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Preface, second edition

It has now been five years since the publication of the first edition of Introduction to
High-Dimensional Statistics. High-dimensional statistics is a fast-evolving field and
much progress has been made on a large variety of topics, providing new insights and
methods. I felt it was time to share a selection of them, and also to add or complement
some important topics that were either absent from, or insufficiently covered in the
first edition.

This second edition of Introduction to High-Dimensional Statistics preserves the phi-
losophy of the first edition: to be a concise guide for students and researchers discov-
ering the area, and interested in the mathematics involved. The main concepts and
ideas are presented in simple settings, avoiding thereby unessential technicalities. As
I am convinced of the effectiveness of learning by doing, for each chapter, extensions
and more advanced results are exposed via (fully) detailed exercises. The interested
reader can then discover these topics by proving the results by himself. As in the
first edition, everyone is welcome to share his own solutions to the exercises on the
wiki-site
http://high-dimensional-statistics.wikidot.com

which has been updated.

Convex relaxation methods have been ubiquitous in the last twenty years. In the re-
cent years, there has been also a renewed interest in iterative algorithms, which are
computationally efficient competitors for solving large-scale problems. The theory
developed for analyzing iterative algorithms is now quite robust, and the mathemat-
ical statistics community has been able to handle a large variety of problems. It was
time to include a new Chapter 6 on this topic, in the simple setting of sparse lin-
ear regression. A distinctive feature of this theory, compared to classical statistical
theory, is that the analysis must handle together the statistical and the optimization
aspects, which is a recent trend in statistics and machine-learning theory. Iterative
methods also show up in several other chapters, in particular a theoretical analysis of
the Lloyd algorithm can be found in the last new chapter on clustering.

Unsupervised classification is an important topic in the area of big data gathering
data from inhomogeneous subpopulations. I could not spare writing a chapter on this
essential topic. So, I have added a new Chapter 12 on clustering, building on the
impressive recent progress on the theory of clustering (point clustering, or clustering
in graphs) both for convex and iterative algorithms. The theory for this last chapter
is somewhat more involved than for the other chapters of the book, so it is a good
transition towards some more advanced books.

xiii



xiv PREFACE, SECOND EDITION

Years after years, I felt that a simple exposition of minimax lower bounds was miss-
ing in the first version of the book. Minimax lower bounds can be found in a large
fraction of PhD theses, so I believe that it was useful to add a simple and transpar-
ent introduction to this topic in a new Chapter 3. The presentation is made as little
“magical” as possible, following a pedestrian and simple proof of the main results
issued from information theory. Some more principled extensions are then given as
(detailed) exercises.

The chapters from the first edition have also been revised, with the inclusion of many
additional materials on some important topics, including estimation with convex con-
straints, aggregation of a continuous set of estimators, simultaneously low-rank and
row sparse linear regression, the slope estimator or compress sensing. The Appen-
dices have also been enriched, mainly with the addition of the Davis-Kahan perturba-
tion bound and of two simple versions of the Hanson-Wright concentration inequal-
ity.

Despite my sustained efforts to remove typos, I am sure that some of them have es-
caped my vigilance. Samy Clementz and Etienne Peyrot have already spotted several
of them, I warmly thank them for their feedback. The reader is welcome to point out
any remaining typos to
high.dimensional.statistics@gmail.com

for errata that will be published on the book’s website,
http://sites.google.com/site/highdimensionalstatistics .

Enjoy your reading!

Christophe Giraud
Orsay, France



Preface

Over the last twenty years (or so), the dramatic development of data acquisition tech-
nologies has enabled devices able to take thousands (up to millions) of measurements
simultaneously. The data produced by such wide-scale devices are said to be high-
dimensional. They can be met in almost any branch of human activities, including
medicine (biotech data, medical imaging, etc.), basic sciences (astrophysics, envi-
ronmental sciences, etc.), e-commerce (tracking, loyalty programs, etc.), finance, co-
operative activities (crowdsourcing data), etc. Having access to such massive data
sounds like a blessing. Unfortunately, the analysis of high-dimensional data is ex-
tremely challenging. Indeed, separating the useful information from the noise is gen-
erally almost impossible in high-dimensional settings. This issue is often referred to
as the curse of dimensionality.

Most of the classical statistics developed during the twentieth century focused on
data where the number n of experimental units (number of individuals in a medical
cohort, number of experiments in biology or physics, etc.) was large compared to the
number p of unknown features. Accordingly, most of the classical statistical theory
provides results for the asymptotic setting where p is fixed and n goes to infinity. This
theory is very insightful for analyzing data where “n is large” and “p is small,” but
it can be seriously misleading for modern high-dimensional data. Analyzing “large
p” data then requires some new statistics. It has given rise to a huge effort from the
statistical and data analyst community for developing new tools able to circumvent
the curse of dimensionality. In particular, building on the concept of sparsity has
shown to be successful in this setting.

This book is an introduction to the mathematical foundations of high-dimensional
statistics. It is intended to be a concise guide for students and researchers unfamiliar
with the area, and interested in the mathematics involved. In particular, this book is
not conceived as a comprehensive catalog of statistical methods for high-dimensional
data. It is based on lectures given in the Master programs “Mathematics for Life Sci-
ences” and “Data Sciences,” from Paris Sud University (Orsay), Ecole Polytechnique
(Palaiseau), Ecole Normale Supérieure de Cachan (Cachan), and Telecom ParisTech
(Paris). The primary goal is to explain, as simply as possible, the main concepts and
ideas on some selected topics of high-dimensional statistics. The focus is mainly on
some simple settings, avoiding, thereby, unessential technicalities that could blur the
main arguments. To achieve this goal, the book includes significantly streamlined
proofs issued from the recent research literature.
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Each chapter of the book ends with some exercises, and the reader is invited to share
his solutions on the wiki-site
http://high-dimensional-statistics.wikidot.com.

Finally, I apologize for any remaining typos and errors (despite my efforts to remove
them). The reader is invited to point them out to
high.dimensional.statistics@gmail.com

for errata that will be published on the book’s website,
http://sites.google.com/site/highdimensionalstatistics .

Enjoy your reading!

Christophe Giraud
Orsay, France



Acknowledgments

This book has strongly benefited from the contributions of many people.

My first thanks go to Sylvain Arlot, Marc Hoffmann, Sylvie Huet, Guillaume Lecué,
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Chapter 1

Introduction

1.1 High-Dimensional Data

The sustained development of technologies, data storage resources, and computing
resources give rise to the production, storage, and processing of an exponentially
growing volume of data. Data are ubiquitous and have a dramatic impact on almost
every branch of human activities, including science, medicine, business, finance and
administration. For example, wide-scale data enable to better understand the regula-
tion mechanisms of living organisms, to create new therapies, to monitor climate and
biodiversity changes, to optimize the resources in the industry and in administrations,
to personalize the marketing for each individual consumer, etc.

A major characteristic of modern data is that they often record simultaneously thou-
sands up to millions of features on each object or individual. Such data are said to
be high-dimensional. Let us illustrate this characteristic with a few examples. These
examples are relevant at the time of writing and may become outdated in a few years,
yet we emphasize that the mathematical ideas conveyed in this book are independent
of these examples and will remain relevant.

• Biotech data: Recent biotechnologies enable to acquire high-dimensional data
on single individuals. For example, DNA microarrays measure the transcription
level1 of tens of thousands of genes simultaneously; see Figure 1.1. Next gener-
ation sequencing (NGS) devices improve on these microarrays by allowing to
sense the “transcription level” of virtually any part of the genome. Similarly,
in proteomics some technologies can gauge the abundance of thousands of pro-
teins simultaneously. These data are crucial for investigating biological regulation
mechanisms and creating new drugs. In such biotech data, the number p of “vari-
ables” that are sensed scales in thousands and is most of the time much larger than
the number n of “individuals” involved in the experiment (number of repetitions,
rarely exceeding a few hundreds).

• Images (and videos): Large databases of images are continuously collected all
around the world. They include medical images, massive astrophysic images,
video surveillance images, etc. Each image is made of thousands to millions of

1The transcription level of a gene in a cell at a given time corresponds to the quantity of ARNm
associated to this gene present at this time in the cell.

1
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Figure 1.1 Whole human genome microarray covering more than 41,000 human genes and
transcripts on a standard 1′′× 3′′ glass slide format. c©Agilent Technologies, Inc. 2004. Re-
produced with permission, courtesy of Agilent Technologies, Inc.

pixels or voxels. For medical images, as for biotech data, the number p of pixels
can be much larger than the number n of patients in the cohort under study.

• Consumers preferences data: Websites and loyalty programs collect huge
amounts of information on the preferences and the behaviors of customers. These
data are processed for marketing purposes, for recommendations, and for fixing
personalized prizes. For example, recommendation systems (for movies, books,
music, etc.) gather the customers’ ratings on various products, together with some
personal data (age, sex, location), and guess from them which products could be
of interest for a given consumer.

• Business data: Every major company has its own chief data officer who super-
vises the optimal exploitation of internal and external data. For example, logistic
and transportation companies intensively process internal and geo-economic data
in order to optimize the allocation of their resources and to try to forecast precisely
the future demand. Insurance companies widely rely on various sources of data
in order to control their risk and allocate at best their financial resources. Many
profitable activities of the financial industry are based on the intensive processing
of transaction data from all over the world. Again, the dimensionality of the data
processed in these examples can scale in thousands.

• Crowdsourcing data: The launch of websites dedicated to participative data
recording together with the spreading of smartphones enable volunteers to record
online massive data sets. For example, the Cornell Lab of Ornithology and the Na-
tional Audubon Society have jointly launched a crowdsourcing program, “eBird”
http://ebird.org, inviting all bird-watchers from North America to record via
an online checklist all the birds they have seen and heard during their last bird-
ing session. The purpose of this program is to monitor birds abundances and their
evolutions across North America. In 2014, eBird involved tens of thousands of
participants, which had already recorded millions of observations.
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Blessing?

Being able to sense simultaneously thousands of variables on each “individual”
sounds like good news: Potentially we will be able to scan every variable that may
influence the phenomenon under study. The statistical reality unfortunately clashes
with this optimistic statement: Separating the signal from the noise is in general al-
most impossible in high-dimensional data. This phenomenon described in the next
section is often called the “curse of dimensionality.”

1.2 Curse of Dimensionality

The impact of high dimensionality on statistics is multiple. First, high-dimensional
spaces are vast and data points are isolated in their immensity. Second, the accumu-
lation of small fluctuations in many different directions can produce a large global
fluctuation. Third, an event that is an accumulation of rare events may not be rare.
Finally, numerical computations and optimizations in high-dimensional spaces can
be overly intensive.

1.2.1 Lost in the Immensity of High-Dimensional Spaces

Let us illustrate this issue with an example. We consider a situation where we want
to explain a response variable Y ∈ R by p variables X1, . . . ,Xp ∈ [0,1]. Assume, for
example, that each variable Xk follows a uniform distribution on [0,1]. If these vari-
ables are independent, then the variable X = (X1, . . . ,Xp) ∈ [0,1]p follows a uniform
distribution on the hypercube [0,1]p. Our data consist of n independent and iden-
tically distributed (i.i.d.) observations (Yi,X (i))i=1,...,n of the variables Y and X . We
model them with the classical regression equation

Yi = f (X (i))+ εi, i = 1, . . . ,n,
with f : [0,1]p→ R and ε1, . . . ,εn independent and centered.

Assuming that the function f is smooth, it is natural to estimate f (x) by some aver-
age of the Yi associated to the X (i) in the vicinity of x. The most simple version of
this idea is the k-Nearest Neighbors estimator, where f (x) is estimated by the mean
of the Yi associated to the k points X (i), which are the nearest from x. Some more
sophisticated versions of this idea use a weighted average of the Yi with weights that
are a decreasing function of the distance ‖X (i)− x‖ (like kernel smoothing). The ba-
sic idea being in all cases to use a local average of the data. This idea makes perfect
sense in low-dimensional settings, as illustrated in Figure 1.2.

Unfortunately, when the dimension p increases, the notion of “nearest points” van-
ishes. This phenomenon is illustrated in Figure 1.3, where we have plotted the his-
tograms of the distribution of the pairwise-distances

{
‖X (i)−X ( j)‖ : 1≤ i < j ≤ n

}
for n = 100 and dimensions p = 2,10,100, and 1000. When the dimension p in-
creases, we observe in Figure 1.3 that
• the minimal distance between two points increases,
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• all the points are at a similar distance from the others, so the notion of “nearest
points” vanishes.

In particular, any estimator based on a local averaging will fail with such data.

Let us quantify roughly the above observations. Writing U and U ′ for two indepen-
dent random variables with uniform distribution on [0,1], the mean square distance
between X (i) and X ( j) is

E
[
‖X (i)−X ( j)‖2

]
=

p

∑
k=1
E
[(

X (i)
k −X ( j)

k

)2
]
= pE

[
(U−U ′)2]= p/6,

and the standard deviation of this square distance is

sdev
[
‖X (i)−X ( j)‖2

]
=

√
p

∑
k=1

var
[(

X (i)
k −X ( j)

k

)2
]
=
√

pvar [(U ′−U)2]≈ 0.2
√

p .

In particular, we observe that the typical square distance between two points
sampled uniformly in [0,1]p grows linearly with p, while the scaled deviation
sdev

[
‖X (i)−X ( j)‖2

]
/E
[
‖X (i)−X ( j)‖2

]
shrinks like p−1/2.

How Many Observations Do We Need?

Figure 1.3 shows that if the number n of observations remains fixed while the di-
mension p of the observations increases, the observations X (1), . . . ,X (n) get rapidly
very isolated and local methods cannot work. If for any x ∈ [0,1]p we want to have at
least one observation X (i) at distance less than one from x, then we must increase the
number n of observations. How should this number n increase with the dimension
p? We investigate below this issue by computing a lower bound on the number n of
points needed in order to fill the hypercube [0,1]p in such a way that at any x∈ [0,1]p
there exists at least one point at distance less than 1 from x.

The volume Vp(r) of a p-dimensional ball of radius r > 0 is equal to (see Exer-
cise 1.6.2)

Vp(r) =
π p/2

Γ(p/2+1)
rp p→∞∼

(
2πer2

p

)p/2

(pπ)−1/2, (1.1)

where Γ represents the Gamma function Γ(x) =
∫

∞

0 tx−1e−t dt for x > 0.

If x(1), . . . ,x(n) are such that for any x ∈ [0,1]p there exists a point x(i) fulfilling
‖x(i)− x‖ ≤ 1, then the hypercube is covered by the family of unit balls centered
in x(1), . . . ,x(n),

[0,1]p ⊂
n⋃

i=1

Bp(x(i),1).

As a consequence, the volume of the union of the n unit balls is larger than the volume
of the hypercube, so 1≤ nVp(1). According to Equation (1.1), we then need at least

n≥ Γ(p/2+1)
π p/2

p→∞∼
( p

2πe

)p/2√
pπ (1.2)
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The Strange Geometry of High-Dimensional Spaces (I)

High-dimensional balls have a vanishing vol-
ume!

From Formula (1.1), we observe that for any
r > 0, the volume Vp(r) of a ball of radius r goes
to zero more than exponentially fast with the
dimension p. We illustrate this phenomenon by
plotting p→ Vp(1). We observe that for p = 20
the volume of the unit ball is already almost 0. 0 20 40 60 80 100

0
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4
5

volume Vp(1)

p

vo
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Figure 1.4

points in order to fill the hypercube [0,1]p. This number of points then grows more
than exponentially fast with p. If we come back to our above example in the regres-
sion setting, it means that if we want a local average estimator to work with obser-
vations uniformly distributed in [0,1]p with p larger than a few tens, then we would
need a number n of observations, which is completely unrealistic (see Table 1.1).

p 20 30 50 100 150 200
larger than the estimated

n 39 45630 5.71012 421039 1.281072 number of particles
in the observable universe

Table 1.1 Lower Bound (1.2) on the required number of points for filling the hypercube [0,1]p.

The moral of this example is that we have to be very careful with our geometric
intuitions in high-dimensional spaces. These spaces have some counterintuitive geo-
metric properties, as illustrated in Figures 1.4 and 1.5.

1.2.2 Fluctuations Cumulate

Assume that you want to evaluate some function F(θ1) of some scalar value θ1 ∈R.
Assume that you have only access to a noisy observation of θ1, denoted by X1 =
θ1 + ε1, with E [ε1] = 0 and var(ε1) = σ2. If the function F is 1-Lipschitz, then the
mean square error is

E
[
‖F(X1)−F(θ1)‖2]≤ E[|ε1|2

]
= σ

2.

In particular, if the variance σ2 of the noise is small, then this error is small.

Assume now that you need to evaluate a function F(θ1, . . . ,θp) from noisy observa-
tions X j = θ j+ε j of the θ j. Assume that the noise variables ε1, . . . ,εp are all centered
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The Strange Geometry of High-Dimensional Spaces (II)

The volume of a high-dimensional ball is con-
centrated in its crust!

Let us write Bp(0,r) for the p-dimensional ball
centered at 0 with radius r > 0, and Cp(r) for the
“crust” obtained by removing from Bp(0,r) the
sub-ball Bp(0,0.99r). In other words, the “crust”
gathers the points in Bp(0,r), which are at a dis-
tance less than 0.01r from its surface.

We plot as a function of p the ratio of the volume
of Cp(r) to the volume of Bp(0,r)

volume(Cp(r))
volume(Bp(0,r))

= 1−0.99p,

which goes exponentially fast to 1.
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with variance σ2. If as before F is 1-Lipschitz, we have

E
[
‖F(X1, . . . ,Xp)−F(θ1, . . . ,θp)‖2]≤ E[‖(ε1, . . . ,εp)‖2]= p

∑
j=1
E
[
ε

2
j
]
= pσ

2.

Furthermore, if F fulfills ‖F(x+ h)−F(x)‖ ≥ c‖h‖ for some c > 0, then the mean
square error E

[
‖F(X1, . . . ,Xp)−F(θ1, . . . ,θp)‖2

]
scales like pσ2. This error can be

very large in high-dimensional settings, even if σ2 is small. A central example where
such a situation arises is in the linear regression model with high-dimensional co-
variates.

High-Dimensional Linear Regression

Assume that we have n observations Yi = 〈x(i),β ∗〉+ εi for i = 1, . . . ,n, with the
response Yi in R and the covariates x(i) in Rp. We want to estimate β ∗ ∈ Rp, and we
assume that ε1, . . . ,εn are i.i.d. centered, with variance σ2. Writing

Y =

Y1
...

Yn

 , X =

(x(1))T

...
(x(n))T

 and ε =

ε1
...

εn

 ,

we have Y = Xβ ∗+ε . A classical estimator of β ∗ is the least-squares (LS) estimator

β̂ ∈ argmin
β∈Rp

‖Y −Xβ‖2,
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which is uniquely defined when the rank of X is p. Let us focus on this case. The
solution of this minimization problem is β̂ = (XT X)−1XTY , which fulfills (see Ex-
ercise 1.6.5)

E
[
‖β̂ −β

∗‖2
]
= E

[
‖(XT X)−1XT

ε‖2]= Tr
(
(XT X)−1)

σ
2.

Assume for simplicity that the columns of X are orthonormal (i.e., orthogonal with
norm 1). Then, the mean square error is

E
[
‖β̂ −β

∗‖2
]
= pσ

2.

So the more high-dimensional is the covariate x(i), the larger is this estimation error.

We cannot give a direct picture of a linear regression in dimension p, with p larger
than 2. Yet, we can illustrate the above phenomenon with the following example.
Assume that the covariates x(i) are given by x(i) = φ(i/n), where φ : [0,1]→ Rp is
defined by φ(t) = [cos(π jt)] j=1,...,p. Then we observe

Yi =
p

∑
j=1

β
∗
j cos(π ji/n)+ εi = fβ ∗(i/n)+ εi, for i = 1, . . . ,n, (1.3)

with fβ (t) = ∑
p
j=1 β j cos(π jt). We can illustrate the increase of the error ‖β̂ −β ∗‖2

with p by plotting the function fβ ∗ and f
β̂

for increasing values of p. In Figure 1.6,
the noise ε1, . . . ,εn is i.i.d., with N (0,1) distribution and the function fβ ∗ has been
generated by sampling the β ∗j independently with N (0, j−4) distribution. We choose
n = 100 and the four figures correspond to p = 10, 20, 50 and 100, respectively. We
observe that when p increases, the estimated function f

β̂
(t) becomes more and more

wavy. These increasing oscillations are the direct consequence of the increasing error
‖β̂ −β ∗‖2 ≈ pσ2.

Tails of High-Dimensional Gaussian Distributions Are Thin but Concentrate
the Mass

Gaussian distributions are known to have very thin tails. Actually, the density
gp(x) = (2π)−p/2 exp(−‖x‖2/2) of a standard Gaussian distribution N (0, Ip) in Rp

decreases exponentially fast with the square norm of x. Yet, when p is large, most of
the mass of the standard Gaussian distribution lies in its tails!

First, we observe that the maximal value of gp(x) is gp(0) = (2π)−p/2, which de-
creases exponentially fast toward 0 when p increases, so the Gaussian distribution in
high dimensions is much more flat than in dimension one or two. Let us compute the
mass in its “bell” (central part of the distribution where the density is the largest). Let
δ > 0 be a small positive real number and write

Bp,δ =
{

x ∈ Rp : gp(x)≥ δgp(0)
}
=
{

x ∈ Rp : ‖x‖2 ≤ 2log(δ−1)
}

for the ball gathering all the points x ∈ Rp, such that the density gp(x) is larger or
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Figure 1.6 Least-squares (LS) estimator f
β̂

in the setting (1.3), with n = 100 and for p =

10, 20, 50, and 100. Gray dots: observations. Dashed line: function fβ ∗ . Gray line: LS esti-
mator f

β̂
.

equal to δ times the density at 0. Our intuition from the one-dimensional case is that
for δ small, say δ = 0.001, the probability for a N (0, Ip) Gaussian random variable
X to be in the “bell” Bp,δ is close to one. Yet, as illustrated in Figure 1.7, it is the
opposite!
Actually, from the Markov inequality (Lemma B.1 in Appendix B), we have

P
(
X ∈ Bp,δ

)
= P

(
e−‖X‖

2/2 ≥ δ

)
≤ 1

δ
E
[
e−‖X‖

2/2
]
=

1
δ

∫
x∈Rp

e−‖x‖
2 dx
(2π)p/2 =

1
δ 2p/2 .

So most of the mass of the standard Gaussian distribution is in the tail
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Figure 1.7 Mass of the standard Gaussian distribution gp(x)dx in the “bell” Bp,0.001 ={
x ∈ Rp : gp(x)≥ 0.001gp(0)

}
for increasing values of p.

{
x ∈ Rp : gp(x)< δgp(0)

}
. If we want to have P

(
X ∈ Bp,δ

)
≥ 1/2, we must choose

δ ≤ 2−p/2+1 which is exponentially small.

How can we explain this counterintuitive phenomenon? It is related to the geometric
properties of the high-dimensional spaces described above. We have seen that the
volume of a ball of radius r grows like rp. So when r increases, the density gp(x) on
the ring {x : r < ‖x‖< r+dr} shrinks like e−r2/2, but at the same time the volume
Vp(r+dr)−Vp(r) of the thin ring {x : r < ‖x‖< r+dr} grows with r like rp−1, so
the probability for X to be in {x : r < ‖x‖< r+dr} evolves as rp−1e−r2/2 with r > 0.
In particular, this probability is maximal for r2 = p−1, and the Gaussian density at
a point x with norm ‖x‖2 = p−1 fulfills gp(x) = e−(p−1)2/2gp(0)� gp(0): most of
the mass of a Gaussian distribution is located in areas where the density is extremely
small compared to its maximum value.

1.2.3 Accumulation of Rare Events May Not Be Rare

Assume that we have an observation Z1 of a single quantity θ1 blurred by some
N (0,1) Gaussian noise ε1. From Lemma B.4 in Appendix B we have P(|ε1| ≥ x)≤
e−x2/2 for x > 0, so with probability at least 1−α , the noise ε1 has an absolute value
smaller than

(
2log(1/α)

)1/2.

Assume that we observe now p quantities θ1, . . . ,θp blurred by ε1, . . . ,εp i.i.d. with
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N (0,1) Gaussian distribution. We have

P
(

max
j=1,...,p

|ε j| ≥ x
)
= 1− (1−P(|ε1| ≥ x))p x→∞∼ pP(|ε1| ≥ x) .

If we want to bound simultaneously the absolute values |ε1|, . . . , |εp| with prob-
ability 1 − α , then we can only guarantee that max j=1,...,p |ε j| is smaller than(
2log(p/α)

)1/2. This extra log(p) factor can be a serious issue in practice as il-
lustrated below.

False Discoveries

Assume that for a given individual i, we can measure for p genes simultaneously
the ratios between their expression levels in two different environments (e.g., with
microarrays). For the individual i, let us denote by Z(i)

j the log-ratio of the expres-
sion levels of the gene j between the two environments. Assume that (after some
normalization) these log-ratios can be modeled by

Z(i)
j = θ j + ε

(i)
j , j = 1, . . . , p, i = 1, . . . ,n,

with the ε
(i)
j i.i.d. with N (0,1) Gaussian distribution. Our goal is to detect the genes

j, such that θ j 6= 0, which means that they are involved in the response to the change
of environment (such a gene is said to be “positive”).

We write X j = n−1(Z(1)
j + . . .+Z(n)

j ) for the mean of the observed log-ratios for the
gene j. The random variables n1/2X1, . . . ,n1/2Xp are independent, and n1/2X j follows
a N (

√
nθ j,1) Gaussian distribution. For W with N (0,1) Gaussian distribution, we

have P [|W |> 1.96] ≈ 5%, so a natural idea is to declare “positive” all the genes
j, such that n1/2|X j| is larger than 1.96. Nevertheless, this procedure would produce
many false positives (genes declared “positive” while they are not) and thereby many
false discoveries of genes responding to the change of environment. Let us illustrate
this point. Assume that p = 5000, and among them 200 genes are positive. Then, the
average number of false positive genes is

card
{

j : θ j = 0
}
×0.05 = 4800×0.05 = 240 false positive genes,

which is larger than the number of positive genes (200). It means that, on average,
more than half of the discoveries will be false discoveries. If we want to avoid false
positives, we must choose a threshold larger than 1.96. From Exercise 1.6.3, for
W1, . . . ,Wp i.i.d. with N (0,1) Gaussian distribution, we have

P
(

max
j=1,...,p

|Wj| ≥
√

α log(p)
)
= 1− exp

(
−
√

2
απ

p1−α/2

(log p)1/2 +O

(
p1−α/2

(log p)3/2

))
p→∞−→

{
0 if α ≥ 2
1 if α < 2 .
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Therefore, in order to avoid false positives, it seems sensible to declare positive the
genes j, such that n1/2|X j| ≥

√
2log(p). With this choice, we will roughly be able

to detect the θ j whose absolute value is larger than
√

2log(p)/n. We then observe
that the larger p, the less we are able to detect the nonzero θ j. This can be a severe
issue when p scales in thousands and n is only a few units. We refer to Chapter 10
for techniques suited to this setting.

Empirical Covariance Is Not Reliable in High-Dimensional Settings

Another important issue with high-dimensional data is that the empirical covariance
matrix of a p-dimensional vector is not reliable when p scales like the sample size n.
Let us illustrate briefly this point. Assume that we observe some i.i.d. random vectors
X (1), . . . ,X (n) in Rp, which are centered with covariance matrix cov(X (i)) = Ip. The
empirical covariance matrix Σ̂ associated to the observations X (1), . . . ,X (n) is given
by

Σ̂ab =
1
n

n

∑
i=1

X (i)
a X (i)

b , for a,b = 1, . . . , p.

We have E
[
X (i)

a X (i)
b

]
= 1{a=b}, so by the strong law of large numbers, Σ̂a,b tends

to 1{a=b} almost surely when n goes to infinity. Therefore, the empirical covariance
matrix Σ̂ converges almost surely to the identity matrix when n goes to infinity with
p fixed. In particular, the spectrum of Σ̂ is concentrated around 1 when n is large
and p small. This property is lost when p increases proportionally to n. Figure 1.8
displays three histograms of the spectral values of Σ̂ when X (1), . . . ,X (n) are i.i.d.
with standard Gaussian N (0, Ip) distribution, with n = 1000 and p = n/2, p = n,
and p = 2n, respectively.
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Figure 1.8 Histogram of the spectral values of the empirical covariance matrix Σ̂, with n =
1000 and p = n/2 (left), p = n (center), p = 2n (right).

We observe in the three cases that the spectrum of the empirical covariance matrix
Σ̂ is very different from the spectrum of the identity, so the empirical covariance Σ̂

is a very poor approximation of the covariance Ip in this setting. From the theory of
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random matrices, we know the limit distribution of the spectral values of Σ̂ when n
goes to infinity and p∼ αn with α > 0 (see Section 1.5 for references). The support
of this limit distribution (known as the Marchenko–Pastur distribution) is actually
equal to [(1−

√
α)2,(1+

√
α)2] up to a singleton at 0 when α > 1. This means that

we cannot trust the empirical covariance matrix Σ̂ when n and p have a similar size.

1.2.4 Computational Complexity

Another burden arises in high-dimensional settings: numerical computations can be-
come very intensive and largely exceed the available computational (and memory)
resources. For example, basic operations with p× p matrices (like multiplication, in-
version, etc.) require at least pα operations with α > 2. When p scales in thousands,
iterating such operations can become quite intensive.

The computational complexity appears to be really problematic in more involved
problems. For example, we have seen above that the mean square error ‖β̂ −β ∗‖2 in
the linear regression model

y =
p

∑
j=1

β
∗
j x j + ε

typically scales linearly with p. Yet, it is unlikely that all the covariates x j are influ-
ential on the response y. So we may wish to compare the outcomes of the family of
regression problems

y = ∑
j∈m

β
∗
j x j + ε for each m⊂ {1, . . . , p} . (1.4)

Unfortunately, the cardinality of {m : m⊂ {1, . . . , p}} is 2p, which grows exponen-
tially with p. So, when p is larger than a few tens, it is impossible to compute the
2p estimators β̂m associated to the model (1.4). This issue is detailed in Chapters 2
and 5.

1.3 High-Dimensional Statistics

1.3.1 Circumventing the Curse of Dimensionality

As explained in the previous section, the high dimensionality of the data, which
seems at first to be a blessing, is actually a major issue for statistical analyzes. In
light of the few examples described above, the situation may appear hopeless. Fortu-
nately, high-dimensional data are often much more low-dimensional than they seem
to be. Usually, they are not “uniformly” spread in Rp, but rather concentrated around
some low-dimensional structures. These structures are due to the relatively small
complexity of the systems producing the data. For example,
• pixel intensities in an image are not purely random since there exist many geo-

metrical structures in an image;
• biological data are the outcome of a “biological system”, which is strongly regu-

lated and whose regulation network has a relatively small complexity;
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PCA in action

original image original image original image original image

projected image projected image projected image projected image

Figure 1.9 The Modified National Institute of Standards and Technology (MNIST) data
set [104] gathers 1100 scans of each digit. Each scan is a 16× 16 image that is encoded
by a vector in R256. The above pictures represent the projections of four images onto the
space V10, computed according to (1.5) from the 1100 scans of the digit 8 in the MNIST
database. The original images are displayed in the first row, with their projection onto V10
in the second row.

• marketing data strongly reflects some social structures in a population, and these
structures are relatively simple; and

• technical data are the outcome of human technologies, whose complexity remains
limited.

So in many cases, the data have an intrinsic low complexity, and we can hope to
extract useful information from them. Actually, when the low-dimensional structures
are known, we are back to some more classical “low-dimensional statistics.” The
major issue with high-dimensional data is that these structures are usually unknown.
The main task will then be to identify at least approximately theses structures. This
issue can be seen as the central issue of high-dimensional statistics.

A first approach is to try to find directly the low-dimensional structures in the data.
The simplest and the most widely used technique for this purpose is the principal
component analysis (PCA). For any data points X (1), . . . ,X (n) ∈ Rp and a given di-
mension d ≤ p, the PCA computes the linear span Vd fulfilling

Vd ∈ argmin
dim(V )≤d

n

∑
i=1
‖X (i)−ProjV (X

(i))‖2, (1.5)

where the minimum is taken over all the subspaces V of Rp, with dimension not
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larger than d, and ProjV : Rp → Rp is the orthogonal projector onto V . We refer
to Figure 1.9 for an illustration of the PCA in action and to Exercise 1.6.4 for the
mathematical details.

Another approach, developed throughout this book, is to perform an “estimation-
oriented” search of these low-dimensional structures. With this approach, we only
seek the low-dimensional structures that are useful for our estimation problem. In
principle, this approach allows for more precise results. We illustrate this feature
in Figure 1.10, which is based on a data set of Sabarly et al. [138] gathering the
measurement of 55 chemical compounds for 162 strains of the bacteria E. coli. Some
of these bacteria are pathogens for humans, others are commensal. Our goal is to
find a classification rule that enables us to separate from the chemical measurements
the strains that are pathogens from those that are commensal. In Figure 1.10, the
pathogen bacteria are denoted by “IPE” (internal pathogens) and “EPE” (external
pathogens) and the commensal bacteria are denoted by “Com.” The left-hand-side
figure displays the data projected on the two-dimensional space V2 given by a PCA.
The right-hand-side figure displays the data projected on a two-dimensional space
S2, which aims to separate at best the different classes of bacteria (more precisely,
S2 is spanned by the directions orthogonal to the separating hyperplanes of a linear
discriminant analysis (LDA) ; see Exercise 11.5.1 for details on the LDA). Clearly,
the plane S2 is more useful than V2 for classifying strains of bacteria according to their
pathogenicity. This better result is simply due to the fact that V2 has been computed
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Figure 1.10 Dimension reduction for a data set gathering 55 chemical measurements of 162
strains of E. coli. Commensal strains are labelled “Com,” pathogen strains are labelled
“EPE” (external pathogens) and “IPE” (internal pathogens). Left: The data is projected on
the plane given by a PCA. Right: The data is projected on the plane given by an LDA.
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independently of the classification purpose, whereas S2 has been computed in order
to solve at best this classification problem.

1.3.2 A Paradigm Shift

Classical statistics provide a very rich theory for analyzing data with the following
characteristics:
• a small number p of parameters
• a large number n of observations
This setting is typically illustrated by the linear regression y = ax+ b+ ε plotted
in Figure 1.11, where we have to estimate 2 parameters a and b, with n = 100 ob-
servations (Xi,Yi)i=1,...,n. Classical results carefully describe the asymptotic behavior
of estimators when n goes to infinity (with p fixed), which makes sense in such a
setting.

As explained in Section 1.1, in many fields, current data have very different charac-
teristics:
• a huge number p of parameters
• a sample size n, which is either roughly of the same size as p, or sometimes much

smaller than p

The asymptotic analysis with p fixed and n goes to the infinity does not make sense
anymore. What is worse is that it can lead to very misleading conclusions. We must
change our point of view on statistics!

In order to provide a theory adapted to the 21st century data, two different points of
view can be adopted. A first point of view is to investigate the properties of estimators
in a setting where both n and p go to infinity, with p ∼ f (n) for some function f ;

-2 0 2 4

-2
0

2
4

6
8

10

2D linear regression

x

y

Figure 1.11 Iconic example of classical statistics: n = 100 observations (gray dots) for esti-
mating the p = 2 parameters of the regression line (in black).
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for example, f (n) = αn, or f (n) = n2, or f (n) = eαn, etc. Such a point of view
is definitely more suited to modern data than the classical point of view. Yet, it is
sensitive to the choice of the function f . For example, asymptotic results for f (n) =
n2 and f (n) = eαn can be very different. If p = 1000 and n = 33, are you in the
setting f (n) = n2 or f (n) = en/5?

An alternative point of view is to treat n and p as they are and provide a non-
asymptotic analysis of the estimators, which is valid for any value of n and p. Such
an analysis avoids the above caveat of the asymptotic analysis. The main drawback
is that non-asymptotic analyzes are much more involved than asymptotic analyzes.
They usually require much more elaborate arguments in order to provide precise
enough results.

1.3.3 Mathematics of High-Dimensional Statistics

In order to quantify non-asymptotically the performances of an estimator, we need
some tools to replace the classical convergence theorems used in classical statistics.
A typical example of convergence theorem is the central limit theorem, which de-
scribes the asymptotic convergence of an empirical mean toward its expected value:
for f :R→R and X1, . . . ,Xn i.i.d. such that var( f (X1))<+∞, we have when n→+∞√

n
var( f (X1))

(
1
n

n

∑
i=1

f (Xi)−E [ f (X1)]

)
d→ Z, with Z ∼N (0,1).

Loosely speaking, the difference between the empirical mean and the statistical mean
E [ f (X1)] behaves roughly as

√
n−1var( f (X1)) Z when n is large. Let us assume that

f is L-Lipschitz, and let X1,X2 be i.i.d. with finite variance σ2. We have

var( f (X1)) =
1
2
E
[
( f (X1)− f (X2))

2
]
≤ L2

2
E
[
(X1−X2)

2
]
= L2

σ
2,

so, the central limit theorem ensures that for X1, . . . ,Xn i.i.d. with finite variance σ2

and a L-Lipschitz function f ,

lim
n→∞

P

(
1
n

n

∑
i=1

f (Xi)−E [ f (X1)]≥
Lσ√

n
x

)
≤ P(Z ≥ x)≤ e−x2/2, for x > 0 (1.6)

(the last inequality follows from Lemma B.4, page 298 in Appendix B).

Concentration inequalities provide some non-asymptotic versions of such results.
Assume, for example, that X1, . . . ,Xn are i.i.d., with N (0,σ2) Gaussian distribution.
The Gaussian concentration inequality (Theorem B.7, page 301 in Appendix B, see
also Exercise 1.6.7) claims that for any L-Lipschitz function F : Rn→ R we have

F(X1, . . . ,Xn)−E [F(X1, . . . ,Xn)]≤ Lσ
√

2ξ , where P(ξ ≥ t)≤ e−t for t > 0.

