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1 Introduction

Fix a prime number p, an integer f > 1 and let F' be an unramified extension
of Q, of degree f. Let:

p: Gal(Q,/F) — GLy(F,)

be a continuous representation. Assuming p is “generic”, the main aim of this
paper is (i) to associate to p a (usually infinite) family of smooth admissible
representations m of GLy(F) over F, with fixed central character (matching
det(p) via local class field theory) and (ii) to prove that these representations
are all irreducible and supersingular ([4]) when p is irreducible. In the case
f=1,1ie. F =Q,, one can naturally refine this process into a correspon-
dence and associate to p a single smooth admissible representation 7(p) (see
[6], [17], [14] and the last section). However, when f > 1, this is not possible
anymore as the family becomes much too big. It is then not clear so far
how to formulate a correct “modulo p local Langlands correspondence” and
we content ourselves here with the construction and study of the family of
representations 7 associated to p.

During the genesis of this paper, the authors have experienced a succes-
sion of good and bad surprises (most of the time bad!). In particular, the
theory has revealed itself infinitely more complicated than expected at first.
Its origin is a conference which was held in February 2006 at the American
Institute of Mathematics in Palo Alto. During the open sessions, discussions
involving several mathematicians resulted in the construction for f = 2 and
for each irreducible p as above arising from a global Galois representation of
(at least) one new supersingular representation 7 of GLo(F') via global (and
slightly heuristic) arguments ([10], [16]). This representation m was such
that:

S0CGLy (0p) T = BoeD(p)0 (1)

where D(p) is the set of weights o associated to pliertia ([11], [15]) and where
SOCGL,(0p) ™ denotes the socle of 7 seen as a GLy(Op)-representation. Recall
that a weight is an irreducible representation of GLy(Op) over F, and that the
GL2(Op)-socle is the maximal semi-simple GLy(Op)-subrepresentation. Let
us emphasize that none of the smooth admissible representations of GLy(F)
that were known at the time ([25]) satisfied condition (1).

After the conference, the two authors tried to construct representations
7 satisfying (1) via purely local means and, more generally, embarked on the
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project of trying to classify all smooth irreducible admissible representations
of GLy(F) over F,. The first good surprise was that, using a generalization
of the main construction of [25], it was indeed possible to construct for f = 2
new supersingular representations of GLo(F') having property (1) for p irre-
ducible and “generic”. Unfortunately soon after, came the first bad surprise:
there was an infinity of such representations! Such a phenomena could not
happen for f = 1. A little later, we realized the situation was even worse: not
only were there infinitely many representations = satisfying (1), but a host
of other supersingular representations also existed for f = 2 with arbitrary
GL2(Op)-socles having nothing to do with that of (1) for any p. The naive
hope for a simple 1-1 local Langlands correspondence as for the case f =1
had gone away...

However, we still hoped for a simple classification of all admissible irre-
ducible representations of GLy(F). All of the above new irreducible repre-
sentations for f = 2 were constructed via a general process (available for
any local field F' with finite residue field) involving a finite group theoretic
structure called an irreducible “basic 0-diagram” (see below or §9). These ir-
reducible basic O-diagrams turn out to be much more numerous when f > 1
(just as happens with representations), so our natural hope was: may-be
there are just as many irreducible basic 0-diagrams as irreducible admissible
representations of GLy(F) over F,, as happens for f = 1?7 More work soon
convinced us that for /' unramified over Q, and distinct from Q, this was
not the case: one single irreducible basic 0-diagram could lead to an infinite
family of supersingular representations. Besides, a reducible basic 0-diagram
could also lead to irreducible representations. To have a glimpse at how com-
plicated the situation can be for f = 2 (compared to f = 1), the interested
reader should take a look at §10.

Since a full classification of smooth irreducible admissible representations
seemed too complicated, we decided to focus only on those representations
satisfying (1) and at least try to associate to p a reasonable (although usu-
ally infinite) family of such representations. Then came a good surprise. We
had noticed that extending our construction from f =2 to f = 3 seemed to
involve reducible basic 0-diagrams even in the case where p is irreducible and
hence (following our previous hope) seemed to lead to reducible representa-
tions of GLo(F'). Just after we realized this hope was erroneous, we discov-
ered that the representations of GLy(F') we could associate to p irreducible
for f = 3 were indeed irreducible even though the basic 0-diagrams were
not. This phenomena comforted us with the hope that we were constructing
interesting representations in that case. Finally, to extend these results from
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f = 2,3 to arbitrary f (including the cases where p is reducible), we found
that the condition we needed on the basic 0-diagrams was a certain multi-
plicity one assumption together with a maximality condition (see below or

§13).
Let us now explain with more details the main results of this paper.

Let I € GLy(Op) be the Iwahori subgroup of upper triangular matri-
ces modulo p, I1 C [ its maximal pro-p subgroup, K; C I; the first con-
gruence subgroup of GLy(Op) and R C GLo(F) the normalizer of I in
GLy(F). If x : I — F, is a smooth character, let x* := x((5¢) - (26)_1)
be the conjugate character. Our main idea to construct representations
7 of GLy(F) over F, is to first construct what we ultimately hope to be

the “right” triple (7%, 77t can). Here 7% is seen as a representation of
GLy(Or)/ K, = GLy(F,) where F, is the residue field of O, 7't is seen as a
representation of &; and can is the canonical injection.

Theorem 1.1. Fiz a Galois representation p as above and assume p is
generic (Definition 11.7).

(i) There exists a unique finite dimensional representation Do(p) of GLa(F,)
over F,, such that:

(a) socar,r,) Do(p) = @oen(n)@

(b) each irreducible o in D(p) only occurs once as a Jordan-Holder
factor of Dy(p) (hence in the socle)

(c) Do(p) is mazimal for properties (a) and (b).
(11) Each Jordan-Hélder factor of Dy(p) only occurs once in Dy(p).

(i1i) As an I-representation, one has:

Dip)"~ P xex

certain (x,x%)
x#x°

(in particular Do(p)™ is stable under x — x°).
(iv) Assume p is tamely ramified, that is either split or irreducible, then:
dimg Do(p)" =37 £1

with + in the reducible case and — in the irreducible case.



(v) Assume p is reducible non-split and let d € {0,---, f — 1} such that
|D(p)| = 2, then:
dimg Dy(p)" = 277937,

Let us point out the following important comment concerning the above
theorem. First, (i) is a general fact that works for any set of distinct weights
(not just the sets D(p)), see §13. But (ii) seems quite specific to the combi-
natorics of the weights of D(p), see §12. In particular, when p is reducible
non-split, we rely in (ii) on a property of D(p) which we call being of Galois
type (see §11). Moreover, to construct and study the representation Dg(p),
in particular to prove (iv) and (v) above, we need a fine knowledge of the
injective envelope of a weight that we couldn’t find in the literature (where
the results were not strong enough and only available for SLy(FF,)). We were
therefore forced to provide our own proofs (see §§2 to 4). For instance, let
o= Sym’"oﬁi ®F, (Sym’"lFf,)F]r ® - O, (Syrlrlrl’*lF;)Frf_1 be a weight with
all 7; in {0,--- ,p — 2} (see below for notations) and let V, be the maximal
representation of GLo(F,) with socle o such that o occurs only once in V.
We completely determine the structure of the representation V,, including its
socle and cosocle filtrations (see Proposition 3.6 and Theorem 4.7). We also
completely determine the structure of the GLy(F,) representation Dy(p) in
Theorem 1.1 when p is tamely ramified: see §13 and §14 for details.

Let us call a basic 0-diagram any triple D := (Dy, Dy, r) where Dy is a
smooth representation of GLy(Or)EF* over F, such that p € F* acts trivially,
D, a smooth representation of K over Fp and r : Dy — Dy an injection induc-
ing an I F'*-equivariant isomorphism D; — D(I)l. For instance (71, 71 can)
for 7 a smooth representation of GLy(F) over F, is such a diagram. Let us
say that a basic 0-diagram is irreducible if it doesn’t contain any non-zero
strict basic subdiagram (in the obvious sense).

Theorem 1.2. Let D = (Dy, Dy,7) be a basic 0-diagram such that Dy is
finite dimensional and Ky acts trivially on Dy.

(i) There exists at least one smooth admissible representation w of GLa(F)
over F,, such that:

(a) sock ™ = sock Dy
(b) (7K1 7t can) contains D
(c) 7 is generated by Dy.

(i1) Assume D is irreducible. Then any 7 satisfying (a), (b), (c) of (i) is
irreducible.



This theorem has to be thought of as an existence theorem only, as unicity
in (i) is wrong in general. Moreover, it has nothing to do with F' unramified
over Q, and works for any local field F' with finite residue field, see §9 (it
is a special case of Theorem 9.8 by taking 7 to be the G-subrepresentation
generated by Dy). The idea is to build 7 inside the injective envelope Inj Dy
of the GLy(Op)-representation Dy in the category of smooth representations
of GLy(OF) over F,. Roughly speaking, the main point is to prove one can
non-canonically extend the action of I on Inj Dy to an action of K such
that (Inj Do, Inj Dy,id) contains D (up to isomorphism), which is possible
as injective envelopes are very flexible. Then the two compatible actions of
GL2(OF) and K; on the same vector space Inj Dy glue to give an action of
GLy(F) and we define 7 as the subspace generated by Dy. The whole pro-
cess is highly non-canonical both because the action of GLy(Op) on Inj Dy
is only defined up to non-unique isomorphism and because the extension to
an action of K involves choices. Note also that the converse to (ii) is wrong
in general: reducible basic 0-diagrams (in the above sense) can lead to 7 as
in (i) being irreducible (we provide ample examples in the sequel). However,
one can prove under certain mild conditions that any admissible irreducible
7 gives rise to an irreducible basic “e-diagram” for some e > 0, see Theorem
9.13. Unfortunately, basic e-diagrams when e > 0 are much more difficult to
handle than basic 0-diagrams.

Let us now go back to the setting of the first theorem and assume that
p acts trivially on det(p) (via the local reciprocity map) which is always
possible up to twist. One can use (iii) of Theorem 1.1 to extend the action
of I on Dy(p)* to an action of K. Moreover, multiplicity 1 in (ii) implies
that this extension is unique up to isomorphism and we denote by D;(p) the
resulting representation of K. The idea is then to use Dy(p) and D;(p) to
associate a basic 0-diagram to p but one needs to choose an I F'*-equivariant
injection 7 : D1(p) — Dy(p). Up to isomorphisms of commutative diagrams,
it turns out there are infinitely many such injections as soon as f > 1. Denote
by D(p,r) := (Do(p), D1(p),r) any such basic 0-diagram. Most of the time,
D(p,r) is not irreducible, but one can prove the following structure theorem:

Theorem 1.3. Let p : Gal(Q,/F) — GLy(F,) be a continuous generic rep-
resentation such that p acts trivially on det(p) and let D(p,r) be one of the
basic 0-diagrams associated to p.

(i) Assume p is indecomposable, then D(p,r) cannot be written as the di-
rect sum of two non-zero basic 0-diagrams.



(i1) Assume p is reducible split, then we have:

f
o=

D<p77a) = @D(pﬂa@)

0

where D(p,r) is a non-zero basic 0-diagram that cannot be written as
the direct sum of two non-zero basic 0-diagrams.

In fact, D(p,re) = (Doe(p), D1.4(p), re) where Dy 4(p) and Dy 4(p) only de-
pend on p and not on r. When ¢ varies, the GLy(F,)-representations Dy ¢(p)
do not have the same flavour. For instance Dg(p) and Dy f(p) have an ir-
reducible socle but this is not the case for the other Dy (p). Note that the
basic 0-diagrams D(p,r,) are usually not irreducible.

Applying (i) of Theorem 1.2 to the diagrams D(p,r), one gets:
Theorem 1.4. Keep the setting of Theorem 1.35.

(1) There exists a smooth admissible representation m of GLa(F') such that:
(a) sock T =B,y O
(b) (751 7l can) contains D(p,r)
(c) w is generated by Dy(p).

(i1) If D(p,r) and D(p,r") are two non-isomorphic basic 0-diagrams asso-
ciated to p, and w, 7' satisfy (a), (b), (c) respectively for D(p,r) and
D(p,r"), then m and @' are non-isomorphic.

The proof of (ii) crucially relies on property (i) of Theorem 1.1 defining
Dy(p). We also have an exactly similar theorem replacing everywhere 7 by
e and D(p,r) by D(p,r,) for 0 < ¢ < f (see Theorem 19.9).

For a given generic p, the family of all 7 satisfying (i) of Theorem 1.4 for
all D(p, ) is the family of admissible representations of GLy(F') we associate
to p in this paper. One big task, which we only start here, is to better under-
stand this family in order eventually to rule out some of the representations it
contains. For instance, some of the representations 7 in this family are such
that w' contains strictly Di(p) ([22]). One could thus only consider those
7 in the family satisfying (71, 7t can) ~ D(p,r). L. Dembélé’s appendix
in [9] suggests that there should at least exist some 7 with 7/* = D;(p). In
another direction, [8] suggests a refinement based on the condition that a
certain (¢, I')-module associated to a 7 in this family should be exactly the
(¢, I')-module of the tensor induction of p from F' to Q,. However, those



two refinements are probably still not enough to select, e.g., a finite subset
of representations in the above infinite family of representations associated

to p (if ' # Qp).

Theorem 1.3 suggests that the right GLo(F')-representations associated
to p should also somehow satisfy the same properties as D(p,r), i.e. should
be indecomposable (resp. semi-simple) if and only if p is. We at least have
the following irreducibility result:

Theorem 1.5. Keep the setting of Theorem 1.3.

(i) Assume p is irreducible. Then any w as in (i) of Theorem 1.4 is irre-
ducible and is a supersingular representation.

(i1) Assume p is reducible split. Then any my as in (i) of Theorem 1.4 for
D(p,ry) is irreducible. Moreover, 7, is a principal series if £ € {0, f}
and 1s a supersingular representation otherwise.

For instance, when p is semi-simple split, (ii) of Theorem 1.3 together
with (ii) of Theorem 1.5 imply that the representations @Lom belong to the
family associated to p and are semi-simple. The proof of Theorem 1.5 is
too technical to be described here (in particular it can’t follow from (ii) of
Theorem 1.2 as the basic 0-diagrams involved are not irreducible). It relies
on controlling GLy(Op)-extensions between weights in certain quotients of
the compact induction C—Indgizgg; px 0 (see Lemma 18.4). This uses com-
putations with Witt vectors and we suspect that the argument here breaks
down when F' is ramified over Q,. The existence of many non-split such
extensions, together with Theorem 1.3, is responsible for the irreducibility of
the above representations 7 or 7, (see §19). Note that the proof requires one
to distinguish which GLy(Op)-extensions between two weights are actually
GL,(F,)-extensions, which is done in detail in §5.

For some time, we hoped that, given a basic 0-diagram D(p, ) as in The-
orem 1.3, there was a unique smooth representation 7 of GLy(F') generated
by its Kj-invariants vectors and such that (7%, 771 can) ~ D(p,r) (and we
even dared state this as a conjecture!). However, due to recent work of Y.
Hu ([22]), this statement is false when F' # Q, (i.e. such a representation, if
it exists, is in general not unique). Hu went on in [21] to associate to 7 what
he calls a canonical diagram (which is not a basic 0-diagram in general) that
contains D(p, r) (more precisely that contains ((GL2(OF) - Di(p)), D1(p), 7))
and that uniquely determines w. However, the explicit computation of this
canonical diagram when F' # Q, is still unknown.



For F' = Q,, everything works well: our basic 0-diagram determines 7
and we have the following result:

Theorem 1.6. Assume F' = Q, and keep the setting of Theorem 1.3.

(i) There exists a unique (up to isomorphism) smooth representation w(p,r)
of GL2(Q,) which is generated by its Ki-invariant vectors and such
that:

(z(p, )", m(p, 7)™, can) = D(p, ).
(i1) If p is irreducible, this representation is irreducible.

(111) If p is semi-simple, then w(p,r) ~ 7(p,r)o®mw(p, 7)1 where w(p,r)s (¢ €
{0,1}) is a smooth irreducible admissible principal series of GLa(Q))
such that (W(p, T>£(177T<p7 T)él ) Can) = D(p7 TZ)‘

(iv) If p is indecomposable, then 7w(p,r)™ =~ w(p™=, r%)o@7(p™, r**); where p*
is the semi-simplification of p and w(p*, 1), (¢ € {0,1}) is a smooth
irreducible principal series as in (). Moreover, the GLay(Q,)-socle of
m(p,r) is w(p*=, ™).

Cases of this theorem were already known for a long time thanks to [6],
[14] or [17] but we provide here an essentially complete proof (§20). The
main novelty concerns the case (iv) (p reducible non-split) where we corre-
spondingly have a non-trivial extension between two principal series. The
existence of such extensions was already known (see [14] and [17]) but it was
not known that, when p is generic, they are completely determined by their
Ki-invariants. Our proof relies on the computation of the first derived func-
tor H'(I;,7) of the functor m — 7't as a module over the Hecke algebra of I;
when 7 is a principal series (see Theorem 7.16). As the proof is not substan-
tially longer, we give it for all extensions F' of Q, (even ramified) although
we only use it for F' = @Q,. An interesting fact is that this computation
shows the appearance of supersingular Hecke-modules ([33]) in H'([y,7) if
and only if F'is not Q,, which seems to be consistent with the appearance
of the D(p,r) for 1 < ¢ < f —11in (ii) of Theorem 1.3 when f > 1. We are
confident that Theorem 7.16 will find other applications in the future. Our
method for computing extensions extends to supersingular representations
of GLy(Q,), (unlike [14] and [17]), see [27]. Let us add that, for f = 1, the
canonical diagram of [21] is exactly ((GL2(OF) - D1(p)), Di(p), 7).

An exegesis to this paper, much easier to read but lacking many techni-

cal proofs, is available in [7]. The reader will have realized that this paper
contains more questions than answers. Apart from understanding the family
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of representations m we associate to a given p (that is, the representations
constructed in Theorem 1.4) it seems to us that the most important problem
is to prove that the representations of GLo(F) that appear as subobject in
the étale cohomology modulo p of towers of p-power level Shimura varieties
(over totally real fields at places above p where the real field is unramified)
belong to such families. The papers [18] and [9] give first important steps
in that direction. If so, then comes the question of the cohomological mean-
ing of the various “parameters” r of the family (D(p,r)),: for instance can
several distinct r “occur” (via some 7 as in Theorem 1.4) on various coho-
mology groups for a given p? The paper [8] (see also [9, §8]) singles out a
few parameters r, but most of them remain mysterious. One can also wonder
how one can build the right GLs(F')-representations associated to p when p
is not generic (for example trivial). Also, can one extend the constructions
via (¢,I")-modules of the case F' = Q, ([14], [5])? Despite partial results
([8], [34]), it is still not known how to (or if one can) produce functorially
a finite dimensional (¢, I')-module from a finite length admissible 7. The
case where F' is ramified over Q, is largely open although a set of weights
analogous to D(p) exists thanks to [28] (see however [19] and [29]). And
there still simply remains the open problem to classify all supersingular rep-
resentations of GLy(F) over F, when f > 1. Note that the non-supersingular
representations of GL, (F) over F, are now well understood thanks to [20] up
to understanding the supersingular representations of GL,,(F) for m < n.
Finally, let us point out that the p-adic theory is not expected to be simpler
(see [26]).

Let us now quickly describe the organization of the paper.

In 8§82 to 4, we provide the necessary results or references on the repre-
sentation theory of the group GLo(F,) over F,. In §5, we study GLy(Op)-
extensions between two weights, in particular we explain which such exten-
sions are GLy(FF,)-extensions. In §6, we give preliminary material on the
Hecke modules for I; associated to principal series of GLy(F"). This material
is used in §7 to compute the Hecke module H!(I;,7) when 7 is a principal
series. This computation is then used in §8 to construct extensions between
principal series for /' = @, and to show that, in that case, a principal se-
ries has no non-trivial extension with a supersingular representation. In §9,
we develop a general theory of diagrams for any local field F' with finite
residue field and we prove Theorem 1.2. In §10, we give the most obvious
examples of basic 0-diagrams, in particular we list all irreducible such dia-
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grams for F' = Q,, and we show that the situation gets more complicated
when F' # Q,. In §11, we define generic Galois representations p and re-
call the set of weights D(p) associated to them in [11]. In §12, we prove a
combinatorial unicity Lemma involving these weights which is used in §13
to prove (ii) of Theorem 1.1. In §13, we also prove (i) and (iii) of Theorem
1.1 and define the basic 0-diagrams (Dy(p), D1(p),r). In §14, we study more
closely the GLy(IF,)-representation Dy(p) and prove (iv) and (v) of Theorem
1.1. In §15, we prove Theorem 1.3. In §16, we give explicitly the diagrams
(Do(p), D1(p),r) when f =1and f = 2. In §17, for each non-trivial weight
we define and study a GL2(Op)-subrepresentation R(o) of C-Indgizggl) P

We use these results in §18 to prove that R(o) contains many non-split ex-
tensions between weights. In §19, we prove Theorem 1.4 and use the results
of §817 and 18 to prove Theorem 1.5. Finally, in §20, we prove Theorem 1.6.

Let us now fix the main notations of the text.

Throughout the paper, we denote by Op a complete discrete valuation
ring with fraction field F', residue field F, = F,;, and maximal ideal pp.
We fix a uniformizer @ of Op which is p when F' is unramified over Q, (so
pr = wOp). We also fix once and for all an embedding F,r — F,.

We let I := SLy(F,), I' := GLy(F,), B C I' the subgroup of upper
triangular matrices, U C B the subgroup of upper unipotent matrices, H
the subgroup of diagonal matrices, K := GLy(OFr) and I C K the subgroup
of matrices that are sent to B via the reduction map K — I'. Recall that
we have a group isomorphism H = B/U and a bijection K/I — I'/B. We
also denote by U*® the subgroup of lower unipotent matrices. For m > 1, we
define the following subgroups of K:

1+pp ppt > (1 +pE PR >
I, = m m d K, = m m |-
( Pr T+ pF o Pr 1+ pF

For instance, I; C I is the subgroup of matrices that are sent to U C B via
K — T. We set G := GLo(F), Z := F* the center of G, Ry := KZ and &
the normalizer of I in G. Welet s := (93), ns:= (9 ') and IT:= (2 §). We
let P C G (resp. P*:=sPs™! C G) be the subgroup of upper (resp. lower)
triangular matrices and 7" := P N P? the diagonal matrices. Recall that we
have 8 = IZ I [ Z11.

All representations are over Fp-vector spaces. We denote by Repp (resp.
Repg, Repg, Rep;, Repyg , etc.) the category of finite dimensional (resp.

12



smooth) representations of I' (resp. G, K, I, K,,, etc.) over F,. If S € Repr,
(resp. Repq, Repy, etc.) and E C S is any subset, we denote by (I" - E)
(resp. (G- E), (K - E), etc.) the subrepresentation of S generated by E
under the action of the group. If S € Repp, we denote by inj S the injective
envelope of S in Repp ([31, §14], [25, §4]) and if S € Repy (resp. Rep;),
we denote by Inj.S the injective envelope of S in Repy (resp. Rep;) ([25,
§6.2]). If x : F* — F: is a smooth character, we denote by Repg , (resp.
Repg ,, Rep I,x) those smooth representations which have central character
x- If S € Repr is non-zero and indecomposable, we denote by (.;)o<; (resp.
(5%)0<i) the graded pieces of its socle filtration (resp. of its cosocle filtration,
also called its radical filtration) with Sy # 0 (resp. S° # 0) (see e.g. [1,
§1.1]). We denote by socr S = Sy its socle and by cosocr S its cosocle, that
is, its maximal semi-simple quotient. If S € Repy,, we denote by sock S
its K-socle. If G’ C G is a closed subgroup and R a smooth representation
of G' on an Fp—vector space, we denote by c¢-Ind% R the Fp—vector space of
functions f : G — R such that f(¢'g) = ¢ - f(9) (¢ € G', g € G) and such
that the support of f is compact modulo G’. The group G acts on c—Indg, R

by right translation on functions. If y : B — F: is a smooth character,

we denote by Indy x the Fp—vector space of functions f : [' — Fp such that
f(by) =x(b)f(y) (b€ B, v €I') with left action of I' by right translation on
functions. Likewise with Ind¥ y.

If v: H— F: is a character, we denote_by x*® the character x*(h) :=
X(shs) where h € H. We denote by a : H — IE‘; the character:

that we also see as a character of B or [ via I - B — H. If ¢ is an irre-
ducible representation of I' over F, and x : [ — IE': the character giving the
action of I on o', we denote by ol* the unique irreducible representation

of T over F, which is distinct from o and such that I acts on (ol¥)t via y*
(we can’t use o® which denotes the conjugation of o by s). For = € F; , We
let 0, : G — F: , g — xvdet9)) where val is the valuation normalized by
val(w) = 1.

We call a weight an irreducible representation of K (hence of I') on F,,.
A weight can be written:

Sym™F, @5 (Sym"F)™ @ - @ (Syw - F)" T wr p (2)

P
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where the r; are integers between 0 and p — 1, n is a smooth character
O — F; , I acts on the first Sym via the fixed embedding F,; — Fp and
on the others via twists by powers of the Frobenius Fr where Fr(x) := a?
(x € Fpr). Throughout the text, we often denote by (rg,---,rs_1) ® n the
representation (2) (although sometimes (ro,--- ,7r7_1) just means the corre-
sponding f-tuple, the context avoiding any possible confusion). For instance

if o = (ro,--+,7y-1) then ol =(p—1—ry,---,p—1— ry-1) ®detzf£olpi”.

We normalize the local reciprocity map so that it sends a geometric Frobe-
nius to a uniformizer. Using the fixed embedding F,,; — IF,,, we define:

w:0p = Op/wOp ~F,; — F,.
When F = Q, is unramified, we define:
wy : Gal(Q,/Q,s) — F; (3)

via the local reciprocity map as the unique character which is the reduction
modulo p on Z;f and which sends p to 1.

The first author is very much indebted to the American Institute of Math-
ematics and the participants of the Palo Alto conference on p-adic represen-
tations and modularity held there in February 2006. In particular, he thanks
K. Buzzard, F. Diamond, M. Emerton, T. Gee and the organizers D. Savitt
and K. Kedlaya. Parts of the paper were written when the second author vis-
ited I.H.E.S.7 supported by the program “Large Infrastructures for European
Research”, and Université Paris-Sud, supported by Deutsche Forschungsge-
meinschaft. The second author would like to thank these institutions.

2 Representation theory of I' over I, I
In this section, we study the structure of the principal series of I' over F,,.

Fix o := (ro, -+ ,7y-1) ® n a weight. Then B acts on ¢V by a character:

a * ,
(o3

where r := Z{;(} p'r;. Recall the space Ind} x (resp. Ind} x*) has dimension
¢+ 1 and is isomorphic to Ind¥ y (resp. Ind¥ x*) in an obvious way. We now
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recall results on the structure of Ind} x* and IndY; x, mainly from [3]. First,
we give its Jordan-Holder components.

Let (zo,---,xp_1) be f variables. We define a set P(zg, -+ ,25_1) of
f-tuples X := (Ao(z0), -+, Ap—1(zf_1)) where \;(z;) € Z £ z; as follows. If
f =1, )\0(330) S {Io,p —1- .’13’0}. If f > 1, then:

(i) N(x;) € {wj,w; —1L,p—2—wy,p—1—a;} fori € {0,--- , f— 1}

(it) if \;j(x;) € {xs, ; — 1}, then \iy1(wiq) € {wip1,p—2 — w31}

(iii) if \;(z;) € {p—2—m;,p—1—x;}, then \jy1(wi01) € {p—1—xi11, 01— 1}
with the conventions x; = xp and Af(xf) = Ao(xo).

For A € P(zo,- - ,x4_1), define:

-1

~

e(A) = %( ' p' (i — Az’@i))) if Ap1(wpa1) € {wypr, 2520 — 1}
F-1
e(N) = %(pf -1+ Zp’(xZ — )\,(xz))> otherwise.

The following straightforward lemma is left to the reader.
Lemma 2.1. One has e(\) € Z & @) Za,.

Lemma 2.2. The irreducible subquotients of Indgx or Indg x°® are exactly
the (all distinct) weights:

()‘O(TO)7 LR )\f—l(rf—l)) ® dete(k)(ro,... 7rf_l)77

for X € P(xzg,--- ,xy_1) forgetting the weights such that \;(r;) < 0 for some
1.

Proof. See [15, Prop. 1]. O
For A € P(zg, -+ ,x4_1), we define:

and set () := [J(A)]. IEX, XN € P(zo,- -+ ,2y-1), we write X < X if J(\) C
J(A). If 7 is an irreducible subquotient of Ind}; x* and A € P(zq,--- , 25 1)
its associated f-tuple by Lemma 2.2, we set £(7) := ¢(\). We also write
7/ < 7 if the corresponding f-tuples X, \ satisfy ' < A. The following
lemma is well known.
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Lemma 2.3. Assume x = x°, then:
Indp x = Indp x° =~ (0,---,0) @& (p—1,--- ,p— 1) @n.

The following theorem is easily derived from the results of [3]. It can also
be derived from Theorem 4.7 below.

Theorem 2.4. Assume x # x°.

(i) The socle and cosocle filtrations (see e.g. [1, §1.1]) on Indy x* are the
same, with graded pieces:
(Ind} x*) @ T

L(T)=1
for0<i< f.
(i) We have (Indj x); = (Indjz x*)_

(iii) Let T be an irreducible subquotient of Indy x* and U(r) the unique
subrepresentation with cosocle 7. Then the socle and cosocle filtrations
on U(T) are the same, with graded pieces:

@r

e(r!)
’<T

for 0 <i </{(7).

(iv) Let T be an irreducible subquotient of Indy x* and Q(7) the unique
quotient with socle T. Then the socle and cosocle filtrations on Q(T)
are the same, with graded pieces:

(Q(7)); = @ 7’

L(t!)y=i+L(T)

<t/

for 0 <i< f—(T).

Let ¢ € Ind}; x* with support in B such that ¢(u) = 1 for all u € U. In
particular, ¢ is U-invariant and H acts on ¢ via the character x® (we recall

that x*: B — F; is the character (§ ) — d'n(ad)). For 0 < j < q—1, set:
—Y W ()\ 1)
AE€F,

with the convention 0° = 1 and 0971 = 0. If y # x*, or equivalently 0 < r <
q — 1, fy is the “other” U-invariant element in Ind} x*. The following two
easy lemmas are left to the reader.
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Lemma 2.5. (1) The group H acts on f; via the character xa ™7 = x*a™ 7,
(ii) The set {f;,0 < j <q—1,¢} is a basis of Ind}; x°.

Lemma 2.6. Assume x = x°. Then fo+n(—1)¢ is an H-eigenvector and a
basis of (0,---,0) ®n, while {f;,0 < j < q—2, fo_1 +n(—=1)¢} is a basis of
H-eigenvectors for (p—1,--- ;p—1)®@n.

We now describe the analogous result for xy # x*. Note that o is then the
socle of Ind% x* by Theorem 2.4.

Lemma 2.7. Assume x # x°. With the notations of Lemma 2.2, let 7 :=
(Mo(70), -+, Ap1(rp_1)) ® det®™Torr=Up be an irreducible subquotient of
Ind} x°.

(i) Assume T = o. Then the following H-eigenvectors of Indl x*:
fsr=ipgn 0= di <rinot all dy=ri; fr +0(=1)(-1)"¢
form a basis of H-eigenvectors of o inside Ind x°.

(i) Assume T # o. Then the following H -eigenvectors of Ind} x*:
fz{:_()lpidi’ 0<d; <N(ry)if i¢ JN), p—1=XN(r;)<d;<p—1ifieJ(N)
map to a basis of H-eigenvectors of T in any quotient of Indy x* where
T 18 a subrepresentation.

Proof. Using the equality for A # 0:
(5 1) ()\ 1> _ (/\1 +6 1) ()\ 0 > <1 )\1>
1 0)\1 0) 1 0/)\0 =xtJ\0 1

and the fact that ¢ is U-invariant and an H-eigenvector of eigencharacter x*,
we get for 0 € Fy:

(‘f (1)) fo = o401 3 (A (“1*5 é)eﬁ

PYSIipe
= o0 0o () e @
A€F,
and for 1 <j3<q¢qg—1:

(1 0)5 = an T eaw (U o

AEFg

= aDEY S0 (e @

AeF,
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We prove (i). As (Indj x*)V is generated by f; and ¢ and as ¢ generates
Ind}; x*, we have that fy generates o¥. As f, is U-invariant, it is enough to
compute (93) fo- By (4), we have:

((15 é) fo=(@+n(=D)(=1)f) +n(-1)(=1)" > (2)(—6)T‘dfd

0<d; <r;
d#r
where d := sz:_ol p'd;. This implies (i) by varying ¢ in F,. We prove (ii).
Let U(1)o := Ker(U(7) — 7) (see (iii) of Theorem 2.4 for U(7)), it is enough
to prove that the image of the elements (ii) in the quotient (Indj x*)/U(7)o
form a basis of 7. Using the equality:

(01)(o)=(1"0)

one easily checks that fs~ _ pi(p-1-1,(r,)) Is U-invariant in (Ind%, x*) /U (7)o.

By (i) of Lemma 2.5, B acts on it by ya~ i€/ PP=1=20)) which is also the
action of B on 7Y, hence it generates 7 in (Ind}; x*)/U(7)o. Now a calculation
shows that for A € F:

N2 o) PHe=1=Xi(r0) _ \Eicso) P (0= D+ g 00 PP A ()
)

hence, by (5), we have as previously in Ind}; x*:

((15 (1)) fZiEJ()\)pi(p—l—)\i('r‘i)) = U(—l)(—l)r Z (;) (_5)C_dfd

0<d; <X;(ry) if i¢J(X)
0<d;<p—1 if i€J(\)

where ¢ == 37,500 P'(p — 1) + X000 PAi(r) and d = S/l pid;. But in

(Ind}; x*)/U (7)o and arguing by induction on £(7) = |.J()\)| starting from (i)
(where £(7) = 0), we have in particular:

frrn(=1)(=1)¢ = 0 (6)
Ja = 0

for d = S2170 pid; with 0 < d; < \(ry) if i ¢ J(N), 0<d; <p—1ifie J\)
with at least one ¢ € J(A) such that d; < p—1—X;(r;) (one checks using (iii)
of Theorem 2.4 and (ii) above with the induction that these elements are in
U(7)o). By (6), the only f; remaining in (Ind; x*)/U (7)o are exactly those
in (ii). We get the result by varying ¢ in IF,. O
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3 Representation theory of I' over Fp 11

In this section, we study the structure of the injective indecomposable rep-
resentations of I' over IF,, and prove some useful technical results.

