1 1

0 −[µ]
)ns
)

= ϕ
(
(−[µ]−1 1

0 −[µ]
)ns(

1 0
[µ2]c 1 )

)
−ϕ
(
(−[µ]−1 1

0 −[µ]
)ns
)

= χ
(
(−[µ]−1 0

0 −[µ]
)
)
ψl
(
( 1 0

[µ2]c 1 )
)
.

Summing over µ ∈ F×q we get the claim.

Lemma 7.6. Let a, d ∈ 1 +$OF then:

[ϕTns ]

(
ns

(
a 0
0 d

))
− [ϕTns ](ns) = ψu

((
d 0
0 a

))
+∑

µ∈F×q

µrψl
((

1 0
[µ](1− da−1) 1

))
+
( ∑
µ∈F×q

µr
)
ψl
((

a 0
0 d

))
.
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Lemma 7.7. Let b ∈ OF then:

[ϕTns ]

((
1 b
0 1

))
− [ϕTns ](1) = (−1)rψl

((
1 0
−qb 1

))
.

Proof. Let b be the image of b in OF/$OF then:∑
µ∈Fq

(
ϕ
(
( 1 [µ]+b

0 1
)n−1

s

)
− ϕ

(
( 1 [µ]

0 1
)n−1

s

))
=
∑
µ∈Fq

(
ϕ
(
( 1 [µ]

0 1
)n−1

s ( 1 0
[µ]−b−[µ−b] 1 )

)
− ϕ

(
( 1 [µ]

0 1
)n−1

s

))
and the right hand side is equal to:

χ(n−2
s )ψl

(
(

1 0∑
µ∈Fq ([µ]−b−[µ−b]) 1 )

)
= (−1)rψl

(
( 1 0
−qb 1 )

)
.

A similar argument gives:

Lemma 7.8. Let a, d ∈ 1 +$OF then:

[ϕTns ]

((
a 0
0 d

))
− [ϕTns ](1) = ψl

((
1 0

(
∑

µ∈Fq [µ])(1− ad−1) 1

))
.

The following two lemmas can be easily obtained by using (i) of Lemma
7.2 and observing that χ(Π−1n−1

s ) = λ and χ(nsΠ
−1) = λ−1:

Lemma 7.9. Let a, d ∈ 1 +$OF and c, b ∈ OF then:

[ϕTΠ]

((
a b
0 d

))
− [ϕTΠ](1) = λψl

((
d 0
$b a

))
[ϕTΠ]

(
ns

(
a 0
$c d

))
− [ϕTΠ](ns) = λ−1ψu

((
d c
0 a

))
.

Lemma 7.10. Let a, d ∈ 1 + $OF , c ∈ $OF , b ∈ OF and let ξ : H → F×p
be a character then:

[ϕeξ]

((
a b
0 d

))
− [ϕeξ](1) =

∑
λ,µ∈F×q

µ−rξ

((
λ 0
0 µ

))
ψu
((

a b[λµ−1]
0 d

))

[ϕeξ]

(
ns

(
a 0
c d

))
− [ϕeξ](ns) =

∑
λ,µ∈F×q

λ−rξ

((
λ 0
0 µ

))
ψl
((

a 0
c[λ−1µ] d

))
.
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Definition 7.11. (i) For 0 ≤ i < f , define εi ∈ Hom((I1 ∩ T )/Z1,Fp) by:

εi
(
( a 0

0 d )
)

:= ω((1− da−1)/$)p
i

and κui ∈ Hom((I1 ∩ P )/Z1,Fp), κli ∈ Hom((I1 ∩ P s)/Z1,Fp) by:

κui
(
( a b0 d )

)
:= ω(b)p

i

, κli
(
( a 0
$c d )

)
:= ω(c)p

i

.

(ii) For δ ∈ Hom((I1 ∩ T )/Z1,Fp), define δu ∈ Hom((I1 ∩ P )/Z1,Fp) and
δl ∈ Hom((I1 ∩ P s)/Z1,Fp) by:

δu
(
( a b0 d )

)
:= δ

(
( d 0

0 a )
)
, δl

(
( a 0
$c d )

)
:= δ

(
( a 0

0 d )
)
.

Lemma 7.12. There exist δ1, δ2 ∈ Hom((I1 ∩ T )/Z1,Fp) and xui , x
l
i ∈ Fp for

0 ≤ i < f such that:

ψu = δu1 +

f−1∑
i=0

xui κ
u
i , ψl = δl2 +

f−1∑
i=0

xliκ
l
i.

Proof. By restricting ψu to T∩I1 and twisting by s, we obtain δ1 ∈ Hom((I1∩
T )/Z1,Fp) such that ψu − δu1 is trivial on I1 ∩ T . Since:

( 1+$ 0
0 1 )( 1 β

0 1 )( (1+$)−1 0
0 1

)( 1 −β
0 1 ) = ( 1 $β

0 1 ),

the restriction of ψu − δu1 to ( 1 pF
0 1 ) is trivial. Hence ψu − δu1 factors through

K1 ∩ P . Now dimFp Hom((I1 ∩ P )/(K1 ∩ P ),Fp) = dimFp Hom(Fq,Fp) = f
and the κui are linearly independent. This proves the claim for ψu. The claim
for ψl follows after conjugating by Π.

We will consider κui , κ
l
i, δ

u, δl as elements of R1I(IndGP χ) by extending
them by zero to elements of Hom((I1 ∩ P )/Z1,Fp) ⊕ Hom((I1 ∩ P s)/Z1,Fp)
and then using (16) and Shapiro’s lemma.

Proposition 7.13. Let δ ∈ Hom((I1 ∩ T )/Z1,Fp) then:

δueχ = δu, δuTΠ = λ−1δl, δuTns = δl, δleχs = δl, δlTΠ = λδu.

If r = q− 1, δlTns = −δl and if r 6= q− 1, δlTns = 0. In particular, 〈δu, δl〉Fp
is stable under the action of H and is isomorphic to M(r, λ) as an H-module.

Proof. This follows from Lemmas 7.10, 7.9, 7.5, 7.6, 7.7 and 7.8.

Proposition 7.14. (i) We have κui eχα−pi = κui , κlieχsαpi = κli, κ
u
i TΠ =

λ−1κli, κ
l
iTΠ = λκui and κui Tns = 0.
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(ii) We have:

κliTns =
( ∑
µ∈F×q

µ2pi+r
)
κli +

( ∑
µ∈F×q

µp
i+r
)
εli +

( ∑
µ∈F×q

µ
)
εui + (−1)r+1εFκ

u
i

where εF = 1 if F = Qp and εF = 0 otherwise.

Proof. This follows from Lemmas 7.10, 7.9, 7.5, 7.6, 7.7, 7.8 (note that
val(q) = [F : Qp]).

Proposition 7.15. (i) The subspace S := 〈εui , εli, κui , κli〉Fp of R1I(IndGP χ)
is stable under the action of H.

(ii) Let s(i) be an integer such that 0 ≤ s(i) < q−1 and s(i) ≡ −r−2pi (q−1),
then there exists an exact sequence of H-modules:

0 // M(r, λ) // S // M(s(i), εFλ
−1, ωr+p

i
) // 0,

where εF = 1 if F = Qp and εF = 0, otherwise. This sequence is non-
split if and only if (F = Qp, p > 2, r = p− 2 and λ = ±1) or (F = Q2

and λ = 1) (and hence r = 1 and s = 0).

Proof. (i) follows from Lemmas 7.10, 7.9, 7.5, 7.6, 7.7 and 7.8. Proposition
7.13 implies that the subspace 〈εui , εli〉Fp of S is stable under the action of H
and is isomorphic to M(r, λ). We denote the corresponding quotient by Q.
Let v1 be the image of κui and v2 be the image of λ−1κli in Q. Proposition
7.14 implies v1eχα−pi = v1, v2eχsαpi = v2, v1TΠ = v2, v2TΠ = v1, v1Tns = 0
and:

v2(Tns −
∑
µ∈F×q

µ2pi+r) = λ−1(−1)r+1εFv1.

Now χα−p
i(

( λ 0
0 µ )

)
= λ−r−2pi(λµ)r+p

i
hence

∑
µ∈F×q µ

2pi+r 6= 0 if and only

if (χα−p
i
)s = χα−p

i
. These relations and Corollary 6.4 imply 〈v1, v2〉Fp ∼=

M(s(i), εFλ
−1, ωr+p

i
). Suppose that the sequence does not split. Then Corol-

lary 6.5 implies that λ = (−1)r+1λ−1εF , and hence F = Qp so that i = 0.
Assume p > 2, then r + 1 6≡ r (p − 1) and hence Corollary 6.5 implies
r = s = p − 2 and λ = ±1. Let γ := {χα−1, χsα}, since r = p − 2 we
have Zγ = TnsTΠ + TΠTns . If the sequence was split then Zγ − λ would kill
S. However κu(Zγ − λ) = λ−1κlTns − λκu = (

∑
µ∈F×p µ

p−1)εl 6= 0, so the
sequence does not split. Assume now p = 2. Since r > 0 we get r = 1 and
hence s = 0, λ = 1 and Zγ = TnsTΠ +TΠTns +TΠ. The same argument shows
that κu(Zγ − 1) 6= 0 and hence the sequence can not split.
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We now sum up the results of this section.

Theorem 7.16. Let λ ∈ F×p and r ∈ {1, · · · , q − 1}. For 0 ≤ i ≤ f − 1,

let s(i) ∈ {0, · · · , q − 2} such that s(i) ≡ −r − 2pi (q − 1) and let d :=
dimFp Hom(1 + pF ,Fp).

(i) Assume F 6= Qp then:

R1I(π(r, λ)) ∼= M(r, λ)⊕d ⊕
f−1⊕
i=0

M(s(i), 0, ωr+p
i

).

(ii) Assume F = Qp and, if λ = ±1, assume furthermore p > 2 and
r 6= p− 2. Then:

R1I(π(r, λ)) ∼= M(r, λ)⊕d ⊕M(s(0), λ−1, ωr+1).

(iii) Assume F = Qp, λ = ±1, p > 2 and r = p− 2 then R1I(π(p− 2,±1))
is the unique non-split extension of H$=1-modules:

0 // M(p−2,±1) // R1I(π(p−2,±1)) // M(p−2,±1) // 0.

(iv) Assume F = Q2 and λ = 1. Let E be the unique non-split extension of
H$=1-modules:

0 // M(1, 1) // E // M(0, 1) // 0,

then R1I(π(1, 1)) ∼= M(1, 1)⊕ E.

Proof. This is a reformulation of Propositions 7.13, 7.14 and 7.15. In (iii)
and (iv), the uniqueness of the extension is given by Corollary 6.7. Note that
for F = Qp, d = 1 if p > 2 and d = 2 if p = 2.

8 Extensions of principal series

We keep the notations of sections 6 and 7 and still assume F is a finite

extension of Qp. We fix a smooth character χ : F× → F×p and study groups

Ext1
G,χ(τ, π) of G-extensions with central character χ.

Theorem 8.1. Let r ∈ {1, · · · , q − 1}, λ ∈ F×p , π := π(r, λ) and M :=
M(r, λ) (see Definition 6.2). Let τ be a smooth admissible irreducible non-
supersingular representation of G over Fp with central character χ with χ as
in (17). Then there exists a short exact sequence:

0→ Ext1
H$=1

(I(τ),M)→ Ext1
G,χ(τ, π)→ HomH(I(τ),R1I(π))→ 0 (18)
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where Ext1
G,χ(τ, π) denotes the Fp-vector space of G-extensions with central

character χ.

Proof. Let E be the class of an exact sequence in RepG,χ:

0 // π // ε // τ // 0 .

Taking I1-invariants we obtain an exact sequence of H-modules:

0 // I(π) // I(ε) // I(τ)
φE // R1I(π) .

Hence we obtain a map Ext1
G,χ(τ, π) → HomH(I(τ),R1I(π)), E 7→ φE. We

claim that this map is surjective. Let φ ∈ HomH(I(τ),R1I(π)) be non-zero.
By Corollary 9.11 below (note that if p = 2, π|K1 has property (S) below by
Corollary 9.3), there exists an exact sequence:

0→ π → Ω→ Q→ 0,

where Ω is a smooth admissible representation of G over Fp such that Ω|K
is an injective envelope of socK π in RepK,χ. Since Ω|I1 is an injective object
in RepI1,χ, by taking I1-invariants we obtain an exact sequence:

0→M → I(Ω)→ I(Q)→ R1I(π)→ 0.

By examining the construction of Ω we observe that I(Ω) ∼= M ⊕S, where S
is a direct sum of supersingular modules (compare [25, Prop. 6.4.5]). Since
τ is irreducible and non-supersingular, I(τ) is irreducible and hence φ is
an injection. Since τ is non-supersingular, Corollary 6.5 implies that there
exists no non-split extensions between a supersingular module and I(τ). In
particular Ext1

H$=1
(I(τ), I(Ω)/M) = 0. From the exact sequence:

0→HomH(I(τ), I(Ω)/M)→HomH(I(τ), I(Q))→HomH(I(τ),R1I(π))→0

we thus get ψ ∈ HomH(I(τ), I(Q)) such that the composition I(τ)
ψ→

I(Q)→ R1I(π) is φ. Now let E be the image of ψ under:

HomH(I(τ), I(Q)) ∼= HomG(τ,Q)
∂→ Ext1

G,χ(τ, π)

(use the adjunction property of I and T (see §6) together with T I(τ) = τ
for the first isomorphism), then one checks that φE = φ. Let us now prove
exactness in the middle of (18). Suppose that E is such that φE = 0, then
we obtain an extension of H$=1-modules:

0 // I(π) = M // I(ε) // I(τ) // 0 .
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If this extension is split, Corollary 6.9 implies that E = 0. Corollaries 6.10,
6.9 and Proposition 6.8 imply that, after applying T to this exact sequence,
we obtain an exact sequence of G-representations:

0 // π // T I(ε) // τ // 0 .

This implies that the natural map T I(ε) → ε is an isomorphism, hence we
get back E and thus exactness in the middle of (18). Let us finally check
injectivity on the left of (18). Suppose that we have an exact sequence of
H$=1-modules:

0 // M // N // I(τ) // 0 .

Corollary 6.10 implies that, after applying T , we obtain an exact sequence
of G-representations:

0 // π // T (N) // τ // 0 .

Let E be the class of this extension in Ext1
G,χ(τ, π). After applying I we

obtain a diagram of H-modules with exact rows:

0 // M //

=

��

N //

��

// I(τ) //

=

��

0

��
0 // M // IT (N) // I(τ)

φE // R1I(π).

Hence φE = 0 and N ∼= IT (N). This implies that T induces an injection
Ext1

H$=1
(I(τ),M) ↪→ Ext1

G,χ(τ, π).

Corollary 8.2. Let π := π(r, λ) and M := M(r, λ) as in Definition 6.2 with

r ∈ {1, · · · , q − 1} and λ ∈ F×p . Let χ as in (17).

(i) There exists an injection Hom(F×,Fp) ↪→ Ext1
G,χ(π, π).

(ii) If (λ, F ) 6= (±1,Q2) and (λ, F, r) 6= (±1,Q3, 2) then this injection is
an isomorphism and the subspace Ext1

H$=1
(M,M) via (18) corresponds

to the unramified homomorphisms.

Proof. Let δ ∈ Hom(F×,Fp). We lift δ to a homomorphism of P via P � F×,
( a b0 d ) 7→ ad−1. Let εδ be the extension corresponding to δ via Ext1

P (χ, χ) ∼=
Hom(P,Fp). By inducing to G we obtain an exact sequence:

0 // IndGP χ
// IndGP εδ

// IndGP χ
// 0.
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By evaluating functions at identity, we see that this sequence splits if and
only if δ = 0. This proves (i) as π ' IndGP χ. Let v1, v2 be the basis of
the underlying vector space of εδ such that for all g ∈ P , we have gv1 =
χ(g)v1 + χ(g)δ(g)v2 and gv2 = χ(g)v2. Denote by U (resp. U s) in this
proof (and only in this proof) the unipotent subgroup of P (resp. P s). Let
ϕ1 ∈ IndGP εδ be the function with Suppϕ1 = PI and ϕ1(u) = v1 for all
u ∈ I1 ∩U s, and let ϕ2 :=

∑
λ∈Fq(

1 [λ]
0 1

)n−1
s ϕ1. The images of ϕ1 and ϕ2 form

a basis of (IndGP χ)I1 . Moreover, [(u − 1)ϕ1](ns) = 0 for all u ∈ I1 ∩ P s and
[(tu − 1)ϕ1](1) = δ(t)v2 for all t ∈ T ∩ I1 and u ∈ I1 ∩ U . Seeing δ|1+pF

as an element of Hom((I1 ∩ T )/Z1,Fp), we let δ|u1+pF
and δ|l1+pF

be as in
(ii) of Definition 7.11. We thus get that ϕ1 maps to δ|u1+pF

and ϕ2 maps
to δ|l1+pF

in R1I(π) via (16). The assumptions on λ, F and r imply that if
φ ∈ HomH(M,R1I(π)) is non-zero then φ is an injection and the proof of
Theorem 8.1 goes through even in the case when π = τ is not irreducible.
Moreover, φ(M) = 〈δu, δl〉Fp for some δ ∈ Hom(1 + pF ,Fp). So we obtain an
exact sequence:

0 // Homun(F×,Fp) // Hom(F×,Fp) // HomH(M,R1I(π)) // 0

(where Homun means homomorphisms which are trivial on O×F ). Hence we
obtain an injection Homun(F×,Fp) ↪→ Ext1

H$=1
(M,M). Since both spaces

are one dimensional, this is an isomorphism.

Corollary 8.3. Let r ∈ {1, · · · , q − 1}, λ ∈ F×p and χ as in (17). Assume
F = Qp, (p, λ) 6= (2, 1) and (p, λ, r) 6= (3,±1, 2). Let s ∈ {0, · · · , p− 2} such
that s ≡ −r − 2 (p− 1). Let:

d := dimFp Ext1
G,χ(π(s, λ−1, ωr+1), π(r, λ)).

If r = p− 2 and λ = ±1 then d = 2. Otherwise, d = 1.

Proof. Set M ′ := M(s, λ−1, ωr+1) and M := M(r, λ). If HomH(M ′,M) 6= 0
then ωr+1 = 1 and hence r+1 ≡ 0 (mod p−1), λ = λ−1, s ≡ r (mod p−1).
This can only happen if (p, λ, r) = (3,±1, 2), (p, λ) = (2, 1) or p > 2 and
(r, λ) = (p− 2,±1). We have excluded the first two cases. In the third case
π(r, λ) ∼= π(s, λ−1, ωr+1) ∼= π(p−2,±1) and hence it is dealt with in Corollary
8.2, so we obtain d = dimFp Hom(Q×p ,Fp) = 2. If Ext1

H$=1
(M ′,M) 6= 0 then

Corollary 6.5 implies that either we are in the cases considered before or
r + 1 ≡ r (p − 1) and λ = (−1)rλ−1. This implies (p, λ) = (2, 1). The
assertion follows from Theorems 7.16 and 8.1.

Corollary 8.4. Let r ∈ {1, · · · , q − 1}, λ ∈ F×p and χ as in (17). Assume

F = Qp, then Ext1
G,χ(π(s, 0, η), π(r, λ)) = 0 for all s and η.
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Proof. Set π := π(r, λ), π′ := π(s, 0, η), M := M(r, λ) and M ′ := M(s, 0, η).
It follows from [6] that I(π′) ∼= M ′ and [25, Cor. 6.1.8] implies that, for
all τ in RepG, we have HomH(M ′, I(τ)) ∼= HomG(π′, τ), hence π′ ∼= T (M ′).
Theorem 7.16 implies that HomH(M ′,R1I(π)) = 0. Corollary 6.5 implies
that Ext1

H$=1
(M ′,M) = 0. The proof of theorem 8.1 then goes through to

show that Ext1
G,χ(π′, π) = 0.

9 General theory of diagrams and represen-

tations of GL2

We define basic diagrams and use them to construct smooth admissible rep-
resentations of G over Fp, generalizing the constructions of [25]. We don’t
assume anything on F .

We start with a few lemmas. Let [H] := {
(

[λ] 0
0 [µ]

)
, λ, µ ∈ F×q }, G the

subgroup of K1 generated by [H] and Π and set G := G/$Z.

Definition 9.1. Let τ be a smooth representation of K1 such that $ acts
trivially. We say that τ has property (S) if τ I1 ↪→ τ has a G-equivariant
section.

Proposition 9.2. Let τ be a smooth admissible representation of K1 such
that $ acts trivially. If p 6= 2 then τ has property (S). If p = 2 then assume

that for every character χ : H → F×p such that χ = χs there exists a subset
S of τ I1eχ such that (Π · S)∩S = ∅ and (Π · S)∪S is a basis of τ I1eχ. Then
τ has property (S).

Proof. Since $ acts trivially the action of G on τ I1 factors through G. We
claim that the assumption implies that τ I1 is an injective representation of G.
The order of G is equal to 2(q−1)2, hence if p 6= 2 the claim holds trivially. If

p = 2 and χ 6= χs then IndG[H] χ is irreducible, and injective since the order of

[H] is prime to 2. Hence, τ I1(eχ+eχs) is injective. If χ = χs, the assumption

on τ implies that τ I1eχ ∼= ⊕ IndG[H] χ. Since IndG[H] χ is injective we obtain the
claim. But the claim implies that there exists a splitting.

Corollary 9.3. Let π be a smooth admissible representation of G such that

$ acts trivially. Assume that p = 2, and that for every character χ : H → F×p
such that χ = χs, there exists a filtration of H-modules of πI1eχ such that the
graded pieces are isomorphic to either M(0, λ, η) or M(q − 1, λ, η) for some
λ and η. Then π|K1 has property (S).
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Proof. This follows from the fact that the underlying vector space ofM(r, λ, η)
is two dimensional with basis {v,Πv}.

Corollary 9.4. Let π be a smooth admissible representation of G such that
$ acts trivially. Assume that p = 2 and that socG π consists of supersingular
representations, then π|K1 has property (S).

Proof. It follows from Corollary 6.5 that there are no extensions between
non-supersingular and supersingular H-modules. This implies that if a non-
supersingular module is a subquotient of πI1 , then there exists an irreducible
non-supersingular H-submodule of πI1 . However, Proposition 6.8 would im-
ply that an irreducible non-supersingular representation occurs in socG π.

Hence, every irreducible subquotient of πI1 is supersingular. Let χ : H → F×p
be a character such that χ = χs and choose any filtration of πI1eχ such
that the graded pieces are irreducible H-modules. It follows by above that
the graded pieces are isomorphic to M(0, 0, η) for some η. Hence, π|K1 has
property (S).

Lemma 9.5. Let τ be a smooth admissible representation of K1 such that the
fixed uniformizer $ acts trivially on τ and assume that τ has property (S).
Let ι : τ |I ↪→ Inj(τ |I) be an injective envelope of τ |I in RepI , then there exists
an action of K1 on Inj(τ |I) such that ι is K1-equivariant. If τ satisfies the
conditions of Proposition 9.2 then this action is unique up to isomorphism.

Proof. Let s : τ → τ I1 be a G-equivariant section. Define ιs : τ → IndK1
G τ I1 ,

v 7→ [g 7→ s(gv)]. This is a K1-equivariant injection since it induces an
injection of τ I1 . Now (IndK1

G τ I1)|I ∼= IndI[H] τ
I1 is an injective envelope of τ I1

(and hence of τ) in RepI . Hence there exists an I-equivariant isomorphism
ψ : Inj(τ |I) ∼= IndI[H] τ

I1 such that ιs = ψ◦ι. We may use ψ to define an action
of K1 on Inj(τ |I) such that ι is K1-equivariant. If τ satisfies the conditions
of Proposition 9.2 then τ I1 is an injective representation of G, and hence
IndK1

G τ I1 is an injective envelope of τ in the category of K1 representations
on which $ acts trivially. This implies the assertion.

Lemma 9.6. Let σ = ⊕mi=1σi where (σi)1≤i≤m are irreducible representations
of K and recall σ ↪→ Injσ is an injective envelope of σ in RepK. Let e ∈
EndI(Injσ) be an idempotent and suppose that there exists an action of K1 on
e(Injσ) extending the action of I with $ acting trivially. Then there exists
an action of K1 on (1− e)(Injσ) with $ acting trivially.

Proof. Set V := e((Injσ)I1) and W := (1 − e)((Injσ)I1). Denote by Vχ and

Wχ the χ-isotypic subspaces for the action of I, where χ : H → F×p . We
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have:
V =

⊕
χ

Vχ, W =
⊕
χ

Wχ,

where the sum is taken over all the characters χ. The action of Π on e(Injσ)
induces an isomorphism Vχ ∼= Vχs and hence dimFp Vχ = dimFp Vχs for all χ.
It follows from [25, Lem. 6.4.1, Lem. 4.2.19 and Lem. 4.2.20] that for every
σi and every χ we have:

dimFp(Injσi)
I1
χ = dimFp(injσi)

U
χ = dimFp(injσi)

U
χs = dimFp(Injσi)

I1
χs .

Since Injσ ∼= ⊕mi=1 Injσi, we obtain dimFp(Injσ)I1χ = dimFp(Injσ)I1χs and hence
dimFpWχ = dimFpWχs for all χ. For every ordered pair (χ, χs) such that
χ 6= χs, choose an isomorphism of vector spaces φχ,χs : Wχ → Wχs so that
φχ,χs = φ−1

χs,χ. If χ = χs then Wχ = Wχs and we set φχ,χs := idWχ . Define
φ ∈ EndFp(W ) by:

φ(wχ) := φχ,χs(wχ), ∀wχ ∈ Wχ, ∀χ.

Then φ2 = idW and φuφ−1w = ΠuΠ−1w, u ∈ I, w ∈ W . Hence by sending
Π to φ we obtain an action of K1 on W . Since Injσ is an injective object
in RepK , (Injσ)|I is an injective object in RepI , and thus (1 − e)(Injσ)
is an injective object in RepI . Since W = (1 − e)(Injσ)I1 , we have that
W ↪→ (1 − e)(Injσ) is an injective envelope of W in RepI . Since I1 acts
trivially on W , W has property (S) and Lemma 9.5 implies there exists an
action of K1 on (1− e)(Injσ) extending the action of I and such that $ acts
trivially.