When f : R→ R is L-Lipschitz, the Cauchy–Schwartz inequality gives∣∣∣∣∣1n n

∑
i=1

f (Xi)−
1
n

n

∑
i=1

f (Yi)

∣∣∣∣∣≤ L
n

n

∑
i=1
|Xi−Yi| ≤

L√
n

√
n

∑
i=1

(Xi−Yi)2 ,
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so the function F(X1, . . . ,Xn) = n−1
∑

n
i=1 f (Xi) is (n−1/2L)-Lipschitz. According to

the Gaussian concentration inequality, we then have for x > 0 and n≥ 1

P

(
1
n

n

∑
i=1

f (Xi)−E [ f (X1)]≥
Lσ√

n
x

)
≤ P

(√
2ξ ≥ x

)
= e−x2/2,

which can be viewed as a non-asymptotic version of (1.6). Concentration inequalities
are central tools for the non-asymptotic analysis of estimators, and we will meet them
in every major proof of this book. Appendix B gathers a few classical concentration
inequalities (with proofs); see also Exercises 1.6.6 and 1.6.7 at the end of this chapter.

1.4 About This Book

1.4.1 Statistics and Data Analysis

Data science is an ever-expanding field. The world is awash in data, and there is a
sustained effort by the data analyst community for developing statistical procedures
and algorithms able to process these data. Most of this effort is carried out according
to the following track:
1. identification of an issue (new or not) related to some kind of data;
2. proposition of a statistical procedure based on some heuristics; and
3. implementation of this procedure on a couple of data sets (real or simulated), with

comparison to some existing procedures, when available.
This line of research feeds hundreds of scientific conferences every year covering a
wide range of topics, ranging from biology to economy via humanities, communi-
cation systems and astrophysics. It has led to some dazzling success, at least in the
technological area.

In the above process, mathematical formalism is used all along the way, but there are
(almost) no mathematics there, in the sense that there is no mathematical analysis
of the implemented procedures. In particular, even if we restrict to the academic
community, the statistician community, as part of the mathematical community, is a
minority. Let us call “mathematical statistics” the field of research that
1. formalizes precisely a statistical issue (new or not),
2. formalizes precisely a statistical procedure for handling this issue (new or not),
3. provides a mathematical analysis (theorem) of the performance of this statistical

procedure, with a special attention to its optimality and its limitations.
Since the mathematical analysis is the limiting step (due to its difficulty), the models
and statistical procedures investigated in mathematical statistics are usually quite
simpler than those implemented by “mainstream” data analysts. Some may directly
conclude that mathematical statistics are useless and have no interest. We want to
argue that mathematical statistics are important and actually have their own interest:
• Mathematical statistics provide some strong guarantees on statistical procedures

and they identify to what extent we can trust these procedures.
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• Mathematical statistics enable us to identify precisely the frontier between the
problems where estimation is possible and those where it is hopeless.
• Mathematical statistics provide mathematical foundations to data analysis.
• Mathematical statistics can be one of the remedies against the lack of reproducibil-

ity observed in many data-based scientific fields.
Again, most of the works in mathematical statistics concern some simple models, but
they provide some useful intuitions for the more involved settings met in practice.

1.4.2 Purpose of This Book

This book focuses on the mathematical foundations of high-dimensional statistics,
which is clearly in the “mathematical statistics” stream. Its goal is to present the
main concepts of high-dimensional statistics and to delineate in some fundamental
cases the frontier between what is achievable and what is impossible.

The book concentrates on state-of-the-art techniques for handling high-dimensional
data. They do not strive for gathering a comprehensive catalog of statistical meth-
ods; they try instead to explain for some selected topics the key fundamental con-
cepts and ideas. These concepts and ideas are exposed in simple settings, which
allow concentration on the main arguments by avoiding unessential technicalities.
The proofs issued from the recent research literature have been intensively stream-
lined in order to enlighten the main arguments. The reader is invited to adapt these
ideas to more complex settings in the detailed exercises at the end of each chapter.
He is also welcome to share his solutions to the exercises on the dedicated wiki-site
http://high-dimensional-statistics.wikidot.com.

1.4.3 Overview

As explained in Section 1.3, for analyzing high-dimensional data, we must circum-
vent two major issues:
• the intrinsic statistical difficulty related to the curse of dimensionality, and
• the computational difficulty: procedures must have a low computational complex-

ity in order to fit the computational resources.
To bypass the statistical curse of dimensionality, the statistician must build on the
low-dimensional structures hidden in the data. Model selection, mainly developed in
the late -’90s, is a powerful theory for tackling this problem. It provides very clear
insights on the frontier between the problems where estimation is possible and those
where it is hopeless. A smooth version of this theory is presented in Chapter 2. An
alternative to model selection is model aggregation introduced in Chapter 4. While
the underlying principles of model selection and model aggregation are essentially
the same, they lead to different estimation schemes in practice. Model selection and
model aggregation provide powerful tools able to break the statistical curse of di-
mensionality, yet they both suffer from a very high computational complexity, which
is prohibitive in practice.
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A powerful strategy to bypass this second curse of dimensionality is to “convexify”
in some way the model selection schemes. This strategy has been intensively de-
veloped in the last decade with bright success. Chapter 5 is a concise introduction
to this topic. It is mainly illustrated with the celebrated Lasso estimator, for which
a thorough mathematical analysis is provided. The statistical procedures presented
in Chapter 5 succeed to circumvent both the statistical and computational curses of
high dimensionality. Yet, they suffer from two caveats. First, for each specific class
of low-dimensional structures (which is often unknown) corresponds a specific es-
timator. Second, all these estimators depend on a “tuning parameter” that needs to
be chosen according to the variance of the noise, usually unknown. Some estimator
selection is then required in order to handle these two issues. A selection of such
procedures are sketched in Chapter 7.

Chapters 8 and 9 go one step beyond in the statistical complexity. They present re-
cent theories that have been developed in order to take advantage of handling simul-
taneously several statistical problems. Chapter 8 explores how we can exploit via
some rank constraints the correlations between these statistical problems, and im-
prove thereby the accuracy of the statistical procedures. Chapter 9 focuses on the
simultaneous estimation of the conditional dependencies among a large set of vari-
ables via the theory of graphical models.

The last two chapters deal with issues arising in high-dimensional data classification.
Chapter 10 details the mathematical foundations of multiple testing, with a special
focus on False Discovering Rate (FDR) control. Chapter 11 gives a concise presen-
tation of Vapnik’s theory for supervised classification.

The theories presented in this book heavily rely on some more or less classical math-
ematical tools, including some probabilistic inequalities (concentration inequalities,
contraction principle, Birgé’s Lemma, etc.), some matrix analysis (singular value
decomposition, Ky–Fan norms, etc.), and some classical analysis (subdifferential of
convex functions, reproducing Hilbert spaces, etc.). The five appendices provide self-
contained and compact introductions to these mathematical tools. The notations used
throughout the book are gathered at the end of the volume.

1.5 Discussion and References

1.5.1 Take-Home Message

Being able to sense simultaneously thousands of parameters sounds like a blessing,
since we collect huge amounts of data. Yet, the information is awash in the noise in
high-dimensional settings. Fortunately, the useful information usually concentrates
around low-dimensional structures, and building on this feature allows us to circum-
vent this curse of the dimensionality.

This book is an introduction to the main concepts and ideas involved in the analysis
of the high-dimensional data. Its focus is on the mathematical side, with the choice
to concentrate on simple settings in order to avoid unessential technical details that
could blur the main arguments.
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1.5.2 References

The book by Hastie, Tibshirani, and Friedman [91] is an authoritative reference for
the data scientist looking for a pedagogical and (almost) comprehensive catalog of
statistical procedures. The associated website
http://statweb.stanford.edu/∼tibs/ElemStatLearn/
provides many interesting materials both for learners and academics.

We refer to the books by Ledoux [105] and by Boucheron, Lugosi, and Massart [38]
for thorough developments on concentration inequalities. The asymptotic distribu-
tion of the spectral values of a random matrix has been described first by Marchenko
and Pastur [117]. We refer to Vershynin [158] for a non-asymptotic analysis. We also
recommend the books by Vershynin [159] and Wainwright [163] for learning further
on the topic of high-dimensional probability and high-dimensional statistics.

The lecture notes [65] by Donoho give an interesting point of view on high-
dimensional statistics and their mathematical challenges. Finally, the papers by
Jin [96], Verzelen [160], Donoho, Johnstone, and Montanari [66] or Berthet and
Rigollet [28] are examples of papers providing insightful information on the fron-
tier of successful estimation in high-dimensional settings.

1.6 Exercises

1.6.1 Strange Geometry of High-Dimensional Spaces
Figures 1.4 and 1.5 give examples of counter-
intuitive results in high-dimensional spaces. Let us
give another one. Let e1, . . . ,ep be the canonical ba-
sis in Rp, and let us denote by v the diagonal of the
hypercube [0,1]p. Check that the angle θi between
the vector ei and v fulfills

cos(θi) =
〈ei,v〉
‖ei‖‖v‖

=
1
√

p
p→∞→ 0.

ve2

e1

θ1

So the diagonal of a hypercube tends to be orthogonal to all the edges of the hyper-
cube in high-dimensional spaces!

1.6.2 Volume of a p-Dimensional Ball

We will prove the Formula (1.1) for the volume Vp(r) of a p-dimensional ball of
radius r > 0.
1. Prove that the gamma function Γ(α) =

∫
∞

0 xα−1e−x dx, α > 0 fulfills the equalities
Γ(1) = 1, Γ(1/2) =

√
π , and Γ(α +1) = αΓ(α) for any α > 0. Deduce the two

formulas

Γ(p+1) = p! and Γ(p+3/2) =
(2p+1)(2p−1) . . .1

2p+1

√
π for p ∈ N.
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2. Prove that Vp(r) = rp Vp(1) for any p≥ 1 and check that V1(1) = 2 and V2(1) = π .
3. For p≥ 3, prove that

Vp(1) =
∫

x2
1+x2

2≤1
Vp−2

(√
1− x2

1− x2
2

)
dx1 dx2

=Vp−2(1)
∫ 1

r=0

∫ 2π

θ=0
(1− r2)p/2−1r dr dθ =

2π

p
Vp−2(1).

4. Conclude that

V2p(1) =
π p

p!
and V2p+1(1) =

2p+1π p

(2p+1)(2p−1) . . .3
.

5. With the Stirling expansion Γ(α) = αα−1/2e−α
√

2π
(
1+O(α−1)

)
for α→+∞,

prove (1.1).

1.6.3 Tails of a Standard Gaussian Distribution

Let Z be a N (0,1) standard Gaussian random variable.
1. For z > 0, prove (with an integration by parts) that

P(|Z| ≥ z) =

√
2
π

e−z2/2

z
−
√

2
π

∫
∞

z
x−2e−x2/2 dx

=

√
2
π

e−z2/2

z

(
1+O

(
1
z2

))
.

2. For Z1, . . . ,Zp i.i.d. with N (0,1) standard Gaussian distribution and α > 0, prove
that when p→ ∞

P
(

max
j=1,...,p

|Z j| ≥
√

α log(p)
)

= 1−
(

1−P
(
|Z1| ≥

√
α log(p)

))p

= 1− exp

(
−
√

2
απ

p1−α/2

(log p)1/2 +O

(
p1−α/2

(log p)3/2

))
.

1.6.4 Principal Component Analysis

The Principal Component Analysis (PCA) is tightly linked to the Singular Value
Decomposition (SVD). We refer to Appendix C for a reminder on the SVD.
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For any data points X (1), . . . ,X (n) ∈ Rp and any di-
mension d ≤ p, the PCA computes the linear span in
Rp

Vd ∈ argmin
dim(V )≤d

n

∑
i=1
‖X (i)−ProjV X (i)‖2,

where ProjV is the orthogonal projection matrix onto
V . Let us denote by X = ∑

r
k=1 σkukvT

k a SVD of the
n× p matrix

X =

(X (1))T

...
(X (n))T


with σ1 ≥ σ2 ≥ . . .≥ σr > 0.
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]

X
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3
]

V2 in dimension p = 3.

1. With the Theorem C.5 in Appendix C, page 315, prove that for any d ≤ r
n

∑
i=1
‖X (i)−ProjV X (i)‖2 = ‖X−XProjV‖2

F ≥
r

∑
k=d+1

σ
2
k ,

where ‖ · ‖F denotes the Frobenius norm ‖A‖2
F = ∑i, j A2

i j.
2. Write Vd for the linear space spanned by {v1, . . . ,vd}. Prove that for any d ≤ r we

have

‖X−XProjVd
‖2 =

r

∑
k=d+1

σ
2
k .

3. Conclude that Vd minimizes (1.5).
4. Prove that the coordinates of ProjVd

X (i) in the orthonormal basis (v1, . . . ,vd) of Vd
are given by (σ1〈ei,u1〉, . . . ,σd〈ei,ud〉).

Terminology: The right-singular vectors v1, . . . ,vr are called the principal axes. The
vectors ck = Xvk = σkuk for k = 1, . . . ,r are called the principal components. The
principal component ck gathers the coordinates of X (1), . . . ,X (n) on vk.

Remark: Since Vd is a linear span and not an affine span, it is highly recommended
to first center the data points

X̃ (i) = X (i)− 1
n

n

∑
i=1

X (i)

and then proceed with a PCA on the X̃ (1), . . . , X̃ (n).

1.6.5 Basics of Linear Regression

We consider the linear regression model Y = Xβ ∗+ ε , with Y,ε ∈ Rn, β ∗ ∈ Rp and
X an n× p-matrix with rank p. We assume that the components ε1, . . . ,εn of ε are
i.i.d. centered, with variance σ2. We set F(β ) = ‖Y −Xβ‖2.
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1. Prove that F is convex and has a gradient ∇F(β ) = 2XT (Xβ −Y ).

2. Prove that the least-squares estimator β̂ ∈ argminβ∈Rp F(β ) solves XT Xβ̂ =XTY ,

so β̂ = (XT X)−1XTY when the rank of X is p.
3. Let A be a p×n matrix. Prove that E

[
‖Aε‖2

]
= σ2Tr(AT A).

4. Conclude that mean square error of the least-squares estimator β̂ is

E
[
‖β̂ −β

∗‖2
]
= Tr

(
(XT X)−1)

σ
2.

1.6.6 Concentration of Square Norm of Gaussian Random Variable

In the regression setting, we often need a bound on the square norm of a N (0, In)
Gaussian random variable ε; see, for example, the proof of Theorem 2.2 in Chap-
ter 2. The expectation of ‖ε‖2 is E

[
‖ε‖2

]
= n, so all we need is to get a probabilistic

bound on the deviations of ‖ε‖2 above its expectation. Since the map ε → ‖ε‖ is
1-Lipschitz, the Gaussian concentration inequality (Theorem B.7, page 301, in Ap-
pendix B) ensures that

P
(
‖ε‖ ≤ E [‖ε‖]+

√
2x
)
≥ 1− e−x, for any x > 0.

From Jensen inequality, we have E [‖ε‖]2 ≤ E
[
‖ε‖2

]
= n, so we have the concentra-

tion inequality

P
(
‖ε‖2 ≤ n+2

√
2nx+2x

)
≥ 1− e−x, for any x > 0. (1.7)

A) Concentration from Above

In the following, we give a direct proof of (1.7) based on the simple Markov inequal-
ity (Lemma B.1, page 297, in Appendix B).
1. Check that for 0 < s < 1/2, we have E

[
exp
(
s‖ε‖2

)]
= (1−2s)−n/2.

2. With the Markov inequality, prove that P
(
‖ε‖2 > n+ t)

)
≤ e−s(n+t)(1− 2s)−n/2

for any t > 0 and 0 < s < 1/2.
3. Check that the above bound is minimal for s = t/(2(n+ t)), and hence

P
(
‖ε‖2 > n+ t)

)
≤ e−t/2(1+ t/n)n/2, for any t > 0.

4. Check that log(1+u)≤ u−u2/(2+2u) for any u≥ 0, and hence

P
(
‖ε‖2 > n+ t)

)
≤ exp

(
− t2

4(n+ t)

)
, for any t > 0.

5. Prove Bound (1.7) for 0 < x≤ n.
6. From the bound log(1+u)≤

√
u for u≥ 0, check that

n
2

log

(
1+

2
√

2nx+2x
n

)
≤
√

2nx , for x≥ n.

7. Prove (1.7) for x≥ n.
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B) Concentration from Below

1. Prove that for 0≤ t < n and s≥ 0

P
[
n−‖ε‖2 ≥ t

]
≤ es(n−t)

(1+2s)n/2 .

2. Check that the above bound is minimal for s = t/(2(n− t)).
3. With the upper bound log(1− u) ≤ −u+ u2/2 for 0 ≤ u < 1, prove that for 0 ≤

t < n
P
[
‖ε‖2 ≤ n− t

]
≤ e−t2/(4n).

4. Conclude that for any x≥ 0

P
[
‖ε‖2 ≥ n−2

√
nx
]
≥ 1− e−x. (1.8)

1.6.7 A Simple Proof of Gaussian Concentration

This exercise provides a simple proof of a weak version of the Gaussian concentra-
tion inequality (Theorem B.7, page 301 in Appendix B). The price to pay for the
simplicity of the proof is a non-tight constant and a differentiability assumption (that
can be dropped however). The main argument of this proof is due to Pisier [129] and
Maurey.

We will prove here that, for any F :Rd→Rwhich is differentiable with ‖∇F(x)‖≤ L
for all x ∈ Rd , and for Z with Gaussian N (0, Id) distribution, we have

P(F(Z)−E [F(Z)]≥ Lσt)≤ exp
(
−2t2/π

2) . (1.9)

We observe that F(Z) = Lσ F̃(Z/σ) with Z/σ following a Gaussian N (0, Id) dis-
tribution and F̃(x) = F(σx)/(Lσ) fulfilling ‖∇F̃(x)‖ ≤ 1 for all x ∈Rd . So, with no
loss of generality, we assume henceforth that L = 1 and σ = 1.

The core of the Pisier-Maurey argument is the following inequality proved in part
(B) of the exercise. For any convex function ϕ : R→ R, we have

E
[
ϕ
(
F(Z)−E [F(Z)]

)]
≤ E

[
ϕ

(
π

2
〈∇F(Z1),Z2〉

)]
, (1.10)

where Z1,Z2 are two independent Gaussian N (0, Id) random variables.

A) Deriving the Concentration Bound (1.9) from Pisier-Maurey inequality
(1.10)

Before proving Pisier-Maurey inequality (1.10), we explain how the concentration
bound (1.9) follows from it.
1. Check that the distribution of the random variable 〈∇F(Z1),Z2〉 conditionally on

Z1 is the Gaussian N (0,‖∇F(Z1)‖2) distribution.
2. For s≥ 0, prove with (1.10) that

E
[
exp
(
s(F(Z)−E [F(Z)])

)]
≤ E

[
exp
(
(sπ‖∇F(Z1)‖)2/8

)]
≤ e(sπ)2/8.

3. Conclude the proof of (1.9) by applying Chernoff lemma B.2, on page 297.
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B) Proof of Pisier-Maurey Inequality (1.10)

Let Z1,Z2 be two independent Gaussian N (0, Id) random variables. Let us define
the random function W : [0,π/2]→ R, by W (θ) = Z1 sin(θ)+Z2 cos(θ).
1. Check that

F(Z1)−F(Z2) =
∫

π/2

0
〈∇F(W (θ)),W ′(θ)〉dθ .

2. Applying twice Jensen inequality, prove that

EZ1 [ϕ (F(Z1)−EZ2 [F(Z2])]≤ EZ1,Z2 [ϕ (F(Z1)−F(Z2))]

≤ 2
π

∫
π/2

0
EZ1,Z2

[
ϕ

(
π

2
〈∇F(W (θ)),W ′(θ)〉

)]
dθ .

3. Check that (W (θ),W ′(θ)) has the same distribution as (Z1,Z2) and conclude the
proof of (1.10).



Chapter 2

Model Selection

Model selection is a key conceptual tool for performing dimension reduction and
exploiting hidden structures in the data. The general idea is to compare different sta-
tistical models corresponding to different possible hidden structures and then select
among them the one that is more suited for estimation. Model selection is a very
powerful theory, but it suffers in many cases from a very high computational com-
plexity that can be prohibitive. When model selection cannot be implemented due to
its computational cost, it remains a good guideline for developing computationally
tractable procedures, as we will see in Chapters 5 and 6.

In this chapter, we present the theory of model selection in a simple — yet useful —
setting: the Gaussian regression model. References for a broader theory are given in
Section 2.7.

2.1 Statistical Setting

We consider in this chapter the regression model

yi = f (x(i))+ εi, i = 1, . . . ,n,

which links a quantity of interest y ∈ R to p variables whose values are stored in a
p-dimensional vector x ∈ Rp. We give several examples below corresponding to the
regression model.

Example 1: Sparse piecewise constant regression (variation sparsity)
It corresponds to the case where x ∈ R and f is piecewise constant with a small
number of jumps. This situation appears, for example, in biology in the analysis of
the copy number variations along a DNA chain.

Assume that the jumps of f are located in the set
{

z j : j ∈J
}

. Then a right-
continuous piecewise constant function f can be written as

f (x) = ∑
j∈J

c j1x≥z j .

When the function f only has a few jumps, then only a small fraction of the{
c j : j ∈J

}
are nonzero.

27



28 MODEL SELECTION
Example 2: Sparse basis/frame expansion

It corresponds to the case where f : R→ R, and we estimate f by expanding it on
a basis or frame

{
ϕ j
}

j∈J

f (x) = ∑
j∈J

c jϕ j(x),

with a small number of nonzero c j. This situation arises, for example, for denois-
ing, for representing cortex signals, etc. Typical examples of basis are Fourier basis,
splines, wavelets, etc. The most simple example is the piecewise linear decompo-
sition

f (x) = ∑
j∈J

c j (x− z j)+ , (2.1)

where z1 < z2 < .. . and (x)+ = max(x,0).

In these first two examples, x is low dimensional, but the function to be estimated can
be complex and requires to estimate a large number of coefficients. At the opposite,
we can have x in a high-dimensional space Rp and f very simple. The most popular
case is the linear regression.

Example 3: Sparse linear regression

It corresponds to the case where f is linear: f (x) = 〈β ,x〉 with β ∈Rp. We say that
the linear regression is sparse when only a few coordinates of β are nonzero.

This model can be too rough to model the data. Assume, for example, that we want to
model the relationship between some phenotypes and some gene expression levels.
We expect from biology that only a small number of genes influence a given phe-
notype, but the relationship between these genes and the phenotype is unlikely to be
linear. We may consider in this case a slightly more complex model.

Example 4: Sparse additive model and group-sparse regression
In the sparse additive model, we expect that f (x) = ∑k fk(xk) with most of the fk
equal to 0.

If we expand each function fk on a frame or basis
{

ϕ j
}

j∈Jk
we obtain the decom-

position

f (x) =
p

∑
k=1

∑
j∈Jk

c j,kϕ j(xk),

where most of the vectors
{

c j,k
}

j∈Jk
are zero.

Such a model can be hard to fit from a small sample, since it requires to estimate a
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relatively large number of nonzero c j,k. Nevertheless, in some cases, the basis expan-
sion of fk can be sparse itself, as in Example 2, producing a more complex pattern of
sparsity. An interesting example is the following model.

Example 5: Sparse additive piecewise linear regression
The sparse additive piecewise linear model is a sparse additive model f (x) =
∑k fk(xk), with sparse piecewise linear functions fk. We then have two levels of
sparsity:
1. Most of the fk are equal to 0;
2. The nonzero fk have a sparse expansion in the following representation

fk(xk) = ∑
j∈Jk

c j,k (xk− z j,k)+

In other words, the matrix c = [c j,k] of the sparse additive model has only a few
nonzero columns, and these nonzero columns are sparse.

It turns out that all the above models correspond to a sparse linear model, in the sense
that we have a representation of f ∗ =

[
f (x(i))

]
i=1,...,n

of the form f ∗i = 〈α,ψi〉 for

i = 1, . . . ,n, with α sparse in some sense. Let us identify this representation in the
five above examples.

Examples 1, 2, 3, 4, 5 (continued): Representation f ∗i = 〈α,ψi〉

• Sparse piecewise constant regression: ψi = ei with {e1, . . . ,en} the canonical
basis of Rn and α = f ∗ is piecewise constant.

• Sparse basis expansion: ψi = [ϕ j(x(i))] j∈J and α = c.

• Sparse linear regression: ψi = x(i) and α = β .

• Sparse additive models: ψi = [ϕ j([x
(i)
k ])]k=1,...,p

j∈Jk

and α = [c j,k]k=1,...,p
j∈Jk

.

Since the five above examples can be recast in a linear regression framework, we will
consider the linear regression model as the canonical example and use the following
notations.

Linear model

We have f ∗i = 〈β ∗,x(i)〉. We define the n× p matrix X = [x(i)j ]i=1,...,n, j=1,...,p and
the n-dimensional vector ε = [εi]i=1,...,n. With these notations, we have the synthetic
formula

Y = f ∗+ ε = Xβ
∗+ ε. (2.2)
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The above examples correspond to different sparsity patterns for β ∗. We use through-
out the book the following terminology.

Sparsity patterns

• Coordinate sparsity: Only a few coordinates of β ∗ are nonzero. This situation
arises in Examples 2 and 3.

• Group sparsity: The coordinates of β ∗ are clustered into groups, and only a few
groups are nonzero. More precisely, we have a partition {1, . . . , p}=

⋃M
k=1 Gk, and

only a few vectors β ∗Gk
= (β ∗j ) j∈Gk are nonzero. This situation arises in Example 4.

• Sparse-group sparsity: In the same notation as the group-sparse setting, only a
few vectors β ∗Gk

are nonzero, and in addition they are sparse. This situation arises
in Example 5.

• Variation sparsity (or fused sparsity): The vector ∆β ∗ = [β ∗j −β ∗j−1] j=2,...,p is
coordinate-sparse. This situation arises in Example 1.

In the remainder of this chapter, we will focus on the Gaussian regression setting

Yi = f ∗i + εi, i = 1, . . . ,n, with the εi i.i.d. with N (0,σ2) distribution. (2.3)

2.2 Selecting among a Collection of Models

2.2.1 Models and Oracle

Let us consider the problem of linear regression in the coordinate-sparse setting. If
we knew that only the coordinates β ∗j with j∈m∗ are nonzero, then we would remove
all the other variables

{
x j : j /∈ m∗

}
and consider the simpler linear regression model

yi = 〈β ∗m∗ ,x
(i)
m∗〉+ εi = ∑

j∈m∗
β
∗
j x(i)j + εi.

In the other sparse settings described above, we would work similarly if we knew
exactly the sparsity pattern (which groups are nonzero for group sparsity, where the
jumps are located for variation sparsity, etc.).

More generally, if we knew that f ∗ belongs to some linear subspace S of Rn, instead
of estimating f ∗ by simply maximizing the likelihood, we would rather estimate
f ∗ by maximizing the likelihood under the constraint that the estimator belongs to
S. For example, in the coordinate-sparse setting where we know that the nonzero
coordinates are the

{
β ∗j : j ∈ m∗

}
, we would take S = span

{
x j, j ∈ m∗

}
. In our

Gaussian setting (2.3), the log-likelihood is given by

−n
2

log(2πσ
2)− 1

2σ2 ‖Y − f‖2,

so the estimator maximizing the likelihood under the constraint that it belongs to S
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is simply f̂ = ProjSY , where ProjS : Rn → Rn is the orthogonal projection operator
onto S.

If we do not know a priori that f ∗ belongs to a known linear subspace S of Rn, then
we may wish to
1. consider a collection {Sm, m ∈M } of linear subspaces of Rn, called models;
2. associate to each subspace Sm the constrained maximum likelihood estimators

f̂m = ProjSm
Y ; and

3. finally estimate f by the best estimator among the collection
{

f̂m, m ∈M
}

.
To give a meaning to best, we need a criterion to quantify the quality of an estimator.
In the following, we will measure the quality of an estimator f̂ of f ∗ by its `2-risk

R( f̂ ) = E
[
‖ f̂ − f ∗‖2

]
. (2.4)

Each estimator f̂m has a `2-risk rm = R( f̂m), and the best estimator in terms of the
`2-risk is the so-called oracle estimator

f̂mo with mo ∈ argmin
m∈M

{rm} . (2.5)

We emphasize that the signal f ∗ may not belong to the oracle model Smo . It may even
not belong to any of the models {Sm, m ∈M }.

The oracle estimator is the best estimator in terms of the `2-risk, so we would like to
use this estimator to estimate f ∗. Unfortunately, we cannot use it in practice, since it
cannot be computed from the data only. Actually, the index mo depends on the col-
lection of risks {rm, m ∈M }, which is unknown to the statisticians since it depends
on the unknown signal f ∗.

A natural idea to circumvent this issue is to replace the risks rm in (2.5) by some
estimators r̂m of the risk and therefore estimate f ∗ by

f̂m̂ with m̂ ∈ argmin
m∈M

{r̂m} . (2.6)

The estimator f̂m̂ can be computed from the data only, but we have no guarantee that
it performs well. The main object of this chapter is to provide some suitable r̂m for
which we can guarantee that the selected estimator f̂m̂ performs almost as well as the
oracle f̂mo .

Examples of collections of models

Let us describe the collections of models suited to the different sparsity patterns
described in Section 2.1. In the following, we write X j for the j-th column of X.
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Coordinate sparsity

Let us define M = P({1, . . . , p}), where P({1, . . . , p}) denotes the set of all the
subsets of {1, . . . , p}. In this setting, we will consider the collection of models
{Sm, m ∈M }, with the models Sm defined by Sm = span

{
X j , j ∈ m

}
for m ∈M .

The model Sm then gathers all the vectors Xβ , with β fulfilling β j = 0 if j /∈ m.

Group sparsity

In this setting, we will consider a collection of models {Sm, m ∈M } indexed by
the set M =P({1, . . . ,M}) of all the subsets of {1, . . . ,M}. For m∈M , the model
Sm is defined by Sm = span

{
X j : j ∈

⋃
k∈m Gk

}
. The model Sm then gathers all the

vectors Xβ , with β fulfilling βGk = 0 for k /∈ m.

Sparse-group sparsity
The description of the collection of models {Sm, m ∈M } in this setting is slightly
more involved. To a subset g⊂ {1, . . . ,M}), we associate the set of indices

Mg =
{
{Jk}k∈g : where Jk ⊂ Gk for all k ∈ g

}
.

We defined the set of indices by

M =
⋃

g⊂{1,...,M}

⋃
{Jk}k∈g∈Mg

{
(g,{Jk}k∈g)

}
,

and to an index m = (g,{Jk}k∈g) in M , we associate the model Sm =

span
{

X j : j ∈
⋃

k∈g Jk
}

. The model S(g,{Jk}k∈g)
then gathers all the vectors Xβ ,

with β fulfilling β j = 0 if j /∈
⋃

k∈g Jk.

Variation sparsity
Writing ∆β = [βk − βk−1]k=1,...,p (with the convention β0 = 0), we have β j =

∑k≤ j[∆β ]k and

Xβ =
p

∑
j=1

∑
k≤ j

[∆β ]kX j =
p

∑
k=1

[∆β ]k ∑
j≥k

X j .

In view of this formula, we will consider for the variation sparse setting the col-
lection of models {Sm, m ∈M } indexed by the set M = P({1, . . . , p}) of all the
subsets of {1, . . . , p}, with models Sm defined by Sm = span

{
∑ j≥k X j , k ∈ m

}
. The

model Sm then gathers all the vectors Xβ , with β fulfilling β j = β j−1 if j /∈ m.

Models are (usually) wrong

We emphasize that it is unlikely that our data exactly corresponds to one of the set-
tings described in the five examples of Section 2.1. For example, it is unlikely that a
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signal f (x) is exactly sparse linear, yet a good sparse linear approximation of it may
exist. In particular, we do not have in mind that one of the models is exact and we
seek it. We rather try to select the best model in the collection in order to estimate f ∗,
keeping in mind that all these models can be wrong. The best model for estimation
corresponds to the oracle model Smo , which is our benchmark for comparison.

2.2.2 Model Selection Procedures

Risk rm of f̂m

Let us compute the risk rm = R( f̂m) of the estimator f̂m. Starting from Y = f ∗+ε , we
obtain the decomposition f ∗− f̂m = (I−ProjSm

) f ∗−ProjSm
ε . Then, the Pythagorean

formula and Lemma A.3, page 294 in Appendix A, give

rm = E
[
‖ f ∗− f̂m‖2

]
= E

[
‖(I−ProjSm

) f ∗‖2 +‖ProjSm
ε‖2]

= ‖(I−ProjSm
) f ∗‖2 +dmσ

2,

where dm = dim(Sm). The risk rm involves two terms. The first term ‖(I −
ProjSm

) f ∗‖2 is a bias term that reflects the quality of Sm for approximating f ∗. The
second term dmσ2 is a variance term that increases linearly with the dimension of
Sm. In particular, we notice that enlarging Sm reduces the first term but increases the
second term. The oracle model Smo is then the model in the collection {Sm, m ∈M },
which achieves the best trade-off between the bias and the variance.

Unbiased estimator of the risk

A natural idea is to use an unbiased estimator r̂m of the risk rm in Criterion (2.6). It
follows from the decomposition Y − f̂m = (I−ProjSm

)( f ∗+ ε) that

E
[
‖Y − f̂m‖2

]
= E

[
‖(I−ProjSm

) f ∗‖2 +2〈(I−ProjSm
) f ∗,ε〉+‖(I−ProjSm

)ε‖2]
= ‖(I−ProjSm

) f ∗‖2 +(n−dm)σ
2

= rm +(n−2dm)σ
2.

As a consequence,
r̂m = ‖Y − f̂m‖2 +(2dm−n)σ2 (2.7)

is an unbiased estimator of the risk. Note that dropping the−nσ2 term in r̂m does not
change the choice of m̂ in (2.6). This choice gives the Akaike Information Criterion
(AIC)

m̂AIC ∈ argmin
m∈M

{
‖Y − f̂m‖2 +2dmσ

2
}
. (2.8)

This criterion is very natural and popular. Nevertheless, it can produce very poor
results in some cases because it does not take into account the variability of the esti-
mated risks r̂m around their mean rm. This is, for example, the case when the number
of models Sm with dimension d grows exponentially with d; see Exercise 2.8.1. It is
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Figure 2.1 We consider the pure noise case ( f ∗ = 0) in the coordinate-sparse setting with
orthogonal design, as in Exercise 2.8.1, with p = 40. For each dimension d = 1, . . . ,7, the
boxplot of {r̂m : dm = d} is represented, with r̂m defined by (2.7). The true risks rm = dmσ2

are represented by gray diamonds. We observe that when dimension d grows, there are more
and more outliers, and min{r̂m : dm = d} tends to decrease with d. The AIC model Sm̂AIC

then
has a large dimension.

due to the fact that in this setting, for large dimensions d, we have a huge number
of models Sm with dimension d. Therefore, we have a huge number of estimators
r̂m, and, due to the randomness, some of them deviate seriously from their expected
value rm. In particular, some r̂m are very small, much smaller than r̂mo associated to
the oracle mo. This leads the AIC criterion to select a model Sm̂ much bigger than
Smo with very high probability. We illustrate this issue in Figure 2.1.

Penalized estimator of the risk

How can we avoid the undesirable phenomenon described above? The AIC crite-
rion (2.8) involves two terms. The first term ‖Y − f̂m‖2 = ‖Y − ProjSm

Y‖2 is de-
creasing with the size of Sm, whereas the second term 2dmσ2 is increasing with the
dimension of Sm. In order to avoid the selection of a model Sm̂ with an overly large
dimension dm̂ (as in Exercise 2.8.1), we shall replace the second term 2dmσ2 by a
term taking into account the number of models per dimension.
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Following this idea, we focus henceforth on a selection criterion of the form

m̂ ∈ argmin
m∈M

{
‖Y − f̂m‖2 +σ

2pen(m)
}
,

where the function pen : M → R+ is called the penalty function. A proper strategy
to build a good penalty function is to perform a non-asymptotic analysis of the risk
R( f̂m̂) and then choose the penalty pen(m) in order to have a risk R( f̂m̂) as close
as possible to the oracle risk R( f̂mo). Such an analysis, leading to the choice of the
selection criterion presented below, is detailed in the proof of the forthcoming Theo-
rem 2.2.

To start with, we associate to the collection of models {Sm, m ∈M } a probability
distribution π = {πm, m ∈M } on M . For a given probability π and a given K > 1,
we select m̂ according to the criterion

m̂ ∈ argmin
m∈M

{
‖Y − f̂m‖2 +σ

2pen(m)
}
,

with pen(m) = K
(√

dm +
√

2log(1/πm)
)2

. (2.9)

The resulting estimator is f̂ = f̂m̂.

At first sight, it is not obvious why we should use a penalty pen(m) with such a shape.
We refer to Remark 2, page 40, for explanations on the shape of Criterion (2.9) in
the light of the proof of Theorem 2.2.

Criterion (2.9) depends heavily on the probability π . It is then crucial to choose this
probability π properly. This probability distribution can reflect our knowledge on the
likelihood of being in one model rather than in another one, but most of the time it
is chosen in a completely ad-hoc way. Actually, as we will see in Theorem 2.2, the
`2-risk of the estimator f̂ = f̂m̂, with m̂ selected by (2.9), roughly behaves like

min
m∈M

(
rm +σ

2 log
1

πm

)
. (2.10)

Therefore, the choice of πm will be driven by an attempt to make this term as close as
possible to the oracle risk rmo . It will be the case, for example, if log(π−1

m )σ2 behaves
like the variance dmσ2 of f̂m: since rm≥ dmσ2, the minimum (2.10) is upper-bounded
by 2rmo when log(π−1

m )≤ dm. Unfortunately, we cannot choose log(π−1
m )≤αdm with

α a numerical constant for any collection of models. Actually, increasing the size of
M requires to decrease the size of πm (since π is a probability distribution on M ),
and when M is very large, as in the coordinate-sparse setting, the sum ∑m∈M e−αdm

cannot be bounded independently of p for a fixed α > 0.