We start with the description of the irreducible components of these injec-
tive envelopes (without the multiplicities). Let (zg,--- ,zs_1) be f variables.
We define a set Z(xo, -+ ,xp-1) of f-tuples A := (Ao(x0), -, Ap—1(xp_1))
where \;(x;) € Ztx; as follows. If f =1, Ao(zo) € {x0,p—1—20,p—3—2x0}.
If f > 1, then:

(i) Ni(z) € {wg,i — Loy + 1, p—2—wxy;p—3 —x5,p— 1 —x;} for i €
0, f—1}

(ll) lf )\z(xz) - {I“l’i — 17ZEZ' + 1}, then AZ‘+1(ZL‘Z‘+1) S {xi—l—hp -2 — [L‘i+1}

(ili) if Ni(xi) e {p—2—a5,p—3 — x5, p— 1 —x;}, then A1 (2iq1) € {2541 —
Lzim+1,p—3—21,p—1—xi1}

with the conventions x; = xp and Af(xf) = Ao(xp).

For A\ € Z(xg, -+ ,x5_1), define:

f-1
1 |
e(\) = §<;p(xi—)\i(xi))> if A (w1) € {oyor, 251 — Loy + 1}
1 =
_ Lrg i\ (o ~
e(N) 2<p 1—|—Z‘z_;p(xZ /\,(xz))) otherwise.

The following straightforward lemma is left to the reader.
Lemma 3.1. One has e(\) € Z P @i:ol ZLx;.

Let 0 := (ro,-- ,74—1) ® n be a weight. The following lemma makes
explicit the weights which are subquotients of injo (counted without multi-
plicities).

Lemma 3.2. (i) Assume (ro,--- ,rp_1) # (0,---,0) and (ro,--- ,rp_1) #
(p—1,---,p—1). The irreducible subquotients of inj o (without multi-
plicities) are exactly the (all distinct) weights:

()\O(TO)7 R )\ffl(rffl)) ® dete(A)(TO’ ’Tffl)rr]

for X\ € I(zg,--- ,xp_1) forgetting the weights such that \;(r;) < 0 or
Ai(r;) > p—1 for some i.
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(it) Assume (ro,--- ,ry—1) = (0,---,0). The irreducible subquotients of
injo (without multiplicities) are exactly the (all distinct) weights:

()\O(TO)7 R )\f—l(rf—l)) ® dete()\)(ro,... ’Tf_l)T]

for X € I(xg, -+ ,x5_1) forgetting the weights such that \;(r;) < 0 for
some i and forgetting the weight (p —1,--- ;p—1) ®n.

(1it) Assume (ro,--- ,r5—1) =(p—1,--- ,p—1). Then we have injo = o =
(T07 o ,T’f_l) & n.
Proof. See [32] or [2] for SLy(F,s) from which the case GLy(F,s) is easily

derived. It can also be derived from Proposition 3.7 and Theorem 4.7 below
(see proof of Corollary 4.11). O

For r > 0, recall we can identify Symr(@ with 69 Q"Y' (see [4] or

[6] or [25]). Let V,z be the Z-lattice in Sym” Q spanned by (7)z"~y’,
0 <i <7 and set:

V. :=V,z,0z,Fp

with the convention V, := 0 if » < 0. For convenience, we introduce the
following notation:
Definition 3.3. Given an f-tuple of integersr := (rg,--- ,74_1) with 0 < r;,
we define:

-

Vo= RV
1=0

One can easily verify that V. -z, and hence V; is stable under the action
of K and that K, acts trivially on V,.. Moreover, if 0 < n < p — 1 then (7:)
is a unit in Zp and hence V, = Sym’”FIQ). This isomorphism doesn’t hold in
general. Given an irreducible representation o of I, there exists a unique pair
(r,a) where r is an f-tuple as above with 0 < r; < p — 1 for all i and where
0 <a < ¢—1suchthat 0 =2V, ®det” = (r9,--- ,ry_1) ®det”. By expressing
a = Efc 01 pla; with 0 < a; < p — 1, one may reformulate this as follows:
given an irreducible representation o of I', there exist unique f-tuples r (as
above) and (ag, -+ ,ay_1) with 0 < a; < p —1 and not all of a; equal p — 1
such that o = @/ (V,, @ det™)™ (see (2)).

We now recall more precise results on the structure of injective envelopes
in Reprp, following [25] (which is based on [23]). If r =p — 1 we set R,_; :=
Vy—1. For 0 <r <p—1, R, is an (explicit) I'-invariant subspace of V,_,_1 ®
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V-1 defined in [25, Def. 4.2.10] (we won't really need its precise definition
here). Let r be an f-tuple such that 0 < r; < p — 1 for all 7, then R, :=
®Z:_01R£}"Z is an injective object in Repp. Moreover, if r # 0 then R, is an
injective envelope of V; ® det™ X150 P and Ry = inj Vo @& V-1 ([25, Cor.
4.2.22 and Cor. 4.2.31)).

Lemma 3.4. For 0 < r < p — 1, there exists an exact sequence of I'-
representations:

0—=Vop o r—>R, —V, @det’ " —0.

Proof. This follows directly from [25, Lem. 4.2.9 and Def. 4.2.10]. O

Lemma 3.5. For 0 < r < p — 1, there exists an exact sequence of I'-
representations:

00—V, @dettr 7" —=Vop o —>V, , 2 @ VT —0.

Proof. The injection is given by [25, Prop. 4.2.13]. We denote the quotient by
Q. If 0 <r < p—1, then it follows from [32, Prop. 2] that Q = V,_, , @ V"
as a representation of I'V. Without loss of generality we may assume that ¢
is arbitrarily large, in particular that V,_,_» ® V{™ is irreducible. Then the
image of 22772 spans QY. And since:

A0 2p—r—2 __ \2p—r—2_2p—r—2 X
(0 M)x = x Apelr,

we obtain Q 2 V,_,_» ® V[T as ['-representation. O

Given r an f-tuple of integers as in Definition 3.3 with 0 < r; < 2p — 2,
we define 2p —2 —r:=(2p—2—rp, - ,2p — 2 —rp_q).

Proposition 3.6. Let r be an f-tuple with 0 < r; < p — 1 for all v and
let T be a representation of I' such that o := socr T is isomorphic to V. ®

f=1_i.. F=1 .. . . .
det™ =0 P = (o, -+ ;1) @ det™ == P and o occurs in T with multi-
plicity 1. Then there exists a I'-equivariant injection T — Vap_o_y.

Proof. Since R, contains (and is isomorphic to if r # 0) an injective envelope
of socr 7, there exists a ['-equivariant embedding 7 — R,. For 0 <¢ < f—1

set:
i—1 f—1
FrJ FrJ
Wi = ®Rrj ® ® VQP—Q—TJ"
§=0

j=i+1
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Suppose that r; # p — 1 so that R,, # V5, o_,,. Twisting and tensoring the
exact sequence of Lemma 3.4, we obtain an exact sequence:

00— VI ®Wi4>R§;i®m*>(W ®detp_1_r)w®Wi*>0- (7)

2p—2—r;

It follows from Lemmas 3.4 and 3.5 that we can embed (V; ®detp_1_r)w QW;
into R,. Hence, if r # 0 then socp((V, ® det?” " ") @ W) = o. Since o
occurs in 7 with multiplicity 1, we obtain an isomorphism:

Homp(r, Vo', @ W;) 2 Homp(7, R @ W)).

Applying this identity recursively we obtain that the image of 7 is contained
in Vap_o_p. If r = 0 then socr((V, ® det’ " "™ QW) C o @ Vp-1. Since
Vp-1 is irreducible, injective (and projective) and does not appear in socr 7,
Vp—1 cannot be a subquotient of 7. The same argument as above implies the
assertion. O

Proposition 3.7. Letr be an f-tuple with 0 < r; < p—1 for alli. Then o is
an irreducible subquotient of R, if and only if it is an irreducible subquotient

.. S i
of Vap—2—r. In particular, if v # 0, o appears in inj V; @ det Y=o P if and
only if it appears in Vap_o_y.

Proof. We keep the notation of the proof of Proposition 3.6. Lemma 3.5
implies that there exists a -equivariant injection (V,, @ det’™' ") @ W, —
X@P;iz_ﬁ ® W,;. It follows from (7) that o is an irreducible subquotient of

szfigl_ﬁﬂ ®W,1 if and only if o is an irreducible subquotient of Vi, | @W.

This implies the assertion. O

We need to study more closely the structure of Vap_o_, when 0 < r; <
p—2. Let r := (rg,--- ,74_1) be an f-tuple of integers with 0 <7, <p—1
for all 7 and set:

Sy={ief{0,---, f—1},r; #p—1}.

For a subset J C Sy, we define W := ®{:_01W5§i where W, := V,, @det? ™' "
ifigJand Wy, =V, . 2@ VTifie J.If f>1 then by shifting V1 to a
neighbouring component we obtain that W; = ®{:_01 U?Z where:

(i) ifie Jandi—1€ JthenUy; :=V,,, 2@V
(i) fie Jand i — 1 ¢ J then Uy; := V2

(iii) ifi ¢ Jand i — 1 € J then Uy; :=V,, @ det’ """ @ I}
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(iv) ifi & Jand i — 1 & J then Uy; := V, @ det?~ 17"

Assume 0 < r; < p — 1, we define a filtration on Va,_5_,, by:

Fﬂo‘/Qp—Q—ri = ‘/Qp—Q—ri
Fil'Vop 9, = V, @det’ 7!
Fil*Va, 9, = 0.

If r; = p—1, we define a filtration on V,_; by Fil’V, ; := V,_; and Fil'V},_; :=
0. This induces the usual tensor product filtration on Vap_o_,. It follows from
[2, §1] that:

Fil'Vap_2-r

—_— = @ Wj. 8

Fill+1V2p,2,r = J ( )
|7|=]Sr|—i

Lemma 3.8. (i) Assume 0 < r < p — 2, we have an isomorphism of I'-
representations V, @ Vi = V11 @ (V.1 ® det).
(i) We have Vi @ V,_1 = R,_5.

Proof. 1f 0 < r < p — 2 then it follows from [2, Lem. 2.5] that there exists a
[V-equivariant isomorphism V, ® V3 = V.1 @ V,_;. Since the order of T'/T"
is prime to p, V. ® V] is a semi-simple representation of I'. Hence there exist
integers a, b such that 0 < a,b < ¢ — 1 and:

V, @ Vi =2 (Vipy @ det®) @ (V,_; @ det?).

One may verify that 2" ® z and 2" @ y — 2"y ® x are fixed by U. This
implies that ¢ = 0 and b = 1. If r = p — 1 then R, 5 is a 2p-dimensional
subspace of V; ® V,_; by [25, Prop. 4.2.11]. Since dim(V; ® V,_1) = 2p, we
get Vi@ V,_1 = Ryo. O

Proposition 3.9. Assume 0 < r < p—2 and let L, == (V, ® detpfl#) &)
(V, @det’ "' @ V1) @ Vpryp o @ (Vpor 2 @ V4).

(i) L, is isomorphic to:

(V,@det! ") @ (Vi @ det? " ) @ (Voo @ det? ™) @ Vo
‘/;7—7”—1 @ (‘/;)—r—g ® det)

(i1) Suppose that q > 3, then L, is multiplicity free.
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Proof. The hypothesis on r ensures that 0 < p—r —2 < p—2 and (i) follows
from Lemma 3.8. So L, is semi-simple. Let us assume ¢ > 3. We will deduce
(ii) from the fact that if 0 < r,s < p —1 then:

W@det“%%®detb<:>r:3andazb(q—l).

Since 7 — 1,7, r + 1 are distinct the representation (V, @ det? ') @ (V41 ®
det’ ') @ (V,_; ® det?™") is multiplicity free. Similarly V, , o @V, , 1 @
(Vp—r—3 @ det) is multiplicity free. So if L, is not multiplicity free then one
of the following must hold:

@ r—1=p-r-1(0) r =p-r-1() rel=p-r—1
d r+1=p—r—2 (¢) r+1 =p—r—3.

In cases (a), (c) and (e), p is even, hence p = 2 and r = 0 so that:
Lo = (Vo ®det) @ (Vi @ det) ® Vo @ V.

Since ¢ > 2 we have 1 Z 0 (¢ — 1) hence L is multiplicity free. In case (b),
p#2andr = (p—1)/2 hence:

L= (V,@det") ® (Vi @det”) @ (Vg @det™ ) @ Vo1 &V, & (V,_o ® det).

Sincer 20 (¢—1) and r+1#£0 (¢ — 1) as ¢ > 3, L, is multiplicity free. In
case (d), p # 2 and r = (p — 3)/2 hence L, is isomorphic to:

(V; @ det’™?) @ (Vg @ det’™?) @ (V, @ det’™?) @ Vi @ Vo @ (V; @ det).

Now r +2 # 1 (¢ — 1) as this would imply ’%3 =p—2 (p—1) which is
impossible. Also r+2 # 0 (¢ — 1) as ¢ > 3. Hence L, is always multiplicity
free. O

Proposition 3.10. Let r and s be f-tuples such that 0 < r;;s; < p—1 for
all i. If p # 2 then assume that if r; = p—1then s, =p—1ors; =0. If
p = 2 then assume that if r;, = p — 1 then s; = p— 1. Then Vi ® det® can
occur i Vap_o_y with multiplicity at most 1.

Proof. Note first that if r = p — 1, then V5,_5_, = V1 which is irreducible,
hence we can assume r # p — 1. If f = 1 this is either trivial or follows from
Lemma 3.5. Assume f > 1. We argue by induction on:

n(r):=/{ie{0,---,f—1}ri=p—1and s, = 0}|.

Assume n(r) = 0 and suppose that Vs ® det” occurs in Vap_a_,. It follows
from (8) that V; ® det® occurs in W, for some J C S.. We claim that if
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ri=p—1theni—1¢ J. Ifi—1¢& J then r,_; # p — 1 by definition of
Sy and Uy, = V1 ® V. Lemma 3.8 implies that V} ® V,_1 = R, 5 and it
follows from Lemmas 3.4 and 3.5 that the irreducible subquotients of R, o
are V,_o ® det and VI, Hence if V; ® det® is a subquotient of W then
either s;, = p— 2 or s; = 0. But both are impossible: the first because of
our assumptions and the second because of n(r) = 0. This proves the claim.
Let P be the set of subsets of S, such that J € P if and only if for all i,
ri =p—1implies that i — 1 & J. If r, = p—1set M,, :=V,4,if ¢ € S,
and 7;41 = p — 1 set M, := (V,, @ det’" ") @ (V,, @ det’"'""" @ V}) and
if o € S; and ryyy # p— 1 set M, = L,,. Proposition 3.9 implies that
the representation ®f;01]\/[5 ™ is semi-simple and multiplicity free. Hence, if
J € P then W) is semi-simple and multiplicity free. Now, suppose Vz ® det®
occurs at least twice in Vap_o_,. From what we have just proven, this means
there exists I,J € P with I # J such that V5 ® det” is a subquotient of W;
and Wj;. If 5 € I and j € J, it follows from the definitions that U;; # Uy ;.
Then V; ® det” is a subquotient of Urs @ (®iz; M) and UE? ® (®;¢jM£rz).
Since U} # UJY, this implies that V; ® det® appears in ®f;01]\/[fi ™ at least
twice, which cannot happen as ®f:_01M£ri is multiplicity free. This proves
our statement for n(r) = 0. Assume n(r) > 0 i.e. there exists i such that
r; =p—1and s; = 0 and hence p > 2 from our assumption. Suppose that
Vs ® det” is a subquotient of W} for some J C S.. The only possibility for
having s; = 0 with r; = p — 1 is to have:

Wi ® W = (V, @ det? )™ @ ™ = (V1 @ 11)™

appear as a ®-factor of a subquotient of W; and this implies either r;_; =
p—1lands; 1 =0o0rr,_; #p—1andi—1¢€ J. By an obvious induction
and as r # p — 1, this implies that there exists j such that r; #p—1, 7€ J
and rj1; = p—1, s;41 = 0. From the definition of W, we see that Vs ® det”
is then a subquotient of:

r I'. I‘k Y} I“ I'AE1 rk
(‘/;)_2_7"]' ® ‘/1F )F ’ ® (®k¢]‘/v22—2—7"k) = ‘/;)F—;—’I‘j ® jog ® (®k¢{373+1}‘/2Fp—2—Tk)

where the isomorphism follows from Lemma 3.8. Every irreducible subquo-
. j j+1 k . .

tient of V;E;_Tj @ (Vy_p @ det)™ " @ (@rggjj+1)Vap o_p,) has its (j 4+ 1)-th
digit equal to p — 2. Since p > 2 and s;41 = 0, V5 ® det” cannot be such a
subquotient. Lemma 3.4 then implies thatAVs ® det” occurs in Vap_o_, with
the same multiplicity as in V™), ® VR @ (®k¢{j7j+1}\/2};r_k2_rk). Let 1/
be the f-tuple 1 == p =2 —rj, v ==p—2, 1 =1, for k & {j,j + 1}
Since 2p — 2 — (p — 2) = p and n(r') = n(r) — 1, the induction hypothesis
implies that V5 ® det® can occur in V;E’;_r]_ ® VPFHJr1 ® (®k€{j7j+1}v2%_k2_m)
with multiplicity at most 1. This finishes the proof. ]
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Corollary 3.11. Letr be an f-tuple such that 0 <r; < p—2. Then Vap_o_,
is multiplicity free and the graded pieces of the filtration (8) are semi-simple.

Proof. Since 0 < r; < p — 2, the conditions on s in Proposition 3.10 are
empty and P as in the proof of Proposition 3.10 is the set of all subsets of
Se. It follows from the proof of Proposition 3.10 that if J C S, then W; is
semi-simple. O

Corollary 3.12. Let 0 and T be two irreducible representations of I' over
F,. Assume o = (rg, -+ ,75_1) @n with 0 < r; < p— 2 for all i and assume
there exist finite dimensional representations of I over F, with socle o and
cosocle T.

(i) Among these indecomposable representations, there is a unique one
I(o,T) such that o appears with multiplicity 1 (hence as subobject).

(ii) The representation I(o,T) is multiplicity free.

Proof. Let k be a representation of I' such that socr k = ¢ and cosocr k =2 7.
Since socr & is irreducible there exists an injection x < injo. In particular,
T is a subquotient of inj o and hence by Proposition 3.7 7 is a subquotient of
Vap—2-_r. Corollary 3.11 implies that 7 occurs in Vap_2_, with multiplicity 1.
Since I is a finite group, an injective envelope of 7 is also its projective enve-
lope (see Ex.14.1 in [31, §14]) hence dimg Homr(inj 7, Vap—2-r) = 1. Choose
a non-zero ¢ € Homp(inj 7, Vap_2_,) and set I(o,7) := Im ¢. Since I(o, 7) is
a quotient of inj 7, cosocr I (o, 7) = 7 and since I(o, 7) is a subrepresentation
of Vap_a_y, socr I(o,7) = o. Since Vap_a_, is multiplicity free so is I(o, 7).
Let A\ be a representation of I' such that socr A = o, o occurs in A with mul-
tiplicity 1 and cosocr A = 7. Then A is a quotient of inj7 and Proposition
3.6 implies that A is isomorphic to a subrepresentation of Vap_o_,. Since
dimg Homp(inj 7, Vap_2_,) = 1, A is isomorphic to (o, 7). O]

4 Representation theory of I' over Fp 111

We prove important results on the socle filtration and B-invariants of I'-
representations with irreducible socle appearing only once.

Let r := (rg,--- ,7¢—1) be an f-tuple of integers such that 0 <r; <p—2
for all i. Let ¥ be the set consisting of f-tuples € = (e, ,€7_1) where
e; € {—1,0,1}. For € € 3, we set |e| := |{i,e; # 0}|. Let X, be the subset of
) consisting of f-tuples € such that if r;, = 0 then ¢;_; # —1 and if r; = p—2
and €; # 0 then ¢;,_; # —1 (as usual f =0 and —1 = f — 1). In particular,
Ye=2if1 <r; <p-—3forall i.
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Definition 4.1. Let e,d € X, we write € < § if there exists k € {0, , f —
1} such that the following hold:

(i) e =0, 0 #0

(11) Op—1 = —€x_1
(111) 0; = €; for alli & {k —1,k}
() if ry, =p—2 then ex_1 # 1.

We write € < § if there exists a sequence €g,--- ,€; in X, with 7 > 0 such
that e = €9, 6 =€j and g; < €41 for 0 <i < j. Wewritee <8 ife =0 or
e <.

To e € ¥, we associate an f-tuple r(e) = (r(€)o, -+ ,r(€)s_1) such that

0 <r(e); <p—1and an integer e(e) := Y1 pe(e); as follows:

(i) ife; #0,7(e); i =p—2—1; + €1

(11) if € = 0, T(&')i =T+ €6

(iii) if & #£ 0, e(e); ::{ é if €4 =—1

otherwise

. . L L p—r; ifﬁi,1:—1
(iv) if & =0, e(e); = { p—1—r; otherwise.

Lemma 4.2. Let J C {0,---, f — 1} then:

W; = @ Vr(s) (%9 det®(®).

e€Xy
lel=]J]

Proof. This follows from Lemma 3.8 and the definition of W (see §3). [

In the next lemmas, we sometimes use some results that will be proved
in §5 (the reader can check that these results do not depend on the ones we
prove below using them!).

Lemma 4.3. Let €,8 € ¥, with || < |8], then Exti (Vi) ® det®®, Vi ®
det®®) £ 0 if and only if e < 8.
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Proof. If f = 1 this follows from (i) of Corollary 5.6. Assume f > 1. If
€ < 4, a straightforward computation yields r(8)y = p—2—7(&)g, 7(0) 411 =
7(€)kr1 + Ok, €(0)r = e(e)y +7r(e)r +1 —p and e(d)ry1 = e(€)py1 + 1 if
0 = —1, €(6)rs1 = e(e)gs1 if 0 = 1. By (i) of Corollary 5.6, we have
Ext%(Vr(a) @det®® Vi) ®dete(€)) =# 0. Conversely suppose that Ext%(Vr(g) ®
det®® V(o) ® det®) £ 0, let j € {0,---,f — 1} be an index as in (i) of
Corollary 5.6 and set k := j — 1. If i € {k, k + 1} then this corollary implies
that r(g); = 7(d);, e(e); = e(d);. We claim that this implies ¢;,_; = d;_;
for i ¢ {k,k+ 1}. If ¢ and 0; are either both zero or both non-zero then
r(g); = r(d); implies that ¢;_1 = d;_;. If one of them is zero and the other
non-zero then e(e); = e(d); implies that r; = p — 2 and r(e); = r(d); implies
that either r;, = (p—2+4+6;1 —€;-1)/20r r; = (p—2+€;_1—0d;-1)/2. If p> 3
this is impossible. If p = 3, a case by case analysis shows that this is also
impossible. If p = 2 we get ¢,_1 = §;_1. Hence ¢; = §; for all i & {k — 1, k}.
By (i) of Corollary 5.6, we have r(8)y = p — 2 — r(€)g. If ¢ # 0 then
r(0)r = T, — €,_1. This together with exponent considerations imply that
0 = 0 and hence 61 = —e,_1. However this contradicts |e| < |d]. Hence
ex = 0. The same argument gives d; # 0 and d;_1 = —€j_1. Since 7(d)x >0
we get that r(e), < p—2 and hence if 7, = p— 2 then €;_; # 1. Putting this
together gives € < 4. m

Lemma 4.4. We have V, 1 @ VT 2 V,, ;.

Proof. We may assume that f > 1. The image of *’~! in V5, ; (see §3 for
notations) is fixed by U and we have (g §)2%~' = X~ Pz2~1in V5, .
This implies that V,_; & VlF " occurs as an irreducible subquotient of V5,_;.
However, both have dimension 2p, hence they are isomorphic. O

Lemma 4.5. Let r be an integer such that 0 < r < p — 2, we have:
‘/2;0—2—7‘ ® ‘/l = (‘/2p—3—r (%9 det) D ‘/2p—1—7“

Proof. We may assume f > 1 since by restricting to GLy(F,) C GLy(F,) =T
we get the result for f = 1. Tensoring with V; the exact sequence of Lemma
3.5 and using Lemma 3.8 gives an exact sequence:

0— (Vi @det? "™ N @ (Vo @det?™) — Vop g, @ V) —
(Vor1 @ V) @ (Vpoy3 @ det V) — 0
where one forgets the term involving p —r — 3 (resp. r—1)if r = p — 2
(resp. r = 0). It follows from (i) of Corollary 5.6 below that Exty(V,_, 1 ®
VI Vi @ det?"™ 1) = 0 and Ext(V,_ 3 ® det @V V, | @ det?™") = 0,
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Moreover, dimg Exti(V, 3 @det @V Vg @det? ™) = 1ifr < p—2
and the unique non-split extension is given by the representation Vo, 3, ®
det (Lemma 3.5). Likewise dimg Extp(V, 1 @ VIV @ det?™) = 1
it > 0 and the unique non-split extension is given by V5, 1_,. Now an
irreducible representation o can occur in the socle of Vs, 5, ® V; if and only
if Homr(o ® V{*, Vap_9_,) # 0. Since V, ® det?~17" is the socle of Vop—a—r,
Lemmas 5.3 and 3.8 imply that V, ® V[ @ det® cannot occur in the socle of
Vop—o—r @ V1 1f 0 < 5 < p—2. Putting this together we obtain V5, o, @V} =
(Vop—g—r @ det) & Vo1, if 1 <7 < p—3. If r = p— 2 the same proof
gives V, ® V1 = (V,_; ® det) & V1. Finally if 7 = 0 we get Vo, o @ V; &
(Vo1 @V (Vap_s@det) = Vo, 1®(Va,_3®det) where the last isomorphism
is given by Lemma 4.4. O]

Proposition 4.6. Let €,6 € ¥, with € < § and let E(e,d) be the unique
non-split extension (see Lemma 4.3):

0— Vite) @ det®®) —= E(e,8) — Vys) @ det™® —= 0.

Then there exists a I'-equivariant injection:

Fil/ PV, 5,
Fﬂf—|5|+2v2p_2_r ’

Proof. Let J := {i,¢; # 0} then there exists an injection:

E(e,8) —

Fil/ =PIV, o,
Filf_|5‘+2V2p—2—r ’

7= ‘/QFpriQ—rj ® <®i¢jWJ,il) -

It follows from Lemma 3.8 that if j — 1 &€ J then ‘/21;{2_” ® (®ixj (Vr(e), ®
dete(s)")Fri) is a summand of 7 and if j — 1 € J then (V] ® X/2p_2_rj)Frj ®
(®izi (Vi) ® det“®)P") is a summand of 7. Lemmas 3.8 and 4.5 imply
that E(e,d) is a summand of 7, and hence we obtain an injection as in the
statement. [l

Recall that an ideal A of a partially ordered set (P, <p) is a subset such
that x € A and y <p x imply y € A.

Theorem 4.7. Let r := (rg,--- ,77_1) be an f-tuple of integers with 0 <
ri < p—2, then Vap_o_, is multiplicity free and the set ¥, parametrizes its
composition factors. For each subrepresentation T of Vap_o_y let () be the
set of composition factors of T, then ¥.(T) is an ideal of the partially ordered
set (X, <). The mapping T — 3.(7) defines a lattice isomorphism between
the lattice of subrepresentations of Vap_o_r and the lattice of ideals, ordered
by inclusion, of the partially ordered set (3, <).
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Proof. The first assertion is given by Corollary 3.11, (8) and Lemma 4.2.
We identify in the sequel the irreducible subquotients of Vo, o, with the
elements of X,.. Let us define a new partial ordering <’ on X, as follows:
e <’ ¢4 if and only if there exists a subrepresentation 7 of Vap_a_, such that
cosocr T 22 § and € occurs as an irreducible subquotient of 7. Tautologically
the lattice of ideals of (X, <’) is isomorphic to the lattice of subrepresenta-
tions of Vop_2_r. Now if € <’ 4 it follows from Corollary 3.11 and Lemma
4.2 that e occurs in Fil/ P71V, 5 .. Hence |e| < |8] by (8) and Lemma
4.2. Lemma 4.3 and Proposition 4.6 imply then that the partial orderings <’
and < coincide. O

Corollary 4.8. Let 7 be a subrepresentation of Vop_o_r. If r = 0 assume
that Vo1 is not a direct factor of 7. Then the graded pieces of the socle
filtration of T are given by:

T; = @ V;'(s) X dete(s).
e€Xyr(T)
lel=i
Proof. Let € ¥, then the number of € € ¥, such that € < 4 is || — [{i, 0; #
0,8;-1 = 1,7,_1 = 0}|. This implies that, unless r = 0 and § = 1, there will
exist € € Y, such that € < §. The case r = 0 and § = 1 corresponds to
Vp—1 and we have excluded it here. It follows from Definition 4.1 that € < ¢
implies |e| + 1 = |d]. Theorem 4.7 gives then the assertion. O

Corollary 4.9. Let 7 be a subrepresentation of Vap_o_r. Assume that there
exists an integer k € {0,-- -, f} such that, if Vy(e ®det®®) occurs in cosocr T,
then |e| = k. Then the graded pieces of the cosocle filtration of T are given
by:
Tt e @ Vr(g) (059 det®(®).

e€Xy (1)

le|=k—1
Proof. This follows again from Theorem 4.7 together with e < § = |e| =
8] — 1. m

Definition 4.10. Let A\, X € I(xo,--- ,x5-1) (see §3). We say A\ and N
are compatible if, whenever \;(x;) € {p — 2 — x; — £1,x; £ 1} and \(z;) €
{p—2—x; — £1,2;, £ 1} for the same i, then the signs of the £1 are the
same in Ni(x;) and N(x;).

For A € Z(zg, -+ ,xy-1),set S(\) :={i € {0,--- , f =1}, Ni(2;) =p—2—
x; —+1,2; £ 1} and £(N) := [S(N)].
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Corollary 4.11. Let 0 and 7 be two irreducible representations of I' over
Fp. Assume o = (1o, ,rp—1) @ n with 0 < r; < p—2 for all i and
let I(o,7) be the T'-representation with socle o and cosocle T constructed
in Corollary 3.12 (assuming it exists). Let A € I(xg,--- ,x_1) such that
7= No(r0), -, Ap_1(r_1)) ® det“Norr=1p by Lemma 3.2. Then:

I(O'7 T)i = @ ()\6(7"0)7 Ce 7)\}_1(7“]‘—1)) ® dete()\,)(ro""’r-f_l)n

ST
L(N)=i
A compatible with X

forgetting the weights such that X,(r;) < 0 for some i.

Proof. To an element N € Z(xo,--- ,zy_1), we associate an element &’ € 3
as follows:

(i) if Nj(x;) € {p—2—x;,p—3—x;,p—1—x;} then €,_; := N(z;)—(p—2—ux;)
(i) if N(x;) € {zs,x; — 1,2 + 1} then €,_, := N(z;) — @;.
This defines a map Z(xg, -+ ,xy_1) — X which is bijective, the inverse map
being given by \.(z;) :=p—2—xz; + €, ; if € # 0 and N(x;) :== z; + €, if
e; = 0. The reader can then easily check that the following properties hold:
(i) 0 < M(r;)) < p—1for all ¢ if and only if & € X, C ¥ where r :=
(To, o 7Tf—1)

(11) ()‘6 (7“0), T 7)\/f*1(7‘f—1>) & dete()\,)(ro’m 1) = ‘/;(e/) X dete(sl)+2—{:_ol p'ri

(iii) if A — e and X — €&’ with €,&’ € %,, we have ¢ < ¢ if and only if
S(V) € S(A) and X is compatible with A.

By Proposition 3.6 and the definition of I(o,7) (Corollary 3.12), we may
embed I(0,7) into Vap_o_r ® detzf;olpz”n. Let € € Y, correspond to A as
in the statement. From (iii), (i) and Theorem 4.7, we get that 3.(I(o, 7))
corresponds to the f-tuples \' € Z(zo,--- ,xy_1) such that 0 < N(r;) <p—1
for all ¢, S(N') € S(A) and X is compatible with A. The result follows then
from Corollary 4.8 together with (ii) and the fact ¢(\) = |&'| if N —€'. O

Let r := (19, -+ ,77_1) be an f-tuple of integers with 0 < r; < p—1 for all
i this time. Let ¥’ be the subset of X consisting of f-tuples € = (&g, -+, €7_1)
such that ¢; € {0,1} for all i. Let X be the subset of 3’ consisting of f-tuples
e such that if r; = p—1 then ¢; = 0. In particular, 3! = ¥/ if 0 < r; < p—2for
all<. Define x : H — F; by X((f)\ 2)) = #_Z{;()lpi”, so that B acts on the U-

invariants of V; <§§det_zzj‘;_01 P by x. For e € ¥/, set x := XQE{;J pei(p—1-ri)
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Then xe = xs implies € = d or r = 0 and {e,d} = {0,1}. Moreover, [25,
Lem. 4.2.33] implies that y. # x2 unlessr =0,e € {0,1} orr =p — 1 (and
e =0). To e € ¥} we associate an f-tuple r(e) = (r(€)o, -+ ,r(€)s_1) such
that 0 < r(e); < p— 1 and an integer e(e) := 3.7 ple(e); as follows:

(i) if r = 0 and € = 0 then r(0) := 0 and ¢(0) := 0

(ii) fr=0and e =1thenr(l):=p—1ande(l):=0
(iii) f r=p—1 (and € = 0) then r(0) :=p — 1 and e(0) :=0
)

(iv) in all other cases r(e) and e(eg) are such that H acts on the U-invariants
of Vie) ® det®® by ye.

Note that (r(e),e(e)) in (iv) is well defined since xe # x%.

Lemma 4.12. Lete € ¥.. Ifr =0 orr =1, assume that € ¢ {0,1}. Then
r(e) is determined by:

-1 -1
Zpir('f)z‘ = Zpi(ri +26(p—1-m)) (¢—1)

and we have e(e); = (1 —€)(p— 1 —r;) for alli. In particular, if r; =p—1
then r(e); = p—1 or r(e); = 0. Moreover, if 0 < r; < p—2 for alli then
the definition of r(e) and e(g) coincides with the previous one.

Proof. This follows from:

A0 P
X€< (0 )\_1> ) — AZL o P (7’1+261(p 1-74))
1 0
— S P (—e) (p—1-7;)
e (o A) ) AT |

]

If 7 is any representation of I', we denote by X(7) the set of its irre-
ducible subquotients and by 3(7) N X! the subset of ¥/ of € corresponding
to irreducible representations V(o) ® det®® that are also in X(7).