Definition 9.7. A diagram D is a triple (D0, D1, r) where D0 is a smooth
representation of K0, D1 is a smooth representation of K1 and r : D1 → D0

is an IZ-equivariant morphism.

This definition is taken from [25, §5.5]. Diagrams equipped with obvious
morphisms form an abelian category D, which is equivalent to the category
of G-equivariant coefficient systems on the Bruhat-Tits tree X for PGL2(F )
([25, Th. 5.5.4]). Given D = (D0, D1, r) ∈ D, we will write H0(X,D), or
more simply H0(D), for the 0-th homology of the coefficient system corre-
sponding to D. Explicitly, one has an exact sequence:

c-IndGK1
(D1 ⊗ δ−1)

∂ // c-IndGK0
D0

// H0(D) // 0

where ∂ is the composition of the following obvious maps:

c-IndGK1
(D1 ⊗ δ−1) ↪→ c-IndGIZ D1

r−→ c-IndGIZ D0 � c-IndGKZ D0.

In particular, H0 is a functor from D to RepG. This functor has a section,
namely the constant functor K : π 7→ (π|K0 , π|K1 , id).
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Theorem 9.8. Let D = (D0, D1, r) be a diagram such that D0 is admissible,
r is an injection and $ acts trivially on D0. If p = 2, assume D1 has property
(S). Let σ := socK D0. Then there exists an injection of diagrams:

ι : D ↪→ K(Ω),

where Ω is a smooth representation of G such that Ω|K ∼= Injσ.

Proof. SinceD0 is admissible, DK1
0 is finite dimensional and hence σ ∼= ⊕mi=1σi

with σi irreducible. Since D0|K is an essential extension of σ, there exists an
injection ι0 : D0|K ↪→ Injσ making the diagram of K-representations:

σ //

!!CC
CC

CC
CC

C Injσ

D0|K

ι0

OO

commute. Put an action of K0 on Injσ by making $ act trivially and denote
this representation Ω0. Then ι0 : D0 ↪→ Ω0 is K0-equivariant. Set ι1 := ι0 ◦ r.
Since r and ι0 are injections, we obtain an injection ι1 : D1|I ↪→ Ω0|I . Since
Ω0|I is an injective object in RepI and ι1 is an injection, there exists an
idempotent e ∈ EndI(Ω0) such that e ◦ ι1 = ι1, and ι1 : D1|I ↪→ e(Ω0) is
an injective envelope of D1|I in RepI . Since K1 acts on D1 with $ acting
trivially, Lemma 9.5 implies there exists an action of K1 on e(Ω0) such that
ι1 : D1 → e(Ω0) is K1-equivariant. Moreover, Lemma 9.6 implies there exists
an action of K1 on (1 − e)(Ω0) extending the action of I. This defines an
action of K1 on e(Ω0)⊕ (1−e)(Ω0): we denote this representation by Ω1. We
obtain an injection of diagrams:

ι = (ι0, ι1) : (D0, D1, r) ↪→ (Ω0,Ω1, id).

It then follows from [25, §5] that there exists a representation Ω of G, unique
up to isomorphism, such that (Ω0,Ω1, id) ∼= K(Ω).

Lemma 9.9. Let D = (D0, D1, r) be a diagram and set:

F0 := {f ∈ c-IndGK0
D0, Supp(f) ⊆ K0}.

Let Ω be a smooth representation of G and suppose that we are given an
injection of diagrams ι : D ↪→ K(Ω). Then the composition:

F0
// c-IndGK0

D0
// H0(D)

H0(ι) // Ω

is an injection.
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Proof. Let φ : F0 → Ω denote the above composition. Evaluation at 1 in-
duces an isomorphism F0

∼= D0. It follows from the proof of [25, Prop. 5.4.3]
that the diagram (Kerφ, 0, 0) is contained in Ker ι. Since ι is an injection,
so is φ.

Proposition 9.10. Let D = (D0, D1, r) be a diagram and suppose we are
given an injection of diagrams ι : D ↪→ K(Ω), where Ω is a smooth repre-
sentation of G such that socK Ω ∼= socK D0. Let π be the image of H0(ι) :
H0(D) → Ω. Then Ω is an essential extension of π. In particular, if π is
irreducible then π is the G-socle of Ω.

Proof. Lemma 9.9 implies socK D0 ⊆ socK π ⊆ socK Ω, where we have iden-
tified D0 with the image of F0 in Ω. Since socK D0

∼= socK Ω, we obtain
socK π = socK Ω. So Ω|K is an essential extension of π|K , which implies
the first part. Suppose now that π is an irreducible representation of G. If
π′ ⊆ Ω is a non-zero G-invariant subspace, we thus have π′ ∩ π 6= 0, and
hence π ⊆ π′ as π is irreducible. So π is the unique irreducible G-invariant
subspace of Ω.

Corollary 9.11. Let π be an admissible representation of G such that $
acts trivially on π and σ := socK π. If p = 2, assume π|K1 has property (S).
Then there exists an injection π ↪→ Ω where Ω is a representation of G such
that Ω|K ∼= Injσ.

Proof. We apply Theorem 9.8 to the diagram K(π) and obtain a represen-
tation Ω of G such that Ω|K ∼= Injσ together with an injection of diagrams
ι : K(π) ↪→ K(Ω). Applying H0 on both sides gives a map H0(ι) : π → Ω.
Lemma 9.9 implies that H0(ι) is injective.

We say that a diagram D = (D0, D1, r) is basic if $ acts trivially and
there exists an m ≥ 1 such that r induces an isomorphism r : D1

∼= DIm
0

(see §1 for Im). We say that a basic diagram D is 0-irreducible (or just
irreducible) if it does not contain any proper non-zero basic subdiagrams. For
e ≥ 1, we say that a basic diagram D is e-irreducible if D does not contain

(χ◦det, χ◦det, id) where χ : F× → F×p is a smooth character, r : D1
∼= D

Ie+1

0

and for every basic proper subdiagram D′ ⊆ D, we have r : D′1
∼= (D′0)Ie′+1

with e′ < e. Note that, if D is 0-irreducible, then D = (DK1
0 , DI1

1 , r).

Theorem 9.12. Let D be a basic e-irreducible diagram with e ≥ 0 and
suppose that we are given an injection of diagrams ι : D ↪→ K(Ω) where Ω is
a smooth representation of G such that socK Ω ∼= socK D0. Then the image
of H0(ι) : H0(D)→ Ω is an irreducible representation of G.
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Proof. Let π be the image of H0(D)→ Ω. By Lemma 9.9, we have injections
D ↪→ K(π) ↪→ K(Ω) and identify D with its image in K(π). Suppose that
π′ is a non-zero G-equivariant subspace of π and set K(π′) ∩ D := (D0 ∩
π′, D1∩π′, can) (can stands for the canonical injection). Since (D0∩π′)Ie+1 =

D
Ie+1

0 ∩π′ = D1∩π′, we obtain that K(π′)∩D is basic. Lemma 9.9 implies that
socK D0 = socK π = socK Ω. Hence, D0 ∩ π′ 6= 0 and hence K(π′) ∩D 6= 0.
Assume D 6= K(π′) ∩ D, then there exists e′ < e such that D1 ∩ π′ =
(D0 ∩ π′)Ie′+1 . Since sIe+1s ⊂ Ie′+1 we have s(D0 ∩ π′)Ie′+1 ⊆ (D0 ∩ π′)Ie+1 .
Since D1 ∩ π′ = (D0 ∩ π′)Ie+1 , we obtain s(D1 ∩ π′) ⊆ D1 ∩ π′ and hence that
D1 ∩ π′ is a K-invariant subspace of D0 ∩ π′. It follows from [25, §5] that
there exists a representation ρ of G such that (D1 ∩ π′, D1 ∩ π′, id) ∼= K(ρ).
Since Ie+1 acts trivially on D1, it will be contained in the kernel of ρ, and
hence Ker ρ will contain SL2(F ). Hence there exists a smooth character

χ : F× → F×p such that (χ◦det, χ◦det, id) is a subdiagram of D. This implies
D = (χ ◦ det, χ ◦ det, id) and hence π = χ ◦ det is irreducible. Otherwise
D ⊆ K(π′) ⊆ K(Ω). Taking H0, we obtain that the image of H0(D) → Ω is
contained in π′ and hence π = π′.

Set t := Πs = ( 1 0
0 $ ). For π in RepG and m ≥ 0, we define a diagram:

Sm(π) := (Sm(π)0,Sm(π)1, can),

where Sm(π) is the smallest subdiagram of K(π) such that the following hold:

(i) socK π ⊆ Sm(π)0

(ii) Sm(π)1
∼= S(π)

Im+1

0

(and where can stands for the canonical injection). Given two subdiagrams
D = (D0, D1, can) and D′ = (D′0, D

′
1, can) of K(π) satisfying (i) and (ii) for

a given m, we may consider D∩D′ := (D0∩D′0, D1∩D′1, can). We have that

socK π ⊆ D0 ∩D′0 and (D0 ∩D′0)Im+1 = D
Im+1

0 ∩ (D′0)Im+1 = D1 ∩D′1. Hence
Sm(π) is well defined. We note that Sm(π) ⊆ (πKm+1 , πIm+1 , can).

Theorem 9.13. Let π be an admissible representation of G which is G-
generated by (socK π)I1.

(i) If p = 2, assume π|K1 has property (S). If there exists e ≥ 0 such that
Se(π) is e-irreducible, then π is irreducible.

(ii) Assume π is irreducible and either socK π is multiplicity free or π can
be realized over a finite field. Then there exists e ≥ 0 such that Se(π)
is e-irreducible.
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Proof. We prove (i). Corollary 9.11 gives an injection π ↪→ Ω where Ω is
a representation of G such that Ω|K ∼= Injσ with σ := socK π (and Injσ
an injective envelope of σ in RepK). We obtain an injection of diagrams
Sm(π) ↪→ K(Ω) for all m ≥ 1. We have socK(Sm(Π)0) = socK π = socK Ω,
so if Sm(π) is irreducible, then Proposition 9.12 implies that the image of
H0(X,Sm(π)) → Ω is irreducible. Since π is generated by (socK π)I1 , π is
contained in this image and is thus also irreducible. We prove (ii). Suppose
π is an irreducible representation of G and socK π := ⊕ni=1σi is multiplicity
free. Since G = qm≥0Kt

mKZ and π is irreducible, for each i there exists mi

such that:

socK

(
mi∑
j=0

〈K · tjσi〉

)
= socK π. (19)

Let m > maxi(mi), m ≥ 1 and suppose Sm(π) is not m-irreducible. Then it
contains some basic m-irreducible subdiagram D = (D0, D1, can). Since all
the σi are distinct, we have σi ⊆ D0 for some i. Since I2 ⊂ K1 and m ≥ 1,
we have σi ⊆ D1, hence tσi = Πσi ⊆ D1 and thus 〈K · tσi〉 ⊂ D0. Since stjσi
is fixed by Ij+2, by repeating the argument for all j we get:

m−1∑
j=0

〈K · tjσi〉 ⊆ D0.

As m − 1 ≥ mi, we have socK D0 = socK π by (19), which implies that
D = Sm(π) is m-irreducible. Suppose π is an irreducible representation of
G which can be realized over a finite field. Let σ1, . . . σn be distinct irre-
ducible summands of socK π. Since we are working over a finite field, the set
HomK(σi, π) is finite. For each i and each φ ∈ HomK(σi, π), there exists mi,φ

such that:

socK

(
mi,φ∑
j=0

〈K · tjφ(σi)〉

)
= socK π.

Let m be an integer such that m > maxi,φ(mi,φ), then the previous proof
goes through to show that Sm(π) is m-irreducible.

In the rest of the paper, we call basic 0-diagram any basic diagram such
that r : D1

∼→ DI1
0 ↪→ D0 (in particular D1 then always has property (S)).
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10 Examples of diagrams

We give a few simple examples of basic 0-diagrams, in particular we list all
irreducible basic 0-diagrams for f = 1.

We denote by st := (p − 1, · · · , p − 1) the Steinberg representation for
Γ. Consider the following list of basic 0-diagrams D = (D0, D1, r) where we
make

(
p 0
0 p

)
act trivially everywhere:

(i) (D0, D1, r) := (1, 1, id)

(ii) (D0, D1, r) := (st, stI1 , can) where Π acts on stI1 by identity and can is
the canonical injection

(iii) (D0, D1, r) := (1⊕ st, 1⊕ stI1 , can) where Π acts on 1⊕ stI1 = Fpv0 ⊕
Fpvq−1 with v0 ∈ 1 and vq−1 ∈ st by (λ ∈ Fp \ {−1, 0, 1}):

Πv0 := vq−1 + λv0

Πvq−1 := (1− λ2)v0 − λvq−1

(iv) (D0, D1, r) := (IndΓ
B χ, (IndΓ

B χ)I1 , can) where χ 6= χs and Π acts on

(IndΓ
B χ)I1 = Fpf0 ⊕ Fpφ (with the notations of §2) by (λ ∈ F×p ):

Πf0 := λφ

Πφ := λ−1f0

(v) (D0, D1, r) := (σ ⊕ σ[s], σI1 ⊕ σ[s]I1 , can) where σ is any weight and Π

acts on σI1 ⊕ σ[s]I1 = Fpvσ ⊕ Fpvσ[s] (with obvious notations) by:

Πvσ := vσ[s]

Πvσ[s] := vσ.

All of the above basic 0-diagrams are irreducible. Moreover, one checks
that the diagrams in (iii) and (iv) are all distinct when λ varies and the
diagrams in (v) are all distinct when {σ, σ[s]} varies. Note that, after a base
change on (v0, vq−1), (iii) is like (iv) but for χ = χs (however, we chose to
separate the two cases). The diagrams (v) are studied in [25].

From the results of [4], [6] and [25] (see also [33] and [24]), we deduce the
following:
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Theorem 10.1. Assume F = Qp. The functor D 7→ H0(D) (see §9) in-
duces a bijection between the set of isomorphism classes of irreducible basic
0-diagrams and the set of isomorphism classes of irreducible smooth admis-
sible representations of GL2(Qp) over Fp. The inverse bijection is given by
π 7→ (〈K · πI1〉, πI1 , can) where can stands for the canonical injection.

The above list exhausts all irreducible basic 0-diagrams up to twist when
f = 1. When moreover F = Qp, the above bijection D 7→ H0(D) gives:

(i) H0(D) = 1

(ii) H0(D) = St⊗ δ−1 (St is the Steinberg representation of GL2(Qp) over
Fp)

(iii) H0(D) exhaust the unramified irreducible principal series of GL2(Qp)
over Fp up to twist

(iv) H0(D) exhaust the ramified irreducible principal series of GL2(Qp) over
Fp up to twist

(v) H0(D) exhaust the supersingular representations of GL2(Qp) over Fp.

Note that, for π irreducible admissible and F = Qp, p > 3, one has
(〈K · πI1〉, πI1 , can) ' (πK1 , πI1 , can) if and only if π is not supersingular.

Needless to say the above theorem completely breaks down when F 6= Qp.
For instance, if F = Qpf and f > 1:

(i) there are many more irreducible basic 0-diagrams D than the ones of
the list above

(ii) H0(D) can have infinitely many distinct quotients

(iii) these quotients can have a bigger K-socle than the one of D0

(iv) π can be irreducible even though (〈K · πI1〉, πI1 , can) is not, etc.

Let us finish this section with a fancy series of examples of reducible basic
0-diagrams for f = 2 leading to irreducible admissible π when F = Qp2 .

Assume f = 2 and let σ := (1, p − 2) ⊗ detp−1 and χ the action of I on
σI1 . Let τ be the following unique Γ-extension with Γ-socle 1:

0→ 1→ τ → σ ⊕ σ[s] → 0.
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For a positive integer n, set:

D0(n) := st⊕ τ ⊕ IndΓ
B χ

s ⊕ · · · ⊕ IndΓ
B χ

s︸ ︷︷ ︸
n times

and recall that σ is the socle of IndΓ
B χ

s and σ[s] its cosocle. Number the
IndΓ

B χ
s from 1 to n and let vi := (f0)i, v

s
i := φi using the notations of §2, so

that (IndΓ
B χ

s)I1i = Fpvi ⊕ Fpvsi , 1 ≤ i ≤ n. Let w be a basis of 1 ⊂ τ and

v0 (resp. vs0) an H-eigenvector in τ I1 which is sent to σI1 (resp. σ[s]I1) under
τ � σ ⊕ σ[s], so that we have τ I1 = Fpw ⊕ Fpv0 ⊕ Fpvs0. Finally, let w′ be a
basis of stI1 . Hence we have:

D0(n)I1 = Fpw′ ⊕ (Fpw ⊕ Fpv0 ⊕ Fpvs0)⊕
( n⊕

i=1

(Fpvi ⊕ Fpvsi )
)
.

Define an action of Π on D0(n)I1 as follows:

Πw := w′

Πw′ := w

Πvsi := vi+1, 0 ≤ i ≤ n− 1

Πvi+1 := vsi , 0 ≤ i ≤ n− 1

Πvsn := v0

Πv0 := vsn

and call D1(n) the resulting K1-representation. Denote by D(n) the basic
0-diagram (D0(n), D1(n), can) where can is the canonical injection D1(n) ↪→
D0(n): the notation is actually bad since the isomorphism class of D(n)
depends on the choice of the vectors vi, v

s
i . Using techniques analogous to

that of §18, one can prove the following proposition (we don’t give details
here, as we don’t use it in the paper):

Proposition 10.2. Assume F = Qp2. For any injection of diagrams ι :
D(n) ↪→ K(Ω) where Ω is a smooth representation of G such that socK Ω ∼=
socK D0(n), the image of H0(ι) : H0(D(n))→ Ω is an irreducible admissible
representation of GL2(Qp2) with the same K-socle as D0(n).

(The point being that, although D(n) is reducible, the techniques of §9
produce irreducible representations from it). Using Theorem 9.8, this implies
that each H0(D(n))) has at least one irreducible quotient with the same K-
socle as D0(n). Now, let D be as in example (v) above with σ = 1 (and
thus σ[s] = st by definition, see §1). One can easily check that H0(D) =
(c-IndGK0

1)/(T ). As D ↪→ D(n), we see that H0(D) has infinitely many
non-isomorphic irreducible admissible quotients with growing K-socle.
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11 Generic Diamond weights

From now on and until the end of the paper, we assume F = Qpf , although
many of the forthcoming results actually only depend on the residue field of
F . Following [11] and [12], we briefly recall the list of weights associated to
a generic Galois representation ρ.

We first consider the case where ρ is reducible and split.

Let (x0, · · · , xf−1) be f variables. We define a set RD(x0, · · · , xf−1) of
f -tuples λ := (λ0(x0), · · · , λf−1(xf−1)) where λi(xi) ∈ Z ± xi as follows. If
f = 1, λ0(x0) ∈ {x0, p− 3− x0}. If f > 1, then:

(i) λi(xi) ∈ {xi, xi + 1, p− 2− xi, p− 3− xi} for i ∈ {0, · · · , f − 1}

(ii) if λi(xi) ∈ {xi, xi + 1}, then λi+1(xi+1) ∈ {xi+1, p− 2− xi+1}

(iii) if λi(xi) ∈ {p−2−xi, p−3−xi}, then λi+1(xi+1) ∈ {p−3−xi+1, xi+1+1}
with the conventions xf = x0 and λf (xf ) = λ0(x0). An element of the set
RD(x0, · · · , xf−1) is called a formal reducible Diamond weight.

For λ ∈ RD(x0, · · · , xf−1), define:

e(λ) :=
1

2

( f−1∑
i=0

pi(xi − λi(xi))
)

if λf−1(xf−1) ∈ {xf−1, xf−1 + 1}

e(λ) :=
1

2

(
pf − 1 +

f−1∑
i=0

pi(xi − λi(xi))
)

otherwise.

The following straightforward lemma is left to the reader.

Lemma 11.1. One has e(λ) ∈ Z⊕
⊕f−1

i=0 Zxi.

Lemma 11.2. Let ρ : Gal(Qp/Qpf )→ GL2(Fp) be a continuous representa-
tion such that its restriction to inertia is:(

ω
r0+1+p(r1+1)+···+pf−1(rf−1+1)

f 0

0 1

)
⊗ η

with −1 ≤ ri ≤ p − 2. Let us assume 0 ≤ ri ≤ p − 3 for all i and not all
ri equal to 0 or equal to p − 3. Then the weights associated to ρ in [11] are
exactly the (all distinct) weights:

(λ0(r0), · · · , λf−1(rf−1))⊗ dete(λ)(r0,··· ,rf−1)η

for λ = (λ0(x0), · · · , λf−1(xf−1)) ∈ RD(x0, · · · , xf−1).
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Proof. See [15, Prop. 1.1 and Prop. 1.3] and [15, §3].

We now consider the case where ρ is irreducible.

Let (x0, · · · , xf−1) be f variables. We define a set ID(x0, · · · , xf−1) of
f -tuples λ := (λ0(x0), · · · , λf−1(xf−1)) where λi(xi) ∈ Z ± xi as follows. If
f = 1, λ0(x0) ∈ {x0, p− 1− x0}. If f > 1, then:

(i) λ0(x0) ∈ {x0, x0− 1, p− 2− x0, p− 1− x0} and λi(xi) ∈ {xi, xi + 1, p−
2− xi, p− 3− xi} if i > 0

(ii) if i > 0 and λi(xi) ∈ {xi, xi + 1} (resp. λ0(x0) ∈ {x0, x0 − 1}), then
λi+1(xi+1) ∈ {xi+1, p− 2− xi+1}

(iii) if 0 < i < f − 1 and λi(xi) ∈ {p− 2− xi, p− 3− xi}, then λi+1(xi+1) ∈
{p− 3− xi+1, xi+1 + 1}

(iv) if λ0(x0) ∈ {p− 1− x0, p− 2− x0}, then λ1(x1) ∈ {p− 3− x1, x1 + 1}

(v) if λf−1(xf−1) ∈ {p − 2 − xf−1, p − 3 − xf−1}, then λ0(x0) ∈ {p − 1 −
x0, x0 − 1}

with the conventions xf = x0 and λf (xf ) = λ0(x0). An element of the set
ID(x0, · · · , xf−1) is called a formal irreducible Diamond weight.

For λ ∈ ID(x0, · · · , xf−1), define if f > 1:

e(λ) :=
1

2

( f−1∑
i=0

pi(xi − λi(xi))
)

if λf−1(xf−1) ∈ {xf−1, xf−1 + 1}

e(λ) :=
1

2

(
pf − 1 +

f−1∑
i=0

pi(xi − λi(xi))
)

otherwise,

and, if f = 1, e(λ) := 0 if λ0(x0) = x0, e(λ) := x0 if λ0(x0) = p− 1− x0.

The following straightforward lemma is left to the reader.

Lemma 11.3. One has e(λ) ∈ Z⊕
⊕f−1

i=0 Zxi.

Lemma 11.4. Let ρ : Gal(Qp/Qpf )→ GL2(Fp) be a continuous representa-
tion such that its restriction to inertia is:(

ω
r0+1+p(r1+1)+···+pf−1(rf−1+1)

2f 0

0 ω
pf (r0+1)+pf+1(r1+1)+···+p2f−1(rf−1+1)

2f

)
⊗ η
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with 0 ≤ r0 ≤ p− 1 and −1 ≤ ri ≤ p− 2 for i > 0, and where ω2f is defined

as in (3) from one of the two embeddings F×
p2f ↪→ F×p giving back the fixed

embedding F×
pf
↪→ F×p by restriction to F×

pf
. Let us assume 1 ≤ r0 ≤ p − 2

and 0 ≤ ri ≤ p − 3 for i > 0. Then the weights associated to ρ in [11] are
exactly the (all distinct) weights:

(λ0(r0), · · · , λf−1(rf−1))⊗ dete(λ)(r0,··· ,rf−1)η

for λ = (λ0(x0), · · · , λf−1(xf−1)) ∈ ID(x0, · · · , xf−1).

Proof. See [15, Prop. 1.1 and Prop. 1.3] and [15, §3].

The set RD(x0, · · · , xf−1) (resp. ID(x0, · · · , xf−1)) can be naturally
identified with the set of subsets S of {0, · · · , f − 1} as follows: set i ∈ S
if and only if λi(xi) ∈ {p − 3 − xi, xi + 1} (resp. if i > 0 set i ∈ S if
and only if λi(xi) ∈ {p − 3 − xi, xi + 1} and set 0 ∈ S if and only if
λ0(x0) ∈ {p − 1 − x0, x0 − 1}). One checks that, given S, there is only
one possibility for (λi(xi))i ∈ RD(x0, · · · , xf−1) (resp. ∈ ID(x0, · · · , xf−1)).
By Lemmas 11.2 and 11.4, when ρ is tamely ramified (and generic) we
can thus identify D(ρ) with the subsets of {0, · · · , f − 1}. If σ ∈ D(ρ),
λ ∈ RD(x0, · · · , xf−1) (resp. ID(x0, · · · , xf−1)) and S ⊆ {0, · · · , f − 1}
correspond to σ, we set `(σ) = `(λ) := |S|.

For λ, λ′ ∈ RD(x0, · · · , xf−1) (resp. ID(x0, · · · , xf−1)) corresponding to
S,S ′ ⊆ {0, · · · , f − 1} respectively, we define λ ∩ λ′ ∈ RD(x0, · · · , xf−1)
(resp. ID(x0, · · · , xf−1)) as the element corresponding to S ∩S ′ and λ∪λ′ ∈
RD(x0, · · · , xf−1) (resp. ID(x0, · · · , xf−1)) as the element corresponding to
S ∪ S ′. We also define a partial order on the elements of RD(x0, · · · , xf−1)
(resp. ID(x0, · · · , xf−1)) by declaring that λ′ ≤ λ if and only if S ′ ⊆ S or
equivalently λ∪λ′ = λ or equivalently λ∩λ′ = λ′. If ρ is a continuous generic
tame Galois representation, σ, σ′ ∈ D(ρ), and σ, σ′ correspond respectively
to λ, λ′, we let σ ∩ σ′ (resp. σ ∪ σ′) be the unique weight in D(ρ) which
corresponds to λ ∩ λ′ (resp. λ ∪ λ′). We also write σ ≤ σ′ if λ ≤ λ′.