Below, we give examples of probabilities π that produce good results. They are built
by slicing the collection of models {Sm, m ∈M } according to some notion of com-
plexity, most of the time connected to the variance dmσ2 of f̂m.
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Examples of probability πm

The risk rm equals ‖(I−ProjSm
) f ∗‖2 +dmσ2, where dm = dim(Sm). Since we want

the bound minm∈M
{

rm +σ2 log(1/πm)
}

to be as close as possible to rmo , we build
below probabilities π , such that log(1/πm) remains of a size comparable to dm. We
refer to Section 2.2.1 for the definition of the collections of models {Sm,m ∈M } in
the different sparsity settings.

We will write henceforth Cd
p for p!/(d!(p−d)!). It fulfills the following upper bound.

Lemma 2.1
For 0 ≤ d ≤ p, we have the upper bound log

(
Cd

p
)
≤ d(1+ log(p/d)), with the

convention 0log0 = 0.

Proof. The result is obvious for d = 0 and d = 1. Assume that the bound holds true
for Cd−1

p . Since (1+1/k)k ≤ e for any integer k, we have

Cd
p =Cd−1

p
p−d

d
≤
(

ep
d−1

)d−1 p
d
≤
(ep

d

)d−1
(

1+
1

d−1

)d−1 p
d
≤
(ep

d

)d
.

We conclude by induction on d. 2

Coordinate sparsity
In this setting, we slice the collection of models according to the cardinality of m,
and we give the same probability to the Cd

p models with m of cardinality d. We
consider two choices of probability π on M = P({1, . . . , p}).
1. A simple choice is πm = (1+1/p)−p p−|m|, for which we have the upper bound

log(1/πm)≤ 1+ |m| log(p) since (1+1/p)p ≤ e.

2. Another choice is πm =
(

C|m|p

)−1
e−|m|(e − 1)/(e − e−p). According to

Lemma 2.1, we have

log
(

1
πm

)
≤ log(e/(e−1))+ |m|(2+ log(p/|m|)).

We notice that for the two above choices, log(π−1
m ) roughly behaves like 2|m| log(p)

for |m| small compared to p. There is then an additional log(p) factor compared
to the AIC penalty penAIC(m) = 2|m|σ2. This log(p) factor is due to the fact that
the number of models with dimension d roughly grows with d, like d log(p) in the
logarithmic scale, so this term shall appear in the definition of πm. Exercise 2.8.1 and
Section 3.4.1 show that this log(p) factor is actually unavoidable. Since the upper
Bound (2.10) involves log(π−1

m ), we then lose a log(p) factor between the upper
Bound (2.10) and the oracle risk rmo .
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Group sparsity

Here, we slice again the collection of models according to the cardinality of m,
which corresponds to the number of groups Gk for which βGk 6= 0. As before, we
consider two choices.
1. A simple choice πm = (1+1/M)−MM−|m|, for which we have the upper bound

log(1/πm)≤ 1+ |m| log(M).

2. Another choice is πm =
(

C|m|M

)−1
e−|m|(e− 1)/(e− e−M) , for which we have

the upper bound log(1/πm)≤ log(e/(e−1))+ |m|(2+ log(M/|m|)).

Sparse-group sparsity
In this case, we slice M according to both the number of groups and the cardinality
of the nonzero elements in each groups. More precisely, for m = (g,{Jk}k∈g), we
set

πm =
1
Z
× e−|g|

C|g|M
∏
k∈g

e−|Jk|

C|Jk|
|Gk|

(2.11)

with Z such that ∑m πm = 1. In the case where all the Gk have the same size p/M,
we have

Z =
α−αM+1

1−α
where α =

1− e−p/M

e(e−1)
.

We have the upper bound

log(1/πm)≤ |g|(2+ log(M/|g|)+ ∑
k∈g
|Jk|(2+ log(|Gk|/|Jk|)).

Variation sparsity
We can choose the same πm as in the coordinate-sparse setting.

2.3 Risk Bound for Model Selection

2.3.1 Oracle Risk Bound

We consider a collection of models {Sm, m ∈M }, a probability distribution π =

{πm, m ∈M } on M , a constant K > 1, and the estimator f̂ = f̂m̂ given by (2.9). We
have the following risk bound on R( f̂ ).

Theorem 2.2 Oracle risk bound for model selection

For the above choice of f̂ , there exists a constant CK > 1 depending only on K > 1,
such that

E
[
‖ f̂ − f ∗‖2

]
≤CK min

m∈M

{
E
[
‖ f̂m− f ∗‖2

]
+σ

2 log
(

1
πm

)
+σ

2
}
. (2.12)
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Proof. The analysis of the risk of f̂ relies strongly on the Gaussian concentration
Inequality (B.2) (see Appendix B, page 301). The strategy for deriving the risk
Bound (2.12) is to start from Definition (2.9) of m̂, which ensures that

‖Y − f̂m̂‖2 +σ
2pen(m̂)≤ ‖Y − f̂m‖2 +σ

2pen(m), for all m ∈M , (2.13)

and then to control the fluctuations of these quantities around their mean with the
Gaussian concentration Inequality (B.2). The first step is to bound ‖ f̂ − f ∗‖2 in terms
of ‖ f̂m− f ∗‖2 up to an additional random term. The second step is to upper bound
the expectation of this additional random term.

Basic inequalities
Let us fix some m ∈M . Since Y = f ∗+ ε , expanding the square ‖ε +( f ∗− f̂ )‖2 in
the Inequality (2.13) gives

‖ f ∗− f̂‖2 ≤ ‖ f ∗− f̂m‖2 +2〈ε, f ∗− f̂m〉+pen(m)σ2 +2〈ε, f̂ − f ∗〉−pen(m̂)σ2.
(2.14)

From Lemma A.3 in Appendix A, page 294, the random variable ‖ProjSm
ε‖2 follows

a chi-square distribution of dm degrees of freedom, so

E
[
〈ε, f ∗− f̂m〉

]
= E

[
〈ε, f ∗−ProjSm

f ∗〉
]
−E

[
‖ProjSm

ε‖2]= 0−dmσ
2 , (2.15)

which is non-positive. Since

pen(m)σ2 = K
(√

dm +
√

2log(1/πm)
)2

σ
2 ≤ 2K (dm +2log(1/πm))σ

2

≤ 2KE
[
‖ f̂m− f ∗‖2

]
+4K log(1/πm)σ

2, (2.16)

in order to prove Bound (2.12), we only need to prove that for some constants a > 1
and c≥ 0 there exists a random variable Z, such that

2〈ε, f̂ − f ∗〉−pen(m̂)≤ a−1‖ f̂ − f ∗‖2 +Z (2.17)

and E [Z]≤ cσ2. Actually, combining (2.14), (2.15), (2.16), and (2.17) we have

a−1
a

E
[
‖ f ∗− f̂‖2

]
≤ (1+2K)E

[
‖ f ∗− f̂m‖2

]
+4K log(1/πm)σ

2 + cσ
2,

for any m ∈M , and Bound (2.12) follows.

Let us prove (2.17). We denote by < f ∗ > the line spanned by f ∗, by S̄m the space
S̄m = Sm+< f ∗ >, and by S̃m the orthogonal of < f ∗ > in S̄m. In particular, S̄m is the
orthogonal sum of < f ∗ > and S̃m, which is denoted by S̄m =< f ∗ >©⊥ S̃m. Applying
the inequality 2〈x,y〉 ≤ a‖x‖2 +‖y‖2/a for a > 1, we obtain

2〈ε, f̂ − f ∗〉 = 2〈ProjS̄m̂
ε, f̂ − f ∗〉

≤ a‖ProjS̄m̂
ε‖2 +a−1‖ f̂ − f ∗‖2

≤ aN2
σ

2 +aUm̂ σ
2 +a−1‖ f̂ − f ∗‖2,
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where N2 = ‖Proj< f ∗>ε‖2/σ2 and Um = ‖ProjS̃m
ε‖2/σ2. According to Lemma A.3,

N2 follows a χ2 distribution of dimension 1, and Um follows a χ2 distribution of
dimension dm if f ∗ /∈ Sm and dm − 1 if f ∗ ∈ Sm. We then have (2.17), with Z =
aN2σ2 + aUm̂ σ2− pen(m̂)σ2. All we need is to prove that there exists a constant
c≥ 0, such that

E [Z] = aσ
2 +σ

2E [aUm̂−pen(m̂)]≤ cσ
2. (2.18)

We emphasize that the index m̂ depends on ε , so it is not independent of the sequence
{Um, m ∈M }. As a consequence, even if each Um follows a χ2 distribution, the
variable Um̂ does not follow a χ2 distribution.

Stochastic control of E [aUm̂−pen(m̂)]

We remind the reader that pen(m) = K
(√

dm +
√

2log(1/πm)
)2

. In the following,
we choose a = (K +1)/2 > 1, and we start from the basic inequality

E
[

K +1
2

Um̂−pen(m̂)

]
≤ K +1

2
E
[

max
m∈M

(
Um−

2
K +1

pen(m)

)]
≤ K +1

2 ∑
m∈M

E
[(

Um−
2K

K +1

(√
dm +

√
2log(1/πm)

)2
)
+

]
. (2.19)

The map ε → ‖ProjS̃m
ε‖ is 1-Lipschitz, so the Gaussian concentration Inequal-

ity (B.2), page 301, ensures that for each m there exists ξm with exponential dis-
tribution, such that

‖ProjS̃m
ε‖ ≤ E

[
‖ProjS̃m

ε‖
]
+σ

√
2ξm .

Since Um = ‖ProjS̃m
ε‖2/σ2 follows a χ2 distribution with dm or dm− 1 degrees of

freedom, we have E
[
‖ProjS̃m

ε‖
]
≤ E

[
‖ProjS̃m

ε‖2
]1/2 ≤ σ

√
dm. As a consequence,

we have the upper bound

Um ≤
(√

dm +
√

2ξm

)2

≤
(√

dm +
√

2log(1/πm)+
√

2(ξm− log(1/πm))+

)2

≤ 2K
K +1

(√
dm +

√
2log(1/πm)

)2
+

4K
K−1

(ξm− log(1/πm))+,

where we used for the last line the inequality (x+ y)2 ≤ (1+α)x2 +(1+α−1)y2,
with α = (K−1)/(K +1). Since E [(ξm− log(1/πm))+] = exp(− log(1/πm)) = πm,
we have

E
[(

Um−
2K

K +1

(√
dm +

√
2log(1/πm)

)2
)
+

]
≤ 4K

K−1
πm .
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Combining this bound with (2.19), we finally end with

E
[

K +1
2

Um̂−pen(m̂)

]
≤ 2K(K +1)

K−1
σ

2
∑

m∈M
πm =

2K(K +1)
K−1

σ
2 , (2.20)

since ∑m∈M πm = 1. This proves (2.18) and thus (2.17). The proof of (2.16) is com-
plete. 2

Remark 1. We observe from the last inequality in the above proof that Theo-
rem 2.2 remains valid when {πm : m ∈M } do not sum to one, as long as the sum
∑m∈M πm remains small (since the constant CK is proportional to ∑m∈M πm). Asking
for {πm : m ∈M } to sum to one is therefore not mandatory, it is simply a convenient
convention.

Remark 2. Let us explain the shape of Penalty (2.9) in light of the above proof. From
Inequality (2.17) we observe that we need a penalty, such that there exist some a > 1,
c≥ 0, and some random variables Zm fulfilling

2〈ε, f̂m− f ∗〉−pen(m)≤ a−1‖ f̂m− f ∗‖2 +Zm, for all m ∈M ,

and E [supm∈M Zm]≤ cσ2. Since

2〈ε, f̂m− f ∗〉 ≤ a

〈
ε,

f̂m− f ∗

‖ f̂m− f ∗‖

〉2

+a−1‖ f̂m− f ∗‖2

≤ a sup
f∈S̄m

〈
ε,

f
‖ f‖

〉2

+a−1‖ f̂m− f ∗‖2

≤ a‖ProjS̄m
ε‖2 +a−1‖ f̂m− f ∗‖2,

we need a penalty fulfilling E
[
supm∈M

(
a‖ProjS̄m

ε‖2−pen(m)σ2
)]
≤ cσ2. As ex-

plained in the second part of the proof of Theorem 2.2, Penalty (2.9) fulfills such a
bound; see Bound (2.20).

Remark 3. We mention that there are some alternatives to Criterion (2.9) for se-
lecting a model, for example the Goldenshluger–Lepski method. We refer to Exer-
cise 2.8.5 for a simple version of this method and to Section 2.7 for references.

Discussion of Theorem 2.2

The risk Bound (2.12) shows that the estimator (2.9) almost performs the best trade-
off between the risk rm and the complexity term log(π−1

m )σ2. For collections of suf-
ficiently small complexity, we can choose a probability π , such that log(π−1

m ) is of
the same order as dm. In this case, rm is larger (up to a constant) than the complex-
ity term log(π−1

m )σ2, and the risk of the estimator f̂ is bounded by a constant times
the risk of the oracle f̂mo ; see Exercise 2.8.3 for an example. In particular, the AIC
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can produce some good results in this case. For some very large collections, such as
the one for coordinate sparsity, we cannot choose log(π−1

m ) of the same order as dm,
and Exercise 2.8.1 shows that the AIC fails. In this case, the Bound (2.12) cannot be
directly compared to the oracle risk rmo = R( f̂mo). We refer to Exercise 2.8.2 for a
discussion of Bound (2.12) in the coordinate-sparse, the group-sparse, and the sparse
group-sparse settings. In these cases, where (2.12) cannot be directly compared to
the oracle risk rmo , two natural questions arise:
1. Can an estimator perform significantly better than the estimator (2.9)?
2. Can we choose a smaller penalty in (2.9)?
Addressing these two questions in full generality is beyond the scope of this book.
Rather, we will focus on the classical coordinate-sparse setting.

To answer the first question on the optimality of the estimator (2.9), we need to
introduce a suitable notion of optimality and to develop a theory to assess the best
performance that an estimator can achieve. This is the topic of the next chapter. We
will see there, that the estimator (2.9) is optimal in some sense, made precise in
Chapter 3.

Let us now consider the second question. Does it make sense to choose a penalty

smaller than pen(m) = K
(√

dm +
√

2log(1/πm)
)2

, with K > 1 and πm described in
Section 2.2.2 ? In the coordinate-sparse and group-sparse settings the answer is no,
in the sense that we can prove that when f ∗ = 0, the selected m̂ can have a very large
size when K < 1; see Exercise 2.8.1, parts B and C. In particular, the AIC criterion
can lead to a strong overfitting in these cases.

2.4 Computational Issues

We have seen in the previous section that the estimator (2.9) has some very nice sta-
tistical properties. Unfortunately, in many cases, it cannot be implemented in practice
due to its prohibitive computational complexity.

Actually, computing (2.9) requires to screen the whole family M except in a few
cases listed below. The size of the families M introduced in Section 2.2.1 becomes
huge for moderate or large p. For example, the cardinality of the family M cor-
responding to the coordinate-sparse setting is 2p, for the group-sparse setting it is
2M , etc. As a consequence, the complexity of the selection procedure (2.9) becomes
prohibitive for p or M larger than a few tens; see the table below.

number of variables p 10 20 40 80 270
(or groups)

number of
cardinality of M 2p 1 024 1.1106 1.11012 1.21024 particles in

the universe
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Model selection is therefore a very powerful conceptual tool for understanding the
nature of high-dimensional statistical problems, but it cannot be directly imple-
mented except in the few cases listed below or when the signal is very sparse [92].
Yet, it is a useful baseline for deriving computationally feasible procedures, as we
will see in Chapters 5, 6 and 7.

Cases where model selection can be implemented

There are two cases where we can avoid to screen the whole family M for minimiz-
ing (2.9).
1. The first case is when the columns of X are orthogonal. Minimizing (2.9) then

essentially amounts to threshold the values of XT
j Y , for j = 1, . . . , p, which has a

very low complexity; see Exercise 2.8.1, part A, for details.
2. The second case is for the variation sparse setting, where minimizing (2.9) can be

performed via dynamic programming with an overall complexity of the order of
n3. We refer to Exercise 2.8.4 for the details.

Finally, we emphasize that for small families {Sm, m ∈M } of models (for example,
given by a PCA of X), the algorithmic complexity remains small and the estima-
tor (2.9) can be implemented; see Exercise 2.8.3 for examples.

Approximate computation

As mentioned above, some computationally efficient procedures can be derived from
the model selection Criterion (2.9). We refer to Chapters 5, 6 and 7 for details. An al-
ternative point of view is to perform an approximate minimization of Criterion (2.9).
Many algorithms, of a deterministic or stochastic nature, have been proposed. We
briefly described one of the most popular ones: the forward–backward minimization.

For simplicity, we restrict to the coordinate-sparse setting and only describe one of
the multiple versions of the forward–backward algorithm. The principle of forward–
backward minimization is to approximately minimize Criterion (2.9) by alternatively
trying to add and remove variables from the model. More precisely, it starts from the
null model and then builds a sequence of models (mt)t∈N, where two consecutive
models differ by only one variable. At each step t, the algorithm alternatively tries to
add or remove a variable to mt in order to decrease Criterion (2.9). When the criterion
cannot be improved by the addition or deletion of one variable, the algorithm stops
and returns the current value. Below crit(m) refers to Criterion (2.9).
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Forward–backward algorithm

Initialization: start from m0 = /0 and t = 0.

Iterate: until convergence
• forward step:

– search jt+1 ∈ argmin j/∈mt
crit(mt ∪{ j})

– if crit(mt ∪{ jt+1})≤ crit(mt), then mt+1 = mt ∪{ jt+1} else mt+1 = mt

– increase t of one unit
• backward step:

– search jt+1 ∈ argmin j∈mt
crit(mt \{ j})

– if crit(mt \{ jt+1})< crit(mt), then mt+1 = mt \{ jt+1} else mt+1 = mt

– increase t of one unit

Output: f̂mt

In practice, the forward–backward algorithm usually converges quickly. So the final
estimator f̂mt can be computed efficiently. Yet, we emphasize that there is no guar-
antee at all, that the final estimator f̂mt corresponds to the estimator f̂m̂ minimizing
the Criterion (2.9). Yet, some strong results are given by Zhang [169] for a variant of
this algorithm.

2.5 Illustration

We briefly illustrate the theory of model selection on a simulated example. The
graphics are reported in Figure 2.2. We have n= 60 noisy observation Yi = f (i/n)+εi
(gray dots in Figure 2.2) of an unknown undulatory signal f : [0,1]→ R (dotted
curve) at times i/60 for i = 1, . . . ,60, with ε1, . . . ,ε60 i.i.d. with N (0,1) Gaussian
distribution. We want to estimate this signal by expanding the observations on the
Fourier basis. More precisely, we consider the setting of Example 2, page 28, with
the ϕ j given by  ϕ1(x) = 1

ϕ2k(x) = cos(2πkx) for k = 1, . . . ,25
ϕ2k+1(x) = sin(2πkx) for k = 1, . . . ,25.

The top-right plot in Figure 2.2 represents the classical estimator f̂ OLS (in gray)
obtained by simple likelihood maximization

f̂ OLS(x) =
p

∑
j=1

β̂
OLS
j ϕ j(x) with β̂

OLS ∈ argmin
β∈Rp

n

∑
i=1

(
Yi−

p

∑
j=1

β jϕ j(i/n)
)2

.

We observe that the estimator f̂ OLS is overly wavy and provides a poor estimation
of f . If we knew the oracle model mo, then we could estimate f with f̂mo . This
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Figure 2.2 Top-left: The observed data (gray points) and the unknown signal f (dotted line)
that we want to estimate. Top-right: OLS estimator (in gray). Bottom-left: Oracle pseudo-
estimator (gray). Bottom-right: The Estimator (2.9) in gray.

pseudo-estimator is plotted in gray at the bottom-left of Figure 2.2. We observe that
it is very close to f . In practice, we do not know the oracle model mo, but we can
select a model m̂ according to the model selection procedure (2.9), with a collection
of models and a probability distribution π corresponding to the coordinate-sparse
setting. The constant K in the penalty term is chosen to be equal to 1.1. The resulting
estimator f̂m̂ is plotted in gray at the bottom-right of Figure 2.2. We observe that this
estimator is much better than f̂ OLS, and it is almost as good as f̂mo .

2.6 Alternative Point of View on Model Selection

Before concluding this chapter, we point out an alternative strategy for deriving a
selection criterion based on the Bayesian paradigm. In this perspective, the mean f ∗
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of Y is assumed to be the outcome of the following sampling scheme: A model Sm∗

is sampled according to a distribution (πm)m∈M , and then f ∗ is sampled according
to a distribution dΠ( f |m∗) on Sm∗ . The mean f ∗ of Y is then sampled according to
the distribution

dΠ( f ) = ∑
m∈M

πm dΠ( f |m),

with (πm)m∈M a distribution on M and dΠ( f |m) a distribution on Sm. In such a
probabilistic setting, where m∗, f ∗, and Y are random variables, it makes sense to
consider the probability Π(m|Y ) of a model Sm given the observations Y . Computing
this conditional probability, we obtain

Π(m|Y ) = πmdπ(Y |m)

dπ(Y )
=

πm
∫

f∈Sm
e−‖Y− f‖2/(2σ2) dΠ( f |m)

∑m′ πm′
∫

f∈Sm′
e−‖Y− f‖2/(2σ2) dΠ( f |m′)

.

Under some technical conditions on the distribution dΠ( f |m), an asymptotic expan-
sion when n→ ∞ gives for m,m′ ∈M

log
(

Π(m|Y )
Π(m′|Y )

)
n→∞≈

‖Y − f̂m′‖2−‖Y − f̂m‖2

2σ2 +
dm′ −dm

2
log(n)+ log

(
πm

πm′

)
+O(1); (2.21)

see [152]. This asymptotic expansion suggests to choose m by minimizing the crite-
rion

crit(m) = ‖Y − f̂m‖2 +σ
2dm log(n)+2σ

2 log
(
π
−1
m
)
. (2.22)

Assuming a uniform distribution πm on M , we obtain the popular Bayesian Infor-
mation Criterion (BIC)

m̂BIC ∈ argmin
m∈M

{
‖Y − f̂m‖2 +σ

2dm log(n)
}
. (2.23)

The term σ2dm log(n) appearing in the BIC increases more rapidly than the term
2dmσ2 appearing in the AIC. Yet, the model m̂BIC can still be overly large when there
is an exponential number of models per dimension; see Exercise 2.8.1, part B. This
failure has two origins. First, the asymptotic expansion (2.21) fails to be valid in a
high-dimensional setting. Second, the choice of a uniform distribution π on M does
not enable the BIC estimator f̂m̂BIC to adapt to the complexity of M by taking into
account the stochastic variability in (2.21). Actually, Criterion (2.22) is quite similar
to Criterion (2.9), and choosing πm as in Section 2.2.2 would avoid the overfitting
described in Exercise 2.8.1.

2.7 Discussion and References

2.7.1 Take-Home Message

Model selection is a powerful theory for conceptualizing estimation in high-
dimensional settings. Except in the orthogonal setting of Exercise 2.8.1, the variation
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sparse setting of Exercise 2.8.4 and the nested setting of Exercise 2.8.3, its compu-
tational complexity is prohibitive for implementation in high-dimensional settings.
Yet, it remains a good baseline for designing computationally efficient procedures
and for building criteria for selecting among different estimators. These two issues
are developed in Chapters 5, 6 and 7.

2.7.2 References

Model selection ideas based on penalized criteria date back to Mallows [116] and
Akaike [2] who have introduced the AIC. The BIC has been later derived by
Schwarz [141]. The non-asymptotic analysis of model selection can be found in Bar-
ron, Birgé, and Massart [22] and Birgé and Massart [32]. In particular, Theorem 2.2
is adapted from Birgé and Massart [32].

The concept of model selection can be applied in many different settings, including
density estimation, classification, non-parametric regression, etc. In particular, model
selection can handle models more general than linear spans. We refer to Massart’s
Saint-Flour lecture notes [118] for a comprehensive overview on model selection
based on penalized empirical risk criteria. An alternative to these penalized empiri-
cal risk criteria is the Goldenshluger–Lepski method; see Goldenschluger and Lep-
ski [85], Chagny [53], and the references therein. A simplified version of this method
is presented in Exercise 2.8.5.

The results presented above can be extended to the setting where the variance σ2

of the noise is unknown; see Baraud et al. [19]. The rough idea is to plug for each
m an estimator σ̂2

m of σ2 in Criterion (2.9) and to adapt the shape of the penalty
pen(m) accordingly. Another strategy is the slope heuristic developed by Birgé and
Massart [33] (see also Arlot and Massart [9] and Baudry et al. [23] for a review). The
slope heuristic is based on the observation that the dimension dm̂ is small for K > 1
and large for K < 1. The rough idea is then to replace Kσ2 by a constant κ > 0
in (2.9) and search for a constant κ̂c, such that dm̂ is large for κ < κ̂c and small for
κ > κ̂c. The Criterion (2.9) is finally applied with Kσ2 replaced by 2κ̂c.

2.8 Exercises

2.8.1 Orthogonal Design

We consider the linear model (2.2) in the coordinate-sparse setting. We assume in
this exercise that the columns of X are orthogonal. We consider the family M and
the models Sm of the coordinate-sparse setting and take in Criterion (2.9) the penalty
pen(m) = λ |m| for some λ > 0. Note that with λ = K

(
1+
√

2log(p)
)2, this penalty

is almost equal to the penalty pen(m) = K
(√

dm +
√

2log(1/πm)
)2, with the proba-

bility πm = (1+1/p)−p p−|m|.

For λ > 0, we define m̂λ as a minimizer of (2.9) with pen(m) = λ |m|.
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A) Hard thresholding

1. Check that, in this setting, Criterion (2.9) is equal to

‖Y −ProjSm
Y‖2 +pen(m)σ2 = ‖Y‖2 + ∑

j∈m

λσ
2−

(
XT

j Y

‖X j‖

)2
 ,

where X j is the j-th column of X.

2. Prove that a minimizer m̂λ of (2.9) is given by m̂λ =
{

j : (XT
j Y )2 > λ‖X j‖2σ2

}
.

3. What is the consequence in terms of computational complexity?

B) Minimal penalties

We next check that the penalty pen(m) = 2|m| log(p) is minimal in some sense. We
assume in this part that f ∗= 0 so that the oracle model mo is the void set. An accurate
value of λ must then be such that E [|m̂λ |] is small.
1. For j = 1, . . . , p, we set Z j = XT

j ε/(‖X j‖σ). Prove that the Z j are i.i.d. with
N (0,1) distribution.

2. Prove that |m̂λ | follows a binomial distribution with parameters p and ηλ =
P
(
Z2 > λ

)
, with Z a standard Gaussian random variable.

3. We recall that the AIC is defined by (2.8). Check that E [|m̂AIC|] ≈ 0.16 p. In
particular, the AIC is not suited for this context.

4. We recall that for a standard Gaussian random variable Z, we have

P
(
Z2 > x

) x→∞∼
√

2
πx

e−x/2.

Check that for K > 0 we have

E
[
|m̂2K log(p)|

] p→∞∼ p1−K√
πK log(p)

.

Conclude that for K < 1 the mean size of the selected model m̂2K log(p) grows like
a fractional power of p. Choosing pen(m) = 2K|m| log(p) with K < 1 can then
produce poor results in the coordinate-sparse setting. In this sense the penalty
pen(m) = 2|m| log(p) is minimal in this setting.

5. We recall that the BIC is defined by (2.23). Check that for p∼ n we have

E [|m̂BIC|]
p→∞∼

√
2p

π log(p)
.

In particular, the BIC is not suited for this context.
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C) Overfitting with K < 1

We do not assume anymore that f ∗ = 0. We consider again the penalty pen(m) =
λ |m|. We prove here that the choice λ = 2K log(p) with K < 1 produces an estimator
with a risk much larger than the minimax risk.
1. As before, we set Z j = XT

j ε/(‖X j‖σ). We assume henceforth that f ∗ ∈ Sm∗ with
|m∗|= D∗. Writing Pj for the projection on the line spanned by X j, prove that

‖ f̂m̂λ
− f ∗‖2 = ‖ f ∗− ∑

j∈m̂λ

Pj f ∗‖2 + ∑
j∈m̂λ

Z2
j σ

2

≥ ∑
j∈m̂λ \m∗

Z2
j σ

2 ≥ (|m̂λ |−D∗)λσ
2.

2. Prove that for a,x ∈ R+, we have∫ x

x−a
e−z2/2 dz≥

∫ x+a

x
e−z2/2 dz .

As a consequence, for a standard Gaussian random variable Z and for any a,x∈R,
prove that P

(
(Z +a)2 > x2

)
≥ P

(
Z2 > x2

)
.

3. Check that E [|m̂λ |]≥ pP
(
Z2 > λ

)
, with Z a standard Gaussian random variable.

4. For K < 1 and D∗� p1−K(log(p))−1/2, prove that

E
[
‖ f̂m̂2K log(p)

− f ∗‖2
]
≥
(
E
[
|m̂2K log(p)|

]
−D∗

)
2K log(p)σ2

≥
(

pP
(
Z2 > 2K log(p)

)
−D∗

)
2K log(p)σ2 p→∞∼ p1−K

σ
2

√
4K log(p)

π
.

5. We use the notations VD(X) and R[X ,D] defined in Section 3.4.1. Conclude that
for K < 1 and D∗� p1−K(log(p))−1/2, we have for any f ∗ ∈VD∗(X)

E
[
‖ f̂m̂2K log(p)

− f ∗‖2
]
� R[X ,D∗], as p→+∞.

In particular, the choice λ = 2K log(p) with K < 1 produces an estimator with a
risk overly large on VD∗(X) for D∗� p1−K(log(p))−1/2.

This last part emphasizes that the AIC estimator overfits in this setting, as well as the
BIC estimator when p∼ nα with α > 1/2. They should then be avoided.

2.8.2 Risk Bounds for the Different Sparsity Settings

We consider the linear regression model (2.2).

A) Coordinate-sparse setting

We focus here on the coordinate-sparse setting. We use the models defined in Sec-

tion 2.2.1 for this setting and the weights πm =
(

C|m|p

)−1
e−|m|(e−1)/(e− e−p).
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1. We define supp(β ) =
{

j : β j 6= 0
}

and |β |0 = card(supp(β )). Prove that for any
m ∈M we have

E
[
‖ f̂m− f ∗‖2

]
= inf

β :supp(β )=m

{
‖Xβ −Xβ

∗‖2 + |β |0σ
2} .

2. With Theorem 2.2, prove that there exists a constant CK > 1 depending only on
K > 1, such that the estimator f̂ = Xβ̂ defined by (2.9) fulfills

E
[
‖Xβ̂ −Xβ

∗‖2
]

≤CK min
m∈M \ /0

inf
β :supp(β )=m

{
‖Xβ −Xβ

∗‖2 + |β |0
[

1+ log
(

p
|β |0

)]
σ

2
}

≤CK inf
β 6=0

{
‖Xβ −Xβ

∗‖2 + |β |0
[

1+ log
(

p
|β |0

)]
σ

2
}
. (2.24)

B) Group-sparse setting

We focus here on the group-sparse setting, and we assume that the M groups have
the same cardinality p/M. We use the models defined in Section 2.2.1 for this setting

and the weights πm =
(

C|m|M

)−1
e−|m|(e−1)/(e− e−M).

1. We write K (β ) =
{

k : βGk 6= 0
}

. Prove that

E
[
‖ f̂m− f ∗‖2

]
= inf

β :K (β )=m

{
‖Xβ −Xβ

∗‖2 +
|K (β )|p

M
σ

2
}
.

2. With Theorem 2.2, prove that there exists a constant CK > 1 depending only on
K > 1, such that the estimator f̂ = Xβ̂ defined by (2.9) fulfills

E
[
‖Xβ̂ −Xβ

∗‖2
]

≤CK min
m∈M \ /0

{
E
[
‖ f̂m− f ∗‖2

]
+ |m|(1+ log(M/|m|))σ

2
}

≤CK inf
β 6=0

{
‖Xβ −Xβ

∗‖2 + |K (β )|
[

1+
p
M

+ log
(

M
|K (β )|

)]
σ

2
}
.

3. Observe that for some β we have |K (β )|= |β |0M/p and

|K (β )|
[

1+
p
M

+ log
(

M
|K (β )|

)]
= |β |0 +

M
p
|β |0

[
1+ log

(
p
|β |0

)]
.

This inequality enlightens the gain of using the group-sparse models instead of
the coordinate-sparse model when β ∗ is group-sparse and M� p.

C) Sparse group-sparse setting

We focus here on the sparse group-sparse setting, and we assume again that the M
groups have the same cardinality p/M. We use the models and the probability π

defined in Sections 2.2.1 and 2.2.2 for this setting.
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1. We write Jk(β ) =
{

j ∈ Gk : β j 6= 0
}

. Prove that

E
[
‖ f̂(g,{Jk}k∈g)

− f ∗‖2
]
= inf

β :K (β )=g,Jk(β )=Jk

{
‖Xβ −Xβ

∗‖2 + ∑
k∈g
|Jk(β )| σ2

}
.

2. With Theorem 2.2, prove that there exists a constant CK > 1 depending only on
K > 1, such that the estimator f̂ = Xβ̂ defined by (2.9) fulfills

E
[
‖Xβ̂ −Xβ

∗‖2
]
≤CK inf

β 6=0

{
‖Xβ −Xβ

∗‖2 + |K (β )|
[

1+ log
(

M
|K (β )|

)]
σ

2

+ ∑
k∈g
|Jk(β )|

[
1+ log

(
p

M|Jk(β )|

)]
σ

2
}
.

Compared with the group-sparse setting, we observe that the term |K (β )|p/M is
replaced by

∑
k∈g
|Jk(β )|

[
1+ log

(
p

M|Jk(β )|

)]
,

which can be much smaller when |β |0� |K (β )|p/M.

2.8.3 Collections of Nested Models

We consider a collection of models {Sm, m ∈M } indexed by M = {1, . . . ,M} and
fulfilling dim(Sm) = m. Such a collection of models arises naturally, when expanding
a signal (as in Example 2) on the m first coefficients of the Fourier basis

{
ϕ j : j ∈ N

}
.

In this case we have Sm = span
{

ϕ j : j = 1, . . . ,m
}

. Another example is when Sm is
spanned by the m first principal axes given by a Principal Component Analysis of X.

For any α > 0, we choose the probability distribution on M defined by πm =
e−αm(eα − 1)/(1− e−αM) for m ∈M . In this case, we can compare directly the
risk of the estimator (2.9) to the risk of the oracle f̂mo .
1. Check that the estimator defined by (2.9) fulfills the oracle inequality

E
[
‖ f̂m̂− f ∗‖2

]
≤CK,α inf

m=1,...,M
E
[
‖ f̂m− f ∗‖2

]
,

for some constant CK,α > 1 depending only on K and α . In particular, the perfor-
mance of the estimator (2.9) is almost as good as the performance of the oracle
f̂mo up to a universal (multiplicative) constant CK,α .

2. For K ∈ ]1,2[, we set α = (
√

2/K−1)2 and πm = exp(−αm).

(a) Compute the penalty pen(m) = K
(√

m+
√

log(1/πm)
)2

for this choice of
πm. What do you recognize?

(b) Compute the sum ∑m∈M πm. This sum is not equal to one, but we know from
the remark below the proof of Theorem 2.2 that the risk Bound (2.12) remains
valid when the sum ∑m∈M πm is not equal to one, as long as the sum remains
of a moderate size. What it the size of this sum for K = 1.1?
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The conclusion is that the AIC fulfills an oracle inequality like (2.12) when the col-
lection of models is nested. Using the AIC in this setting thus perfectly makes sense.

2.8.4 Segmentation with Dynamic Programming

We consider here the setting where the coordinates f ∗i are piecewise constant as
described in Example 1, page 27. It corresponds to the variation sparse setting with
p = n and with X1, . . . ,Xn the canonical basis of Rn.

We want to estimate f ∗ by model selection. We then consider the family of models
introduced in Section 2.2.2 for the variation sparse setting. This family is indexed
by the 2n subsets of {1, . . . ,n}. A naive minimization of Criterion (2.9) would then
require 2n evaluations of the criterion, which is prohibitive in practice. Yet, in this
setting, Criterion (2.9) can be minimized much more efficiently by dynamic pro-
graming. This exercise is adapted from Lebarbier [102].

We write N2(k) =Y 2
1 + . . .+Y 2

k−1 for 2≤ k≤ n and N2(1) = 0. For 1≤ k < j≤ n+1,
we set

ȳ(k, j) =
1

j− k

j−1

∑
i=k

Yi and R2(k, j) =
j−1

∑
i=k

(
Yi− ȳ(k, j)

)2
.

1. For m = {i1, . . . , iD} ⊂ {1, . . . ,n}, check that f̂m is given by

f̂m =
D

∑
q=1

ȳiq,iq+11iq+1
iq ,

where iD+1 = n+1 and where 1 j
k = Xk + . . .+X j−1 is the vector with ith coordi-

nate equal to 1 if k ≤ i < j and equal to 0 else.
2. We assume in the following that the probability πm depends on m only through its

cardinality |m|, as in the examples given in Section 2.2.2 for the variation sparse
setting. We will write pen(|m|) instead of pen(m) in order to emphasize this de-
pendence. We also define for 0≤ D≤ n

m̂D = argmin
m : |m|=D

‖Y − f̂m‖2 and Cn(D) = ‖Y − f̂m̂D‖
2.

Prove that the minimizer m̂ of (2.9) is given by m̂ = m̂D̂, where

D̂ = argmin
D=0,...,n

{
Cn(D)+σ

2pen(D)
}
.

3. For 1≤ D≤ n, prove that Cn(D) and m̂D are solutions of

Cn(D) = min
1≤i1<...<iD≤n

{
N2(i1)+

D

∑
q=1

R2(iq, iq+1)

}

and m̂D = argmin
1≤i1<...<iD≤n

{
N2(i1)+

D

∑
q=1

R2(iq, iq+1)

}
,

with the convention iD+1 = n+1.
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4. Check that for 2≤ D≤ n, we have the recursive formula

Cn(D) = min
i=D,...,n

{
Ci−1(D−1)+R2(i,n+1)

}
. (2.25)

5. Check that computing all the N2(k) and R2(k, j) for 1 ≤ k < j ≤ n+ 1 requires
O(n3) operations. Building on the recursive Formula (2.25), propose an algorithm
that computes Cn(D) and m̂D for D = 1, . . . ,n with O(n3) operations. Conclude
that m̂ can be computed with only O(n3) operations.