Proposition 4.13. Let 7 be a representation of I'. Suppose that socr 7 =
—1 i

Vi ® det™ S50 ' gnd that socr T occurs in T with multiplicity 1. If p = 2 we

additionally assumer =0 orr =p — 1. Then we have:

TUg @ xo ngﬁzplr'b)
eeX(rT)NXL

In particular dimg ™V = |S(r)N L.
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Proof. By Proposition 3.6, we may embed 7 into Vap_2_, and we denote the
quotient by @. It follows from [25, Lem. 4.2.19] and [25, Lem. 4.2.20] that:

F1 i (o1
RrU = V2(£>—2—r = EB&EEQX(-: = @EGEQXO‘zi:O pra(p-l Z)- (9)

If r = p—1 we necessarily have 7 = V,,_y and ¥, = {0}: the assertion
follows trivially. Assume r # p — 1, then the assumption on socr7 im-
plies that V,_; can’t occur in 7 and we are left to prove that x. occurs
in 7V if and only if € € X(7) N .. Assume r = 0 and x. = X%, which
implies € € {0,1} and y. = 1. We have that 1 occurs in 7V (as socp(7)
is the trivial representation) and that {0,1} N 3(7) N Xy = {0}: the as-
sertion follows in that case. Assume now y. # x5. If x. occurs in 7Y
then Homp(Ind} xe,7) # 0. Since Vi) ® det®® is the cosocle of Ind} e,
it must be a subquotient of 7. We thus have € € X(7) N X.. Conversely,
assume € € X(7) N X} ie. Vi ® det?® e ¥(7). Equivalently, we have
Homp(inj Vi) ® det®®), 7) # 0 (using the fact that inj V;(¢) has cosocle Vy(¢)
and is a projective object). It follows from Proposition 3.10, Lemma 4.12 and
(9) that dimg Homr (inj Vi) ® det® Vo, 5 ) = 1. As inj Viee) ® det®® is
projective, this implies Homr (inj Vr(€)®dete(€), Q) =01e. Vr(€)®dete(s) can’t
occur in (). This implies in particular Homp(lndg Xe, @) = 0 as Indg Xe has
cosocle Vie) ® det®®). We thus have an isomorphism:

Homp(IndE Xe, T) = Homp(IndFB Xes Vep—2-r).

But the right hand side is non-zero by (9) and we are done. O]

5 Results on K-extensions

In this section, we assume [ is a finite extension of Q,. We determine I'-
extensions between two weights and give partial results on K-extensions for
p > 2 which are not I'-extensions.

Proposition 5.1. Let 7 be a representation of K such that K acts trivially.
Then there exists an isomorphism of K -representations:

f-1 ' d
HY (K1) @ (T ®(Va® detfl)Frz) & @7’,
i=0 =1

where if p # 2 then d := dimg_ Hom(1 + pp,F,) and if p = 2 then d :=
dimgz Hom(1 + pr,F,) — f.

33



Proof. 1t is enough to prove the claim when 7 is the trivial representation of
K (as K acts trivially on 7). We have H'(K7,1) ~ Hom(K;,F,) (continuous
group homomorphisms) with the action of K given by:

(g¥)(h) = ¥(g "hg), g € K, ¢ € Hom(K{,F,), h € K;.

For 0 <i < f — 1, define k¥, kl, ¢; € Hom(K1,F,) as follows:

1)

KYA) = w(b)”,  KUA) = w()”, (A):=w(a—d)P

7 (2

where A := (1= =0 ) € K (see §1 for w). Since:

1 —a\ (a b\ (1 o\ (a—ca b+ (a—d)a—ca?
0 1 c d)\0 1) c d+ ca
the action of I; fixes ! and for all a € F, we get:
<1 [a]) kY = k4ot e — 'R

1 [O./] _ pi l
(0 1 ) & = € —2a" kK,
Moreover we have:

i

One may then check that the map:

2
R L

induces a K-equivariant isomorphism (V3 @ det™ )P = (k¥ ¢, 1), As Ky N
UcC[KiNnT,KinNU], KayNnU® C [KyNT, K, NU?| (where square brackets

denote the subgroup generated by the commutators) and:

{(“8 qu) T € 1+p%} C(K;NU* K, NU),

we deduce that every ¢ € Hom (K, F,) can be written as a linear combination
of k¥, €, Kt for 0 < i < f — 1 and a homomorphism which factors through

the determinant. If ¢ factors through the determinant then K acts trivially
on 9. Let © € F, and «a € [z] + pp then:

€ ( (1 W (1+ ;a)_1>) = (20)".

Hence, ¢; factors through det if and only if p = 2. This implies the claim. [
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Corollary 5.2. Let o and 7 be finite dimensional representations of I' over
F,. Suppose that Homr (o, 7) = 0 and Homr(o, (Vo ® det )™ @ 7) = 0 for
0<i<f—1. Then Extp(o,7) = Exty (o, 7).

Proof. Since for all representations 7 of K (over F,) we have Homg (0, 7) ~
Homr (o, 751); the Grothendieck spectral sequence gives an exact sequence:

0 — Extf (0, 7) — Ext} (0, 7) — Homr (o, H' (K, 7)) .
The result follows then from Proposition 5.1. O]
We now use notations from §3.
Lemma 5.3. For 0 <r <p—1 we have HOHI?p(‘/T,Fp) ~V. @det™".
Proof. Exercise. O]
Proposition 5.4. Assume p > 2.

(i) For 0 <r < p—2 we have an isomorphism of I'-representations:

VeV, 2V, e (V,e@det)® (V2 ® detQ).

(11) We have an isomorphism of I'-representations (recall V, =0 if r < 0):

Va@dV, o &2 R, 2@ (V,4 ®det?)
Va@ Voo = Rp3@ (Vo1 @det).

Proof. The assumption p > 2 ensures that 1 < p — 1. Hence by Lemma 3.8
we have V; @ V| 2V, @ (Vy ® det). If r < p— 2 then using Lemma 3.8 twice
we obtain that V; ® Vi ® V,. is isomorphic to:

Vi@ (Vi1 @ (Vo1 @det)) 2 Vi @ (V, @ det) @ (V, @ det) @ (Vo @ det?),

hence Vo @ Vi 2 Viiy @ (V, ® det) @ (V,_y ® det?), which proves (i). If
7 = p — 2 the same argument gives Vo @ V, o = (V; @ V, 1) @ (V,_4 ® det?)
and Lemma 3.8 implies V; ® V,_1 = R, 5. If r = p — 1 then by [25, Prop.
4.2.11], R,3 is a 2p-dimensional subspace of Vo ® V,,_;. The restrictions of
R, 3 and V5 ® V)1 to GLy(F,) are injective objects in Repgy,r,). Hence
there exists a GLo(F,)-equivariant isomorphism:

Vo ®Vpt 2 Ry 3@ J,

where J is an injective object in Repgy,(r,). Since dimE0 J =3p—2p = p,
we have J =~ V,_; ® det” as an GLo(F,) representation. Now since J is
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irreducible as GLy(F,) representation, there exists an exact sequence of I'-
representations:

0 Rys —= Vo ® Vo1 —= V¥ @ det* —0, (10)

for some 0 <7 < f—1andsome 0 < a < ¢g—1. By dualizing and using Lemma
5.3, we obtain an injection V;jF_rl @det’ — Vo ® Vp—1 for some 0 < b < ¢ — 1.
Since socr R,—3 ~ V,_3 ® det?, we can’t have VpF_rll ® det? — »—3. Thus
(10) must split and we have b = a. Now the element ry ® 2P~! — 2? @ 2P~y
is fixed by U in V5 ® V,—1 (with obvious notations) and it follows from [25,
Prop. 4.2.13 and Lem. 4.2.14] that it does not lie in R,_5. Hence, the image
of xy ® 2P~! — 22 ® 2P~2y spans the U-invariants of VpF_rl ® det®. Since:

(8 2) (zy@a? ! —2?@aP %) = Wp(zy@a? ' —2? @2 %y), A\ pelF),
we must have i =0 and a = 1. Hence Vo ®V,_1 ~ R, 3® (V-1 ®det). O

Corollary 5.5. Assume p > 2 and let v and s be f-tuples such that 0 <
ri,s; <p—1 for all j.

(i) For 0 <i < f—1 and all integers a,b we have:

dimg Homp(V; ® det’, V;™ ® V, @ det®) < 1.

(ii) We have Homp(Vz @ det®, Vi™ @ Vi @ det”) # 0 if and only if s; = r;
for all j # 1 and one of the following holds:
(a) si=r;+2andb=a (¢g—1)
(b) si=r; andb=a+p" (¢q—1)
(c) si=ri—2andb=a+2p" (¢ —1)
(d) f=1,p=3,s=ro=p—1andb=a (¢g—1).
Proof. The result is obvious from Proposition 5.4 if 0 < r; < p—2 (note that

if r; < 2 or r; > p—3, some cases are empty as we must have 0 < s; < p—1).
If r; = p — 2, there exists an injection:

Ry o (QVE) <= By @ (Q(R,, @ dets 7)),
JF#i J#i
Asr # 0 (because r; = p — 2 and p > 2), we have (see §3):
REI_ZQ ® <®(RT] ® detrj—p-i—l)Frj) >~ an ((%_2 ® det)FI'i ® ® ‘/;];‘rj>7
i i
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which implies in particular:

SOCF< 2®<®VF“J )) = (V,—2 @ det) Fr! <®VFr]>

J#

Using Proposition 5.4, we then deduce the result in that case. If (r; =p—1
and p > 3) or (r; =p—1, p=3and f > 1), the proof is analogous using:

socr (Rgr_i?) ® <® Vr?))) = (Vs ® det)Fri ® <® V;frﬂ)
J# J#i
Finally, if 7, = p — 1 and p = ¢ = 3, the result follows from Ry ~ inj(Vj) &
Vp-1. O
We finally obtain the main result of that section:

Corollary 5.6. Let o := (rg,- - ,7;_1) @det® and 7 := (so,- -+ ,57_1) @det”
be two weights (0 <r;;s; <p—1and0<a,b).

(i) We always have dimg Extp(r,0) < 1. If f =1, p > 2 and (ro, 80) #
(0,p — 1), we have Exty.(r,0) # 0 if and only if so =p —2 — 1o+ 1
andb=a+ro+1— (&1) (p—1). If f > 1, we have Extp(1,0) # 0
if and only if there e:msts j€{0,---, f =1} such that s; = r; for all

i¢{j—1,7} (with the convention —1 = f—1) and one of the following
holds:

(a) sj1=p—2-rj_1,8;=r;—Llandb=a+p r;-1+1) (¢—1)
(b) sj-1=p—2—rj_1,8; =rj+1 andb=a+p’  (rj_1+1)—p’ (¢g—1).
(i1) Assume p > 2. If Exth(1,0) 2 Extk(7,0) then there exists j €
{0,--+, f — 1} such that s; = r; for all i # j and one of the following
holds:
(a) sj=r;—2andb=a+p (¢—1)
(b) sj=r; andb=a (¢ —1)
(¢c) si=rj+2andb=a—p (¢—1)
(d) f=1,p=3,so=ro=p—1landb=a—1(q—1).
Proof. We start with (i). The case f = 1 is a direct consequence of Lemmas
3.4 and 3.5. Assume [ > 1. Twisting everything by det™, we can assume

o =V, (with obvious notations). Let 7 be as in (a) or (b), then Lemma 3.8
together with (8) imply that 7 occurs in the socle of:

Fill =1 (Vo o @ det”) /Fil*! (Vo 5, ® det”)
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where r = Z{:_Ol ript. As Fil'ST‘(VQP,z,r ® det") = Vi ¥ o, the inverse
image of 7 by the surjection Fil's‘“‘_l(%p,g,r ® det”) — Fil's‘“‘_l(‘/zp,2,,r ®
det”)/V; gives an element in Ext{(7, o). Moreover, this element is non-zero
as socr(Vap_2_r ® det”) = V; by Lemmas 3.4 and 3.5. Now we have:

q—1
Exth (7, 0) = Exth(Indf 7, 0) 2 @ Ext(7 ® det®, o).

c=1

By [2, Cor. 4.5], Extf(7,0) # 0 if and only if there exists j such that
si=r;fori ¢ {j—1,75}, sjs1 =p—2—rj_pand s; = r; £ 1. In that
case, dimgz Exty,(7,0) = 1 unless f =2 and r = ((p — 3)/2,(p — 1)/2) or
r=((p— 13/2, (p—3)/2) in which case the dimension is 2. If the dimension is
1 we are done. If f =2 andr = ((p—3)/2, (p—1)/2) then case (a) with j =1
and case (b) with 7 = 0 give the same 2-tuple s but a different exponent b,
which implies the assertion. The other case is analogous. Finally (ii) follows
from Corollary 5.2 and Corollary 5.5. m

The second part of Corollary 5.6 is presumably not optimal in the sense
that there might exist o and 7 satisfying one of the conditions in (ii) with
Extr(7,0) = 0.

Corollary 5.7. Assume p > 2 and let W be a representation of K on a
finite dimensional Fp-’uector space. Assume W is multiplicity free and for any
pair of distinct irreducible constituents (o,7) of W, none of the conditions
(a) to (d) in (ii) of Corollary 5.6 are satisfied for any j. Then W is a

I'-representation.

Proof. We argue by induction on n(W) := the number of irreducible sub-
quotients of W. If n(IW) = 1 then W is irreducible and so K acts trivially.
Suppose that n(WW) > 1 and let o be an irreducible quotient of W. Consider
an exact sequence 0 — Wy, — W — ¢ — 0. Since n(W;) = n(W) — 1, K,
acts trivially on Wj. Moreover, our assumptions imply:

Homr (o, W) = Homr (o, (Vo @ det ™)™ @ W) = 0
for all 7, where ss denotes semi-simplification. This implies:
Homr (o, W) = Homp (o, (Va ® det ™)™ @ W;) = 0

for all 4. By Corollary 5.2 we have Extf.(o, W;) = Ext (o, W;) and hence K,
acts trivially on W. O
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6 Hecke algebra

We recall certain results on the representation theory of the Hecke algebra of
I;. We follow (most of) the notations of [25, §2] and don’t assume anything
on F.

Let H = EndG(c—IndIG1 1). The algebra H has an F,-basis indexed by
the double cosets I1\G/I;. We write T, for the element corresponding

to the double coset I,gl,. For a character y : H — E:, we set e, =
H|! h)T},. The elements T}, , Tir, Tii-1 and the idempotents e, for
| heH X s X

all characters y : H — F; generate H as an algebra. For relations see [25,
Lem. 2.0.12].

Let Z : Rep; — Mody be the functor:
I(r) =7l = Homg(c—lndﬁ 1,m).
Let 7 : Mody — Repg be the functor:
T(M):= M Ry C—Il’ldg 1.

One checks that (Z,7) is a pair of adjoint functors i.e. Homy(M,Z(7)) =
Homg (7 (M), w). Let Repg=" be the full subcategory of Reps with objects
G-representations on which the fixed uniformizer w acts trivially. Then the
functors restrict to Z : Rep®=" — Mody__, and 7 : Mody,__, — Rep®~"
where Ho—1 = H/(Th — 1).

Let r := (rg,---,rf_1) be an f-tuple such that 0 < r; < p —1 for all .
We consider V; (see Definition 3.3) as a representation of Ky by lifting it to
a representation of K and letting w act trivially. It is shown in [4, Prop. §]
that there exists an isomorphism of algebras:

Endg(c-Ind§, Vi) = F,[T]

for a certain 7' € Endg(c-Ind§ V;) defined in [4, §3]. Fix ¢ € c-Ind§ V;
such that Supp ¢ = Ky and (1) spans V', Since ¢ generates C—IndgO V; as
a G-representation, 7" is determined by T'p.

Lemma 6.1. (i) Ifr =0 then Ty = llp + ZAqu(?Oﬂ [i\] ).

(ii) If v # 0 then Ty = Z/\qu<7g [’1\])90.

39



Proof. In the notation of [4] this is the calculation of T'([1, eg]). The claim
follows from the formula (19) in the proof of [4, Th. 19]. O

Definition 6.2. Let r := sz:_ol p'ry with r; € {0,-+- ,p— 1} and v the f-

tuple (ro,--+ ,75_1). Let \ € F, and n : F* — F; be a smooth character.
We define an H-module M (r,\) by the exact sequence:

0— (c-Ind§ Vi)' T2 (e-Ind€ Vi) —— M(r, ) — 0.

We define a G-representation 7w(r, \) be the exact sequence:
0—>c-Ind Vi =2 -Ind€ V, — 7(r, \) — 0.

We set w(r,\,n) :=w(r,\) @ nodet and M(r,\,n) := M(r,\) ® n o det.

For r,n as in Definition 6.2, let xy : H — F; be the character given by

x((39)) == wn((Au]). Set v := {x,x"} and e, := > pey €w € H. The
idempotents e, are central in H. If |y| =1 (ie. if r =0o0r r = ¢— 1), set
Zy =T, Tn+TuT,, +1Tn. Otherwise set Z,, := T, T +TuT,,. The elements
Z., are central in e, H and were used in [33].

Proposition 6.3. Letting \, := \n(—w™?), there exist exact sequences of
‘H-modules:
(1) ifr =0:
Zoy=n

0 (1 + Ty ) e Mooy 221 + T, Yex Hapr —= M (0, A, ) ——0
(ii) if r #0:
A
0—T,.eys Hope1—1T eys Hepe1—=M (1, A\, 7)) —0.

Proof. We prove the statement in the (harder) case when r # 0 and r #
g — 1. We can assume 1 = 1, since twisting by n has no effect on the
action by T),, and (v ® 1)Ty = T ' (v ® 1) = (vTyy) ® n(—= ). We claim
that (c-Ind§ V) & T, eysHoor. 1t follows from [25, Rem. 3.1.6] that the

Tng .o .
image Im( c-Ind%, y* — c-Ind$, x ) is isomorphic to C—Imdg0 Vi, where we
consider y and x*® as representations of IZ with w acting trivially. Now
(c-Ind$, x)' = e, Heoy as an H-module, hence T, e, sHpo; is a submodule
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of (c-Ind§ V;)"*. This is an isomorphism since T2 e, = 0 and it can be
deduced from [25, Lem. 2.0.15] that:

T,
Ker( exHoot —> ey Heoo1 ) 2 T s Hpo1.

Let s € c-Ind$, x* be the function such that Supp ¢ = IZ and oy (g) =
X*(g) for all g € IZ, then:

1 r—
Z’yTnSSOXS = TnsTHTns(sz = Z <0 [/ib]> N 1H 1TnSQOXs.

nely
It follows from Lemma 6.1 that Z, =T OJ

Corollary 6.4. (i) There exists a basis {vi,vo} of the underlying vector
space of M(r,\,n) such that:

V1€ys = V1, 1T = v, V26 = Vg, vl = vy
and such that viT,, = —vy if r =q—1 and viT,, = 0 otherwise.

(ii) We have va(1 +T,,) = n(—w HAvy if r = 0 and voT,,, = n(—ww ) Avy
otherwise.
Proof. One may show that if » # 0 (resp. r = 0) the images of T, eys,
Th.exsTr (resp. (14T, )ey, (1 + T5,)ey ) form a basis of M(r, ). One
may then immediately verify the assertions. O]

One can deduce from Corollary 6.4 that M(r,\) is irreducible unless
(r,A\) = (0,£1) or (r,A\) = (¢ — 1, £1) (see [33]). Moreover, there exist exact
non-split sequences of H,—; modules:

0—=Z(St®d0+1) —= M(0,+1) —=Z(6+1) —=0
where St denotes the Steinberg representation of G over F,.

Corollary 6.5. Let M be a subquotient of M (s, p,w®) in Mody__,. Assume
that Exty,__ (M, M(r,\)) # 0, then A = (—1)u and either r = s and a =
0(q—1)orr=q—1—sanda=r (¢—1).

Proof. Let 0 — M(r,\) - E — M — 0 be a non-split extension. Set
v = {x,x*}. Since e, and Z,e, are central in Ho—y, the maps £ — E,
v~ v(l—e), v v(Ze, —A\) are maps of H,—; modules and factor
through M — E. Since E is not split, M (1 —e,) = 0 and hence s = r and
a=0(g—1) ors=¢g—1—randa=r (¢—1). Since Z, has eigenvalue
p(=1)* on M (s, p,w®), we obtain A = u(—1)*. O
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Corollary 6.6. Assume that r # 0, r # g — 1. Set M := M(r,\) and
M :=M(@—1—r,X=1)",w"), if X\ # 0 then:

dimg Exty__ (M, M) =1, dimg Ext;,__ (M, M') = 0.

If A =0 then M = M’ and dimg_ Exty,__ (M, M) = 2.

Proof. Consider an exact sequence of ‘H_—;-modules:
0——M——T,exsHeomr/(Zy = N> —>M —0. (11)

If the sequence was split then Z,— X would kill T, e, Hpo1/(Z,—\)?, which is
not the case. Hence, dimg Exty,_ (M,M)>1. Set E := ey Hepor /(Zy— N)
then we have an exact sequence of ‘H,_i-modules:

Zy=A
0 — exe Moot 2= ey Hopet —> E —0. (12)

Since eysHeo1 is a direct summand of a free module, (12) is a projective

resolution of E'in Mody,_,. In particular, for all Hy—i-modules N, we have

Exty,__ (E,N) =0 for i > 1 and an exact sequence:

Zy—A 1
O—>Home=l (E,N) N@Xs N@Xs HEXtszl (E, N) —0.

(13)

Since 0 < r < ¢ — 1 we have xy # x* and so it follows from Proposition 6.3

and (12) that:

dimg Homy,_, (E, M) = dimg Homyy__, (£, M') = 1. (14)

One may verify that the images of eys, eysTt, ey, Ty, eysTnT,, form a basis
of E, so dimg E = 4. If A # 0 then M % M’ and as M and M’ are
irreducible and 2-dimensional we obtain £ = M & M’. It follows from (13)
that dimg Exty,__ (E,M) = 1. Since Exty__ (M, M) # 0, if X # 0 we
obtain:

Exty,__ (M, M) =0, dimg Ext;,__ (M, M) =1.

After replacing r with g—r—1 and twisting, we also obtain Ext%{wz (M, M) =
0. Assume that A = 0 then M = M’. One may check that the subspace of E
spanned by the images of e, T, , e,sTn7T},, is an Hy—1-module isomorphic to
M and the corresponding quotient is isomorphic to M. It follows from (14)
that the exact sequence of ‘H,—_;-modules:

0 M E—=M 0 (15)
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is non-split. The classes of extensions (11) and (15) are linearly independent
in Exty,__ (M, M) since one of them is killed by Z, and the other one by Z2.
So dimg, Exty,__,(M, M) > 2. From (15) we obtain an exact sequence:

Homy,__, (M, M) — Exty,__ (M, M) — Exty,__ (E, M).
Since dimg Ext;,__ (B, M) =1, we get dimg Exty,__,(M, M) < 2. O

Corollary 6.7. Assumer =0 orr=q—1. Set M := M(r,\) and M' :=
M(q—1—r,)), then dimg Exty,__ (M, M) = dimg Exty,__ (M, M’) = 1.

Proof. Since —e; T}, is an idempotent in H, the exact sequences in Proposi-
tion 6.3 are projective resolution for M. If r = g—1 then for all Hy—;-modules
N we have Extj, (M, N) =0 for i > 1 and an exact sequence:

0 — Homy__, (M, N) — NeyT,,, 25 NeyT,,, — Extl,__ (M, N) — 0.

The assertion for r = ¢ — 1 follows from this exact sequence. The case r = 0
is analogous. O

Proposition 6.8. Assume A\ # 0 then we have:
T(M(r,An)) =x(r,An), I(x(r,A,n)) = M(r,An).

Proof. 1t is enough to consider the case n = 1. Let K be the kernel of the
natural map « : ’T(I(C—IndgO i) — C-IndgO Ve. f r=0o0rr=¢q—1 then
—T,.e1 is an idempotent which implies that K = 0. The first isomorphism
then follows by applying 7 to the exact sequence defining M (r, \). Assume
r % 0and r # ¢ — 1. It follows from the proof of Proposition 6.3 that
(C-Indg0 Vi)t 2 T, e, Hp-1. Hence every v € K can be written v = T),.e, ® f
with T}, e, f =T, f = 0. Now we have:

Z'yU = TnSTHTnsex ®f= Tnsex ® (THTnsf> =0.

Since A # 0, multiplication by Z, — A induces thus an isomorphism K = K.
Since « is surjective, we deduce the first isomorphism from a diagram chase.
Applying Z to the exact sequence defining m(r, A, 1), we obtain an injection
M(r,\,n) — Z(mw(r,\,n)). It follows from [4, Th. 30] that this map is an
isomorphism. O]

Corollary 6.9. Let T be a smooth admissible irreducible non-supersingular
representation of G over IF,, then TZ(T) = 7.
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Proof. 1t follows from [4, Cor. 36] that either 7 = m(r, \,n) with (r, \) #
(0,£1), (r,\) # (¢—1,%1), or T 2 nodet, or 7 = St ®nodet. The assertion
follows from Proposition 6.8, [4, Th. 30] and right exactness of 7. [

Corollary 6.10. Let M = M (r,\) with X\ # 0, or M =Z(1), or M = Z(St).
Then LYT (M) = 0.

Proof. We prove the statement when M = M (r, A) and A # 0. Assume that
r=0orr=q—1then —e 7T, is an idempotent. Hence the exact sequences
in Proposition 6.3 are projective resolutions. Moreover, 7 (T, e1Hpo1) =
C-Indg0 Vo1 and T((1 + 15, )er Hepor) = C—Indg0 Vo. Hence, applying 7 to
the exact sequence defining M (7, A), we obtain an exact sequence defining
7(r,A) and thus LY7 (M) = 0. Applying 7 to the exact sequences:

0 Z(1) M(g—1,1)—=Z(St) —=0

0 —Z(St) — M(0,1) —= (1) 0

we obtain L'7(Z(1)) = L'7(Z(St)) = 0. Assume r # 0, r # ¢—1 and A # 0.
Let F be an ‘H,—;-module defined by the exact sequence:

Zy—A
)—— stszl —_— €X5Hw:1 — F —0.

Since e, is an idempotent, this is a projective resolution of E. Applying 7,
we obtain an exact sequence using 7 (eys Hepe1) = c-Ind$, x*:

Zy—X
0 —=L'7T(E) — c-Ind%, y* = ¢-Ind?, x* T(E) 0.

Now Z,—\ is an injection since it is an injection on Z(c-Ind¥, x*) = eys Ho=1.
Hence L'7(F) = 0 and T(E) & c-Ind%, x*/(Z, — \). Set «’ := 7(q — 1 —
r, A (=17 W), mi=mw(r,A) and M":= M(qg—1—r,A(—1)",w"). Applying 7
to the exact sequence () M’ E M 0 we obtain an exact
sequence:

0—=L7T(M)——7 —=T(F)—=1—>0.
Since r # 0 and r # ¢—1, @’ is irreducible and thus 7 (E) = 7w if L'7 (M) # 0.

But this is impossible as Z(7) has dimension 2 and Z(7 (£)) has dimension
at least 4. 0
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7 Computation of R!'Z for principal series

We assume F' is a finite extension of Q,. Let x : P - T — F; be a smooth
character. We also denote by x the restriction of x to Z. We compute R'Z(7)
in Repg , for m = Ind$ y.

Set Z; := I, N Z. Since Z; is pro-p and x is smooth, we have x(Z;) =
1. Hence Z; acts trivially on all the representations in Repg . Forgetting

Y

the H-module structure gives an isomorphism of vector spaces R'Z(r) &
Hl(Il/Zl,W>.

Lemma 7.1. For a cocycle f € Z'(I,/Z,,Ind$ x) define functions ¢* and
Yt as follows:

) = [f)(1), we hnP Y(u):=[fw](n,), welLNP.
Then the map f — (Y%, 4') induces an isomorphism:
H'(11/Zy,Ind x) = Hom((1, N P)/Z1,F,) & Hom((1, N P*)/Z41,F,). (16)
Proof. Since G = PI; II Pnyl;, we have an isomorphism:
Ind§ v|r, = Ind}\p 1 & Ind} - p. 1.

As Z; acts trivially on both sides, we may rewrite this as Indggl1 X|n /2 =
Ind(}/Z, , 1@ nd}/Z, ) 1. Tt follows from [30, §2.5] that:
HY(I,/Z,,Tnd% x) = H'((I, N P)/Z,,1) ® H'((I, N P*)/Zy,1)

which implies the assertion. O

Fix ¢* € Hom((I; N P)/Z,,F,) and ¥ € Hom((I; N P*)/Z;,F,) (the
superscripts u and [ stand for “upper” and “lower”). We consider the pair
(1", 9') as an element of R'Z(Ind% y) via (16).

Lemma 7.2. There exists a locally constant function p : G — F, satisfying
the following equalities:

(i) w(pgu) — ©(pg) = x(p)(w(gu) —(g)), pEP, g€ G, uel
(i) o(u) — (1) =9*(u), welLNP
(iii) p(nsu) — o(ng) =YY (u), welNPs
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(iv) p(zg9) = x(2)p(9), z€Z, geq.

Proof. Consider the exact sequence of G-representations:
0—=Ind$y ——>Ind§x —=Q—=0
where ¢ is the natural inclusion. For all 7 in Repg, ,, we have:
Homg (7, Ind$ x) = Homy(r, x) = Homg (7, F,)

and hence Indg X is an injective object in Repg ,. Applying Z we obtain an
exact sequence of H-modules:

0 —=Z(Ind$ x) — Z(Ind§ x) — Z(Q) —= R'Z(Ind$ x) — 0.

Let % be a preimage of (1%, ') in Z(Q) and ¢ be a preimage of % in Ind$ x.
Then ¢ satisfies (iv). Since @ is fixed by Iy, for all u € I} we get (u—1)p €
Ind% y and hence ¢ satisfies (i). Moreover, ()*,4!) is the class of the cocycle
u+— (u—1)p. Lemma 7.1 implies then that ¢ satisfies (ii) and (iii). O

Proposition 7.3. Let n € G and, for each coset ¢ € I,/(I; N n~'Iin),
fix a representative © € I,. With the notations of Lemma 7.2, set ©T, =

>, en"to and:

0"(u) = [pT.)(u) = [¢Ta)(1) =Y (p(uen™") — p(en™))

[

o' (w) = [pT](nsu) — [pTn](ns) = Z(gp(nsuén_l) — p(ngen™)

C

where u s respectively in Iy N P and I, N P®, and where the sum 1is taken
over all cosets ¢ € I/(I, N'n~"Iin). Then the action of H on R'Z(Ind$ x)

is given by (4, )T, = (6", 6Y).

Proof. 1t follows from [25, Cor. 2.0.7] that the action of H on Z(Q) is given
by T, = Y..en"'%. As ¢T, is a preimage of 7T, in Ind§ x, (%, )T, is
the class of the cocycle u +— (u—1)(¢T,). The assertion follows from Lemma
7.1. O

We now fix an integer r such that 0 < » < ¢g—1 and \ € F;. Let
x: T — F; be the character:

wna 0 m—n T X
X(( 0 wmd>) =N""w(d)" (a,d € Of, m,neZ). (17)
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It follows from [4, Th. 30] that Z(Ind$ x) = M(r, \).

Fix 9" € Hom((I; N P)/Z,,F,), ¥ € Hom((I, N P*)/Z;,F,) and let ¢ be
a function as in Lemma 7.2. We may choose coset representatives so that

oT,. = Zaqu(é N e, T = I17'¢ and so that, for all £ : H — F;:

pre I 2 f(( ) )

We consider (%, ¢!) as an element of R'Z(Ind% x) via (16). We are going to
determine (¢*, Y")T,,, (", ") T and (", ¢')ee using Proposition 7.3.

_ -1
Lemma 7.4. Let u € F; then (—%u] (1))((1) [“]1 DE [’6] —?u] )N

Lemma 7.5. Let ¢ € wOp then:
1 0 0
enae ) -bter= (5, 1)
peFy

Proof. Note that the left hand side is equal to > 5 (e((33)(fu ) —

o(( ,b‘] (1)))) Since (4 PF') is contained in the derived subgroup of I; N P, the
term corresponding to p = 0 is:

(5 7)) —em=v((5 7)) -0

If € F, using (i) of Lemma 7.2 with p := (§ 1¢), g := ([ 1), u = (o [”]171)
and Lemma 7.4 we get:

Summing over p € F we get the claim. O

Lemma 7.6. Let a,d € 1 + wOp then:

[soTns](ns (3 2))—[¢Tns1<ns>=w((g 2))+
i (g Laary 1)+ 02(( 3))

peFy pelfy
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Lemma 7.7. Let b € Op then:

(6 1)) - emam=cu (2, 9))

Proof. Let b be the image of b in Op/wOp then:
S (w3 M) = (3 Bm) ) = 3 (8 n (s )

S S
—e((3%n)

and the right hand side is equal to:

X (5 ey -0 1)) = (=1 ().

A similar argument gives:

Lemma 7.8. Let a,d € 1 + wOp then:

(5 ) =m0 = ({52 gt — ey 1))

The following two lemmas can be easily obtained by using (i) of Lemma
7.2 and observing that x(IT"'n;!) = X and x(nJI7') = A7%:

Lemma 7.9. Let a,d € 1 + wOp and ¢,b € Op then:

[@T“]((g Z))—[wTHKl) - w’(( a0 )
[an](ns (;C 2))—[¢TH](%) _ 1wu((0 2))

Lemma 7.10. Let a,d € 1 + wOp, ¢ € wOp, b € O and let £ : H — F;
be a character then:

(5 1)) -t = = (5 ) (6 5 7)

oo ) -tmier= 5 D) ()
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Definition 7.11. (i) For 0 <i < f, define e; € Hom((I, N T)/Z,,F,) by:

s((59) =w((1—da™)/m)”
and k¥ € Hom((I; N P)/Z,F,), kk € Hom((I, N P*)/Z,,F,) by:

RE((55) = w®), wi((29) =we)".

(i1) For § € Hom((I; ﬂT)/Zl,_p), define §* € Hom((I, N P)/Zy,F,) and
6" € Hom((I; N P*)/Z1,F,) by:

"((§2) :=08((82), 0((£8):=0d((52)-

Lemma 7.12. There exist 61,6, € Hom((I, NT)/Z,,F,) and z¥, 2% € F, for
0 <i < f such that:

F-1
—5“—1—sz Ky 5Q+inmi

1=0

Proof. By restricting ¢* to TNI; and twisting by s, we obtain 6, € Hom((/1N
T)/Z,,F,) such that ¢* — §} is trivial on I; N T. Since:

CEDEDETDGET) =),

the restriction of " — 8% to (§ *F') is trivial. Hence ¢* — 6} factors through
KinP. Now dimg Hom((Z; N P)/(K1 N P),F,) = dimg Hom(F,,F,) = f
and the ) are linearly independent. This proves the claim for ¢*. The claim
for 1! follows after conjugating by II. O

We will consider s, xl, 0%, &' as elements of R'Z(Ind$ ) by extending
them by zero to elements of Hom(([l N P)/Z,F,) @ Hom((I, N P*)/Z,,F,)
and then using (16) and Shapiro’s lemma.