We now consider the case where ρ is reducible but not split.

Definition 11.5. A non-empty subset D(x0, · · · , xf−1) of RD(x0, · · · , xf−1)
is said to be of Galois type if it satisfies the following properties:

(i) if λ ∈ D(x0, · · · , xf−1), then all λ′ ∈ RD(x0, · · · , xf−1) such that λ′ ≤
λ are in D(x0, · · · , xf−1)

(ii) if λ, λ′ ∈ D(x0, · · · , xf−1), then λ ∪ λ′ ∈ D(x0, · · · , xf−1).
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Note that, if D(x0, · · · , xf−1) is a subset of Galois type, then it follows
from (ii) of Definition 11.5 that D(x0, · · · , xf−1) has a unique maximal ele-
ment for ≤. If this element corresponds to S ⊆ {0, · · · , f − 1}, one checks
that |D(x0, · · · , xf−1)| = 2d where d := |S|. Definition 11.5 comes from the
following conjecture:

Theorem 11.6. Let {r0, · · · , rf−1} be such that 0 ≤ ri ≤ p− 3 for all i and
not all ri equal to 0 or equal to p− 3.

(i) Let ρ : Gal(Qp/Qpf ) → GL2(Fp) be a continuous representation such
that its restriction to inertia is:(

ω
r0+1+p(r1+1)+···+pf−1(rf−1+1)

f ∗
0 1

)
⊗ η (20)

with ∗ 6= 0. Then there exists a unique subset D(x0, · · · , xf−1) (
RD(x0, · · · , xf−1) of Galois type such that the weights associated to
ρ in [11] are exactly the (all distinct) weights:

(λ0(r0), · · · , λf−1(rf−1))⊗ dete(λ)(r0,··· ,rf−1)η

for λ = (λ0(x0), · · · , λf−1(xf−1)) ∈ D(x0, · · · , xf−1).

(ii) Let D(x0, · · · , xf−1) ( RD(x0, · · · , xf−1) be a subset of Galois type.
Then there exists at least one representation ρ : Gal(Qp/Qpf )→GL2(Fp)
as in (20) with ∗ 6= 0 such that the weights associated to ρ in [11] are
exactly the (all distinct) weights:

(λ0(r0), · · · , λf−1(rf−1))⊗ dete(λ)(r0,··· ,rf−1)η

for λ = (λ0(x0), · · · , λf−1(xf−1)) ∈ D(x0, · · · , xf−1).

Proof. (i) and (ii) follow from [13, Thm. 1.1] or [9, Prop. A.3].

From now on, we only consider those ρ which satisfy the conditions in
Lemma 11.2 or in Lemma 11.4 or in (i) of Theorem 11.6, and we give them
a name:

Definition 11.7. Let ρ : Gal(Qp/Qpf )→ GL2(Fp) be a continuous represen-
tation, we say ρ is generic if one of the following holds:

(i) the restriction of ρ to inertia is isomorphic to:(
ω
r0+1+p(r1+1)+···+pf−1(rf−1+1)

f ∗
0 1

)
⊗ η

for some character η and some ri with 0 ≤ ri ≤ p−3 and (r0, · · · , rf−1) /∈
{(0, · · · , 0), (p− 3, · · · , p− 3)}
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(ii) the restriction of ρ to inertia is isomorphic to:(
ω
r0+1+p(r1+1)+···+pf−1(rf−1+1)

2f 0

0 ω
pf (r0+1)+pf+1(r1+1)+···+p2f−1(rf−1+1)

2f

)
⊗ η

for some character η and some ri with 1 ≤ r0 ≤ p−2 and 0 ≤ ri ≤ p−3
for i > 0.

One can check this definition doesn’t depend on the choice of the embed-
ding Fq ↪→ Fp. Note that there is no such ρ for p = 2 and that for p = 3 the
only possibility is ρ irreducible with r0 = 1 and ri = 0 for i > 0 (notation of
Lemma 11.4).

In the rest of the paper, we denote by D(ρ) the set of weights associated
to a generic ρ and simply call them Diamond weights.

12 The unicity Lemma

Fix ρ generic, we define the “distance” from a weight to a Diamond weight
associated to ρ, and prove that there is attached to any weight a unique
Diamond weight such that this distance is minimal.

Recall from §11 that RD(x0, · · · , xf−1) (resp. ID(x0, · · · , xf−1)) denotes
the set of formal reducible (resp. irreducible) Diamond weights which can be
identified with the set of subsets S ⊆ {0, · · · , f − 1}.

Definition 12.1. Let λ ∈ RD(x0, · · · , xf−1) (resp. λ ∈ ID(x0, · · · , xf−1))
corresponding to S ⊆ {0, · · · , f − 1}.

(i) Let S ′ ⊆ {0, · · · , f − 1}. We say µ ∈ RD(x0, · · · , xf−1) (resp. µ ∈
ID(x0, · · · , xf−1)) is the negative of λ within S ′ if µ corresponds to
(S \ S ∩ S ′)q (S ′ \ S ∩ S ′).

(ii) If µ is as in (i) for S ′ = {0, · · · , f −1}, we simply say µ is the negative
of λ (in which case µ corresponds to {0, · · · , f − 1} \ S).

For instance, if f = 5, the negative of λ := (x0 +1, x1, p−2−x2, x3 +1, p−
2− x4) ∈ RD(x0, · · · , x4) within {4, 5} = {4, 0} is (x0, x1, p− 2− x2, p− 3−
x3, x4+1) whereas its negative is (p−2−x0, p−3−x1, x2+1, p−2−x3, x4+1).

Lemma 12.2. Let λ, λ′, λ′′ ∈ RD(x0, · · · , xf−1). Assume that λ′ is the neg-
ative of λ within S ′, λ′′ is the negative of λ within S ′′ and S ′′ ⊆ S ′. Then
λ′′ ≤ λ ∪ λ′ (see §11 for ≤ and ∪).
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Proof. Let S (resp. T ′, resp. T ′′) correspond to λ (resp. λ ∪ λ′, resp.
λ ∩ λ′′), then we have T ′ = S ∪ S ′ and T ′′ = S ∪ S ′′. Thus T ′′ ⊆ T ′, hence
λ ∪ λ′′ ≤ λ ∪ λ′. As λ′′ ≤ λ ∪ λ′′, we have λ′′ ≤ λ ∪ λ′ by transitivity.

Definition 12.3. A sequence λ = (λ0(x0), · · · , λf−1(xf−1)) where λi(xi) ∈
Z ± xi is called a weak formal reducible (resp. irreducible) Diamond weight
if, for any i, one has λi(xi) ∈ {xi, xi + 1, p − 2 − xi, p − 3 − xi} (resp.
λi(xi) ∈ {xi, xi + 1, p − 2 − xi, p − 3 − xi} for i > 0 and λ0(x0) ∈ {x0, x0 −
1, p− 2− x0, p− 1− x0}).

That is, we don’t require any condition on λi+1(xi+1) with respect to
λi(xi).

Lemma 12.4. Let λ be a formal reducible (resp. irreducible) Diamond weight
and i ∈ {0, · · · , f − 1}, j ∈ {1, · · · , f − 1}.

(i) The sequence:(
λ0(x0), · · · , λi−1(xi−1), p− 2− λi(xi), p− 2− λi+1(xi+1)−±1, · · · ,

p− 2− λi+j−1(xi+j−1)−±1, λi+j(xi+j)± 1,

λi+j+1(xi+j+1), · · · , λf−1(xf−1)
)

(21)

(with the convention i+ δ = i+ δ − f if i + δ ≥ f) is a weak formal
reducible (resp. irreducible) Diamond weight if and only if it is a formal
reducible (resp. irreducible) Diamond weight. If so, (21) is then the
negative of λ within {i+ 1, · · · , i+ j}.

(ii) The sequence:(
p− 2− λ0(x0)−±1, · · · , p− 2− λf−1(xf−1)−±1

)
(22)

is a weak formal reducible (resp. irreducible) Diamond weight if and
only if it is a formal reducible (resp. irreducible) Diamond weight. If
so, (21) is then the negative of λ.

Proof. (i) This is easy combinatorics, so let us briefly prove only the case λ ∈
RD(x0, · · · , xf−1). Assume (21) is a weak formal reducible Diamond weight.
Say that an index δ ∈ {1, · · · , j} is of type + if p − 2 − λi+δ(xi+δ) − (+1)
or λi+δ(xi+δ) + 1 occurs in (21) and of type − if p − 2 − λi+δ(xi+δ) − (−1)
or λi+δ(xi+δ) − 1 occurs. Then we necessarily have λi+δ(xi+δ) ∈ {p − 3 −
xi+δ, xi+δ} if δ is of type + and λi+δ(xi+δ) ∈ {p− 2− xi+δ, xi+δ + 1} if δ is of
type − (the other possibilities don’t satisfy the conditions of Definition 12.3).
Moreover, as λ ∈ RD(x0, · · · , xf−1), it turns out there are only 4 possibilities
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for the sequence λi(xi), · · · , λi+j(xi+j), according to whether λi(xi) = xi,
xi + 1, p− 2− xi or p− 3− xi, if we want (21) to be a weak formal reducible
Diamond weight, that is, if we want λi+δ(xi+δ) ∈ {p − 3 − xi+δ, xi+δ} for δ
of type + and λi+δ(xi+δ) ∈ {p − 2 − xi+δ, xi+δ + 1} for δ of type −. For
instance, if λi(xi) = p − 2 − xi, then λi+δ(xi+δ) must be xi+δ + 1 for the
first index of type −, p− 2− xi+δ for the second, xi+δ + 1 for the third etc.
Also, λi+δ(xi+δ) must be p− 3− xi+δ for all indices of type + strictly before
the first index of type −, xi+δ for all indices of type + strictly between
the first and second of type −, etc. One can check that in all cases, the
resulting weak formal reducible Diamond weight (21) is always obtained from
the original λ as follows: in λ replace λi(xi) by p − 2 − λi(xi), λi+j(xi+j)
by λi+j(xi+j) + 1 if λi+j(xi+j) ∈ {xi+j, p − 3 − xi+j}, by λi+j(xi+j) − 1 if
λi+j(xi+j) ∈ {xi+j+1, p−2−xi+j}, and for δ ∈ {1, · · · , j−1} each p−2−xi+δ
by xi+δ + 1, each p − 3 − xi+δ by xi+δ, each xi+δ + 1 by p − 2 − xi+δ and
each xi+δ by p − 3 − xi+δ. This weight is exactly the negative of λ within
{i+ 1, · · · , i+ j}, and is a fortiori in RD(x0, · · · , xf−1). The proof of (ii) is
analogous and left to the reader.

One defines the support of a sequence p − 2 − ·, p − 2 − · − ±1, · · · , p −
2− ·−±1, · ± 1 as in (21) to be the subset of indices {i+ 1, · · · , i+ j} (with
as usual the identification i + δ = i + δ − f if i + δ ≥ f). One defines the
support of the sequence (22) to be {0, · · · , f − 1}.

Let µ, µ′ ∈ I(y0, · · · , yf−1) (see §3) and assume µ and µ′ are compatible
(Definition 4.10). We define µ ∩ µ′ :=

(
(µ ∩ µ′)0(y0), · · · , (µ ∩ µ′)f−1(yf−1)

)
as follows:

(i) if µi(yi) = yi, (µ ∩ µ′)i(yi) := yi

(ii) if µi(yi) ∈ {p− 1− yi, p− 3− yi}, (µ ∩ µ′)i(yi) := µ′i(yi)

(iii) if µi(yi)∈{yi−1, yi+1}, (µ∩µ′)i(yi) :=


µi(yi) if µ′i(yi) 6=

{
p− 2− yi

yi

yi if µ′i(yi)=

{
p− 2− yi

yi

(iv) if µi(yi) = p−2−yi, (µ ∩ µ′)i(yi) :=


µi(yi) if µ′i(yi) 6=

{
yi ± 1
yi

yi if µ′i(yi) =

{
yi ± 1
yi.

We have µ∩µ′ = µ′∩µ. Intuitively, we just take the “intersection” of the
sequences p−2−·, p−2−·−±1, · · · , p−2−·−±1, ·±1 on both µ and µ′. Recall
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from §4 that S(µ) := {i ∈ {0, · · · , f −1}, µi(xi) = p−2−xi−±1, xi±1} for
µ ∈ I(y0, · · · , yf−1). We leave the (straightforward) proof of the next lemma
to the reader:

Lemma 12.5. We have µ∩µ′ ∈ I(y0, · · · , yf−1) and S(µ∩µ′) = S(µ)∩S(µ′).

We denote by D(x0, · · · , xf−1) ⊆ RD(x0, · · · , xf−1) an arbitrary subset
of Galois type (see Definition 11.5).

Lemma 12.6. Let µ, µ′ ∈ I(y0, · · · , yf−1) and assume there is xi ∈ Z ± yi
such that both µ and µ′ are inRD(x0, · · · , xf−1) (resp. D(x0, · · · , xf−1), resp.
ID(x0, · · · , xf−1)). Then µ, µ′ are compatible and µ∩µ′ ∈ RD(x0, · · · , xf−1)
(resp. D(x0, · · · , xf−1), resp. ID(x0, · · · , xf−1)).

Proof. Beware that µ∩µ′ is computed in I(y0, · · · , yf−1). First, it is easy to
check that µ, µ′ are compatible. For instance, assume µi(yi) = p−1− yi and
µ′i(yi) = yi+1, then µi(yi) = p−µ′i(yi). But µi(yi), µ

′
i(yi) ∈ {xi, xi+1, p−3−

xi, p−2−xi} (resp. if i > 0 and µ0(y0), µ′0(y0) ∈ {x0−1, x0, p−2−x0, p−1−x0}
in the case ID) and it is thus impossible to have µi(yi) = p − µ′i(yi). The
other cases are similar. From the very definition of I(y0, · · · , yf−1) in §3,
one sees one can pass from µ to µ ∩ µ′ by applying successively to µ several
sequences as in (21) such that the successive sets of indices that are affected
are disjoint, or one sequence as in (22). Denote by S ′′ the union of the
supports of these sequences. From the definition of µ ∩ µ′, one has either
(µ∩µ′)i(yi) = µi(yi) or (µ∩µ′)i(yi) = µ′i(yi) or (µ∩µ′)i(yi) = p− 2−µi(yi).
In particular µ ∩ µ′ is always a weak formal reducible (resp. irreducible)
weight. Lemma 12.4 then gives that µ ∩ µ′ ∈ I(y0, · · · , yf−1) is an element
of RD(x0, · · · , xf−1) (resp. ID(x0, · · · , xf−1)) and is the negative of µ (seen
as an element of RD(x0, · · · , xf−1) (resp. ID(x0, · · · , xf−1))) within S ′′.
This proves the cases RD(x0, · · · , xf−1) and ID(x0, · · · , xf−1). For the case
D(x0, · · · , xf−1), note first that µ∪ µ′ ∈ D(x0, · · · , xf−1) as D(x0, · · · , xf−1)
is of Galois type (here, µ and µ′ are considered as elements of D(x0, · · · , xf−1)
and µ∪µ′ is computed inRD(x0, · · · , xf−1), see §11). As before, one can pass
from µ to µ′ by applying successively to µ several sequences as in (21), or one
sequence as in (22). As µ, µ′ are compatible, one can take these sequences
such that the successive sets of indices that are affected are disjoint, so that
these sequences are uniquely determined. By Lemma 12.4, this implies µ′ is
the negative of µ (seen as an element ofRD(x0, · · · , xf−1)) within the support
S ′ of these sequences. But the previous support S ′′ is always included in S ′
by construction. Lemma 12.2 then yields µ ∩ µ′ ≤ µ ∪ µ′, which implies
µ ∩ µ′ ∈ D(x0, · · · , xf−1) by (i) of Definition 11.5 applied to µ ∪ µ′ (beware
that µ ∩ µ′ is computed in I(y0, · · · , yf−1) whereas µ ∪ µ′ is computed in
RD(x0, · · · , xf−1)). This finishes the proof.
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Let σ and τ be two weights and assume σ = (r0, · · · , rf−1) ⊗ η with
0 ≤ ri ≤ p−2 for all i. Assume there exist indecomposable Γ-representations
with socle σ and cosocle τ . By Corollary 3.12, there is a unique such rep-
resentation, call it I(σ, τ), such that σ appears in I(σ, τ) with multiplicity
1. Moreover, all of the Jordan-Hölder factors of I(σ, τ) are then distinct.
If there is no such representation, set I(σ, τ) := 0. For any I(σ, τ), set
`(σ, τ) ∈ Z>0 ∪ {+∞} to be +∞ if I(σ, τ) = 0 and otherwise the smallest
integer such that I(σ, τ)`(σ,τ) = 0.

The following lemma will be used in §14.

Lemma 12.7. Let µ, µ′ ∈ I(y0, · · · , yf−1) and assume µ and µ′ are com-
patible. Let σ = (r0, · · · , rf−1) ⊗ η with 0 ≤ ri ≤ p − 2 for all i. Let τ , τ ′

and τ ′′ be irreducible subquotients of injσ corresponding to µ, µ′ and µ ∩ µ′
respectively via Lemma 3.2. Then κ is an irreducible subquotient of I(σ, τ)
and I(σ, τ ′) if and only if κ is an irreducible subquotient I(σ, τ ′′).

Proof. Let κ be an irreducible subquotient of injσ and let λ ∈ I(y0, · · · , yf−1)
correspond to κ via Lemma 3.2. Corollary 4.11 implies that κ is a subquotient
of I(σ, τ) and I(σ, τ ′) if and only if λ is compatible with µ and µ′ and S(λ) ⊆
S(µ)∩S(µ′). It is immediate from Definition 4.10 and Lemma 12.5 that this
is equivalent to λ is compatible with µ ∩ µ′ and S(λ) ⊆ S(µ ∩ µ′). Again
by Corollary 4.11 this is equivalent to κ is an irreducible subquotient of
I(σ, τ ′′).

Let ρ : Gal(Qp/Qpf ) → GL2(Fp) be a continuous generic representation
as in Definition 11.7 and recall that D(ρ) is the set of weights associated to
ρ (see §11). It is straightforward to check from the definitions of §11 that
any σ ∈ D(ρ) is such that σ = (s0, · · · , sf−1)⊗ η with 0 ≤ si ≤ p− 2 for all
i and not all si equal to 0. For a weight τ , define:

`(ρ, τ) := min{`(σ, τ), σ ∈ D(ρ)} ∈ Z>0 ∪ {+∞}.

We can now prove the main result of this section:

Lemma 12.8. Let τ be any weight such that `(ρ, τ) < +∞.

(i) There is a unique σ ∈ D(ρ) such that `(σ, τ) = `(ρ, τ).

(ii) Let σ′ ∈ D(ρ) such that I(σ′, τ) 6= 0. If σ′ = σ with σ as in (i), then
I(σ′, τ) has no other weight of D(ρ) distinct from σ′ in its Jordan-
Hölder factors. If σ′ 6= σ with σ as in (i), then I(σ′, τ) contains σ in
its Jordan-Hölder factors.
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Proof. We start with (i). Write τ = (s0, · · · , sf−1)⊗ η and assume there are
two distinct weights σ, σ′ ∈ D(ρ) such that `(σ, τ) = `(σ′, τ) = `(ρ, τ). By
Lemma 3.2, there are distinct µ, µ′ ∈ I(y0, · · · , yf−1) uniquely determined
such that:

σ = (µ0(s0), · · · , µf−1(sf−1))⊗ dete(µ)(s0,··· ,sf−1)η

σ′ = (µ′0(s0), · · · , µ′f−1(sf−1))⊗ dete(µ
′)(s0,··· ,sf−1)η.

From §11, there are distinct λ, λ′ ∈ RD(x0, · · · , xf−1) or D(x0, · · · , xf−1) or
ID(x0, · · · , xf−1) (according to ρ, D(x0, · · · , xf−1) being of Galois type if ρ
is reducible non-split) uniquely determined such that:

σ = (λ0(r0), · · · , λf−1(rf−1))⊗ dete(λ)(r0,··· ,rf−1)

σ′ = (λ′0(r0), · · · , λ′f−1(rf−1))⊗ dete(λ
′)(r0,··· ,rf−1).

We claim that we have the identities for each i ∈ {0, · · · , f − 1}:

µ−1
i (λi(xi)) = µ′i

−1
(λ′i(xi)). (23)

Indeed, we have the equalities for all i:

µ−1
i (λi(ri)) = µ′i

−1
(λ′i(ri)) (24)

and:

dete(µ)(s0,··· ,sf−1)−e(λ)(r0,··· ,rf−1) = dete(µ
′)(s0,··· ,sf−1)−e(λ′)(r0,··· ,rf−1)

which, by an easy calculation, amounts to:

det−e(µ
−1)(λ0(r0),··· ,λf−1(rf−1))−e(λ)(r0,··· ,rf−1) =

det−e(µ
′−1)(λ′0(r0),··· ,λ′f−1(rf−1))−e(λ′)(r0,··· ,rf−1)

which is again equivalent to:

det−e(µ
−1◦λ)(r0,··· ,rf−1) = det−e(µ

′−1◦λ′)(r0,··· ,rf−1). (25)

Here, µ−1 := (µ−1
i (yi)) (where (µ−1

i ◦µi)(yi) = yi) and µ−1◦λ := (µ−1
i (λi(yi))).

We now leave as an exercise to the reader to check that the equalities (23) are
equivalent to the equalities (24) and (25) (this is analogous to proving that all
weights in IndΓ

B χ or all Diamond weights are distinct, cf. e.g. Lemma 2.2).
We can apply Lemma 12.6 to µ and µ′ with xi = λ−1

i (µi(yi)) ∈ Z± yi to de-
duce that µ∩µ′ ∈ RD(x0, · · · , xf−1) or D(x0, · · · , xf−1) or ID(x0, · · · , xf−1).
In particular, one has:

σ′′ :=((µ ∩ µ′)0(s0), · · · , (µ ∩ µ′)f−1(sf−1))⊗ dete(µ∩µ
′)(s0,··· ,sf−1)η∈D(ρ).(26)
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But as µ and µ′ are distinct and as `(σ, τ) = `(σ′, τ), Corollary 4.11 together
with the second part of Lemma 12.5 imply:

`(σ′′, τ) < `(σ, τ)

which is impossible as `(σ, τ) is minimal. This proves (i). Let us prove (ii).
If σ′ = σ, there can’t be any other Diamond weight in I(σ′, τ) as this would
contradict the minimality of `(σ, τ). Assume σ′ 6= σ, and let µ′, µ as for (i).
Then σ′′ defined as in (26) is again in D(ρ) (the equality `(σ, τ) = `(σ′, τ)
was not used here). Moreover, we have that µ′ and µ∩ µ′ are compatible by
construction and that S(µ ∩ µ′) ⊆ S(µ′) by Lemma 12.5. By Corollary 4.11
(used “backwards”), we get that σ′′ is a Jordan-Hölder factor in I(σ′, τ). The
same argument with µ and σ yields that σ′′ is also a Jordan-Hölder factor in
I(σ, τ), hence σ′′ = σ 6= σ′ by (i). This finishes the proof.

Remark 12.9. If D′(x0, · · · , xf−1) ⊆ ID(x0, · · · , xf−1) is a non-empty sub-
set satisfying conditions (i) and (ii) of Definition 11.5, it is easily checked
that the proof of Lemma 12.6 goes through with D′(x0, · · · , xf−1) instead of
ID(x0, · · · , xf−1). Fix a ρ generic, let ρss be its semi-simplification and let
D′(ρss) ⊆ D(ρss) be any subset of weights coming from a non-empty subset
D′(x0, · · · , xf−1) of RD(x0, · · · , xf−1) (resp. ID(x0, · · · , xf−1)) satisfying (i)
and (ii) of Definition 11.5, using the above extension of Lemma 12.6 in the
proof of Lemma 12.8, we see that Lemma 12.8 holds with D′(ρss) instead
of D(ρ). In particular, the function σ′ 7→ `(σ′, τ) reaches its minimum on
D′(ρss) for a unique weight σ of D′(ρss).

13 Generic Diamond diagrams

We associate to each generic ρ as in Definition 11.7 a “family” of basic 0-
diagrams as in §9. When f > 1, this family is always infinite.

We start with a general proposition:

Proposition 13.1. Let D be a finite set of distinct weights. Then there exists
a unique (up to isomorphism) finite dimensional smooth representation D0

of Γ over Fp such that:

(i) socΓD0 =
⊕

σ∈D σ

(ii) any weight of D appears at most once (as a subquotient) in D0

(iii) D0 is maximal with respect to properties (i), (ii).
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Moreover, one has an isomorphism of Γ-representations:

D0
∼=
⊕
σ∈D

D0,σ

where socΓD0,σ
∼= σ.

Proof. Note first that condition (iii) means that, if D′0 is any finite dimen-
sional representation of Γ over Fp that strictly contains D0 as a subrep-
resentation, then (ii) is not satisfied for D′0. Set τ := ⊕σ∈Dσ and let τ ′

be a representation of Γ satisfying (i). Then τ ′ satisfies (ii) if and only if
HomΓ(τ ′/τ, injσ) = 0 for all σ ∈ D. Since injσ is an injective object in
RepΓ, we have an exact sequence of Γ-representations:

0→ HomΓ(τ ′/τ, injσ)→ HomΓ(τ ′, injσ)→ HomΓ(τ, injσ)→ 0

and hence τ ′ satisfies (ii) if and only if:

dimFp HomΓ(τ ′, injσ) = 1, ∀σ ∈ D.