2.8.5 Goldenshluger–Lepski Method

The Goldenshluger–Lepski method [107, 85] is an alternative to the penalized em-
pirical risk Criterion (2.9). It is initially designed for selecting the bandwidth of ker-
nel estimators, but the method has been recently extended to model selection by
Chagny [53]. The following exercise is an adaptation of this work.

We consider a set M = {1, . . . ,M} and a collection of models {Sm, m ∈M }, such
that Sm⊂ Sm′ for m≤m′. The main idea underlying Goldenshluger–Lepski method is
to estimate directly the bias term ‖ f ∗−ProjSm

f ∗‖2 by a term B(m) involving ‖ f̂m′ −
f̂m∧m′‖2 with m′ 6= m. More precisely, let us consider a probability distribution π =
{πm, m ∈M } on M and define pen(m) as in (2.9). In the following, we consider
the model selection procedure

m̂ ∈ argmin
m∈M

{
B(m)+pen(m)σ2} ,

where B(m) = max
m′∈M

[
‖ f̂m′ − f̂m′∧m‖2−pen(m′)σ2

]
+
. (2.26)

1. Considering apart the cases m≤ m̂ and m > m̂, prove that

‖ f̂m̂− f ∗‖2 ≤ 2max
(
‖ f̂m̂− f̂m̂∧m‖2,‖ f̂m− f̂m̂∧m‖2

)
+2‖ f̂m− f ∗‖2

≤ 2(B(m̂)+pen(m)σ2 +B(m)+pen(m̂)σ2)+2‖ f̂m− f ∗‖2

≤ 4(B(m)+pen(m)σ2)+2‖ f̂m− f ∗‖2.

2. Prove that for any m ∈M and η > 0 we have

B(m)≤η +1
η

max
m′≥m
‖ProjSm′

f ∗−ProjSm
f ∗‖2

+ ∑
m′≥m

[
(1+η)‖ProjSm′

ε−ProjSm
ε‖2−pen(m′)σ2

]
+

≤η +1
η
‖ f ∗−ProjSm

f ∗‖2 + ∑
m′∈M

[
(1+η)‖ProjSm′

ε‖2−pen(m′)σ2
]
+
.

We set in the following η = (K−1)/2, where K > 1 is the constant involved in the
definition of pen(m). We extract from the proof of Theorem 2.2 that the expectation
of the above sum is upper-bounded by 2K(K +1)σ2/(K−1).
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3. Prove the following risk bound for the estimator f̂m̂ with m̂ selected according
to (2.26)

E
[
‖ f̂m̂− f ∗‖2

]
≤ inf

m∈M

{
6K +2
K−1

E
[
‖ f̂m− f ∗‖2

]
+4pen(m)σ2

}
+

8K(K +1)
K−1

σ
2.

Compare this bound with the bound in Theorem 2.2.
4. Let us assume that dm = m, for m = 1, . . . ,M. Check that with the choice πm =

e−m(e−1)/(1− e−M), we have

E
[
‖ f̂m̂− f ∗‖2

]
≤CK inf

m=1,...,M
E
[
‖ f̂m− f ∗‖2

]
for some constant CK depending only on K.

Remark: Note that the positive part in the definition of B(m) did not play a role in
the above analysis. Yet, this positive part is natural, since B(m) is an estimator of the
bias term ‖ f ∗−ProjSm

f ∗‖2, which is always non-negative. Similarly, we can consider
maximizing only over the m′ ≥ m in the definition of B(m). As an exercise, you can
check that if we remove the positive part in the definition of B(m) and maximize only
on m′ ≥ m, then the selection criteria (2.9) and (2.26) are completely equivalent.

2.8.6 Estimation under Convex Constraints

Let us consider the estimation problem Y = f + σε ∈ Rn with σ > 0 and ε ∼
N (0, In). Throughout this chapter, for simplicity, we have only considered linear
models Sm for estimating f . In the analysis, we have heavily used that the orthogo-
nal projection onto a linear space is a linear operator. When moving to more general
models, this feature is lost and the analysis is more involved. In this exercise, we
investigate the theoretical properties of the estimators constrained to be in a closed
convex model. We focus in particular on their deviations, which are the key to design
sensible model selection criterions. The exercise is mainly adapted from [55].

Let C be a closed convex set of Rn and let us define the projection

πC y = argmin
u∈C

‖y−u‖2

where ‖.‖ represents the usual Euclidean norm in Rn. Our goal is to investigate the
properties of the estimator f̂C = πC y.

A) Basic facts

1. Let us fix u ∈ C and 0 < t < 1. Why do we have ‖y− (tu+ (1− t)πC y)‖2 ≥
‖y−πC y‖2?

2. Investigating this inequality for t small, prove that

〈u−πC y,y−πC y〉 ≤ 0 and ‖πC y− y‖2 ≤ ‖u− y‖2−‖u−πC y‖2.
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3. Let K be a closed convex set (if u ∈ K, then tu ∈ K for all t ≥ 0). Prove that

〈ΠKy,y〉= ‖ΠKy‖2 =

(
sup

u∈K, ‖u‖=1
〈u,y〉

)2

.

B) Global width

Let u ∈ Rn. We define Ku,C as the closure of the cone {t(c−u) : t ≥ 0, c ∈ C } and
we set

δ (C ,u) = E
[
‖ΠKu,C ε‖2

]
.

1. Compute δ (C ,u) when C is a linear span of dimension d and u ∈ C .
2. Prove that for all u ∈ C we have

‖ f̂C − f‖2 ≤ ‖u− f‖2 +2σ〈ε, f̂C −u〉−‖u− f̂C ‖2

≤ ‖u− f‖2 +σ
2‖ΠKu,C ε‖2.

3. Prove that with probability at least 1− e−L, we have

‖ f̂C − f‖2 ≤ inf
u∈C

{
‖u− f‖2 +σ

2
(√

δ (C ,u)+
√

2L
)2
}
. (2.27)

C) Local width

Let t > 0 and u ∈ Rn. We define

Fu,C (t) = E

[
sup

c∈C , ‖u−c‖≤t
〈ε,c−u〉

]
.

1. Prove that when ‖ f̂C −u‖2 ≤ t, then

‖ f̂C − f‖2 ≤ ‖u− f‖2 +2σZt , where Zt = sup
c∈C , ‖u−c‖≤t

〈ε,c−u〉.

2. Prove that when ‖ f̂C −u‖> t, then

‖ f̂C − f‖2 ≤ ‖u− f‖2 +

(
σZt

t

)2

.

3. Let t(u) > 0 be such that Fu,C (t(u)) ≤ (t(u))2/(2σ). Prove that with probability
at least 1− e−L we have

‖ f̂C − f‖2 ≤ inf
u∈C

{
‖u− f‖2 +

(
t(u)+σ

√
2L
)2
}
. (2.28)

Comparing (2.28) with (2.27), we observe that σ
√

δ (C ,u) has been replaced by
t(u). The main difference between these two measures of complexity is that δ (C ,u)
measures the complexity of the whole set C , while t(u) measures the local complex-
ity of C around u, which can be much smaller at some points u ∈ C .



Chapter 3

Minimax Lower Bounds

The goal of the statistician is to infer information as accurately as possible from
data. From a theoretical perspective, when investigating a given statistical model, her
goal is to propose an estimator with the smallest possible risk, ideally with a low
computational complexity. In particular, when analyzing a given estimator, not only
we must derive an upper bound on the risk as in the previous chapter, but also, we
must derive a lower bound on the risk achievable by the best possible estimator. Then,
we can compare if the upper and lower bounds match. If so, we have the guarantee
that the proposed estimator is optimal (in terms of the chosen risk).

Deriving lower bounds is then a common task in mathematical statistics. We present
in this chapter the most common technique for deriving lower bounds, based on
some inequality taken from information theory. This technique is then applied to
show some optimality results on the model selection estimator (2.9) of Chapter 2, in
the coordinate-sparse setting.

3.1 Minimax Risk

Let us consider a set (P f ) f∈F of distributions on a measurable space (Y ,A ). Let d
be a distance on F . We assume that we only have access to an observation Y ∈ Y
distributed as P f and our goal is to recover f from Y . Hence, we want to design an
estimator f̂ : Y →F such that d( f̂ (Y ), f ) is as small as possible. For example, we
seek for f̂ such that, for some q > 0 the expected error1 E f

[
d( f̂ (Y ), f )q

]
is as small

as possible.

It turns out that seeking for f̂ such that E f
[
d( f̂ (Y ), f )q

]
is as small as possible is a

degenerate problem. Indeed, we have for f ∈F

min
f̂ :Y measurable−→ F

E f
[
d( f̂ (Y ), f )q]= 0,

(the minimum is taken over all the measurable applications f̂ : Y →F ), with the
minimum reached for the constant application f̂ (y) = f . Hence, we will not consider
pointwise optimality (i.e., for a single f ) but optimality on the class F . A popular

1Throughout this chapter, we use the notation E f [φ(Y )] =
∫
Y φ(y)dP f (y) and EQ [φ(Y )] =∫

Y φ(y)dQ(y).

55
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notion of risk is the minimax risk which corresponds to best possible error uniformly
over the class F

R∗(F ) := min
f̂ :Y measurable−→ F

max
f∈F

E f
[
d( f̂ (Y ), f )q] , (3.1)

where, again, the minimum is taken over all the measurable applications f̂ : Y →F .

Our goal in this chapter is to derive a lower bound on R∗(F ). Such a lower bound
is useful in statistics, as, if we find an estimator f̂ with a max-risk over F similar to
the lower bound

max
f∈F

E f
[
d( f̂ (Y ), f )q]≈ lower bound, where lower bound≤R∗(F ),

then it means that the estimator f̂ performs almost as well as the best possible esti-
mator in terms on the max-risk over F .

3.2 Recipe for Proving Lower Bounds

In probability theory, it is often delicate to handle suprema over an infinite, possibly
uncountable, space F . When the objective function, here f → E f

[
d( f̂ (Y ), f )q

]
, is

smooth, a standard recipe is to replace the maximum over F by a maximum over
a finite set { f1, . . . , fN}. Indeed, if any point f ∈ F can be well approximated (in
terms of the distance d) by one of the f1, . . . , fN , then the maximum over F and the
maximum over { f1, . . . , fN} will be close.
Once we have discretized the problem, then it is possible to use lower bounds lifted
from information theory, in order to get a lower bound on the minimax risk R∗(F ).

Kullback–Leibler Divergence

A useful “metric” for deriving lower-bounds is the Kullback–Leibler (KL) diver-
gence between P and Q, defined by

KL(P,Q) =

{ ∫
log
(

dP
dQ

)
dP when P�Q

+∞ else.

Important properties:
1. Non-negativity. For P� Q, we have the alternative formula for the Kullback–

Leibler divergence

KL(P,Q) = EQ
[

φ

(
dP
dQ

)]
, with φ(x) = x log(x).

Since φ is convex on R+, Jensen inequality ensures that

KL(P,Q)≥ φ

(
EQ
[

dP
dQ

])
= φ(1) = 0.



RECIPE FOR PROVING LOWER BOUNDS 57

2. Tensorisation. For P1�Q1 and P2�Q2, we have

KL(P1⊗P2,Q1⊗Q2)

=
∫

x1,x2

(
log
(

dP1

dQ1
(x1)

)
+ log

(
dP2

dQ2
(x2)

))
dP1(x1)dP2(x2)

= KL(P1,Q1)+KL(P2,Q2).

This property is very handy in order to compute the KL divergence between dis-
tributions of data, when the observations are independent.

3.2.1 Fano’s Lemma

The next result is a central tool in deriving lower bounds in statistics.

Theorem 3.1 Fano’s lemma.
Let (P j) j=1,...,N be a set of probability distributions on Y . For any probability

distribution Q such that P j�Q, for j = 1, . . . ,N, we have

min
Ĵ:Y→{1,...,N}

1
N

N

∑
j=1
P j
[
Ĵ(Y ) 6= j

]
≥ 1−

1+ 1
N ∑

N
j=1 KL(P j,Q)
log(N)

, (3.2)

where KL(P,Q) is the Kullback–Leibler divergence between P and Q.

A classical choice for Q is

Q=
1
N

N

∑
j=1
P j,

but some other choices are sometimes more handy, depending on the problem.

Proof of Fano’s lemma.
First, we observe that

min
Ĵ:Y→{1,...,N}

1
N

N

∑
j=1
P j
[
Ĵ(Y ) 6= j

]
= 1− max

Ĵ:Y→{1,...,N}

1
N

N

∑
j=1
P j
[
Ĵ(Y ) = j

]
.

Next lemma provides an explicit formula for the best average error.

Lemma 3.2 Best average risk.
We have

max
Ĵ:Y→{1,...,N}

1
N

N

∑
j=1
P j
[
Ĵ(Y ) = j

]
=

1
N
EQ
[

max
j=1,...,N

dP j

dQ
(Y )
]
.
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Proof of Lemma 3.2. We have

N

∑
j=1
P j
[
Ĵ(Y ) = j

]
=
∫

Y

N

∑
j=1

1Ĵ(y)= j
dP j

dQ
(y) dQ(y)

≤
∫

Y

N

∑
j=1

1Ĵ(y)= j︸ ︷︷ ︸
=1

max
j′=1,...,N

dP j′

dQ
(y) dQ(y)

= EQ
[

max
j′=1,...,N

dP j′

dQ
(Y )
]
.

In addition, the inequality above is an equality for

Ĵ(y) ∈ argmax
j=1,...,N

dP j

dQ
(y).

The proof of Lemma 3.2 is complete. �

In the proof above, it is worth noticing that the best Ĵ corresponds to the maximum
likelihood estimator for j.

So far, we have obtained that

min
Ĵ:Y→{1,...,N}

1
N

N

∑
j=1
P j
[
Ĵ(Y ) 6= j

]
= 1− 1

N
EQ
[

max
j=1,...,N

dP j

dQ
(Y )
]
. (3.3)

It remains to bound EQ
[
max j=1,...,N

dP j
dQ (Y )

]
from above in terms of the KL(P j,Q).

(Too) naive bound. When we have positive random variables Z1, . . . ,ZN , a simple
way to bound the deviations or the expectation of max j=1,...,N Z j is to use a union
bound, which amounts to replace the maximum max j by the sum ∑ j in the expecta-
tion

E
[

max
j

Z j

]
≤∑

j
E [Z j] .

If we apply this simple bound in our case, we obtain

1
N
EQ
[

max
j=1,...,N

dP j

dQ
(Y )
]
≤ 1

N ∑
j=1,...,N

EQ
[

dP j

dQ
(Y )
]

︸ ︷︷ ︸
=
∫
Y dP j(y)=1

= 1.

So, at the end, we have upper-bounded 1
N ∑

N
j=1P j

[
Ĵ(Y ) = j

]
by one, which could

have been done more directly!
Hence, we need to bound more carefully the expectation of the maximum.

Powerful variant. A simple but powerful variant of the max/sum bound is to com-
bine it with Jensen inequality. We state the result as a lemma in order to highlight the
generality of the bound.
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Lemma 3.3 Bounding a maximum.
Let Z1, . . . ,ZN be N random variables with values in an interval I ⊂ R.
Then, for any convex function ϕ : I→ R+ we have

ϕ

(
E
[

max
j=1,...,N

Z j

])
≤

N

∑
j=1
E [ϕ(Z j)] . (3.4)

Proof of Lemma 3.3. We have

ϕ

(
E
[

max
j=1,...,N

Z j

])
≤ E

[
ϕ

(
max

j=1,...,N
Z j

)]
(Jensen inequality)

≤ E
[

max
j=1,...,N

ϕ (Z j)

]
≤ ∑

j=1,...,N
E [ϕ (Z j)] (ϕ non-negative),

which gives (3.4). �

In order to bound EQ
[
max j=1,...,N

dP j
dQ (Y )

]
from above with Lemma 3.3, it remains

to choose the function ϕ . Setting ϕ(u) = u log(u)−u+1, we observe that

EQ
[

ϕ

(
dP j

dQ
(Y )
)]

=
∫

Y
log
(

dP j

dQ
(y)
)

dP j

dQ
(y) dQ(y)−

∫
Y

dP j

dQ
(y) dQ(y)+1

=
∫

Y
log
(

dP j

dQ
(y)
)

dP j(y)−
∫

Y
dP j(y)︸ ︷︷ ︸
=1

+1

= KL(P j,Q).

The function ϕ is non-negative and convex, as can been visualized in Figure 3.1.

Applying Lemma 3.3, we get

ϕ

(
EQ
[

max
j=1,...,N

dP j

dQ
(Y )
])
≤

N

∑
j=1
EQ
[

ϕ

(
dP j

dQ
(Y )
)]

=
N

∑
j=1

KL(P j,Q).

Let us set

u =
1
N
EQ
[

max
j=1,...,N

dP j

dQ
(Y )
]
. (3.5)

We have

ϕ(Nu) = Nu(log(N)+ log(u))−Nu+1
= Nu log(N)+N(u log(u)−u+1︸ ︷︷ ︸

=Nϕ(u)≥0

)− (N−1)

≥ Nu log(N)−N,
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Figure 3.1 Plot of the function ϕ(u) = u log(u)−u+1.

so replacing u by its value (3.5), we get

EQ
[

max
j=1,...,N

dP j

dQ
(Y )
]
× log(N)≤ N +ϕ

(
EQ
[

max
j=1,...,N

dP j

dQ
(Y )
])

≤ N +
N

∑
j=1

KL(P j,Q). (3.6)

Combining (3.3) and (3.6), we get Fano’s inequality (3.2). �

3.2.2 From Fano’s Lemma to a Lower Bound over a Finite Set

Let { f1, . . . , fN} ⊂F be any discretization of F . Let us now explain how we can
get a lower bound on

R(F , f1, . . . , fN) := min
f̂ :Y measurable−→ F

1
N

N

∑
j=1
E f j

[
d( f̂ (Y ), f j)

q]
from Fano’s inequality (3.2).
Fano’s inequality provides a lower bound on

min
f̃ :Y measurable−→ { f1,..., fN}

1
N

N

∑
j=1
P f j

[
f̃ (Y ) 6= f j

]
.

So, to get a lower bound on R(F , f1, . . . , fN) from Fano’s inequality, we must re-

duce two problems. First, we must reduce the minimum over f̂ : Y
measurable−→ F to
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the minimum over f̃ : Y
measurable−→ { f1, . . . , fN}, and second we must lower bound

E f j

[
d( f̂ (Y ), f j)

q
]

in terms of P f j

[
f̃ (Y ) 6= f j

]
. As explained in the next paragraph,

these two reductions can be easily obtained by “projecting” f̂ (y) over the finite set
{ f1(y), . . . , fN(y)} for all y ∈ Y .

For any measurable f̂ : Y →F , let us define

J̃(y) ∈ argmin
j=1,...,N

d( f̂ (y), f j).

By triangular inequality and the definition of J̃(y), we have for any j = 1, . . . ,N

min
i6=k

d( fi, fk)1J̃(y)6= j ≤ d( f j, fJ̃(y))

≤ d( f j, f̂ (y))+d( f̂ (y), fJ̃(y))

≤ 2d( f j, f̂ (y)).

So, for any measurable f̂ : Y →F we have

2q

N

N

∑
j=1
E f j

[
d( f̂ (Y ), f j)

q]≥min
i6=k

d( fi, fk)
q× 1

N

N

∑
j=1
P f j

[
J̃(Y ) 6= j

]
≥min

i6=k
d( fi, fk)

q× min
Ĵ:Y→{1,...,N}

1
N

N

∑
j=1
P f j

[
Ĵ(Y ) 6= j

]
.

Combining this last bound with Fano’s inequality (3.2), we have proved the following
result.

Corollary 3.4 Lower bound for discrete problem.
For any { f1, . . . , fN} ⊂F and for any probability distribution Q such that P f j �
Q, for j = 1, . . . ,N, we have

min
f̂ :Y meas.−→F

1
N

N

∑
j=1
E f j

[
d( f̂ (Y ), f j)

q]
≥ 2−q

(
1−

1+ 1
N ∑

N
j=1 KL(P f j ,Q)
log(N)

)
min
i6=k

d( fi, fk)
q, (3.7)

where KL(P,Q) denotes the Kullback–Leibler divergence between P and Q.
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3.2.3 Back to the Original Problem: Finding a Good Discretization

Since for any { f1, . . . , fN} ⊂F , we have

R∗(F ) = min
f̂ :Y meas.−→F

max
f∈F

E f
[
d( f̂ (Y ), f )q]

≥ min
f̂ :Y meas.−→F

max
j=1,...,N

E f j

[
d( f̂ (Y ), f j)

q]
≥ min

f̂ :Y meas.−→F

1
N

N

∑
j=1
E f j

[
d( f̂ (Y ), f j)

q],
the lower bound (3.7) provides a lower bound on R∗(F ). As we have lower bounded
a maximum by an average in the last step, this inequality is tight only when all the
expectations E f j

[
d( f̂ (Y ), f j)

q
]

are of similar size.

Corollary 3.4 is general, and in practice all the art is to find a good discretization of
F so that the lower bound (3.7) is as large as possible. We observe that we must find
a discrete set { f1, . . . , fN} ⊂F with
1. mini 6=k d( fi, fk) as large as possible

2. and log(N)−1
(

1+ 1
N ∑

N
j=1 KL(P f j ,Q)

)
bounded away from above from 1.

Both conditions are antagonistic, as the first condition requires the f j to be as spread
as possible, while the second condition asks for the f j to be close enough to each
other (with respect to the KL divergence). Hence, the size of the minimax risk
R∗(F ), depends on how much we can separate points in F (with respect to d),
within a region of fixed diameter (with respect to the KL divergence).

It is best to illustrate the choice of a good discretization on a (simple) example.

3.3 Illustration

As an illustration, let us consider the simple case where F =Rd and P f is the Gaus-
sian N ( f ,σ2Id) distribution on Rd . In the Gaussian case, the KL divergence has the
simple expression

KL(P f ,Pg) =
‖ f −g‖2

2σ2 ,

see Exercise 3.6.1. Below, we consider the distance d( f ,g) = ‖ f −g‖.

For ε,R > 0, a set Nε is called an ε-packing of B(0,R) if Nε ⊂ B(0,R) and if ‖ f −
f ′‖2 > ε for any f , f ′ ∈ Nε .
Let us consider a maximal ε-packing Nε of B(0,R). We observe that

B(0,R)⊂
⋃

f∈Nε

B( f ,ε), (3.8)

as otherwise
• there would exist f ′ ∈ B(0,R) fulfilling ‖ f − f ′‖> ε for all f ∈ Nε ,
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• N′ε = Nε ∪{ f ′} would be an ε-packing of B(0,R), which contradicts the fact that
Nε is a maximal ε-packing of B(0,R).

Comparing the volume on both sides of (3.8), we get

Rd ≤ |Nε |εd . (3.9)

Let us set R2 = dσ2 and ε = e−3R. We have

1+
R2

2σ2 ≤
3d
2

=
d
2

log(R/ε)≤ 1
2

log(|Nε |).

Hence, Corollary 3.4 with Q= P0 gives

R∗(F )≥ min
f̂ :Y measurable−→ F

max
f∈Nε

E f
[
‖ f̂ (Y )− f‖2]

≥ min
f̂ :Y measurable−→ F

1
|Nε | ∑

f∈Nε

E f
[
‖ f̂ (Y )− f‖2]

≥ 1
4

1−
1+ 1

|Nε | ∑ f∈Nε

‖ f−0‖2
2σ2

log(|Nε |)

 min
f 6= f ′∈Nε

‖ f − f ′‖2

≥ 1
4

(
1−

1+ R2

2σ2

log(|Nε |)

)
ε

2

≥ 1
8

ε
2 =

1
8e6 dσ

2.

Hence, we have proved that the minimax risk for estimating the mean of a Gaussian
distribution can be lower-bounded by a constant times dσ2. As the risk of the esti-
mator f̂ (y) = y is equal to dσ2 (check it!), we obtain that the minimax risk R∗(F )
is proportional to dσ2.

3.4 Minimax Risk for Coordinate-Sparse Regression

We investigate in this section the optimality of the model selection estimator (2.9),
defined on page 35. For simplicity, we focus on the example of coordinate sparsity.
Similar results can be proved in the other sparse settings. For D ∈ {1, . . . , p}, we
define

VD(X) = {Xβ : β ∈ Rp, |β |0 = D} where |β |0 = Card
{

j : β j 6= 0
}
.

We address in this section the two following issues:
1. What is the best risk that an estimator f̂ can achieve uniformly on f ∗ ∈VD(X)?

2. Is the risk of f̂ = f̂m̂ given by (2.9) of the same size as this optimal risk?
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3.4.1 Lower Bound on the Minimax Risk

As in the previous illustration, we write P f for the Gaussian distribution N ( f ,σ2In)
and E f for the expectation when the vector of observations Y is distributed according
to P f . We consider the minimax risk on VD(X)

R∗[X,D] = inf
f̂

sup
f ∗∈VD(X)

E f ∗
[
‖ f̂ − f ∗‖2

]
,

where the infimum is taken over all the estimators. It corresponds to the best risk
that an estimator f̂ can achieve uniformly on f ∗ ∈VD(X). In the theorem below, we
implement the analysis presented in Section 3.2 in order to derive a lower bound on
R∗[X,D].

For any integer Dmax not larger than p/2, we introduce the restricted isometry con-
stants

cX := inf
β :|β |0≤2Dmax

‖Xβ‖
‖β‖

≤ sup
β :|β |0≤2Dmax

‖Xβ‖
‖β‖

=: cX. (3.10)

Theorem 3.5 Minimax risk for coordinate-sparse regression

Let us fix some Dmax ≤ p/5. For any D≤ Dmax, we have the lower bound

R∗[X,D]≥ e
4(2e+1)2

(
cX
cX

)2

D log
( p

5D

)
σ

2, (3.11)

with cX and cX defined by (3.10).

Proof of Theorem 3.5.
To prove Theorem 3.5, we rely on a slight variant of Corollary 3.4.

Corollary 3.6 (variant of Corollary 3.4)
For any finite set V ⊂ Rn, when

max
f 6= f ′∈V

‖ f − f ′‖2 ≤ 4e
2e+1

σ
2 log(|V |), (3.12)

we have the lower bound

inf
f̂

max
f∈V

E f

[
‖ f̂ − f‖2

]
≥ 1

4(2e+1)
× min

f 6= f ′∈V
‖ f − f ′‖2. (3.13)

We use Corollary 3.6 instead of Corollary 3.4 in order to have cleaner constants, but
there is no substantial differences between the two corollaries.
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Proof of Corollary 3.6.
The proof of Corollary 3.6 is the same as the proof of Corollary 3.4, except that
Fano’s lemma is replaced by Birgé’s lemma (Theorem B.13, Appendix B, page 309),
which is a variant of Fano’s lemma.
With the notation of Fano’s lemma on page 57, for any measurable Ĵ : Y →
{1, . . . ,N}, the events A j =

{
Ĵ(Y ) = j

}
, for j = 1, . . . ,N are disjoint. So, Birgé’s

lemma (Theorem B.13, Appendix B, page 309) ensures that

min
j=1,...,N

P j
[
Ĵ(Y ) = j

]
≤ 2e

2e+1

∨
max
j 6= j′

KL(P j,P j′)

log(N)
.

Hence, if

KL(P j,P j′)≤
2e

2e+1
log(N), (3.14)

we have
min

Ĵ:Y→{1,...,N}
max

j=1,...,N
P j
[
Ĵ(Y ) 6= j

]
≥ 1

2e+1
. (3.15)

This variant of Fano’s lemma being established, the proof of Corollary 3.6 follows
the same lines as the proof of Corollary 3.4, with (3.2) replaced by (3.15).
To conclude, since KL(P f ,Pg) = ‖ f − g‖2/(2σ2) (see Exercise 3.6.1), Condition
(3.14) is equivalent to (3.12). �

Let us now prove Theorem 3.5 from Corollary 3.6. In light of Corollary 3.6, we will
build a subset V ⊂ VD(X) of well-separated points fulfilling (3.12). We rely on the
following combinatorial lemma.

Lemma 3.7 Spreading points in a sparse hypercube
For any positive integer D less than p/5, there exists a set C in {0,1}p

D :=
{x ∈ {0,1}p : |x|0 = D}, fulfilling

|β −β
′|0 > D, for all β 6= β

′ ∈ C

and log |C | ≥ D
2

log
( p

5D

)
.

We refer to Exercise 3.6.2, page 69, for a proof of this lemma.

The set C of Lemma 3.7 gathers coordinate-sparse vectors, which are well separated.
The set V = XC is included in VD(X), yet it may not fulfill (3.12). In order to fulfill
this condition, we rescale this set by an appropriate factor r > 0.

We set

r2 =
e

2e+1
× σ2

c2
X
× log

( p
5D

)
,
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with cX defined by (3.10) and V = {rXβ : β ∈ C }. For any β ,β ′ ∈ C , we have
‖β −β ′‖2 = |β −β ′|0 and |β −β ′|0 ≤ 2D, so

max
f 6= f ′∈V

‖ f − f ′‖2

2σ2 = r2 max
β 6=β ′∈C

‖X(β −β ′)‖2

2σ2

≤ c2
Xr2 max

β 6=β ′∈C

‖β −β ′‖2

2σ2

≤ c2
Xr2 2D

2σ2 ≤
2e

2e+1
× D

2
log
( p

5D

)
≤ 2e

2e+1
log(|C |).

Hence, V = {rXβ : β ∈ C } fulfills (3.12).
When cX = 0, Theorem 3.5 is obvious, so we focus in the following on the case where
cX > 0. Then |V |= |C | and combining Corollary 3.6 with the above inequality gives

inf
f̂

max
f∈V

E f

[
‖ f̂ − f‖2

]
≥ 1

4(2e+1)
min

f 6= f ′∈V
‖ f − f ′‖2

≥
c2

Xr2

4(2e+1)
min

β 6=β ′∈C
‖β −β

′‖2.

Since C ⊂ {0,1}D and |β −β ′|0 > D for all β 6= β ′ ∈ C , we have ‖β −β ′‖2 ≥D for
all β 6= β ′ ∈ C , and then

inf
f̂

max
f∈V

E f

[
‖ f̂ − f‖2

]
≥

c2
Xr2D

4(2e+1)
≥ e

4(2e+1)2

(
cX
cX

)2

D log
( p

5D

)
σ

2.

The proof of Theorem 3.5 is complete. 2

3.4.2 Minimax Optimality of the Model Selection Estimator

So far, we have derived a lower bound (3.11) on the minimax risk R∗[X,D] over
VD(X), but we have not answered our initial question “does the model selection
estimator (2.9) from Chapter 2, page 35, fulfill some optimality properties?”. As
we have not exhibited an estimator f̂ whose risk is upper-bounded on VD(X) by
CD log(p/D)σ2 for some constant C > 0, we have even not proved that the minimax
risk R∗[X,D] is of the order of the lower bound (3.11).

Below, we show that for some suitable choices of the models Sm, and with probability
πm, the model selection estimator (2.9) has a risk upper-bounded by CD log(p/D)σ2

for some constant C > 0. As a consequence, the minimax risk R∗[X,D] is of the order
of D log(p/D)σ2 up to a multiplicative constant, possibly depending on the design
X. In addition, the maximum risk of the estimator (2.9) matches the minimax risk
R∗[X,D], up to a multiplicative constant, possibly depending on the design X.

Let us upper-bound the risk of the estimator (2.9) when f ∗ ∈ VD(X). We choose
the collection of models as in Section 2.2.1 for the coordinate-sparse setting and the
probability

πm =
(

C|m|p

)−1
e−|m|

e−1
e− e−p .
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Then, the risk Bound (2.12), page 37, ensures that there exists a constant C′K > 1, such

that E f ∗
[
‖ f̂ − f ∗‖2

]
≤C′KD log(p/D)σ2 uniformly on all f ∗ ∈VD(X), all matrices

X, all n, p ∈N, and all D≤ p/2. In particular, for all n, p ∈N and D≤ p/2, we have

sup
X

sup
f ∗∈VD(X)

E f ∗
[
‖ f̂ − f ∗‖2

]
≤C′KD log

( p
D

)
σ

2. (3.16)

Let us compare (3.16) and (3.11). We observe that the lower bound (3.11) and the up-
per bound (3.16) are similar, except that the lower bound involves the ratio (cX/cX)

2.
We emphasize that this ratio can be equal to 0 for Dmax large, for example, when
2Dmax ≥ 1+ rank(X). Yet, there exists some designs X for which this ratio is non-
vanishing for Dmax of the order of n/ log(p). For example, if the matrix X = [Xi, j]i, j
is obtained by sampling each entry Xi, j independently according to a standard Gaus-
sian distribution, then Lemma 9.4, page 191, ensures that with large probability, for
Dmax ≤ n/(32log(p)), we have cX/cX ≥ 1/4. As a consequence, there exists a nu-
merical constant C > 0, such that for all σ2 > 0, for all n, p∈N, and for all D smaller
than p/5 and n/(32log(p)), we have

sup
X

R∗[X,D]≥CD log
( p

5D

)
σ

2. (3.17)

Combining (3.17) with (3.16), we obtain for any D smaller than p/5 and
n/(32log(p))

CD log
( p

5D

)
σ

2≤ sup
X

R∗[X,D]≤ sup
X

sup
f ∗∈VD(X)

E f ∗
[
‖ f̂ − f ∗‖2

]
≤C′KD log

( p
D

)
σ

2.

Up to the size of the constants C and C′K , the lower and upper bounds have the same
form. In this sense, the estimation procedure (2.9) is optimal.

3.4.3 Frontier of Estimation in High Dimensions

The minimax lower Bound (3.11) provides insightful information on the frontier
between the statistical problems that can be successfully solved and those that are
hopeless. Again, we only discuss the sparse coordinate case.

The prediction risk E
[
‖ f̂ − f ∗‖2

]
considered in this chapter involves the expectation

of the square of the Euclidean norm of an n-dimensional vector. Since the square of
the Euclidean norm of an n-dimensional vector with entries of order ε > 0 grows like
nε2 with n, it is meaningful to discuss the accuracy of an estimator in terms of the
size of the scaled risk E

[
n−1‖ f̂ − f ∗‖2

]
.

From Bounds (3.16) and (3.11), we know that the minimax scaled-risk

inf
f̂

sup
f ∗∈VD(X)

E f ∗
[
n−1‖ f̂ − f ∗‖2

]
is of order

D
n

log
( p

D

)
σ

2,
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as long as cX/cX ≈ 1 and D≤ p/5. In practice, it means that when f ∗ ∈VD(X) with
Dσ2 log(p/D) small compared to n, a procedure like (2.9) will produce an accurate
estimation of f ∗. On the contrary, when Dσ2 log(p/D) is large compared to n, no
estimator can provide a reliable estimation uniformly on f ∗ ∈ VD(X). In particular,
if the dimension p is larger than en, accurate estimation over all VD(X) is hopeless.

3.5 Discussion and References

3.5.1 Take-Home Message

Minimax risk is a popular notion in mathematical statistics in order to assess the
optimality of an estimator. The typical objective of a theoretical statistician is to
design an estimation procedure with a small computational complexity and which is
minimax optimal (up to constants). Hence, for any new statistical problem, deriving
a (sharp) lower bound on the minimax risk is an important part of the analysis of the
problem. The path for deriving the lower bound in Section 3.4.1 or Exercise 3.6.2 is
the most standard one.

3.5.2 References

The main principle for deriving lower bounds dates back to Le Cam [103]. Fano’s
inequality was introduced in [71], and the proof presented in this chapter is taken
from Baraud [17], see also Guntuboyina [87]. The proof of the generalized Fano in-
equality presented in Exercise 3.6.5 is adapted from Gerchinovitz et al. [77]. Birgé’s
inequality (Theorem B.13, Appendix B, page 309) was introduced in [30].
Has’minskii [90] proposed to use Fano’s inequality for deriving lower bounds in non-
parametric estimation problems and the analysis of Exercise 3.6.4 is due to Yang and
Barron [168]. We refer the reader to the last chapter of Wainwright’s book [163] and
to the second chapter of Tsybakov’s book [153] for a more comprehensive treatment
of the topic.

Finally, we refer to Verzelen [160] and Jin [96] for some discussion on the frontier
of successful estimation in high-dimensional settings.

3.6 Exercises

3.6.1 Kullback–Leibler Divergence between Gaussian Distribution

In this exercise, we write P f ,Σ for the Gaussian distribution N ( f ,Σ) and we compute
the Kullback–Leibler divergence KL(P f0,Σ0 ,P f1,Σ1) for f0, f1 ∈ Rn and Σ0,Σ1 two
n×n symmetric positive definite matrices.
1. As a warm-up, let us start with the spherical case where Σ0 = Σ1 = σ2In. Prove
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the sequence of equalities below

KL
(
P f0,σ2In ,P f1,σ2In

)
= E f0,σ2In

[
log

(
exp
(
−‖Y − f0‖2/(2σ2)

)
exp(−‖Y − f1‖2/(2σ2))

)]

=
1

2σ2E f0,σ2In

[
‖Y − f1‖2−‖Y − f0‖2]= ‖ f0− f1‖2

2σ2 .

2. Following the same lines, prove for any f0, f1 ∈Rn and Σ0,Σ1 symmetric positive
definite matrices

KL
(
P f0,Σ0 ,P f1,Σ1

)
=

1
2
[
log |Σ1Σ

−1
0 |+( f0− f1)

T
Σ
−1
1 ( f0− f1)+Tr(Σ−1

1 Σ0− In)
]
.

3.6.2 Spreading Points in a Sparse Hypercube

We prove in this part Lemma 3.7, page 65. Let D be any positive integer less than
p/5 and consider a maximal set C in {0,1}p

D := {x ∈ {0,1}p : |x|0 = D}, fulfilling

|β −β
′|0 > D, for all β 6= β

′ ∈ C .

In the next questions, we will prove that

log |C | ≥ D
2

log
( p

5D

)
. (3.18)

1. Check that
{0,1}p

D =
⋃

β∈C

{
x ∈ {0,1}p

D : |x−β |0 ≤ D
}
.

Deduce from this covering the upper bound CD
p ≤ |C | maxβ∈C |B(β ,D)|, where

B(β ,D) =
{

x ∈ {0,1}p
D : |x−β |0 ≤ D

}
.