Proposition 7.13. Let § € Hom((I, NT)/Z,,F,) then:
Shey = 6", Typ =M1, 8T, =6, dews =26, 0"1Tn= "

Ifr=q—1, 8T, =6 and ifr # q—1, 8'T,, = 0. In particular, (5%, 5l>Fp
is stable under the action of H and is isomorphic to M (r,\) as an H-module.

Proof. This follows from Lemmas 7.10, 7.9, 7.5, 7.6, 7.7 and 7.8. O

u l R U _
i "iiexsap K; K TH B

Proposition 7.14. (i) We have kje i = k
A6l kT = A6 and k4T, = 0.
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(11) We have:

K'i‘Tns _ ( Z szz‘w)/{é + ( Z Iupi—i-r)gé + ( Z M)E? + (—1)T+16F/€?

pnery puery pekg
where ep =1 if F'=Q, and ep = 0 otherwise.

Proof. This follows from Lemmas 7.10, 7.9, 7.5, 7.6, 7.7, 7.8 (note that
val(q) = [F : Q). =

Proposition 7.15. (i) The subspace S := (e*, &\, kY, ml)]F of R'Z(IndS x)
is stable under the action of H.

(ii) Let s be an integer such that 0 < s < g—1 and s = —r—2p' (¢—1),
then there exists an exact sequence of H-modules:

0—=M(r,\) —= 85— M(sD ep~! wtr') —=0,

where ep = 1 if ' = Q,, and ep = 0, otherwise. This sequence is non-
split if and only if (F=Q,, p>2,r=p—2and \==%1) or (F =Q;
and A =1) (and hence r =1 and s =0).

Proof. (i) follows from Lemmas 7.10, 7.9, 7.5, 7.6, 7.7 and 7.8. Proposition
7.13 implies that the subspace (g¥ ,5ﬁ)]F of S is stable under the action of H

and is isomorphic to M(r, A). We denote the correspondlng quotient by Q.
Let v; be the image of s and v, be the image of A™'x! in Q. Proposition

7.14 implies V1€, (pi = Vl; V26 00 = V2, v = g, UQTH =y, il,, =0
and:

Z Iu2p +7" -\ ( )H_léF’Ul.

peFy
Now xa ' ((39)) = A7""2"(\u)™*7" hence D ers M 20'+7 2L () if and only

if (ya™)* = xa™?. These relations and Corollary 6.4 imply (v1, v2)f, =
M(s%, epA!, w”pi). Suppose that the sequence does not split. Then Corol-
lary 6.5 implies that A = (—1)""'A"tep, and hence F = Q, so that i = 0.
Assume p > 2, then r +1 # r (p — 1) and hence Corollary 6.5 implies
r=s=p—2and A = £1. Let v := {xa™ !, x*a}, since r = p — 2 we
have Z, = T,,, Tt + TuT,,. If the sequence was split then Z, — A would kill
S. However k*(Z, — \) = A\ 'w!T,, — \s* = (> erx pP~Hel £ 0, so the
sequence does not split. Assume now p = 2. Since r > 0 we get r = 1 and
hence s =0, A =1and Z, =T, Ty + 171}, + 1. The same argument shows
that k"(Z, — 1) # 0 and hence the sequence can not split. O
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We now sum up the results of this section.

Theorem 7.16. Let \ € F; andr € {1,--- ,q—1}. For0<i< f—1,
let s € {0,---,q — 2} such that s = —r —2p" (¢ — 1) and let d :=
dimg Hom(1 + pp, Fp).

(1) Assume F # Q, then:

j-1 |
RZ(m(r,\) = M(r,\)* & @ M(s?,0,w 7).

1=0

(i) Assume F = Q, and, if A = *x1, assume furthermore p > 2 and
r#p—2. Then:

RYZ(r(r,\)) = M(r, \)** @ M(s©, A7 W),

(iii) Assume F = Qp, A\==+1, p>2 andr =p—2 then R*Z(r(p — 2, £1))
is the unique non-split extension of He—1-modules:

00— M(p—2,£1) —R'Z(m(p—2,£1)) —= M(p—2,+1) —0.

(iv) Assume F'= Qg and A = 1. Let E be the unique non-split extension of
H =1 -modules:

0—=M(1,1) —= E —= M(0,1) —=0,
then R'Z(n(1,1)) = M(1,1) ® E.

Proof. This is a reformulation of Propositions 7.13, 7.14 and 7.15. In (iii)
and (iv), the uniqueness of the extension is given by Corollary 6.7. Note that
for F=Q,, d=1ifp>2andd=2if p=2. m

8 Extensions of principal series

We keep the notations of sections 6 and 7 and still assume F' is a finite
extension of Q,. We fix a smooth character x : F* — F; and study groups
Exte; , (7, m) of G-extensions with central character y.

Theorem 8.1. Letr € {1,--- ,q — 1}, A € F;, 7w = w(r,\) and M =
M(r,A) (see Definition 6.2). Let T be a smooth admissible irreducible non-
supersingular representation of G over I, with central character x with x as

in (17). Then there exists a short exact sequence:

0 — Exty,__ (Z(7), M) — Extg,, (r,7) — Homy(Z(7),R'Z(7)) — 0 (18)
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where Extlax(r, 7) denotes the F,-vector space of G-extensions with central
character x.

Proof. Let E be the class of an exact sequence in Repg ,

0 T € T 0.

Taking I;-invariants we obtain an exact sequence of H-modules:

0—TI(1) —=TI(e) —I(r) —Z R Z(r) .

Hence we obtain a map Extg, (7, m) — Homy(Z(7),R'Z(x)), E — ¢p. We
claim that this map is surjective. Let ¢ € Homy(Z(7),R'Z(7)) be non-zero.
By Corollary 9.11 below (note that if p = 2, 7|g, has property (S) below by
Corollary 9.3), there exists an exact sequence:

0—-m—Q—0Q —0,

where (2 is a smooth admissible representation of G over F, such that Q|
is an injective envelope of sock 7 in Repy , . Since Q|, is an injective object
in Repy, ,, by taking [;-invariants we obtain an exact sequence:

0—M—ZI(Q) - I(Q) — R'I(r) — 0.

By examining the construction of Q2 we observe that Z(Q2) =2 M @& S, where S
is a direct sum of supersingular modules (compare [25, Prop. 6.4.5]). Since
7 is irreducible and non-supersingular, Z(7) is irreducible and hence ¢ is
an injection. Since 7 is non-supersingular, Corollary 6.5 implies that there
exists no non-split extensions between a supersingular module and Z(7). In
particular Exty,__ (Z(7),Z(Q)/M) = 0. From the exact sequence:

0— Homy (Z(7),Z(Q)/M) — Homy (Z(7), Z(Q)) — Homy (Z(7), R*Z(7)) — 0

we thus get v € Homy(Z(7),Z(Q)) such that the composition Z(7) 2,
Z(Q) — R'Z(m) is ¢. Now let E be the image of ¢ under:

Homy(Z(7),Z(Q)) = Homeg(7, Q) 2 Extax(ﬂ )

(use the adjunction property of Z and 7 (see §6) together with 7Z(r) = 7
for the first isomorphism), then one checks that ¢ = ¢. Let us now prove
exactness in the middle of (18). Suppose that E is such that ¢ = 0, then
we obtain an extension of H—;-modules:

0—ZI(r) =M Z(e) Z(7) 0.
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If this extension is split, Corollary 6.9 implies that £ = 0. Corollaries 6.10,
6.9 and Proposition 6.8 imply that, after applying 7 to this exact sequence,
we obtain an exact sequence of G-representations:

0—>7——>T7L(e) —=T7—>0.

This implies that the natural map 7Z(e) — € is an isomorphism, hence we
get back E and thus exactness in the middle of (18). Let us finally check
injectivity on the left of (18). Suppose that we have an exact sequence of
H »—1-modules:

0 M N Z(T) 0.

Corollary 6.10 implies that, after applying 7', we obtain an exact sequence
of G-representations:

07 —>T(N)—>7—>0.

Let E be the class of this extension in Extlcyx(r, 7). After applying Z we
obtain a diagram of H-modules with exact rows:

0 M N Z(7) 0

-]

0—— M —ZIT(N) Z(7)

Hence ¢p = 0 and N = Z7 (N). This implies that 7 induces an injection
Ext%{wzl(I(T), M) — Eth’X(T, ). O

Corollary 8.2. Let m:= 7(r,\) and M := M(r,\) as in Definition 6.2 with
ref{l,---,q—1} a,nd)\GF;. Let x as in (17).
(i) There exists an injection Hom(F* F,) — Extg  (r, 7).

(i) If (N F) # (£1,Q2) and (A, F,r) # (£1,Qs,2) then this injection is
an isomorphism and the subspace Exty, _ (M, M) via (18) corresponds
to the unramified homomorphisms.

Proof. Let 6 € Hom(F*,F,). Welift 6 to a homomorphism of P via P — F*,
(65) — ad™". Let ¢5 be the extension corresponding to d via Extp(x, x) =
Hom(P,F,). By inducing to G we obtain an exact sequence:

0 —Ind% x —Ind% es — Ind$ y — 0.
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By evaluating functions at identity, we see that this sequence splits if and
only if § = 0. This proves (i) as @ ~ Ind%y. Let vy, v, be the basis of
the underlying vector space of €5 such that for all ¢ € P, we have gv; =
x(g)v1 + x(9)0(g)vy and gvy = x(g)ve. Denote by U (resp. U?) in this
proof (and only in this proof) the unipotent subgroup of P (resp. P?®). Let
p1 € Indg e¢s be the function with Suppy; = PI and ¢;(u) = v; for all
we I,NU?, and let @y := ZAG]Fq((I) M)nter. The images of ¢ and g5 form
a basis of (Ind$ x)*. Moreover, [(u — 1)¢1](ns) = 0 for all uw € I; N P* and
[(tu — D)1](1) = 6(t)vg for all t € TN 1 and w € [; NU. Seeing 6|14y,
as an element of Hom((/y NT)/Z1,F,), we let 8|t and d]',, be as in
(ii) of Definition 7.11. We thus get that ¢, maps to d[t,,, and ¢, maps
to 6]}, in R'Z(r) via (16). The assumptions on A, F and r imply that if
¢ € Homy (M, R'Z(r)) is non-zero then ¢ is an injection and the proof of
Theorem 8.1 goes through even in the case when m = 7 is not irreducible.
Moreover, ¢p(M) = (0%, 5l>ﬁp for some § € Hom(1 + pr,F,). So we obtain an
exact sequence:

0 — Hom"™ (F*,F,) — Hom(F*,F

p

) — Homy (M, R'Z(7r)) —0

(where Hom"™ means homomorphisms which are trivial on O ). Hence we
obtain an injection Hom"™ (F*,F,) — Ext;,__ (M, M). Since both spaces
are one dimensional, this is an isomorphism. O

Corollary 8.3. Letr € {1,--- ,q— 1}, A € F; and x as in (17). Assume
F = Qp; (p7 >‘) 7é (27 1) and (p7/\7fr) 7é (37i172) Let s € {Oa T 7p_2} such
that s=—r —2 (p—1). Let:

d = dimg Extax(w(s, AL W) w(r, N)).
Ifr=p—2and A = 1 then d = 2. Otherwise, d = 1.

Proof. Set M’ := M (s, \™",w™™) and M := M(r,\). If Homy (M', M) # 0
then w™™ =1 and hencer+1=0 (mod p—1), A= A"}, s=r (mod p—1).
This can only happen if (p,A\,r) = (3,£1,2), (p,\) = (2,1) or p > 2 and
(r,A) = (p — 2,£1). We have excluded the first two cases. In the third case
m(r,\) 2 m(s, \7!,w™™) 2 7(p—2,41) and hence it is dealt with in Corollary
8.2, so we obtain d = dimg Hom(Q),F,) = 2. If Exty,__ (M’, M) # 0 then
Corollary 6.5 implies that either we are in the cases considered before or
r+1=r(p—1) and X = (—=1)"A~t. This implies (p,\) = (2,1). The
assertion follows from Theorems 7.16 and 8.1. [

Corollary 8.4. Letr € {1,--- ,q— 1}, A € F; and x as in (17). Assume
F =Q,, then EXtIG,X(W(S, 0,n),m(r,\)) =0 for all s and 7.
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Proof. Set m:=m(r,\), 7" :=7w(s,0,n), M := M(r,\) and M’ := M(s,0,n).
It follows from [6] that Z(n") = M’ and [25, Cor. 6.1.8] implies that, for
all 7 in Rep, we have Homy (M',Z(7)) = Homg(n', 7), hence n’ = T (M').
Theorem 7.16 implies that Homy (M’ ,R'Z(7)) = 0. Corollary 6.5 implies
that Extj,__ (M’,M) = 0. The proof of theorem 8.1 then goes through to
show that Extg; (7', m) = 0. O

9 General theory of diagrams and represen-
tations of GLs

We define basic diagrams and use them to construct smooth admissible rep-
resentations of G over F,, generalizing the constructions of [25]. We don’t
assume anything on F.

We start with a few lemmas. Let [H| := {(%‘] [2&) A € Frt, G the

subgroup of & generated by [H] and II and set G := G /w”.

Definition 9.1. Let 7 be a smooth representation of R, such that w acts
trivially. We say that T has property (S) if 7% — 7 has a G-equivariant
section.

Proposition 9.2. Let 7 be a smooth admissible representation of R such
that w acts trivially. If p # 2 then T has property (S). If p = 2 then assume
that for every character x : H — E: such that x = x° there exists a subset
S of e, such that (I1-S)NS =0 and (II-S)US is a basis of T"'e,. Then
T has property (S).

Proof. Since w acts trivially the action of G on 7/t factors through G. We
claim that the assumption implies that 711 is an injective representation of G.
The order of G is equal to 2(q—1)?, hence if p # 2 the claim holds trivially. If

p=2and x # x° then Ind[g;ﬂ X is irreducible, and injective since the order of
[H] is prime to 2. Hence, 7 (e, +€,s) is injective. If y = x*, the assumption
on 7 implies that e, = @ IndFH} X. Since Ind[gH] X is injective we obtain the
claim. But the claim implies that there exists a splitting. O

Corollary 9.3. Let w be a smooth admissible representation of G such that
w acts trivially. Assume that p = 2, and that for every character x : H — F;
such that x = x*, there exists a filtration of H-modules of w'*e, such that the
graded pieces are isomorphic to either M(0,\,n) or M(q — 1,\,n) for some
X and n. Then 7|g, has property (S).
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Proof. This follows from the fact that the underlying vector space of M (r, A, n)
is two dimensional with basis {v, ITv}. O

Corollary 9.4. Let w be a smooth admissible representation of G such that
w acts trivially. Assume that p = 2 and that socg ™ consists of supersingular
representations, then m|g, has property (S).

Proof. Tt follows from Corollary 6.5 that there are no extensions between
non-supersingular and supersingular H-modules. This implies that if a non-
supersingular module is a subquotient of 7/, then there exists an irreducible
non-supersingular H-submodule of 7/t. However, Proposition 6.8 would im-
ply that an irreducible non-supersingular representation occurs in socg 7.
Hence, every irreducible subquotient of 7/t is supersingular. Let y : H — F;
be a character such that x = x* and choose any filtration of 7'te, such
that the graded pieces are irreducible H-modules. It follows by above that
the graded pieces are isomorphic to M(0,0,7) for some 7. Hence, 7|g, has
property (S). O

Lemma 9.5. Let 7 be a smooth admissible representation of K such that the
fized uniformizer w acts trivially on T and assume that T has property (S).
Let v : 7|r — Inj(7|;) be an injective envelope of T|; in Rep;, then there exists
an action of K1 on Inj(7|;) such that v is R-equivariant. If T satisfies the
conditions of Proposition 9.2 then this action is unique up to isomorphism.

Proof. Let s : 7 — 7' be a G-equivariant section. Define ¢, : 7 — Indé1 T,
v +— [g — s(gv)]. This is a Kj-equivariant injection since it induces an
injection of 7. Now (Indg' 7/)|; & Indfy; 7" is an injective envelope of 771
(and hence of 7) in Rep,;. Hence there exists an [-equivariant isomorphism
W Inj(7|;) = Ind[lH] 711 such that ¢, = 1or. We may use 1 to define an action
of R on Inj(7|;) such that ¢ is Rj-equivariant. If 7 satisfies the conditions
of Proposition 9.2 then 7/* is an injective representation of G, and hence
Indg1 711 is an injective envelope of 7 in the category of & representations
on which w acts trivially. This implies the assertion. O]

Lemma 9.6. Let 0 = @ 0; where (0;)1<i<m are irreducible representations
of K and recall o — Injo is an injective envelope of o in Repy. Let e €
End;(Inj o) be an idempotent and suppose that there exists an action of &1 on
e(Inj o) extending the action of I with w acting trivially. Then there exists
an action of K1 on (1 —e)(Injo) with w acting trivially.

Proof. Set V := e((Injo)™) and W := (1 — e)((Injo)™). Denote by V, and
W, the x-isotypic subspaces for the action of I, where x : H — F; . We
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have:

V=V, w=w,.
X X

where the sum is taken over all the characters x. The action of IT on e(Inj o)
induces an isomorphism V) = V). and hence dimg V) = dimg V) for all x.
It follows from [25, Lem. 6.4.1, Lem. 4.2.19 and Lem. 4.2.20] that for every
o; and every y we have:

I

U_
= o

dimg (In] o)l = dimg (inj o)y, = dimg (inj 0i)ls = dimg (Injo;)

Since Inj o = @2 Inj 0;, we obtain dimg (Injo)l = dimg (In] o)% and hence
. . P P

dlmﬁp W, = dlmﬁp W,s for all x. For every ordered pair (x,x*) such that

X # X°, choose an isomorphism of vector spaces ¢, ,s : W, — W,s so that

Oyxs = ¢;517X. If x = x® then W, = W,s and we set ¢, s := idy, . Define

¢ € Endg (W) by:

¢(wx) = Oy (wx)a Vw, € Wy, Vx.

Then ¢? = idy and ¢u¢™ w = Mulltw, u € I, w € W. Hence by sending
IT to ¢ we obtain an action of K on W. Since Injo is an injective object
in Repg, (Injo)|; is an injective object in Rep;, and thus (1 — e)(Injo)
is an injective object in Rep;. Since W = (1 — e)(Injo)™", we have that
W — (1 —e)(Injo) is an injective envelope of W in Rep;. Since I; acts
trivially on W, W has property (S) and Lemma 9.5 implies there exists an
action of &) on (1 — e)(Inj o) extending the action of I and such that w acts
trivially. O

Definition 9.7. A diagram D is a triple (Do, D1, 1) where Dy is a smooth
representation of Ko, Dy is a smooth representation of K and r : D1 — Dy
18 an 1Z-equivariant morphism.

This definition is taken from [25, §5.5]. Diagrams equipped with obvious
morphisms form an abelian category D, which is equivalent to the category
of G-equivariant coefficient systems on the Bruhat-Tits tree X for PGLy(F)
([25, Th. 5.5.4]). Given D = (Dy, Dy,7) € D, we will write Hy(X, D), or
more simply Hy(D), for the O0-th homology of the coefficient system corre-
sponding to D. Explicitly, one has an exact sequence:

-Ind§, (D) @ 6_) ~2> c-Ind§, Dy — Ho(D) —0
where 0 is the composition of the following obvious maps:
c-Ind§ (D1 ® 6-1) — c-Indf, Dy — c-Indf, Dy — c-Ind , Dy.

In particular, Hy is a functor from D to Rep,. This functor has a section,
namely the constant functor K : 7 +— (7| g,, 7|g,,id).
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Theorem 9.8. Let D = (Dy, Dy, 1) be a diagram such that Dy is admissible,
r 18 an injection and w acts trivially on Dy. If p = 2, assume Dy has property
(S). Let 0 :=socy Dy. Then there exists an injection of diagrams:

LD — K(Q),
where §) is a smooth representation of G such that Q|x = Injo.

Proof. Since Dy is admissible, DI is finite dimensional and hence o & @7, o,
with o; irreducible. Since Dy|f is an essential extension of o, there exists an
injection ¢y : Do|g — Injo making the diagram of K-representations:

oc——>Injo

N

Do|x

commute. Put an action of &y on Injo by making w act trivially and denote
this representation €2y. Then ¢y : Dy — €y is Kg-equivariant. Set 11 := (gor.
Since r and ¢y are injections, we obtain an injection ¢; : Dy|; < Qp|;. Since
Qo|; is an injective object in Rep; and ¢; is an injection, there exists an
idempotent e € End;(€g) such that e o 13 = 11, and ¢; @ Di|; — () is
an injective envelope of Dq|; in Rep;. Since & acts on D; with w acting
trivially, Lemma 9.5 implies there exists an action of & on e({2y) such that
11 : D1 — €e(Qp) is Ri-equivariant. Moreover, Lemma 9.6 implies there exists
an action of &) on (1 — e)(€Q) extending the action of I. This defines an
action of & on e(y) ® (1 —€)(): we denote this representation by ;. We
obtain an injection of diagrams:

L= (to,t1) : (Do, D1,71) — (20, 4,id).

It then follows from [25, §5] that there exists a representation €2 of G, unique
up to isomorphism, such that (€, Q,id) = K(Q). ]

Lemma 9.9. Let D = (Dg, Dy,r) be a diagram and set:
Fo :={f € c-Ind§, Dy, Supp(f) C Ko}

Let € be a smooth representation of G and suppose that we are given an
injection of diagrams v : D — K(Q2). Then the composition:

Fo—=c-IndG, Dy —= Ho(D) 2% ¢

15 an injection.

38



Proof. Let ¢ : Fy — () denote the above composition. Evaluation at 1 in-
duces an isomorphism Fy = Dy. It follows from the proof of [25, Prop. 5.4.3]
that the diagram (Ker ¢,0,0) is contained in Ker¢. Since ¢ is an injection,
SO is ¢. O

Proposition 9.10. Let D = (Dg, Dy,r) be a diagram and suppose we are
given an injection of diagrams v : D — (), where Q is a smooth repre-
sentation of G such that sock ) = sock Dy. Let m be the image of Hy(t) :
Ho(D) — Q. Then Q is an essential extension of . In particular, if m is
irreducible then m is the G-socle of €).

Proof. Lemma 9.9 implies socg Dy C socg m C sock §2, where we have iden-
tified Dy with the image of Fy in §2. Since sockx Dy = sock €2, we obtain
socg ™ = sock §). So Q| is an essential extension of 7|k, which implies
the first part. Suppose now that m is an irreducible representation of G. If
7' C Q is a non-zero G-invariant subspace, we thus have 7’ N7 # 0, and
hence m C 7" as m is irreducible. So 7 is the unique irreducible G-invariant

subspace of €. ]

Corollary 9.11. Let w be an admissible representation of G such that w
acts trivially on m and o 1= sock w. If p = 2, assume w|g, has property (S).
Then there exists an injection ™ — §2 where ) is a representation of G such
that Q| = Injo.

Proof. We apply Theorem 9.8 to the diagram I(7) and obtain a represen-
tation 2 of G such that Q|x = Injo together with an injection of diagrams
L K(m) — K(2). Applying Hy on both sides gives a map Hy(¢) : 7 — €.
Lemma 9.9 implies that Hy(¢) is injective. O

We say that a diagram D = (Dg, Dy, r) is basic if w acts trivially and
there exists an m > 1 such that r induces an isomorphism r : Dy & D(I{”
(see §1 for I,,). We say that a basic diagram D is O-irreducible (or just
irreducible) if it does not contain any proper non-zero basic subdiagrams. For
e > 1, we say that a basic diagram D is e-irreducible if D does not contain
(xodet, yodet,id) where x : F* — F; is a smooth character, r : Dy = Dée“
and for every basic proper subdiagram D’ C D, we have r : D} = (Df)!e+:
with ¢’ < e. Note that, if D is O-irreducible, then D = (D&, Di*,r).

Theorem 9.12. Let D be a basic e-irreducible diagram with e > 0 and
suppose that we are given an injection of diagrams v : D — KC(2) where €2 is
a smooth representation of G such that sock () = sockx Dy. Then the image
of Ho(¢) : Hy(D) — Q is an irreducible representation of G.
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Proof. Let 7 be the image of Hy(D) — Q. By Lemma 9.9, we have injections
D — K(r) — K(f2) and identify D with its image in K(7). Suppose that
7' is a non-zero G-equivariant subspace of 7 and set K(7') N D := (Dy N
7/, D;1N7’, can) (can stands for the canonical injection). Since (DyNa’)fe+t =
Dit'na’ = DyNa’, we obtain that (/)N D is basic. Lemma 9.9 implies that
sockx Do = sockg m = sock Q. Hence, Do N 7" # 0 and hence K(7') N D # 0.
Assume D # KC(n') N D, then there exists ¢ < e such that D; N 7' =
(Do N 7')er+1. Since sl 118 C Iy we have s(Do N 7)o+t C (Do N w’)lert,
Since Dy N7’ = (Do N7')le+1 we obtain s(D; N7') € Dy N7’ and hence that
D, N7’ is a K-invariant subspace of Dy N 7’. It follows from [25, §5] that
there exists a representation p of G such that (Dy N7, Dy N7’ id) = K(p).
Since I.4q acts trivially on Dy, it will be contained in the kernel of p, and
hence Kerp will contain SLy(F'). Hence there exists a smooth character
X:F* — F; such that (yodet, yodet,id) is a subdiagram of D. This implies
D = (x o det, y odet,id) and hence m = x o det is irreducible. Otherwise
D C K(n') € K(§2). Taking Hy, we obtain that the image of Hy(D) — € is
contained in 7’ and hence 7 = 7', O

Set t :=TIs = (§ ). For 7 in Rep, and m > 0, we define a diagram:
S™(m) == (8™ (m)o, 8™ (7)1, can),
where 8™ () is the smallest subdiagram of KC(7) such that the following hold:
(i) socg ™ C 8™ (7)o
(i) S™(m): = S(r)i

(and where can stands for the canonical injection). Given two subdiagrams
D = (Dy, Dy, can) and D' = (D}, D}, can) of K(m) satisfying (i) and (ii) for
a given m, we may consider DN D’ := (DyN Dy, Dy N D}, can). We have that
sockx ™ C Doy N D)y and (Do N D))+t = D+t 0 (DY) = Dy N D). Hence
8™ () is well defined. We note that S™(xr) C (gfm+1 glm+1 can).

Theorem 9.13. Let m be an admissible representation of G which is G-
generated by (sock 7).

(i) If p = 2, assume 7|g, has property (S). If there exists e > 0 such that
S¢(m) is e-irreducible, then 7 is irreducible.

(11) Assume 7 is irreducible and either sock m is multiplicity free or ™ can
be realized over a finite field. Then there exists e > 0 such that S¢(r)
15 e-irreducible.
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Proof. We prove (i). Corollary 9.11 gives an injection m <— 2 where  is
a representation of G such that Q|x = Injo with o := sockg 7 (and Injo
an injective envelope of ¢ in Repy). We obtain an injection of diagrams
S"(m) — K(Q) for all m > 1. We have socg (S™(I1)g) = sockx m = sock €2,
so if §™(7) is irreducible, then Proposition 9.12 implies that the image of
Ho(X,8™(mr)) — Q is irreducible. Since 7 is generated by (socy m)™, 7 is
contained in this image and is thus also irreducible. We prove (ii). Suppose
7 is an irreducible representation of G' and sock 7 := @}_,0; is multiplicity
free. Since G = II,,,>0Kt™ K Z and 7 is irreducible, for each ¢ there exists m;
such that:

SOCK (2([( . tj0i>> = SOCK . (19)

Jj=0

Let m > max;(m;), m > 1 and suppose 8" (7) is not m-irreducible. Then it
contains some basic m-irreducible subdiagram D = (D, Dy, can). Since all
the o; are distinct, we have o; C Dq for some i. Since I, C K; and m > 1,
we have o; C Dy, hence to; = Ilo; € D; and thus (K -to;) C Dy. Since st’o;
is fixed by I;;2, by repeating the argument for all j we get:

3

(K -t0;) C Dy.

Il
o

J

As m — 1 > m;, we have socx Dy = sock 7 by (19), which implies that
D = 8™(7) is m-irreducible. Suppose 7 is an irreducible representation of
G which can be realized over a finite field. Let o4,...0, be distinct irre-
ducible summands of sock w. Since we are working over a finite field, the set
Hompg (0;, ) is finite. For each ¢ and each ¢ € Homg (0;, 7), there exists m; 4
such that:

m; 4
SOC (Z(K . t%(ai))) = SOCk .
§=0

Let m be an integer such that m > max; 4(m; ), then the previous proof
goes through to show that S™ () is m-irreducible. O

In the rest of the paper, we call basic 0-diagram any basic diagram such
that 7 : D; = D{' < Dy (in particular D; then always has property (S)).
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10 Examples of diagrams

We give a few simple examples of basic 0-diagrams, in particular we list all
irreducible basic 0-diagrams for f = 1.

We denote by st := (p —1,--- ,p — 1) the Steinberg representation for
I". Consider the following list of basic 0-diagrams D = (Dy, Dy, 1) where we

make (g 2) act trivially everywhere:

(i) (Do, Dy,7) := (1,1,id)

(ii) (Dy, Dy,7) := (st,st’t, can) where I acts on st’* by identity and can is
the canonical injection

(iii) (_DO, Dy,r) = (1 ®st, 1@ sth, can) where II acts on 1 & sth = F,up @
F,v,—1 with vy € 1 and v,y € st by (A € F, \ {—1,0,1}):

Mvy = vg_1+ Avg
qu—l = (1 — )\2)210 — )\’Uq_l

(iv) (Dy, Dy,7) := (Ind}g x, (Indj x)'*, can) where x # x* and II acts on
(Indj; x)1 = F,fy ® F,¢ (with the notations of §2) by (\ € F;):

Hfo == Ao
Iy = A 'fy

(v) (Do, Dy,7) := (0 @ ol olt @ ol can) where o is any weight and II
acts on o't @ ol*! - Fp'Ua © vao'[s] (with obvious notations) by:

v, = v,
H’UU[S] = Us.

All of the above basic 0-diagrams are irreducible. Moreover, one checks
that the diagrams in (iii) and (iv) are all distinct when A varies and the
diagrams in (v) are all distinct when {o, o*!} varies. Note that, after a base
change on (vg,v,-1), (iil) is like (iv) but for x = x* (however, we chose to
separate the two cases). The diagrams (v) are studied in [25].

From the results of [4], [6] and [25] (see also [33] and [24]), we deduce the
following;:
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Theorem 10.1. Assume F' = Q,. The functor D — Hy(D) (see §9) in-
duces a bijection between the set of isomorphism classes of irreducible basic
0-diagrams and the set of isomorphism classes of irreducible smooth admis-
sible representations of GLy(Q,) over Fp. The inverse bijection is given by
7 — ((K - 7ft), 7t can) where can stands for the canonical injection.

The above list exhausts all irreducible basic 0-diagrams up to twist when
f =1. When moreover F = Q,, the above bijection D — Hy(D) gives:

(i) Ho(D) =1

(ii) Ho(D) =St ® 6_1 (St is the Steinberg representation of GL2(Q),) over
Fy)

(iii) Ho(D) exhaust the unramified irreducible principal series of GL2(Q))
over F, up to twist

(iv) Ho(D) exhaust the ramified irreducible principal series of GLa(Q,) over
F, up to twist

(v) Ho(D) exhaust the supersingular representations of GLy(Q,) over F,.

Note that, for 7 irreducible admissible and F' = Q,, p > 3, one has
(K - 7h), 7l can) ~ (751 77t can) if and only if 7 is not supersingular.

Needless to say the above theorem completely breaks down when F' # Q,,.
For instance, if F' = Q,s and f > 1:

(i) there are many more irreducible basic 0-diagrams D than the ones of
the list above

(ii) Ho(D) can have infinitely many distinct quotients
(iii) these quotients can have a bigger K-socle than the one of Dy
(iv) 7 can be irreducible even though ((K - 7't), 7/t can) is not, etc.

Let us finish this section with a fancy series of examples of reducible basic
O-diagrams for f = 2 leading to irreducible admissible 7 when F' = Q2.

Assume f =2 and let 0 := (1,p — 2) ® det?”* and x the action of I on
olt. Let 7 be the following unique I'-extension with I'-socle 1:

0—=1—=7—=0dc =0
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For a positive integer n, set:

Do(n) :=std 7 @IndFB X ® - @Indy x*
n times

and recall that o is the socle of Ind} x* and o/ its cosocle. Number the
Ind% x* from 1 to n and let v; := (fy);, v5 := ¢; using the notations of §2, so
that (Ind} x*)* = Fu; @ Fyuf, 1 < i < n. Let w be a basis of 1 C 7 and
vg (resp. v3) an H-eigenvector in 771 which is sent to o/t (resp. 0[5}11) under
T — 0 ® ol so that we have 711 = F,uw @ F,vy @ F,v3. Finally, let w’ be a
basis of st’t. Hence we have:

Do(n)"' =Fw' & (Fyw & Fvp @ Fup) & (@(pr @ vaf)).

i=1

Define an action of IT on Dy(n)!t as follows:

Mo =

Mw = w

Mv; = v49, 0< 1 <n—1
vy = v), 0<1<n—1

[Tv; =

vy = v

and call D;(n) the resulting R;-representation. Denote by D(n) the basic
0-diagram (Dg(n), D1(n),can) where can is the canonical injection D (n) <
Dy(n): the notation is actually bad since the isomorphism class of D(n)
depends on the choice of the vectors v;, v;. Using techniques analogous to
that of §18, one can prove the following proposition (we don’t give details
here, as we don’t use it in the paper):

Proposition 10.2. Assume F' = Qu2. For any injection of diagrams v :
D(n) — K(2) where Q is a smooth representation of G such that socg € =
sockx Do(n), the image of Ho(v) : Ho(D(n)) — Q is an irreducible admissible
representation of GLa(Qp2) with the same K-socle as Do(n).