We fix an injective envelope inj τ of τ in RepΓ. Let τ1 and τ2 be two Γ-
invariant subspaces of inj τ containing τ and satisfying (ii). Since inj σ is
injective the sequence:

0→ HomΓ(τ1 + τ2, injσ)→ HomΓ(τ1 ⊕ τ2, injσ)→ HomΓ(τ1 ∩ τ2, injσ)→ 0

is exact. Since τ1 + τ2 and τ1 ∩ τ2 both contain τ as a subobject, we get that
HomΓ(σ, τ1 + τ2) and HomΓ(σ, τ1 ∩ τ2) are non-zero. Hence the terms on the
left and right are non-zero as inj σ is an injective object. Moreover, since the
term in the middle has dimension 2, we obtain dimFp HomΓ(τ1+τ2, injσ) = 1.
Hence there exists a maximal subspace τmax of inj τ satisfying (i) and (ii).
Since any representation τ ′ of Γ with socΓ τ

′ ∼= τ can be embedded in inj τ ,
we obtain the first part of the proposition. Since τ is multiplicity free for
σ ∈ D, there exists a unique idempotent eσ ∈ EndΓ(inj τ) such that eσ(inj τ)
is an injective envelope of σ. Since ⊕σ∈Deσ(τmax) satisfies (i) and (ii), the
natural injection:

τmax ↪→ ⊕σ∈Deσ(τmax)

has to be an isomorphism.

We leave the proof of the following immediate corollary to the reader:

Corollary 13.2. Let D and D0 be as above, then EndΓ(D0) ∼= F|D|p .
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Let ρ : Gal(Qp/Qpf ) → GL2(Fp) be a continuous generic representation
as in Definition 11.7 and D(ρ) its set of Diamond weights (all distinct, see
§11). We denote by D0(ρ) the unique representation of Proposition 13.1 with
D = D(ρ). We now start studying the Γ-representation D0(ρ).

If `(ρ, τ) < +∞, set:
I(ρ, τ) := I(σ, τ)

where σ ∈ D(ρ) is the unique Diamond weight of Lemma 12.8.

Lemma 13.3. We have HomΓ(I(ρ, τ), I(ρ, τ ′)) = 0 or Fp.

Proof. Let f : I(ρ, τ) → I(ρ, τ ′) be non-zero (if it exists) and denote by
σ (resp. σ′) the Γ-socle of I(ρ, τ) (resp. I(ρ, τ ′)). We first prove that f
is injective. Otherwise, we have f(σ) = 0 and the Γ-socle of I(ρ, τ ′) must
contain a Jordan-Hölder factor of I(ρ, τ) that is different from σ. But by
(ii) of Lemma 12.8 this Jordan-Hölder factor can’t be in D(ρ), hence can’t
either be in the socle of I(ρ, τ ′) by definition of I(ρ, τ ′). Thus f is injective
and f(σ) = σ = σ′. Let f ′ : I(ρ, τ) → I(ρ, τ ′) be any Γ-equivariant map. If
f ′ is non-zero, we again have f ′(σ) = σ. As σ is irreducible, there is λ ∈ Fp
such that f −λf ′ is zero on σ. But f −λf ′ ∈ HomΓ(I(ρ, τ), I(ρ, τ ′)) and the
same proof as for f gives then f = λf ′.

In particular, I(ρ, τ) is well defined up to scalar automorphism. Note that
any subrepresentation of I(ρ, τ) with an irreducible cosocle τ ′ is automatically
isomorphic to I(ρ, τ ′) (this follows from the definition of the representations
I(σ, τ) in §12). We define a partial order on the representations I(ρ, τ) as
follows:

I(ρ, τ) ≤ I(ρ, τ ′)⇐⇒ HomΓ(I(ρ, τ), I(ρ, τ ′)) = Fp.

For each τ such that I(ρ, τ) 6= 0, fix an embedding ιτ : σ ↪→ I(ρ, τ).
If HomΓ(I(ρ, τ), I(ρ, τ ′)) 6= 0, let φτ,τ ′ : I(ρ, τ) ↪→ I(ρ, τ ′) be the unique
embedding such that ιτ ′ = φτ,τ ′ ◦ ιτ .

Proposition 13.4. With the previous notations, we have:

D0(ρ) = ⊕σ∈D(ρ)D0,σ(ρ) (27)

with:
D0,σ(ρ) = lim

−→
≤

I(ρ, τ),

the inductive limit being taken with respect to the above maps φτ,τ ′ : I(ρ, τ)→
I(ρ, τ ′).
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Proof. The first part is contained in Proposition 13.1, we are thus left to
proving D0,σ(ρ) = lim

−→
I(ρ, τ). Note that the inductive limit is not direct.

The representation lim
−→

I(ρ, τ) has σ as socle and doesn’t contain any other

weight of D(ρ) by (ii) of Lemma 12.8. From the proof of Proposition 13.1,
we thus have lim

−→
I(ρ, τ) ⊆ D0(ρ), that is lim

−→
I(ρ, τ) ⊆ D0,σ(ρ). Let τ be

any irreducible subquotient of D0,σ(ρ) and D0,σ(ρ, τ) ⊆ D0,σ(ρ) a subrepre-
sentation with cosocle τ . By Corollary 3.12, we have D0,σ(ρ, τ) ' I(σ, τ)
and by (ii) of Lemma 12.8 (together with (ii) of Proposition 13.1), we have
I(σ, τ) = I(ρ, τ). This implies the surjectivity of lim

−→
I(ρ, τ)→ D0,σ(ρ).

Note that D0(ρ) only depends on the restriction of ρ to inertia.

Corollary 13.5. The Γ-representation D0(ρ) is multiplicity free.

Proof. This follows from Proposition 13.4, Corollary 3.12 and the definition
of I(ρ, τ).

So we see that, although D0(ρ) is defined so that it only satisfies multi-
plicity 1 for its socle, it indeed satisfies multiplicity 1 for all of its factors.

Corollary 13.6. There exists a unique partition of the B-eigencharacters of
D0(ρ)U in pairs of eigencharacters {χ, χs} with χ 6= χs.

Proof. Unicity is clear from Corollary 13.5. Let v ∈ D0(ρ)U such that B acts
on v via some character χ. We have:

IndΓ
B χ � 〈Γ · v〉 ↪→ D0(ρ).

Hence, there is a quotient of IndΓ
B χ that injects into D0(ρ), which implies

(looking at socles) that a weight σ′ of D(ρ) must appear in IndΓ
B χ. This rules

out χ = χs as, from the assumption ρ generic, we know that D(ρ) doesn’t
contain a character nor a twist of (p − 1, · · · , p − 1). The weight σ′ also
appears in IndΓ

B χ
s by Lemma 2.2, which implies that a quotient of IndΓ

B χ
s

is isomorphic to I(σ′, σχs) 6= 0 where σχs is the cosocle of IndΓ
B χ

s. By (ii) of
Lemma 12.8, I(ρ, σχs) is a non-zero quotient of I(σ′, σχs), and hence also of
IndΓ

B χ
s. As I(ρ, σχs) ⊆ D0(ρ) by Proposition 13.4, χs is an eigencharacter

of B acting on I(ρ, σχs)
U ⊆ D0(ρ)U .

We now fix $ = p and recall from §9 that a basic 0-diagram (D0, D1, r)
satisfies r : D1 ' DI1

0 ⊆ D0. We also recall that the scalar matrix
(
p 0
0 p

)
acts

now trivially everywhere.
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Definition 13.7. A family of basic 0-diagrams is a pair (D0, { }) where D0

is a smooth finite dimensional representation of K0 which is trivial on K1

and { } is a partition of a basis of eigencharacters of IZ acting on DI1
0 in

pairs of eigencharacters {χ, χs}.

To a family of basic 0-diagrams as in Definition 13.7, one can attach
a genuine “family” of basic 0-diagrams ((D0, D1, r))r by making Π act on
D1 := DI1

0 as Πvχ = vχs , Πvχs = vχ where vχ, vχs are eigenvectors corre-
sponding to a pair of eigencharacters {χ, χs} in the partition and by letting
r : D1 ↪→ D0 be an arbitrary IZ-equivariant injection. Usually, there are
infinitely many such injections up to isomorphism.

We can finally sum up the main results of this section. We still denote
by D0(ρ) the K0-representation deduced from the K-representation D0(ρ) by
making p act trivially.

Theorem 13.8. Let ρ : Gal(Qp/Qpf ) → GL2(Fp) be a continuous generic
representation such that p acts trivially on its determinant. Then there exists
a unique family of basic 0-diagrams (D0(ρ), { }) such that:

(i) socK D0(ρ) =
⊕

σ∈D(ρ) σ

(ii) any weight of D(ρ) appears at most once (as a subquotient) in D0(ρ)

(iii) D0(ρ) is maximal with respect to properties (i), (ii).

Moreover, D0(ρ) is then multiplicity free.

Note that the family (D0(ρ), { }) only depends on the restriction of ρ to
inertia.

Remark 13.9. In case ρ is not generic, there is still defined a set of Diamond
weights D(ρ) (see [11]) and one can still define a Γ-representation D0(ρ)
as in Proposition 13.1 with D = D(ρ). However, in general, D0(ρ) is not
multiplicity free.

14 The representations D0(ρ) and D1(ρ)

For ρ generic we compute the dimension of D1(ρ). When ρ is moreover tame,
we explicitly determine the Jordan-Hölder factors of D0(ρ).

We start with several lemmas.

79



Lemma 14.1. Let ρ be generic. For χ : H → F×p let mχ ∈ Z≥0 such that
(⊕σ∈D(ρ) injσ)I1 ∼= ⊕χmχχ. Then D0(ρ)I1 ∼=

⊕
mχ>0 χ.

Proof. If χ occurs in (inj σ)I1 for some σ ∈ D(ρ) then χ 6= χs as ρ is generic.
Since D0(ρ) is multiplicity free by Theorem 13.8, every χ can occur in D0(ρ)I1

with multiplicity at most 1. Let χ occur in (injσ)I1 for some σ ∈ D(ρ). Then
σ is a subquotient of IndKI χ and there is a unique quotient τ of IndKI χ with
socle σ (as IndKI χ is multiplicity free). If there exists a Jordan-Hölder factor
σ1 6= σ of τ such that σ1 ∈ D(ρ), let τ1 be the unique quotient of τ with
socle σ1. Starting again, we obtain like this a non-zero quotient τm of IndKI χ
such that the socle σm of τm lies in D(ρ) and no other Jordan-Hölder factor
of τm does. By maximality of D0(ρ) (see (iii) in Theorem 13.8), we have an
injection τm ↪→ D0(ρ). Hence HomK(IndKI χ,D0(ρ)) 6= 0 and so χ occurs in
D0(ρ)I1 .

Recall from §4 that Σ denotes the set of f -tuples ε := (ε0, · · · , εf−1) with
εi ∈ {−1, 0, 1} and Σ′ ⊂ Σ the subset of f -tuples ε with εi ∈ {0, 1}. If

s := (s0, · · · , sf−1) is an f -tuple of integers with 0 ≤ si ≤ p−2, η : F× → F×p
is a smooth character and σ := (s0, · · · , sf−1)⊗η, recall that Σ′ parametrizes
in a natural way the characters of I acting on (injσ)I1 (see Proposition 4.13
and twist). If ε ∈ Σ′, denote by σ(ε) the unique twist of Vs(ε)⊗dete(ε) which
occurs as a subquotient of injσ (see §4).

Lemma 14.2. Let σ := (s0, · · · , sf−1) ⊗ η be an irreducible representation
of Γ with 0 ≤ si ≤ p− 2. Let j ∈ {0, · · · , f − 1}, σ′ := (s0, · · · , sj−1, p− 2−
sj, sj+1 + 1, sj+2, · · · , sf−1)⊗ ηdetp

j(sj+1)−pj+1

and assume sj+1 + 1 ≤ p− 2.
Let ε ∈ Σ′ then there exists ε′ ∈ Σ′ such that σ(ε) ∼= σ′(ε′) if and only if one
of the following holds:

(i) εj = 1 and εj+1 = 0

(ii) εj = 0 and εj+1 = 1.

Moreover, if the above holds, then ε′ is uniquely determined as follows: ε′k =
εk for k 6∈ {j, j + 1}, in case (i) ε′j = 0 and ε′j+1 = 0 and in case (ii) ε′j = 1
and ε′j+1 = 1.

Proof. If such an ε′ exists then it is uniquely determined since all the repre-
sentations in {σ′(ε′), ε′ ∈ Σ′} are distinct. If ε satisfies (i) or (ii) then one
may check that, if ε′ is as above, then σ(ε) ∼= σ′(ε′). Conversely, if ε′ ∈ Σ′

is such that (ε′j, ε
′
j+1) 6= (0, 0) and (ε′j, ε

′
j+1) 6= (1, 1) then one of the digits of

the f -tuple s′(ε′) corresponding to σ′(ε′) will be either sk + 2 or p− 3− sk,
k ∈ {j, j + 1}, which implies (with considerations of determinant) that there
exists no ε ∈ Σ′ such that σ(ε) ∼= σ′(ε′).
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Remark 14.3. Switching σ and σ′ in the above proof, we obtain an anal-
ogous result with the weights (s0, · · · , sf−1) ⊗ η and (s0, · · · , sj−1, p − 2 −
sj, sj+1 − 1, sj+2, · · · , sf−1)⊗ ηdetp

j(sj+1).

We denote by σJ the weight in D(ρss) corresponding to a subset J of
{0, · · · , f − 1} (see §11) and by s(J) the f -tuple of integers such that σJ is
a twist of Vs(J) (see §3).

Lemma 14.4. Fix a subset S ⊆ {0, · · · , f − 1} and let J ⊆ S.

(i) If J 6= {0, · · · , f − 1} then there are 2f−|J | characters of I which occur
in (injσJ)I1 and do not occur in (⊕j∈J injσJ\{j})

I1.

(ii) If J = {0, · · · , f−1} and ρ is reducible then there are 2 characters of I
satisfying the same condition. If J = {0, · · · , f−1} and ρ is irreducible
then there are no characters of I satisfying the same condition.

Proof. Write s(J) = (s0, · · · , sf−1) and note that one has 0 ≤ si ≤ p − 2
for all i as ρ is generic. If J = ∅ then every character occuring in (inj σJ)I1

satisfies the (empty) condition, and hence there 2f of them. Suppose that
J 6= ∅ and let j ∈ J . Assume first ρ is reducible. If j + 1 6∈ J then
the f -tuple corresponding to σJ\{j} is s(J \ {j}) = (s0, · · · , sj−2, p − 2 −
sj−1, sj − 1, sj+1, · · · , sf−1). If j + 1 ∈ J then the f -tuple corresponding to
σJ\{j} is s(J \ {j}) = (s0, · · · , sj−2, p − 2 − sj−1, sj + 1, sj+1, · · · , sf−1). By
Proposition 4.13, it is enough to count the ε ∈ Σ′ such that for all j ∈ J
and all ε′ ∈ Σ′, one has σJ(ε) 6∼= σJ\{j}(ε

′). If J 6= {0, · · · , f − 1}, it follows
from Lemma 14.2 and Remark 14.3 that such ε can be described as follows:
for every k and j such that k 6∈ J , {k + 1, · · · , j} ⊆ J and j + 1 6∈ J , either
εk = · · · = εj−1 = 0 and εj = 1 or εk = · · · = εj−1 = 1 and εj = 0. There
are 2f−|J | such ε ∈ Σ′. If J = {0, · · · , f − 1} then it follows from Lemma
14.2 that the only ε ∈ Σ′ satisfying the above condition are (0, · · · , 0) and
(1, · · · , 1). Hence we obtain 2 characters. Assume now that ρ is irreducible.
If j 6= 0 then the f -tuple s(J \ {j}) is the same as in the reducible case. If
1 ∈ J then s(J \ {0}) = (s0 − 1, s1, · · · , sf−2, p− 2− sf−1) and if 1 6∈ J then
s(J \{0}) = (s0 +1, s1, · · · , sf−2, p−2−sf−1). If J 6= {0, · · · , f −1} then, as
in the reducible case, the “new” ε ∈ Σ′ can be described as follows: for every
k and j such that k 6∈ J , {k+1, · · · , j} ⊆ J , j+1 6∈ J and 0 6∈ {k+1, · · · , j}
we have as before either εk = · · · = εj−1 = 0 and εj = 1 or εk = · · · = εj−1 = 1
and εj = 0; for every k and j such that k 6∈ J , {k + 1, · · · , j} ⊆ J , j + 1 6∈ J
and 0 ∈ {k + 1, · · · , j} we have:

(i) if 1 ∈ J then either εk = · · · = εf−1 = 0, ε0 = · · · = εj−1 = 1 and εj = 0
or εk = · · · = εf−1 = 1, ε0 = · · · = εj−1 = 0 and εj = 1
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(ii) if 1 6∈ J then either εk = · · · = εf−1 = ε0 = 0 or εk = · · · = εf−1 = ε0 =
1.

Again we get 2f−|J | new characters. Assume ρ is irreducible and J =
{0, · · · , f − 1}. Suppose that we have ε ∈ Σ′ which is new. If εf−1 = 1
then by Lemma 14.2 ε0 = 0. By applying Lemma 14.2 repeatedly we ob-
tain ε1 = · · · = εf−1 = 0, which is a contradiction to εf−1 = 1. A similar
argument also gives a contradiction when εf−1 = 0. Hence there are no new
characters.

Lemma 14.5. Fix a subset S ⊆ {0, · · · , f − 1} and let I, J ⊆ S. Suppose
that I(σI , σJ) 6= 0. Then σI∩J is a Jordan-Hölder factor of I(σI , σJ).

Proof. Let D′(ρss) := {σI′ , I ′ ⊆ I} and let D′(x0, . . . , xf−1) be the corre-
sponding subset of RD(x0, . . . , xf−1) (resp. ID(x0, . . . , xf−1)). In particular
D′(x0, . . . , xf−1) satisfies (i) and (ii) of Definition 11.5. Remark 12.9 applied
to τ = σJ and D′(ρss) then shows that there exists a unique I ′ ⊆ I such
that `(σI′ , σJ) is minimal and non-zero. By (ii) of Lemma 12.8 as extended
in Remark 12.9, σI′ is a subquotient of I(σI , σJ). So it is enough to show
I ′ = I ∩ J . As σI∩J is a subquotient of I(σ∅, σJ) (as is easily checked using
Corollary 4.11), we have I(σI∩J , σJ) 6= 0. Hence (ii) of Lemma 12.8 as ex-
tended in Remark 12.9 implies again that σI′ is a subquotient of I(σI∩J , σJ).
Using Corollary 4.11 and the fact that I∩J ⊆ J , one checks that this implies
I ∩ J ⊆ I ′ ⊆ J . As I ′ ⊆ I we have I ′ ⊆ I ∩ J and thus I ′ = I ∩ J .

Lemma 14.6. Fix a subset S ⊆ {0, · · · , f − 1} and let J, J ′ be distinct
subsets of S such that |J ′| ≤ |J |. Assume that χ occurs in (injσJ)I1 and in
(injσJ ′)

I1. Then there exists j ∈ J such that χ occurs in (injσJ\{j})
I1.

Proof. The assumption implies that σJ and σJ ′ are subquotients of IndKI χ.
Let τχ (resp. τχs) be the cosocle (resp. socle) of IndKI χ. Since IndKI χ
is multiplicity free, I(τχs , σJ) and I(τχs , σJ ′) are submodules of IndKI χ. It
follows from Lemmas 12.7 and 12.6 that there exists I ⊆ S such that σI is a
subquotient of I(τχs , σJ) and I(τχs , σJ ′). Lemma 14.5 implies that σI∩J is a
subquotient of I(τχs , σJ). Suppose that I∩J 6= J and let j ∈ J\(I∩J). Then
I(σJ\{j}, σJ) is a quotient of I(σI∩J , σJ) and hence σJ\{j} is a subquotient of
I(τχs , σJ) ⊆ IndKI χ. Hence χ occurs in (injσJ\{j})

I1 . Suppose J ⊆ I. (i)
of Theorem 2.4 implies that IndKI χ and IndKI χ

s have the same irreducible
subquotients. By repeating the same argument with χs instead of χ, we
obtain I ′ ⊆ S such that σI′ is a subquotient of I(τχ, σJ) and I(τχ, σJ ′). It
follows from (ii) of Theorem 2.4 that I(σI , σI′) is a subquotient of IndKI χ
which contains both σJ and σJ ′ . It follows from the proof of Lemma 14.5
that I(ρI , σI′) ∼= I(σI∩I′ , σI′). Hence I(σI , σI∩I′) is a subobject of I(σI , σI′)
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and contains σJ and σI∩J ′ as subquotients. Since I(σI , σI∩I′), I(σI , σJ) and
I(σI , σI∩J ′) are all subquotients of I(σS , σ∅), we obtain I∩I ′ ⊆ J and I∩I ′ ⊆
I∩J ′. Hence I ′∩J ⊆ J∩J ′ and since J ′ 6= J and |J ′| ≤ |J |, we get J∩I ′ 6= J .
By repeating the previous argument we obtain that there exists j ∈ J such
that σJ\{j} is a subquotient of IndKI χ

s. Since IndKI χ and IndKI χ
s have the

same irreducible summands, we are done.

Proposition 14.7. Let ρ be generic. Let d such that |D(ρ)| = 2d (see §11). If
ρ is irreducible then dimFp D0(ρ)I1 = 3f−1. If ρ is split then dimFp D0(ρ)I1 =

3f + 1. If ρ is reducible non-split then dimFp D0(ρ)I1 = 2f−d3d.

Proof. If ρ is reducible non-split, note that d = |S| where S corresponds to
the maximal weight of D(ρ) (see §11). Lemma 14.1 implies that it is enough
to count the number of distinct characters in (⊕J⊆S injσJ)I1 . Let J ⊆ S and
suppose that |J | < f then Lemmas 14.4 and 14.6 imply that there are 2f−|J |

characters which occur in (injσJ)I1 and do not occur in (injσJ ′)
I1 for any

J ′ ⊆ S, |J ′| ≤ |J |, J ′ 6= J . If |J | = f and ρ is reducible (resp. irreducible)
then there are 2 (resp. 0) characters satisfying the above condition. Now
there are

(
d
k

)
subsets of S of cardinality k. Hence, if d < f we obtain:

dimFp D0(ρ)I1 =
d∑

k=0

(
d
k

)
2f−k = 2f−d(2 + 1)d = 2f−d3d

and if d = f we obtain:

dimFp D0(ρ)I1 = ±1 +

f∑
k=0

(
f
k

)
2f−k = 3f ± 1

where + corresponds to the reducible case and − to the irreducible case.

We now assume ρ is generic tame and work out explicitly all Jordan-
Hölder factors of D0(ρ) and those which “contribute” to D0(ρ)I1 . Fix σ ∈
D(ρ) and write σ = (λ0(r0), · · · , λf−1(rf−1)) ⊗ dete(λ)(r0,··· ,rf−1)η with λ =
(λi(xi))i as in Lemma 11.2 or Lemma 11.4. If ρ is reducible (resp. irreducible)
one defines µλ ∈ I(y0, · · · , yf−1) as follows:

(i) µλ,i(yi) := p − 1 − yi if λi(xi) ∈ {p − 3 − xi, xi} (resp. if i > 0 and
λ0(x0) ∈ {p− 2− x0, x0 − 1})

(ii) µλ,i(yi) := p− 3− yi if λi(xi) ∈ {p− 2− xi, xi + 1} (resp. if i > 0 and
λ0(x0) ∈ {p− 1− x0, x0}).
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For µ ∈ I(y0, · · · , yf−1), define µ ◦ λ := (µi(λi(xi))i and e(µ ◦ λ) ∈⊕f−1
i=0 Zxi as in Lemma 3.1 according to whether µf−1(λf−1(xf−1)) ∈ Z+xf−1

or Z− xf−1.

Theorem 14.8. Let ρ : Gal(Qp/Qpf ) → GL2(Fp) be a continuous generic
representation as in Definition 11.7 and assume ρ is tame, i.e. either irre-
ducible or split. Fix σ ∈ D(ρ) and λ the corresponding f -tuple.

(i) The irreducible subquotients of D0,σ(ρ) are exactly the (all distinct)
weights:

(µ0(λ0(r0)), · · · , µf−1(λf−1(rf−1)))⊗ dete(µ◦λ)(r0,··· ,rf−1)η (28)

for µ ∈ I(y0, · · · , yf−1) such that µ and µλ are compatible (see Defini-
tion 4.10) forgetting the weights such that µi(λi(ri)) < 0 or µi(λi(ri)) >
p− 1 for some i.

(ii) The graded pieces of the socle filtration on D0,σ(ρ) are:

D0,σ(ρ)i =
⊕
`(µ)=i

τ

for 0 ≤ i ≤ f − 1 and weights τ as in (28) with `(µ) as in §4.

Proof. We may embed D0,σ(ρ) inside injσ. By Lemma 3.2, all weights of
D0,σ(ρ) are of the type (28) for certain µ ∈ I(y0, · · · , yf−1). We provide
a proof only for ρ split, leaving the completely analogous irreducible case
to the reader. Let µ ∈ I(y0, · · · , yf−1) which is not compatible with µλ,
assume 0 ≤ µi(λi(ri)) ≤ p− 1 for all i and let τ be the corresponding weight
(28). There is j ∈ {0, · · · , f − 1} such that either λj(xj) ∈ {p − 3 − xj, xj}
and µj(yj) ∈ {p − 3 − yj, yj + 1} or λj(xj) ∈ {p − 2 − xj, xj + 1} and
µj(yj) ∈ {p − 1 − yj, yj − 1}. In the first case, define µ′ = (µ′i(yi))i by
µ′i(yi) := yi if i /∈ {j − 1, j}, µ′j−1(yj−1) := p− 2− yj−1 and µ′j(yj) := yj + 1.
In the second case, define µ′ = (µ′i(yi))i by µ′i(yi) := yi if i /∈ {j − 1, j},
µ′j−1(yj−1) := p− 2− yj−1 and µ′j(yj) := yj − 1. Let τ ′ be the corresponding
weight (28). Then one checks that in both cases τ ′ ∈ D(ρ), τ ′ 6= σ and
τ ′ is a subquotient of I(σ, τ) (using Corollary 4.11 for the latter). Hence τ
cannot appear in D0,σ(ρ) by multiplicity 1. Conversely, if µ is compatible
with µλ and µ 6= (y0, · · · , yf−1), then the weight (28) is never in D(ρ) as is
immediately checked. By maximality of D0,σ(ρ) together with Corollary 4.11,
this implies (i). (ii) follows from Proposition 13.4 and Corollary 4.11.