2. Writing d for the integer part of D/2, check the sequence of inequalities

|B(β ,D)|
CD

p
=

d

∑
k=0

Ck
DCk

p−D

CD
p
≤ 2D Cd

p

CD
p
≤ 2D

(
D

p−D+1

)D−d

≤
(

5D
p

)D/2

.

3. Conclude the proof of (3.18).

3.6.3 Some Other Minimax Lower Bounds

Let d be a distance on Rp and fix q ≥ 1. As in Section 3.4.1, we write P f for the
Gaussian distribution N ( f ,σ2In) and the expectationE f will refer to the expectation
when the vector of observations Y is distributed according to P f .
1. Let C be any finite subset of Rp. Replacing Fano’s lemma by Birgé’s lemma

(stated and proved in Theorem B.13, Appendix B, page 309) in the proof of Corol-
lary 3.4, prove that when

max
β 6=β ′∈C

‖X(β −β
′)‖2 ≤ 4e

2e+1
σ

2 log(|C |),
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we have

inf
β̂

max
β∈C

EXβ

[
d(β̂ ,β )q

]
≥ 1

2q
1

2e+1
× min

β 6=β ′∈C
d(β ,β ′)q.

We fix Dmax ≤ p/5. For D≤ Dmax, we set

r2 =
e

2e+1
× σ2

c2
X
× log

( p
5D

)
,

with cX defined by (3.10). We consider below the set Cr = {rβ : β ∈ C }, with
C from the previous exercise and the distance d induced by the norm |x|q =(

∑ j |x j|q
)1/q.

2. Prove that
inf
β̂

max
β∈Cr

EXβ

[
|β̂ −β |qq

]
≥ rqD

2q(2e+1)
.

3. Conclude that for any q≥ 1, we have the lower bound

inf
β̂

sup
β :|β |0=D

EXβ

[
|β̂ −β |qq

]
≥ eq/2

2q(2e+1)1+q/2

(
σ

cX

)q

D
(

log
( p

5D

))q/2
.

3.6.4 Non-Parametric Lower Bounds

Let (S,d) be a metric space and (P f ) f∈S be a collection of distributions on a measur-
able space (Y ,A ). We assume in the following that for any f ,g ∈ S the Kullback–
Leibler divergence between P f and Pg fulfills

KL(P f ,Pg)≤ nd( f ,g)2,

with n an integer larger than 2. A set { f1, . . . , fN} ⊂ S is said to be δ -separated with
respect to d, if d( fi, f j)≥ δ for any i 6= j. We denote by Nd(δ ) the maximal number of
δ -separated points in (S,d). We also assume that there exist α > 0 and 0 <C− <C+

such that, for any δ > 0,

C−δ
−α ≤ log(Nd(δ ))≤C+δ

−α .

1. The covering number Ncov(δ ) of S corresponds to the minimal number of balls
centered in S and with radius δ (relative to the distance d) needed to cover S.
Check that Ncov(δ ) is smaller than Nd(δ ).

2. Let r > 0 and {g1, . . . ,gNcov(r)} ⊂ S be such that the union of the balls (with
respect to the distance d)

{
Bd(g j,r) : j = 1, . . . ,Ncov(r)

}
centered in g j and with

radius r covers S. Let us define

Q=
1

Ncov(r)

Ncov(r)

∑
j=1

Pg j .

Prove that for any f ∈ S

KL(Pf ,Q)≤ nr2 + logNd(r).
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3. Prove that there exists a distribution Q on (Y ,A ) such that for any N ≥ 1 and
any f1, . . . , fN ∈ S

1
N

N

∑
j=1

KL(Pf j ,Q)≤ inf
r>0

{
nr2 + logNd(r)

}
. (3.19)

4. Prove that there exists a constant ρ(α,C−,C+)> 0 depending only on α,C−,C+

such that
inf

f̂ :Y→S
max
f∈S
E f
[
d( f̂ , f )2]≥ ρ(α,C−,C+) n−

2
2+α ,

where the infimum is over all measurable maps from Y to S.

3.6.5 Data Processing Inequality and Generalized Fano Inequality

Our goal in this problem is to show that Fano inequality can be derived from the sim-
ple data processing inequality. The latter inequality gives a meaning to the intuitive
statement “for any random variable X , the image measures PX and QX are closer to
each other than P and Q”. We start by proving the data processing inequality in a
general form, before specializing it to the Kullback–Leibler divergence and deriving
a generalized version of Fano inequality (3.2), page 57.

A) Data Processing Inequality

Let f : [0,+∞)→ R be any convex function fulfilling f (1) = 0. For two probability
distributions P andQ on a common measurable space (Ω,F ), with P�Q, we define
the f -divergence

D f (P,Q) := EQ
[

f
(

dP
dQ

)]
=
∫

Ω

f
(

dP
dQ

)
dQ, (3.20)

where EQ denotes the expectation with respect to Q.

1. As a warm-up, prove with Jensen inequality that, for any P,P1,P2� Q and λ ∈
[0,1], we have

D f (P,Q)≥ 0, and D f (λP1+(1−λ )P2,Q)≤ λD f (P1,Q)+(1−λ )D f (P2,Q).

The data processing inequality states that, for any probability distributions P�Q on
a common measurable space (Ω,F ), and any random variable X : (Ω,F )→ (E,A ),
we have

D f (PX ,QX )≤ D f (P,Q), (3.21)

where PX (respectively QX ) is the distribution of X under P (resp. Q) defined by
PX (A)=P(X ∈A) for any A∈A . The distribution PX is also called the push-forward
of P (resp. Q) by X . The intuition behind (3.21), is that the distributions P and Q can
only become closer after being processed by X .

A first step in order to prove (3.21) is to relate the Radon–Nikodym derivative dPX

dQX

to the conditional expectation EQ
[ dP

dQ |X
]
.
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2. Let g be any measurable function such that Q-almost surely g(X) = EQ
[ dP

dQ |X
]
.

Prove that for any A ∈A

PX (A) = EQ
[

1A(X)
dP
dQ

]
= EQ [1A(X)g(X)] =

∫
E

1A gdQX .

3. Conclude that PX �QX and that QX -almost surely dPX

dQX = g.

4. Conclude the proof of (3.21) by proving the sequence of inequalities

D f (PX ,QX ) =
∫

Ω

f
(
EQ
[

dP
dQ
∣∣X]) dQ

≤
∫

Ω

EQ
[

f
(

dP
dQ

)∣∣X] dQ= D f (P,Q).

B) Two Corollaries of the Data Processing Inequality

i) Joint Convexity
We have seen in the warm-up that the divergence D f is convex in the first variable.
We will now prove that it is jointly convex in the two variables. More precisely, we
will prove that for any distributions P1 � Q1 and P2 � Q2 on (Ω,F ), and any
λ ∈ [0,1] we have

D f (λP1 +(1−λ )P2,λQ1 +(1−λ )Q2)≤ λD f (P1,Q1)+(1−λ )D f (P2,Q2).
(3.22)

We will derive this inequality directly from the data processing inequality. Define the
probabilities P and Q on {1,2}×Ω by

P({ j}×B) =
{

λP1(B) if j = 1,
(1−λ )P2(B) if j = 2,

and the same forQ with P j(B) replaced by Q j(B). Let us define the random variable
X : {1,2}×Ω→Ω, by X( j,ω) = ω .
1. Check that PX = λP1 +(1−λ )P2 and QX = λQ1 +(1−λ )Q2.
2. Notice that

dP
dQ

( j,ω) = 1 j=1
dP1

dQ1
(ω)+1 j=2

dP2

dQ2
(ω),

and prove (3.22) with the sequence of inequalities

D f (λP1 +(1−λ )P2,λQ1 +(1−λ )Q2) = D f (PX ,QX )

≤ D f (P,Q) = λD f (P1,Q1)+(1−λ )D f (P2,Q2).

ii) Variant of the Data Processing Inequality
We next explain how the data processing inequality (3.21) can be used to upper bound
the difference between two expectations EP[Z] and EQ[Z] in terms of D f (P,Q).



EXERCISES 73

More precisely, we will prove the following corollary of the data processing inequal-
ity (3.21). Let B(q) denote the Bernoulli distribution with parameter q. For any
random variable Z : Ω→ [0,1] and any probability distributions P� Q on Ω, we
have

D f (B(EP[Z]),B(EQ[Z]))≤ D f (P,Q). (3.23)

1. Let ` be the Lebesgue measure on [0,1] and let A be any event on Ω× [0,1].
Applying the data processing inequality (3.21) with X = 1A prove that

D f (P,Q) = D f (P⊗ `,Q⊗ `)

≥ D f (B(P⊗ `(A)),B(Q⊗ `(A))).

2. Notice that for the event A= {(ω,x) ∈Ω× [0,1] : x≤ Z(ω)}, we have P⊗`(A) =
EP[Z], and conclude the proof of (3.23).

C) Generalized Fano Inequalities

We specialize the above results for f (x) = x log(x). For this choice of f , we have
D f (P,Q) = KL(P,Q). For p,q ∈ [0,1], we define

kl(p,q) := KL(B(p),B(q)) = p log
(

p
q

)
+(1− p) log

(
1− p
1−q

)
.

1. Prove that p log(p) + (1− p) log(1− p) ≥ − log(2) and kl(p,q) ≥ p log
(

1
q

)
−

log(2).
2. Let Z1, . . . ,ZN be N random variables taking values in [0,1] and let P j �Q j, for

j = 1, . . . ,N be distributions on Ω. By combining the joint convexity (3.22) of kl
and the variant (3.23) of the data processing inequality, prove that

kl

(
1
N

N

∑
i=1
EPi [Zi],

1
N

N

∑
i=1
EQi [Zi]

)
≤ 1

N

N

∑
i=1

KL(Pi,Qi).

3. Combining the two previous questions, prove the generalized Fano inequality

1
N

N

∑
i=1
EPi [Zi]≤

1
N ∑

N
i=1 KL(Pi,Qi)+ log(2)

− log
( 1

N ∑
N
i=1EQi [Zi]

) .

4. In the special case whereQi =Q for i = 1, . . . ,N and Z1+ . . .+ZN ≤ 1,Q almost-
surely, prove that

1
N

N

∑
i=1
EPi [Zi]≤

1
N ∑

N
i=1 KL(Pi,Q)+ log(2)

logN
. (3.24)

The Fano inequality can be recovered from (3.24) as follows. Let A1, . . . ,AN be N
disjoint events in Ω and let P1, . . . ,PN � Q be N + 1 probability distribution on Ω.
Then, taking Zi = 1Ai the Inequality (3.24) gives

1
N

N

∑
i=1
Pi(Ai)≤

1
N ∑

N
i=1 KL(Pi,Q)+ log(2)

logN
.
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You may notice that compared to (3.2), page 57, the constant 1 has been improved
into log(2).



Chapter 4

Aggregation of Estimators

Estimator aggregation is an alternative to model selection for exploiting possible un-
known structures in the data. The main idea is to use a convex combination of a
collection of estimators instead of selecting one among them. Estimator aggrega-
tion shares all the good properties of model selection. Unfortunately, it suffers from
the same high-computational cost. Some approximate computations can be imple-
mented; some of them are described at the end of the chapter.

In the following, we present the aggregation of estimators in the same statistical
setting as in Chapter 2.

4.1 Introduction

The model m̂ selected in the model selection procedure (2.9) can provide some inter-
esting information on the data. Yet, when the objective is only to predict at best f ∗

(as in Examples 2, 4, and 5 in Section 2.1), we only want to have a `2-risk (2.4) as
small as possible, and we do not care to select (or not) a model. In this case, instead
of selecting an estimator f̂m̂ in

{
f̂m, m ∈M

}
, we may prefer to estimate f ∗ by a

convex (or linear) combination f̂ of the
{

f̂m, m ∈M
}

f̂ = ∑
m∈M

wm f̂m , with wm ≥ 0 and ∑
m∈M

wm = 1 . (4.1)

Of course, selecting a model is a special case of convex combination of the
{

f̂m, m∈
M
}

, with the weights wm̂ = 1 and wm = 0 for m 6= m̂. Removing the requirement that
all the weights wm are equal to 0 except one of them allows for more flexibility and
can possibly provide more stable estimators (in the sense that a small perturbation of
the data Y only induces a small change in the estimator f̂ ).

4.2 Gibbs Mixing of Estimators

As in Chapter 2, page 31, we consider a collection of models {Sm, m ∈M }. We
remind the reader that an unbiased estimator of the risk rm = E

[
‖ f ∗− f̂m‖2

]
of the

estimator f̂m = ProjSm
Y is

r̂m = ‖Y − f̂m‖2 +2dmσ
2−nσ

2, with dm = dim(Sm);

75
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see (2.7) in Chapter 2, page 33. We associate to β > 0 and a probability distribution
π on M the Gibbs mixing f̂ of the collection of estimators

{
f̂m, m ∈M

}
f̂ = ∑

m∈M
wm f̂m , with wm =

πme−β r̂m/σ2

Z
, where Z = ∑

m∈M
πme−β r̂m/σ2

. (4.2)

The Gibbs distribution w corresponds to the distribution minimizing over the set of
probability q on M the functional

G (q) = ∑
m

qmr̂m +
σ2

β
KL(q,π) , (4.3)

where KL(q,π) = ∑m∈M qm log(qm/πm)≥ 0 is the Kullback–Leibler divergence be-
tween the probabilities q and π; see Exercise 4.7.1. We will use this property in the
next section for analyzing the risk of f̂ .

Remark. The estimator f̂m̃ with the largest weight wm̃ corresponds to the model m̃
minimizing the criterion

r̂m +
σ2

β
log
(

1
πm

)
= ‖Y − f̂m‖2 +2dmσ

2 +
σ2

β
log
(

1
πm

)
−nσ

2, (4.4)

which is quite similar to the model selection Criterion (2.9), since nσ2 plays no role
in the minimization. Since the weights wm are inversely proportional to the expo-
nential of (4.4), when one of the models has a Criterion (4.4) much smaller than the
others, the estimator f̂ is very close to the estimator f̂m̃, with m̃ minimizing (4.4).
Estimator aggregation then significantly differs from estimator selection only when
there are several models approximately minimizing Criterion (4.4). We refer to Ex-
ercise 4.7.4 for a brief analysis of the virtues of estimator aggregation in this context.

4.3 Oracle Risk Bound

The analysis of the risk of the estimator f̂ relies on the famous Stein’s formula.

Proposition 4.1 Stein’s formula

Let Y be an n-dimensional Gaussian vector with mean µ and covariance matrix
σ2In. For any function F : Rn → Rn, F(x) = (F1(x), . . . ,Fn(x)) continuous, with
piecewise continuous partial derivatives, fulfilling for all i ∈ {1, . . . ,n}

(a) lim|yi|→∞ Fi(y1, . . . ,yn)e−(yi−µi)
2/2σ2

= 0 for all (y1, . . . ,yi−1,yi+1, . . . ,yn) ∈
Rn−1

(b) E [|∂iFi(Y )|]< ∞,

we have

E
[
‖F(Y )−µ‖2]= E[‖F(Y )−Y‖2−nσ

2 +2σ
2div(F)(Y )

]
, (4.5)

where div(F) = ∑i ∂iFi.
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Proof.
An integration by parts gives

σ
2
∫

yi∈R
∂iFi(y1, . . . ,yn)e−(yi−µi)

2/2σ2
dyi

=
∫

yi∈R
(yi−µi)Fi(y1, . . . ,yn)e−(yi−µi)

2/2σ2
dyi ,

for all (y1, . . . ,yi−1,yi+1, . . . ,yn) ∈ Rn−1. Taking the expectation with respect to
Y1, . . . ,Yi−1,Yi+1, . . . ,Yn, it follows that E [(Yi−µi)Fi(Y )] = σ2E [∂iFi(Y )], and finally
E [〈Y −µ,F(Y )〉] = σ2E [div(F)(Y )].

We conclude by expanding

E
[
‖F(Y )−µ‖2]= E[‖F(Y )−Y‖2]+E[‖Y −µ‖2]+2E [〈F(Y )−Y,Y −µ〉]

= E
[
‖F(Y )−Y‖2]+nσ

2 +2σ
2E [div(F)(Y )]−2nσ

2,

where the last equality comes from E [〈Y,Y −µ〉] = E
[
‖Y −µ‖2

]
= nσ2, since Y

is a Gaussian vector with mean µ and covariance matrix σ2In. The proof of Stein’s
formula is complete. 2

We consider a collection of models {Sm, m ∈M }, a probability distribution
{πm, m ∈M } on M , a constant β > 0, and the estimator f̂ given by (4.2). We
have the following risk bound on R( f̂ ).

Theorem 4.2 Oracle risk bound

For β ≤ 1/4 we have

E
[
‖ f̂ − f ∗‖2

]
≤ min

m∈M

{
E
[
‖ f̂m− f ∗‖2

]
+

σ2

β
log
(

1
πm

)}
. (4.6)

Before proving this result, let us comment on it. The risk Bound (4.6) is very similar
to the risk Bound (2.12), page 37, for model selection. The main difference lies in
the constant in front of E

[
‖ f̂m− f‖2

]
, which is exactly one in (4.6). For this reason,

Bound (4.6) is better than Bound (2.12). In particular, the aggregated estimator f̂
given by (4.2) fulfills all the good properties of the estimator (2.9) obtained by model
selection.

Proof.
The Stein formula applied to F(Y ) = f̂ and the linearity of the divergence operator
ensure that

r̂ = ‖ f̂ −Y‖2−nσ
2 +2σ

2
∑

m∈M
div(wm f̂m) fulfills E [r̂] = E

[
‖ f̂ − f ∗‖2

]
.
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After a simplification of the expression of r̂, the result will follow from the fact that
w minimizes (4.3).

Upper bound on r̂. We first expand

‖Y − f̂‖2 =

〈
∑

m∈M
wm(Y − f̂m) , Y − f̂

〉
= ∑

m∈M
wm〈Y − f̂m,Y − f̂m〉+ ∑

m∈M
wm〈Y − f̂m, f̂m− f̂ 〉

= ∑
m∈M

wm‖Y − f̂m‖2 + ∑
m∈M

wm〈Y − f̂ , f̂m− f̂ 〉︸ ︷︷ ︸
=0

− ∑
m∈M

wm‖ f̂ − f̂m‖2,

and notice that the divergence of wm f̂m is given by

div(wm f̂m) = wmdiv( f̂m)+ 〈 f̂m,∇wm〉.

Plugging these two formulas in the definition of r̂, we obtain

r̂ = ∑
m∈M

wm

(
‖Y − f̂m‖2−nσ

2 +2σ
2div( f̂m)

)
+ ∑

m∈M
wm

(
2σ

2
〈

f̂m,
∇wm

wm

〉
−‖ f̂ − f̂m‖2

)
.

For a linear function G(Y ) = AY , we have ∂iGi(Y ) = Aii, so div(G)(Y ) = Tr(A).
Since f̂m = ProjSm

(Y ), the divergence of f̂m is the trace of ProjSm
, which equals the

dimension dm of the space Sm. Then, we have

‖Y − f̂m‖2−nσ
2 +2σ

2div( f̂m) = ‖Y − f̂m‖2 +(2dm−n)σ2 = r̂m.

In addition, we have

∇wm

wm
= −2

β

σ2 (Y − f̂m)−
∇Z

Z
= −2

β

σ2

(
(Y − f̂m)− ∑

m′∈M
wm′(Y − f̂m′)

)
= −2

β

σ2

(
f̂ − f̂m

)
,

so
r̂ = ∑

m∈M
wmr̂m−4β ∑

m∈M
wm〈 f̂m, f̂ − f̂m〉− ∑

m∈M
wm‖ f̂ − f̂m‖2.

We notice that ∑m∈M wm〈 f̂ , f̂ − f̂m〉= 0 so

r̂ = ∑
m∈M

wmr̂m +(4β −1) ∑
m∈M

wm‖ f̂ − f̂m‖2

≤ ∑
m∈M

wmr̂m , (4.7)
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where we used for the last line the condition β ≤ 1/4.

Optimality condition. Since KL(w,π)≥ 0 and w minimizes G over the set of prob-
ability on M (see Exercise 4.7.1, page 83), we have

r̂ ≤ G (w) ≤ G (q) = ∑
m∈M

qmr̂m +
σ2

β
KL(q,π), for any probability q on M .

Taking the expectation, we obtain for any probability q on M

E
[
‖ f̂ − f ∗‖2

]
= E [r̂] ≤ E [G (q)] = ∑

m∈M
qmrm +

σ2

β
KL(q,π), (4.8)

with rm = E [r̂m] = E
[
‖ f̂m− f ∗‖2

]
. The right-hand side of the above bound is mini-

mum for qm = πme−β rm/σ2
/Z ′, with Z ′ = ∑m πme−β rm/σ2

. Since Z ′ ≥ πme−β rm/σ2

for all m ∈M , we observe that

∑
m∈M

qmrm +
σ2

β
KL(q,π) =−σ2

β
log(Z ′)≤ min

m∈M

{
rm−

σ2

β
log(πm)

}
. (4.9)

Combining (4.8) and (4.9), we obtain (4.6). 2

4.4 Numerical Approximation by Metropolis–Hastings

Similarly to model selection, when the cardinality of M is large, the Gibbs mixing
of estimators (4.2) is computationally intractable, since it requires at least card(M )
computations. To overcome this issue, one possibility is to compute an approximation
of (4.2) by using Markov Chain Monte Carlo (MCMC) techniques.

Let F : M →R be a real function on M and w be an arbitrary probability distribution
on M fulfilling wm > 0 for all m ∈M . The Metropolis–Hastings algorithm is a
classical MCMC technique to approximate

Ew[F ] := ∑
m∈M

wmF(m) . (4.10)

The underlying idea of the Metropolis–Hastings algorithm is to generate an ergodic1

Markov chain (Mt)t∈N in M with stationary distribution w and to approximate Ew[F ]
by the average T−1

∑
T
t=1 F(Mt), with T large. This approximation relies on the fact

that for any ergodic Markov chain (Mt)t∈N in M with stationary distribution w, we
have almost surely the convergence

1
T

T

∑
t=1

F(Mt)
T→∞→ Ew[F ] . (4.11)

1We refer to Norris book [127] for lecture notes on Markov chains.
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We remind the reader that a Markov chain on M with transition probability Q(m,m′)
is said to be reversible according to the probability distribution w if

wmQ(m,m′) = wm′Q(m′,m) for all m,m′ ∈M . (4.12)

An aperiodic and irreducible Markov chain that is reversible according to the proba-
bility w automatically fulfills (4.11). The Metropolis–Hastings algorithm proposes a
way to build a Markov chain (Mt)t∈N fulfilling the requirements that
• (Mt)t∈N is aperiodic, irreducible, and reversible according to the probability w,
• the numerical generation of the chain (Mt)t=1,...,T is computationally efficient.
To generate such a Markov chain, the principle of the Metropolis–Hastings algorithm
is the following. Let Γ(m,m′) be the transition probability of an aperiodic irreducible
random walk on M and define

Q(m,m′) = Γ(m,m′)∧ wm′Γ(m′,m)

wm
for all m 6= m′ (4.13)

and Q(m,m) = 1− ∑
m′: m′ 6=m

Q(m,m′) for all m ∈M .

With such a definition, w and Q obviously fulfill (4.12). Therefore, the Markov chain
(Mt)t∈N with transition Q fulfills for any initial condition

1
T

T

∑
t=1

F(Mt)
T→∞→ ∑

m∈M
wmF(m) a.s.

From a practical point of view, the Markov chain (Mt)t can be generated as follows.
We start from the transition Γ(m,m′), which is the transition probability of an aperi-
odic irreductible random walk on M , and then implement the following algorithm.

Metropolis–Hastings algorithm
Initialization: Pick an arbitrary M1 ∈M and choose a burn-in time T0.

Iterate: For t = 1, . . . ,T
1. From the current state Mt , generate M′t+1 according to the distribution Γ(Mt , .)

2. Set

pt+1 = 1∧
wM′t+1

Γ(M′t+1,Mt)

wMt Γ(Mt ,M′t+1)

3.
{

With probability pt+1 : set Mt+1 = M′t+1,
otherwise : set Mt+1 = Mt .

Output: 1
T −T0

T

∑
t=T0+1

F(Mt)
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Let us come back to the problem of approximating the Gibbs aggregation (4.2) of
estimators. In this case, the function F is F(m) = f̂m, and the probability distribution
is

wm =
πme−β r̂m/σ2

Z
, where Z = ∑

m∈M
πme−β r̂m/σ2

.

Computing a single wm is very time consuming when M is very large, since com-
puting Z requires to sum card(M ) terms. Fortunately, the Metropolis–Hastings al-
gorithm does not require computing the weights wm but only some ratios,

wm′

wm
=

πm′e−β r̂m′/σ2

πme−β r̂m/σ2 ,

that can be easily evaluated, since the term Z cancels.

To implement the Metropolis–Hastings algorithm for evaluating (4.2), we must
choose a transition probability Γ. The choice of this transition probability Γ is del-
icate in practice, since it can dramatically change the speed of the convergence
in (4.11). Ideally, the transition Γ must be simple enough so that we can effi-
ciently generate M′t+1 from Mt , and it must lead to a “good” exploration of M
in order to avoid getting trapped in a small neighborhood. We refer to Robert
and Casella [134, 135] for discussions on the choice of Γ and much more on the
Metropolis–Hastings algorithm. Below, we give an example of implementation of
the Metropolis–Hastings algorithm for evaluating (4.2) in the coordinate-sparse set-
ting.

Example: Approximating (4.2) in the sparse regression setting

We consider the collection of estimators
{

f̂m : m ∈M
}

and the probability π in-
troduced in Sections 2.2.1 and 2.2.2 for the coordinate-sparse setting. We write
V (m) for the set of all the subsets m′ that can be obtained from m by adding or
removing one integer j ∈ {1, . . . , p} to m. If we take the uniform distribution on
V (m) as proposal distribution Γ(m, .), then Γ(m,m′)=Γ(m′,m) for any m′ ∈V (m).
As a consequence, we only need to compute wM′t+1

/wM′t at the second step of the
Metropolis–Hastings algorithm. It is crucial to compute this ratio efficiently, since
it will be iterated many times. We have seen that

wm′

wm
=

πm′e−β r̂m′/σ2

πme−β r̂m/σ2 ,

so we need to compute πm′/πm efficiently when m′ ∈ V (m). Let us consider the
choice πm ∝ e−|m|/C|m|p proposed for the coordinate-sparse setting. We have the
simple formulas

πm′

πm
=
|m|+1

e(p−|m|)
for m′=m∪{ j} and

πm′

πm
=

e(p−|m|+1)
|m|

for m′=m\{ j}.
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Convergence rate of the approximation

The main weakness of this Metropolis–Hastings approximation of f̂ is that we do
not know the convergence rate in (4.11). In particular, we have no guarantee that we
can achieve a reasonably good approximation of (4.2) by the Metropolis–Hastings
algorithm in a reasonable time. We emphasize that there is no hope to evaluate
precisely all the weights {wm : m ∈M } in less than card(M ) iterations since the
Markov chain (Mt)t∈N needs to visit each m ∈M many times in order to evaluate
precisely each wm. Yet, if only a few weights wm are significantly positive, we only
need to evaluate properly these few ones, which may happen in a short amount of
time. However, we emphasize that no result guarantees that these few larger weights
wm are estimated accurately after a reasonable amount of time.

To sum up, the Metropolis–Hastings algorithm presented above can be viewed as
a stochastic version of the forward–backward algorithm presented in Section 2.4,
where we average the estimators ( f̂Mt )t=1,...,T instead of selecting the one with small-
est Criterion (2.9).

4.5 Numerical Illustration

Let us illustrate the estimator aggregation on the simulated example of Section 2.5.
We use again the models and probability distribution suited for the coordinate-sparse
setting. The Gibbs mixing f̂ defined by (4.2) with β = 1/4 is plotted in Figure 4.1.
Comparing Figure 4.1 with Figure 2.2, we observe that the estimators (4.2) and (2.9)
are very similar in this example. We refer to Exercise 4.7.2 for a comparison of the
Gibbs mixing and model selection in the orthonormal setting.
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Figure 4.1 Dotted line: Unknown signal. Gray dots: Noisy observations. Gray line: Estima-
tor (4.2).
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4.6 Discussion and References

4.6.1 Take-Home Message

The Gibbs aggregation of estimators shares all the nice statistical properties of model
selection estimators, with a slightly better risk Bound (4.6). Unfortunately, it suf-
fers from the same computational complexity, and in many cases it is not possible
to directly implement it in practice. A possible direction to overcome this issue is
to approximate (4.2) by a Metropolis–Hastings algorithm, which is some kind of
stochastic version of the forward–backward algorithm of Section 2.4 with averaging.
No precise convergence rate is known for this algorithm, so we have no guarantee on
the quality of the finite-time approximation.

4.6.2 References

Ideas on aggregation of estimators in statistics date back at least to Barron [21] and
Catoni [50, 51]. Most of the material presented here comes from the seminal pa-
per of Leung and Barron [109]. The computational aspects presented in Section 4.4
have been proposed by Rigollet and Tsybakov [132]. We refer to Rigollet and Tsy-
bakov [133] for a recent review on the topic and more examples of the use of the
Metropolis–Hastings algorithm. We also point out the paper by Sanchez-Perez [139],
which provides a convergence bound on the Metropolis–Hastings approximation in
a slightly different setting.

The case of unknown variance is more tricky and has attracted less attention. We
refer to Giraud [79] and Gerchinovitz [76] for two points of view on this case. Fi-
nally, the Stein formula for non-Gaussian noise has been investigated in Dalalyan
and Tsybakov [59].

4.7 Exercises

4.7.1 Gibbs Distribution

In this exercise, we first check that the Kullback–Leibler divergence KL(q,π) is non-
negative on the set P(M ) of probability distributions on M . Then, we prove that
the Gibbs distribution w defined by (4.2), page 76, minimizes the function G defined
by (4.3).

For λ ∈ R and q ∈ (R+)M we set,

L (λ )(q) = G (q)+λ ∑
m∈M

qm .

1. From the convexity of x→− log(x) on R+, prove that the Kullback–Leibler di-
vergence KL(q,π) = ∑m qm log(qm/πm) is non-negative for q,π ∈ P(M ).

2. Prove that x→ x log(x) is convex on R+ and q→L (λ )(q) is convex on (R+)M .
3. Prove that the minimum of L (λ ) on (R+)M is achieved for

q(λ )m = πm exp(−β r̂m/σ
2)exp(−1−βλ/σ

2).
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4. Conclude that (
πme−β r̂m/σ2

∑m′∈M πm′e−β r̂m′/σ2 : m ∈M

)
∈ argmin

q∈P(M )

G (q).

4.7.2 Orthonormal Setting with Power Law Prior

We consider the linear regression setting (2.2), in the case where the columns of X
are orthonormal. We choose the collection of models described in Section 2.2.1 for
the sparse-coordinate setting and take the distribution π on M given by

πm =

(
1+

1
p

)−p

p−|m|.

1. Let us write Z j = 〈Y,X j〉, for j = 1, . . . , p. Prove that

f̂ =
p

∑
j=1

exp
(

βZ2
j /σ2

)
exp(2β + log(p))+ exp

(
βZ2

j /σ2
) Z j X j .

2. What is the consequence in terms of computational complexity?
3. Compare qualitatively this mixing procedure to the model selection procedure in

this setting.

4.7.3 Group-Sparse Setting

In the spirit of the algorithm for the coordinate-sparse setting, propose a Metropolis–
Hastings algorithm for computing f̂ in the group-sparse setting (with the collection
of models and the probability π given in Chapter 2).

4.7.4 Gain of Combining

For β ≤ 1/4 and δ > 0, we set

Mδ =

{
m ∈M : rm−

σ2

β
log(πm)≤ inf

m∈M

{
rm−

σ2

β
log(πm)

}
+δ

}
.

By adapting the end the proof of Theorem 4.2, prove that

E
[
‖ f̂ − f ∗‖2

]
≤

min
m∈M

{
E
[
‖ f̂m− f ∗‖2

]
+

σ2

β
log
(

1
πm

)}
+ inf

δ>0

{
δ − σ2

β
log |Mδ |

}
.

In particular, when M estimators are similarly good, the risk bound is reduced by a
term of order σ2 log(M).
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4.7.5 Online Aggregation

We consider here a slightly different statistical setting. We assume that we observe
some temporal data (Xt ,Yt)t=1,...,T , with Yt ∈ R and Xt ∈ Rp. For example, Yt can be
an air pollution indicator (as the concentration of ozone), and Xt can gather some
atmospheric measures, as well as some past values of Y . Our goal is to predict at
each time t the value Yt based on the observations Xt and (Xi,Yi)i=1,...,t−1.

We assume that we have a collection
{

f̂m =
[

f̂m(t)
]

t=1,...,T , m ∈M
}

of estimators

with f̂m(t) = Fm,t (Xt ,(Xi,Yi)i=1,...,t−1) for some measurable function Fm,t . We denote
by

rm(T ) =
T

∑
t=1

(
Yt − f̂m(t)

)2

the cumulated prediction risk of the estimator f̂m. We want to combine the estimators
{ f̂m, m ∈M } in order to have a cumulated prediction risk r(T ) almost as good as
the best rm(T ). We consider a probability distribution π on M , and we denote by

r̂m(t) =
t−1

∑
i=1

(
Yi− f̂m(i)

)2

the estimated prediction risk at time t, with r̂m(1) = 0. At each time t, we build the
Gibbs mixture as in (4.2)

f̂ (t) = ∑
m∈M

wm(t) f̂m(t) , with wm(t) =
πme−β r̂m(t)

Zt
and Zt = ∑

m∈M
πme−β r̂m(t).

We emphasize that the weights wm(t) only depend on the observations available at
time t.
We assume in the following that the observations Yt belong to a bounded interval
[−B,B], which is known. We also assume that the predictors f̂m(t) belong to this
interval. We will prove that in this setting, for a suitable choice of β , we have an
oracle inequality similar (4.6).
1. Prove that

T

∑
t=1

log

(
∑

m∈M
wm(t)exp

(
−β
(
Yt − f̂m(t)

)2
))

= log

(
∑

m∈M
πm exp

(
−β

T

∑
t=1

(
Yt − f̂m(t)

)2

))
≥ max

m∈M
{log(πm)−β rm(T )} .

2. Check that x→ exp(−x2) is concave on the interval [−2−1/2,2−1/2]. Prove that
for β ≤ 1/(8B2) we have

∑
m∈M

wm(t)exp
(
−β
(
Yt − f̂m(t)

)2
)
≤ exp

(
−β
(
Yt − f̂ (t)

)2
)
.
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3. Combining the above results, conclude that for β ≤ 1/(8B2)

T

∑
t=1

(
Yt − f̂ (t)

)2 ≤ min
m∈M

{
T

∑
t=1

(
Yt − f̂m(t)

)2
+

1
β

log
(

1
πm

)}
.

We emphasize that up to this point, the only assumption on the distribution of the
data is that the variables Yt are bounded. In order to state a result similar to (4.6), we
consider in the following the setting

Yt = f (Xt)+ εt , t = 1, . . . ,T,

where εt has mean zero, finite variance σ2
t and is independent of Xt and

(Xi,Yi)i=1,...,t−1. We still assume that |Yt | ≤ B.
4. Prove that for β = 1/(8B2)

E

[
1
T

T

∑
t=1

(
f̂ (t)− f (Xt)

)2
]

≤ min
m∈M

{
E

[
1
T

T

∑
t=1

(
f̂m(t)− f (Xt)

)2
]
+

8B2

T
log
(

1
πm

)}
.

4.7.6 Aggregation with Laplace Prior

This exercise is adapted from Dalalyan et al. [60]. We recommend to have a look at
Chapter 5, Section 5.2 before starting this exercise.
We observe Y ∈ Rn and X ∈ Rn×p. We assume that Y = Xβ ∗+ ε , with ε a random
variable following a subgaussian(σ2I) distribution, which means that for any u ∈Rn

we have P[|〈u,ε〉| ≥ σt‖u‖]≤ e−t2/2. We assume that the p columns X1, . . . ,Xp of X
have unit norm.

In this chapter, we have considered the aggregation of a finite number of estimators.
Here, we will aggregate a continuous set of estimators. We consider all vectors u ∈
Rp as an estimator of β ∗, and we will aggregate them with a weight decreasing
exponentially with

V (u) = ‖Y −Xu‖2 +λ |u|1.
More precisely, for α > 0, we define the probability distribution on Rp by

dπ(u) = π(u)du and π(u) =
e−αV (u)∫

Rp e−αV (w) dw
,

and our goal is to investigate the risk ‖X(β̂ −β ∗)‖2 of the estimator

β̂ =
∫
Rp

udπ(u)

of β ∗. We observe that when α → ∞, the probability distribution dπ is concentrated
on argminu V (u) and we recover the Lasso estimator (5.4), page 91.
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Let δ ∈ (0,1). In this exercise, you will prove that, for λ = 3
√

2σ2 log(p/δ ), with
probability at least 1−δ , we have

‖X(β̂ −β
∗)‖2 ≤ inf

β∈Rp

{
‖X(β −β

∗)‖2 +
λ 2|β |0
κ(β )2

}
+ p/α, (4.14)

where κ(β ) is the compatibility constant defined by (5.8), page 95.
Again, we notice that when α goes to infinity, we recover the result of Theorem 5.1,
page 95. We also observe that to get the last term p/α small enough, we need to take
α ≥ p/σ2.
The key of the proof of (4.14) is the following lemma, proved in the parts (B) and
(C) of the exercise.

Lemma 4.3
For all β ∈ Rp we have

V (β̂ )−V (β )≤ p/α−‖Xβ̂ −Xβ‖2. (4.15)

A) Conclusion Based on Lemma 4.3

1. Assume that λ = 3
√

2σ2 log(p/δ ). Prove that

P
[

max
j=1,...,p

|〈X j,ε〉| ≥ λ/3
]
≤ δ .

2. Admitting Lemma 4.3, check that

‖X(β̂ −β
∗)‖2−‖X(β −β

∗)‖2 ≤

p/α−‖X(β̂ −β )‖2 +2〈ε,X(β̂ −β )〉+λ

[
|β |1−|β̂ |1

]
.