(The point being that, although D(n) is reducible, the techniques of §9
produce irreducible representations from it). Using Theorem 9.8, this implies
that each Hy(D(n))) has at least one irreducible quotient with the same K-
socle as Dg(n). Now, let D be as in example (v) above with ¢ = 1 (and
thus ol¥l = st by definition, see §1). One can easily check that Hy(D) =
(C-Indg0 1)/(T). As D — D(n), we see that Hy(D) has infinitely many
non-isomorphic irreducible admissible quotients with growing K-socle.
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11 Generic Diamond weights

From now on and until the end of the paper, we assume F' = Q,r, although
many of the forthcoming results actually only depend on the residue field of
F. Following [11] and [12], we briefly recall the list of weights associated to
a generic Galois representation p.

We first consider the case where p is reducible and split.

Let (zo, - ,zy_1) be f variables. We define a set RD(x, -+ ,x7_1) of
f-tuples A := (Ao(xo), -+, Ap_1(xp_1)) where \;(z;) € Z £ x; as follows. If
f=1 Xo(z0) € {xo,p — 3 —xo}. If f > 1, then:

(i) Ni(zy) € {zjyxei+1L,p—2—a;,p—3—x;} fori € {0,---, f—1}
(ii) if A\i(z;) € {x;, x; + 1}, then N1 (zi41) € {Tiv1, 0 — 2 — 2441}
(111) if /\z(xz) € {p—Q—lL‘“p—S—[EZ}, then )\i—&-l(xi-l-l) c {p—3—:€i+1,xi+1+1}

with the conventions x; = xy and Af(xf) = Ao(zo). An element of the set
RD(xg,--- ,x5-1) is called a formal reducible Diamond weight.

For A € RD(xq,--- ,x_1), define:

f-1
() = (X = M) i Apale ) € fapaap a4 1)
f—1
e(\) = %(pf -1+ Zp’(x, - )\Z(:pl))> otherwise.

The following straightforward lemma is left to the reader.
Lemma 11.1. One has e()\) € Z & @lf:—ol Lx;.

Lemma 11.2. Let p : Gal(Q,/Q,s) — GLo(F,) be a continuous representa-
tion such that its restriction to inertia is:

ro+14p(ri+1)++pf "1 (ry_1+1)
S )

with —1 < r; < p—2. Let us assume 0 < r; < p— 3 for all v and not all
ri equal to 0 or equal to p — 3. Then the weights associated to p in [11] are
exactly the (all distinct) weights:

()‘O(TO), SR )\f—l(rf—l)) ® dete(z\)(ro,m ,rf,l)n
Jor X = (Xo(xo), -+, Ap—1(xf-1)) € RD(x0, -+ ,f_1).
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Proof. See [15, Prop. 1.1 and Prop. 1.3] and [15, §3]. O

We now consider the case where p is irreducible.

Let (xq,--- ,z7_1) be f variables. We define a set ZD(xg,--- ,z7_1) of
f-tuples X := (Xo(z0), -+, Ar—1(zy_1)) where \;(z;) € Z £ z; as follows. If
f =1, )\Q(iﬂo) € {l’o,p —-1- .’L‘()}. If f > 1, then:

(i) Ao(xo) € {xo, 20— 1,p—2—20,p—1—2x0} and N\;(z;) € {zs, 2, +1,p—
2—z,p—3—mx;}ifti >0

(ii) if ¢ > 0 and N(x;) € {x;,x; + 1} (resp. Ao(mo) € {xo,x9 — 1}), then
Ais1(Tiv1) € {Tiy1,p — 2 — Ty }

(iii) if 0 <i< f—1and N(z;) € {p—2—x;,p— 3 —a;}, then A\ 1(z;41) €
{p—3—zis1, 21 + 1}

(iv) if Mo(zo) € {p— 1 — 2o, p — 2 — 20}, then A\y(z1) € {p —3 — 1,21 + 1}

(v) if Apoq(zpo) € {p—2—xp-1,p — 3 — 51}, then A\o(zp) € {p — 1 —
Lo, Lo — 1}

with the conventions x; = xy and Af(x) = Ao(zo). An element of the set
ID(zg, - ,x5-1) is called a formal irreducible Diamond weight.

For A € ID(xg, - ,x4_1), define if f > 1:

-1

~

o) = (30 p = Nlw) i Ap-a(eg ) € g 1)
f—1
e(\) = %(pf -1+ Zp’(x, - )\Z(:E,))> otherwise,

and, if f =1, e(\) := 0 if X\o(z0) = o, e(N) 1= ¢ if Ao(z9) =p — 1 — zy.

The following straightforward lemma is left to the reader.
Lemma 11.3. One has e(\) € Z @ @{:_01 Lzx;.

Lemma 11.4. Let p : Gal(Q,/Q,s) — GLo(F,) be a continuous representa-
tion such that its restriction to inertia 1s:

u)ro+1+p(r1+1)+~~-+pf*1(rf_1+1) 0
2f
0 p! (ro+1)+pf 1 (ri+1)+-4p2 ~1(rp_141) ©n
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with 0 <rg <p—1and =1 <1, <p—2 fori >0, and where wyy is defined
as in (8) from one of the two embeddings F;2f — F; giving back the fixed

embedding F;f — F; by restriction to ]F;f. Let us assume 1 < ryg < p — 2
and 0 < r; < p—3 fori > 0. Then the weights associated to p in [11] are
exactly the (all distinct) weights:

()\O(To)7 Tty )\f_l(’]"f_l)) ® dete(k)(r(),.“ ’Tf_l)/r’

for A= (Xo(@o), -+, Apa(ep-1)) € ID(wo, - -+, wp1).
Proof. See [15, Prop. 1.1 and Prop. 1.3] and [15, §3]. O

The set RD(zg,- - ,x5-1) (vesp. ID(zg,---,xr—1)) can be naturally
identified with the set of subsets S of {0,---, f — 1} as follows: set i € S
if and only if A\;(z;) € {p —3 — z;,x; + 1} (resp. if i > 0 set i € S if
and only if A\;(z;) € {p —3 — x;,x; + 1} and set 0 € S if and only if
Xo(zo) € {p — 1 — xg,xo — 1}). One checks that, given S, there is only
one possibility for (A\;(z;)); € RD(zo,--- ,x¢—1) (resp. € ID(zg, -+ ,T5-1)).
By Lemmas 11.2 and 11.4, when p is tamely ramified (and generic) we
can thus identify D(p) with the subsets of {0,---,f — 1}. If ¢ € D(p),
A € RD(zg, -+ ,xs_1) (resp. ID(xg,--- ,x5-1)) and S C {0,---,f — 1}
correspond to o, we set (o) = £(\) = |S].

For \, N € RD(xg,--- ,x5_1) (resp. ID(xg,--- ,x5_1)) corresponding to
S,8 € {0,---, f — 1} respectively, we define AN XN € RD(xq,--- ,xs_1)
(resp. ZD(xg, -+ ,x-1)) as the element corresponding to SNS" and AUN €
RD(zg,- -+ ,x5-1) (vesp. ID(xg, -+ ,x5_1)) as the element corresponding to
SUS'. We also define a partial order on the elements of RD(xq,- - ,xf_1)
(resp. ZD(xo,- - ,xy_1)) by declaring that X < X if and only if S’ C S or
equivalently AUX = X or equivalently ANX = X. If p is a continuous generic
tame Galois representation, 0,0’ € D(p), and 0,0’ correspond respectively
to A\, X, we let 0 N o’ (resp. ¢ U c’) be the unique weight in D(p) which
corresponds to AN A (resp. AU X). We also write o < o’ if A < X

We now consider the case where p is reducible but not split.

Definition 11.5. A non-empty subset D(xg, - ,x¢-1) of RD(xq, -+ ,Ts_1)
is said to be of Galois type if it satisfies the following properties:

(1) if \ € D(xg,--- ,x4-1), then all N € RD(zo, - ,x5-1) such that \' <
A are in D(xg, -+ ,x5-1)

(i1) if A, N € D(xg,--- ,xp_1), then N\UXN € D(xq,--- ,x5_1).
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Note that, if D(zg,--- ,xs_1) is a subset of Galois type, then it follows
from (ii) of Definition 11.5 that D(x,--- ,xs_1) has a unique maximal ele-
ment for <. If this element corresponds to S C {0,---, f — 1}, one checks
that |D(xg,- -+ ,z5_1)| = 2¢ where d := |S|. Definition 11.5 comes from the
following conjecture:

Theorem 11.6. Let {ro,--- ,rs_1} be such that 0 <r; <p—3 for all i and
not all r; equal to O or equal to p — 3.

i) Let p : Gal(Q,/Q,;) — GLy(F,) be a continuous representation such
(i) Let p b/ Qp p
that its restriction to inertia is:

(wT0+1+p(T1+1)+“'+pf1(7"f_1+1)

I . T) @1 (20)

with x # 0. Then there exists a unique subset D(xg,--- ,x5_1) C

=

RD(zo, -+ ,x5-1) of Galois type such that the weights associated to
p in [11] are exactly the (all distinct) weights:

()‘0(7“0), ey )‘ffl(rffl)) ® dete(A)(ro,--- ,rf,l)n
for A= (Xo(@o), -+ Ap-a(wp-1)) € Dlwo, -+, 2p-1).

(ii) Let D(xo,--- ,x5-1) & RD(x0,--+ ,z5-1) be a subset of Galois type.
Then there exists at least one representation p : Gal(Q,/Q,r) — GLa(IF,)
as in (20) with * # 0 such that the weights associated to p in [11] are
exactly the (all distinct) weights:

(Mo(ro), -+ 5 Ap-a(ry—1)) @ det?@tromrry
Jor A= (Xo(wo), -+, Ap-1(xy-1)) € D(wo, -+, xp-1)-
Proof. (i) and (ii) follow from [13, Thm. 1.1] or [9, Prop. A.3]. O

From now on, we only consider those p which satisfy the conditions in
Lemma 11.2 or in Lemma 11.4 or in (i) of Theorem 11.6, and we give them
a name:

Definition 11.7. Let p : Gal(Q,/Q,s) — GLa(F,) be a continuous represen-
tation, we say p is generic if one of the following holds:

(i) the restriction of p to inertia is isomorphic to:

ro+14p(ri+1)+-+pf "1 (rp_1+1)
Wy | o n
0 1

for some character n and some r; with0 < r; < p—3 and (ro,--- ,rf_1)¢

{(07 ,0),(]?—3,"' 7p_3)}
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(i1) the restriction of p to inertia is isomorphic to:

uJro+1+p(r1+1)+~~~+pf—1(r,uﬁrl) 0
2f
0 wpf(m-&-l)—&-pf“(r1+1)+-~~+p2f’1(7"f—1+1) 7

2f
for some character n and somer; with1 <rqg <p—2and0<r; <p—-3
fori>0.

One can check this definition doesn’t depend on the choice of the embed-
ding F, — Fp. Note that there is no such p for p = 2 and that for p = 3 the
only possibility is p irreducible with 7o = 1 and r; = 0 for ¢ > 0 (notation of
Lemma 11.4).

In the rest of the paper, we denote by D(p) the set of weights associated
to a generic p and simply call them Diamond weights.

12 The unicity Lemma

Fix p generic, we define the “distance” from a weight to a Diamond weight
associated to p, and prove that there is attached to any weight a unique
Diamond weight such that this distance is minimal.

Recall from §11 that RD(xg, - ,x5_1) (resp. ID(xg, -+ ,x5_1)) denotes
the set of formal reducible (resp. irreducible) Diamond weights which can be
identified with the set of subsets S C {0,---, f — 1}.

Definition 12.1. Let A\ € RD(xg, - ,x5_1) (resp. X € ID(xg,--- ,T5_1))
corresponding to S C {0,--- | f — 1}.

(i) Let " C {0,---,f —1}. We say p € RD(xg,--- ,x5—1) (resp. p €
ID(xg,- -+ ,x5-1)) is the negative of X\ within 8" if . corresponds to
(S\SNSHII(S'\SNS).

(i1) If pis as in (i) for 8" ={0,--- , f — 1}, we simply say u is the negative
of A (in which case p corresponds to {0,--- , f —1}\ S).

For instance, if f = 5, the negative of A := (xo+1,21,p—2—29,23+1,p—
2—1z4) € RD(x,- - ,x4) within {4,5} = {4,0} is (zo,x1,p —2 — 29, p— 3 —
x3, x4+1) whereas its negative is (p—2—x¢, p—3—x1, x2+1, p—2—1x3, x4+1).

Lemma 12.2. Let \, N, " € RD(xg, -+ ,x5-1). Assume that X' is the neg-
ative of A within 8’, X' is the negative of A within 8" and 8" C §'. Then
N < AUN (see §11 for < and U).
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Proof. Let S (resp. 7', resp. 7") correspond to A (resp. AU N, resp.
AN N, then we have 7/ = SUS and 7”7 = SUS”. Thus 7” C 7', hence
AUN < AUN. As M < AU N, we have " < AU X by transitivity. H

Definition 12.3. A sequence N = (Ao(xo), -+, Ap1(xs_1)) where \;(x;) €
Z + x; is called a weak formal reducible (resp. irreducible) Diamond weight
if, for any i, one has \(z;) € {xy,z; + 1,p — 2 — x;,p — 3 — x;} (resp.
Xi(z) € {zj,xi + 1,p—2 —x;,p— 3 —a;} fori >0 and A\o(zo) € {x0, 20 —
Lp—2—x9,p—1—1m0}).

That is, we don’t require any condition on A;iq(z;4+1) with respect to

Lemma 12.4. Let X be a formal reducible (resp. irreducible) Diamond weight
and i € {07 7f_1}7j6 {17 7f_1}

(i) The sequence:

(/\0(J7O)a e 7/\2-_1(1‘1-_1)7]9 -2 — /\l(x,),p -2 - )\i+1<xi+1) —=+1,---,
P—2= Nipj1(Tigj-1) — £, Ay (iyy) £ 1,
/\i+j+1('73i+j+1)7 T 7>‘f*1<xf*1>) (21)

(with the convention i+ =i+ d— f if i+ 0 > f) is a weak formal
reducible (resp. irreducible) Diamond weight if and only if it is a formal
reducible (resp. irreducible) Diamond weight. If so, (21) is then the
negative of A\ within {i +1,--- i+ j}.

(i) The sequence:
(p—2—Nolzo) = £1,-++ ,p—2 = Ap_y(zy1) — £1) (22)

is a weak formal reducible (resp. irreducible) Diamond weight if and
only if it is a formal reducible (resp. irreducible) Diamond weight. If
so, (21) is then the negative of \.

Proof. (i) This is easy combinatorics, so let us briefly prove only the case A €
RD(zg, - ,x5-1). Assume (21) is a weak formal reducible Diamond weight.
Say that an index 6 € {1,---,j} is of type + if p — 2 — Aiys(wips) — (+1)
or Aips(2is) + 1 occurs in (21) and of type — if p — 2 — A\ys(wips) — (—1)
or A\its(zirs) — 1 occurs. Then we necessarily have \;is(xi15) € {p — 3 —
Tirs, Tivs} if 0 is of type + and Ny 5(2i46) € {p — 2 — 445, wirs + 1} if § is of
type — (the other possibilities don’t satisfy the conditions of Definition 12.3).
Moreover, as A € RD(zg, - -+ ,x¢_1), it turns out there are only 4 possibilities
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for the sequence \;(x;),- -, Aitj(wiy;), according to whether \;(z;) = =z,
ri+1, p—2—x; or p—3—ux;, if we want (21) to be a weak formal reducible
Diamond weight, that is, if we want Ay s(xiis) € {p — 3 — Ti45, xirs} for §
of type + and A\jys5(zivs) € {p — 2 — w15, 706 + 1} for 0 of type —. For
instance, if \;(z;) = p — 2 — x;, then A\jys(x;4s) must be ;45 + 1 for the
first index of type —, p — 2 — x;,s for the second, x;,5 + 1 for the third etc.
Also, A\jys(xivs) must be p — 3 — x;45 for all indices of type + strictly before
the first index of type —, ;.5 for all indices of type + strictly between
the first and second of type —, etc. One can check that in all cases, the
resulting weak formal reducible Diamond weight (21) is always obtained from
the original A as follows: in A replace A;(z;) by p — 2 — A\i(2;), Nigj(wiy)
by Nij(zigg) + 1if Nij(Tigj) € {Zigg,p — 3 — iy}, by Aigj(wigy) — 1if
/\i—i-j(xi-l—j) € {xi+j+1,p_2_$i+j}7 and for § € {]_, s ,j—l} each p—2—x;.s
by x;.5 + 1, each p — 3 — 2,5 by z;1s, €ach z;45 +1 by p — 2 — x;,5 and
each ;15 by p — 3 — x;,1.5. This weight is exactly the negative of A\ within
{i+1,---,i+j}, and is a fortiori in RD(zo,--- ,zy_1). The proof of (ii) is
analogous and left to the reader. O]

One defines the support of a sequence p —2 — - p—2—-—=+1,--- . p—
2 —-—41,-4+ 1 as in (21) to be the subset of indices {i +1,--- ,i+j} (with
as usual the identification i + 9 =i+ 0 — f if i + 6 > f). One defines the
support of the sequence (22) to be {0,---, f —1}.

Let p, 1 € Z(yo, - -+ ,ys—1) (see §3) and assume p and p' are compatible

(Definition 4.10). We define pn N g/ == (N i)o(yo), -+, (0 N ) p—1(yp-1))
as follows:

(1) if pi(y) = yi, (O p)iys) =y

(ii) if pe(ys) € {p =1 =i, 0 — 3 — i}, (LN p)i(yi) = pi(vi)

i) if ué(yi)#{p_ 2=y

(i) if pi(yi) € {yi—1, 9+ 1}, (unp)i(yi) := p— gi— Ui
v if ué(yz-):{ Z

Yi

(==

o pi(yi) it i (yi) # Ui
(V) if pi(yi) = p=2=yi, (0O )ilys) = T
e Yi
yi A pi(ys) = ,
Yi-
We have pNp' = g/ Np. Intuitively, we just take the “intersection” of the
sequences p—2—-,p—2—-—=*1,--- , p—2—-—=1,-+1 on both u and i/. Recall
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from §4 that S(u) :={i € {0,--- , f =1}, ui(z;) =p—2—2; —£1,2; £ 1} for
€ Z(yo, -+ ,ys—1). We leave the (straightforward) proof of the next lemma
to the reader:

Lemma 12.5. We have unp' € Z(yo, -+ ,ys—1) and S(puNnp') = S(p)NS(').

We denote by D(xg, -+ ,2x5-1) € RD(xo,--- ,zy_1) an arbitrary subset
of Galois type (see Definition 11.5).

Lemma 12.6. Let p, 1 € Z(yo,- -+ ,Yyr—1) and assume there is x; € Z £ y;
such that both pv and p' are in RD(xo, - -+ ,x5-1) (resp. D(zo,--- ,x5_1), resp.
ID(xg, -+ ,x5-1)). Then p, i’ are compatible and pNp' € RD(xg, -+ ,x5-1)
(resp. D(xg, -+ ,xp-1), resp. ITD(xg, -+ ,x5-1)).

Proof. Beware that p Ny is computed in Z(yo, - - - ,ys—1). First, it is easy to
check that u, ' are compatible. For instance, assume p;(y;) = p—1—y; and
wi(ys) = yi+1, then p;(y;) = p—pi(yi). But pi(yi), pi(vi) € {ws, 25+1,p—3—
x;, p—2—x;} (resp. if i > 0and uo(yo), po(vo) € {xo—1, 2o, p—2—20, p—1—20}
in the case ZD) and it is thus impossible to have u;(y;) = p — pl(y;). The
other cases are similar. From the very definition of Z(yo,- - ,ys—1) in §3,
one sees one can pass from p to p N u' by applying successively to u several
sequences as in (21) such that the successive sets of indices that are affected
are disjoint, or one sequence as in (22). Denote by S&” the union of the
supports of these sequences. From the definition of N/, one has either
(O )i(ye) = palys) or (WO p)i(yi) = pi(ys) or (N p)iyi) = p— 2 — ().
In particular p N g is always a weak formal reducible (resp. irreducible)
weight. Lemma 12.4 then gives that p Ny’ € I(yo, -+ ,yp—1) is an element
of RD(zg,- -+ ,xp-1) (resp. ZD(zg,--- ,x¢—1)) and is the negative of u (seen
as an element of RD(xg,--- ,x5_1) (resp. ID(zg, - ,xy_1))) within S”.
This proves the cases RD(xg, - ,xf_1) and ID(xg, - ,x5_1). For the case
D(xzg,--- ,xy_1), note first that p Uy’ € D(xg, -+ ,x5-1) as D(xg, -+ ,2_1)
is of Galois type (here, o and p’ are considered as elements of D(xg, -+ , 1)
and pUp’ is computed in RD(zo, - -+ ,x¢_1), see §11). As before, one can pass
from p to p’ by applying successively to u several sequences as in (21), or one
sequence as in (22). As u, ' are compatible, one can take these sequences
such that the successive sets of indices that are affected are disjoint, so that
these sequences are uniquely determined. By Lemma 12.4, this implies p’ is
the negative of 11 (seen as an element of RD(zy, - - - , x 1)) within the support
S’ of these sequences. But the previous support S” is always included in &’
by construction. Lemma 12.2 then yields u Ny < p Uy, which implies
pNp' € D(xg, -+ ,xp-1) by (i) of Definition 11.5 applied to U p/ (beware
that p N ' is computed in Z(yo, - ,yr—1) whereas p Uy’ is computed in
RD(zg,- -+ ,x¢-1)). This finishes the proof. O
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Let 0 and 7 be two weights and assume o = (rg,---,r7_1) ® n with
0 <r; <p-—2forall i. Assume there exist indecomposable I'-representations
with socle o and cosocle 7. By Corollary 3.12, there is a unique such rep-
resentation, call it (o, 7), such that ¢ appears in I(o,7) with multiplicity
1. Moreover, all of the Jordan-Holder factors of (o, 7) are then distinct.
If there is no such representation, set I(o,7) := 0. For any I(o,7), set
U(o,T) € Zso U {+00} to be 400 if I(0,7) = 0 and otherwise the smallest
integer such that I(o, 7)o, = 0.

The following lemma will be used in §14.

Lemma 12.7. Let p, 1 € Z(yo,- -+ ,Yr—1) and assume p and p' are com-
patible. Let o0 = (rg,--- ,rp—1) @n with 0 < r; < p—2 for alli. Let T, 7'
and 7" be irreducible subquotients of injo corresponding to u, ' and p O p
respectively via Lemma 3.2. Then k is an irreducible subquotient of I(o,T)
and I(o,7") if and only if k is an irreducible subquotient I(o,7").

Proof. Let k be an irreducible subquotient of inj o and let A € Z(yo, - - - , yr—1)
correspond to x via Lemma 3.2. Corollary 4.11 implies that & is a subquotient
of I(o,7) and I (o, 7') if and only if A is compatible with p and p/ and S(\) C
S(p)NS('). It is immediate from Definition 4.10 and Lemma 12.5 that this
is equivalent to A is compatible with p N g’ and S(A) € S(p N u'). Again
by Corollary 4.11 this is equivalent to k is an irreducible subquotient of
I(o,T"). O

Let p : Gal(Q,/Q,s) — GL(F,) be a continuous generic representation
as in Definition 11.7 and recall that D(p) is the set of weights associated to
p (see §11). It is straightforward to check from the definitions of §11 that
any o € D(p) is such that o = (sp, -+ ,s7-1) ®n with 0 < s; < p — 2 for all
7 and not all s; equal to 0. For a weight 7, define:

Up,T) :=min{l(o,7), 0 € D(p)} € Zso U {+00}.
We can now prove the main result of this section:
Lemma 12.8. Let 7 be any weight such that ¢(p,T) < +o0.
(i) There is a unique o € D(p) such that {(o,7) = {(p,T).

(ii) Let o' € D(p) such that I(o',7) # 0. If ' = o with o as in (i), then
I(o',7) has no other weight of D(p) distinct from o' in its Jordan-
Hélder factors. If o' # o with o as in (i), then I(o',T) contains o in
its Jordan-Hélder factors.
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Proof. We start with (i). Write 7 = (so,- -+, s7_1) ® 1 and assume there are
two distinct weights o,0” € D(p) such that {(o,7) = l(o’,7) = {(p,T). By
Lemma 3.2, there are distinct p, 1 € Z(yo, - ,ys—1) uniquely determined
such that:

0 = (po(s0),-+ s pp-1(sy-1)) ® det o2y
o = (uo(s0), - ,u/f,l(sf,l)) ® dete(u/)(SOf--,sf,l)n.

From §11, there are distinct A, \' € RD(zo, - ,xy_1) or D(zg, -+ ,x5_1) Or
ID(xg,--- ,x5-1) (according to p, D(zo,- - ,zs_1) being of Galois type if p
is reducible non-split) uniquely determined such that:

o = (Ao(ro)s-, Ap—1(ry-1)) ® deteM (o ry-1)

o = ) s Xy (rg)) @ dete Vo),

We claim that we have the identities for each ¢ € {0,---, f — 1}

i) = 4 (N (). (23)
Indeed, we have the equalities for all 4:
(i) = 45 (N () (24)

and:

dete(,u)(so,-~~ Sp—1)=e(N)(ro, = rp—1) _ dete(u')(So,"- Sp—1)—e(N)(ro,re—1)

which, by an easy calculation, amounts to:
det—e(ufl)(Ao(To)w“J\ffl(?“ffl))—e(/\)(?“ow‘77"f71) _

det =€ "G 00)+ Ny (1) =e(N) (o, 5 1)

which is again equivalent to:

detfe(ﬂflo)\)(rov“' 1) detfe(#'_lox)(rov“‘ Ti-1) (25)

Here, =t := (u; ' (y:)) (where (p; o) (i) = vi) and g~ o == (" (Xi(wi)).
We now leave as an exercise to the reader to check that the equalities (23) are
equivalent to the equalities (24) and (25) (this is analogous to proving that all
weights in Indg x or all Diamond weights are distinct, cf. e.g. Lemma 2.2).
We can apply Lemma 12.6 to u and u' with o; = A\, ' (us(y:)) € Z £ y; to de-
duce that pNp' € RD(zg, - ,x5—1) or D(xg, -+ ,x5-1) or ID(xp, -+ ,T5_1).
In particular, one has:

o” = (N i)o(s0), -+, (O ) p-1(s7-1)) @ det Ity € D(p). (26)
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But as p and g’ are distinct and as £(o, 7) = £(o’, 7), Corollary 4.11 together
with the second part of Lemma 12.5 imply:

Uo" 1) < l(o,T)

which is impossible as ¢(o, 7) is minimal. This proves (i). Let us prove (ii).
If ¢’ = o, there can’t be any other Diamond weight in I(¢’, 7) as this would
contradict the minimality of ¢(o, 7). Assume ¢’ # o, and let i/, pu as for (i).
Then o” defined as in (26) is again in D(p) (the equality ¢(o,7) = £(0’, T)
was not used here). Moreover, we have that ' and p Ny’ are compatible by
construction and that S(u N p') € S(i') by Lemma 12.5. By Corollary 4.11
(used “backwards”), we get that o” is a Jordan-Holder factor in I(¢’, 7). The
same argument with u and o yields that ¢” is also a Jordan-Hélder factor in
I(o,7), hence ¢” = o # ¢’ by (i). This finishes the proof. O

Remark 12.9. If D'(zg, -+ ,25-1) C ID(xg,- - ,xf_1) is a non-empty sub-
set satisfying conditions (i) and (ii) of Definition 11.5, it is easily checked
that the proof of Lemma 12.6 goes through with D’(xy, -+ ,2;_1) instead of
ID(xg,--- ,x5-1). Fix a p generic, let p* be its semi-simplification and let
D'(p*®) C D(p*) be any subset of weights coming from a non-empty subset
D'(xg, -+ ,xp-1) of RD(xq,- - ,x5_1) (resp. ID(zo, - ,x5_1)) satisfying (i)
and (ii) of Definition 11.5, using the above extension of Lemma 12.6 in the
proof of Lemma 12.8, we see that Lemma 12.8 holds with D'(p*) instead
of D(p). In particular, the function ¢’ — ¢(o’,7) reaches its minimum on
D'(p*) for a unique weight o of D'(p™).

13 Generic Diamond diagrams

We associate to each generic p as in Definition 11.7 a “family” of basic 0-
diagrams as in §9. When f > 1, this family is always infinite.

We start with a general proposition:

Proposition 13.1. Let D be a finite set of distinct weights. Then there exists
a unique (_up to isomorphism) finite dimensional smooth representation Dy
of I' over IF,, such that:

(i) socr Dy = @, cp 0
(i1) any weight of D appears at most once (as a subquotient) in Dy

(111) Dy is mazimal with respect to properties (i), (ii).
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Moreover, one has an isomorphism of I'-representations:

Dy = @ Dy o

oc€D
where socr Dy, = 0.

Proof. Note first that condition (iii) means that, if D} is any finite dimen-
sional representation of I'" over Fp that strictly contains Dy as a subrep-
resentation, then (ii) is not satisfied for Dj. Set 7 := @®,epo and let 7
be a representation of I' satisfying (i). Then 7’ satisfies (ii) if and only if
Homrp(7'/7,injo) = 0 for all ¢ € D. Since injo is an injective object in
Repr, we have an exact sequence of I'-representations:

0 — Homp(7'/7,inj o) — Homp(7',inj o) — Homp(7,injo) — 0
and hence 7’ satisfies (ii) if and only if:
dimg Homp(7',injo) =1, Vo €D.

We fix an injective envelope inj7 of 7 in Repp. Let 7, and 7 be two I'-
invariant subspaces of inj 7 containing 7 and satisfying (ii). Since injo is
injective the sequence:

0 — Homp (7 4+ 72, inj o) — Homp(m @ 72, inj o) — Homp (7 N 7o, injo) — 0

is exact. Since 7y + 73 and 7 N7y both contain 7 as a subobject, we get that
Homr (o, 71 4+ 72) and Homr (o, 71 N 73) are non-zero. Hence the terms on the
left and right are non-zero as inj ¢ is an injective object. Moreover, since the
term in the middle has dimension 2, we obtain dim@p Homrp(71+79,injo) = 1.
Hence there exists a maximal subspace Tyax of inj7 satisfying (i) and (ii).
Since any representation 7/ of I' with socr 7/ = 7 can be embedded in inj T,
we obtain the first part of the proposition. Since 7 is multiplicity free for
o € D, there exists a unique idempotent e, € Endr(inj7) such that e, (inj 7)
is an injective envelope of 0. Since @,epe,(Tmax) satisfies (i) and (ii), the
natural injection:

Tmax EBUED €o (Tmax)

has to be an isomorphism. O

We leave the proof of the following immediate corollary to the reader:

Corollary 13.2. Let D and Dy be as above, then Endr(Dy) = F]IDDI.
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Let p : Gal(Q,/Q,s) — GLy(F,) be a continuous generic representation
as in Definition 11.7 and D(p) its set of Diamond weights (all distinct, see
§11). We denote by Dy(p) the unique representation of Proposition 13.1 with
D =D(p). We now start studying the I'-representation Dq(p).

If £(p, ) < +00, set:
I(p,7) = I(0,7)

where o € D(p) is the unique Diamond weight of Lemma 12.8.

Lemma 13.3. We have Homp(I(p,7),I(p, 7)) =0 or F,,.

Proof. Let f : I(p,7) — I(p,7') be non-zero (if it exists) and denote by
o (resp. o') the T'-socle of I(p,7) (resp. I(p,7’")). We first prove that f
is injective. Otherwise, we have f(¢) = 0 and the I'-socle of I(p,7’) must
contain a Jordan-Holder factor of I(p,7) that is different from o. But by
(i) of Lemma 12.8 this Jordan-Holder factor can’t be in D(p), hence can’t
either be in the socle of I(p,7’) by definition of I(p, 7). Thus f is injective
and f(o) =0 =0o'. Let f': I(p,7) — I(p,7’) be any I'-equivariant map. If
f' is non-zero, we again have f'(0) = 0. As o is irreducible, there is A € F,,
such that f — A\f’ is zero on 0. But f — Af’ € Homr(I(p,7),1(p,7')) and the
same proof as for f gives then f = \f’. O

In particular, I(p, 7) is well defined up to scalar automorphism. Note that
any subrepresentation of I(p, 7) with an irreducible cosocle 7 is automatically
isomorphic to I(p, ") (this follows from the definition of the representations
I(o,7) in §12). We define a partial order on the representations I(p,7) as
follows:

I(p,7) < 1(p,7') <= Homr(I(p,7),1(p,7')) = F,.

For each 7 such that I(p,7) # 0, fix an embedding ¢, : 0 — I(p, 7).
If Homp(I(p,7),I(p, 7)) # 0, let ¢, = I(p,7) < I(p,7') be the unique
embedding such that ¢, = ¢, 0 ¢;.

Proposition 13.4. With the previous notations, we have:

Do(p) - EBUED(p)DO,U(p) (27)

with:
Do (p) =lim I(p, 7),

the inductive limit being taken with respect to the above maps ¢ : I(p, 7) —
I(p, 7).
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Proof. The first part is contained in Proposition 13.1, we are thus left to
proving Dy ,(p) = lim I(p,7). Note that the inductive limit is not direct.

The representation lim I(p, 7) has o as socle and doesn’t contain any other

weight of D(p) by (ii) of Lemma 12.8. From the proof of Proposition 13.1,
we thus have lim I(p,7) C Dy(p), that is limI(p,7) € Dy,(p). Let 7 be

any irreducible subquotient of Dy, (p) and Dy, (p,7) € Dy, (p) a subrepre-
sentation with cosocle 7. By Corollary 3.12, we have Dy ,(p,7) =~ I(0,T)
and by (ii) of Lemma 12.8 (together with (ii) of Proposition 13.1), we have
I(o,7) = I(p, 7). This implies the surjectivity of lim I(p,7) = Dos(p). O

Note that Dy(p) only depends on the restriction of p to inertia.
Corollary 13.5. The I'-representation Dy(p) is multiplicity free.

Proof. This follows from Proposition 13.4, Corollary 3.12 and the definition
of I(p, 7). O

So we see that, although Dy(p) is defined so that it only satisfies multi-
plicity 1 for its socle, it indeed satisfies multiplicity 1 for all of its factors.

Corollary 13.6. There exists a unique partition of the B-eigencharacters of
Do(p)Y in pairs of eigencharacters {x, x*} with x # x°.

Proof. Unicity is clear from Corollary 13.5. Let v € Dy(p)Y such that B acts
on v via some character xy. We have:

Indj; x — (I'-v) < Dy(p).