Remark 14.9. (i) If ρ is split and σ = (r0, · · · , rf−1)⊗ η or σ = (p− 3−
r0, · · · , p − 3 − rf−1) ⊗ det

∑f−1
i=0 p

i(ri+1)η, then D0,σ(ρ) ∼= IndΓ
B χ where

χs is the action of I on σI1 .
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(ii) One can prove that, if ρ is split (resp. irreducible), then D0,σ(ρ) is
always the image under ⊗ZpFp of a Zp-lattice in a principal series

(resp. a cuspidal representation) of Γ over Qp. In particular, one has
dimFp D0,σ(ρ) = pf + 1 (resp. pf − 1) for all σ ∈ D(ρ).

If S ∈ RepΓ is multiplicity free and τ is an irreducible subquotient of
S, we say that τU has a lift in SU or contributes to SU if and only if the
surjection U(τ) � τ induces a surjection U(τ)U � τU where U(τ) ⊆ S is
the unique subrepresentation with cosocle τ .

Corollary 14.10. Keep the notations of Theorem 14.8. The irreducible sub-
quotients τ of D0,σ(ρ) such that τ I1 has a lift in D0,σ(ρ)I1 are exactly the
weights (28) such that µi(yi) ∈ {p− 2− yi, p− 1− yi, yi, yi + 1}.

Proof. As usual, we only prove the case where ρ is reducible. Set s :=
(λ0(r0), · · · , λf−1(rf−1)) and note that one has 0 ≤ λi(ri) ≤ p − 2 for all i
as σ ∈ D(ρ). By Proposition 3.6 and the fact D0,σ(ρ) is multiplicity free, we
may embed D0,σ(ρ) into:

V2p−2−s ⊗ det
∑f−1
i=0 p

iλi(ri)dete(λ)(r0,··· ,rf−1)η

(see §3 for V2p−2−s). Using Proposition 4.13 and twisting, it is thus enough
to prove that the set of weights as in the statement coincides with the set of
weights:

{Vs(ε) ⊗ dete(ε)+e(λ)(r0,··· ,rf−1)+
∑f−1
i=0 p

iλi(ri)η, ε ∈ Σ(D0,σ(ρ)) ∩ Σ′s}.

Denote by I ′(y0, · · · , yf−1) the subset of I(y0, · · · , yf−1) of f -tuples µ =
(µ0(y0), · · · , µf−1(yf−1)) such that µi(yi) ∈ {p− 2− yi, p− 1− yi, yi, yi + 1}
for all i. The bijection I(y0, · · · , yf−1)

∼→ Σ in the proof of Corollary 4.11
obviously induces a bijection I ′(y0, · · · , yf−1)

∼→ Σ′ ' Σ′s. Moreover, we have
(see proof of Corollary 4.11):

(µi(λi(ri))⊗ dete(µ)(λi(ri)) ∼= Vs(ε) ⊗ dete(ε)+
∑f−1
i=0 p

iλi(ri).

(i) of Theorem 14.8 implies the equality of the two sets of weights.

15 Decomposition of generic Diamond dia-

grams

For ρ a continuous generic Galois representation, we study the decomposition
of the family of basic 0-diagrams (D0(ρ), { }) of Theorem 13.8.
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Let S be a subset of {0, · · · , f − 1} and define δr(S) (resp. δi(S)) as
follows (with the convention f − 1 + 1 = 0): i ∈ δr(S) if and only if i+ 1 ∈ S
(resp. if 0 < i, i ∈ δi(S) if and only if i + 1 ∈ S and 0 ∈ δi(S) if and only
if 1 /∈ S). One defines in an obvious way δnr (S) and δni (S) for n ∈ Z. If
ρ : Gal(Qp/Qpf ) → GL2(Fp) is a continuous tamely ramified generic Galois
representation and σ ∈ D(ρ) corresponds to S (see §11), we write δn(σ) for
the unique weight in D(ρ) corresponding to δnr (S) if ρ is reducible, δni (S) if
ρ is irreducible.

Fix ρ generic as in Definition 11.7 and tamely ramified and let σ ∈ D(ρ).
Let λ ∈ RD(x0, · · · , xf−1) or ID(x0, · · · , xf−1) give rise to σ via Lemma
11.2 or Lemma 11.4 and S ⊆ {0, · · · , f − 1} correspond to σ and λ (see
§11). Let τ be an irreducible subquotient of D0,σ(ρ) such that τ I1 has a lift
in D0,σ(ρ)I1 and write τ as in (28) for a µ ∈ I(y0, · · · , yf−1). Note that by
Corollary 14.10, one has µi(yi) ∈ {p − 2 − yi, p − 1 − yi, yi, yi + 1}. If ρ is
reducible, define:

S− := {i ∈ S and µi−1(λi−1(xi−1)) ∈ {xi−1, xi−1 + 1, p− 1− xi−1}}
S+ := {i /∈ S and µi−1(λi−1(xi−1)) ∈ {p− 3− xi−1, p− 2− xi−1, xi−1 + 2}}.

If ρ is irreducible, define S+ and S− in the same way except that 1 ∈ S−
(resp. S+) iff 1 ∈ S and µ0(λ0(x0)) ∈ {x0 − 1, x0, p − x0} (resp. 1 /∈ S and
µ0(λ0(x0)) ∈ {p− 2− x0, p− 1− x0, x0 + 1}).
Lemma 15.1. Assume ρ is reducible (hence split), then |S−| = |S+|.
Proof. As λ ∈ RD(x0, · · · , xf−1) and as µ and µλ are compatible by (i) of
Theorem 14.8, we have:

S− = {i, λi−1(xi−1) = p−3−xi−1 or p−2−xi−1 and µi−1(yi−1) = p−2−yi−1}
q {i, λi−1(xi−1) = p− 2− xi−1 and µi−1(yi−1) = yi−1 + 1}

and likewise:

S+ = {i, λi−1(xi−1) = xi−1 or xi−1 + 1 and µi−1(yi−1) = p− 2− yi−1}
q {i, λi−1(xi−1) = xi−1 + 1 and µi−1(yi−1) = yi−1 + 1}.

But if µi(yi) = p− 2− yi and λi(xi) ∈ {p− 3− xi, p− 2− xi}, we get from
the compatibility of µ and µλ that the smallest j ≥ 1 such that µi+j(yi+j) =
yi+j + 1 must be such that λi+j(xi+j) = xi+j + 1 (otherwise, some index
between i and i+ j would contradict the compatibility). This implies:

|{i, λi(xi−1) = p− 3− xi−1 or p− 2− xi−1 and µi(yi−1) = p− 2− yi−1}| =
|{i, λi(xi−1) = xi−1 + 1 and µi(yi−1) = yi−1 + 1}|.
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Likewise, we have:

|{i, λi(xi−1) = xi−1 or xi−1 + 1 and µi(yi−1) = p− 2− yi−1}| =
|{i, λi(xi−1) = p− 2− xi−1 and µi(yi−1) = yi−1 + 1}|.

All this obviously implies |S−| = |S+|.

Lemma 15.1 is wrong when ρ is irreducible.

Lemma 15.2. With the previous notations, the unique weight w ∈ D(ρ)
such that `(w, τ [s]) = `(ρ, τ [s]) corresponds to the subset δr((S \ S−) ∪ S+)
(resp. δi((S \ S−) ∪ S+)) if ρ is reducible (resp. irreducible).

Proof. Note that there is indeed such a w thanks to Corollary 13.6 and that
(S \ S−) ∩ S+ = ∅. Assume first ρ is reducible (hence split) and let λ̃ ∈
RD(x0, · · · , xf−1) correspond to the subset δr((S \S−)∪S+). Let (µ(yi))i ∈
I(y0, · · · , yf−1) as previously (corresponding to τ) and define (µ̃i(yi))i by the
formula:

p− 1− µi(λi(xi)) = µ̃i(λ̃i(xi)), ∀ i. (29)

By (i) of Theorem 14.8, µ is compatible with µλ in the sense of Definition
4.10. By (i) of Theorem 4.10 again, it is enough to prove that (µ̃i(yi))i ∈
I(y0, · · · , yf−1) and (µ̃, µλ̃) are compatible. This is horrible but easy combi-

natorics. Assume i + 1 ∈ (S \ S−) ∪ S+, then λ̃i(xi) ∈ {p − 3 − xi, xi + 1}.
If i + 1 ∈ S \ S−, one must have λi(xi) ∈ {p− 3− xi, p− 2− xi} and some
conditions on µ which then imply the following cases:

(i) λi(xi) = p − 3 − xi, µ(yi) = yi which gives using (29) λ̃i(xi) = xi−1 +

1, µ̃i−1(yi−1) = yi + 1 or λ̃i(xi) = p− 3− xi, µ̃i(yi) = p− 1− yi

(ii) λi(xi) = p− 3− xi, µi(yi) = p− 1− yi which gives using (29) λ̃i(xi) =

xi + 1, µ̃i(yi) = p− 2− yi or λ̃i(xi) = p− 3− xi, µ̃i(yi) = yi

(iii) λi(xi) = p − 2 − xi, µi(yi) = yi which gives using (29) λ̃i(xi) = xi +

1, µ̃i(yi) = yi or λ̃i(xi) = p− 3− xi, µ̃i(yi) = p− 2− yi.

If i+ 1 ∈ S+, one must have λi(xi) ∈ {xi, xi + 1} and some conditions on µ
which then imply the following cases:

(i) λi(xi) = xi, µi(yi) = p − 2 − yi which gives using (29) λ̃i(xi) = xi +

1, µ̃i(yi) = yi or λ̃i(xi) = p− 3− xi, µ̃i(yi) = p− 2− yi

(ii) λi(xi) = xi + 1, µi(yi) = p − 2 − yi which gives using (29) λ̃i(xi) =

xi + 1, µ̃i(yi) = yi + 1 or λ̃i(xi) = p− 3− xi, µ̃i(yi) = p− 1− yi
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(iii) λi(xi) = xi + 1, µi(yi) = yi + 1 which gives using (29) λ̃i(xi) = xi +

1, µ̃i(yi) = p− 2− yi or λ̃i(xi) = p− 3− xi, µ̃i(yi) = yi.

Assume now i+1 /∈ (S\S−)∪S+, then λ̃i(xi) ∈ {xi, p−2−xi}. If i+1 ∈ S−,
one must have λi(xi) ∈ {p − 3 − xi, p − 2 − xi} and some conditions on µ
which then imply the following cases:

(i) λi(xi) = p− 3− xi, µi(yi) = p− 2− yi which gives using (29) λ̃i(xi) =

xi, µ̃i(yi) = p− 2− yi or λ̃i(xi) = p− 2− xi, µ̃i(yi) = yi

(ii) λi(xi) = p− 2− xi, µi(yi) = p− 2− yi which gives using (29) λ̃i(xi) =

xi, µ̃i(yi) = p− 1− yi or λ̃i(xi) = p− 2− xi, µ̃i(yi) = yi + 1

(iii) λi(xi) = p − 2 − xi, µi(yi) = yi + 1 which gives using (29) λ̃i(xi) =

xi, µ̃i(yi) = yi or λ̃i(xi) = p− 2− xi, µ̃i(yi) = p− 2− yi.

If i + 1 /∈ S and i + 1 /∈ S+, one must have λi(xi) ∈ {xi, xi + 1} and some
conditions on µ which then imply the following cases:

(i) λi(xi) = xi, µi(yi) = yi which gives using (29) λ̃i(xi) = xi, µ̃i(yi) =

p− 1− yi or λ̃i(xi) = p− 2− xi, µ̃i(yi) = yi + 1

(ii) λi(xi) = xi, µi(yi) = p − 1 − yi which gives using (29) λ̃i(xi) =

xi, µ̃i(yi) = yi or λ̃i(xi) = p− 2− xi, µ̃i(yi) = p− 2− yi

(iii) λi(xi) = xi + 1, µi(yi) = yi which gives using (29) λ̃i(xi) = xi, µ̃i(yi) =

p− 2− yi or λ̃i(xi) = p− 2− xi, µ̃i(yi) = yi.

If (µ̃i(yi))i ∈ I(y0, · · · , yf−1), we see that µ̃ and µλ̃ are compatible in all of the
above cases. Let us now check (µ̃i(yi))i ∈ I(y0, · · · , yf−1). Assume µ̃i(yi) =
yi + 1. From the above list, we have four possibilities for (λi(xi), µi(yi)) and

(λ̃i(xi), µ̃i(yi)):

(p− 3− xi, yi) and (xi + 1, yi + 1)

(xi + 1, p− 2− yi) and (xi + 1, yi + 1)

(xi, yi) and (p− 2− xi, yi + 1)

(p− 2− xi, p− 2− yi) and (p− 2− xi, yi + 1).

In the first case, we have (λi+1(xi+1), µi+1(yi+1)) ∈ {(p− 3− xi+1, yi+1), (p−
3− xi+1, p− 2− yi+1), (xi+1 + 1, yi+1), (xi+1 + 1, p− 2− yi+1)} which, again

from the above list and the fact λ̃ ∈ RD(x0, · · · , xf−1), yields:

(λ̃i+1(xi+1), µ̃i+1(yi+1)) ∈ {(xi+1, p− 2− yi+1), (p− 2− xi+1, yi+1)}.
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We see µ̃i+1(yi+1) ∈ {p − 2 − yi+1, yi+1}. The 3 other cases yield the same
conclusion, hence we always have µ̃i+1(yi+1) ∈ {p−2−yi+1, yi+1}. Examining
µ̃i(yi) = yi yields in the same way µ̃i+1(yi+1) ∈ {p − 2 − yi+1, yi+1}. For
µ̃i(yi) ∈ {p − 2 − yi, p − 1 − yi} a similar check yields µ̃i+1(yi+1) ∈ {p −
1 − yi+1, yi+1 + 1}. This implies (µ̃i(yi))i ∈ I(y0, · · · , yf−1). We leave the
somewhat analogous case ρ irreducible to the reader.

In the case τ = σ, Lemma 15.2 was noted independently by Buzzard.

Recall that, if ρ is a continuous reducible generic Galois representation
(not necessarily split), there is a maximal element σmax in D(ρ) for ≤ (see
§11).

Lemma 15.3. Let ρ be a continuous reducible generic Galois representation.
Let ρss be the semi-simplification of ρ and σmax ∈ D(ρ) the unique maximal
weight. Let τ be any weight such that `(ρ, τ) < +∞ and σ ∈ D(ρ) such
that I(ρ, τ) = I(σ, τ). Then `(ρss, τ) < +∞ and, if σ′ ∈ D(ρss) is such that
I(ρss, τ) = I(σ′, τ), we have σ = σ′ ∩ σmax in D(ρss).

Proof. As D(ρ) ⊆ D(ρss), it is clear that `(ρ, τ) < +∞ implies `(ρss, τ) <
+∞. We first prove σ ≤ σ′. By (ii) of Lemma 12.8 applied to ρss, I(σ, τ)
contains σ′ hence we have I(σ, σ′) ⊆ I(σ, τ). As in the proof of Lemma
12.6, we go from σ to σ′ inside I(σ, τ) by applying to σ several sequences
p− 2−·, p− 2−·−±1, · · · , ·± 1 such that the successive sets of indices that
are affected are disjoint, or one full sequence (· · · , p − 2 − · − ±1, · · · ). Let
µ ∈ I(y0, · · · , yf−1) be the unique element corresponding to these sequences
and recall that S(µ) = {i, µi(yi) = p− 2− yi −±1 or yi ± 1} and that σ′ is
the negative of σ within S(µ) (see Lemma 12.4). Let S,S ′ ⊆ {0, · · · , f − 1}
correspond to σ, σ′. Assume that we don’t have σ ≤ σ′, or equivalently that
we have S(µ) ∩ S 6= ∅. Let µ′ be the unique element of I(y0, · · · , yf−1) such
that:

(i) S(µ′) = S(µ) ∩ S

(ii) µ and µ′ are compatible (Definition 4.10).

Then, by Corollary 4.11 applied to I(σ, σ′), µ′ corresponds to a unique irre-
ducible component σ′′ of I(σ, σ′) ⊆ I(σ, τ) which is distinct from σ. More-
over, from Lemma 12.4, one easily derives that this weight is still in D(ρss)
(it is the negative of σ within S(µ′)). But we have σ′′ < σ as S(µ′) ⊆ S
by assumption, so σ′′ is also still in D(ρ). The definition of σ then implies
σ = σ′′, which is a contradiction. Hence we have σ ≤ σ′. As σ ≤ σmax,
we have σ ≤ σ′ ∩ σmax ≤ σ′. In particular, σ′ ∩ σmax is obtained from σ by
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applying sequences p−2−·, p−2−·−±1, · · · , ·±1 with support (in the sense
of §12) contained in S(µ). As σ′∩σmax, σ′ ∈ D(ρss), we get from Lemma 12.6
that these sequences are compatible with µ and then from Corollary 4.11 that
σ′ ∩ σmax is a component of I(σ, σ′) ⊆ I(σ, τ). But σ′ ∩ σmax ∈ D(ρ) since
σ′ ∩ σmax ≤ σmax and σmax ∈ D(ρ). Thus, we must have σ = σ′ ∩ σmax.

We are now ready to prove:

Theorem 15.4. Let ρ : Gal(Qp/Qpf ) → GL2(Fp) be a continuous generic
Galois representation and (D0(ρ), { }) as in Theorem 13.8.

(i) Assume ρ is indecomposable, then (D0(ρ), { }) cannot be written as
the direct sum of two non-zero families of basic 0-diagrams (Definition
13.7).

(ii) Assume ρ is reducible split, then we have:

(D0(ρ), { }) =

f⊕
`=0

(D0,`(ρ), { }) (30)

where D0,`(ρ) := ⊕`(σ)=`D0,σ(ρ) (see (27) for D0,σ(ρ)). Moreover, for
each `, (D0,`(ρ), { }) cannot be written as the direct sum of two non-zero
families of basic 0-diagrams.

Proof. The whole proof is again easy but tedious combinatorics and we only
give details in the reducible case. Let us start with (ii). Note that there
is a unique σ ∈ D(ρ) such that `(σ) = 0 (resp. `(σ) = f), namely σ =
σ0 := (r0, · · · , rf−1) ⊗ η (resp. σ = σf := (p − 3 − r0, · · · , p − 3 − rf−1) ⊗
detr0+1+p(r1+1)+···+pf−1(rf−1+1)η). We have to prove that the unique pairing
{ } on the I-eigencharacters of D0(ρ)I1 preserves the I-eigencharacters of
D0,`(ρ)I1 for each `, and doesn’t preserve those corresponding to any strict
non-zero K-direct factor of D0,`(ρ). This is straightforward if ` = 0 (resp.
` = f) as D0,0(ρ) = IndΓ

B χ0 (resp. D0,f (ρ) = IndΓ
B χf ) where χs0 (resp. χsf )

is the character giving the action of I on σI10 (resp. σI1f ), see (i) of Remark
14.9. Fix σ ∈ D(ρ), σ /∈ {σ0, σf} and let S ⊂ {0, · · · , f − 1} correspond
to σ. Let τ be an irreducible subquotient of D0,σ(ρ) as in Corollary 14.10
contributing to I1-invariants. Let S− and S+ as before with τ and let σ̃ ∈
D(ρ) correspond to δr((S \ S−) ∪ S+). By Lemma 15.2, τ [s] sits in D0,σ̃(ρ)
and by Lemma 15.1, `(σ) = `(σ̃), hence { } preserves the I-eigencharacters
of D0,`(σ)(ρ)I1 . For ` ∈ {1, · · · , f−1}, let σ` ∈ D(ρ) correspond to the subset
{1, 2, · · · , `}. We are going to prove that one can always “go” from D0,σ(ρ)I1

to D0,σ`(σ)
(ρ)I1 using χ 7→ χs. By Lemma 15.2 applied successively to τ = σ,
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τ = δ(σ) etc., we can assume 0 /∈ S and 1 ∈ S. Write S = qrα=0Sα with
Sα := {iα + 1, · · · , iα + jα}, iα ∈ {0, · · · , f − 1}, iα /∈ S and iα + jα < iα+1

(so i0 = 0 and
∑r

α=0 jα = `(σ)). If r = 0, we are done as σ = σ`(σ) in that
case. Assume r > 0 and define µ := (µi(yi))i ∈ I(y0, · · · , yf−1) as follows:

µ0(y0) := p− 2− y0

µi(yi) := p− 1− yi, 1 ≤ i ≤ j0 − 1

µj0(yj0) := yj0 + 1

µi(yi) := yi, i > j0.

Let τ be the irreducible subquotient of D0,σ(ρ) corresponding to µ as in
(i) of Theorem 14.8. We have S− = {1}, S+ = {j0 + 1} and, by Lemma
15.2, τ [s] sits in D0,σ(1)(ρ) where σ(1) corresponds to S(1) := S0 q δr(S \ S0).

If j0 + 1 /∈ S(1), we start again with τ (1) inside D0,σ(1)(ρ) corresponding

to the same µ and get that τ (1)[s]
sits in D0,σ(2)(ρ) where σ(2) corresponds

to S(2) := S0 q δ2
r(S \ S0). Repeating this again, one reaches S(i1−j0) :=

S0 q δi1−j0r (S \ S0) = qr−1
α=0S

(i1−j0)
α with S(i1−j0)

α as before. In particular, r
has strictly decreased. By an obvious induction, we can “reach” like this
r = 0, that is σ`(σ). All this implies that { } doesn’t preserve any strict
non-zero K-direct factor of D0,`(σ)(ρ). Let us now prove (i). The case ρ
irreducible is analogous to (ii) and we leave the details to the reader. Let us
assume ρ is reducible non-split and let σ ∈ D(ρ). We are going to prove that
one can always “go” from D0,σ(ρ)I1 to D0,σ0(ρ)I1 using χ 7→ χs. By using
Lemma 15.3 and Lemma 15.2 “backwards” and since D0,σ(ρss) ⊆ D0,σ(ρ),
we can (and do) replace σ by δ−n(σ) for the biggest integer n such that
δ−n(σ) ≤ σmax. Consider now the weight δ−1(σ)[s]. By Lemma 15.2 applied
to ρss and τ = δ−1(σ) ∈ D(ρss), δ−1(σ)[s] is a Jordan-Hölder component
in D0,σ(ρss) ⊆ D0,σ(ρ) such that (δ−1(σ)[s])I1 contributes to D0,σ(ρ)I1 . By
Lemma 15.3 applied to τ = δ−1(σ), δ−1(σ) is a Jordan-Hölder component in
D0,δ−1(σ)∩σmax(ρ). Moreover, `(δ−1(σ)∩σmax) < `(δ−1(σ)) = `(σ) as δ−1(σ) /∈
D(ρ). Thus, replacing σ by δ−1(σ) ∩ σmax, we see that `(σ) has strictly
decreased. By an obvious induction, we can “reach” like this `(σ) = 0. This
finishes the proof.

16 Generic Diamond diagrams for f ∈ {1, 2}
We completely describe the family of basic 0-diagrams (D0(ρ), { }) attached
to a continuous generic ρ : Gal(Qp/Qpf )→ GL2(Fp) for f = 1 and f = 2.
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We write a finite dimensional indecomposable representation S of Γ over
Fp as follows:

S0 S1 S2 · · · Sn

where (Si)i are the graded pieces of the socle filtration (see introduction).

Let us start with f = 1. Twisting if necessary, we can assume that p
acts trivially on det(ρ) and that the restriction of ρ to inertia has one of the
following forms:

(i)

(
ωr0+1 ∗

0 1

)
with ∗ 6= 0

(ii)

(
ωr0+1 0

0 1

)

(iii)

(
ωr0+1

2 0

0 ω
p(r0+1)
2

)
where ω stands for ω1 (the reduction modulo p of the cyclotomic character)
and where 1 ≤ r0 ≤ p − 4 in the first two cases and 1 ≤ r0 ≤ p − 2 in the
last (remember ρ is generic!). The corresponding D0(ρ) is:

(i)

Symp−1−r0F2

p ⊗ detr0

Symr0F2

p ⊕
Symp−3−r0F2

p ⊗ detr0+1

(ii)
Symr0F2

p Symp−1−r0F2

p ⊗ detr0

⊕
Symp−3−r0F2

p ⊗ detr0+1 Symr0+2F2

p ⊗ det−1

(iii)
Symr0F2

p Symp−3−r0F2

p ⊗ detr0+1

⊕
Symp−1−r0F2

p ⊗ detr0 Symr0−2F2

p ⊗ det .

(If a weight has a negative entry, we just forget it.) The reader can easily find
the unique pairing {χ, χs} and check directly that D0(ρ)I1 has dimension 2 in
case (i), 4 in case (ii) and again 2 in case (iii). We let Π act on D0(ρ)I1 in the
unique possible way (up to isomorphism of K1-representations) and let D1(ρ)
be the resulting K1-representation. Up to isomorphism of basic 0-diagrams,
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the reader can check that an IZ-equivariant injection r : D1(ρ) ↪→ D0(ρ)

depends on one scalar in F×p in case (i), on two scalars in F×p in case (ii) and
is unique in case (iii).