3. Following the same arguments as in the proof of Theorem 5.1 (page 95), conclude
that (4.14) holds with probability at least 1−δ .

The two next sections are dedicated to the proof of Lemma 4.3. A first step is to
prove the intermediate result

V (β̂ )−
∫
Rp

V (u)dπ(u)−
∫
Rp
‖X(u−β )‖2dπ(u)≤−‖Xβ̂ −Xβ‖2. (4.16)

B) Proof of the Intermediate Inequality (4.16)

1. Check that∫
Rp

(
‖X(β ∗−u)‖2 +‖X(β −u)‖2)dπ(u)

= ‖X(β ∗− β̂ )‖2 +‖X(β̂ −β )‖2 +2
∫
Rp
‖X(β̂ −u)‖2dπ(u).
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2. Prove that

V (β̂ )−
∫
Rp

V (u)dπ(u)−
∫
Rp
‖X(u−β )‖2dπ(u)

= 2‖Xβ̂‖2 +λ |β̂ |1−
∫
Rp

(
2‖Xu‖2 +λ |u|1

)
dπ(u)−‖Xβ̂ −Xβ‖2.

3. Conclude the proof of (4.16).

C) Proof of Lemma 4.3

1. Prove that for all β ∈ Rp and all u such that V is differentiable in u, we have

V (β )−‖X(u−β )‖2 ≥V (u)+ 〈∇V (u),β −u〉.

2. With (4.16) and the above inequality, prove the inequality (4.15).



Chapter 5

Convex Criteria

We have seen in Chapter 2 that the model selection procedure (2.9), page 35, has
some nice statistical properties but suffers from a prohibitive computational cost in
many cases. For example, in the coordinate-sparse setting, the algorithmic complex-
ity for computing (2.9) is exponential in p, so it cannot be implemented in moderate
or high-dimensional settings. To circumvent this issue, a standard trick is to derive
from the NP-hard problem (2.9) a convex criterion that can be minimized efficiently.
The main point is then to check that the estimator derived from this convex criterion
is almost as good as the estimator (2.9), at least for some classes of matrix X. This
chapter is devoted to this issue and to some related computational aspects.

5.1 Reminder on Convex Multivariate Functions

In this chapter, we will investigate some estimators that are obtained by minimizing
some convex criteria. In order to analyze these estimators, we will need some basic
results from convex analysis. This section is a brief reminder on the subdifferentials
of convex functions. We refer to Appendix D for the details.

5.1.1 Subdifferentials

A function F :Rn→R is convex if F(λx+(1−λ )y)≤ λF(x)+(1−λ )F(y) for all
x,y ∈ Rn and λ ∈ [0,1]. When a function F is convex and differentiable, we have

F(y)≥ F(x)+ 〈∇F(x),y− x〉 , for all x,y ∈ Rn;

see Lemma D.1 in Appendix D, page 321. For any convex function F (possibly non-
differentiable), we introduce the subdifferential ∂F of F , defined by

∂F(x) = {w ∈ Rn : F(y)≥ F(x)+ 〈w,y− x〉 for all y ∈ Rn} . (5.1)

A vector w ∈ ∂F(x) is called a subgradient of F in x. It is straightforward to check
(see Lemma D.2 in Appendix D, page 321) that F is convex if and only if the set
∂F(x) is non-empty for all x∈Rn. Furthermore, when F is convex and differentiable,
∂F(x) = {∇F(x)}; see again Lemma D.2 in Appendix D.

89
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Examples of subdifferentials

We refer to Lemma D.5, page 323, for the derivation of the following subdifferen-
tials.

1. The subdifferential of the `1 norm |x|1 = ∑ j |x j| is given by

∂ |x|1 =
{

w ∈ Rn : w j = sign(x j) for x j 6= 0, w j ∈ [−1,1] for x j = 0
}
,

where sign(x) = 1x>0−1x≤0.
Equivalently, ∂ |x|1 = {φ : 〈φ ,x〉= |x|1 and |φ |∞ ≤ 1}.

2. The subdifferential of the `∞-norm |x|∞ = max j |x j| is given by
∂ |x|∞ = {w ∈ Rn : |w|1 ≤ 1 and 〈w,x〉= |x|∞}. For x 6= 0, writing J∗ ={

j : |x j|= |x|∞
}

, a vector w is a subgradient of |x|∞ if and only if it fulfills

w j = 0 for j /∈ J∗ and w j = λ jsign(x j) for j ∈ J∗ where λ j ≥ 0 and ∑
j∈J∗

λ j = 1 .

5.1.2 Two Useful Properties

We recall two useful properties of convex functions.
1. The subdifferential of a convex function F : Rn→ R is monotone:

〈wx−wy,x− y〉 ≥ 0, for all wx ∈ ∂F(x) and wy ∈ ∂F(y).

Actually, by definition we have F(y) ≥ F(x) + 〈wx,y− x〉 and F(x) ≥ F(y) +
〈wy,x− y〉. Summing these two inequalities gives 〈wx−wy,x− y〉 ≥ 0.

2. The minimizers of a convex function F : Rn→ R are characterized by

x∗ ∈ argmin
x∈Rn

F(x) ⇐⇒ 0 ∈ ∂F(x∗). (5.2)

This immediately follows from the fact that F(y) ≥ F(x∗) + 〈0,y− x∗〉 for all
y ∈ Rn in both cases.

5.2 Lasso Estimator

In this section, we explain the main ideas of the chapter in the coordinate-sparse
setting described in Chapter 2, Section 2.1. The other settings are investigated in
Section 5.3. In particular, we focus on the linear model Y = Xβ ∗+ ε , and we will
assume for simplicity that the columns of X have `2-norm 1.

Let us consider the family of estimators
{

f̂m : m ∈M
}

introduced in Chapter 2,
Section 2.2, page 31, for the coordinate-sparse setting. We remind the reader that
the model selection estimator obtained by minimizing (2.9) in the coordinate-sparse
setting has some very good statistical properties, but the minimization of (2.9) has a
prohibitive computational cost for moderate to large p. Our goal below is to derive
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from (2.9) a convex criterion that can be minimized efficiently even for large p. For
deriving this convex criterion, we will start from a slight variation of the selection
Criterion (2.9) in the coordinate-sparse setting with πm = (1+1/p)−p p−|m|, namely

m̂ ∈ argmin
m∈M

{
‖Y −Xβ̂m‖2 +λ |m|

}
, with λ =

(
1+
√

2log(p)
)2

σ
2,

where β̂m is defined by f̂m = Xβ̂m. We write supp(β ) =
{

j : β j 6= 0
}

for the sup-
port of β ∈ Rp, and we observe that for all m ⊂ {1, . . . , p}, the models Sm for
the coordinate-sparse setting (defined in Section 2.2.1, page 32) can be written as
Sm = {Xβ : supp(β ) = m}. The estimator f̂m = ProjSm

Y is then equal to Xβ̂m, with

β̂m ∈ argminβ : supp(β )=m ‖Y −Xβ‖2, so we have

m̂ ∈ argmin
m∈M

min
β : supp(β )=m

{
‖Y −Xβ‖2 +λ |β |0

}
,

with |β |0 = card(supp(β )). Slicing the minimization of β → ‖Y −Xβ‖2 + λ |β |0
according to the β with support in m⊂ {1, . . . , p}, we obtain the identity

β̂m̂ ∈ argmin
β∈Rp

{
‖Y −Xβ‖2 +λ |β |0

}
. (5.3)

The function β → ‖Y −Xβ‖2 is smooth and convex, so it can be handled easily in
the minimization of (5.3). The troubles come from |β |0, which is non-smooth and
non-convex. The main idea for deriving from (5.3) a criterion easily amenable to
minimization is

to replace |β |0 =
p

∑
j=1

1β j 6=0 by |β |1 =
p

∑
j=1
|β j|, which is convex.

For λ > 0, we can then relax the minimization problem (5.3) by considering the
convex surrogate

β̂λ ∈ argmin
β∈Rp

L (β ), where L (β ) = ‖Y −Xβ‖2 +λ |β |1. (5.4)

The estimator β̂λ is called the Lasso estimator. The solution to the minimization
problem (5.4) may not be unique, but the resulting estimator f̂λ = Xβ̂λ is always
unique. We refer to Exercise 5.5.1 for a proof of this result and for a criterion ensuring
the uniqueness of the solution to (5.4). Criterion (5.4) is convex, and we will describe
in Section 5.2.4 some efficient procedures for minimizing it. So the Lasso estimator
has the nice feature that it can be computed even for large p. Yet, does the Lasso
estimator have some good statistical properties? We will see below that the support
of this estimator is a subset of {1, . . . , p} for λ large enough, and Theorem 5.1 will
provide a risk bound for the resulting estimator f̂λ = Xβ̂λ .
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5.2.1 Geometric Insights

Let us denote by B`1(R) the `1-ball of radius R defined by B`1(R) =

{β ∈ Rp : |β |1 ≤ R}. We set R̂λ = |β̂λ |1, and we notice that R̂λ decreases when λ

increases. By Lagrangian duality, the Lasso estimator β̂λ is solution of

β̂λ ∈ argmin
β∈B

`1 (R̂λ )

‖Y −Xβ‖2. (5.5)

In Figure 5.1, the level sets of the function β →‖Y−Xβ‖2 are plotted (dashed lines),
together with the constraint |β |1 ≤ R for decreasing values of R in an example with
p = 2. We remark that for R small enough (which corresponds to λ large enough),
some coordinate [β̂λ ] j are set to 0. This illustrates the fact that the Lasso estimator
selects variables for λ large enough.

Remark. We point out that the selection of variables for R small enough comes
from the non-smoothness of the `1-ball B`1(R). Actually, replacing the `1-ball by a
`p-ball B`p(R) with 1 < p < +∞ would not lead to variable selection. We refer to
Exercise 5.5.7 for the analysis of the estimator (5.4) when |β |1 is replaced by ‖β‖2.

5.2.2 Analytic Insights

Let us better understand the variable selection observed above by analyzing the shape
of the solution of (5.4). The subdifferential of the function L is

∂L (β ) =
{
−2XT (Y −Xβ )+λ z : z ∈ ∂ |β |1

}
,

so the first-order optimality condition (5.2) ensures the existence of ẑ ∈ ∂ |β̂λ |1 ful-
filling −2XT (Y −Xβ̂λ )+λ ẑ = 0. According to the description of the subdifferential
of the `1-norm given in Section 5.1, we obtain

XT Xβ̂λ = XTY − λ

2
ẑ. (5.6)

for some ẑ ∈ Rp, fulfilling ẑ j = sign([β̂λ ] j) when [β̂λ ] j 6= 0 and ẑ j ∈ [−1,1] when
[β̂λ ] j = 0. Let us investigate the selection of variables induced by this formula.

Orthonormal setting

We first consider the simple case where the columns of X are orthonormal1 and thus
XT X = Ip. In this case, Equation (5.6) gives

[β̂λ ] j +
λ

2
sign([β̂λ ] j) = XT

j Y for [β̂λ ] j 6= 0,

1It means that the columns of X are orthogonal with norm 1. Notice that this enforces p≤ n.
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R=2 R= 1.4

R= 1.2 R= 0.82

Figure 5.1 Dashed gray lines represent the level sets of the function β → ‖Y −Xβ‖2. Black
plain lines represent the `1-balls B`1(R) for R = 2, R = 1.4, R = 1.2 and R = 0.82. The dark
stars represent β̂R = argmin|β |1≤R ‖Y −Xβ‖2 for the current value of R. When R = 2, the

`1-norm of β̂R is smaller than R, so β̂R coincides with β̂ ols = argminβ ‖Y −Xβ‖2. When R is

smaller than 1.2, the second coordinate of β̂R is equal to 0.

which enforces both sign([β̂λ ] j) = sign(XT
j Y ) and [β̂λ ] j = XT

j Y − λ sign(XT
j Y )/2

when [β̂λ ] j 6= 0. In particular, we notice that we cannot have [β̂λ ] j 6= 0 when
|XT

j Y | ≤ λ/2. Therefore, we have [β̂λ ] j = 0 when |XT
j Y | ≤ λ/2 and [β̂λ ] j = XT

j Y −
λ sign(XT

j Y )/2 otherwise. To sum up the above analysis, in the orthonormal setting,
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the Lasso estimator (5.4) is given by

[β̂λ ] j = XT
j Y

(
1− λ

2|XT
j Y |

)
+

, j = 1, . . . , p , with (x)+ = max(x,0). (5.7)

It then selects the coordinates j such that |〈X j,Y 〉|> λ/2.

It is interesting to compare the variables selected by the Lasso estimator to those
selected by the initial model-selection estimator (5.3). According to Exercise 2.8.1,
Question A.2, the estimator (5.3) selects in the orthonormal setting the coordinates
j such that |〈X j,Y 〉| >

√
λ . Therefore, replacing λ in (5.4) by 2

√
λ both estima-

tors (5.3) and (5.4) select the same variables in the orthonormal setting.

Non-orthogonal setting

When the columns of X are not orthogonal, there is no analytic formula for β̂λ ,
and the Lasso estimator will not select the same variables as (5.3) in general. Write
m̂λ =

{
j : [β̂λ ] j 6= 0

}
for the support of β̂λ . Equation (5.6) gives

0 ≤ β̂
T
λ

XT Xβ̂λ = 〈β̂λ ,XTY −λ ẑ/2〉

= ∑
j∈m̂λ

[β̂λ ] j

(
XT

j Y − λ

2
sign([β̂λ ] j)

)
,

from which we deduce that β̂λ = 0 for λ ≥ 2|XTY |∞. When λ < 2|XTY |∞, the Lasso
estimator β̂λ is nonzero, but there is no simple formula describing its support.

Finally, we can compare the estimator f̂λ = Xβ̂λ to the estimator f̂m̂λ
, where

f̂m = ProjSm
Y with Sm, as in the beginning of Section 5.2. We denote by A+ the

Moore–Penrose pseudo-inverse of a matrix A (see Appendix C.2 for a reminder on
this pseudo-inverse). The matrix (AT )+AT equals the projection on the range of A,
so A = (AT )+AT A. Accordingly, for λ < 2|XTY |∞, we derive from (5.6)

f̂λ = Xm̂λ
[β̂λ ]m̂λ

=
(

XT
m̂λ

)+(
XT

m̂λ
Y − λ

2
sign([β̂λ ]m̂λ

)

)
= ProjŜλ

Y − λ

2

(
XT

m̂λ

)+
sign([β̂λ ]m̂λ

),

where Ŝλ = range(Xm̂λ
) = span

{
X j : j ∈ m̂λ

}
and where sign(v) represents the

vector with coordinates sign(v j). We observe in particular that f̂λ differs from
f̂m̂λ

= ProjŜλ

Y by an additional term proportional to λ . As we will discuss in Sec-

tion 5.2.5, this additional term induces a shrinkage of the estimator f̂m̂λ
toward 0.

The intensity of this shrinkage is proportional to λ .

In the next two sections, we state a risk bound for the Lasso estimator, and we de-
scribe two numerical schemes for computing it.
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5.2.3 Oracle Risk Bound

We have proved in Chapter 2 that the risk of the model selection estimator (2.9) can
be nicely bounded; see Theorem 2.2 and Exercise 2.8.2, part A. We derive in this
section a risk bound for the Lasso estimator f̂λ = Xβ̂λ , which is similar, at least for
some classes of design matrix X.

The best risk bounds available in the literature involve the so-called compatibility
constant

κ(β ) = min
v∈C (β )

{√
|m|‖Xv‖
|vm|1

}
,

where m = supp(β ) and C (β ) = {v ∈ Rp : 5|vm|1 > |vmc |1} . (5.8)

This compatibility constant is a measure of the lack of orthogonality of the columns
of Xm; see Exercise 5.5.3. We emphasize that it can be very small for some matrices
X. We refer again to Exercise 5.5.3 for a simple lower bound on κ(β ).

A deterministic bound

We first state a deterministic bound and then derive a risk bound from it.

Theorem 5.1 A deterministic bound

For λ ≥ 3|XT ε|∞ we have

‖X(β̂λ −β
∗)‖2 ≤ inf

β∈Rp\{0}

{
‖X(β −β

∗)‖2 +
λ 2

κ(β )2 |β |0
}
, (5.9)

with κ(β ) defined by (5.8).

Proof. The proof mainly relies on the optimality condition (5.2) for (5.4) and some
simple (but clever) algebra.

Optimality condition: We have 0∈ ∂L (β̂λ ). Since any ŵ∈ ∂L (β̂λ ) can be written
as ŵ=−2XT (Y−Xβ̂λ )+λ ẑ with ẑ∈ ∂ |β̂λ |1, using Y =Xβ ∗+ε we obtain that there
exists ẑ ∈ ∂ |β̂λ |1 such that 2XT (Xβ̂λ −Xβ ∗)−2XT ε +λ ẑ = 0. In particular, for all
β ∈ Rp

2〈X(β̂λ −β
∗),X(β̂λ −β )〉−2〈XT

ε, β̂λ −β 〉+λ 〈ẑ, β̂λ −β 〉= 0. (5.10)

Convexity: Since |.|1 is convex, the subgradient monotonicity ensures that 〈ẑ, β̂λ −
β 〉 ≥ 〈z, β̂λ −β 〉 for all z ∈ ∂ |β |1. Therefore, Equation (5.10) gives

for all β ∈ Rp and for all z ∈ ∂ |β |1 we have,

2〈X(β̂λ −β
∗),X(β̂λ −β )〉 ≤ 2〈XT

ε, β̂λ −β 〉−λ 〈z, β̂λ −β 〉. (5.11)

The next lemma provides an upper bound on the right-hand side of (5.11).
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Lemma 5.2
We set m =supp(β ). There exists z ∈ ∂ |β |1, such that for λ ≥ 3|XT ε|∞ we have

1. the inequality 2〈XT ε, β̂λ −β 〉−λ 〈z, β̂λ −β 〉 ≤ 2λ |(β̂λ −β )m|1 ,
2. and 5|(β̂λ −β )m|1 > |(β̂λ −β )mc |1 when 〈X(β̂λ −β ∗),X(β̂λ −β )〉> 0.

Proof of the lemma
1. Since ∂ |z|1 =

{
z ∈ Rp : z j = sign(β j) for j ∈ m and z j ∈ [−1,1] for j ∈ mc

}
, we

can choose z ∈ ∂ |β |1, such that z j = sign([β̂λ −β ] j) = sign([β̂λ ] j) for all j ∈mc.
Using the duality bound 〈x,y〉 ≤ |x|∞|y|1, we have for this choice of z

2〈XT
ε, β̂λ −β 〉−λ 〈z, β̂λ −β 〉

= 2〈XT
ε, β̂λ −β 〉−λ 〈zm,(β̂λ −β )m〉−λ 〈zmc ,(β̂λ −β )mc〉

≤ 2|XT
ε|∞|β̂λ −β |1 +λ |(β̂λ −β )m|1−λ |(β̂λ −β )mc |1

≤ 5λ

3
|(β̂λ −β )m|1−

λ

3
|(β̂λ −β )mc |1 (5.12)

≤ 2λ |(β̂λ −β )m|1 ,

where we used 3|XT ε|∞ ≤ λ and |β̂λ − β |1 = |(β̂λ − β )mc |1 + |(β̂λ − β )m|1 for
the Bound (5.12).

2. When 〈X(β̂λ −β ∗),X(β̂λ −β )〉 > 0, combining (5.11) with (5.12) gives the in-
equality 5|(β̂λ −β )m|1 > |(β̂λ −β )mc |1. 2

We now conclude the proof of Theorem 5.1. Al-Kashi formula gives

2〈X(β̂λ −β
∗),X(β̂λ −β )〉= ‖X(β̂λ −β

∗)‖2 +‖X(β̂λ −β )‖2−‖X(β −β
∗)‖2.

When this quantity is non-positive, we have directly (5.9). When this quantity is
positive, we can combine it with (5.11) and apply successively the first part of the
above lemma, the second part of the lemma with (5.8), and finally 2ab ≤ a2 +b2 to
get that for all β ∈ Rp

‖X(β̂λ −β
∗)‖2 +‖X(β̂λ −β )‖2 ≤ ‖X(β −β

∗)‖2 +2λ |(β̂λ −β )m|1

≤ ‖X(β −β
∗)‖2 +

2λ
√
|β |0

κ(β )
‖X(β̂λ −β )‖

≤ ‖X(β −β
∗)‖2 +

λ 2|β |0
κ(β )2 +‖X(β̂λ −β )‖2.

The proof of Theorem 5.1 is complete. 2

If the tuning parameter λ of the Lasso estimator is such that λ ≥ 3|XT ε|∞ with high
probability, then (5.9) holds true with high probability for this choice of λ . We state
in the next corollary such a risk bound in the Gaussian setting (2.3).
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Corollary 5.3 Risk bound for the Lasso

Assume that all the columns of X have norm 1 and that the noise (εi)i=1,...,n is
i.i.d. with N (0,σ2) distribution.

Then, for any L > 0, the Lasso estimator with tuning parameter

λ = 3σ
√

2log(p)+2L

fulfills with probability at least 1− e−L the risk bound

‖X(β̂λ −β
∗)‖2 ≤ inf

β 6=0

{
‖X(β −β

∗)‖2 +
18σ2(L+ log(p))

κ(β )2 |β |0
}
, (5.13)

with κ(β ) defined by (5.8).

Proof. All we need is to prove that |XT ε|∞ =max j=1,...,p |XT
j ε| is smaller than λ/3=

σ
√

2log(p)+2L with probability at least 1−e−L. Combining the union bound with
the fact that each XT

j ε is distributed according to a N (0,σ2) Gaussian distribution,
we obtain

P
(
|XT

ε|∞ > σ
√

2log(p)+2L
)
≤

p

∑
j=1
P
(
|XT

j ε|> σ
√

2log(p)+2L
)

≤ pP(σ |Z|> σ
√

2log(p)+2L) ,

with Z distributed according to a N (0,1) Gaussian distribution. From Lemma B.4,
page 298, in Appendix B, we have P(|Z| ≥ x)≤ e−x2/2 for all x≥ 0, so the probabil-
ity P

(
|XT ε|∞ > σ

√
2log(p)+2L

)
is upper-bounded by e−L, which concludes the

proof of (5.13). 2

Discussion of Corollary 5.3

We can compare directly the risk Bound (5.13) for the Lasso estimator to the risk
Bound (2.12), page 37, for model selection in the coordinate-sparse setting. Actually,
from Inequality (2.24) in Exercise 2.8.2, page 49, we know that there exists a constant
CK > 1 depending only on K > 1, such that the model selection estimator β̂ defined
by (2.9) fulfills the inequality

E
[
‖X(β̂ −β

∗)‖2
]
≤CK inf

β 6=0

{
‖X(β −β

∗)‖2 + |β |0
[

1+ log
(

p
|β |0

)]
σ

2
}
.

Compared to this bound, the risk Bound (5.13) has the nice feature to have a constant
one in front of the term ‖X(β − β ∗)‖2, but the complexity term |β |0 log(p)σ2 is
inflated by a factor κ(β )−2, which can be huge, even infinite, when the columns
of X are far from being orthogonal. The Lasso estimator can actually behave very
poorly when κ(β ∗) is small; see, e.g., the second example described in Section 6.3
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of Baraud et al. [19]. Recent results by Zhang et al. [170] suggest that this constant
κ(β ∗) is unavoidable in the sense that for some matrices X the constant κ(β ∗)−2

necessarily appears in an upper bound of ‖Xβ̂ −Xβ ∗‖2 for any estimator β̂ with
polynomial algorithmic complexity (see the original paper for a precise statement).

To sum up the above discussion, compared to the model selection estimator (2.9), the
Lasso estimator (5.4) is not universally optimal, but it is good in many cases, and,
crucially, it can be computed efficiently even for p large. Compared to the forward–
backward algorithm described in Section 2.4 and the Metropolis–Hastings algorithm
described in Section 4.4 (stopped after T iterations), we can provide a risk bound for
the Lasso estimator in a non-asymptotic setting for any design matrix X. We can also
give some conditions that ensure that the support of the Lasso estimator β̂λ is equal
to the support of β ∗; see Exercise 5.5.2.

5.2.4 Computing the Lasso Estimator

To compute the Lasso estimator (5.4), we need to minimize the function β →L (β ),
which is convex but non-differentiable. We briefly describe below three numerical
schemes for computing β̂λ .

Coordinate descent

Repeatedly minimizing L (β1, . . . ,βp) with respect to each coordinate β j is a simple
and efficient scheme for minimizing (5.4). This algorithm converges to the Lasso
estimator thanks to the convexity of L .

We remind the reader that the columns X j of X are assumed to have norm 1. Setting
R j = XT

j
(
Y −∑k 6= j βkXk

)
, the partial derivative of the function L , with respect to

the variable β j, is

∂ jL (β ) =−2XT
j (Y −Xβ )+λ

β j

|β j|
= 2β j−2R j +λ

β j

|β j|
, for all β j 6= 0.

Since L is convex, the minimizer of β j → L (β1, . . . ,β j−1,β j,β j+1 , . . . ,βp)
is the solution in β j of ∂ jL (β1, . . . ,β j−1,β j,β j+1 , . . . ,βp) = 0 when such a
solution exists, and it is β j = 0 otherwise. Therefore, the function β j →
L (β1, . . . ,β j−1,β j,β j+1 , . . . ,βp) is minimum in

β j = R j

(
1− λ

2|R j|

)
+

with R j = XT
j

(
Y −∑

k 6= j
βkXk

)
. (5.14)

Repeatedly computing β1, . . . ,βp,β1, . . . ,βp, . . . according to (5.14) gives the coordi-
nate descent algorithm summarized below.
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Coordinate descent algorithm

Initialization: β = βinit with βinit ∈ Rp arbitrary.

Repeat, until convergence of β , the loop:
for j = 1, . . . , p

β j = R j

(
1− λ

2|R j|

)
+

, with R j = XT
j

(
Y −∑

k 6= j
βkXk

)
.

Output: β

When we want to compute
{

β̂λ : λ ∈Λ
}

for a grid Λ= {λ1, . . . ,λT} of values ranked
in decreasing order, it is advised to compute first β̂λ1 starting from βinit = 0, then β̂λ2

starting from βinit = β̂λ1 , then β̂λ3 starting from βinit = β̂λ2 , etc.

The coordinate descent algorithm is implemented in the R package glmnet available
at http://cran.r-project.org/web/packages/glmnet/. For illustration, we
give below the R code for analyzing the data set diabetes, which records the age,
sex, body mass index, average blood pressure, some serum measurements, and a
quantitative measure of disease progression for n = 442 diabetes patients. The goal
is to predict from the other variables the measure of disease progression.

data(diabetes, package="lars")

library(glmnet)

attach(diabetes)

fit = glmnet(x,y)

plot(fit)

coef(fit,s=1) # extract coefficients at a single value of lambda

predict(fit,newx=x[1:10,],s=1) # make predictions

The instruction plot(fit) produces a plot of the values of the coordinates of the
Lasso estimator β̂λ when λ decreases: The abscissa in the plot corresponds to |β̂λ |1
and the line number j corresponds to the set of points

{(
|β̂λ |1, [β̂λ ] j

)
: λ ≥ 0

}
. It is

displayed in Figure 5.2. The left-hand side corresponds to λ = +∞, the right-hand
side corresponds to λ = 0. We observe that only a few coefficients are nonzero for λ

large (left-hand side), and that enlarging λ tends to shrink all the coefficients toward
0. We refer to Chapter 7 for the issue of choosing at best λ .

FISTA algorithm

For α ∈Rp, we have noticed in Section 5.2.2, page 94, that the minimization problem

min
β∈Rp

{1
2
‖β −α‖2 +λ |β |1

}
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Figure 5.2 The line j represents the value of the jth coordinate [β̂λ ] j of the Lasso estimator
β̂λ , when λ decreases from +∞ to 0 on the diabetes data set.

has an explicit solution given by

Sλ (α) =

α1(1−λ/|α1|)+
...

αp(1−λ/|αp|)+

 .
The Fast Iterative Shrinkage Thresholding Algorithm (FISTA) builds on this formula
for computing recursively an approximation of the solution to the minimization prob-
lem (5.4). Setting F(β ) = ‖Y −Xβ‖2, we have for any b,β ∈ Rp

L (b) = F(b)+λ |b|1 = F(β )+ 〈b−β ,∇F(β )〉+O(‖b−β‖2)+λ |b|1.

For a small η > 0, starting from β1 = 0, we can then iterate until convergence

βt+1 = argmin
b∈Rp

{
F(βt)+ 〈b−βt ,∇F(βt)〉+

1
2η
‖b−βt‖2 +λ |b|1

}
= Sλη

(
βt −η∇F(βt)

)
.

When λ = 0, since S0(α) = α , the above algorithm simply amounts to a minimiza-
tion of F by gradient descent with step size η . This algorithm can be accelerated
by using Nesterov’s acceleration trick [126] leading to FISTA algorithm described
below.
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FISTA algorithm

Initialization: β1 = α1 = 0 ∈ Rp, µ1 = 1, t = 1, and η = |2XT X|−1
op .

Iterate until convergence in Rp of the sequence β1,β2, . . .

µt+1 = 2−1
(

1+
√

1+4µ2
t

)
and δt = (1−µt)µ

−1
t+1

βt+1 = Sλη

(
(I−2ηXT X)αt +2ηXTY

)
αt+1 = (1−δt)βt+1 +δtβt

increase t of one unit

Output: βt

FISTA algorithm has been proved to fulfill some very good convergence properties.
We refer to Bubeck [39] for a recent review on convex optimization for machine
learning, including an analysis of FISTA algorithm.

LARS algorithm

LARS algorithm is an alternative to coordinate descent and FISTA algorithms. We
observe in Figure 5.2 that the map λ → β̂λ is piecewise linear. This observation can
be easily explained from the first-order optimality condition (5.6), which gives

XT
m̂λ

Xm̂λ
[β̂λ ]m̂λ

= XT
m̂λ

Y − λ

2
sign([β̂λ ]m̂λ

), where m̂λ = supp(β̂λ ). (5.15)

For the values of λ where m̂λ remains constant, the above equation enforces that β̂λ

depends linearly on λ . The LARS algorithm computes the sequence
{

β̂λ1 , β̂λ2 , . . .
}

of Lasso estimators, with λ1 > λ2 > .. . corresponding to the breakpoints of the path
λ→ βλ . At each breakpoint λk two situations may occur. Either one of the coordinate
of β̂λ tends to 0 when λ tends to λk from above, in which case the support of β̂λk

is obtained from the support of β̂λ with λ > λk by removing this coordinate. Or
Equation (5.15) requires to add one coordinate in m̂λ when λ becomes smaller than
λk.

The LARS algorithm is implemented in the R package lars available on the CRAN
http://cran.r-project.org/web/packages/lars/.
It has been reported to be computationally less efficient than the coordinate descent
and FISTA algorithms when p is very large. We give below the R code for analyzing
the diabetes data set with LARS.

library(lars)

data(diabetes)

attach(diabetes)

fit = lars(x,y)

plot(fit)
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5.2.5 Removing the Bias of the Lasso Estimator

Let us come back to our simulated example of Section 2.5, page 43. In Figure 5.3, we
plot the Lasso estimator f̂λ = Xβ̂λ , with λ = 3σ

√
2log(p) as suggested by Corol-

lary 5.3.
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Figure 5.3 Dotted line: Unknown signal. Gray dots: Noisy observations. Gray line: Lasso
estimator with λ = 3σ

√
2log(p).

We observe that the Lasso estimator reproduces the oscillations of the signal f , but
these oscillations are shrunk toward zero. This shrinkage is easily understood when
considering the minimization problem (5.4). Actually, the `1 penalty has the nice
feature to favor sparse solution, but it does also favor the β with small `1 norm,
and thus it induces a shrinkage of the signal. This shrinkage can be seen explicitly
in the orthonormal setting described in Section 5.2.2: The `1 penalty selects the j
such that |XT

j Y |> λ/2, but it does also shrink the coordinates XT
j Y by a factor

(
1−

λ/(2|XT
j Y |)

)
+

; see Equation (5.7).

A common trick to remove this shrinkage is to use as final estimator the so-called
Gauss-Lasso estimator

f̂ Gauss
λ

= ProjŜλ

Y, where Ŝλ = span
{

X j : j ∈ m̂λ

}
.

In other words, with the notations of Chapter 2, the Lasso estimator (5.4) is computed
in order to select the model m̂λ = supp(β̂λ ), and the signal is estimated by f̂m̂λ

=
ProjSm̂

λ

Y . The result for our example is displayed in Figure 5.4. We notice that the
shrinkage effect is completely removed.
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Figure 5.4 Dotted line: Unknown signal. Gray dots: Noisy observations. Left: Gauss-Lasso
estimator (gray line). Right: Adaptive-Lasso estimator (gray line).

Another trick for reducing the shrinkage is to compute first the Gauss-Lasso estima-
tor f̂ Gauss

λ
= Xβ̂ Gauss

λ
and then estimate β ∗ with the so-called Adaptive-Lasso estima-

tor

β̂
adapt
λ ,µ ∈ argmin

β∈Rp

{
‖Y −Xβ‖2 +µ

p

∑
j=1

|β j|
|(β̂ Gauss

λ
) j|

}
.

The above minimization problem remains convex, and it can be solved easily by
a coordinate descent algorithm. Let us give a heuristic for considering this estima-
tor. When β ≈ β̂ Gauss

λ
, we have ∑ j |β j|/|(β̂ Gauss

λ
) j| ≈ |β |0, so the above minimiza-

tion problem can be viewed as an approximation of the initial minimization prob-
lem (5.3). This analogy suggests to choose µ = (1+

√
2log(p))2σ2 as in the initial

problem (5.3). The Adaptive-Lasso estimator for this value of µ is displayed in Fig-
ure 5.4. In this example, the Gauss-Lasso and the Adaptive-Lasso are very similar. In
practice, the Adaptive-Lasso is very popular since it tends to select more accurately
the variables than the Gauss-Lasso estimator.

5.3 Convex Criteria for Various Sparsity Patterns

The Lasso estimator provides a computationally efficient estimator for the
coordinate-sparse setting. We describe below some variations on the Lasso estimator,
suited for the other sparsity patterns described in Section 2.1, Chapter 2.

5.3.1 Group-Lasso for Group Sparsity

We focus in this section on the group-sparse setting described in Section 2.1, Chap-
ter 2. We consider the collection of models described on page 32 for this setting,
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and we define βGk = (β j) j∈Gk . We start from a slight variation of the selection Crite-
rion (2.9) in the group-sparse setting with πm = (1+1/M)−MM−|m|, namely

m̂ ∈ argmin
m

{
‖Y − f̂m‖2 +λ |m|

}
, with λ =

(
1+
√

2log(M)
)2

σ
2.

We write K (β ) =
{

k : βGk 6= 0
}

, and as in Section 5.2, we observe that the estimator
f̂m = ProjSm

Y is equal to Xβ̂m, with β̂m ∈ argminβ : K (β )=m ‖Y −Xβ‖2. Therefore,

m̂ ∈ argmin
m

min
β : K (β )=m

{
‖Y −Xβ‖2 +λ |K (β )|

}
,

and slicing the minimization of β →‖Y −Xβ‖2+λ |K (β )| according to the β with
K (β ) = m⊂ {1, . . . ,M}, we obtain the identity

β̂m̂ ∈ argmin
β∈Rp

{
‖Y −Xβ‖2 +λ |K (β )|

}
. (5.16)

As in Section 5.2, we want to replace the non-convex term |K (β )| = ∑k 1βGk 6=0

by a convex surrogate. In the coordinate-sparse setting, we have replaced the indi-
cator function 1β j 6=0 by |β j|. Following the same idea, we can replace 1βGk 6=0 by

‖βGk‖/
√
|Gk|. We divide the norm ‖βGk‖ by the square-root of the size of the group

in order to penalize similarly large and small groups.

For λ = (λ1, . . . ,λM) ∈ (R+)M , the group-Lasso estimator β̂λ is defined as the mini-
mizer of the convex criterion

β̂λ ∈ argmin
β∈Rp

L (β ), where L (β ) = ‖Y −Xβ‖2 +
M

∑
k=1

λk‖βGk‖. (5.17)

Let us understand why Criterion (5.17) promotes solutions where some groups of
coordinates βGk are zero, leading to group selection.

We first observe that the geometric picture is the same as in Figure 5.1 for the Lasso,
except that here the axes will represent the linear subspaces RG1 and RG2 . When the
minimum is achieved at one of the vertices, the group corresponding to the vertex is
selected. From an analytical point of view, the subdifferential of ∑k λk‖βGk‖ is given
by

∂ ∑
k

λk‖βGk‖=
{

z ∈ Rp : zGk = λkβGk/‖βGk‖ if ‖βGk‖> 0, ‖zGk‖ ≤ λk else
}
.

Similarly to the Lasso, the rigidity of the subdifferential ∂‖βGk‖ for ‖βGk‖ > 0 will
enforce some [β̂λ ]Gk to be zero for λk large enough.
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Risk bound

We can state a risk bound for the group-Lasso estimator similar to Corollary 5.3
for the Lasso estimator. For simplicity, we assume that each group Gk has the same
cardinality T = p/M, and we focus on the case where λ1 = . . .= λM = λ .

Similarly to the coordinate-sparse case, we introduce the group-compatibility con-
stant

κG(β )= min
v∈CG(K (β ))

{√
card(K (β )) ‖Xv‖
∑k∈K (β ) ‖vGk‖

}
, where K (β )=

{
k : βGk 6= 0

}
,

and CG(K ) =

{
v : ∑

k∈K c
‖vGk‖< 5 ∑

k∈K
‖vGk‖

}
. (5.18)

We have the following risk bound for the group-Lasso estimator, which is similar
to Corollary 5.3 for the Lasso estimator. We write henceforth XGk for the submatrix
obtained by keeping only the columns of X with index in Gk.

Theorem 5.4 Risk bound for the group-Lasso

Assume that all the columns of X have norm 1 and that the noise (εi)i=1,...,n is
i.i.d. with N (0,σ2) distribution. We set

φG = max
k=1,...,M

|XGk |op√
|Gk|

,

and we assume that all groups have the same cardinality T = p/M.