Hence, there is a quotient of Ind}; x that injects into Dg(p), which implies
(looking at socles) that a weight o’ of D(p) must appear in Ind}; y. This rules
out y = x* as, from the assumption p generic, we know that D(p) doesn’t
contain a character nor a twist of (p — 1,--- ,p — 1). The weight ¢’ also
appears in Indl;3 x® by Lemma 2.2, which implies that a quotient of Indg x°
is isomorphic to I(0’, 0ys) # 0 where s is the cosocle of Indj; x*. By (ii) of
Lemma 12.8, I(p, 0<) is a non-zero quotient of I(o’, 0ys), and hence also of
Indj; x*. As I(p,0s) C Dy(p) by Proposition 13.4, x* is an eigencharacter
of B acting on I(p,a,:)Y C Dy(p)Y. O

We now fix w = p and recall from §9 that a basic 0-diagram (Dy, D1, )
satisfies 7 : Dy o~ D{' C Dy. We also recall that the scalar matrix (5 g) acts
now trivially everywhere.
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Definition 13.7. A family of basic 0-diagrams is a pair (Do, { }) where Dy
is a smooth finite dimensional representation of Ky which is trivial on K,
and { } is a partition of a basis of eigencharacters of 17 acting on D(I)1 m
pairs of eigencharacters {x, x*}.

To a family of basic 0-diagrams as in Definition 13.7, one can attach
a genuine “family” of basic 0-diagrams ((Dy, D1,7)), by making II act on
Dy := D} as Tlv, = vy, Tlvys = v, where v,,v,s are eigenvectors corre-
sponding to a pair of eigencharacters {x, x*} in the partition and by letting
r : D; — Dy be an arbitrary [Z-equivariant injection. Usually, there are
infinitely many such injections up to isomorphism.

We can finally sum up the main results of this section. We still denote
by Dy(p) the Ro-representation deduced from the K-representation Dy(p) by
making p act trivially.

Theorem 13.8. Let p : Gal(Q,/Q,r) — GLy(F,) be a continuous generic
representation such that p acts trivially on its determinant. Then there exists
a unique family of basic 0-diagrams (Do(p),{ }) such that:

(i) sock Do(p) = B,ep(p) @

(i1) any weight of D(p) appears at most once (as a subquotient) in Dy(p)
(111) Do(p) is mazimal with respect to properties (i), (ii).
Moreover, Dy(p) is then multiplicity free.

Note that the family (Dg(p),{ }) only depends on the restriction of p to
inertia.

Remark 13.9. In case p is not generic, there is still defined a set of Diamond
weights D(p) (see [11]) and one can still define a I'-representation Dy(p)
as in Proposition 13.1 with D = D(p). However, in general, Dy(p) is not
multiplicity free.

14 The representations Dy(p) and D;(p)

For p generic we compute the dimension of D;(p). When p is moreover tame,
we explicitly determine the Jordan-Holder factors of Dy(p).

We start with several lemmas.
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Lemma 14.1. Let p be generic. For x : H — F: let m, € Zxq such that
(@UED(P) n] U)Il = DymyX- Then DO(P)I1 = @mx>o X-

Proof. If x occurs in (inj o)™ for some o € D(p) then x # x* as p is generic.
Since Dy(p) is multiplicity free by Theorem 13.8, every y can occur in Dy(p)t
with multiplicity at most 1. Let x occur in (inj o)™ for some o € D(p). Then
o is a subquotient of Indf( x and there is a unique quotient 7 of Indf x with
socle o (as Ind¥ y is multiplicity free). If there exists a Jordan-Holder factor
o1 # o of 7 such that o1 € D(p), let 71 be the unique quotient of T with
socle o1. Starting again, we obtain like this a non-zero quotient 7, of Indf X
such that the socle o, of 7,,, lies in D(p) and no other Jordan-Hélder factor
of 7, does. By maximality of Dy(p) (see (iii) in Theorem 13.8), we have an
injection 7,, < Dy(p). Hence Homg (Ind¥ x, Do(p)) # 0 and so x occurs in
Do(p)". 0

Recall from §4 that ¥ denotes the set of f-tuples € := (€g, -+ ,€7_1) with
e € {—1,0,1} and ¥’ C ¥ the subset of f-tuples € with ¢; € {0,1}. If
s 1= (8o, -+ ,8-1) is an f-tuple of integers with 0 <s; <p—2,7n: F* — ﬁ;
is a smooth character and o := (sg, - - - , s7_1) @, recall that ¥/ parametrizes
in a natural way the characters of I acting on (injo)’* (see Proposition 4.13
and twist). If € € ¥/, denote by o(e) the unique twist of V(o) @ det®®) which
occurs as a subquotient of injo (see §4).

Lemma 14.2. Let 0 := (So, -+ ,S7-1) ® 1 be an irreducible representation
of ' with0 < s; <p—2. Let j € {0, ,f =1}, 0" == (80, ,8j-1,p — 2 —
SjsSj41 + 1, Sjpa, 0 551) ® ndet?” VP and assume sjip1+1<p—2.

Let e € 3 then there exists € € X' such that o(e) = o'(€') if and only if one
of the following holds:

(Z) €; = 1 and €i+1 = 0
(11) €, =0 and €j41 = 1.

Moreover, if the above holds, then €' is uniquely determined as follows: €, =
ex for k & {j,j+ 1}, in case (i) €; = 0 and €j,, = 0 and in case (i) €; =1

-
and €., = 1.

Proof. 1f such an €’ exists then it is uniquely determined since all the repre-
sentations in {o’(¢’),e’ € '} are distinct. If e satisfies (i) or (ii) then one
may check that, if €’ is as above, then o(e) = o'(g’). Conversely, if &’ € ¥
is such that (¢, €},,) # (0,0) and (¢}, €;,,) # (1,1) then one of the digits of
the f-tuple s'(g’) corresponding to ¢’(g’) will be either s, + 2 or p — 3 — s,
k € {j,7+ 1}, which implies (with considerations of determinant) that there
exists no € € ¥’ such that o(g) = o'(¢'). O

80



Remark 14.3. Switching ¢ and ¢’ in the above proof, we obtain an anal-
ogous result with the weights (so,---,s7-1) ® 7 and (so, -+ ,8;_1,p — 2 —
8558501 — Ly Sjpa, -, 8p-1) @ ndet?” 9T,

We denote by o, the weight in D(p™) corresponding to a subset J of
{0,---, f — 1} (see §11) and by s(J) the f-tuple of integers such that o is
a twist of V() (see §3).

Lemma 14.4. Fiz a subset S C{0,---,f —1} and let J C S.

(Z) ]f‘] 7é {07 T 7f - 1} then there are 2/=1! characters OfI which occur
in (inj o)™ and do not occur in (®jeyinj o)t

(1) If J ={0,---, f =1} and p is reducible then there are 2 characters of I
satisfying the same condition. If J = {0,---, f—1} and p is irreducible
then there are no characters of I satisfying the same condition.

Proof. Write s(J) = (so,---,sy—1) and note that one has 0 < s; < p — 2
for all i as p is generic. If J = ) then every character occuring in (injo ;)"
satisfies the (empty) condition, and hence there 2/ of them. Suppose that
J # 0 and let j € J. Assume first p is reducible. If j + 1 ¢ J then
the f-tuple corresponding to oy is s(J \ {j}) = (s0, -+ ,8j—2,0 — 2 —
Sj—1,8; — 1,841, ,8p-1). If 7+ 1 € J then the f-tuple corresponding to
O\(j} 18 s(JAA{J}) = (0, ,85-2,0 = 2 = sj1,85 + 1, 81,0+, sp-1). By
Proposition 4.13, it is enough to count the € € ¥/ such that for all j € J
and all €' € ¥, one has 0;(¢) # opny(e). If J #{0,---, f — 1}, it follows
from Lemma 14.2 and Remark 14.3 that such € can be described as follows:
for every k and j such that k & J, {k+1,--- ,j} C Jand j+ 1 & J, either

€ = - --—6_1—Oande]—10rek—---:ej_1:1andej20. There
are 27"l such e € ¥'. If J = {0,---, f — 1} then it follows from Lemma
14.2 that the only € € ¥’/ satisfying the above condition are (0,---,0) and
(1,---,1). Hence we obtain 2 characters. Assume now that p is irreducible.

If 7 # 0 then the f-tuple s(J \ {j}) is the same as in the reducible case. If
1€ Jthens(J\{0})=(so—1,81,---,8f-2,p—2—s5y4) and if 1 ¢ J then
s(J\{0}) = (so+1,81, - ,Sp—2,p—2—s5p_1). If JF£{0,---, f—1} then, as
in the reducible case, the “new” & € ¥ can be described as follows: for every
kand jsuch that k & J, {k+1,--- ,j} CJ, j+1¢ Jand 0 & {k+1,---,j}
we have as before either ¢y, = --- =¢;_1 =0andej =1lore, =---=¢_1 =1
and €¢; = 0; for every k and j such that k ¢ J, {k+1,--- ,j} CJ,j+1¢J
and 0 € {k+1,---, 7} we have:

(i) if 1 € J then either ¢, =---=¢€;_1 =0, =---=¢j_1=1ande; =0
orey=--=¢€1=1¢=--=¢_1=0and¢ =1
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(i) if 1 & J then either ey =--- =€y 1 =€ =00r ¢, =--- =€;_1 =€ =
1.

Again we get 2/71/I new characters. Assume p is irreducible and J =
{0,---,f — 1}. Suppose that we have e € ¥’ which is new. If ey ; =1
then by Lemma 14.2 ¢¢ = 0. By applying Lemma 14.2 repeatedly we ob-

tain € = --- = €;_; = 0, which is a contradiction to €;_; = 1. A similar
argument also gives a contradiction when e;_; = 0. Hence there are no new
characters. O

Lemma 14.5. Fiz a subset S C {0,---,f — 1} and let I,J C S. Suppose
that I(or,05) # 0. Then orny is a Jordan-Hélder factor of 1(oy,0y).

Proof. Let D'(p*) := {op, I’ C I} and let D'(zo,...,xs-1) be the corre-
sponding subset of RD(z, ..., xs_1) (resp. ZD(zo,...,xs_1)). In particular
D'(xg,...,xp_1) satisfies (i) and (ii) of Definition 11.5. Remark 12.9 applied
to 7 = o; and D’'(p*) then shows that there exists a unique I’ C I such
that {(op,07) is minimal and non-zero. By (ii) of Lemma 12.8 as extended
in Remark 12.9, o is a subquotient of I(o;,0,). So it is enough to show
I'=1NnJ. As g;ny is a subquotient of I(0y, 0 ) (as is easily checked using
Corollary 4.11), we have I(o;ns,05) # 0. Hence (ii) of Lemma 12.8 as ex-
tended in Remark 12.9 implies again that op is a subquotient of I(ony,0).
Using Corollary 4.11 and the fact that INJ C J, one checks that this implies
INJCI'CJ. AsI'’CIwehave I’ CINJ and thus I’ =1nNJ. O

Lemma 14.6. Fix a subset S C {0,---,f — 1} and let J, J' be distinct
subsets of S such that |J'| < |J|. Assume that x occurs in (injo;)™* and in
(injoy ). Then there exists j € J such that x occurs in (injo )™

Proof. The assumption implies that o; and o are subquotients of Indf X-
Let 7, (resp. 7,s) be the cosocle (resp. socle) of Indf x. Since Indf x
is multiplicity free, I(7ys,0,) and I(7ys,05) are submodules of Indf x. It
follows from Lemmas 12.7 and 12.6 that there exists I C S such that o7 is a
subquotient of I(7ys,0;) and I(7ys,0,). Lemma 14.5 implies that oy is a
subquotient of I(7ys, ). Suppose that INJ # J and let j € J\(INJ). Then
I(o\(j},0) is a quotient of I(07ny,05) and hence o\ ;3 is a subquotient of
I(1ys,07) € Indf x. Hence y occurs in (injo )", Suppose J C I. (i)
of Theorem 2.4 implies that Ind¥ y and Ind¥ y* have the same irreducible
subquotients. By repeating the same argument with x*® instead of y, we
obtain I’ C S such that o is a subquotient of I(7,,0;) and I(7y,0,). It
follows from (ii) of Theorem 2.4 that I(o;, o) is a subquotient of Indf y
which contains both o; and o;. It follows from the proof of Lemma 14.5
that I(pr,0p) = I(oinp, o). Hence I(or,01n) is a subobject of I(or, o)
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and contains o; and ojn as subquotients. Since I(o7,07nr), I(07,05) and
I(o1,01n) are all subquotients of I(os, 0p), we obtain INI' C Jand INI' C
INJ'. Hence I'nJ C JNJ" and since J' # J and |J'| < |J|, we get JNI' # J.
By repeating the previous argument we obtain that there exists j € J such
that o ;) is a subquotient of Indf{ x®. Since Indf( x and Indf( x® have the
same irreducible summands, we are done. O

Proposition 14.7. Let p be generic. Let d such that |D(p)| = 2% (see §11). If
p is irreducible then dimg Do(p)t = 37 —1. If p is split then dimg Do(p)h =
3/ + 1. If p is reducible non-split then dimg Dy(p)lt = 2/=434,

Proof. 1f p is reducible non-split, note that d = |S| where S corresponds to
the maximal weight of D(p) (see §11). Lemma 14.1 implies that it is enough
to count the number of distinct characters in (& cs inj o). Let J C S and
suppose that |J| < f then Lemmas 14.4 and 14.6 imply that there are 2/~
characters which occur in (injo;)"* and do not occur in (injo )" for any
J CS, || < |J|, J #J. If |J| = f and p is reducible (resp. irreducible)
then there are 2 (resp. 0) characters satisfying the above condition. Now
there are (z) subsets of § of cardinality k. Hence, if d < f we obtain:

d

dimg Do(p)" =) (Z) 2/7F =2/74(2 4 1)¢ = 2/ 793¢
k=0

and if d = f we obtain:

!
dimg Do(p)" = +1+ ) (g) 2f=F =3/ +1
k=0

where 4 corresponds to the reducible case and — to the irreducible case. [

We now assume p is generic tame and work out explicitly all Jordan-
Holder factors of Dy(p) and those which “contribute” to Dy(p)t. Fix o €
D(p) and write 0 = (Mo(70), -, Ap_1(rp_1)) ® detMom1-0p with \ =
(Ai(z;)); as in Lemma 11.2 or Lemma 11.4. If p is reducible (resp. irreducible)
one defines py € Z(yo, - -+ ,ys—1) as follows:

(1) mri(ys) = p—1—y if Ni(z;) € {p — 3 — 23, 2;} (vesp. if i > 0 and
Xo(zo) € {p — 2 — xg,20 — 1})

(i) pri(ys) =p—3—y if Ni(x;) € {p—2 — @,z + 1} (resp. if i > 0 and
Xo(zo) € {p — 1 —z0,20}).
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For i € Z(yo, - ,yp-1), define po X == (u;(Ni(2:)); and e(uo ) €
@zf:_ol Zz; as in Lemma 3.1 according to whether pir_1(Af_1(x5-1)) € Z+x4
or Z—xp_.

Theorem 14.8. Let p : Gal(Q,/Q,r) — GL2(F,) be a continuous generic
representation as in Definition 11.7 and assume p is tame, i.e. either irre-
ducible or split. Fiz o € D(p) and X the corresponding f-tuple.

(i) The irreducible subquotients of Dy, (p) are exactly the (all distinct)
weights:

(Ho(Ao(r0)), - pp—1(Apo1(rp—1))) @ detreN o rr=ay (28)

for € I(yo,- -+ ,ys—1) such that p and py are compatible (see Defini-
tion 4.10) forgetting the weights such that p;(Ni(r;)) < 0 or pi(Ni(r;)) >
p — 1 for some i.

(11) The graded pieces of the socle filtration on Dy (p) are:
Dos(p)i= P 7
{(p)=i

for 0 <i < f—1 and weights T as in (28) with (1) as in §4.

Proof. We may embed Dy, (p) inside injo. By Lemma 3.2, all weights of
Dy (p) are of the type (28) for certain p € Z(yo, - ,ys—1). We provide
a proof only for p split, leaving the completely analogous irreducible case
to the reader. Let p € Z(yo,--- ,ys—1) which is not compatible with gy,
assume 0 < 1;(A;(r;)) < p—1for all i and let 7 be the corresponding weight
(28). Thereis j € {0,---, f — 1} such that either \;(z;) € {p — 3 — z;,z,}
and p;(y;) € {p =3 —yj,y; + 1} or Aj(;) € {p — 2 — zj,2; + 1} and
wi(y;) € {p — 1 —y;,y; — 1}. In the first case, define 1/ = (uj(vy:)): by
pi(ye) ==y it 0 & {5 — 1,5}, 11 (yj—1) == p— 2 —y;—1 and pi(y;) == y; + 1.
In the second case, define ¢/ = (ui(v:))i by pi(y:) == v if i ¢ {j — 1,5},
Wy (Yj—1) == p—2—y;—1 and pj(y;) :=y; — 1. Let 7" be the corresponding
weight (28). Then one checks that in both cases 7 € D(p), 7" # o and
7' is a subquotient of I(o,7) (using Corollary 4.11 for the latter). Hence 7
cannot appear in Dy, (p) by multiplicity 1. Conversely, if p is compatible
with py and g # (yo, -+ ,ys—1), then the weight (28) is never in D(p) as is
immediately checked. By maximality of Dy ,(p) together with Corollary 4.11,
this implies (i). (ii) follows from Proposition 13.4 and Corollary 4.11. O

Remark 14.9. (i) If p is split and o = (rg, - ,rp_1) ®noro = (p—3 —
To, P —3—Tfq) ® detZ{;()lpl(”H)n, then Dy, (p) = Ind} x where

x*® is the action of I on o/t.
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(i) One can prove that, if p is split (resp. irreducible), then Dy, (p) is

always the image under ®Zpr of a Z,-lattice in a principal series

(resp. a cuspidal representation) of I" over @p. In particular, one has
dimg Do, (p) = p/ +1 (resp. p/ — 1) for all ¢ € D(p).

If S € Repp is multiplicity free and 7 is an irreducible subquotient of
S, we say that 7V has a lift in SY or contributes to SV if and only if the
surjection U(7) — 7 induces a surjection U(7)Y — 7V where U(7) C S is
the unique subrepresentation with cosocle .

Corollary 14.10. Keep the notations of Theorem 14.8. The irreducible sub-
quotients T of Dy, (p) such that 7™ has a lift in Dy, (p)™ are ezactly the

weights (28) such that p;(y;) € {p—2—vi,p — 1 — yi, v,y + 1}.

Proof. As usual, we only prove the case where p is reducible. Set s :=
(Ao(ro), -+, As—1(rf—1)) and note that one has 0 < X\;(r;) < p — 2 for all
as 0 € D(p). By Proposition 3.6 and the fact Dy ,(p) is multiplicity free, we
may embed Dy ,(p) into:

Vap_z_s @ det=im0 P qeteM o rr-1)y,

(see §3 for Vap_a_s). Using Proposition 4.13 and twisting, it is thus enough
to prove that the set of weights as in the statement coincides with the set of
weights:

{‘/;(e) ® dete(s)—&-e()\)(ro,...7rf,1)+Z{;01 pU\i(ri)n’ = E(Do,o(p)) N E/s}

Denote by Z'(yo,- - ,ys—1) the subset of Z(yo,--- ,yr—1) of f-tuples p =

(1o(Yo), -+ s pp-1(yy—1)) such that pi(y:) € {p —2 —vi,p — 1 — yi, 4i, i + 1}
for all i. The bijection Z(yo," - ,y;—1) — % in the proof of Corollary 4.11
obviously induces a bijection Z'(yo, - - - ,yy—1) — ¥’ ~ XL. Moreover, we have
(see proof of Corollary 4.11):

(a(Ni(rs)) ® det? Xl 2= 1 ) @ dete(€ 2 p ),

(i) of Theorem 14.8 implies the equality of the two sets of weights. ]

15 Decomposition of generic Diamond dia-
grams

For p a continuous generic Galois representation, we study the decomposition
of the family of basic 0-diagrams (Dy(p), { }) of Theorem 13.8.

85



Let S be a subset of {0,---,f — 1} and define §,(S) (resp. ;(S)) as
follows (with the convention f —1+1=10): ¢ € 6,(S) ifand only ifi+1 € S
(resp. if 0 < 7,7 € 6;(S) if and only if i + 1 € S and 0 € §;(S) if and only
if 1 ¢ S). One defines in an obvious way d(S) and 07(S) for n € Z. If
p: Gal(Q,/Q,s) — GL»(F,) is a continuous tamely ramified generic Galois
representation and o € D(p) corresponds to S (see §11), we write 6"(o) for
the unique weight in D(p) corresponding to 07(S) if p is reducible, 67(S) if
p is irreducible.

Fix p generic as in Definition 11.7 and tamely ramified and let o € D(p).
Let A € RD(xzg, -+ ,x5-1) or ID(xg, -+ ,x5_1) give rise to o via Lemma
11.2 or Lemma 11.4 and § C {0,---,f — 1} correspond to o and X (see
§11). Let 7 be an irreducible subquotient of Dy, (p) such that 7* has a lift
in Dy, (p)"* and write 7 as in (28) for a u € Z(yo,-- ,ys—1). Note that by
Corollary 14.10, one has p;(y;) € {p —2 —yi,p — 1 —yi,yi,yi + 1}. If pis
reducible, define:

ST ={ieSand pi1(Nic1(wiz1)) €{zimr, xicr +L,p—1 — 251 }}
STi={i¢ S and pi_1(Nic1(zim1)) €{p—3 — i1, p — 2 — xi1, w1 + 2}
If p is irreducible, define ST and S~ in the same way except that 1 € S~
(resp. ST) iff 1 € S and pg(No(x0)) € {20 — 1,20, p — 20} (resp. 1 ¢ S and
to(Ao(wo)) € {p — 2 — w0, p — 1 — o, w0 + 1}).

Lemma 15.1. Assume p is reducible (hence split), then |S™| = |S*|.

Proof. As A\ € RD(xo,--- ,x5-1) and as p and p, are compatible by (i) of
Theorem 14.8, we have:

S = {i7 )\ifl(iﬂifl) = p—3—T;—1 or p—2—x,;_ and MFl(yzel) = P—2—Z/i71}
I{i, Aici(wia) =p—2— 21 and pia(yi1) = yi1 + 1}
and likewise:
ST ={i,\_1(zi1) =z or wim + Land g (yic1) =p— 2 — i1}
nl {i’ /\z‘—l(xz‘—l) =x,-1+ 1 and ,uz'—l(yi—l) =Yi-1+ 1}-

But if p;(y;)) =p—2 —y; and N(x;) € {p —3 — z;,p — 2 — x;}, we get from
the compatibility of 1 and py that the smallest j > 1 such that p;4;(yit;) =
Yi+; + 1 must be such that \;i;(x;1;) = z;4+; + 1 (otherwise, some index
between i and i + j would contradict the compatibility). This implies:

|{ia )\i(xi71> =p—3—xi—g0rp—2—ux;_; and ,Ui(yz'—l) =p—2— y171}| =
i, Ni(xiz1) = xim1 + 1 and p4(yim1) = yio1 + 1},
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Likewise, we have:

|{’ia )\i(xz#l) =x;_q or xj—; + 1 and /ii(yifl) =p—2- yH}I =
i, \i(ri1) =p—2 — ;- and p(yi—1) = yim1 + 1}

All this obviously implies |[S™| = |[ST|. O
Lemma 15.1 is wrong when p is irreducible.

Lemma 15.2. With the previous notations, the unique weight w € D(p)
such that ((w, ) = €(p, 7)) corresponds to the subset §,((S\ S7) U SY)
(resp. 6;((S\S™)UST)) if p is reducible (resp. irreducible).

Proof. Note that there is indeed such a w thanks to Corollary 13.6 and that
(S\S)NSt = (. Assume first p is reducible (hence split) and let A €
RD(xg, -+ ,xs-1) correspond to the subset §,((S\S7)UST). Let (u(y;)): €
Z(yo,- - ,ys—1) as previously (corresponding to 7) and define (p;(y;)); by the
formula:

p—1 = pi(Nixi)) = (Xizi), Vi (29)
By (i) of Theorem 14.8, n is compatible with p, in the sense of Definition
4.10. By (i) of Theorem 4.10 again, it is enough to prove that (p;(v;)); €
Z(yo,- -+ ,ys—1) and (f, p5) are compatible. This is horrible but easy combi-
natorics. Assume i+ 1 € (S\S7)UST, then Ni(z;) € {p —3—zj,z; + 1}.
Ifi+1eS\S, one must have \;(z;) € {p —3 — x;,p — 2 — x;} and some
conditions on g which then imply the following cases:

(i) Xi(z;) = p—3 — @, py;) = y; which gives using (29) A\;(z;) = x-1 +
17%‘—1(%—1) =y;+1or Az(ﬂﬁz) =p—3—u1, ﬁz(yz) =p—1—uy

(i) Ai(z;) =p — 3 — 24, pui(ys) = p — 1 — y; which gives using (29) \i(z;) =
T+ LI(y) =p — 2 — g or Ni(ws) = p— 3 — x4, fis(ys) = i
(iil) Ni(z;) =p—2 — @, wi(y;) = y; which gives using (29) Xl(:nl) =x; +
L pi(yi) = yi or Ni(i) =p— 3 — i, fui(yi) =p — 2 — y;.
If i+1 e ST, one must have \;(x;) € {z;,z; + 1} and some conditions on p
which then imply the following cases:

(i) Ni(z;) = @i, pa(y:) = p — 2 — y; which gives using (29) Xi(z;) = z; +
L fi(yi) = yi or Ni(wi) = p— 3 — @, fui(y) =p — 2 — y;

(i) Ai(zi) = @i + 1, wi(y;) = p — 2 — y; which gives using (29) Xl(%) =
i+ 1, 0(ys) =y +1lor N(x) =p—3— 5, f1(yi) =p— 1 —y
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(iii) Ni(x;) = @; + 1, pi(y;) = y; + 1 which gives using (29) Xl(xz) = x; +
Lpi(yi) =p—2—yi or Ni(zi) = p — 3 — i, j1i(ys) = -
Assume now i+1 ¢ (S\S™)USH, then \;(z;) € {zi,p—2—2;}. Ifi+1e€ S,
one must have \;(z;) € {p — 3 — x;,p — 2 — x;} and some conditions on p
which then imply the following cases:

( ) ( ) — Iy, ,uz(yz) — -2 Y; Wthh giVGS using (29) Xz(xz> =
T, 1(yz) = —2—yz or \; (arl) P—2—x, [1;(Yi) = Ui

(ii) Ai(x z) p—2— 4 pti(y;) = p — 2 — y; which gives using (29) Xi(z) =
Ty, W (yz) - —1—.% OI')\ (xz) p_2_x7,7ﬁ'z(yz) :yz+1

(iti) Ai(2;) = p — 2 — @, ,ul(yz) — ; + 1 which gives using (29) \i(z;) =
J:zalul(yl) =Y; O >\ (xz) - 2_x7,7ﬁz(yl) :p_z_yz

Ifi+1¢ Sandi+1¢ ST, one must have \;(z;) € {x;,z; + 1} and some
conditions on g which then imply the following cases:

(i) )\z@%) = Ty, ,ui(yi) = y; which gives using (29> Xz(xz) = JUz,ﬁz(?Jz) =
p—1—yior N(z;) =p—2—w, u(y;) =y + 1
(i1) Ai(x;) = x4, pi(y;) = p — 1 — y; which gives using (29) Xz(xz) =
iy 11 (Yi) =y or N(x) =p—2 — i, fi(ys) =p— 2 — i
(iii) Ag(a:) = 2 + 1, pa(y;) = y; which gives using (29) \i(z;) = i, i (ys) =
p—2—y;or )\z(xz) =p—2— 1, ﬁz(yz) =Y.
If (12:(v:))i € Z(yo,- -+ ,Ys—1), we see that 11 and 5 are compatible in all of the

above cases. Let us now check (12;(v:))i € Z(yo,- - ,ys—1). Assume [;(y;) =
y; + 1. From the above list, we have four possibilities for (\;(z;), pi(y;)) and

(Nola), Fa(wi)):

(p—3—my,y) and (z;+1,y:+1)

(x;+1L,p—2—y;) and (2 +1 y; + 1)
(zi,y:) and  (p—2— 2,y + 1)
(P=2—-wip=2-y) and (p—2—mz,y +1)

In the first case, we have (A 1(2i1), tit1(Yiv1)) € {0 — 3 — ig1, Yig1), (P —
3= @it1,p— 2= Yir1), (i + 1yyi+1>7 (ir1 +1,p — 2 = yi41)} which, again
from the above list and the fact A € RD(zo,--- ,z¢_1), yields:

()\i+1(93i+1), ﬁi+1(yi+1)) S {(931'+17p —2— yi+1), (P — 2= T, yi+1)}-
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We see fii11(yiv1) € {p — 2 — yiy1,¥ir1}- The 3 other cases yield the same
conclusion, hence we always have f1;11(yi11) € {p—2—¥is1, Yir1}- Examining
wi(y;) = y; yields in the same way fi;11(yiv1) € {p — 2 — Yit1,Yir1}. For
1i(yi) € {p =2 —yi,p — 1 — yi} a similar check yields f;1(yi1) € {p —
1 — Yit1,yip1 + 1}, This implies (:(v:))i € Z(Yo,--- ,ys—1). We leave the
somewhat analogous case p irreducible to the reader. O]

In the case 7 = o, Lemma 15.2 was noted independently by Buzzard.

Recall that, if p is a continuous reducible generic Galois representation
(not necessarily split), there is a maximal element o™ in D(p) for < (see

§11).

Lemma 15.3. Let p be a continuous reducible generic Galois representation.
Let p* be the semi-simplification of p and o™ € D(p) the unique mazximal
weight. Let T be any weight such that €(p,7) < 400 and o € D(p) such
that I(p,7) = I(o,7). Then £(p®,T) < +o0 and, if o' € D(p®) is such that
I(p*®,7)=1(c',T), we have 0 = o' N a™* in D(p*).

Proof. As D(p) C D(p*), it is clear that ¢(p,7) < +oo implies £(p*,7) <
+oo. We first prove 0 < ¢’. By (ii) of Lemma 12.8 applied to p*, I(o,7)
contains ¢’ hence we have I(0,0') C I(0,7). As in the proof of Lemma
12.6, we go from o to ¢’ inside I(o,7) by applying to o several sequences

p—2—-p—2—-—=1,--- -1 1 such that the successive sets of indices that
are affected are disjoint, or one full sequence (--- ,p—2 —-—=+1,---). Let
i€ I(yo, -+ ,ys—1) be the unique element corresponding to these sequences

and recall that S(u) = {i, ui(y;) =p—2 —y; — £1 or y; £ 1} and that o’ is
the negative of o within S(u) (see Lemma 12.4). Let S,8" € {0,---, f — 1}
correspond to o, 0’. Assume that we don’t have o < ¢’, or equivalently that
we have S(u) NS # 0. Let x4/ be the unique element of Z(yo, -+ ,ys—1) such
that:

(i) S(W)=8wns
(ii) p and p’ are compatible (Definition 4.10).

Then, by Corollary 4.11 applied to I(o,0’), p’ corresponds to a unique irre-
ducible component ¢” of I(o,0’) C I(o,7) which is distinct from o. More-
over, from Lemma 12.4, one easily derives that this weight is still in D(p™)
(it is the negative of o within S(i')). But we have ¢’ < 0 as S(i/) C S
by assumption, so ¢” is also still in D(p). The definition of ¢ then implies
o = o¢”, which is a contradiction. Hence we have o0 < ¢'. As o < o™,
we have o < o' N o™ < ¢’. In particular, o’ N ¢™** is obtained from o by
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applying sequences p—2—-,p—2—-—=+1,--- .41 with support (in the sense
of §12) contained in S(p). As o'No™®, o’ € D(p*), we get from Lemma 12.6
that these sequences are compatible with p and then from Corollary 4.11 that
o' N o™ is a component of [(o,0’") C I(o,7). But ¢’ N o™ € D(p) since
o' No™* < g™ and 0™ € D(p). Thus, we must have 0 = o’ N ™. [

We are now ready to prove:

Theorem 15.4. Let p : Gal(Q,/Q,r) — GL2(F,) be a continuous generic
Galois representation and (Dy(p),{ }) as in Theorem 13.8.

(i) Assume p is indecomposable, then (Do(p),{ }) cannot be written as
the direct sum of two non-zero families of basic 0-diagrams (Definition

13.7).
(i1) Assume p is reducible split, then we have:

f

(Do(p): { 1) = D (Doslp) { 1) (30)

=0

where Dg¢(p) := @uoy=¢Doo(p) (see (27) for Dy, (p)). Moreover, for
each £, (Doo(p),{ }) cannot be written as the direct sum of two non-zero
families of basic 0-diagrams.

Proof. The whole proof is again easy but tedious combinatorics and we only
give details in the reducible case. Let us start with (ii). Note that there
is a unique o € D(p) such that ¢(o) = 0 (resp. ¢(o) = f), namely 0 =
oo = (ro, -+ ,7y—1) @n (resp. 0 =05 :=(p—3—19,--,p—3—15_1)®
detT°+1+”(Tl+l)+"'+pf_l(Tf*1+1)7})- We have to prove that the unique pairing
{ } on the I-eigencharacters of Dy(p)™ preserves the I-eigencharacters of
Dy (p)™* for each ¢, and doesn’t preserve those corresponding to any strict
non-zero K-direct factor of Dy ,(p). This is straightforward if £ = 0 (resp.
¢ = f)as Dyo(p) = Ind} xo (resp. Dy s(p) = Ind} x;) where x§ (resp. X?)
is the character giving the action of I on of' (resp. J]IB), see (i) of Remark
14.9. Fix 0 € D(p), 0 ¢ {o¢,04} and let S C {0,---, f — 1} correspond
to 0. Let 7 be an irreducible subquotient of Dy, (p) as in Corollary 14.10
contributing to Ij-invariants. Let S~ and ST as before with 7 and let o €
D(p) correspond to §,((S\ S7) US*). By Lemma 15.2, 7¢I sits in Dy z(p)
and by Lemma 15.1, /(o) = (), hence { } preserves the I-eigencharacters
of Do (o) (p)". For £ € {1,---, f =1}, let o, € D(p) correspond to the subset
{1,2,--- ,£}. We are going to prove that one can always “go” from Dy ,(p)"
to Do,ag(a)(P)Il using y — x°. By Lemma 15.2 applied successively to 7 = o,

90



7 = 0(0) etc., we can assume 0 ¢ S and 1 € §. Write § = II7,_ S, with
So i ={ia+ 1, Jia+Ja}ia €{0,---, f =1}, iqn € S and iy + Jo < Gar1
(sodp =0and Y| _jo = {(0)). If r =0, we are done as 0 = 0y, in that
case. Assume r > 0 and define p = (ui(vi)): € Z(yo, -+ ,ys—1) as follows:

to(y) = p—2—1wo

pi(ys) = p—1—-y;, 1<i<jo—1
tjo(Yjo) = jo +1

wi(yi) = vi, > Jo.