We go on with the slightly more involved case f = 2. We will distinguish
the following cases on the restriction of ρ to inertia (after some possible
twist):

(ia)

(
ω
r0+1+p(r1+1)
2 ∗

0 1

)
with ∗ 6= 0 and D(ρ) = {(r0, r1)}

(ib)

(
ω
r0+1+p(r1+1)
2 ∗

0 1

)
with ∗ 6= 0 and D(ρ) = {(r0, r1), (p − 2 − r0, r1 +

1)⊗ detr0+p(p−1)}

(ic)

(
ω
r0+1+p(r1+1)
2 ∗

0 1

)
with ∗ 6= 0 and D(ρ) = {(r0, r1), (r0 + 1, p − 2 −

r1)⊗ detp−1+pr1}

(ii)

(
ω
r0+1+p(r1+1)
2 0

0 1

)

(iii)

(
ω
r0+1+p(r1+1)
4 0

0 ω
p2(r0+1)+p3(r1+1)
4

)
where 0 ≤ r0, r1 ≤ p − 3 with (r0, r1) /∈ {(0, 0), (p − 3, p − 3)} in the first
four cases and 1 ≤ r0 ≤ p − 2, 0 ≤ r1 ≤ p − 3 in the last (note that if ρ is
reducible non-split then D(ρ) always comes from a subset of Galois type as
in Definition 11.5). The corresponding D0(ρ) is (we don’t write the twists by
powers of det for each weight, one can recover them from the usual formulas
of §11; moreover if a weight has a negative entry, we just forget it):

(ia)
(r0, r1) S1 S2

where S1 is given by :

(p−2−r0, r1+1)⊕(r0−1, p−2−r1)⊕(p−2−r0, r1−1)⊕(r0+1, p−2−r1)

and S2 by:

(p−1− r0, p−3− r1)⊕ (p−1− r0, p−1− r1)⊕ (p−3− r0, p−1− r1)

⊕ (p− 3− r0, p− 3− r1)
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(ib) (
(r0, r1) S1 S2

)
⊕
(
(p− 2− r0, r1 + 1) S ′1 S ′2

)
where:

S1 := (r0 − 1, p− 2− r1)⊕ (p− 2− r0, r1 − 1)⊕ (r0 + 1, p− 2− r1)

S2 := (p− 1− r0, p− 1− r1)⊕ (p− 3− r0, p− 1− r1)

S ′1 := (p− 3− r0, p− 3− r1)⊕ (r0, r1 + 2)⊕ (p− 1− r0, p− 3− r1)

S ′2 := (r0 + 1, p− 4− r1)⊕ (r0 − 1, p− 4− r1)

(ic) (
(r0, r1) S1 S2

)
⊕
(
(r0 + 1, p− 2− r1) S ′1 S ′2

)
where:

S1 := (p− 2− r0, r1 + 1)⊕ (r0 − 1, p− 2− r1)⊕ (p− 2− r0, r1 − 1)

S2 := (p− 1− r0, p− 3− r1)⊕ (p− 1− r0, p− 1− r1)

S ′1 := (p− 3− r0, p− 3− r1)⊕ (r0 + 2, r1)⊕ (p− 3− r0, p− 1− r1)

S ′2 := (p− 4− r0, r1 + 1)⊕ (p− 4− r0, r1 − 1)

(ii)

(r0, r1) S1 (p− 1− r0, p− 1− r1)
⊕

(p− 2− r0, r1 + 1) S ′1 (r0 − 1, p− 4− r1)
⊕

(r0 + 1, p− 2− r1) S ′′1 (p− 4− r0, r1 − 1)
⊕

(p− 3− r0, p− 3− r1) S ′′′1 (r0 + 2, r1 + 2)

where:

S1 := (p− 2− r0, r1 − 1)⊕ (r0 − 1, p− 2− r1)

S ′1 := (r0, r1 + 2)⊕ (p− 1− r0, p− 3− r1)

S ′′1 := (p− 3− r0, p− 1− r1)⊕ (r0 + 2, r1)

S ′′′1 := (r0 + 1, p− 4− r1)⊕ (p− 4− r0, r1 + 1)
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(iii)

(r0, r1) S1 (p− 3− r0, p− 1− r1)
⊕

(r0 − 1, p− 2− r1) S ′1 (p− r0, r1 − 1)
⊕

(p− 1− r0, p− 3− r1) S ′′1 (r0 − 2, r1 + 2)
⊕

(p− 2− r0, r1 + 1) S ′′′1 (r0 + 1, p− 4− r1)

where:

S1 := (p− 2− r0, r1 − 1)⊕ (r0 + 1, p− 2− r1)

S ′1 := (r0 − 2, r1)⊕ (p− 1− r0, p− 1− r1)

S ′′1 := (r0 − 1, p− 4− r1)⊕ (p− r0, r1 + 1)

S ′′′1 := (p− 3− r0, p− 3− r1)⊕ (r0, r1 + 2).

The reader can easily find the unique pairing {χ, χs} and check directly that
D0(ρ)I1 has dimension 4 in case (ia), 6 in cases (ib), (ic), 10 in case (ii) and
8 in case (iii). Defining the K1-representation D1(ρ) as previously, the reader
can check that, up to isomorphism of basic 0-diagrams, an IZ-equivariant

injection r : D1(ρ) ↪→ D0(ρ) depends on two scalars in F×p in case (ia), (ib)

and (ic), on four scalars in F×p in case (ii) and on one scalar in F×p in case
(iii).

17 The representation R(σ)

For σ a weight, we define and start studying a K-representation R(σ) which is
a subrepresentation of c-IndGK0

σ and which will contain all the Γ-representa-
tions D0,δ(σ)(ρ) for generic tame ρ. Although it might not be strictly neces-
sary, we assume p > 2 and χ 6= χs where χ is the character giving the action
of I on σI1 .

We fix σ = (r0, · · · , rf−1)⊗ η a weight as above, i.e. such that not all ri
are equal to zero and not all ri are equal to p− 1. We extend the K-action
on σ to a K0-action by making p act trivially and we let χ be the character
giving the action of I on σI1 . Following the notations of [4], for g ∈ G and
v ∈ σ we denote by [g, v] ∈ c-IndGK0

σ the unique fonction with support in
K0g

−1 which sends g−1 to v. Let r := r0 + pr1 + · · · + pf−1rf−1 and recall
that any element of σ can be seen as a polynomial over Fp in the variables
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xr−iyi for i = i0 + pi1 + · · ·+ pf−1if−1 with 0 ≤ ij ≤ rj. We first define R̃(σ)
to be the K-subrepresentation of c-IndGK0

σ generated by the elements:([(
0 1
p 0

)
, xr−iyi

]
, i ∈

{∑
j∈J

pj, J ⊆ Jσ

})
where Jσ := {i ∈ {0, · · · , f−1}, ri ≥ 1} and with the convention

∑
j∈J p

j = 0
when J = ∅. An easy calculation shows that this is the same as the K-
subrepresentation of c-IndGK0

σ generated by the elements:( [(
p [λ0]
0 1

)
, xr−iyi

]
,
[(

0 1
p 0

)
, xr−iyi

]
, i ∈ {

∑
j∈Jp

j, J ⊆ Jσ}, λ0 ∈ Fq
)
.

For J ⊆ Jσ, we define FilJR̃(σ) to be the K-subrepresentation of R̃(σ) gen-
erated by the element:[(

0 1
p 0

)
, xr−iyi

]
for i =

∑
j∈J

pj.

An easy calculation gives FilJ
′
R̃(σ) ( FilJR̃(σ) if J ′ ( J hence we have

FilJσR̃(σ) = R̃(σ).

Lemma 17.1. (i) For J ⊆ Jσ, we have:

FilJR̃(σ)∑
J ′(J FilJ

′
R̃(σ)

= IndΓ
B χ

sα
∑
i∈J p

i

.

(ii) For J ( Jσ and j ∈ Jσ \ J , the K-representation:

GrJ,j :=
FilJ∪{j}R̃(σ)∑
J′(J∪{j}
J′ 6=J

FilJ
′
R̃(σ)

is an extension:

0 // IndΓ
B χ

sα
∑
i∈J p

i // GrJ,j // IndΓ
B χ

sαp
j+
∑
i∈J p

i // 0 (31)

which is isomorphic to the induction from I to K of the extension of
I-representations 0 → χsα

∑
i∈J p

i → ∗ → χsαp
j+
∑
i∈J p

i → 0 where the
action of I is given in a basis (v, w) of ∗ such that v ∈ χsα

∑
i∈J p

i
by:(

a b
pc d

)
w = (χsαp

j+
∑
i∈J p

i

)

((
a b
pc d

))(
(c/a)p

j

v + w
)
. (32)
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Proof. Straightforward and left to the reader.

Definition 17.2. Let σ, χ and J ⊆ Jσ as previously and set rJi := ri if i /∈ J ,
rJi := ri − 2 if i ∈ J (hence −1 ≤ rJi ≤ p − 3). We say that an irreducible
subquotient of IndΓ

B χ
sα
∑
i∈J p

i
is special if it is of the form:(

(θ0(rJ0 ), · · · , θf−1(rJf−1))⊗ dete(θ)(r
J
0 ,··· ,rJf−1)

)
det

∑
i∈J p

i

η (33)

where (θi(xi))i ∈ P(x0, · · · , xf−1) (see §2) with θi(xi) ∈ {p − 2 − xi, xi} if
i ∈ J .

Example 17.3. If f = 1, we have Jσ = {0}. The special irreducible subquo-
tients of IndΓ

B χ
s are σ and σ[s]. If r0 ≥ 2, the special irreducible subquotient

of IndΓ
B χ

sα is Symr0−2F2

p ⊗ detη and if r0 = 1, IndΓ
B χ

sα has no special
irreducible subquotient.

Lemma 17.4. The Γ-representation IndΓ
B χ

sα
∑
i∈J p

i
has all its irreducible

subquotients special if and only if J = ∅.

Proof. If J = ∅, it follows from Lemma 2.2 that all irreducible subquotients
are special. Assume J 6= ∅. If ri ≥ 2 for all i ∈ J , it again follows from
the same lemma that all subquotients can’t be special (e.g. the cosocle if the
representation is indecomposable). Assume ri = 1 for some i ∈ J . As ri−2 =
−1, one checks the socle of IndΓ

B χ
sα
∑
i∈J p

i
is a weight (s0, · · · , sf−1) ⊗ ψ

with si ∈ {p − 1, p − 2}. Hence the cosocle is a weight (t0, · · · , tf−1) ⊗ ψ
with ti ∈ {0, 1}. But as rJi = −1, any special subquotient (33) is such that
θi(xi) = p − 2 − xi i.e. such that θi(r

J
i ) = p − 1. As p > 2, ti 6= θi(r

J
i ) and

the cosocle is again never special.

Lemma 17.5. Assume that J 6= ∅ and that IndΓ
B χ

sα
∑
i∈J p

i
has at least one

irreducible special subquotient. Let i and j be consecutive elements in J (with
possibly i = j if |J | = 1). If ri = 1, there is s ∈ {0, · · · , f − 1} such that
i+ 1 ≤ s ≤ j − 1 (modulo f) and rs > 0 (and s /∈ J).

Proof. Indeed, if this was not the case, then any special subquotient of
IndΓ

B χ
sα
∑
i∈J p

i
as in (33) would necessarily be such that θi(xi) = p− 2− xi

(as rJi = −1) and θs(xs) 6= xs − 1 for i+ 1 ≤ s ≤ j − 1 (as rJs = rs = 0). As
(θi(xi))i ∈ P(x0, · · · , xf−1), this implies θj(xj) ∈ {p − 1 − xj, xj − 1}. But
this is impossible because j ∈ J implies θj(xj) ∈ {p− 2− xj, xj}.

Lemma 17.6. Let J ′ ( J ⊆ Jσ and set ζs := χsα
∑
i∈J′ p

i
. Let (s0, · · · , sf−1)⊗

ψ be the socle of IndΓ
B ζ

s and set s
J\J ′
i := si if i /∈ J \ J ′ and s

J\J ′
i := si − 2

if i ∈ J \ J ′. Any special irreducible subquotient of:

IndΓ
B χ

sα
∑
i∈J p

i

= IndΓ
B ζ

sα
∑
i∈J\J′ p

i
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can be written as:

(θ0(s
J\J ′
0 ), · · · , θf−1(s

J\J ′
f−1 ))⊗ dete(θ)(s

J\J′
0 ,··· ,sJ\J

′
f−1 )det

∑
i∈J\J′ p

i

ψ (34)

for θ ∈ P(x0, · · · , xf−1) with θi(xi) ∈ {p− 2− xi, xi} if i ∈ J \ J ′.

Proof. Note first that, as J ′ ( J and χ 6= χs, we can’t have ζ = ζs and
the socle of IndΓ

B ζ
s is irreducible. If f = 1, there is nothing to prove as

J ′ = ∅ in that case. Assume f > 1. If ri ≥ 2 for all i ∈ J ′, this follows
immediately from Definition 33. If ri = 1 for some i ∈ J ′, this easily follows
from Definition 33 together with Lemma 17.5 (note that, using Lemma 17.5
if there is i ∈ J ′ such that ri = 1, one has si = ri ≥ 1 if i /∈ J ′).

Beware that, conversely, all subquotients as in (34) are not necessarily
special in the sense of Definition 33.

Lemma 17.7. Assume that J 6= ∅ and let τ be a special irreducible subquo-
tient of IndΓ

B χ
sα
∑
i∈J p

i
. Then τ doesn’t occur in IndΓ

B χ
sα
∑
i∈J′ p

i
for J ′ ( J .

Proof. Set ζs := χsα
∑
i∈J′ p

i
. By Lemma 17.6, any special irreducible sub-

quotient of IndΓ
B ζ

sα
∑
i∈J\J′ p

i

can be written as:

(θ0(s
J\J ′
0 ), · · · , θf−1(s

J\J ′
f−1 ))⊗ dete(θ)(s

J\J′
0 ,··· ,sJ\J

′
f−1 )det

∑
i∈J\J′ p

i

ψ

for θ ∈ P(x0, · · · , xf−1) with θi(xi) ∈ {p−2−xi, xi} if i ∈ J \J ′. By Lemma
2.2, the irreducible subquotients of IndΓ

B ζ
s are:

(λ0(s0), · · · , λf−1(sf−1))⊗ dete(λ)(s0,··· ,sf−1)ψ

for λ ∈ P(x0, · · · , xf−1). If a special subquotient of IndΓ
B ζ

sα
∑
i∈J\J′ p

i

also
occurs in IndΓ

B ζ
s, then by considerations of determinants as in the proof

of Lemma 12.8, one can check this implies λi(xi) = θi(xi − 2) as formal
expressions of xi for any i ∈ J \J ′. This is impossible as λ ∈ P(x0, · · · , xf−1),
and thus one can’t have λi(xi) ∈ {xi − 2, p− xi}.

Lemma 17.8. Let τ be a special irreducible subquotient of IndΓ
B χ

sα
∑
i∈J p

i

and U(τ) ⊆ FilJR̃(σ) the unique subrepresentation with cosocle τ (which is
well defined by Lemma 17.7). Then all irreducible subquotients of U(τ) are
special.

Proof. If f = 1, this follows from Example 17.3 so we can assume f >
1. First, for any J ⊆ Jσ and any special subquotient τ of IndΓ

B χ
sα
∑
i∈J p

i

corresponding to some λ ∈ P(x0, · · · , xf−1) by Lemma 2.2, one checks (using
Lemma 17.5 if ri = 1 for some i ∈ J) that the unique subrepresentation
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of IndΓ
B χ

sα
∑
i∈J p

i
with cosocle τ has only special irreducible subquotients,

namely all the weights corresponding by Lemma 2.2 to the f -tuples λ′ ∈
P(x0, · · · , xf−1) with λ′ ≤ λ in the sense of §2. Using this inductively, it is

enough to prove the following statement: all weights τ ′ of IndΓ
B χ

sα
∑
i∈J′ p

i

with J ′ ( J which could possibly be involved in a non-trivial K-extension
with τ are already automatically special. Define ζs and (s0, · · · , sf−1)⊗ψ as
in Lemma 17.6. Using the notations of the proof of Lemma 17.7, write:

τ = (θ0(s
J\J ′
0 ), · · · , θf−1(s

J\J ′
f−1 ))⊗ dete(θ)(s

J\J′
0 ,··· ,sJ\J

′
f−1 )det

∑
i∈J\J′ p

i

ψ

τ ′ = (λ0(s0), · · · , λf−1(sf−1))⊗ dete(λ)(s0,··· ,sf−1)ψ

with θ, λ ∈ P(x0, · · · , xf−1) and θi(xi) ∈ {p − 2 − xi, xi} if i ∈ J \ J ′. The
weights distinct from τ and possibly involved in a K-extension with τ are
described in Corollary 5.6. Consider first the extensions ∓2, i.e. cases (a)
and (c) of (ii) of Corollary 5.6. In order for a weight τ ′ to be involved in
such an extension with τ , the only possibilities are J = J ′q{j} (for some j),
θi(xi) = λi(xi) for i 6= j and θj(xj − 2) = λj(xj)− 2 with θj(xj − 2) = xj − 2
or θj(xj−2) = λj(xj) + 2 with θj(xj−2) = p−2− (xj−2) (note that we are
dealing with weights, not formal weights, but considerations of determinant
as in the proof of Lemma 12.8 show this is actually equivalent). But in
both cases, we have λj(xj) = θj(xj) and τ ′ is thus necessarily the weight

(θ0(s0), · · · , θf−1(sf−1))⊗ dete(θ)(s0,··· ,sf−1)ψ. It is certainly special in IndΓ
B ζ

s

if τ is special in IndΓ
B ζ

sα
∑
i∈J\J′ p

i

. Consider now the extensions ∓1, i.e. cases
(a) and (b) of (i) of Corollary 5.6. In order for a weight τ ′ to be involved in
such an extension with τ , the only possibilities are J = J ′q{j} (for some j),
θi(xi) = λi(xi) for i /∈ {j − 1, j}, θj−1(xj−1) = p− 2− λj−1(xj−1) and either
θj(xj − 2) = λj(xj) − 1 with θj(xj − 2) = xj − 2 or θj(xj − 2) = λj(xj) + 1
with θj(xj − 2) = p− 2− (xj − 2). Let us suppose θj(xj − 2) = xj − 2, then
the weight τ is up to twist:

(θ0(s0), · · · , θj−1(sj−1), sj − 2, · · · , θf−1(sf−1))

whereas the weight τ ′ is up to twist:

(θ0(s0), · · · , p− 2− θj−1(sj−1), sj − 1, · · · , θf−1(sf−1)).

As τ is special, the weight τ can also be written up to twist:

(θ′0(rJ0 ), · · · , θ′f−1(rJf−1))

with θ′ as in (33) such that θ′j(xj) = xj (as rJj = rj−2 = sj−2). As rJ
′

i = rJi
if i 6= j and rJ

′
j = rj, the weight τ ′ can thus be rewritten up to twist:

(θ′0(rJ
′

0 ), · · · , p− 2− θ′j−1(rJ
′

j−1), rJ
′

j − 1, · · · , θ′f−1(rJ
′

f−1))
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which is special in IndΓ
B ζ

s by Definition 17.2 and an easy calculation in
P(x0, · · · , xf−1). The other case is analogous and left to the reader. No
other weight distinct from τ can possibly be involved in a K-extension with
τ which has a central character.

Definition 17.9. We define R(σ) to be the following subrepresentation of

R̃(σ):

R(σ) :=
∑
τ

U(τ)

for all J and all subrepresentations U(τ) as in Lemma 17.8.

Example 17.10. Assume f = 1. If r0 = 1, we have R(σ) = IndΓ
B χ

s. If
r0 ≥ 2, R(σ) is an extension:

0→ IndΓ
B χ

s → R(σ)→ Symr0−2F2

p ⊗ detη → 0.

We will see in §18 that this extension is non-split.

Recall that the set I(x0, · · · , xf−1) was defined in §3.

Lemma 17.11. The irreducible subquotients of R(σ) are exactly the (all
distinct) weights:

(µ0(r0), · · · , µf−1(rf−1))⊗ dete(µ)(r0,··· ,rf−1)η

for µi(xi) := λi(p− 1− xi) with λ ∈ I(x0, · · · , xf−1) and e(µ) defined in the
usual way (forgetting the weights such that µi(ri) < 0 or µi(ri) > p − 1 for
some i). In particular, they occur in R(σ) with multiplicity 1.

Proof. Let µ be as in the statement and set:

J := {i ∈ {0, · · · , f − 1}, µi(xi) ∈ {xi − 2, p− xi}} .

Let θi(xi) := µi(xi) if i /∈ J and θi(xi) := µi(xi + 2) if i ∈ J . Then it is
straightforward to check that θ ∈ P(x0, · · · , xf−1) and that:

(µ0(r0), · · · , µf−1(rf−1))⊗ dete(µ)(r0,··· ,rf−1)η =

(θ0(rJ0 ), · · · , θf−1(rJf−1))⊗ dete(θ)(r
J
0 ,··· ,rJf−1)η (35)

with rJi as in Definition 17.2. Hence any weight as in the statement is
special and thus occurs in R(σ). Conversely, going backwards on (35),
any weight as in (33) corresponds to a unique µ as above such that J =
{i, µi(xi) ∈ {p− xi, xi − 2}}.
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Lemma 17.12. For a weight τ = (µ0(r0), · · · , µf−1(rf−1))⊗dete(µ)(r0,··· ,rf−1)η
in R(σ), define:

J(τ) := {i ∈ {0, · · · , f − 1}, µi(xi) ∈ {xi − 2, p− xi}}
K(τ) := {i ∈ {0, · · · , f − 1}, µi(xi) ∈ {xi − 1, xi − 2, p− xi, p− 1− xi}}.

(i) The set J := J(τ) is the unique J ⊆ Jσ such that τ is a special subquo-
tient of IndΓ

B χ
sα
∑
i∈J p

i
.

(ii) If a non-split K-extension 0→ τ ′ → ε→ τ → 0 occurs as a subquotient

in FilJ(τ)R̃(σ), then it occurs as a subquotient of R(σ) and we have
J(τ ′) ⊆ J(τ) and K(τ ′) ⊆ K(τ). Moreover, if ε is a Γ-extension, then
we have either J(τ ′) = J(τ) and K(τ ′) ( K(τ) or J(τ ′) ( J(τ) and
K(τ ′) = K(τ), and |J(τ) ∪K(τ)| = |J(τ ′) ∪K(τ ′)|+ 1 in both cases.

Proof. If f = 1, this follows from Example 17.10 so we can assume f >
1. (i) follows from Lemma 17.11 and its proof (see (35)). Let us prove
(ii). By the definition of U(τ) in Lemma 17.8, the non-split extension ε
must be a quotient of U(τ) and hence is also a subquotient of R(σ). Write
τ ′ = (µ′0(r0), · · · , µ′f−1(rf−1))⊗dete(µ

′)(r0,··· ,rf−1)η with µ′ as in Lemma 17.11.

Assume ε sits in IndΓ
B χ

sα
∑
i∈J(τ) p

i

(i.e. J(τ ′) = J(τ)). If rj ≥ 2 for all
j ∈ J(τ), then it directly follows from Theorem 2.4 (together with Lemma
2.2) that K(τ ′) ( K(τ) and |K(τ)| = |K(τ ′)|+1. If rj = 1 for some j ∈ J(τ),
this is still true but one has to use Lemma 17.5. Assume now that τ ′ comes
from a distinct parabolic induction inside R̃(σ), we are then exactly in the
situation of the proof of Lemma 17.8. If the extension ε is of type ±2 (i.e.
it is not a Γ-extension), going back to this proof, we see that we necessarily
have j ∈ J(τ) such that (µ′j(xj) = xj, µj(xj) = xj − 2) or (µ′j(xj) = p −
2 − xj, µj(xj) = p − xj) and µ′(xi) = µ(xi) for i 6= j. In both cases, we
have J(τ ′) ( J(τ) and K(τ ′) ( K(τ). Assume now that the extension ε is
of type ±1 (i.e. is a Γ-extension). Again, by the proof of Lemma 17.8, we
necessarily have j ∈ J(τ) such that µ′j−1(xj−1) = p−2−µj−1(xj−1) and either
(µ′j(xj) = xj − 1, µj(xj) = xj − 2) or (µ′j(xj) = p− 1− xj, µj(xj) = p− xj)
(and µ′i(xi) = µi(xi) for i /∈ {j − 1, j}). The operation p − 2 − · preserving
J(τ ′) and K(τ ′), we see that we have J(τ ′) ( J(τ) (with |J(τ)| = |J(τ ′)|+1)
and K(τ ′) = K(τ).

18 The extension Lemma

In this section, we crucially use that we are working with Witt vectors. We
keep the assumptions of §17 (p > 2, χ 6= χs) and prove that R(σ) contains
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many non-split extensions. The existence of these non-split extensions will
imply the irreducibility of some G-representations (§19).

We start with three easy lemmas.

Lemma 18.1. Let τ , τ ′ be two distinct weights, Qτ ′ (resp. Sτ) a representa-
tion of Γ on a finite dimensional Fp-vector space with socle τ ′ (resp. cosocle
τ), and R a Γ-extension 0→ Qτ ′ → R→ Sτ → 0. Assume that, if w′ (resp.
w) is an irreducible subquotient of Qτ ′ (resp. Sτ) with (w′, w) 6= (τ ′, τ), we
have Ext1

Γ(w,w′) = 0. Then R is obtained by push-forward along τ ′ ↪→ Qτ ′

and pull-back along Sτ � τ from a Γ-extension 0→ τ ′ → ε→ τ → 0.

Proof. For any irreducible constituent w′ of Qτ ′ distinct from the socle τ ′, we
have Ext1

Γ(Sτ , w
′) = 0. By the usual long exact sequence for Hom and Ext,

we derive a surjection Ext1
Γ(Sτ , τ

′) � Ext1
Γ(Sτ , Qτ ′). For any irreducible

constituent w of Sτ distinct from the cosocle τ , we have Ext1
Γ(w, τ ′) = 0.

We derive again a surjection Ext1
Γ(τ, τ ′) � Ext1

Γ(Sτ , τ
′). This implies the

statement.

Lemma 18.2. Let τ ′, τ be two weights and ε a Γ-extension 0 → τ ′ → ε →
τ → 0. Let F ∈ ε be a non-zero H-eigenvector with eigencharacter χ where χ
is the action of I on τ I1. Assume that χ doesn’t occur as an H-eigencharacter
on τ ′ and that 〈Γ · F 〉 contains τ ′. Then ε is non-split.

Proof. Note that τ and τ ′ are necessarily distinct because of the assumption
on χ. If ε was split, as χ doesn’t occur in τ ′ we would have that F necessarily
belongs to τ via a splitting τ ↪→ ε. This would imply 〈Γ · F 〉 = τ which
contradicts τ ′ ⊂ 〈Γ · F 〉.