Then, for any L > 0 the group-Lasso estimator with tuning parameter

λ = 3σ
√

T
(

1+φG
√

2L+2logM
)

(5.19)

fulfills with probability at least 1− e−L the risk bound

‖X(β̂λ −β
∗)‖2

≤ inf
β 6=0

{
‖X(β −β

∗)‖2 +
18σ2

κG(β )2 card(K (β ))T
(
1+2φ

2
G (L+ logM)

)}
,

(5.20)

with κG(β ) and K (β ) defined in (5.18).

We refer to Exercise 5.5.4 for a proof of this result.

Let us compare this risk bound to the risk Bound (5.13) for the Lasso estimator. We
first observe that when β has a pure group-sparse structure, we have T card(K (β ))=
|β |0. Hence the term |β |0 log(p) has been replaced by |β |0 log(M), which can be
much smaller if the number M of groups is much smaller than p. Inequality (5.20)
then gives a tighter bound than (5.13) when the vector β has a group-sparse structure.
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Computing the group-Lasso

Similarly to the Lasso, for computing the group-Lasso estimator, we can apply a
block coordinate descent algorithm. The principle is simply to alternate minimization
over each block of variables βGk . For βGk 6= 0, the gradient with respect to the block
Gk of the function L defined in (5.17) is

∇βGk
L (β ) =−2XT

Gk
Rk +2XT

Gk
XGk βGk +λk

βGk

‖βGk‖
, with Rk = Y − ∑

j/∈Gk

β jX j.

Since βGk →L (βG1 , . . . ,βGM ) is convex and tends to +∞ when ‖βGk‖ tends to +∞,
the minimum of βGk →L (βG1 , . . . ,βGM ) is either the solution of

βGk =

(
XT

Gk
XGk +

λk

2‖βGk‖
I
)−1

XT
Gk

Rk

if it exists or it is 0. For α > 0, let us define xα =
(
XT

Gk
XGk +αI

)−1XT
Gk

Rk. The
minimum of βGk → L (βG1 , . . . ,βGM ) is nonzero if and only if there exists α > 0,
such that α‖xα‖= λk/2, and then βGk = xα . According to Exercise 5.5.4, there exists
α > 0 fulfilling α‖xα‖= λk/2 if and only if ‖XT

Gk
Rk‖> λk/2. Let us summarize the

resulting minimization algorithm.

Block descent algorithm

Initialization: β = βinit with βinit arbitrary.

Iterate until convergence
for k = 1, . . . ,M

• Rk = Y − ∑
j/∈Gk

β jX j

• if ‖XT
Gk

Rk‖ ≤ λk/2 then βGk = 0

• if ‖XT
Gk

Rk‖> λk/2, solve βGk =

(
XT

Gk
XGk +

λk

2‖βGk‖
I
)−1

XT
Gk

Rk

Output: β

An implementation of the group-Lasso is available in the R package gglasso at
http://cran.r-project.org/web/packages/gglasso/.

5.3.2 Sparse-Group Lasso for Sparse-Group Sparsity

In the case of sparse-group sparsity, as described in Section 2.1 of Chapter 2, the
nonzero groups βGk are coordinate sparse. To obtain such a sparsity pattern, we can
add a `1 penalty to the group-Lasso criterion, leading to the Sparse–Group Lasso

β̂λ ,µ ∈ argmin
β∈Rp

L (β ), where L (β ) = ‖Y −Xβ‖2 +
M

∑
k=1

λk‖βGk‖+µ|β |1 . (5.21)
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A similar analysis as for the Lasso and group-Lasso shows that this estimator has a
sparse-group sparsity pattern. Risk bounds similar to (5.13) and (5.20) can be proved.
An implementation of the Sparse–Group Lasso is available in the R package SGL at
http://cran.r-project.org/web/packages/SGL/.

5.3.3 Fused-Lasso for Variation Sparsity

In the case of variation sparsity, only a few increments β ∗j+1−β ∗j are nonzero. There-
fore, we can penalize the residual sum of squares by the `1 norm of the increments
of β , leading to the so-called fused-Lasso estimator

β̂λ ∈ argmin
β∈Rp

L (β ), where L (β ) = ‖Y −Xβ‖2 +λ

p−1

∑
j=1
|β j+1−β j|. (5.22)

Setting ∆ j = β j+1−β j for j = 1, . . . , p−1 and ∆0 = β1, we observe that

L (β ) =

∥∥∥∥Y − p−1

∑
j=0

( p

∑
k= j+1

Xk

)
∆ j

∥∥∥∥2

+λ

p−1

∑
j=1
|∆ j|.

So computing the fused-Lasso estimator essentially amounts to solving a Lasso prob-
lem after a change of variables.

5.4 Discussion and References

5.4.1 Take-Home Message

A successful strategy to bypass the prohibitive computational complexity of model
selection is to convexify the model selection criteria. The resulting estimators (Lasso,
group-Lasso, fused-Lasso, etc.) are not universally optimal, but they are good in
many cases (both in theory and in practice). They can be computed in high-
dimensional settings, and they are widely used in science. Furthermore, some risk
bounds have been derived for these estimators, providing guarantees on their perfor-
mances.

5.4.2 References

The Lasso estimator has been introduced conjointly by Tibshirani [150] and Chen et
al. [56]. The variants presented above and in the next exercises have been proposed
by Zou and Hastie[171], Tibshirani et al. [151], Yuan and Lin [167], Friedman et
al. [74], Candès and Tao [47], and Zou et al. [172]. We refer to Bach et al. [14] for
more complex sparsity patterns.

The theoretical analysis of the performance of the Lasso estimator has given rise
to many papers, including Bickel et al. [29], Bunea et al. [45], Meinshausen and
Bühlmann [120], Van de Geer [154], and Wainwright [162]. The analysis presented
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in this chapter is an adaptation of the results of Koltchinskii, Lounici, and Tsy-
bakov [99] on trace regression. The analysis of the support recovery presented in
Exercise 5.5.2 is adapted from Wainwright [162].

We observe that a sensible choice of the tuning parameter λ of the Lasso estimator
(or its variants) depends on the variance σ2 of the noise, which is usually unknown.
We will describe in the next chapter some procedures for selecting among different
estimators. In particular, these procedures will allow to select (almost) optimally the
tuning parameter λ . We also point out some variants of the Lasso estimator, which do
not require the knowledge of the variance for selecting their tuning parameter. The
most popular variant is probably the square-root/scaled Lasso estimator [4, 25, 149]
described in Section 7.4, Chapter 7; see Giraud et al. [82] for a review.

Finally, the numerical aspects presented in Section 5.2.4 are from Efron et al. [70],
Friedman et al. [72], and Beck and Teboulle [24]. We refer to Bubeck [39] for a
recent review on convex optimization.

5.5 Exercises

5.5.1 When Is the Lasso Solution Unique?

The solution β̂λ of the minimization problem (5.4) is not always unique. In this
exercise, we prove that the fitted value f̂λ = Xβ̂λ is always unique, and we give a
criterion that enables us to check whether a solution is unique or not.

1. Let β̂
(1)
λ

and β̂
(2)
λ

be two solutions of (5.4) and set β̂ =
(

β̂
(1)
λ

+ β̂
(2)
λ

)
/2. From

the strong convexity of x→‖x‖2 prove that if Xβ̂
(1)
λ
6= Xβ̂

(2)
λ

, then we have

‖Y −Xβ̂‖2 +λ |β̂ |1 <
1
2

(
‖Y −Xβ̂

(1)‖2 +λ |β̂ (1)|1 +‖Y −Xβ̂
(2)‖2 +λ |β̂ (2)|1

)
.

Conclude that Xβ̂
(1)
λ

= Xβ̂
(2)
λ

, so the fitted value f̂λ is unique.

2. Let again β̂
(1)
λ

and β̂
(2)
λ

be two solutions of (5.4) with λ > 0. From the optimality
Condition (5.2), there exists ẑ(1) and ẑ(2), such that

−2XT (Y −Xβ̂
(1)
λ

)+λ ẑ(1) = 0 and −2XT (Y −Xβ̂
(2)
λ

)+λ ẑ(2) = 0.

Check that ẑ(1) = ẑ(2). We write henceforth ẑ for this common value.
3. Set J =

{
j : |ẑ j|= 1

}
. Prove that any solution β̂λ to (5.4) fulfills

[β̂λ ]Jc = 0 and XT
J XJ [β̂λ ]J = XT

J Y − λ

2
ẑJ .

4. Conclude that

“when XT
J XJ is non-singular, the solution to (5.4) is unique.”
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In practice we can check the uniqueness of the Lasso solution by first computing a
solution β̂λ , then computing J =

{
j : |XT

j (Y −Xβ̂λ )|= λ/2
}

, and finally checking

that XT
J XJ is non-singular.

The uniqueness of the fitted value f̂λ = Xβ̂λ can be easily understood geometrically.
Let us consider the constrained version of the Lasso estimator

β̂
(R) ∈ argmin

|β |1≤R
‖Y −Xβ‖2,

and let us denote by XB`1(R) = {Xβ : |β |1 ≤ R}, the image by X of the `1-ball
B`1(R) of radius R inRp. The fitted value f̂ (R) := Xβ̂ (R) associated to β̂ (R) is solution
to

f̂ (R) ∈ argmin
f∈XB

`1 (R)
‖Y − f‖2.

Hence, the fitted value f̂ (R) is simply the projection of Y onto the closed convex set
XB`1(R). Since this projection is unique, the fitted value f̂ (R) is unique.
This geometrical interpretation is illustrated in Figure 5.5. To understand the illustra-
tion of Figure 5.5, it is important to notice that XB`1(R) is equal to the convex hull of
the set

{
RX1, . . . ,RXp,−RX1, . . . ,−RXp

}
, where X1, . . . ,Xp are the columns of X. We

also emphasize that the plot in Figure 5.5 represents the fitted value f̂ (R) := Xβ̂ (R)

in Rn, with n = 2, while Figure 5.1 represents the (constrained) Lasso solution β̂ (R)

in Rp, with p = 2. Hence, the two figures propose two different views of the Lasso
estimator in Rn and Rp.

5.5.2 Support Recovery via the Witness Approach

The goal here is to give some simple conditions for ensuring that the support m̂λ

of the Lasso estimator β̂λ coincides with the support m∗ of β ∗. It is adapted from
Wainwright [162]. The main idea is to compare the solution of Criterion (5.4) with
the solution β̂λ of the same minimization problem restricted to the β ∈ Rp, with
support in m∗

β̃λ ∈ argmin
β : supp(β )⊂m∗

{
‖Y −Xβ‖2 +λ |β |1

}
. (5.23)

For the sake of simplicity, we assume henceforth that Q(β ) = ‖Y −Xβ‖2 is strictly
convex (rank(X) = p), even if the weaker condition rank(Xm∗) = |m∗| is actually
sufficient.

The optimality Condition (5.2) for Problem (5.23) ensures the existence of z̃ ∈
∂ |β̃λ |1, fulfilling (∇Q(β̃λ ))+λ z̃) j = 0 for all j ∈ m∗. We define ẑ from z̃ by

ẑ j = z̃ j for j ∈ m∗ and ẑ j =−
1
λ
(∇Q(β̃λ )) j for j /∈ m∗.
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Y

X1
X2

X3

X4

Figure 5.5 Illustration of the fitted value of the constrained Lasso estimator, for n = 2 and p =
4. The dashed gray lines represent the level sets of the function f →‖Y− f‖2. The dark convex
polytope represents XB`1(R) = convex hull{RX1, . . . ,RX4,−RX1, . . . ,−RX4}. The black circle,
at the intersection of the polytope with the level sets, represents the fitted value f̂ (R).

A) The witness approach

1. Check that ∇Q(β̃λ )+λ ẑ = 0.

2. Check that if |ẑ j| ≤ 1 for all j /∈ m∗, then ẑ ∈ ∂ |β̃λ |1 and β̃λ is solution of (5.4).
Prove that in this case the support m̂λ of β̂λ is included in m∗.

B) Checking the dual feasibility condition

We assume henceforth that X fulfills the incoherence condition∣∣∣XT
(m∗)cXm∗(XT

m∗Xm∗)
−1
∣∣∣
`∞→`∞

≤ 1− γ, with 0 < γ < 1, (5.24)

where |A|`∞→`∞ = sup|x|∞=1 |Ax|∞ is the operator norm of the matrix A with respect
to the `∞ norm. We also assume that the columns of X are normalized: ‖X j‖ = 1.
We set λ = 2γ−1σ

√
2(1+A) log(p), with A > 0. We prove in this part that when the

incoherence condition (5.24) is met, |ẑ j| ≤ 1 for all j /∈ m∗ with large probability.
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For a subset m ⊂ {1, . . . , p}, we write Pm for the orthogonal projection on the linear
span {Xβ : β ∈ Rp and supp(β )⊂ m}, with respect to the canonical scalar product
in Rp.
1. Check that (β̃λ )m∗ = (XT

m∗Xm∗)
−1(XT

m∗Y −λ z̃m∗/2).
2. Check that ẑ j =

2
λ

XT
j (I−Pm∗)ε +XT

j Xm∗(XT
m∗Xm∗)

−1z̃m∗ for all j /∈ m∗.

3. Prove that |XT
j Xm∗(XT

m∗Xm∗)
−1z̃m∗ | ≤ 1− γ , for all j /∈ m∗.

4. Prove that with probability at least 1− p−A, we have max j/∈m∗ |XT
j (I−Pm∗)ε| ≤

λγ/2, and conclude that |ẑ j| ≤ 1 for all j /∈ m∗ with the same probability.

C) Support recovery

1. Check that (β̃λ −β ∗)m∗ = (XT
m∗Xm∗)

−1(XT
m∗ε−λ z̃m∗/2).

2. Prove that with probability at least 1− p−A

max
j=1,...,p

∣∣∣(β̃λ −β
∗) j

∣∣∣≤ 3λ

4

∣∣(XT
m∗Xm∗)

−1∣∣
`∞→`∞ .

3. Assume that min j∈m∗ |β ∗j |> 3λ

4

∣∣(XT
m∗Xm∗)

−1
∣∣
`∞→`∞ . Under the hypotheses of Part

B, prove by combining the above results that the support m̂λ of the Lasso estimator
β̂λ defined by (5.4) coincides with the support m∗ of β ∗, with probability at least
1−2p−A.

5.5.3 Lower Bound on the Compatibility Constant

We will give a simple lower bound on the compatibility constant κ(β ) defined
by (5.8). In the following, m refers to the support of β , and Xm is the matrix ob-
tained by keeping only the column of X with index in m.

We assume that the norms of the columns X j are normalized to one, and we write

θ = max
i6= j

∣∣〈Xi,X j〉
∣∣

for the maximum correlation between the columns in X. We prove below that when
|m| fulfills |m|< (11θ)−1, the compatibility constant κ(β ) is positive.
1. Considering apart the coordinates in m and the coordinates in mc, prove that for

any v ∈ Rp we have

‖Xv‖2 ≥ ‖Xmvm‖2−2
∣∣vT

mXT
mXmcvmc

∣∣.
2. Check that ‖Xmvm‖2 ≥ ‖vm‖2−θ |vm|21.
3. Prove that for v∈C (β ), where C (β ) is defined in (5.8), we have

∣∣vT
mXT

mXmcvmc
∣∣≤

5θ |vm|21.
4. Prove that κ(β )2 ≥ 1−11θ |m| and conclude.
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5.5.4 On the Group-Lasso

In parts A and B, we prove Theorem 5.4, page 105. The proof follows the same
lines as the proof of Theorem 5.1 for the Lasso estimator. In part C, we check the
conditions for solving α‖(AT A+αI)−1ATY‖= λ/2 as needed for the block-gradient
algorithm described in Section 5.3.1.

A) Deterministic bound

We first prove that for λ ≥ 3maxk=1,...,M ‖XT
Gk

ε‖, we have

‖X(β̂λ −β
∗)‖2 ≤ inf

β∈Rp\{0}

{
‖X(β −β

∗)‖2 +
λ 2card(K (β ))

κG(β )2

}
. (5.25)

For any K ⊂ {1, . . . ,M} and β ∈ Rp, we introduce the notation

‖β‖(K ) = ∑
k∈K
‖βGk‖.

1. Following the same lines as in the proof of Theorem 5.1, prove that

for all β ∈ Rp and for all z ∈ ∂

M

∑
k=1
‖βGk‖, we have

2〈X(β̂λ −β
∗),X(β̂λ −β )〉 ≤ 2〈XT

ε, β̂λ −β 〉−λ 〈z, β̂λ −β 〉.

2. Let us fix some β ∈ Rp and write K = K (β ) =
{

k : βGk 6= 0
}

. Prove that for a
clever choice of z ∈ ∂ ∑k ‖βGk‖, we have

−λ 〈z, β̂λ −β 〉 ≤ λ‖β̂λ −β‖(K )−λ‖β̂λ −β‖(K c).

3. Prove that for λ ≥ 3maxk=1,...,M ‖XT
Gk

ε‖, we have

2〈X(β̂λ −β
∗),X(β̂λ −β )〉 ≤ λ

3

(
5‖β̂λ −β‖(K )−‖β̂λ −β‖(K c)

)
.

4. With Al-Kashi’s formula and Definition (5.18) of κG(β ), prove that for β 6= 0

‖X(β̂λ −β
∗)‖2 +‖X(β̂λ −β )‖2 ≤ ‖X(β ∗−β )‖2 +

2λ
√

card(K )‖X(β̂λ −β )‖
κG(β )

and conclude the proof of (5.25).

B) Stochastic control

It remains to prove that with probability at least 1− e−L, we have

max
k=1,...,M

‖XT
Gk

ε‖ ≤ σ
√

T
(

1+φG
√

2L+2logM
)
, (5.26)

where φG = maxk=1,...,M |XGk |op/
√
|Gk|.
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1. Prove that for each k = 1, . . . ,M, there exists some exponential random variable
ξk such that

‖XT
Gk

ε‖ ≤ ‖XGk‖F σ + |XGk |opσ
√

2ξk.

2. Check that ‖XGk‖2
F = T when the columns of X have norm 1, and check that we

have (5.26) with probability at least 1− e−L.
3. Conclude the proof of (5.20).

C) On the block descent algorithm

Let λ be a positive real number. The block descent algorithm described in Sec-
tion 5.3.1, page 103, requires to solve in α > 0

α‖xα‖= λ/2, where xα = (AT A+αI)−1ATY, (5.27)

when such a solution exists. In this subsection, we prove that there exists a solution
α > 0 to the problem (5.27) if and only if ‖ATY‖> λ/2.
1. Let A = ∑

r
k=1 σkukvT

k be a singular value decomposition of A (see Appendix C
for a reminder on the singular value decomposition). Prove that ATY ∈
span{v1, . . . ,vr}.

2. Check that

αxα =
r

∑
k=1

α

σ2
k +α

〈ATY,vk〉vk.

3. Check that the map

α → α
2‖xα‖2 =

r

∑
k=1

α2

(σ2
k +α)2 〈A

TY,vk〉2

is non-decreasing from 0 to ‖AT y‖2 = ∑
r
k=1〈ATY,vk〉2 when α goes from 0 to

+∞.
4. Conclude that there exists a solution α > 0 to the problem (5.27) if and only if
‖ATY‖> λ/2.

5.5.5 Dantzig Selector

The Dantzig selector is a variant of the Lasso that has been proposed by Candès and
Tao [47]. It is obtained by solving the minimization problem

β̂
D
λ
∈ argmin

β : |XT (Y−Xβ )|∞≤λ/2
|β |1. (5.28)

The Dantzig selector is implemented in the R package flare available at
http://cran.r-project.org/web/packages/flare/.
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1. Check that the minimization Problem (5.28) is a convex problem that can be recast
in a linear program

β̂
D
λ
∈ argmin

β :−λ1≤2XT (Y−Xβ )≤λ1
min

u∈Rp
+:−u≤β≤u

1T u

where 1 is a p-dimensional vector with all components equal to 1.

In the following, we will prove that β̂ D
λ

coincides with the Lasso estimator β̂λ defined
by (5.4) when the matrix (XT X)−1 is diagonal dominant

∑
k :k 6= j

|(XT X)−1
k j |< (XT X)−1

j j , for all j = 1, . . . , p.

It is adapted from Meinshausen et al. [121].

2. Check that the estimator β̂ D
λ

is a solution of (5.4) if it fulfills

(a) 2|XT (Y −Xβ̂ D
λ
)|∞ ≤ λ

(b) 2XT
j (Y −Xβ̂ D

λ
) = λ sign([β̂ D

λ
] j) for all j ∈ supp(β̂ D

λ
).

3. Assume that the Condition (b) is not satisfied for some j ∈ supp(β̂ D
λ
). Write e j

for the jth vector of the canonical basis in Rp. Prove that the vector β̃λ = β̂ D
λ
−

η sign([β̂ D
λ
] j)(XT X)−1e j fulfills Condition (a) for η > 0 small enough.

4. Prove the inequalities for η > 0 small enough

|β̃λ |1 = |[β̃λ ]− j|1 + |[β̂ D
λ
] j|−η(XT X)−1

j j

≤ |β̂ D
λ
|1 +η ∑

k :k 6= j
|(XT X)−1

k j |−η(XT X)−1
j j .

5. Conclude that β̂ D
λ

must fulfill Condition (b) and finally that β̂ D
λ
= β̂λ .

We emphasize that the Dantzig selector and the Lasso do not coincide in general.

5.5.6 Projection on the `1-Ball

We present in this exercise a simple algorithm for computing the projection of a vec-
tor β ∈Rp on the `1-ball of radius R > 0. When |β |1 ≤ R, the projection is simply β .
We assume in the following that |β |1 > R. We write β( j) for the jth-largest coordinate
of β in absolute value, and for λ ≥ 0 we set

Sλ (β ) =

[
β j

(
1− λ

|β j|

)
+

]
j=1,...,p

.

1. Check that Sλ (β ) ∈ argminα∈Rp
{
‖β −α‖2 +2λ |α|1

}
.

2. Prove that the projection of β on the `1-ball of radius R > 0 is given by S
λ̂
(β ),

where λ̂ > 0 is such that |S
λ̂
(β )|1 = R.
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3. Let Ĵ ∈ {1, . . . , p} be such that |β(Ĵ+1)| ≤ λ̂ < |β(Ĵ)|, with the convention β(p+1) =

0. Check that
|S

λ̂
(β )|1 = ∑

j≤Ĵ

|β( j)|− Ĵ λ̂ .

4. Prove that Ĵ then fulfills the two conditions

∑
j≤Ĵ

|β( j)|− Ĵ |β(Ĵ)|< R and ∑
j≤Ĵ+1

|β( j)|− (Ĵ+1)|β(Ĵ+1)| ≥ R.

5. Conclude that the projection of β on the `1-ball of radius R > 0 is given by S
λ̂
(β ),

where λ̂ is given by

λ̂ = Ĵ−1

∑
j≤Ĵ

|β( j)|−R

 with Ĵ = max

{
J : ∑

j≤J
|β( j)|− J|β(J)|< R

}
.

5.5.7 Ridge and Elastic-Net

We consider the linear model Y = Xβ +ε , with Y,ε ∈Rn et β ∈Rp. We assume that
E[ε] = 0 and Cov(ε) = σ2In.

A) Ridge Regression

For λ > 0, the Ridge estimator β̂λ is defined by

β̂λ ∈ argmin
β∈Rp

L1(β ) with L1(β ) = ‖Y −Xβ‖2 +λ‖β‖2. (5.29)

1. Check that L1 is strictly convex and has a unique minimum.

2. Prove that β̂λ = AλY with Aλ = (XT X+λ Ip)
−1XT .

3. Let ∑
r
k=1 σkukvT

k be a singular value decomposition of X (see Theorem (C.1),
page 311, in Appendix C). Prove that

Aλ =
r

∑
k=1

σk

σ2
k +λ

vkuT
k

λ→0+→ X+

where A+ is the Moore–Penrose pseudo-inverse of A (see Appendix C for a re-
minder on the Moore–Penrose pseudo-inverse).

4. Check that we have

Xβ̂λ =
r

∑
k=1

σ2
k

σ2
k +λ

〈uk,Y 〉uk. (5.30)

5. Let us denote by P = ∑
r
j=1 v jvT

j the projection on the range of XT . Check that we
have

E
[
β̂λ

]
=

r

∑
k=1

σ2
k

σ2
k +λ

〈vk,β 〉vk,
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and ∥∥∥β −E
[
β̂λ

]∥∥∥2
= ‖β −Pβ‖2 +

r

∑
k=1

(
λ

λ +σ2
k

)2

〈vk,β 〉2.

6. Check that the variance of the Ridge estimator is given by

E
[
‖β̂λ −E

[
β̂λ

]
‖2
]
= σ

2Tr(AT
λ

Aλ ) = σ
2

r

∑
k=1

(
σk

σ2
k +λ

)2

.

7. How does the size of the bias and the variance of β̂λ vary when λ increases?

Remark. We notice from (5.30) that the Ridge estimator shrinks Y in the directions
uk where σk � λ , whereas it leaves Y almost unchanged in the directions uk where
σk� λ .

B) Elastic-Net

From Question A.2 we observe that the Ridge regression does not select variables.
Actually, the difference between the Lasso estimator and the Ridge estimator is that
the `1 penalty is replaced by a `2 penalty. We have seen in Section 5.2.1 that the
selection property of the Lasso estimator is induced by the non-smoothness of the `1

ball. Since the `2 ball is smooth, it is not surprising that the Ridge estimator does not
select variables.

The Elastic-Net estimator involves both a `2 and a `1 penalty. It is meant to improve
the Lasso estimator when the columns of X are strongly correlated. It is defined for
λ ,µ ≥ 0 by

β̃λ ,µ ∈ argmin
β∈Rp

L2(β ) with L2(β ) = ‖Y −Xβ‖2 +λ‖β‖2 +µ|β |`1 .

In the following, we assume that the columns of X have norm 1.
1. Check that the partial derivative of L2 with respect to β j 6= 0 is given by

∂ jL2(β ) = 2
(
(1+λ )β j−R j +

µ

2
sign(β j)

)
with R j = XT

j

(
Y −∑

k 6= j
βkXk

)
.

2. Prove that the minimum of β j→L2(β1, . . . ,β j, . . . ,βp) is reached at

β j =
R j

1+λ

(
1− µ

2|R j|

)
+

.

3. What is the difference between the coordinate descent algorithm for the Elastic-
Net and the one for the Lasso estimator?

The Elastic-Net procedure is implemented in the R package glmnet available at
http://cran.r-project.org/web/packages/glmnet/.
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5.5.8 Approximately Sparse Linear Regression

This exercise is adapted from Cevid et al. [52]. We observe Y ∈ Rn and X ∈ Rn×p.
We assume that

Y = X(β ∗+b∗)+ ε, (5.31)

with β ∗ ∈ Rp coordinate sparse and b∗ ∈ Rp with small `2 norm. The noise term
ε is a random variable following a subgaussian(σ2I) distribution, which means that
for any u ∈ Rn we have P[〈u,ε〉 ≥ σt‖u‖] ≤ e−t2/2. We assume that the p columns
X1, . . . ,Xp of X are deterministic and have norm

√
n.

A) A Convex Estimator

For λ1,λ2 > 0, we consider the estimator of (β ∗,b∗)

(β̂ , b̂) ∈ argmin
β ,b∈Rp

{
1
n
‖Y −X(β +b)‖2 +λ1|β |1 +λ2‖b‖2

}
. (5.32)

We emphasize that this estimator does not correspond to the Elastic-Net, as the `1

penalization is on β and the `2 penalization is on b.

1. Why does this estimator make sense in this context?
2. Prove that there exists a matrix G, to be made explicit, such that

β̂ ∈ argmin
β∈Rp

{
1
n
‖(I−XG)1/2(Y −Xβ )‖2 +λ1|β |1

}
and b̂ = G(Y −Xβ̂ ).

3. Assume that n ≤ p and rank(X) = n. Let X = ∑
n
k=1 σkukvT

k be a singular value
decomposition of X (Theorem C.1, page 311). Compute the eigenvalues of F :=
(I−XG)1/2 in terms of the singular values of X.

B) Linearly Transformed Lasso

Let F ∈ Rn be any symmetric matrix and set X̃ = FX, Ỹ = FY and ε̃ = Fε . We
analyze the estimator

β̂ ∈ argmin
β∈Rp

{
1
n
‖Ỹ − X̃β‖2 +λ |β |1

}
,

in the model (5.31), for the choice λ = Aσ

√
log(p)

n λmax(F2), with A >
√

32 and
λmax(F2) the largest eigenvalue of F2. Our goal is to prove that we have

P

[
|β̂ −β

∗|1 ≤
9λ |β |0

φ(X̃,S)2
+

6
nλ
‖X̃b∗‖2

]
≥ 1−2p1−A2/32, (5.33)

where S =
{

j : β ∗j 6= 0
}

,

φ(X̃,S) = min
x∈R(S)

√
|S| ‖X̃x‖√
n|xS|1

, with R(S) = {x ∈ Rp : |xSc |1 ≤ 5|xS|1} .
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The proof technique is somewhat different from the one of Theorem 5.1 (page 95).
1. Prove that

1
n
‖X̃(β̂ −β

∗−b∗)‖2 +λ |β̂ |1 ≤
1
n
‖X̃b∗‖2 +

2
n
〈ε̃, X̃(β̂ −β

∗)〉+λ |β ∗|1.

2. In Questions 2 to 4, we assume that the event Ωλ =
{

1
n |X̃

T ε̃|∞ ≤ λ/4
}

holds.
Prove that on Ωλ

1
n
‖X̃(β̂ −β

∗−b∗)‖2 +
λ

2
|β̂Sc |1 ≤

3λ

2
|β̂S−β

∗
S |1 +

1
n
‖X̃b∗‖2.

3. In the case where ‖X̃b∗‖2 ≥ nλ |β̂S−β ∗S |1, prove that on Ωλ

|β̂ −β
∗|1 ≤

6
nλ
‖X̃b∗‖2.

4. In the case where ‖X̃b∗‖2 ≤ nλ |β̂S−β ∗S |1, prove that on Ωλ

1
n
‖X̃(β̂ −β

∗−b∗)‖2 +
λ

2
|β̂ −β

∗|1 ≤ 3
λ
√
|β |0‖X̃(β̂ −β ∗)‖
√

nφ(X̃,S)
.

5. Conclude the proof of (5.33).

In light of (5.33), we observe that a good transformation F is a transformation such
that |XT FT ε|∞ and ‖FXb‖2 are not too large and φ(FX,S) is not too small. Shrinking
the largest singular values of X can help for getting such results. For example, the
estimator (5.32) produces the following adjustment

X̃ = FX =
n

∑
k=1

√
nλ2

nλ2 +σ2
k

σkukvT
k ,

since F = ∑
n
k=1

√
nλ2

nλ2+σ2
k

ukuT
k . Another possible choice is to cap the largest singular

values of X at some level τ > 0, with

F =
n

∑
k=1

σk ∧ τ

σk
ukuT

k ,

so that FX = ∑
n
k=1(σk ∧ τ)ukvT

k . We refer to [52] for a detailed discussion of the
choice of F .

5.5.9 Slope Estimator

We recommend reading Chapter 10 before starting this exercise.
We consider again the linear regression model Y = Xβ ∗+ ε where ε has a Gaussian
N (0, Inσ2) distribution and β ∗ ∈Rp is coordinate-sparse. The Lasso estimator does
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not provide guarantees on the FDR of the selected variables. In order to get such a
control, Bogdan et al. [36] propose to replace the `1 norm by a sorted `1-norm with
adaptive weights. In this exercise, we present some basic properties of the resulting
estimator.
For any β ∈Rp, we write |β |[1] ≥ |β |[2] ≥ . . .≥ |β |[p] ≥ 0 for the values |β1|, . . . , |βp|
ranked in non-increasing order. For λ1 ≥ . . . ≥ λp > 0, the Slope estimator (intro-
duced by [36]) is defined by

β̂ ∈ argmin
β∈Rp

L (β ) where L (β ) =
1
2
‖Y −Xβ‖2 +

p

∑
j=1

λ j|β |[ j]. (5.34)

A) Benjamini-Hochberg Procedure

We assume here that XT X = Ip and σ2 = 1. We set z = XTY and τ(x) = P(|N|> x)
where N follows a Gaussian N (0,1) distribution.
1. What is the distribution of z?
2. We consider the family of hypotheses testing H0, j : β j = 0 against H1, j : β j 6= 0

and the associated tests T̂ j = 1Ŝ j≥s j
with Ŝ j = |z j| and where s j ≥ 0 is a given

threshold. Compute in terms of z j the p-value p̂ j associated to the test T̂ j.
3. Prove that the Benjamini-Hochberg procedure (Corollary 10.5, page 213) asso-

ciated to a level α > 0, amounts to reject H0, j when |z j| ≥ |z|[ ĵHB] with ĵHB a

function of |z|[1], . . . , |z|[p] which will be made explicit.

B) Link Between the two Procedures

We assume again that XT X = Ip and σ2 = 1. In this part, we assume also that

z1 > .. . > zp ≥ 0.

In the following, we set λ j = τ−1(α j/p) with τ defined in part (A).
1. Check that L (β ) = 1

2‖Y −Xz‖2 + 1
2‖z−β‖2 +∑

p
j=1 λ j|β |[ j].

2. Let 1≤ i < j ≤ p and β ∈ Rp be such that βi < β j. We define β̃ ∈ Rp by β̃k = βk

if k 6= i, j, β̃i = β j and β̃ j = βi. Prove that L (β̃ )< L (β ).

3. Prove that β̂1 ≥ . . .≥ β̂p ≥ 0.

4. Define β̂ ′ by β̂ ′j = β̂ j if j ≤ ĵHB and β̂ ′j = 0 else. By comparing L (β̂ ′) to L (β̂ )

prove that β̂ j = 0 for j > ĵHB.

C) Subgradients

We set

C =
p⋂

j=1

{
w ∈ Rp : |w|[1]+ . . .+ |w|[ j] ≤ λ1 + . . .+λ j

}
.
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1. Prove that for all α,β ∈ Rp, with α1 ≥ . . .≥ αp ≥ 0 we have
p

∑
j=1

α jβ j = αp(β1 + . . .+βp)+(αp−1−αp)(β1 + . . .+βp−1)+ . . .+(α1−α2)β1

≤
p

∑
j=1

α j|β |[ j].

2. For all w ∈C and β ∈ Rp check that

〈w,β 〉 ≤
p

∑
j=1
|w|[ j]|β |[ j] ≤

p

∑
j=1

λ j|β |[ j].

3. Conclude that
p

∑
j=1

λ j|β |[ j] = sup
w∈C
〈w,β 〉.

4. Prove that L is convex and compute its subdifferential ∂L (β ).

5.5.10 Compress Sensing

In this exercise, our goal is to compress efficiently sparse signals in Rp. The strategy
proposed by Candès, Romberg and Tao [48] and Donoho [67] is to multiply the sig-
nal by a matrix A∈Rm×p with m smaller than p. We have in mind that the signals are
coordinate sparse, with at most k non-zero entries. We will answer the two questions:
- How can we decompress efficiently the signals?
- For which value of m are we able to compress / decompress any k-sparse signal
with no loss?

Let us formalize this problem. Let x∗ ∈Rp be a vector with at most k nonzero entries.
Write supp(x∗) = { j : x∗j 6= 0} for the (unknown) support of x∗. Let y = Ax∗ be the
compressed signal and define the decompression algorithm

x̂ ∈ argmin
x∈Rp : Ax=y

|x|1, (5.35)

with |x|1 the `1-norm of x.

A) Null Space Property

In this problem, for any set S ⊂ {1, . . . , p} and any vector v ∈ Rp, we denote by vS
the vector in Rp with entries

[vS] j = v j1 j∈S, for j = 1, . . . , p.

The matrix A ∈ Rm×p is said to fulfill the null space property, NSP(k), if

for any v ∈ ker(A)\{0} and any S⊂ {1, . . . , p} with cardinality |S|= k,

we have |vS|1 < |vSc |1. (5.36)

1. Prove that if A fulfills the nullspace property, then there is a unique solution to
(5.35), which is x̂ = x∗.
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B) Restricted Isometry Property Enforces Null Space Property

Let δ ∈ (0,1). The matrix A is said to fulfill the (d,δ )-Restricted Isometry Property,
abbreviated (d,δ )-RIP, if

1−δ ≤ ‖Au‖2 ≤ 1+δ , for all u ∈ Rp such that |u|0 ≤ d and ‖u‖= 1, (5.37)

where ‖u‖ is the Euclidean norm of u and |u|0 = |supp(u)|. In this part, we will prove
that the (2k,δ )-RIP property with δ < 1/3 enforces the Null Space Property (5.36).

Let A be a matrix fulfilling the (2k,δ )-RIP property with δ < 1/3. Let v ∈ ker(A)\
{0} and let

|vi1 | ≥ |vi2 | ≥ . . .≥ |vip |,
be the absolute values of the entries of v ranked in decreasing order. Let J denote
the integer part of p/k and define S j =

{
ik j+1, . . . , ik( j+1)

}
for j = 0, . . . ,J− 1 and

SJ =
{

ikJ+1, . . . , ip
}

.
1. For j = 0, . . . ,J, set v̄S j = vS j/‖vS j‖ and prove that for j = 1, . . . ,J

−〈Av̄S0 ,Av̄S j〉=
1
4
(
‖A(v̄S0 − v̄S j)‖

2−‖A(v̄S0 + v̄S j)‖
2)≤ δ .

2. Prove that

‖AvS0‖
2 =−

J

∑
j=1
〈AvS0 ,AvS j〉 ≤ δ

J

∑
j=1
‖vS0‖‖vS j‖.

3. Check that ‖vS j‖ ≤ k−1/2|vS j−1 |1 for j = 1, . . . ,J and |vS0 |1 ≤
√

k‖vS0‖.
4. Putting pieces together, derive the bound

|vS0 |1 ≤
δ

1−δ

J

∑
j=1
|vS j−1 |1.