Let 7 be the irreducible subquotient of Dy, (p) corresponding to p as in
(i) of Theorem 14.8. We have S~ = {1}, St = {jo + 1} and, by Lemma
15.2, 71 sits in Dy ,a)(p) where oV corresponds to SU) := Sy 11 6,(S \ Sp).
If jo+1 ¢ SW, we start again with 7" inside Dy, (p) corresponding

to the same p and get that O its in Dy ,»(p) where o® corresponds
to S@ = Sy I 63(S \ Sy). Repeating this again, one reaches S(1—70) =
So I 6=9(8\ &) = HZ_:I()S&iI_jO) with S as before. In particular, r
has strictly decreased. By an obvious induction, we can “reach” like this
r = 0, that is 0y,). All this implies that { } doesn’t preserve any strict
non-zero K-direct factor of Dgyo)(p). Let us now prove (i). The case p
irreducible is analogous to (ii) and we leave the details to the reader. Let us
assume p is reducible non-split and let o € D(p). We are going to prove that
one can always “go” from Dy, (p)"* to Dy ,,(p)"* using x — x*. By using
Lemma 15.3 and Lemma 15.2 “backwards” and since Dy, (p*) C Do ,(p),
we can (and do) replace o by d (o) for the biggest integer n such that
6 (o) < o™, Consider now the weight 6~*(o)!*l. By Lemma 15.2 applied
to p* and 7 = 6 (o) € D(p*), 6 (o) is a Jordan-Holder component
in Dy, (p*) € Doyy(p) such that (67(o)B)1 contributes to Dy, (p)t. By
Lemma 15.3 applied to 7 = 6 7(0), (o) is a Jordan-Holder component in
Dy 5-1(5)nomax (p). Moreover, £(671 (o) No™) < £(67 (o)) = L(0) as 61 (0) ¢
D(p). Thus, replacing o by 6 (o) N o™, we see that £(o) has strictly
decreased. By an obvious induction, we can “reach” like this ¢(c) = 0. This
finishes the proof. O

16 Generic Diamond diagrams for f € {1,2}

We completely describe the family of basic 0-diagrams (Do(p),{ }) attached
to a continuous generic p : Gal(Q,/Q,s) — GLy(F,) for f =1 and f = 2.
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We write a finite dimensional indecomposable representation S of I' over

Fp as follows:
Sog— S5 — Sy —---— 8,

where (.5;); are the graded pieces of the socle filtration (see introduction).

Let us start with f = 1. Twisting if necessary, we can assume that p
acts trivially on det(p) and that the restriction of p to inertia has one of the
following forms:

ro+1
(i) (w 0 1() with x £ 0

(i) (“’TSH (1)>

(w0
(111) < 20 wp(ro-f—l))

2

where w stands for w; (the reduction modulo p of the cyclotomic character)
and where 1 < ry < p — 4 in the first two cases and 1 < ry5 < p — 2 in the
last (remember p is generic!). The corresponding Dy(p) is:

—1—roTR2 L
| . Sym?™ " "F, @ det"
(i) Sym™F, — D
Symp_?’_’"OFi ® det™

Symmﬁi — Sym?” *I*TOEZD ® det™
(i) T
Symp_?’_’"(’FfJ ® det™ ™ — Symm”F; ® det™?
SymTOFi — Symp*S*TOFf, ® det™t?
(iii) o)
Sym” _1_”@; ® det" — SymTO_QF; ® det .

(If a weight has a negative entry, we just forget it.) The reader can easily find
the unique pairing {x, x*} and check directly that Dy(p)"* has dimension 2 in
case (i), 4 in case (ii) and again 2 in case (iii). We let IT act on Dy(p)™ in the
unique possible way (up to isomorphism of &;-representations) and let D;(p)
be the resulting K;-representation. Up to isomorphism of basic 0-diagrams,
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the reader can check that an [Z-equivariant injection r : Di(p) < Dy(p)

P . o= X . ..
depends on one scalar in F, in case (i), on two scalars in F, in case (ii) and
is unique in case (iii).

We go on with the slightly more involved case f = 2. We will distinguish
the following cases on the restriction of p to inertia (after some possible
twist):

(' ) <wro+1+p(r1+l «
1a

1

ro+14p(ri+1)
ib Wo Xx
@ ( 1

)

)
1)® det’"°+p(p ny

)

)

with % # 0 and D(p) = {(r0,71)}

with x # 0 and D(p) = {(ro,r1),(p — 2 —ro,r1 +

wro+1+p(r1+1
(ic) < with * # 0 and D(p) = {(ro,71),(ro + 1,p — 2 —

) ® detp 1+pr1

(i) <wro+1+p(m+1 0

wro+1+p(r1+1) 0
(iii) ! 2(ro+1)+p®(r1+1)
0 wi 0 P 1

where 0 < ro,ry < p — 3 with (rg,71) ¢ {(0,0),(p —3,p — 3)} in the first
four cases and 1 <17y < p—2,0 < r; < p—3in the last (note that if p is
reducible non-split then D(p) always comes from a subset of Galois type as
in Definition 11.5). The corresponding Dy(p) is (we don’t write the twists by
powers of det for each weight, one can recover them from the usual formulas
of §11; moreover if a weight has a negative entry, we just forget it):

(ia)
(7“0,7’1) — 51— 5

where S is given by :
(p—2—7r9, 11 +1)B(ro—1,p—2—r1)B(p—2—71¢,r1—1)B(ro+1,p—2—11)
and Sy by:

(p—1-=ro,p—=3—r)®(p—1-ro,p—1-r1)®(p—3—r9,p—1-11)
©(p—3—r0,p—3—11)
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(ib)
((7‘0,7”1) _51—52) @ ((19_2_7’077414_1)_5i _Sé)

where:

Si = (ro—-Lp—-2-rm)®&pP-2—rorn—1)S(re+1L,p—2—1r7)
Sy = ( )& (p—3—ro,p—1—r1)

S; = (p—=3-ro,p—3—-r1)®(ro,m1+2)®&(pP—1—ro,p—3—11)
Sy = (ro+lLp—4—r)®(ro—1,p—4—r)

p—1l—rop—1-n

((ro,r1) — 81— 82) @ ((ro+1,p—2—r)) — 5] — S5)

where:

S = (p—2—-ro,mm+)&(ro—L,p—2—r)®(pP—2—r0,71— 1)
Sy = ( J&(p—1—re,p—1—1ry)

S; = (p—=3—-ro,p=3—-r)®re+2,11)B(P—-3—ro,p—1—19)
Sy = (p—4—ro,ri+1)®(p—4—re,r —1)

p—1—ro,p—3—m

(ro,71) — S1 — (p—1—10,p—1—11)
)
(p—2—ror1+1) — S — (rno—Lp—4—r)
S>,
(T0+17p_2_r1) - Sil - (p_4_7"(),7”1—1)
&)
(p—=3—ro,p—3—1r1) — S — (ro+2,11+2)
where:
S1 = (p—2—-ro,r1—1)®(ro—1L,p—2—11)
Sy = (ro,m+2)®pP—1—r0,p—3—11)
ST = (p—=3—ro,p—1—r1)®(ro+2,1)
S = (ro+1Lp—4—r)®(p—4—r9,m1+1)
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(i)

(ro,m1) — S1 — (@P—=3—ro,p—1—11)
ISP,
(ro—lp—2-r) — S — (p—ro,m1—1)
)
(p_l_r(bp_g_rl) - Si, - (T0_27T1+2)
S¥)
p—2—rg,r1+1) — SV — (ro+1,p—4—r)
where:
S = (p—2—ro,m1—1)®(ro+1,p—2—1)
S = (ro—2,r)®(p—-1—ro,p—1—11)
ST = (ro—1Lp—4—r)®(p—re,r1+1)
S = (p—3—ro,p—3—r1)® (ro,71 + 2).

The reader can easily find the unique pairing {x, x*} and check directly that
Dy(p)™ has dimension 4 in case (ia), 6 in cases (ib), (ic), 10 in case (ii) and
8 in case (iii). Defining the &;-representation D;(p) as previously, the reader
can check that, up to isomorphism of basic 0-diagrams, an [Z-equivariant
injection r : Dy(p) — Dy(p) depends on two scalars in F; in case (ia), (ib)

. oomsX . .o coomX .
and (ic), on four scalars in F, in case (ii) and on one scalar in F, in case

(ii).

17 The representation R(o)

For o a weight, we define and start studying a K-representation R(o) which is
a subrepresentation of C—Indg0 o and which will contain all the I'-representa-
tions Dy 5)(p) for generic tame p. Although it might not be strictly neces-
sary, we assume p > 2 and x # x® where Yy is the character giving the action

of I on o',

We fix 0 = (19, ,rp_1) ® n a weight as above, i.e. such that not all r;
are equal to zero and not all r; are equal to p — 1. We extend the K-action
on o to a Kp-action by making p act trivially and we let x be the character
giving the action of I on ¢’. Following the notations of [4], for ¢ € G and
v € o we denote by [g,v] € (Z—Indg0 o the unique fonction with support in
Rog~! which sends ¢! to v. Let r := 1y +pry + -+ + p/~lr;_; and recall
that any element of o can be seen as a polynomial over Fp in the variables
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a" "yt for i =do+piy + -+ pf lip_y with 0 <i; < r;. We first define fi(a)
to be the K-subrepresentation of c—Indg0 o generated by the elements:

(168 ] efgrres)

where J, 1= {i € {0,---, f—1},r; > 1} and with the convention ., p’ =0
when J = (). An easy calculation shows that this is the same as the K-
subrepresentation of c—Indg0 o generated by the elements:

([0 a=y] . [(08) 2 Y] i € {5 e’ J S Jub do €F,).

For J C J,, we define Fil’ R(0) to be the K-subrepresentation of R(c) gen-
erated by the element:

0 1 r—i, i - j
{(p O),x y] forz-jeszf.

An easy calculation gives Fil”’ R(0) C Fil’R(c) if J' C J hence we have
Fil” R(0) = R(0).

Lemma 17.1. (i) For J C J,, we have:
Fil’ R(o)
2o ey FHJIE(U)

= Ind} Yoazies P

(i) For J C J, and j € J, \ J, the K-representation:

o PV R0)
> wesupy Fil” R(o)
J'£T
1S an extension:
0——> Ind% XSOéZ%in G Indg XsaijrZieri —( (31)

which is isomorphic to the induction from I to K of the extension of
I-representations 0 — x*aXics? — x — ySaP' TXics?" — 0 where the
action of I is given in a basis (v,w) of * such that v € y*a2=icsP" by:

(2 Dumwmon( (2 ))(eores) o
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Proof. Straightforward and left to the reader. O

Definition 17.2. Let o, x and J C J, as previously and setr{ :=r; ifi ¢ J,
r! =r;—2ifieJ (hence =1 <1/ <p—3). We say that an irreducible
subquotient of Indy x*a=ics?" is special if it is of the form:

(o), 0p-1(r]_1)) © det™@ o m7-1)) detZies 'y (33)

where (0;(x;)); € Plxo, - ,x5-1) (see §2) with 0;(z;) € {p — 2 — x;,x;} if
1€ J.

Example 17.3. If f = 1, we have J, = {0}. The special irreducible subquo-
tients of Indg x* are o and ol¥. If ry > 2, the special irreducible subquotient
of Indg Yoo is Sym”’_QF}z7 ® detn and if rg = 1, IndFB x®a has no special
irreducible subquotient.

Lemma 17.4. The T-representation Indy x*aZies?' has all its irreducible
subquotients special if and only if J = ().

Proof. 1f J = (), it follows from Lemma 2.2 that all irreducible subquotients
are special. Assume J # (. If r; > 2 for all i € J, it again follows from
the same lemma that all subquotients can’t be special (e.g. the cosocle if the
representation is indecomposable). Assume r; = 1 forsomei € J. Asr;—2 =
—1, one checks the socle of Ind} y*a2ies?" is a weight (sg,- -+, 87 1) ® P
with s; € {p — 1,p — 2}. Hence the cosocle is a weight (to, - ,t;_1) @ ¢
with ¢; € {0,1}. But as r/ = —1, any special subquotient (33) is such that
0;(z;) = p—2 — z; i.e. such that 6;(r/) =p—1. Asp > 2, t; # 0;(r]) and
the cosocle is again never special. O

Lemma 17.5. Assume that J # 0 and that Ind YiaXier? has at least one
irreducible special subquotient. Let i and j be consecutive elements in J (with
possibly i = j if |J| =1). If r; = 1, there is s € {0,---, f — 1} such that
i+1<s<j—1 (modulo f) andrs >0 (and s ¢ J).

Proof. Indeed, if this was not the case, then any special subquotient of
Ind} x*aXics?" as in (33) would necessarily be such that 6;(z;) = p — 2 — z;
(asr! = —1) and O4(zs) £y —1fori+1<s<j—1(asr! =7r,=0). As
(0;(z;)); € P(xo, -+ ,x¢-1), this implies ;(z;) € {p — 1 — z;,z; — 1}. But
this is impossible because j € J implies 6,(z;) € {p — 2 — x;, z;}. O
Lemma 17.6. Let J' € J C J, and set (° == x*a=ics'? . Let (so,- - ,57-1)®
Y be the socle of Indy ¢* and set s;]\‘], =s;if1 ¢ J\J and s;]\‘], =5 — 2
if i€ J\ J'. Any special irreducible subquotient of:

Ind, y*aXics? = Indy ¢faXiens ¥’
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can be written as:
’ , \J! \J! ;
(Bo(sg™), -+ B1(s7])) @ det“®@la 121 gegXiens 'y, (34)
for 0 € P(xo, -+ ,xp_1) with 0;(x;) € {p —2 —xy,x;} if i e J\ J.

Proof. Note first that, as J' C J and xy # x°, we can’t have {( = (* and
the socle of Indj ¢* is irreducible. If f = 1, there is nothing to prove as
J' = ) in that case. Assume f > 1. If r; > 2 for all i € J’, this follows
immediately from Definition 33. If r; = 1 for some i € J’, this easily follows
from Definition 33 together with Lemma 17.5 (note that, using Lemma 17.5
if there is ¢ € J' such that r; = 1, one has s; =r; > 1 if i ¢ J'). O

Beware that, conversely, all subquotients as in (34) are not necessarily
special in the sense of Definition 33.

Lemma 17.7. Assume that J # 0 and let T be a special irreducible subquo-
tient of Indy x*a2=ics?' . Then T doesn’t occur in Indy x*aXics " for J' C J.

Proof. Set (* := x*aXics pi_. By Lemma 17.6, any special irreducible sub-
quotient of Indy ¢3a2€n7P" can be written as:

’ ’ \J! \J! 5
(QO(SS\J )y aef—l(sﬁi ) ® dete(e)(sg Tty )det2ie\’ P (0

for 0 € P(xo,--- ,xp-1) with 6;(z;) € {p—2—;,z;} if 1 € J\ J'. By Lemma
2.2, the irreducible subquotients of Ind} ¢* are:

()\0<SO)7 e ,)\f_l(sf_l)) ® dete(A)(So""vSf—l)¢

for A € P(xo,---,x_1). If a special subquotient of Ind% ¢sa2enr P also
occurs in Indg (*, then by considerations of determinants as in the proof
of Lemma 12.8, one can check this implies \;(x;) = 0;(z; — 2) as formal
expressions of x; for any ¢ € J\ J'. This is impossible as A € P(zo, - ,xf_1),
and thus one can’t have X\;(x;) € {x; — 2,p — x;}. O

Lemma 17.8. Let 7 be a special irreducible subquotient of Indy YiaXies?'

and U(7) C Fil’ R(0) the unique subrepresentation with cosocle T (which is
well defined by Lemma 17.7). Then all irreducible subquotients of U(T) are
special.

Proof. If f = 1, this follows from Example 17.3 so we can assume f >
1. First, for any J C J, and any special subquotient 7 of Ind} y*a=ics '
corresponding to some A € P(xo,--- ,zs_1) by Lemma 2.2, one checks (using

Lemma 17.5 if ; = 1 for some ¢ € J) that the unique subrepresentation
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of Indg XsaziEin with cosocle 7 has only special irreducible subquotients,
namely all the weights corresponding by Lemma 2.2 to the f-tuples X' €
P(xo, -+ ,xp-1) with A" < X in the sense of §2. Using this inductively, it is
enough to prove the following statement: all weights 7 of Indg Yoa2ics P’
with J" C J which could possibly be involved in a non-trivial K-extension
with 7 are already automatically special. Define (* and (so,- -+, Sf—1) ® ¢ as
in Lemma 17.6. Using the notations of the proof of Lemma 17.7, write:
/ 1 \J! \J! i
7= (Oo(sg"), 01 (s7)) @ det @60 1) det Ve Py
T = <A0(30)7 o 7)‘f*1(8f*1)) ® detE(/\)(so’m’sfil)w

with 0, A\ € P(xg, - ,z5-1) and 0;(z;) € {p —2 —x;,2;} if i € J\ J'. The
weights distinct from 7 and possibly involved in a K-extension with 7 are
described in Corollary 5.6. Consider first the extensions F2, i.e. cases (a)
and (c) of (ii) of Corollary 5.6. In order for a weight 7’ to be involved in
such an extension with 7, the only possibilities are J = J'II1{j} (for some j),
02(1'1) = /\z(xz) for ¢ 7£j and Qj(xj - 2) = )\j(xj) — 2 with Hj(fL'j — 2) =T; — 2
or 8;(z; —2) = \j(z;) +2 with 0;(z; —2) = p—2— (x; — 2) (note that we are
dealing with weights, not formal weights, but considerations of determinant
as in the proof of Lemma 12.8 show this is actually equivalent). But in
both cases, we have \;(z;) = 6;(x;) and 7’ is thus necessarily the weight
(Bo(s0), -+ ,05_1(s7-1)) @ det?@Do5r-1)y), Tt is certainly special in Ind} ¢*
if 7 is special in Indg CSaZiGJ\J’ ' Consider now the extensions F1, i.e. cases
(a) and (b) of (i) of Corollary 5.6. In order for a weight 7’ to be involved in
such an extension with 7, the only possibilities are J = J'II1{;j} (for some j),
91(1‘1) = )\Z([EZ) for ¢ ¢ {j — ]_,j}, Qj—l(xj—l) =p— 2 — /\j—l(xj—1> and either
9]'(1’]' — 2) = )\j(ﬂ?j) — 1 with gj(l'j — 2) =T; — 2 or Qj(xj — 2) = )\j(l’j) +1
with 0;(z; —2) = p—2 — (z; — 2). Let us suppose 6,(z; —2) = z; — 2, then
the weight 7 is up to twist:

(Oo(so), -+ 0i-1(sj-1), 85 — 2, -, 0p-1(sp-1))
whereas the weight 7/ is up to twist:
(Bo(so), -+ p—2—=0;-1(sj-1), 85 — L+, 0p-1(sp-1)).-
As 7 is special, the weight 7 can also be written up to twist:
(00(rg)s -+ 051 (r7—1))

with 6’ as in (33) such that 0}(z;) = 2; (asr{ =r;—2=1s;-2). Asr{ =r/
if 7 # j and rj%’ "= r;, the weight 7/ can thus be rewritten up to twist:

(96(7“6],), P 2 - 0;‘—1(7“;‘]L1)’ ’l“}]/ - 17 R }—1(7“;/—1))
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which is special in Indll; ¢* by Definition 17.2 and an easy calculation in

P(zo,--- ,xp—1). The other case is analogous and left to the reader. No
other weight distinct from 7 can possibly be involved in a K-extension with
7 which has a central character. [

]:N)eﬁnition 17.9. We define R(o) to be the following subrepresentation of
R(o):

R(o) =Y _U(7)
for all J and all subrepresentations U(T) as in Lemma 17.8.

Example 17.10. Assume f = 1. If ry = 1, we have R(c) = Indy x*. If
ro > 2, R(0) is an extension:

0 — Indj x* — R(c) — Symmqﬂ_?; ® detn — 0.
We will see in §18 that this extension is non-split.

Recall that the set Z(zo,--- ,zs_1) was defined in §3.

Lemma 17.11. The irreducible subquotients of R(c) are exactly the (all
distinct) weights:

(po(ro), -+ s py—1(rp-1)) ® et o rr—1)p

for pi(z;) == XNi(p— 1 — ;) with A € Z(xg, -+ ,x5-1) and e(p) defined in the
usual way (forgetting the weights such that p;(r;) < 0 or p;(r;) > p—1 for
some i). In particular, they occur in R(o) with multiplicity 1.

Proof. Let i be as in the statement and set:

Ji={ie€{0, -, f—1} pi(xi) € {wi —2,p —wi}}.
Let 6;(x;) = pi(x;) if i ¢ J and 0;(z;) == pi(z; +2) if ¢ € J. Then it is
straightforward to check that 6 € P(x,--- ,zs_1) and that:

<MO<TO>7 e 7,uffl(7affl)) Q dete(ﬂ)(roz”'zrffl)n —
e rd e rd
(Bo(rg), -+, 0p-1(r7 1)) @ det @070y (35)
with 7/ as in Definition 17.2. Hence any weight as in the statement is

special and thus occurs in R(o). Conversely, going backwards on (35),
any weight as in (33) corresponds to a unique p as above such that J =

{i, ui(x;) € {p — @i, x; — 2}}. O
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Lemma 17.12. For a weight 7 = (juo(r0), -+, puy—1(ry_1))@det o=y
in R(o), define:

J(r) = {ie{0,--, f =1} pui(z;) € {x; —2,p — x;}}
K(r) = {1€{0,--, f =1} pi(w;) € {wy — L,z — 2,p — wi,p — 1 — w4} }.

(i) The set J := J(7) is the unique J C J, such that T is a special subquo-
tient of Indy x*aXies ',

(11) If a non-split K -extension 0 — 7" — € — 7 — 0 occurs as a subquotient
in Fil'R(0), then it occurs as a subquotient of R(c) and we have
J(7") C J(1) and K(1') C K(7). Moreover, if € is a I'-extension, then
we have either J(7') = J(1) and K(7') € K(1) or J(7') € J(7) and
K(r") = K(7), and |J(T) U K(7)| = |J(7") U K(7")| + 1 in both cases.

Proof. If f = 1, this follows from Example 17.10 so we can assume [ >
1. (i) follows from Lemma 17.11 and its proof (see (35)). Let us prove
(ii). By the definition of U(7) in Lemma 17.8, the non-split extension e
must be a quotient of U(7) and hence is also a subquotient of R(c). Write
7' = (po(ro), -+, w1 (r-1)) @ det®W)ro -0y with 4/ as in Lemma 17.11.
Assume e sits in Indg ySa>ie@? (ie. J(7') = J(r)). If r; > 2 for all
j € J(7), then it directly follows from Theorem 2.4 (together with Lemma
2.2) that K(7') € K(7) and |K(7)| = |K(7")|+1. If r; = 1 for some j € J(7),
this is still true but one has to use Lemma 17.5. Assume now that 7' comes
from a distinct parabolic induction inside R(o), we are then exactly in the
situation of the proof of Lemma 17.8. If the extension e is of type £2 (i.e.
it is not a I-extension), going back to this proof, we see that we necessarily
have j € J(7) such that (u}(v;) = z;, pi(v;) = x5 —2) or (py(w;) = p —
2 —xj, pi(z;) =p—x;) and p'(x;) = p(x;) for i # j. In both cases, we
have J(7') € J(7) and K(7') € K(7). Assume now that the extension e is
of type +1 (i.e. is a I-extension). Again, by the proof of Lemma 17.8, we
necessarily have j € J(7) such that i, (v 1) = p—2—p;_1(z;_1) and either
(Wi(w;) = @5 — 1, () = x5 — 2) or (Wi(a;) =p—1—xj, pi(x;) =p— ;)
(and pl(x;) = pi(x;) for i ¢ {j —1,4}). The operation p — 2 — - preserving
J(7") and K(7'), we see that we have J(7') C J(7) (with |J(7)| = |J(7')|+1)
and K(7') = K(7). O

18 The extension Lemma

In this section, we crucially use that we are working with Witt vectors. We
keep the assumptions of §17 (p > 2, x # x*) and prove that R(o) contains
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many non-split extensions. The existence of these non-split extensions will
imply the irreducibility of some G-representations (§19).

We start with three easy lemmas.

Lemma 18.1. Let 7, 7’ be two distinct weights, Q. (resp. S;) a representa-
tion of I' on a finite dimensional Fp—vector space with socle T (resp. cosocle
7), and R a I'-extension 0 — Q. — R — S, — 0. Assume that, if w' (resp.
w) is an irreducible subquotient of Q. (resp. S;) with (w',w) # (7/,7), we
have Exty(w,w') = 0. Then R is obtained by push-forward along 7" — Q.
and pull-back along S, — 7 from a I'-extension 0 — 7" — ¢ — 7 — 0.

Proof. For any irreducible constituent w’ of @, distinct from the socle 7/, we
have Ext(S,,w') = 0. By the usual long exact sequence for Hom and Ext,
we derive a surjection Ext(S,,7) — Ext;(S;,@Q,). For any irreducible
constituent w of S, distinct from the cosocle 7, we have Exty(w,7') = 0.
We derive again a surjection Exti(7,7') — Ext{(S;, 7). This implies the
statement. [l

Lemma 18.2. Let 7/, 7 be two weights and € a I'-extension 0 — 7" — € —
7 — 0. Let I' € € be a non-zero H-eigenvector with eigencharacter x where x
is the action of I on 7'*. Assume that x doesn’t occur as an H-eigencharacter
on 7" and that (I' - F) contains 7'. Then € is non-split.

Proof. Note that 7 and 7/ are necessarily distinct because of the assumption
on . If € was split, as x doesn’t occur in 7" we would have that F' necessarily
belongs to 7 via a splitting 7 < e. This would imply (I" - F) = 7 which
contradicts 7 C (I" - F). O

Lemma 18.3. Let ¢ be an integer between 0 and p — 2. Then the following

equality holds in T, :
i c (c—&—i)—n) — 1
n P c+1

n=0

Proof. Exercise. O]

The following lemma is the main result of this section and its proof is a
long computation.

Lemma 18.4. Let 7' := (o, , 1} )®@ny and 7 := (to, -+ ,t;-1)®n, be two
irreducible subquotients of R(o). If f > 1, assume there isi € {0,---, f—1}
such that t; = p—2 —t), ti g = t.,, £ 1 and n, = ppdet?’ GHD-1/2050
(withi+1=04ifi=f—1). If f =1, assumety =p—2—1ty,+1 and

102



N, = andet%H_l/z(lﬂ)p. Then either the unique non-split I'-extension 0 —
7" — € — 7 — 0 or the unique non-split I'-extension 0 — 7 — € — 7 — 0
occurs as a subquotient of R(o).

Proof. We divide the proof into 6 parts (i) to (vi). _

(i) If 7/ and 7 occur as subquotients of the same Ind}; x*a>ics?'| then the
result follows from the structure of such I'-representations (see Theorem 2.4).
So assume that 7’ is in Ind; x*a2ic/?" and 7 in Ind}; x*aXies?" with J’ and
J distinct. Switching 7/ and 7 if necessary, the same proof as for (ii) of
Lemma 17.12 implies that we can assume J" C J. We first assume f > 1.
Using notations as in Lemmas 17.6 and 17.8 and twisting everything by ¢,
the same proof as the second half of the proof of Lemma 17.8 shows we can
assume J = J' 11 {j}, 7 € Ind} ¢*, 7 € Ind}; *a”’ and:

= (Ao(s0), -+, Apo1(syo1)) ® det W orsr)

T — (90<SO>7 “ e 79,7(8] — 2)’ o« o 79f71(8f71)) ® dete(e)(so»"'7sj727'"7sf*1)detpj
where (sg,- -+ ,s;_1) is the socle of Ind}; ¢* with s; > 1 (we have ¢ # (*, see
the proof of Lemma 17.6), where 0, A € P(zq,--- ,xp_1) with 0;(z;) = \i(z;)
ifi¢ {j—1,7}, 0;(v;—2) € {o; —2,p—a;}, O51(vj-1) = p—2—Nja(w5-1)
and one of the following two possibilities occurs:

case —1 @ A(z;) = z;,—1 0j(x; —2) = z;—2
case +1 : N(z;) = p—1—z; 6;(z;—2) = p—uj.
(i) As in §2, define:

JA) = {ief{0,---,f—1}  N(z) e{p—2—a;,p—1—a;}}

JO) = {1€{0,--, f=1}0i(x;)) e{p—2—m,p—1—axi}}
and note that j —1 € J(\), J(8) = J(A\)\ {j — 1} and j € J(0) (or J(N)) if
and only if 0;(x; — 2) = p — ;. With the notations of Lemma 17.1, let us
work inside the representation:

0 — Ind} ¢® — Gr’Y — Ind}} Ca? =0

which is isomorphic by (ii) of Lemma 17.1 to Ind¥ (va ® pr), the action
of I being given as in (32) with (*a?” instead of Xsozpjjzie.i P". Let us denote
by ¢, (resp. ¢,,) the unique function in Indy (F,v @ F,w) with support in I

sending 1 to v (resp. w). Let x, be the character giving the action of H on
7. We define F € Ind}® (F,v @ F,w) as follows:

. p—1—0.:(s; A ]_ j
case —1:F =y AR @710 ([1] 0) b+ £(7) (~1)7 b,

AeF,
case +1:F = Y @0 eson g 71 ie0) ([/1\] (1)> Pu
AeF,
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where e(7) := 1if ¢*a”’ = ((*a?’)* (which implies s; = 2 and 7 1-dimensional)
and e(7) := 0 otherwise. There is a conflict of notations between \ €
P(zo,--- ,xp—1) and A € F, but there is no possible confusion between the
two. The element I is an H-eigenvector of eigenvalue x, and its image in
Indg ¢*a” maps to a basis of 7' in any quotient of Indg C*a” where T is a
subrepresentation. If s; > 2, this follows directly from Lemma 2.7 or Lemma
2.6 applied to 7 and Ind% ¢*a?’. If s; = 1 (which implies 6;(z; — 2) = p — x;
and we are in the case +1), this is still true but requires a small computation
together with Lemma 17.5 (the set J(0) is then strictly larger than the set cor-
responding to 7 in (ii) of Lemma 2.7, for instance it contains j, but the extra
indices i of J(#) are harmless since they are all such that 6;(s;) = p—1ifi # j
ori=jand#;(s;—2) =p—1and thus p—1—6;(s;) = p—1—6,(s;—2) = 0).
We are going to prove that (K - F') contains 7’ (as a subquotient).

(iii) Consider first the case —1, which implies s; > 2 and j ¢ J(0). First, F
is fixed by K, in any quotient of Ind}* (F,v @ F,w) coming by push-forward
from a quotient of Ind} (F,v) = Ind}; ¢* containing 7’ as subrepresentation.
Indeed, any matrix of K acts on F' by adding to F' a linear combination of
the following vectors:

; (p—1-0;(s; [)‘] 1
Z)\GFQ )\Ezel(e)l) (p (s3)) L 0 ¢v
4 ; H(p—1—0;(s: P‘] 1
Z)\E]Fq AP ieao) PP (s4)) | 0) by
[A] 1

Z)\GFq )\2pj+zieJ(9) pt(p—1—06,(s;)) ( 1 0) (bv + 5(7—)¢v-

Using Lemma 2.7 together with Theorem 2.4, one checks that these vectors
are zero in any quotient of Indf( ¢® containing 7’ as subobject (use s; > 2,
J(0) € J(N), j ¢ J(N) and 0;(s;) = A\i(s;) for ¢ € J(0)). A computation
yields now for § € IF:

(é [i]) F =Y (- 6)Sesoro-1-060) ([i] (1)) (leX] (1)) "

A€F,
+e(7)(=1)" du

where:

[y

p—

p
Ry
s=1 p

Note that X comes from the addition law [\ + [=d] = [\ — 8] — p[X] (p?)
in W(F,). Using (32), we obtain for ((1) [‘f])F, up to multiplication by a

-1

)\pfl(pfS)(_(g)p s
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non-zero scalar:

2 iy j j—1
Z(/\ — §)Zieso) P'(p1=0i(si) ( %)\pjl(p—s)(_(;)pf s) ([i\] é) dot

PSS s=1

Z()\ _ 5)2¢eJ(e)pi(p71*9i(sz')) (%‘] é) b + 5(7)(—1)pjgz5w.

A€EF,

Rewriting this figl d'A; and varying 4 in F,, we get that all the elements A,
are in (K - F), in particular the element A, which is, up to multiplication
by a non-zero scalar and since J(\) = J(0) I {j — 1}:

Z A ieso\gi-13 P (P=1=Ai(s0) \p' T (p—1) <[i\] é) b, € Ind}; C°.
AeF,

By Lemma 2.7, this element generates 7/ inside Ind} ¢*.