Lemma 18.3. Let c be an integer between 0 and p− 2. Then the following
equality holds in Fp:

c∑
n=0

(
c

n

)( p
c+1−n

)
p

=
1

c+ 1
.

Proof. Exercise.

The following lemma is the main result of this section and its proof is a
long computation.

Lemma 18.4. Let τ ′ := (t′0, · · · , t′f−1)⊗ητ ′ and τ := (t0, · · · , tf−1)⊗ητ be two
irreducible subquotients of R(σ). If f > 1, assume there is i ∈ {0, · · · , f −1}
such that ti = p − 2 − t′i, ti+1 = t′i+1 ± 1 and ητ = ητ ′detp

i(t′i+1)−1/2(1±1)pi+1

(with i + 1 = 0 if i = f − 1). If f = 1, assume t0 = p − 2 − t′0 ± 1 and
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ητ = ητ ′dett
′
0+1−1/2(1±1)p. Then either the unique non-split Γ-extension 0 →

τ ′ → ε → τ → 0 or the unique non-split Γ-extension 0 → τ → ε → τ ′ → 0
occurs as a subquotient of R(σ).

Proof. We divide the proof into 6 parts (i) to (vi).
(i) If τ ′ and τ occur as subquotients of the same IndΓ

B χ
sα
∑
i∈J p

i
, then the

result follows from the structure of such Γ-representations (see Theorem 2.4).
So assume that τ ′ is in IndΓ

B χ
sα
∑
i∈J′ p

i
and τ in IndΓ

B χ
sα
∑
i∈J p

i
with J ′ and

J distinct. Switching τ ′ and τ if necessary, the same proof as for (ii) of
Lemma 17.12 implies that we can assume J ′ ( J . We first assume f > 1.
Using notations as in Lemmas 17.6 and 17.8 and twisting everything by ψ−1,
the same proof as the second half of the proof of Lemma 17.8 shows we can
assume J = J ′ q {j}, τ ′ ∈ IndΓ

B ζ
s, τ ∈ IndΓ

B ζ
sαp

j
and:

τ ′ = (λ0(s0), · · · , λf−1(sf−1))⊗ dete(λ)(s0,··· ,sf−1)

τ = (θ0(s0), · · · , θj(sj − 2), · · · , θf−1(sf−1))⊗ dete(θ)(s0,··· ,sj−2,··· ,sf−1)detp
j

where (s0, · · · , sf−1) is the socle of IndΓ
B ζ

s with sj ≥ 1 (we have ζ 6= ζs, see
the proof of Lemma 17.6), where θ, λ ∈ P(x0, · · · , xf−1) with θi(xi) = λi(xi)
if i /∈ {j− 1, j}, θj(xj − 2) ∈ {xj − 2, p−xj}, θj−1(xj−1) = p− 2−λj−1(xj−1)
and one of the following two possibilities occurs:

case − 1 : λj(xj) = xj − 1 θj(xj − 2) = xj − 2
case + 1 : λj(xj) = p− 1− xj θj(xj − 2) = p− xj.

(ii) As in §2, define:

J(λ) := {i ∈ {0, · · · , f − 1}, λi(xi) ∈ {p− 2− xi, p− 1− xi}}
J(θ) := {i ∈ {0, · · · , f − 1}, θi(xi) ∈ {p− 2− xi, p− 1− xi}}

and note that j − 1 ∈ J(λ), J(θ) = J(λ) \ {j − 1} and j ∈ J(θ) (or J(λ)) if
and only if θj(xj − 2) = p − xj. With the notations of Lemma 17.1, let us
work inside the representation:

0→ IndΓ
B ζ

s → GrJ
′,j → IndΓ

B ζ
sαp

j → 0

which is isomorphic by (ii) of Lemma 17.1 to IndKI (Fpv ⊕ Fpw), the action

of I being given as in (32) with ζsαp
j

instead of χsαp
j+
∑
i∈J p

i
. Let us denote

by φv (resp. φw) the unique function in IndKI (Fpv ⊕ Fpw) with support in I
sending 1 to v (resp. w). Let χτ be the character giving the action of H on
τ I1 . We define F ∈ IndKI (Fpv ⊕ Fpw) as follows:

case − 1 : F :=
∑
λ∈Fq

λ
∑
i∈J(θ) p

i(p−1−θi(si))
(

[λ] 1
1 0

)
φw + ε(τ)(−1)p

j

φw

case + 1 : F :=
∑
λ∈Fq

λp
j(p−1−θj(sj−2))+

∑
i∈J(θ)\{j} p

i(p−1−θi(si))
(

[λ] 1
1 0

)
φw
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where ε(τ) := 1 if ζsαp
j

= (ζsαp
j
)s (which implies sj = 2 and τ 1-dimensional)

and ε(τ) := 0 otherwise. There is a conflict of notations between λ ∈
P(x0, · · · , xf−1) and λ ∈ Fq but there is no possible confusion between the
two. The element F is an H-eigenvector of eigenvalue χτ and its image in
IndΓ

B ζ
sαp

j
maps to a basis of τ I1 in any quotient of IndΓ

B ζ
sαp

j
where τ is a

subrepresentation. If sj ≥ 2, this follows directly from Lemma 2.7 or Lemma

2.6 applied to τ and IndΓ
B ζ

sαp
j
. If sj = 1 (which implies θj(xj − 2) = p− xj

and we are in the case +1), this is still true but requires a small computation
together with Lemma 17.5 (the set J(θ) is then strictly larger than the set cor-
responding to τ in (ii) of Lemma 2.7, for instance it contains j, but the extra
indices i of J(θ) are harmless since they are all such that θi(si) = p−1 if i 6= j
or i = j and θj(sj−2) = p−1 and thus p−1−θi(si) = p−1−θj(sj−2) = 0).
We are going to prove that 〈K · F 〉 contains τ ′ (as a subquotient).
(iii) Consider first the case −1, which implies sj ≥ 2 and j /∈ J(θ). First, F
is fixed by K1 in any quotient of IndKI (Fpv ⊕ Fpw) coming by push-forward
from a quotient of IndKI (Fpv) = IndΓ

B ζ
s containing τ ′ as subrepresentation.

Indeed, any matrix of K1 acts on F by adding to F a linear combination of
the following vectors:

∑
λ∈Fq λ

∑
i∈J(θ) p

i(p−1−θi(si))
(

[λ] 1
1 0

)
φv∑

λ∈Fq λ
pj+

∑
i∈J(θ) p

i(p−1−θi(si))
(

[λ] 1
1 0

)
φv∑

λ∈Fq λ
2pj+

∑
i∈J(θ) p

i(p−1−θi(si))
(

[λ] 1
1 0

)
φv + ε(τ)φv.

Using Lemma 2.7 together with Theorem 2.4, one checks that these vectors
are zero in any quotient of IndKI ζ

s containing τ ′ as subobject (use sj ≥ 2,
J(θ) ( J(λ), j /∈ J(λ) and θi(si) = λi(si) for i ∈ J(θ)). A computation
yields now for δ ∈ Fq:(

1 [δ]
0 1

)
F =

∑
λ∈Fq

(λ− δ)
∑
i∈J(θ) p

i(p−1−θi(si))
(

[λ] 1
1 0

)(
1 0

p[X] 1

)
φw

+ ε(τ)(−1)p
j

φw

where:

X :=

p−1∑
s=1

(
p
s

)
p
λp
−1(p−s)(−δ)p−1s.

Note that X comes from the addition law [λ] + [−δ] ≡ [λ − δ] − p[X] (p2)
in W (Fq). Using (32), we obtain for

(
1 [δ]
0 1

)
F , up to multiplication by a
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non-zero scalar:

∑
λ∈Fq

(λ− δ)
∑
i∈J(θ) p

i(p−1−θi(si))

(
p−1∑
s=1

(
p
s

)
p
λp

j−1(p−s)(−δ)pj−1s

)(
[λ] 1
1 0

)
φv+

∑
λ∈Fq

(λ− δ)
∑
i∈J(θ) p

i(p−1−θi(si))
(

[λ] 1
1 0

)
φw + ε(τ)(−1)p

j

φw.

Rewriting this
∑pf−1

t=0 δtAt and varying δ in Fq, we get that all the elements At
are in 〈K · F 〉, in particular the element Apj−1 which is, up to multiplication
by a non-zero scalar and since J(λ) = J(θ)q {j − 1}:∑

λ∈Fq

λ
∑
i∈J(λ)\{j−1} p

i(p−1−λi(si))λp
j−1(p−1)

(
[λ] 1
1 0

)
φv ∈ IndΓ

B ζ
s.

By Lemma 2.7, this element generates τ ′ inside IndΓ
B ζ

s.
(iv) Consider now the case +1. Here, one can check using Lemma 2.7 and
calculations analogous to those of the case −1 that F is now I1-invariant
(and not just K1-invariant) in any quotient of IndKI (Fpv ⊕ Fpw) coming by
push-forward from a quotient of IndKI (Fpv) containing τ ′ as subobject. We
will thus need the action of

(
[δ] 1
1 0

)
∈ K. Using the equality (for λ 6= 0):(

[δ] 1
1 0

)(
[λ] 1
1 0

)
=

(
[λ−1] + [δ] 1

1 0

)(
[λ] 0
0 −[λ−1]

)(
1 [λ−1]
0 1

)
and the fact that F is I1-invariant and that φw is an H-eigenvector, we get
for δ ∈ Fq:(

[δ] 1
1 0

)
F =ε(τ)φw±

∑
λ∈F×q

λb(τ)+pj(2−sj)−
∑
i6=j p

isi

(
[λ−1 + δ] 1

1 0

)(
1 0
pY 1

)
φw

where we didn’t bother to check the sign, where:

Y := −
p−1∑
s=1

(
p
s

)
p
λ−p

−1(p−s)δp
−1s

b(τ) := pj(p− 1− θj(sj − 2)) +
∑

i∈J(θ)\{j}

pi(p− 1− θi(si))

and where ε(τ) := 1 if τ is the socle of IndΓ
B ζ

sαp
j

and 0 otherwise (compare
with (4) and (5)). Note that, in the case +1, we have ζsαp

j 6= (ζsαp
j
)s,
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ε(τ) = 1 implies sj = 1 and the term with λ = 0 in F is non-zero if and
only if ε(τ) = 1. This can be rewritten as follows (using (32) for the action
of
(

1 0
pY 1

)
):

±
∑
λ∈F×q

λc(τ)

(
p−1∑
s=1

(
p
s

)
p
λp

j−1(p−s)δp
j−1s

)(
[λ+ δ] 1

1 0

)
φv

±
∑
λ∈F×q

λc(τ)

(
[λ+ δ] 1

1 0

)
φw + ε(τ)φw

where:
c(τ) := −pj +

∑
i 6=j

pisi −
∑

i∈J(θ)\{j}

pi(p− 1− θi(si)).

Using θ ∈ P(x0, · · · , xf−1) and θj(xj) = p−2−xj, a small computation gives
c(τ) ≡ d(τ) modulo pf − 1 where:

d(τ) :=
∑
i∈J(θ)

pi(p− 1) +
∑
i/∈J(θ)

piθi(si),

hence one finally gets (changing λ into λ− δ):(
[δ] 1
1 0

)
F = ±

∑
λ∈Fq

(λ− δ)d(τ)

(
p−1∑
s=1

(
p
s

)
p
λp

j−1(p−s)(−δ)pj−1s

)(
[λ] 1
1 0

)
φv

±
∑
λ∈Fq

(λ− δ)d(τ)

(
[λ] 1
1 0

)
φw + ε(τ)φw. (36)

Consider the expression:

(λ− δ)pj−1θj−1(sj−1)
( p−1∑
s=1

(
p
s

)
p
λp

j−1(p−s)(−δ)pj−1s
)
, (37)

the coefficient of δp
j−1(θj−1(sj−1)+1) in (37) is (up to sign):θj−1(sj−1)∑

n=0

(
θj−1(sj−1)

n

)( p
θj−1(sj−1)+1−n

)
p

λpj−1(p−1) =
1

θj−1(sj−1) + 1
λp

j−1(p−1)

where the equality comes from Lemma 18.3 (note that one always has 0 ≤
θj−1(sj−1) ≤ p− 2). In particular, it is never zero. Now writing:

d(τ) =
∑
i∈J(θ)

pi(p− 1) +
∑
i/∈J(θ)
i 6=j−1

piθi(si) + pj−1θj−1(sj−1),
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we deduce that the coefficient of δp
j−1(θj−1(sj−1)+1) in (36) is, up to multipli-

cation by a non-zero scalar, the element:∑
λ∈Fq

λ

∑
i∈J(θ) p

i(p−1)+
∑

i/∈J(θ)
i 6=j−1

piθi(si)+p
j−1(p−1)

(
[λ] 1
1 0

)
φv.

Varying δ in Fq as for the case −1, we get that this element belongs to 〈K ·F 〉.
But since J(λ) = J(θ)q {j − 1}, this element is precisely:∑

λ∈Fq

λ
∑
i∈J(λ) p

i(p−1)+
∑
i/∈J(λ) p

iλi(si)

(
[λ] 1
1 0

)
φv

which generates τ ′ inside IndΓ
B ζ

s by Lemma 2.7. In all cases, we have that
τ ′ occurs as a subquotient of 〈K · F 〉.
(v) Let now Sτ be the unique subrepresentation of IndΓ

B ζ
sαp

j
with cosocle

τ , by the definition of F , we have a surjection of Γ-representations 〈K ·
F 〉 � Sτ (see (ii)). Denote by Q′τ ′ ⊆ IndΓ

B ζ
s its kernel (which contains τ ′

as a subquotient), Qτ ′ the unique quotient of Q′τ ′ with socle τ ′ and R the
corresponding quotient of 〈K · F 〉 obtained by push-forward. We thus have
an exact sequence of Γ-representations 0 → Qτ ′ → R → Sτ → 0 which is
a subquotient of IndKI (Fpv ⊕ Fpw). Let (w′, w) be irreducible constituents
of respectively Qτ ′ and Sτ . By Lemma 17.8, w is special as τ is. Assume
Ext1

Γ(w,w′) 6= 0, then by Lemma 17.8, w′ is also special and by (ii) of Lemma
17.12, we have:

K(τ ′) ⊆ K(w′) = K(w) ⊆ K(τ).

But the same proof as for the last part of (ii) of Lemma 17.12 shows K(τ ′) =
K(τ), hence K(τ ′) = K(w′) and K(w) = K(τ). By (ii) of Lemma 17.12
again, this implies (w′, w) = (τ ′, τ). We can thus apply Lemma 18.1 saying
that R contains as a subquotient a Γ-extension of τ by τ ′. One can easily
check that χτ doesn’t occur as an H-eigenvalue in τ ′. We can thus apply
Lemma 18.2 saying that this extension is non-split. This finishes the proof
for f > 1.
(vi) Assume finally f = 1. Going back to the beginning of (i), from Example

17.10 we can assume r0 ≥ 2, τ ′ = Symp−1−r0F2

p⊗detr0η and τ = Symr0−2F2

p⊗
detη. A completely analogous computation as the one in (iii) with F :=∑

λ∈Fp

(
[λ] 1
1 0

)
φw − ε(τ)φw (ε(τ) = 1 if r0 = 2 and ε(τ) = 0 otherwise) shows

that 〈K · F 〉 contains τ ′, and hence by (v) that the corresponding extension
is non-split.
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19 Generic Diamond diagrams and represen-

tations of GL2

We prove the main results of the paper (Theorems 1.4 and 1.5). Since there
are no generic ρ if p = 2 (see the end of §11), we can assume p > 2 all along.

We start with several lemmas. Recall δ(σ) was defined in §15 and R(σ)
in Definition 17.9.

Let ρ : Gal(Qp/Qpf ) → GL2(Fp) be a continuous generic tame represen-
tation. Let σ ∈ D(ρ) and denote by χ the action of I on σI1 . By Lemma
15.2 applied to τ = σ, the weight δ(σ) is a component of IndΓ

B χ
s. Writing

σ := (s0, · · · , sf−1)⊗ θ, it is thus of the form:

δ(σ) = (ξ0(s0), · · · , ξf−1(sf−1))⊗ dete(ξ)(s0,··· ,sf−1)θ

for a unique ξ ∈ P(x0, · · · , xf−1). Set S(ξ) := {i ∈ {0, · · · , f − 1}, ξi(xi) ∈
{xi − 1, p − 1 − xi}} as in §4. Note that S(ξ) determines uniquely ξ in
P(x0, · · · , xf−1).

Lemma 19.1. Keep the previous notations and let λ ∈ RD(x0, · · · , xf−1) or
ID(x0, · · · , xf−1) correspond to σ via Lemma 11.2 or 11.4.

(i) Assume ρ is reducible, we have:

S(ξ) = {i ∈ {0, · · · , f − 1}, λi(xi) ∈ {p− 2− xi, xi + 1}}.

(ii) Assume ρ is irreducible. If λ0(x0) ∈ {p− 2− x0, x0 − 1}, we have:

S(ξ) = {i ∈ {1, · · · , f − 1}, λi(xi) ∈ {p− 2− xi, xi + 1}}

and if λ0(x0) ∈ {p− 1− x0, x0}, we have:

S(ξ) = {i ∈ {1, · · · , f − 1}, λi(xi) ∈ {p− 2− xi, xi + 1}} q {0}.

Proof. With the usual notations for ρ as in Definition 11.7, recall we have
σ = (λ0(r0), · · · , λf−1(rf−1))⊗dete(λ)(r0,··· ,rf−1)η. (i) Let ζ ∈ P(x0, · · · , xf−1)
be the unique element such that S(ζ) := {i ∈ {0, · · · , f−1}, λi(xi) ∈ {p−2−
xi, xi+1}} with S(ζ) defined as in §4. A straightforward computation shows
that applying ζ to λ, that is computing (ζi(λi(xi))i, pushes all sequences
p− 2− ·, p− 3− ·, p− 3− ·, ·+ 1 on λ one step to the left. By definition of
δ(σ), we have thus:

δ(σ) = (ζ0(λ0(r0)), · · · , ζf−1(λf−1(rf−1)))⊗ dete(ζ)(λi(ri))dete(λ)(ri)η

which implies ζ = ξ and hence yields (i). (ii) is analogous.
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Keep the previous notations and define µξ ∈ I(y0, · · · , yf−1) as follows:

(i) µξ,i(yi) := p− 1− yi if ξi(xi) ∈ {xi − 1, xi}

(i) µξ,i(yi) := p− 3− yi if ξi(xi) ∈ {p− 2− xi, p− 1− xi}.

Lemma 19.2. We keep the previous notations.

(i) The irreducible subquotients of D0,δ(σ)(ρ) are exactly the (all distinct)
weights:

(µ0(ξ0(s0)), · · · , µf−1(ξf−1(sf−1)))⊗ dete(µ◦ξ)(s0,··· ,sf−1)θ (38)

for µ ∈ I(y0, · · · , yf−1) such that µ and µξ are compatible (see Defini-
tion 4.10) forgetting the weights such that µi(ξi(si)) < 0 or µi(ξi(si)) >
p− 1 for some i.

(ii) The graded pieces of the socle filtration on D0,δ(σ)(ρ) are:

D0,δ(σ)(ρ)i =
⊕
`(µ)=i

τ

for 0 ≤ i ≤ f − 1 and weights τ as in (38) with `(µ) as in §4.

Proof. Let δr(λ) (resp. δi(λ)) be the f -tuple of RD(x0, · · · , xf−1) (resp.
ID(x0, · · · , xf−1)) associated to δ(σ). From Theorem 14.8 applied to δ(σ),
it is enough to prove the following:

(i) ξi(xi) ∈ {xi− 1, xi} if and only if δr(λ)i(xi) ∈ {p− 3−xi, xi} (resp. for
i > 0 and δi(λ)0(x0) ∈ {p− 2− x0, x0 − 1})

(ii) ξi(xi) ∈ {p−2−xi, p−1−xi} if and only if δr(λ)i(xi) ∈ {p−2−xi, xi+1}
(resp. for i > 0 and δi(λ)0(x0) ∈ {p− 1− x0, x0}).

But this very easily follows from the equality ξi(λi(xi)) = δr(λ)i(xi) (resp.
ξi(λi(xi)) = δi(λ)i(xi)), from Lemma 19.1 and from δr(λ)∈RD(x0, · · · , xf−1)
(resp. δi(λ) ∈ ID(x0, · · · , xf−1)).

Lemma 19.3. We keep the previous notations. Let τ be an irreducible sub-
quotient of D0,δ(σ)(ρ). Then τ is a subquotient of R(σ).

Proof. We write σ[s] = (s′0, · · · , s′f−1) ⊗ θ′. Equivalently by Lemma 17.11,
it is enough to prove there is λ ∈ I(y0, · · · , yf−1) such that τ = (λi(s

′
i)) ⊗

dete(λ)(s′i)θ′. By (i) of Theorem 14.8 or of Lemma 19.2, we have:

τ = (ν0(ξ0(s0)), · · · , νf−1(ξf−1(sf−1)))⊗ dete(ν◦ξ)(s0,··· ,sf−1)θ

σ[s] = (ν ′0(ξ0(s0)), · · · , ν ′f−1(ξf−1(sf−1)))⊗ dete(ν
′◦ξ)(s0,··· ,sf−1)θ
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with ν, ν ′ ∈ I(y0, · · · , yf−1) and compatible in the sense of Definition 4.10.
Let ν ′−1 ∈ I(y0, · · · , yf−1) be the unique f -tuple such that ν ′(ν ′−1(yi)) =
yi. From the compatibility of ν and ν ′, one checks that the unique f -tuple
(λi(yi))i such that λi(yi) := νi(ν

′−1
i (yi)) is in I(y0, · · · , yf−1). This λ gives

the result. Note that one has ν ′−1
i (yi) = p− 1− ξi(yi).

If τ is an irreducible subquotient of D0,δ(σ)(ρ), by Lemma 19.3 it is in
R(σ) and one can attach to it a well-defined f -tuple µ as in Lemma 17.11.

Lemma 19.4. We keep the previous notations. Let τ be an irreducible sub-
quotient of D0,δ(σ)(ρ), µ its corresponding f -tuple as in Lemma 17.11, i(τ)
the unique integer such that τ ∈ D0,δ(σ)(ρ)

i(τ)
and j(τ) := |K(τ) \ J(τ)| with

J(τ) and K(τ) as in Lemma 17.12. Then we have:

i(τ) = j(τ) + 2|J(τ)|+ i(σ[s])− (f + 1). (39)

Proof. From (i) of Lemma 19.2, τ is of the form:

τ = (ν0(ξ0(s0)), · · · , νf−1(ξf−1(sf−1)))⊗ dete(ν◦ξ)(s0,··· ,sf−1)θ

for a unique ν ∈ I(y0, · · · , yf−1). Define S(ν) and `(ν) as in §4, we have
i(τ) = |S(ν)| by (ii) of Lemma 19.2. From Theorem 2.4 and the fact that
the Γ-representation I(δ(σ), σ[s]) (inside D0,δ(σ)(ρ)) is the unique quotient of
IndΓ

B χ
s of socle δ(σ), we have f + 1 − i(σ[s]) = |S(ξ)|. Recall from (i) of

Lemma 19.2 that ν and ξ satisfy the conditions:

ξi(xi) = xi−1 ⇒ νi(yi) ∈ {yi−1, p−1−yi, p−2−yi, yi}
ξi(xi) = p−1−xi ⇒ νi(yi) ∈ {yi+1, p−3−yi, p−2−yi, yi}

νi(yi) ∈ {p−1−yi, yi−1} ⇒ ξi(xi) ∈ {xi−1, xi}
νi(yi) ∈ {p−3−yi, yi+1} ⇒ ξi(xi) ∈ {p−2−xi, p−1−xi}.

Moreover, if λ ∈ I(y0, · · · , yf−1) is such that µi(yi) = λ(p − 1 − yi) (see
Lemma 17.11), then λ is as in the proof of Lemma 19.3 and from this proof
we get µ = ν ◦ ξ. The above conditions on ν and ξ then immediately imply
by a short computation:

J(τ) = S(ξ) ∩ S(ν) and K(τ) = S(ξ) ∪ S(ν)

where we recall J(τ) := {i, µi(xi) ∈ {xi−2, p−xi}} and K(τ) := {i, µi(xi) ∈
{xi − 1, xi − 2, p− xi, p− 1− xi}}. We thus have:

j(τ) = |(S(ξ) ∪ S(ν)) \ S(ξ) ∩ S(ν)|
= |S(ξ) ∪ S(ν)| − |S(ξ) ∩ S(ν)|
= |S(ξ)|+ |S(ν)| − 2|S(ξ) ∩ S(ν)|
= f + 1− i(σ[s]) + i(τ)− 2|J(τ)|.
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Lemma 19.5. Let ρ : Gal(Qp/Qpf ) → GL2(Fp) be a continuous tamely
ramified generic Galois representation and σ ∈ D(ρ). There exists a unique
quotient Q(ρ, σ[s]) of R(σ) such that:

(i) socK Q(ρ, σ[s]) ⊆
⊕

σ∈D(ρ) σ

(ii) Q(ρ, σ[s]) contains the Γ-representation I(ρ, σ[s]).

Moreover, we have socK Q(ρ, σ[s]) = δ(σ).

Proof. Recall that I(ρ, σ[s]) = I(δ(σ), σ[s]) (Lemma 15.2). We first prove
there is a unique quotient of IndΓ

B χ
s containing I(ρ, σ[s]) and with K-socle

contained in D(ρ): namely I(ρ, σ[s]) itself. Indeed, consider such a quotient.
If its K-socle has just one weight, then it is obviously I(ρ, σ[s]). If not, let
w be another weight of D(ρ) distinct from δ(σ) in this socle. From (ii) of
Lemma 12.8 applied to τ = σ[s] and σ′ = w, we get that δ(σ) must be a
constituent of I(w, σ[s]) inside IndΓ

B χ
s. Hence w and δ(σ) cannot be in the

same K-socle and the unique relevant quotient is thus I(ρ, σ[s]). Let Q be a
quotient of R(σ) satisfying (i) and (ii) above. One easily checks using Lemma
17.11 that none of the irreducible Jordan-Hölder factors of R(σ)/ IndΓ

B χ
s

are in D(ρ). From (i), this implies that Q induces a non-zero quotient of
IndΓ

B χ
s. From (ii), we get that this non-zero quotient must contain δ(σ)

in its socle as δ(σ) doesn’t appear elsewhere in R(σ) (use multiplicity 1 in
Lemma 17.11). Thus, this induced quotient must be I(ρ, σ[s]). Now let K
be the kernel of IndΓ

B χ
s � I(ρ, σ[s]), we have a surjection R(σ)/K � Q. If

w′ ∈ socK(R(σ)/K), w′ 6= δ(σ), then w′ /∈ D(ρ) as either w′ is a subquotient
of R(σ)/ IndΓ

B χ
s or a subquotient of I(ρ, σ[s]). Hence w′ maps to 0 in Q. One

can thus replace K by K +
∑
w′ for all such w′ and start again. We see in

the end that Q is uniquely determined and that its K-socle is just δ(σ).

Example 19.6. Assume f = 1 and write σ := Syms0F2

p ⊗ θ with s0 ≥ 1.

We have either δ(σ) = σ or δ(σ) = σ[s]. If δ(σ) = σ, then Q(ρ, σ[s]) = R(σ)
(see Example 19.6). If δ(σ) = σ[s] and s0 > 1, then Q(ρ, σ[s]) is the unique
quotient of R(σ) which is a Γ-extension (non-split by Lemma 18.4):

0→ σ[s] → Q(ρ, σ[s])→ Syms0−2F2

p ⊗ detθ → 0.

If δ(σ) = σ[s] and s0 = 1, then Q(ρ, σ[s]) ' σ[s].

The following lemma is essential:
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Lemma 19.7. Let ρ, σ and Q(ρ, σ[s]) be as in Lemma 19.5. The quotient
Q(ρ, σ[s]) contains the Γ-representation D0,δ(σ)(ρ).

Proof. If f = 1, the statement follows directly from Example 19.6 above
and §16. We assume f > 1, write σ := (s0, · · · , sf−1) ⊗ θ and let τ :=

(µ0(s0), · · · , µf−1(sf−1))⊗ dete(µ)(s0,··· ,sf−1)θ be an irreducible subquotient of
D0,δ(σ)(ρ) with µ as in Lemma 19.4. It is enough to prove the following
two facts: (i) any such τ is also a subquotient of Q(ρ, σ[s]) and (ii) the
unique K-subrepresentation Q(ρ, σ[s], τ) of Q(ρ, σ[s]) with cosocle τ is a Γ-
representation (recall Q(ρ, σ[s]) is multiplicity free as it sits in R(σ) and thus
Q(ρ, σ[s], τ) is well defined). Indeed, from (ii), the last assertion of Lemma
19.5 and Corollary 3.12, we get Q(ρ, σ[s], τ) ' I(δ(σ), τ). From (i), we get
that Q(ρ, σ[s]) contains I(δ(σ), τ) for all constituents τ of D0,δ(σ)(ρ), and
hence contains D0,δ(σ)(ρ) by Proposition 13.4. Let us prove (i). Let 0 →
τ ′ → ε → τ → 0 be a non-split (Γ-)extension that occurs as a subquotient
of D0,δ(σ)(ρ) (or equivalently as a quotient of I(δ(σ), τ)). By (ii) of Lemma
19.2 and the fact that the socle and cosocle filtrations on I(δ(σ), τ) are the
same (which follows from Corollary 4.9), we exactly have i(τ) = i(τ ′) + 1
(see Lemma 19.4 for notations). By Lemma 19.3, (i) of Corollary 5.6 and
Lemma 18.4, either ε occurs in R(σ) or the unique non-split 0 → τ → ∗ →
τ ′ → 0 occurs. Moreover, by the beginning of the proof of Lemma 18.4,
we have either J(τ) = J(τ ′) or J(τ) = J(τ ′) q {j} or J(τ ′) = J(τ) q {j}.
If J(τ) = J(τ ′), then (39) tells us j(τ) = j(τ ′) + 1 which implies only
τ ′ can be a subobject by (ii) of Lemma 17.12 and thus ε occurs in R(σ).
If J(τ) = J(τ ′) q {j}, the proof of Lemma 18.4 tells us that ε occurs in
R(σ). If J(τ ′) = J(τ) q {j}, we must have j(τ) = j(τ ′) + 3 by (39) which
is impossible by (ii) of Lemma 17.12. Thus ε always occurs in R(σ), or
equivalently in U(τ) (see Lemma 17.8). Starting again with τ ′ instead of
τ , we see that U(τ) contains all the weights of I(δ(σ), τ) and in particular
δ(σ). Now if Q is a quotient of R(σ) such that τ doesn’t occur in Q, then
U(τ) necessarily vanishes via the surjection R(σ) � Q. In particular δ(σ)
doesn’t occur in Q. As δ(σ) is the socle of Q(ρ, σ[s]), this can’t happen for
Q = Q(ρ, σ[s]), which must thus contain τ as a subquotient. Let us now prove
(ii). We claim that Q(ρ, σ[s], τ) contains no pair of distinct weights (w,w′)
corresponding to f -tuples (ν, ν ′) as in Lemma 17.11 with ν ′j(xj) = νj(xj)± 2
for one j and ν ′i(xi) = νi(xi) for i 6= j. Assume there exists such a pair (w,w′).
Swapping w and w′ if necessary, we can assume νj(xj) ∈ {xj − 2, p − xj},
ν ′j(xj) ∈ {xj, p− 2− xj} and thus J(w) = J(w′)q {j}. From (ii) of Lemma
17.12, we get also j ∈ J(τ) hence µj(xj) ∈ {xj − 2, p − xj}. We write

δ(σ) = (ξ0(s0), · · · , ξf−1(sf−1)) ⊗ dete(ξ)(s0,··· ,sf−1)θ with ξ ∈ P(x0, · · · , xf−1)
as previously and note that ξ is also the f -tuple associated by Lemma 17.11
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to δ(σ) viewed as a constituent of R(σ). We have seen in the proof of Lemma
19.4 that we have the equality J(τ) = S(ξ) ∩ S(µ) which implies j ∈ S(ξ)
i.e. ξj(xj) ∈ {xj − 1, p − 1 − xj}. Since socK Q(ρ, σ[s], τ) = δ(σ) by Lemma
19.5, there is a chain of non-split K-extensions leading from δ(σ) to w′ inside
Q(ρ, σ[s], τ) which implies K(δ(σ)) ⊆ K(w′) by (ii) of Lemma 17.12. But this
is impossible since j ∈ K(δ(σ)) but j /∈ K(w′) as ν ′j(xj) ∈ {xj, p − 2 − xj}.
As f > 1, Corollary 5.7 applied to W = Q(ρ, σ[s], τ) tells us that Q(ρ, σ[s], τ)
is a Γ-representation and we are done.

Theorem 19.8. Let ρ : Gal(Qp/Qpf ) → GL2(Fp) be a continuous generic
representation as in §11 such that p acts trivially on its determinant. Let
(D0(ρ), D1(ρ), r) be one of the basic 0-diagrams associated to ρ in §13 with
D0(ρ) as in Theorem 13.8.

(i) There exists a smooth admissible representation π of G such that:
(a) socK π =

⊕
σ∈D(ρ) σ

(b) (πK1 , πI1 , can)←↩ (D0(ρ), D1(ρ), r)
(c) π is generated by D0(ρ).

(ii) If (D0(ρ), D1(ρ), r) and (D0(ρ), D1(ρ), r′) are two non-isomorphic ba-
sic 0-diagrams associated to ρ, and if π, π′ satisfy (a), (b), (c) of (i)
respectively for (D0(ρ), D1(ρ), r) and (D0(ρ), D1(ρ), r′), then π and π′

are non-isomorphic.

Proof. Let D := (D0(ρ), D1(ρ), r). By Theorem 9.8, we have a smooth ad-
missible G-representation Ω with K-socle D(ρ) and an injection D ↪→ K(Ω).
We define π ⊆ Ω to be the subrepresentation generated by D0(ρ). By con-
struction, it satisfies (a), (b) and (c) of (i). Assume π

∼→ π′ where π and π′

are as in (ii). If D0(ρ) ⊂ π is not sent to D0(ρ) ⊂ π′, there is σ ∈ D(ρ) such
that D0,σ(ρ) ⊂ π is not sent to D0,σ(ρ) ⊂ π′. Consider the obvious induced
map D0,σ(ρ) ⊕σ D0,σ(ρ) → π′. The representation D0,σ(ρ) ⊕σ D0,σ(ρ) con-
tains D0,σ(ρ)/σ and the induced map D0,σ(ρ)/σ → π′ can’t be zero because
D0,σ(ρ) ⊂ π is not sent to D0,σ(ρ) ⊂ π′ by assumption. This contradicts
socK π

′ = D(ρ) as the K-socle of D0,σ(ρ)/σ can’t be in D(ρ) by construction
of D0(ρ). Hence D0(ρ) ⊂ π is sent to D0(ρ) ⊂ π′, and likewise with D0(ρ)I1 .
Since π ' π′, this implies (D0(ρ), D1(ρ), r) ' (D0(ρ), D1(ρ), r′) which is
impossible by assumption. Thus, we can’t have π ' π′.

By an exactly similar proof, we get:

Theorem 19.9. Let ρ : Gal(Qp/Qpf ) → GL2(Fp) be a continuous generic
representation as in §11 such that ρ is split and p acts trivially on its de-
terminant. Let ` ∈ {0, · · · , f} and (D0,`(ρ), D1,`(ρ), r`) be one of the basic
0-diagrams associated to the family (30).
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(i) There exists a smooth admissible representation π` of G such that:
(a) socK π` =

⊕
σ∈D(ρ)
`(σ)=`

σ

(b) (πK1
` , πI1` , can)←↩ (D0,`(ρ), D1,`(ρ), r`)

(c) π` is generated by D0,`(ρ).

(ii) If (D0,`(ρ), D1,`(ρ), r`) and (D0,`(ρ), D1,`(ρ), r′`) are non-isomorphic (as
basic 0-diagrams), and if π`, π

′
` are two representations satisfying (a),

(b), (c) of (i) for (D0,`(ρ), D1,`(ρ), r`) and (D0,`(ρ), D1,`(ρ), r′`) respec-
tively, then π` and π′` are non-isomorphic.

We now state an irreducibility result which is based on the results of §18.

Theorem 19.10. (i) Let ρ be as in Theorem 19.8 and assume ρ is irre-
ducible. Then any π satisfying (a), (b), (c) of (i) of Theorem 19.8 is
irreducible and is a supersingular representation.

(ii) Let ρ be as in Theorem 19.8 and assume ρ is split. Then any π` satis-
fying (a), (b), (c) of (i) of Theorem 19.9 is irreducible. Moreover, π`
is a principal series if ` ∈ {0, f} and is a supersingular representation
otherwise.

Proof. We start with (i). Let π′ ⊆ π be a non-zero subrepresentation and
σ ∈ socK π

′. We prove that D0,δ(σ)(ρ) ⊆ π′. We have a non-zero map
c-IndGK0

σ → π′ which induces a map R(σ) → π′ upon restriction to R(σ).

Let v ∈ σI1 ⊂ c-IndGK0
σ and vs := Πv ∈ (σ[s])I1 ⊂ c-IndGK0

σ. Going back to

the definition of R̃(σ) in §17 and using Lemma 17.4, note that 〈K · vs〉 =

IndΓ
B χ

s ⊆ R(σ) ⊆ R̃(σ) ⊆ c-IndGK0
σ. Let ws be the image of vs in π′, the

map R(σ) → π′ induces IndΓ
B χ

s � 〈K · ws〉 ⊂ π′. But 〈K · ws〉 actually
sits in D0,δ(σ)(ρ) ⊂ π by Lemma 15.2, hence equals I(δ(σ), σ[s]) = I(ρ, σ[s])
by construction of D0,δ(σ)(ρ). Thus R(σ) → π′ factors through a quotient
containing I(ρ, σ[s]) and with a K-socle contained in D(ρ) (as socK π

′ ⊆
D(ρ)). By Lemma 19.5, this quotient must be Q(ρ, σ[s]), hence contains
D0,δ(σ)(ρ) by Lemma 19.7. We thus get D0,δ(σ)(ρ) ⊂ π′. Starting again with
δ(σ) instead of σ, we obtain that π′ contains D0,δ2(σ)(ρ) etc. As δn(σ) = σ
for some n > 0, we get D0,σ(ρ) ⊂ π′. As this is true for all σ ∈ socK π

′, we
finally deduce, using that all weights of D(ρ) are distinct:⊕

σ∈socK π′

D0,σ(ρ) = π′ ∩
⊕
σ∈D(ρ)

D0,σ(ρ),

the intersection being taken in π. This implies that ⊕σ∈socK π′D0,σ(ρ)I1 ⊆
D0(ρ)I1 is preserved by the unique possible pairing { } on D0(ρ)I1 . By (i)
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of Theorem 15.4, we thus get socK π
′ = D(ρ) = socK π, hence π′ = π: π

is irreducible. If f = 1, we know from §16 and §10 that π is a supersin-
gular representation. If f > 1, we have dimFp π

I1 > 2 as socK π already

contains 2f weights, hence π is a supersingular representation. We prove
(ii). The irreducibility of π` is proven by a completely analogous argument
using (ii) of Theorem 15.4. If ` ∈ {0, f}, the reader can easily check, us-
ing that D0,0(ρ) (resp. D0,f (ρ)) has an irreducible socle and that D0,0(ρ)I1

(resp. D0,f (ρ)I1) is preserved by { } inside D0(ρ)I1 , that the surjective m ap
c-IndGK0

σ0 � π0 (resp. c-IndGK0
σf � πf ) cannot factor through T (c-IndGK0

σ0)

(resp. T (c-IndGK0
σf )) (see (i) of Remark 14.9 and §6 for T ). It implies that

π0 and πf are (irreducible) principal series. If ` 6= 0 and ` 6= f , then one
has dimFp π

I1
` > 2 (if f = 2 this easily follows from §16 and if f > 2, socK π`

has strictly more than 2 components), hence π` is a supersingular represen-
tation.

For F 6= Qp, there exist non-isomorphic π satisfying (i) of Theorem 19.8
for the same basic 0-diagram ([22]), thus the conditions in (i) are in gen-
eral not enough to isolate a single π. By enlarging D1(ρ), Y. Hu shows
that for each π there exists a diagram that determines π ([21]), but the
“enlarged” D1(ρ) is not (yet) explicitely known. Also, when F 6= Qp, it is
in general not true that any π (resp. π`) as in (i) of Theorem 19.8 (resp.
as in (i) of Theorem 19.9) satisfies (πK1, πI1, can) ∼= (D0(ρ), D1(ρ), r) (resp.
(πK1

` , πI1` , can) ∼= (D0,`(ρ), D1,`(ρ), r`)), but we believe that some of these π

(resp. π`) do. When ρ is reducible split, any representation ⊕f`=0π` with π`
as in (i) of Theorem 19.9 satisfies the conditions in (i) of Theorem 19.8 but
any π as in (i) of Theorem 19.8 can’t in general be decomposed as ⊕f`=0π`
(for all this see [22]), although we expect the “good” π in that case to be
of the form ⊕f`=0π`. Likewise, when ρ is reducible non-split, we expect that,
among the π constructed in (i) of Theorem 19.8, there are some (the “good”
ones) which are indecomposable with G-socle π0 and such that their other
Jordan-Hölder factors are the π`, 1 ≤ ` ≤ f , with π` as in (i) of Theorem
19.9 for ρss. All of this is true if F = Qp (§20).

As a concluding remark, we hope that the local representations of G
appearing as subobject in the cohomology modulo p of towers of Shimura
varieties of pn-level are at least among those constructed in Theorem 19.8
(ρ being the restriction to some decomposition group at p of some global
irreducible Galois representation over Fp). For evidence in that direction,
see [9].
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20 The case F = Qp

We prove Theorem 1.6 for F = Qp.

Let ρ : Gal(Qp/Qp) → GL2(Fp) be a continuous generic representation
such that p acts trivially on its determinant.

Proposition 20.1. Assume ρ is irreducible and write its restriction to iner-
tia as: (

ωr0+1
2 0

0 ω
p(r0+1)
2

)
⊗ η

for some character η and some r0 with 1 ≤ r0 ≤ p − 2. See η as a smooth
character of Q×p (via the local reciprocity map) by making p act trivially. Let
(D0(ρ), D1(ρ), r) be the unique basic 0-diagram associated to ρ in §13 (see
§16 for unicity).

(i) There is a unique smooth admissible representation π of G such that:
(a) socK π =

⊕
σ∈D(ρ) σ

(b) (πK1 , πI1 , can)←↩ (D0(ρ), D1(ρ), r)
(c) π is generated by D0(ρ).

(ii) This representation π is irreducible, isomorphic to π(r0, 0, η) (see Def-
inition 6.2) and such that:

(D0(ρ), D1(ρ), r)
∼→ (πK1 , πI1 , can).

Proof. We have D(ρ) = {σ, σ[s]} with σ := (Symr0F2

p) ⊗ η ◦ det (see §16).
We have already proven the existence and irreducibility of π as in (i) (see
§19). The unicity of π in (i) follows from π = H0(D) = π(r0, 0, η) (see

Theorem 10.1) where D := (σ⊕σ[s], σI1⊕σ[s]I1 , can) is the unique irreducible
basic subdiagram of (D0(ρ), D1(ρ), r). For the rest of (ii), it follows from
Lemmas 3.4 and 3.5 that D0(ρ) is the maximal K-invariant subspace of
inj(σ ⊕ σ[s]) such that the K-socle is isomorphic to σ ⊕ σ[s] and the space of
I1-invariants is 2-dimensional. As πI1 has dimension 2 by the second part of
Theorem 10.1, this implies the injection (D0(ρ), D1(ρ), r) ↪→ (πK1 , πI1 , can)
is an isomorphism.

Proposition 20.2. Assume ρ is reducible split and write its restriction to
inertia as:

ρ :=

(
ωr0+1 0

0 1

)
⊗ η
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for some character η and some r0 with 1 ≤ r0 ≤ p− 4 (recall ω = ω1). See η
as a smooth character of Q×p (via the local reciprocity map) by making p act
trivially. Let (D0(ρ), D1(ρ), r) be one of the basic 0-diagrams associated to ρ
in §13.

(i) There is a unique smooth admissible representation π of G such that:
(a) socK π =

⊕
σ∈D(ρ) σ

(b) (πK1 , πI1 , can)←↩ (D0(ρ), D1(ρ), r)
(c) π is generated by D0(ρ).

(ii) This representation π is the direct sum of two irreducible principal se-
ries isomorphic to π(r0, λ0, η) and π(p − 3 − r0, λ1, η) (see Definition

6.2) for some scalars λ0, λ1 ∈ F×p depending on (D0(ρ), D1(ρ), r) and
is such that:

(D0(ρ), D1(ρ), r)
∼→ (πK1 , πI1 , can).

Proof. We have D(ρ) = {σ0, σ1} with σ0 := (Symr0F2

p) ⊗ η ◦ det and σ1 :=

(Symp−3−r0F2

p) ⊗ η ◦ detr0+1 (see §16). Let χ0 (resp. χ1) be the character

giving the action of I on σ
[s]
0 (resp. σ

[s]
1 ). We have (see (30) and §19 for the

notations):

(D0(ρ), D1(ρ), r) = (D0,0(ρ), D1,0(ρ), r0)⊕ (D0,1(ρ), D1,1(ρ), r1)

where (D0,0(ρ), D1,0(ρ), r0) (resp. (D0,1(ρ), D1,1(ρ, ), r1)) is as in Example (iv)
of §10 with χ = χ0 (resp. χ = χ1, see §16). For π as in (i), let π0 (resp. π1)
be the G-subrepresentation generated by σ0 (resp. σ1), then π0 ' π(r0, λ0, η)
(resp. π1 ' π(p − 3 − r0, λ1, η)) for some scalars λi uniquely determined by
(D0(ρ), D1(ρ), r) (this follows for instance from §10 or from Proposition 6.8).
As π is generated by D0(ρ), we thus have π = π0⊕π1. The rest of (ii) follows
for instance from Proposition 6.8.

To state the reducible non-split case, we need some further work.

Let r0 be an integer, 1 ≤ r0 ≤ p − 3, and λ ∈ F×p . We first define a
basic 0-diagram D(r0, λ) := (D0(r0, λ), D1(r0, λ), can). We define D0(r0, λ)
as the following K0-representation where K1 and p act trivially (see §16 for
notations):

Symp−1−r0F2

p ⊗ detr0

Symr0F2

p ⊕
Symp−3−r0F2

p ⊗ detr0+1

.
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Note that Proposition 3.6 and Corollary 3.11 imply that D0(r0, λ) is isomor-
phic to V2p−2−r0 ⊗ detr0 . It follows from Proposition 4.13 that D0(r0, λ)I1 ∼=
χ ⊕ χs where χ : H → F×p is the character given by χ(( λ 0

0 µ )) := µr0 . Since
1 ≤ r0 ≤ p−3, we have χ 6= χs and we let vχ be a basis vector inD0(r0, λ)I1 for
the eigencharacter χ. Set vχs :=

∑
µ∈Fp(

1 [µ]
0 1

)n−1
s vχ =

∑
µ∈Fp(

[µ] 1
1 0

)vχ. The

set {vχ, vχs} is a basis of D0(r0, λ)I1 . We define a representation D1(r0, λ) of
K1 on D0(r0, λ)I1 by setting Πvχ := λ−1vχs and Πvχs := λvχ.

Theorem 20.3. Let r0, λ and D(r0, λ) be as above.

(i) Let π be the unique non-split extension (see Corollary 8.3):

0 // π(r0, λ) // π // π(p− 3− r0, λ
−1, ωr0+1) // 0,

then there exists an isomorphism of diagrams (πK1 , πI1 , can) ∼= D(r0, λ).

(ii) Let τ be a smooth representation of G with a central character such that

socK(τ) ∼= Symr0F2

p and such that there exists an injection of diagrams
D(r0, λ) ↪→ (τK1 , τ I1 , can), then the subspace 〈G · D0(r0, λ)〉 of τ is
isomorphic to π.

Proof. It follows from Theorem 9.8 that there exists an injection of diagrams
D(r0, λ) ↪→ K(Ω) where Ω is a smooth representation of G such that Ω|K is

an injective envelope of Symr0F2

p in RepK,χ. We first claim that the subspace
π′ := 〈G · D0(r0, λ)〉 of Ω is isomorphic to the extension π of (i). Corollary
6.4 implies that the subspace Fpvχ⊕Fpvχs of ΩI1 is stable under the action of
H and isomorphic to M(r0, λ) as an H-module. Proposition 6.8 implies that
〈G ·vχ〉 = 〈G ·vχs〉 ∼= π(r0, λ). Now π(r0, λ) ∼= IndGP χ and hence π(r0, λ)K1 ∼=
IndKI χ. Since Ω|K is an injective envelope of Symr0F2

p in RepK,χ, ΩK1 is

an injective envelope of Symr0F2

p in RepΓ. Lemmas 3.4, 3.5, 3.8 imply that
the image of D0(r0, λ) via the composition D0(r0, λ) → ΩK1/π(r0, λ)K1 ↪→
Ω/π(r0, λ) is isomorphic to (Symp−3−r0F2

p) ⊗ detr0+1. Let v be a basis for
the I1-invariants of this image. Since F = Qp we have ΩI1 = π(r0, λ)I1 and
since Ω|K is an injective object we obtain (Ω/π(r0, λ))I1 ∼= R1I(π(r0, λ)).
Now H acts on v by a character χα−1. The assumption on r0 implies that
χα−1 6∈ {χ, χs} thus it follows from Theorem 7.16 that the submodule 〈v ·H〉
of (Ω/π(r0, λ))I1 is isomorphic to M(p− 3− r0, λ

−1, ωr0+1). Proposition 6.8
implies that 〈G · v〉 is isomorphic to π(p − 3 − r0, λ

−1, ωr0+1). Hence there
exists an exact sequence:

0 // π(r0, λ) // π′ // π(p− 3− r0, λ
−1, ωr0+1) // 0. (40)
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This sequence cannot be split as π′ is a subspace of Ω and hence socK π
′ ∼=

Symr0F2

p. Corollary 8.3 implies then that π′ ∼= π. We thus obtain an in-
jection D(r0, λ) ↪→ (πK1 , πI1 , can). Suppose that this injection is not an

isomorphism, then Lemma 3.4 implies πK1 ∼= ΩK1 and hence Symr0F2

p occurs
in πK1 with multiplicity 2. This is impossible, since taking K1-invariants of

(40) yields an exact sequence 0 // IndKI χ
// πK1 // IndKI χ

sα . Hence

we get (i). Since by Corollary 9.11 any τ as in (ii) can be embedded into Ω
as above, we also get (ii).

Proposition 20.4. Assume ρ is reducible non-split and write its restriction
to inertia as: (

ωr0+1 ∗
0 1

)
⊗ η

for some character η and some r0 with 1 ≤ r0 ≤ p − 4. See η as a smooth
character of Q×p (via the local reciprocity map) by making p act trivially. Let
(D0(ρ), D1(ρ), r) be one of the basic 0-diagrams associated to ρ in §13.

(i) There is a unique smooth admissible representation π of G such that:
(a) socK π =

⊕
σ∈D(ρ) σ

(b) (πK1 , πI1 , can)←↩ (D0(ρ), D1(ρ), r)
(c) π is generated by D0(ρ).

(ii) This representation π is the unique non-split extension of π(p − 3 −
r0, λ

−1, ωr0+1η) by π(r0, λ, η) for some scalar λ ∈ F×p depending on
(D0(ρ), D1(ρ), r) and is such that:

(D0(ρ), D1(ρ), r)
∼→ (πK1 , πI1 , can).

Proof. This follows from Theorem 20.3 and the fact that (D0(ρ), D1(ρ), r) is

isomorphic to D(r0, λ) up to twist for some λ ∈ F×p (see §16).

Theorem 1.6 follows from all the previous propositions.
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