(iv) Consider now the case +1. Here, one can check using Lemma 2.7 and
calculations analogous to those of the case —1 that F' is now [j-invariant
(and not just Kj-invariant) in any quotient of Ind¥ (F,v @ F,w) coming by
push-forward from a quotient of Ind}* (F,v) containing 7’ as subobject. We
will thus need the action of ([‘lﬂ (1)) € K. Using the equality (for A # 0):

(D0 Y-(E 6 56

and the fact that F'is [;-invariant and that ¢,, is an H-eigenvector, we get
for § € Fy:

. ) —1
(Vf] é)Fzs(T)%iZ Ab<f>+pﬂ<2—8j>—zi#m([A A é) (p; ?)%

AeFy

where we didn’t bother to check the sign, where:

ST
Yy = — s/ \=P (p=s)gp s
25
b(r) = Pp—1-06;(s;—2)+ Y plp—1-6is))
ieJ(O\{s}

and where £(7) := 1 if 7 is the socle of Ind ¢*a”’ and 0 otherwise (compare
with (4) and (5)). Note that, in the case +1, we have (*a? # (C*a?')?,
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pl
et AP Ho=s) gp7 s (A+0] 1
LY ( )( oLy,

s=1
+ Z Ae(r) <[/\ %1— d (1)) Guw + ()P

AEFg
where: . . A
T)=—-p + szsi - Z p'(p—1—"0i(s)).
i#j ieJ(O\{s}
Using 6 € P(xg, - ,zs-1) and 0;(z;) = p—2—=x;, a small computation gives

¢(7) = d(7) modulo p/ — 1 where:

d(r) == Z Z p'0;(s:),

i€J(0) i¢J (0

hence one finally gets (changing A into A — 4):

([(15] (1)) Pt (3-8 (;%APJ'l(P‘S)(—a)p“S) @] (1)) b,
£ 3 (A= 0yl ([i] (1)) b+ ()b (36)

A€F,

Consider the expression:
1 = . p 1 j—1
(A — 51)] 0j—1(sj- 1) Z )\Iﬂ (p—s) 5)12]* 8)’ (37)
s=1

the coefficient of 67’ ¢i-1(5i-0+1) in (37) is (up to sign):

0. (5.7 ) p
] 12] | (9;'—1(3]‘—1)> (Qj—l(s]'—1)+1—") )\pj‘l(pfl):;)\pj_l(pfl)

- n p 0;-1(sj-1) +1

where the equality comes from Lemma 18.3 (note that one always has 0 <
60,-1(sj—1) < p—2). In particular, it is never zero. Now writing:

d(t) = Z pip—1)+ Z p'0;(si) + P’ 710;-1(s-1),

i€J(0) i£7(0)
1#j—
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we deduce that the coefficient of §7’ ' #i-1(si-0)+1) jp (36) is, up to multipli-
cation by a non-zero scalar, the element:

Z )\Zie](ewi(lo—l)*‘z £ 70) P0;(si)+p' 1 (p—1) ([)\] 1) by
1 0
AeF,

Varying ¢ in F, as for the case —1, we get that this element belongs to (K- F).
But since J(A) = J(0) 11 {j — 1}, this element is precisely:

Z AZies P (=D + g sn) PP Ai(s0) ([i‘] é) bu

A€F,

which generates 7/ inside IndFB ¢° by Lemma 2.7. In all cases, we have that
7' occurs as a subquotient of (K - F). ’

(v) Let now S, be the unique subrepresentation of Ind}; ¢*a?’ with cosocle
7, by the definition of F', we have a surjection of I'-representations (K -
F) — S, (see (ii)). Denote by Q’, C Ind};¢* its kernel (which contains 7'
as a subquotient), (), the unique quotient of )/, with socle 7" and R the
corresponding quotient of (K - F') obtained by push-forward. We thus have
an exact sequence of I'-representations 0 — Q@+ — R — S, — 0 which is
a subquotient of Ind}® (F,v @ F,w). Let (w',w) be irreducible constituents
of respectively @),» and S;. By Lemma 17.8, w is special as 7 is. Assume
Exty (w,w’) # 0, then by Lemma 17.8, w' is also special and by (ii) of Lemma
17.12, we have:

K(7') C K(w') = K(w) C K(7).

But the same proof as for the last part of (ii) of Lemma 17.12 shows K (1) =
K(7), hence K(7') = K(w') and K(w) = K(7). By (ii) of Lemma 17.12
again, this implies (w’,w) = (7/,7). We can thus apply Lemma 18.1 saying
that R contains as a subquotient a I-extension of 7 by 7/. One can easily
check that y, doesn’t occur as an H-eigenvalue in 7/. We can thus apply
Lemma 18.2 saying that this extension is non-split. This finishes the proof
for f > 1.

(vi) Assume finally f = 1. Going back to the beginning of (i), from Example
17.10 we can assume rq > 2, 7’ = Sym”_l_mﬁi@detmn and 7 = Symm_2ﬁi®
detn. A completely analogous computation as the one in (iii) with F' :=
D oAeF, (W) ¢w —e(T)¢w (e(7) = 1if 1o = 2 and &(7) = 0 otherwise) shows
that (K - F') contains 7/, and hence by (v) that the corresponding extension
is non-split. O

107



19 Generic Diamond diagrams and represen-
tations of GL,

We prove the main results of the paper (Theorems 1.4 and 1.5). Since there
are no generic p if p = 2 (see the end of §11), we can assume p > 2 all along.

We start with several lemmas. Recall §(o) was defined in §15 and R(o)
in Definition 17.9.

Let p : Gal(Q,/Q,r) — GL(F,) be a continuous generic tame represen-
tation. Let ¢ € D(p) and denote by x the action of I on ¢'. By Lemma
15.2 applied to 7 = o, the weight §(o) is a component of Indg x°. Writing
o:= (s, - ,8¢-1) ® 0, it is thus of the form:

6(0) = (§o(s0), + » §r-1(87-1)) ® dete©) (0 57-1)g

for a unique £ € P(xo, - ,xp-1). Set S(&) == {i € {0,---, f —1},&(z;) €
{z; — 1I,p — 1 — x;}} as in §4. Note that S(§) determines uniquely ¢ in
P(zo,- -+ ,Tp1)-

Lemma 19.1. Keep the previous notations and let A € RD(xq, -+ ,x5_1) or
ID(zg, - ,x5-1) correspond to o via Lemma 11.2 or 11.4.

(i) Assume p is reducible, we have:
S ={ie{0,---, f=1} N(z;)) e{p—2—x;,x; + 1} }.
(11) Assume p is irreducible. If \o(xo) € {p — 2 — xo, 29 — 1}, we have:
S ={ie{l,,f=1} Ni(wm) €{p—2— i,z + 1}}
and if Mo(xo) € {p — 1 — xo,x0}, we have:

SE) ={ie{l, - f—1}Nz:) € {p—2— s, + 1}} T {0},

Proof. With the usual notations for p as in Definition 11.7, recall we have
0 = (No(ro), -+, A1 (ry—1)) @det“ 00710 (i) Let ¢ € Plwo, -+, w51)
be the unique element such that S(¢) :={i € {0,---, f—1}, \i(z;) € {p—2—
x;, x;+1}} with S(C) defined as in §4. A straightforward computation shows
that applying ¢ to A, that is computing ((;(A\;(x;));, pushes all sequences
p—2—-p—3—-p—3—-,-+1o0n \one step to the left. By definition of
d(o), we have thus:

() = (Go(Ao(r0)), -+, Cro1(Ap1(r—1))) ® det @il det My

which implies ( = ¢ and hence yields (i). (ii) is analogous. O
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Keep the previous notations and define ye € Z(yo, -+, ys—1) as follows:
(1) pei(yi) =p—1—y; it &(x;) € {o; — 1,25}
() peilys) =p—3—wiif &) €e{p—2—wip—1—m}.
Lemma 19.2. We keep the previous notations.

(i) The irreducible subquotients of Do s)(p) are exactly the (all distinct)
weights:

(110(€0(50)), - -+ s pp—1(Ep-1(s5-1))) ® deteHed)(s0,ss5-1) (38)

for € Z(yo, -+ ,yr—1) such that p and e are compatible (see Defini-
tion 4.10) forgetting the weights such that 11;(&;(s;)) < 0 or u;(&(s;)) >
p — 1 for some i.

(ii) The graded pieces of the socle filtration on Dq s (p) are:

Do 50y (p)i = T
(p)=i

for 0 <i < f—1 and weights T as in (38) with (1) as in §4.
Proof. Let 0,(\) (resp. 0;(\)) be the f-tuple of RD(zo, -+ ,xp_1) (resp.

ID(xo, - ,xp-1)) associated to §(o). From Theorem 14.8 applied to 6(o),
it is enough to prove the following:

(i) &(zy) € {z; — 1,2} if and only if 6, (N);(x;) € {p —3 — x;, x;} (resp. for
i >0 and 0;(N)o(x0) € {p — 2 — xg,x0 — 1})

(i) &i(xi) € {p—2—z;, p—1—a;} if and only if 6,(N)i(z;) € {p—2—a;, x;+1}
(resp. for i > 0 and 0;(N)o(xo) € {p — 1 — xg, x0}).

But this very easily follows from the equality & (\;(x;)) = 6,.(\)i(z;) (resp.
&(Ni(z;)) = 0i(N)i(z;)), from Lemma 19.1 and from §,(X\) e RD(xg, - -+ , 1)
(resp. 0;(X) € ID(xq,- - ,xf_1)). O

Lemma 19.3. We keep the previous notations. Let 7 be an irreducible sub-
quotient of Dy 5)(p). Then T is a subquotient of R(o).

Proof. We write ol = (s, - ,8%_1) ® 0", Equivalently by Lemma 17.11,
it is enough to prove there is A € Z(yo,--- ,ys—1) such that 7 = (\;(s})) ®
det*™EDg’ By (i) of Theorem 14.8 or of Lemma 19.2, we have:

T o= ((&(s0), ,vp-1(€p1(s7-1))) @ det?o o sr-1g
ol = (W (&(s0), - V1 (Ep-1(sp-1))) @ det? oD omsr)g
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with v,v" € Z(yo, -+ ,ys—1) and compatible in the sense of Definition 4.10.
Let "' € Z(yo, -+ ,ys—1) be the unique f-tuple such that /(v !(y;)) =
y;. From the compatibility of v and v/, one checks that the unique f-tuple
(Ni(y)): such that \;(yi) := vi(v)  (y;)) is in Z(yo,- -+ ,ys_1). This \ gives
the result. Note that one has v, ' (y;) =p — 1 — &(w:). ]

If 7 is an irreducible subquotient of Dy s(o)(p), by Lemma 19.3 it is in
R(c) and one can attach to it a well-defined f-tuple p as in Lemma 17.11.

Lemma 19.4. We keep the previous notations. Let T be an irreducible sub-
quotient of Do 5)(p), p its corresponding f-tuple as in Lemma 17.11, i(T)
the unique integer such that 7 € Dg s5(0)(p) (ry ond J(r) = |K(1)\ J(1)| with

(T

J(7) and K(7) as in Lemma 17.12. Then we have:
i(r) = j(r) + 20 ()| +i(™) = (f +1). (39)
Proof. From (i) of Lemma 19.2, 7 is of the form:

7= (10(&(s0)), -+, vp—1(Ep—1(sp-1))) ® det oD sosr-1)g

for a unique v € Z(yo, - ,ys—1). Define S(v) and ¢(v) as in §4, we have
i(t) = |S(v)| by (ii) of Lemma 19.2. From Theorem 2.4 and the fact that
the I-representation I(§(c), o) (inside Dy s5(5)(p)) is the unique quotient of
Ind% x* of socle 6(c), we have f + 1 —i(ol) = |S(¢)|. Recall from (i) of
Lemma 19.2 that v and £ satisfy the conditions:

§i(vi) =2—1 = viy) € {yi—1,p—1-vi,p—2—Yyi, yi}
§i(z)) =p=—1-2; = vi(y:)) € {yit L, p—3-yi,p—2—yi, yi}
vi(yi) € {p—1-yi,yi—1} = &) € {oi—1, 24}
vi(yi) E{p—3—vi,yi+1} = &) € {p—2—z;,p—1—u;}.
Moreover, if X\ € Z(yo,--- ,ys—1) is such that u;(y;) = AMp — 1 — ;) (see
Lemma 17.11), then A is as in the proof of Lemma 19.3 and from this proof

we get 4 = v o &. The above conditions on v and £ then immediately imply
by a short computation:

J(r)=8()NS(v) and K(1)=S8(§)US(v)
where we recall J(7) := {i, pi(z;) € {x;—2,p—ax;}} and K(7) := {3, pi(x;) €
{z; = 1,2, —2,p—x;,p— 1 — x;}}. We thus have:
i(r) = [(SEUSH)\S(E)NSv)|
= [SEUSH)—IsE) NSH)]
= [SE@I+[SW)| =2[8() nSW)|
= f+1—i(oM)+i(r) —2/J(7)].

1%
v,

%
%
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]

Lemma 19.5. Let p : Gal(Q,/Q,;) — GLy(F,) be a continuous tamely
ramified generic Galois representation and o € D(p). There exists a unique
quotient Q(p, a) of R(c) such that:

(i) sock Q(p, o) C B, ep(,) 0
(i) Q(p, o) contains the T-representation I(p, o).

Moreover, we have sock Q(p, o) = §(o).

Proof. Recall that I(p,ol) = I(§(c),0!) (Lemma 15.2). We first prove
there is a unique quotient of Indg X*® containing I(p, o[s]) and with K-socle
contained in D(p): namely I(p, o) itself. Indeed, consider such a quotient.
If its K-socle has just one weight, then it is obviously I(p, o). If not, let
w be another weight of D(p) distinct from d(¢) in this socle. From (ii) of
Lemma 12.8 applied to 7 = ¢l*! and ¢/ = w, we get that §(c) must be a
constituent of I(w, o) inside Indj x*. Hence w and §(c) cannot be in the
same K-socle and the unique relevant quotient is thus I(p, 0[5]). Let Q be a
quotient of R(o) satisfying (i) and (ii) above. One easily checks using Lemma
17.11 that none of the irreducible Jordan-Holder factors of R(c)/Ind} x*
are in D(p). From (i), this implies that @ induces a non-zero quotient of
Ind% x*. From (ii), we get that this non-zero quotient must contain (o)
in its socle as 0(0) doesn’t appear elsewhere in R(o) (use multiplicity 1 in
Lemma 17.11). Thus, this induced quotient must be I(p, o). Now let K
be the kernel of Ind; x* — I(p, o), we have a surjection R(c)/K — Q. If
w' € sock(R(0)/K), w' # (o), then w’ ¢ D(p) as either v’ is a subquotient
of R(c)/Ind%; x* or a subquotient of I(p, o). Hence w' maps to 0 in Q. One
can thus replace K by K + > w’ for all such w’ and start again. We see in
the end that @ is uniquely determined and that its K-socle is just (o). O

Example 19.6. Assume f = 1 and write o := Syms"Fi ® 6 with sy > 1.
We have either d(c) = o or 6(0) = ol*l. If §(¢) = o, then Q(p, o) = R(0)
(see Example 19.6). If (c) = o*l and sy > 1, then Q(p, o¥!) is the unique
quotient of R(c) which is a I'-extension (non-split by Lemma 18.4):

0— ol — Q(p, o) — Sym*~F, @ dett — 0.

If §(0) = ¥l and sy = 1, then Q(p, o¥) ~ ol

The following lemma is essential:
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Lemma 19.7. Let p, 0 and Q(p, o) be as in Lemma 19.5. The quotient
Q(p, o) contains the T'-representation Dy sy (p)-

Proof. If f = 1, the statement follows directly from Example 19.6 above
and §16. We assume f > 1, write 0 = (s, -+ ,s7-1) ® 6 and let 7 :=
(10(50), -+ 5 py_1(s7-1)) @ det®W05-19 he an irreducible subquotient of
Dy s0)(p) with p as in Lemma 19.4. It is enough to prove the following
two facts: (i) any such 7 is also a subquotient of Q(p,c) and (ii) the
unique K-subrepresentation Q(p, o*, 7) of Q(p, o) with cosocle 7 is a I'-
representation (recall Q(p, o*l) is multiplicity free as it sits in R(o) and thus
Q(p, o, 7) is well defined). Indeed, from (ii), the last assertion of Lemma
19.5 and Corollary 3.12, we get Q(p, o), 7) ~ I(6(c), 7). From (i), we get
that Q(p, o)) contains I(§(c),7) for all constituents 7 of Dy g0 (p), and
hence contains Dy s5(,)(p) by Proposition 13.4. Let us prove (i). Let 0 —
7" — € — 7 — 0 be a non-split (I'-)extension that occurs as a subquotient
of Do s(0)(p) (or equivalently as a quotient of I(d(c),7)). By (ii) of Lemma
19.2 and the fact that the socle and cosocle filtrations on 1(§(o), 7) are the
same (which follows from Corollary 4.9), we exactly have i(7) = i(7') + 1
(see Lemma 19.4 for notations). By Lemma 19.3, (i) of Corollary 5.6 and
Lemma 18.4, either € occurs in R(o) or the unique non-split 0 — 7 — % —
7/ — 0 occurs. Moreover, by the beginning of the proof of Lemma 18.4,
we have either J(7) = J(7') or J(7) = J(7') U {j} or J(7') = J(7) I {j}.
If J(r) = J(7'), then (39) tells us j(7) = j(7') + 1 which implies only
7' can be a subobject by (ii) of Lemma 17.12 and thus € occurs in R(0).
If J(r) = J(7') I {j}, the proof of Lemma 18.4 tells us that ¢ occurs in
R(o). If J(7') = J(7) I {j}, we must have j(7) = j(7') + 3 by (39) which
is impossible by (ii) of Lemma 17.12. Thus € always occurs in R(o), or
equivalently in U(7) (see Lemma 17.8). Starting again with 7’ instead of
7, we see that U(7) contains all the weights of I(d(o),7) and in particular
d(0). Now if @ is a quotient of R(¢) such that 7 doesn’t occur in @, then
U(T) necessarily vanishes via the surjection R(c) — Q. In particular 6(o)
doesn’t occur in Q. As §(c) is the socle of Q(p, ), this can’t happen for
Q = Q(p, O'[S]), which must thus contain 7 as a subquotient. Let us now prove
(ii). We claim that Q(p, o, 7) contains no pair of distinct weights (w,w’)
corresponding to f-tuples (v,7') as in Lemma 17.11 with vj(z;) = v;(z;) 42
for one j and v}(z;) = v;(z;) for i # j. Assume there exists such a pair (w, w’).
Swapping w and w’ if necessary, we can assume v;(z;) € {x; — 2,p — z,},
vi(w;) € {zj,p — 2 — x;} and thus J(w) = J(w’) I {j}. From (ii) of Lemma
17.12, we get also j € J(7) hence p;(x;) € {x; —2,p — z;}. We write
8(0) = (€o(s0), - &-1(s7-1)) @ det @20 with & € P(ao, -+, 7-1)
as previously and note that £ is also the f-tuple associated by Lemma 17.11
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to d(o) viewed as a constituent of R(o). We have seen in the proof of Lemma
19.4 that we have the equality J(7) = S(§) N'S(p) which implies j € S(§)
ie. &(z;) € {w; —1,p—1—z;}. Since sockx Q(p, ¥, 7) = §(0) by Lemma
19.5, there is a chain of non-split K-extensions leading from (o) to w’ inside
Q(p, o', 7) which implies K (5(c)) € K(w') by (ii) of Lemma 17.12. But this
is impossible since j € K(0(0)) but j ¢ K(w') as vi(x;) € {xj,p — 2 — x;}.
As f > 1, Corollary 5.7 applied to W = Q(p, 0!, 7) tells us that Q(p, o, 7)
is a ['-representation and we are done. O

Theorem 19.8. Let p : Gal(Q,/Q,r) — GL2(F,) be a continuous generic
representation as in §11 such that p acts trivially on its determinant. Let
(Do(p), D1(p),7) be one of the basic 0-diagrams associated to p in §13 with
Dq(p) as in Theorem 13.8.

(i) There exists a smooth admissible representation © of G such that:
(a) sockx ™ = @Uep(p) o
(b) (751, 7wt can) < (Do(p), D1(p),r)
(c) m is generated by Do(p).

(i1) If (Do(p), D1(p),r) and (Do(p), D1(p),r’") are two non-isomorphic ba-
sic 0-diagrams associated to p, and if w, @' satisfy (a), (b), (c) of (i)
respectively for (Do(p), D1(p),r) and (Do(p), D1(p),r"), then © and 7’
are non-isomorphic.

Proof. Let D := (Dqy(p), D1(p),r). By Theorem 9.8, we have a smooth ad-
missible G-representation {2 with K-socle D(p) and an injection D — K(£2).
We define m C Q) to be the subrepresentation generated by Dy(p). By con-
struction, it satisfies (a), (b) and (c) of (i). Assume 7 — 7’ where 7 and 7’
are as in (ii). If Do(p) C 7 is not sent to Dy(p) C 7', there is o € D(p) such
that Dy ,(p) C 7 is not sent to Dy, (p) C n’. Consider the obvious induced
map Do ,(p) @, Do,(p) — 7. The representation Dy ,(p) @, Do, (p) con-
tains Dy, (p)/o and the induced map Dy ,(p)/o — 7’ can’t be zero because
Dy, (p) C m is not sent to Dy, (p) C 7" by assumption. This contradicts
socg ™ = D(p) as the K-socle of Dy, (p)/o can’t be in D(p) by construction
of Dy(p). Hence Dy(p) C 7 is sent to Dy(p) C 7', and likewise with Dy(p)’.
Since m ~ 7', this implies (Dy(p), D1(p),r) =~ (Do(p), D1(p),r") which is
impossible by assumption. Thus, we can’t have 7 ~ 7', O]

By an exactly similar proof, we get:

Theorem 19.9. Let p : Gal(Q,/Q,r) — GL2(F,) be a continuous generic
representation as in §11 such that p s split and p acts trivially on its de-
terminant. Let ¢ € {0,---, f} and (Doy(p), D14(p),re) be one of the basic
0-diagrams associated to the family (30).
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(i) There exists a smooth admissible representation 7, of G such that:

(CL) SOCk Ty = Gai(ef))@é) 2

(b) (ﬂ-ﬁ 77T£ ,Can) (DO,Z(p)7D1,€(p)7Tf)
(c) 7 is generated by Dy o(p).

(i) If (Do.(p), Dre(p),re) and (Doi(p), D1e(p),74) are non-isomorphic (as
basic 0-diagrams), and if my, 7, are two representations satisfying (a),
(b), (c) of (i) for (Do.(p), D1e(p),re) and (Do(p), D14(p),7}) respec-

tively, then m, and 7, are non-isomorphic.
We now state an irreducibility result which is based on the results of §18.

Theorem 19.10. (i) Let p be as in Theorem 19.8 and assume p is irre-
ducible. Then any m satisfying (a), (b), (¢) of (i) of Theorem 19.8 is
wrreducible and 1s a supersingular representation.

(ii) Let p be as in Theorem 19.8 and assume p is split. Then any 7, satis-
fying (a), (b), (c) of (i) of Theorem 19.9 is irreducible. Moreover, my
is a principal series if £ € {0, f} and is a supersingular representation
otherwise.

Proof. We start with (i). Let 7/ C 7 be a non-zero subrepresentation and
o € SOCKﬂ' We prove that Dgsy(p) € 7. We have a non-zero map
c-Ind§ o — 7' which induces a map R(c) — 7’ upon restriction to R(0).
Let v € ot C ¢ Indﬁo o and v* 1= Ilv € (ol¥))h C C—Indgo 0. Going back to
the definition of R(c) in §17 and using Lemma 17.4, note that (K - v®) =
Ind}, x* C R(o) C R(o) C C—IndgO o. Let w® be the image of v* in 7/, the
map R(o) — 7' induces Indy x* — (K - w®) C ©'. But (K - w*) actually
sits in Dy 5(0)(p) C m by Lemma 15.2, hence equals I(§(c), o) = I(p, ol*)
by construction of Dgs(y(p). Thus R(c) — 7' factors through a quotient
containing I(p, o) and with a K-socle contained in D(p) (as socg 7’ C
D(p)). By Lemma 19.5, this quotient must be Q(p, o), hence contains
Dy 5(0)(p) by Lemma 19.7. We thus get Dy 50)(p) C 7'. Starting again with
d(o) 1nstead of o, we obtain that 7’ contains Dy s, (p) etc. As §"(0) = o
for some n > 0, we get Dy, (p) C 7'. As this is true for all o € sock 7', we
finally deduce, using that all weights of D(p) are distinct:

@ DOO’ _ﬂﬂ @DOU

oesocy ' c€D(p)

the intersection being taken in 7. This implies that @yesocy xDoo(p)t C
Dy(p)" is preserved by the unique possible pairing { } on Dy(p)’*. By (i)
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of Theorem 15.4, we thus get socx 7 = D(p) = sock w, hence 7’ = 7 7
is irreducible. If f = 1, we know from §16 and §10 that 7 is a supersin-
gular representation. If f > 1, we have dimﬁp 7t > 2 as sock 7 already
contains 2/ weights, hence 7 is a supersingular representation. We prove
(ii). The irreducibility of 7, is proven by a completely analogous argument
using (ii) of Theorem 15.4. If ¢ € {0, f}, the reader can easily check, us-
ing that Doo(p) (resp. Do f(p)) has an irreducible socle and that Dy o(p)™
(resp. Dy f(p)*) is preserved by { } inside Dy(p)’*, that the surjective m ap
(:—IndgO oo — o (resp. C—IndgO oy — my) cannot factor through T(C—IndgO 00)
(resp. T(c-Ind$ oy)) (see (i) of Remark 14.9 and §6 for 7). It implies that
7o and 7y are (irreducible) principal series. If ¢ # 0 and ¢ # f, then one
has dimﬁp ng > 2 (if f = 2 this easily follows from §16 and if f > 2, socx 7
has strictly more than 2 components), hence 7, is a supersingular represen-
tation. [

For F' # Q,, there exist non-isomorphic 7 satisfying (i) of Theorem 19.8
for the same basic 0-diagram ([22]), thus the conditions in (i) are in gen-
eral not enough to isolate a single 7. By enlarging D;(p), Y. Hu shows
that for each 7 there exists a diagram that determines 7 ([21]), but the
“enlarged” D;(p) is not (yet) explicitely known. Also, when F' # Q,, it is
in general not true that any 7 (resp. ) as in (i) of Theorem 19.8 (resp.
as in (i) of Theorem 19.9) satisfies (7% 7/t can) = (Dy(p), D1(p),r) (resp.
(m,) 7wt can) 2 (Doy(p), Die(p), 7)), but we believe that some of these 7
(resp. ;) do. When p is reducible split, any representation @Lom with 7,
as in (i) of Theorem 19.9 satisfies the conditions in (i) of Theorem 19.8 but
any 7 as in (i) of Theorem 19.8 can’t in general be decomposed as @J_,m
(for all this see [22]), although we expect the “good” 7 in that case to be
of the form @{:OW. Likewise, when p is reducible non-split, we expect that,
among the 7 constructed in (i) of Theorem 19.8, there are some (the “good”
ones) which are indecomposable with G-socle my and such that their other
Jordan-Hélder factors are the 7y, 1 < ¢ < f, with 7, as in (i) of Theorem
19.9 for p*. All of this is true if F' = Q, (§20).

As a concluding remark, we hope that the local representations of G
appearing as subobject in the cohomology modulo p of towers of Shimura
varieties of p"-level are at least among those constructed in Theorem 19.8
(p being the restriction to some decomposition group at p of some global
irreducible Galois representation over Fp). For evidence in that direction,
see [9].
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20 The case I'=Q,

We prove Theorem 1.6 for ' = Q,.

Let p : Gal(Q,/Q,) — GL(F,) be a continuous generic representation
such that p acts trivially on its determinant.

Proposition 20.1. Assume p is irreducible and write its restriction to iner-

tia as:
(ngH 0 >
ro+1 ®77
0 wg( 0+1)

for some character n and some ro with 1 < rg < p—2. Seen as a smooth
character of Qy (via the local reciprocity map) by making p act trivially. Let
(Do(p), D1(p),r) be the unique basic 0-diagram associated to p in §13 (see
§16 for unicity).

(i) There is a unique smooth admissible representation © of G such that:
(a) sockx ™ = @Uep(p) o
(b) (71,71t can) < (Do(p), Di(p),7)
(c) m is generated by Do(p).

(ii) This representation 7 is irreducible, isomorphic to m(ro,0,n) (see Def-
inition 6.2) and such that:

(Do(p), Di(p),r) = (71, 7" can).

Proof. We have D(p) = {0,081} with 0 := (Symmﬁi) ® n o det (see §16).
We have already proven the existence and irreducibility of 7 as in (i) (see
§19). The unicity of m in (i) follows from © = Hy(D) = m(r¢,0,7n) (see
Theorem 10.1) where D := (¢ @ ol ot ol can) is the unique irreducible
basic subdiagram of (Dg(p), Di(p),r). For the rest of (ii), it follows from
Lemmas 3.4 and 3.5 that Dy(p) is the maximal K-invariant subspace of
inj(o @ o) such that the K-socle is isomorphic to o @ ol*l and the space of
I -invariants is 2-dimensional. As 7' has dimension 2 by the second part of
Theorem 10.1, this implies the injection (Dy(p), D1(p),r) < (751, 7, can)
is an isomorphism. O

Proposition 20.2. Assume p is reducible split and write its restriction to

mertia as:
w0
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for some character n and some ro with 1 < ry <p—4 (recallw = wy). Seen
as a smooth character of Q) (via the local reciprocity map) by making p act
trivially. Let (Do(p), D1(p),r) be one of the basic 0-diagrams associated to p
n §13.

(i) There is a unique smooth admissible representation m of G such that:
(a) sock T =B cp(y O

(b) (w1, 7", can) — (Do(p), Dr(p),7)
(c) w is generated by Dy(p).

(i1) This representation m is the direct sum of two irreducible principal se-
ries isomorphic to w(ro, Ao,n) and w(p — 3 — 1o, A1,7n) (see Definition
6.2) for some scalars \o, \1 € F; depending on (Do(p), D1(p),r) and
15 such that:

(Do(P), Dl(p)v T) = (ﬂ-Kla ﬂjla Can)'

Proof. We have D(p) = {00, 01} with o := (Symmﬁi) ®nodet and o1 :=
(Symp_3_T°F§) ® n o det™t! (see §16). Let xo (resp. x1) be the character

giving the action of I on o (resp. ol). We have (see (30) and §19 for the
notations):

(Do(p), D1(p), ) = (Doo(p), D1o(p),r0) & (Do1(p), D11(p),m1)

where (Do o(p), D1o(p),70) (resp. (Do1(p), D11(p,),71)) is as in Example (iv)
of §10 with x = xo (resp. x = x1, see §16). For 7 as in (i), let my (resp. 1)
be the G-subrepresentation generated by o (resp. o1), then mg ~ 7(r¢, Ao, 1)
(resp. m ~ mw(p — 3 — 19, A1, 7)) for some scalars \; uniquely determined by
(Do(p), D1(p),r) (this follows for instance from §10 or from Proposition 6.8).
As m is generated by Dq(p), we thus have m = mo@ ;. The rest of (ii) follows
for instance from Proposition 6.8. O]

To state the reducible non-split case, we need some further work.

Let 7o be an integer, 1 < rg < p— 3, and X € F;. We first define a
basic 0-diagram D(rg, A) := (Dg(rg, A), D1(70, A), can). We define Dy(rg, A)
as the following Ky-representation where K and p act trivially (see §16 for
notations):

Symp’krOFﬁ ® det™
Symmﬁ; — &)
Symp_3_T°F; ® det™ ™!
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Note that Proposition 3.6 and Corollary 3.11 imply that Dg(rg, ) is isomor-
phic to Va,_a_,, ® det™. It follows from Proposition 4.13 that Dg(rg, \)™* =
X ® x° where y : H — F; is the character given by x((} 9)) := p™. Since
1 <ry < p—3, wehave y # x* and we let v, be a basis vector in Dy(rg, )™ for
the eigencharacter x. Set vy« == 37 ¢ (g W yn e, = D e, ( b1y, The
set {vy, vy} is a basis of Dy(rg, \)™*. We define a representation D;(rg, A) of
£ on Dy(rg, \)* by setting ITv, := A" 'v,s and [uys == Ao,

Theorem 20.3. Let ro, A and D(rg,\) be as above.

(i) Let m be the unique non-split extension (see Corollary 8.3):
0——=m(ro,\) —=m——=m(p—3 — 1o, A" H,wot) —0,

then there exists an isomorphism of diagrams (71, 7/t can) 2 D(rg, \).

(ii) Let T be a smooth representation of G with a central character such that
sock (1) = SymTOF; and such that there exists an injection of diagrams
D(ro,\) — (751, 711 can), then the subspace (G - Do(ro,\)) of T is
tsomorphic to .

Proof. 1t follows from Theorem 9.8 that there exists an injection of diagrams
D(rg, ) — KC(€2) where € is a smooth representation of G such that Q| is
an injective envelope of SymTOFi in Repy . We first claim that the subspace
7' = (G - Dy(rg,A)) of Q is isomorphic to the extension 7 of (i). Corollary
6.4 implies that the subspace vax @E;vxs of Q" is stable under the action of
H and isomorphic to M (rg, A) as an H-module. Proposition 6.8 implies that
(G-vy) = (G-vys) = m(r, A). Now 7(rg, \) = Ind$ x and hence 7 (7o, \)K? =
Ind¥ x. Since Q| is an injective envelope of SymmF}QJ in Repg ,, Q1 s
an injective envelope of Sym’"OF; in Repp. Lemmas 3.4, 3.5, 3.8 imply that
the image of Dy(ro,\) via the composition Dy(rg, A) — Q51 /7(rg, \)51 —
Q/7m(ro, A) is isomorphic to (Symp’?”mﬁi) ® det™*!. Let v be a basis for
the I;-invariants of this image. Since F' = Q, we have Q' = 7(r, \)!* and
since Q|x is an injective object we obtain (Q/7(rg, A))t = RZ(7(ro, \)).
Now H acts on v by a character ya~!. The assumption on r, implies that
xa—t & {x,x*} thus it follows from Theorem 7.16 that the submodule (v-H)
of (Q/7(rg, A))™* is isomorphic to M(p — 3 — ro, A™1,w™ ™). Proposition 6.8
implies that (G - v) is isomorphic to m(p — 3 — 19, A™',w™*!). Hence there
exists an exact sequence:

0——=7(ro,\) —=7' ——=m(p — 3 —ro, \"H,wotl) ——=0. (40)
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This sequence cannot be split as 7’ is a subspace of 2 and hence socg 7’
Symij Corollary 8.3 implies then that 7’ = 7. We thus obtain an in-
jection D(rg,\) — (w¥1 7t can). Suppose that this injection is not an
isomorphism, then Lemma 3.4 implies 751 = Q%1 and hence Symmﬁf7 occurs
in 7%t with multiplicity 2. This is impossible, since taking K;-invariants of

(40) yields an exact sequence (0 — Ind¥ x ki Ind¥ x*a . Hence

we get (i). Since by Corollary 9.11 any 7 as in (ii) can be embedded into €2
as above, we also get (ii). O

Proposition 20.4. Assume p is reducible non-split and write its restriction

to inertia as:
wroth
(55 )

for some character n and some rq with 1 < ro < p—4. See n as a smooth
character of Q) (via the local reciprocity map) by making p act trivially. Let
(Do(p), D1(p),T) be one of the basic 0-diagrams associated to p in §13.

(i) There is a unique smooth admissible representation m of G such that:
(a) sockx ™ = @aep(p) o

(b) (WKI77TH7C&D> - (DO(p>7D1(p>7T)
(c) m is generated by Do(p).

(i1) This representation 7 is the unique non-split extension of w(p — 3 —

ro, AL w™ ) by w(ro, \,n) for some scalar \ € F; depending on
(Do(p), D1(p),r) and is such that:

(Do(p), Di(p),7) = (7TK1, alh, can).

Proof. This follows from Theorem 20.3 and the fact that (Do(p), D1(p), ) is
isomorphic to D(rg, A) up to twist for some \ € F; (see §16). O

Theorem 1.6 follows from all the previous propositions.
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