5. Conclude that the null space property NSP(k) holds for any matrix A fulfilling the
(2k,δ )-RIP property with δ < 1/3.

C) RIP by Random Sampling

It remains to build a matrix A fulfilling the (2k,δ )-RIP property with δ < 1/3. The
goal of this part is to show that such a matrix can be obtained by random sampling.
More precisely, let B ∈ Rm×p be a matrix with entries Bi j i.i.d. with N (0,1) Gaus-
sian distribution. We will prove in this part, that for any δ ∈ (0,1/3) and any

m≥ 9
δ 2

(√
d +

√
2L+2d log(ep/d)

)2
, with L≥ 0, (5.38)

the matrix A = m−1/2B fulfills the (d,δ )-RIP property with probability at least 1−
2e−L.

The first question below relies on the following bound (Lemma 8.3, page 163; see
also Exercise 12.9.6, page 288): for E ∈Rd1×d2 with i.i.d. entries with N (0,1) Gaus-
sian distribution, we have E

[
|E|op

]
≤
√

d1 +
√

d2.



122 CONVEX CRITERIA

1. Let S⊂ {1, . . . , p} with cardinality |S|= d. Prove that for any t > 0

P
[
max{‖Bu‖ : ‖u‖= 1, supp(u)⊂ S} ≥

√
m+
√

d +
√

2t
]
≤ e−t .

2. Prove that for m fulfilling (5.38), we have

P
[
‖Au‖2 ≤ 1+δ , for all u ∈ Rp such that |u|0 ≤ d and ‖u‖= 1

]
≥ 1− e−L.

The lower bound ‖Au‖2 ≥ 1−δ can be proved in the same way.



Chapter 6

Iterative Algorithms

As discussed in Chapters 2 and 5, the model selection paradigm provides statistically
optimal estimators, but with a prohibitive computational cost. A classical recipe is
then to convexify the minimization problem issued from model selection, in order to
get estimators that can be easily computed with standard tools from convex optimiza-
tion. This approach has been successfully implemented in many settings, including
the coordinate-sparse setting (Lasso estimator) and the group-sparse setting (Group-
Lasso estimator). As illustrated on page 102, the bias introduced by the convexifica-
tion is a recurrent issue with this approach, and for some complex problems, even if
the minimization problem is convex, the minimization cost can be high, especially in
high dimension. In order to handle these two issues, there has been a renewed interest
in iterative methods in the recent years. In the coordinate-sparse setting, these meth-
ods include the Forward-Backward algorithm described on page 43, and the Iterative
Hard Thresholding algorithm analyzed in this chapter.

6.1 Iterative Hard Thresholding

Let us focus again on the coordinate-sparse linear regression setting

Y = Xβ
∗+ ε,

where |β ∗|0 is small. As in Chapter 5, we assume in this section that the columns of
X have a unit `2-norm.
The take home message of Chapter 2 is that the estimator solution to the optimization
problem

min
β∈Rp

‖Y −Xβ‖2 +λ
2|β |0, (6.1)

with λ 2 = cσ2 log(p) is (almost) statistically optimal in this setting. As the opti-
mization problem (6.1) cannot be solved efficiently in general, the recipe described
in Chapter 5 is to replace |β |0 by the `1-norm, leading to the Lasso algorithm solution
to

min
β∈Rp

‖Y −Xβ‖2︸ ︷︷ ︸
=F(β )

+λ |β |1. (6.2)

This minimization problem being convex, it can be solved efficiently.

123



124 ITERATIVE ALGORITHMS

6.1.1 Reminder on the Proximal Method

As reminded in the next paragraph, the minimization of (6.2) can be performed with
the proximal method, which amounts to iteratively
(i) apply a gradient step relative to the function F(β ) = ‖Y −Xβ‖2, and
(ii) apply the soft-thresholding operator

Sλ (α) =

α1(1−λ/|α1|)+
...

αp(1−λ/|αp|)+

 . (6.3)

Indeed, if, in the minimization of the Lasso problem (6.2), we replace at each itera-
tion the function F(β ) by the quadratic approximation

F(β t)+ 〈β −β
t ,∇F(β t)〉+ 1

2η
‖β −β

t‖2 (6.4)

around the current estimate β t , we obtain at the next estimate

β
t+1 ∈ argmin

β∈Rp

{
F(β t)+ 〈β −β

t ,∇F(β t)〉+ 1
2η
‖β −β

t‖2 +λ |β |1
}
.

The update at step t +1 is then given by the soft-thresholding of a gradient step

β
t+1 = Sλη(β

t −η∇F(β t)), (6.5)

with ∇F(β t) = 2XT (Xβ t −Y ) and Sλ the soft-thresholding operator (6.3).
Since the Lasso problem (6.2) is convex, the proximal algorithm can be shown to
converge to the solution of (6.2), as long as the gradient step η is small enough.

6.1.2 Iterative Hard-Thresholding Algorithm

As proved in Section 5.2.2, page 92, the soft-thresholding operator is the solution to
the minimization problem

Sλ (α) ∈ argmin
β∈Rp

{
1
2
‖α−β‖2 +λ |β |1

}
.

In order to avoid the bias of the Lasso (Section 5.2.5, page 102), we may consider to
replace in step (ii) the soft-thresholding operator by the hard-thresholding operator

Hλ (α) =

α11|α1|>λ

...
αp1|αp|>λ

 , (6.6)

which is the solution to the minimization problem (see Exercise 2.8.1, page 46)

Hλ (α) ∈ argmin
β∈Rp

{
‖α−β‖2 +λ

2|β |0
}
.
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Let us check that this amounts to consider the proximal algorithm for the initial
problem (6.1). Indeed, replacing again F(β ) by the quadratic approximation (6.4) in
(6.1), the proximal update is

β
t+1 = argmin

β∈Rp

{
F(β t)+ 〈β −β

t ,∇F(β t)〉+ 1
2η
‖β −β

t‖2 +λ
2|β |0

}
= argmin

β∈Rp

{
1

2η
‖β −β

t +η∇F(β t)‖2 +λ
2|β |0

}
= Hλ

√
2η(β

t −η∇F(β t)), (6.7)

with Hλ the hard-thresholding operator (6.6).

Does the algorithm (6.7) provide a good estimator for a sparse β ∗? While the proxi-
mal algorithm (6.5) for the Lasso can be shown to converge to the minimizer of (6.2)
for η small enough, we do not have such a result for (6.7). The original criterion (6.1)
being highly non-convex, the iterates (6.7) may not converge, and, in particular, they
do not converge to the solution of problem (6.1) in general.

We can prove yet some strong results for a variant of (6.7), where β̂ 0 = 0, η = 1/2
and where the thresholding level λt is updated at each time step

β̂
t+1 = Hλt+1

(
β̂

t − 1
2

∇F(β̂ t)

)
= Hλt+1

(
(I−XT X)β̂ t +XTY

)
. (6.8)

This algorithm is called the Iterative Hard Thresholding (IHT) algorithm. The recipe
is to choose a thresholding level λt decreasing from a high-value to the target value
λ = cσ

√
log(p) corresponding to the optimal level in (6.1). Similarly as for the

forward-backward algorithm, this recipe allows to keep under control the sparsity of
the iterates β̂ t and hence the variance of the estimator.

In the following, we consider, for some A,B > 0 and a > 1, the sequence of threshold
levels

λt = a−tA+B. (6.9)

In particular, the sequence (6.9) is solution to the recurrence equation λt+1 = a−1λt +
a−1

a B, with initialization λ0 = A+B. As discussed after Theorem 6.1, this specific
form with well-chosen A and B, allows to keep under control the sparsity of β̂ t at
each iterate, which is the key for controlling the reconstruction error.

6.1.3 Reconstruction Error

We provide in this section some theoretical results on the reconstruction error ‖β̂ t −
β ∗‖. Before stating the results, let us discuss their nature.

The classical approach in statistics or machine learning is
(i) to define an estimator, very often as the solution of a minimization problem, and
(ii) to define an optimization algorithm, in order to approximate the solution of the
minimization problem.
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For example, the Lasso estimator β̂Lasso is defined as the solution of the minimization
problem (6.2), and then proximal iterations (6.5) are used to numerically approximate
β̂Lasso. The estimator actually used is then β t obtained after t iterations of (6.5). The
reconstruction error of β t can then be decomposed in terms of an optimization error
‖β t − β̂Lasso‖ and a statistical error ‖β̂Lasso−β ∗‖

‖β t −β
∗‖ ≤ ‖β t − β̂Lasso‖︸ ︷︷ ︸

optim. error

+‖β̂Lasso−β
∗‖︸ ︷︷ ︸

stat.error

.

The two errors can be analyzed apart, using tools from convex optimization for the
optimization error and tools from statistics for the second term.

We emphasize that this classical approach does not make sense for the analysis of
the IHT estimator β̂ t obtained after t iterations of (6.8). The estimator β̂ t is not the
numerical approximation of an “ideal” estimator, and it may even not converge when
t goes to infinity. So, we have to directly analyze the reconstruction error ‖β̂ t −β ∗‖
without using an optimization / statistical error decomposition. Hence, the optimiza-
tion and statistics must be tackled altogether. This corresponds to a recent trend in
machine learning and this approach is recurrent in the analysis of iterative algorithms.
A second example can be found in this book, in Chapter 12, for the analysis of the
Lloyd algorithm.

Let us start with a deterministic bound on the reconstruction error ‖β̂ t −β ∗‖.

Theorem 6.1 Deterministic error bound for IHT.
We set Λ = I−XT X and m∗ = supp(β ∗). Assume that for some 0 < δ < 1 and
some c≥ 1 such that c2|β ∗|0 ∈ N,

max
S⊂{1,...,p}: |S|≤k̄

|ΛSS|op ≤ δ , with k̄ = (1+2c2)|β ∗|0. (6.10)

Assume also that,

1 < a≤ c
δ (1+2c)

, A≥ ‖β ∗‖
(1+2c)

√
|β ∗|0

and B >
a

a−1
|XT

ε|∞. (6.11)

Then, for all t ≥ 0, the estimator β̂ t defined by (6.8) with threshold levels given by
(6.9) fulfills

|β̂ t
m̄∗ |0 ≤ c2|β ∗|0, where m̄∗ = {1, . . . , p}\m∗, (6.12)

and
‖β̂ t −β

∗‖ ≤ (1+2c)λt
√
|β ∗|0. (6.13)

Before proving Theorem 6.1, let us explain informally how the IHT algorithm works.
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At step t +1, the estimator β̂ t+1 is given by a hard thresholding at level λt+1 of the
gradient step

Λβ̂
t +XTY = β

∗+Λ(β̂ t −β
∗)+XT

ε.

We observe that the value after the gradient step is given by the target β ∗ perturbed
by two terms Λ(β̂ t −β ∗) and XT ε .
The first term Λ(β̂ t −β ∗) reflects the propagation of the error β̂ t −β ∗ in the itera-
tive scheme. We observe that it has the nice following contraction property. As long
as (6.12) holds, we have |β̂ t − β ∗|0 ≤ k̄ and hence, according to (6.10), we have a
contraction of the error

‖Λ(β̂ t −β
∗)‖ ≤ δ‖β̂ t −β

∗‖. (6.14)

In addition to this iterative error, we have the noise term XT ε , which maintains some
noise in the iterations, at level |XT ε|∞. This noise level, which is the same (up to
constant) as the one appearing in Theorem 5.1 (page 95) for the Lasso, corresponds,
up-to-constant, to the threshold level λt for t large.
It is worth emphasizing the important role of the hard thresholding at each step. The
choice (6.11) of the threshold level λt ensures that the property (6.12) holds at each
step, and hence, that we have the contraction (6.14) of the residual error at each step.
We refer to Exercise 6.4.1 for a comparison with the case where the hard thresholding
is not applied at each iteration, but only at the final stage.
Let us now formalize the arguments exposed above.

Proof of Theorem 6.1.
We set |β ∗|0 = k∗, Z = XT ε , and bt+1 = β ∗ + Λ(β̂ t − β ∗) + Z, so that β̂ t+1 =
Hλt+1(b

t+1). We prove Theorem 6.1 by induction. The properties (6.12) and (6.13)
hold at t = 0. Let us assume that they hold at step t and let us prove that, then, they
also hold at step t +1.

Next lemma will be used repeatedly in the proof.

Lemma 6.2 Contraction property
If the property (6.12) holds at step t, then, we have

max
S⊂{1,...,p}: |S|≤c2k∗

(
‖(bt+1−β

∗)S‖−
√
|S| |Z|∞

)
≤ δ‖β ∗− β̂

t‖. (6.15)

Proof of Lemma 6.2. Let us set S̃t = m∗ ∪ supp(β̂ t
m̄∗), and S′ = S̃t ∪ S. We have

|S̃t | ≤ (1+ c2)k∗ by (6.12) at step t, and |S′| ≤ (1+2c2)k∗ = k̄. Hence

‖(bt+1−β
∗)S‖ ≤ ‖(Λ(β̂ t −β

∗))S‖+‖ZS‖

≤ ‖(Λ(β̂ t −β
∗))S′‖+

√
|S| |Z|∞

≤ ‖ΛS′S′(β̂
t −β

∗)S′‖+
√
|S| |Z|∞

≤ δ‖(β̂ t −β
∗)S′‖+

√
|S| |Z|∞ = δ‖β̂ t −β

∗‖+
√
|S| |Z|∞.
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The proof of Lemma 6.2 is complete. �

We have
‖β̂ t+1−β

∗‖ ≤ ‖β̂ t+1
m∗ −β

∗
m∗‖+‖β̂ t+1

m̄∗ ‖. (6.16)

The first term in the hand-right side can be upper-bounded by Lemma 6.2, the Bound
(6.13) at step t and (1+2c)δ ≤ ca−1,

‖β̂ t+1
m∗ −β

∗
m∗‖ ≤ ‖bt+1

m∗ −Hλt+1(b
t+1
m∗ )‖+‖b

t+1
m∗ −β

∗
m∗‖

≤
√

k∗ λt+1 +δ‖β̂ t −β
∗‖+
√

k∗ |Z|∞.

≤
√

k∗
(
λt+1 + ca−1

λt + |Z|∞
)
.

The Condition (6.11) ensures that λt+1 > a−1λt + |Z|∞, and we then get

‖β̂ t+1
m∗ −β

∗
m∗‖ ≤ (1+ c)

√
k∗λt+1. (6.17)

For the second term, we first prove that |β̂ t+1
m̄∗ |0 ≤ c2k∗. For any S⊂ supp(β̂ t+1

m̄∗ ), with
|S| ≤ c2k∗, we have from Lemma 6.2

λt+1
√
|S| ≤ ‖β̂ t+1

S ‖= ‖bt+1
S ‖= ‖b

t+1
S −β

∗
S ‖ ≤

√
|S| |Z|∞ +δ‖β ∗− β̂

t‖. (6.18)

Hence, since λt+1 > a−1λt + |Z|∞,

√
|S| ≤ δ‖β ∗− β̂ t‖

λt+1−|Z|∞
≤ a−1c

√
k∗λt

λt+1−|Z|∞
<

a−1c
√

k∗λt

a−1λt
= c
√

k∗.

It follows that |β̂ t+1
m̄∗ |0 < c2k∗, so (6.12) is proved at step t +1.

In addition, the Inequality (6.18) with S = supp(β̂ t+1
m̄∗ ) gives the upper bound

‖β̂ t+1
m̄∗ ‖ ≤ c

√
k∗ |Z|∞ +δ‖β ∗− β̂

t‖ ≤ c
√

k∗ |Z|∞ +a−1cλt
√

k∗ ≤ cλt+1
√

k∗,

where the last inequality again follows from λt+1 ≥ a−1λt + |Z|∞. Combining this
bound with the Bounds (6.16) and (6.17), we get

‖β̂ t+1−β
∗‖ ≤ (1+2c)λt+1

√
k∗.

Hence, (6.13) holds at step t +1 and the proof of Theorem 6.1 is complete. �

Let us build on Theorem 6.1, in order to provide a risk bound in the case where the
noise ε follows a N (0,σ2In) Gaussian distribution. In order to have A,B fulfilling
the condition (6.11) with large probability, we set for L > 0

A =
‖XTY‖+σ |X|op

√
2(1+

√
L)

3(1−δ )
and B =

aσ

a−1

√
2log(p)+2L. (6.19)

Then, we choose a number t̂ of iterations such that the first term a−t̂A is smaller than
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the second term B in (6.9). Accordingly, we define t̂ as the smallest integer larger
than1 loga(A/B),

t̂ := min{k ∈ N : k ≥ loga(A/B)} . (6.20)

Corollary 6.3 Error bound in the Gaussian setting for IHT.
Assume that the columns of X have unit `2-norm, and that the noise ε follows a
N (0,σ2In) Gaussian distribution. Assume also that Assumption (6.10) holds and
that 1 < a≤ c

δ (1+2c) .
Then, for any iteration t larger than t̂ defined by (6.20), with probability larger
than 1−2e−L, the estimator β̂ t , with A,B given by (6.19), fulfills |β̂ t

m̄∗ |0 ≤ c2|β ∗|0
and

‖β̂ t −β
∗‖2 ≤Ca,c |β ∗|0σ

2(log(p)+L), (6.21)

with Ca,c := 2
(

2a(1+2c)
a−1

)2
.

Before proceeding to the proof of this corollary, let us comment on the result. First,
we observe that the reconstruction error ‖β̂ t − β ∗‖2 is O(σ2 log(p)), which is (al-
most) optimal according to Exercise 3.6.3, page 69. In addition, we observe that the
error bound holds for a number t̂ of iterations that can be explicitly computed from
A and B.
The stronger assumption in Theorem 6.1 and Corollary 6.3 is Condition (6.10), which
ensures that any subset

{
X j : j ∈ S

}
of k̄ columns of X are close to be orthogonal.

This condition is somewhat strong, and it is seldom satisfied in practice. This is one
of the main weaknesses of this result.
As a side remark, we notice that under (6.10), we have for any u ∈ Rp with |u|0 ≤ k̄

(1−δ )‖u‖2 ≤ 〈XT Xu,u〉= ‖Xu‖2 ≤ (1+δ )‖u‖2.

This property is usually called the Restricted Isometry Property. Hence, under the
conditions of Corollary 6.3, we also have with probability larger than 1−2e−L,

‖X(β̂ t −β
∗)‖2 ≤ (1+δ )‖β̂ t −β

∗‖2 ≤ (1+δ )Ca,c |β ∗|0σ
2(log(p)+L).

This bound is comparable to the risk bound (5.13) obtained for the Lasso estimator,
on page 97.

Proof of Corollary 6.3.
Let ΩL be the event

ΩL =

{
‖XTY‖+σ |X|op

√
2(1+

√
L)

3(1−δ )
≥ ‖β

∗‖
1+2c

and |Z|∞ < σ
√

2log(p)+2L

}
.

1loga(x) = log(x)/ log(a)
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Let us observe that λt = a−tA+B≤ 2B for t ≥ t̂. On the event ΩL, Condition (6.11)
is fulfilled, so according to Theorem 6.1, we have |β̂ t

m̄∗ |0 ≤ c2k∗ and

‖β̂ t −β
∗‖2 ≤ (1+2c)2k∗(a−tA+B)2

≤ 4(1+2c)2k∗B2

≤Ca,c k∗σ2(log(p)+L).

So, to conclude the proof of Corollary 6.3, all we need is to prove that P [ΩL] ≥
1−2e−L.
From the proof of Corollary 5.3, page 97, we already have that

P
[
|Z|∞ ≥ σ

√
2log(p)+2L

]
≤ e−L.

Let us now bound ‖XTY‖ from below. Since the application ε →‖XT (Xβ ∗+ ε)‖ is
|X|op-Lipschitz, Gaussian concentration inequality (Theorem B.7, page 301) ensures
that with probability at least 1− e−L we have ‖XTY‖ ≥ E

[
‖XTY‖

]
−|X|opσ

√
2L.

While there is no simple formula for E
[
‖XTY‖

]
, we have the simple lower bound

E
[
‖XTY‖2]= ‖XT Xβ

∗‖2 +E
[
‖XT

ε‖2]≥ ‖XT Xβ
∗‖2.

Using again the Gaussian concentration inequality, we can lower-bound E
[
‖XTY‖

]
in terms of E

[
‖XTY‖2

]
. Indeed, there exists a standard exponential vari-

able ξ , such that ‖XTY‖ ≤ E
[
‖XTY‖

]
+ σ |X|op

√
2ξ . Since the function ξ →(

E
[
‖XTY‖

]
+σ |X|op

√
2ξ

)2
is concave, Jensen inequality gives

E
[
‖XTY‖2]≤ E[(E[‖XTY‖

]
+σ |X|op

√
2ξ

)2
]

≤
(
E
[
‖XTY‖

]
+σ |X|op

√
2E [ξ ]

)2
.

Since E [ξ ] = 1, we get with probability at least 1− e−L

‖XTY‖ ≥ E
[
‖XTY‖

]
−|X|opσ

√
2L

≥
√
E [‖XTY‖2]−|X|opσ

√
2
(

1+
√

L
)

≥ ‖XT Xβ
∗‖− |X|opσ

√
2
(

1+
√

L
)
.

Let us denote by m∗ the support of β ∗. To conclude, it remains to notice that, accord-
ing to (6.10), we have

‖XT Xβ
∗‖ ≥ ‖(XT Xβ

∗)m∗‖
≥ ‖β ∗m∗‖−‖Λm∗m∗β

∗
m∗‖

≥ (1−δ )‖β ∗m∗‖= (1−δ )‖β ∗‖.
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So, with probability at least 1− e−L, we have

‖β ∗‖
1+2c

≤
‖XTY‖+σ |X|op

√
2(1+

√
L)

3(1−δ )
.

The proof of Corollary 6.3 is complete. �

6.2 Iterative Group Thresholding

In this section, we extend the methodology developed above to the group-sparse
setting described in Section 2.1, Chapter 2. In this setting, the indices {1, . . . , p} are
partitioned into M groups {1, . . . , p}= ∪M

j=1G j, and our goal is to recover groups G j
of variables such that β ∗G j

6= 0. For this task, we can consider the generalization of
the minimization problem (5.16), on page 104,

min
β∈Rp

{
‖Y −Xβ‖2 +

M

∑
j=1

(λ ( j))21βG j 6=0

}
. (6.22)

Let us write a proximal algorithm related to this problem. Replacing again in (6.22)
the function F(β ) = ‖Y −Xβ‖2 by the quadratic approximation

F(β t)+ 〈β −β
t ,∇F(β t)〉+ 1

2η
‖β −β

t‖2

around the current estimate β t , we get the update

β
t+1 ∈ argmin

β∈Rp

{
F(β t)+ 〈β −β

t ,∇F(β t)〉+ 1
2η
‖β −β

t‖2 +
M

∑
j=1

(λ ( j))21βG j 6=0

}

= argmin
β∈Rp

{
‖β −β

t +η∇F(β t)‖2 +2η

M

∑
j=1

(λ ( j))21βG j 6=0

}
.

This minimization problem can be solved explicitly, see Exercise 6.4.2, page 135.
The solution is given by β t+1 = HG

λ
√

2η
(β t −η∇F(β t)), where the operator HG

λ
is

the group thresholding operator defined by

[HG
λ
(α)]G j = αG j 1‖αG j ‖>λ ( j) , for j = 1, . . . ,M.

So, we again have iterations involving a gradient step and a thresholding operator.

As before, the sequence (β t)t=1,2,... does not converge to the solution of (6.22) in
general. We consider instead a variant of the Iterative Hard Thresholding algorithm
(6.8) defined by β̂ 0 = 0 and

β̂
t+1 = HG

λt+1

(
β̂

t − 1
2

∇F(β̂ t)

)
= HG

λt+1

(
(I−XT X)β̂ t +XTY

)
(6.23)
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for a sequence of threshold levels (λ ( j)
t )t=1,2,..., j = 1, . . . ,M, decreasing with t. This

algorithm is called hereafter Iterative Group Thresholding (IGT). The update for β̂
t+1
G j

is then given by

β̂
t+1
G j

=
(

β̂
t
G j

+XT
G j
(Y −Xβ̂

t)
)

1
‖β̂ t

G j
+XT

G j
(Y−Xβ̂ t )‖>λ

( j)
t+1

.

In the following, we consider threshold levels of the form

λ
( j)
t =

√
|G j| γt , where γt = a−tA+B, (6.24)

with a > 1 and A,B > 0. When each group is a singleton, we recover the IHT algo-
rithm described in the previous section.

Before stating the counterpart of Theorem 6.1 for the Iterative Group Thresholding
algorithm (6.23), we need to introduce a couple of notations. We define the group-
support of β as

suppG(β ) =
⋃

j:βG j 6=0

G j,

and its cardinality by |β |G0 = card(suppG(β ). We also set

|Z|G∞ := max
j=1,...,M

‖ZG j‖√
|G j|

. (6.25)

Theorem 6.4 Deterministic error bound for IGT
Let us set Λ = I−XT X and m∗G = suppG(β

∗). Let us assume that all the groups
have the same cardinality q. Let us also assume that for some 0 < δ < 1 and some
c≥ 1 such that c2|β ∗|G0 ∈ qN,

max
S=∪ j∈JG j : |J|≤J̄G

|ΛSS|op ≤ δ , with J̄G = (1+2c2)|β ∗|G0 /q. (6.26)

Assume also that,

1 < a≤ c
δ (1+2c)

, A≥ ‖β ∗‖

(1+2c)
√
|β ∗|G0

and B >
a

a−1
|XT

ε|G∞, (6.27)

with | · |G∞ defined in (6.25).

Then, for all t ≥ 0, the estimator β̂ t defined by (6.23) with threshold levels given
by (6.24) fulfills

|β̂ t
m̄∗G
|G0 ≤ c2|β ∗|G0 , where m̄∗G = {1, . . . , p}\m∗G, (6.28)

and
‖β̂ t −β

∗‖ ≤ (1+2c)γt

√
|β ∗|G0 . (6.29)
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This result is proved in Exercise 6.4.3, page 136.
Let us consider the case where the noise ε follows a N (0,σ2In) Gaussian distribu-
tion. In order to have A,B fulfilling the condition (6.27) with large probability, we set
for L > 0

A =
‖XTY‖+σ |X|op

√
2(1+

√
L)

3(1−δ )
and B =

aσ

a−1

(
1+φG

√
2log(M)+2L

)
,

(6.30)
with

φG = max
j=1,...,M

|XG j |op√
|G j|

.

As in the coordinate-sparse setting, we define t̂ as the smallest integer larger than
loga(A/B). We then have the next corollary of Theorem 6.4.

Corollary 6.5 Error bound in the Gaussian setting for IGT.
Assume that the columns of X have unit `2-norm, and that the noise ε follows a
N (0,σ2In) Gaussian distribution. Assume also that Assumption (6.26) holds and
that 1 < a≤ c

δ (1+2c) .

Then, for any iteration t larger than t̂, with probability larger than 1− 2e−L, the
estimator β̂ t , with A,B given by (6.30), fulfills |β̂ t

m̄∗ |G0 ≤ c2|β ∗|G0 and

‖β̂ t −β
∗‖2 ≤Ca,c |β ∗|G0 σ

2 (1+2φ
2
G(log(M)+L)

)
, (6.31)

with Ca,c := 2
(

2a(1+2c)
a−1

)2
.

Corollary 6.5 is proved in Exercise 6.4.3, page 136. We can observe in the bound
(6.31) the benefit of using IGT instead of IHT in the group-sparse setting. Comparing
(6.31) and (6.21), we observe that the log(p) term has been replaced by a log(M)
term, which can be much smaller if the number M of groups is much smaller than
p. We can also notice that the bound (6.31) is very similar to the bound (5.20), page
105, for the group-Lasso.

6.3 Discussion and References

6.3.1 Take-Home Message

A robust strategy in statistics and machine learning is
(i) to start from a statistically optimal, but computationally intractable estimator, of-
ten defined through a minimization problem; and
(ii) to convexify the minimization problem as in Chapter 5, in order to define an
estimator which is amenable to numerical computations in high dimensions.

A explained in Chapter 5, theoretical guarantees can be derived for such estimators,
and this approach has been successful in many different settings. This approach suf-
fers yet from two drawbacks. First, convex estimators suffer from some undesirable
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shrinkage bias (see Section 5.2.5, page 102), and this bias can sometimes strongly
deteriorate the statistical properties, see for example [148]. Second, in some complex
settings, as in Chapter 12, Section 12.4, minimizing the convexified problem can be
computationally intensive.

As an alternative to this approach, there is a renewed interest in statistics and machine
learning for iterative algorithms, which are often greedy algorithms related to the
initial statistically optimal estimator. Such algorithms are typically computationally
efficient, and they do not suffer from a shrinkage bias. While they do not converge
to the solution to the original problem in general, many such algorithms have been
shown to enjoy good statistical properties, as good as those of convex estimators. It
is worth emphasizing that, while, for convex estimators, the optimization error and
the statistical error can be evaluated separately, for iterative algorithms like IHT or
IGT, the optimization and statistical errors cannot be separated and need to be tackled
together. This corresponds to a recent trend in statistics and machine learning.

6.3.2 References

The Iterative Hard Thresholding algorithm has been introduced by Blumensath and
Davies [35], and it has been analyzed by Jain, Tewari and Kar [95] and Liu and
Foygel Barber [111], among others. The version analyzed in this chapter has been
proposed by Ndaoud [125], and most of the material of this chapter is adapted from
Ndaoud [125].

6.4 Exercices

6.4.1 Linear versus Non-Linear Iterations

In the proximal iterations (6.7), the non-linear operator

β → Hλ
√

2η((I−ηXT X)β +2ηXTY ))

is applied iteratively. This non-linear operator corresponds to the succession of a
gradient step and a hard thresholding. In order to understand the benefit of the non-
linearity induced by the hard thresholding, it is insightful to compare the proximal
algorithm with the linearized version, where the iterations

β̃
t+1 = (I−2ηXT X)β̃ t +2ηXTY

are applied successively, started from β̃ 0 = 0, and the hard thresholding is applied
only at the final step β̂L = Hλ (β̃

∞), where β̃ ∞ = limt→∞ β̃ t .

1. Prove that β̃ t is given by

β̃
t =

t−1

∑
k=0

(I−2ηXT X)k2ηXTY.
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2. Let X = ∑
r
j=1 σ ju jvT

j be a singular value decomposition (Theorem C.1, page 311)
of X. Check that

β̃
t = LtY, with Lt =

r

∑
j=1

1− (1−2ησ2
j )

t

σ j
v juT

j .

3. Prove that for 2η < |X|−2
op , we have Lt → X+, where X+ is the Moore–Penrose

pseudo-inverse of X, defined by (C.2), page 312.

4. Conclude that β̂L = Hλ (X+Y ).

Comment. We have X+X = P⊥, where P⊥ is the projection onto the orthogonal
complement of ker(X), see (C.3), page 313. We observe that if Y = Xβ ∗+ ε , then
β̂L = Hλ (P⊥β ∗+X+ε). In the favorable case where P⊥β ∗ = β ∗, we then get that β̂L
is the hard thresholding at level λ of X+Y = β ∗+X+ε .

As highlighted in Theorem 6.1 (page 126) for the IHT algorithm (6.8), the threshold-
ing level is tightly linked to the infinite norm |XT ε|∞ =max j |XT

j ε|. When the noise ε

has a N (0,σ2In) distribution, and the matrix X has columns with unit `2-norm, then
|XT ε|∞ = O(σ

√
log(p)) with high probability. Similarly, the choice of the thresh-

old λ for β̂L should be tightly linked to the infinite norm |X+ε|∞ = max j |X+
j ε|. The

switch from the matrix XT to the matrix X+ has a strong impact on the size of the infi-
nite norm. Actually, since ‖X j‖= 1, each variable XT

j ε follows a Gaussian N (0,σ2)

distribution. In comparison, the variable X+
j ε follows a Gaussian N (0,‖X+

j ‖2σ2)

distribution and the norms ‖X+
j ‖ can be huge, especially in high dimension, when

the matrix X is badly conditioned.

We then observe one of the benefits of applying the non-linear thresholding at each
step: instead of having a noise level related to X+ε as for β̂L, we have a noise level
related to XT ε for the IHT algorithm (6.8).

6.4.2 Group Thresholding

Let the indices {1, . . . , p} be partitioned into M groups {1, . . . , p} = ∪M
j=1G j and let

λ1, . . . ,λM be M positive real numbers. We give in this exercise an explicit solution
to the minimization problem

β̂ ∈ argmin
β∈Rp

{
‖α−β‖2 +

M

∑
j=1

(λ ( j))21βG j 6=0

}
. (6.32)

1. Check that a solution to the minimization problem minβ∈Rp
{
‖α−β‖2 +λ 21β 6=0

}
is given by α1‖α‖>λ .

2. Using the decomposition,

‖α−β‖2 =
M

∑
j=1
‖αG j −βG j‖

2,

conclude that β̂ = HG
λ
(α) where [HG

λ
(α)]G j = αG j 1‖αG j ‖>λ ( j) .
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6.4.3 Risk Bound for Iterative Group Thresholding

In this exercise, we prove Theorem 6.4 and Corollary 6.5. The proofs of these two
results are closely related to the proofs of Theorem 6.1 and Corollary 6.3.

As in the proof of Theorem 6.1, we set k∗G = |β ∗|G0 , Z = XT ε and bt+1 = β ∗+Λ(β̂ t−
β ∗) + Z, so that β̂ t+1 = HG

λt+1
(bt+1). The next lemma is central in the proofs of

Theorem 6.4.

Lemma 6.6 Contraction property.
If the properties (6.28) and (6.29) hold at step t, then we have

max
S=∪ j∈JG j : |J|≤c2k∗G/q

(
‖(bt+1−β

∗)S‖−
√
|S| |Z|G∞

)
≤ δ‖β ∗− β̂

t‖. (6.33)

A) Proof of Lemma 6.6.
The proof of Lemma 6.6 is similar to the proof of Lemma 6.2. For S = ∪ j∈JG j with
|J| ≤ c2k∗G/q, we set S′ = S∪m∗G∪ suppG(β̂

t
m̄∗G

).

1. Check that |S′| ≤ (1+2c2)k∗G.
2. Prove the inequalities

‖(bt+1−β
∗)S‖ ≤ ‖Λ(β̂ t −β

∗)S‖+
√
|S| |Z|G∞

≤ δ‖β̂ t −β
∗‖+

√
|S||Z|G∞.

3. Conclude the proof of Lemma 6.6.

B) Proof of Theorem 6.4.
As for Theorem 6.1, we proceed by induction.
1. Check that (6.28) and (6.29) hold for t = 0.
In the following, we assume that (6.28) and (6.29) hold at step t. We will prove that
they then hold at step t +1.
2. Prove that

‖(β̂ t+1−β
∗)m∗G
‖ ≤ ‖[HG

λt+1
(bt+1)]m∗G −bt+1

m∗G
‖+‖bt+1

m∗G
−β

∗
m∗G
‖

≤ γt+1

√
k∗G +δ‖β̂ t −β

∗‖+
√

k∗G |Z|
G
∞.

3. With the induction property, prove that

‖(β̂ t+1−β
∗)m∗G
‖ ≤

√
k∗G
(
γt+1 + ca−1

γt + |Z|G∞
)
.

4. For S = ∪ j∈JG j ⊂ suppG(β̂
t+1
m̄∗G

), with |S| ≤ c2k∗G, check that

γt+1
√
|S| ≤ ‖β̂ t+1

S ‖ ≤ δ‖β̂ t −β
∗‖+

√
|S| |Z|G∞.
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5. Prove that we cannot have |S|= c2k∗G, and hence (6.28) holds at step t +1.
6. As a consequence, prove the inequality

‖β̂ t+1
m̄∗G
‖ ≤

√
k∗G
(
ca−1

γt + c|Z|G∞
)
.

7. Combining Questions 3 and 6, prove that (6.29) holds at step t +1.

C) Proof of Corollary 6.5.
All we need is to prove that (6.27) holds with probability larger than 1− 2e−L. We
remind the reader that all the columns of X have unit `2-norm.
1. Check that ‖XG j‖2

F = |G j|.
2. Check that the application x→‖XT

G j
x‖ is |XG j |op-Lipschitz.

3. With the Gaussian concentration inequality (Theorem B.7, page 301), prove that
for u≥ 0

P
[
‖ZG j‖ ≥ σ

(√
|G j|+ |XG j |op

√
2u
)]
≤ e−u.

4. Prove that for L≥ 0

P

[
max

j=1,...,M

‖ZG j‖√
|G j|

≥ σ

(
1+φG

√
2log(M)+2L

)]
≤ e−L,

and conclude the proof of Corollary 6.5.





Chapter 7

Estimator Selection

Which modeling and which estimator shall I use? These are eternal questions of the
statistician when facing data.

The first step is to write down a statistical model suited to analyze the data. This
step requires some deep discussions with the specialists of the field where the data
come from, some basic data mining to detect some possible key features of the data,
and some... experience. This process is crucial for the subsequent work, yet it seems
hardly amenable to a theorization.

The second step is to choose at best an estimator. Assume, for example, that after
some pretreatments of the data, you end up with a linear model (2.2). In some cases,
you know from expert knowledge the class of structures (coordinate sparsity, group
sparsity, variation-sparsity, etc.) hidden in the data. But in many cases, this class
is unknown, and we need to select this class from the data. Even if you know the
class of structures, say the coordinate sparsity, many estimators have been proposed
for this setting, including the Lasso estimator (5.4), the mixing estimator (4.2), the
forward–backward estimator of Section 2.4, the Dantzig selector (5.28), the Ridge
estimator (5.29), and many others. Which of these estimators shall you use? By the
way, all these estimators depend on some “tuning parameter” (λ for the Lasso, β for
the mixing, etc.), and we have seen that a suitable choice of these estimators requires
the knowledge of the variance σ2 of the noise. Unfortunately, this variance is usually
unknown. So even if you are a Lasso enthusiast, you miss some key information to
apply properly the Lasso procedure.

Of course, you should start by removing the estimators whose computational cost
exceeds your computational resources. But then you will still have to decide among
different estimation schemes and different tuning parameters.

We formalize this issue in Section 7.1, and we then describe different approaches
for selecting the estimators and their tuning parameters. The problem of choosing
the parameter λ for the Lasso estimator (5.4) will be use as a prototypal example of
parameter tuning. We describe three approaches for estimator selection. The first two
approaches are quite universal. The first one is based on some data resampling, and
the second one is inspired by model selection techniques. The last approach is specif-
ically designed for the estimators introduced in Chapter 5. The theory for analyzing
these selection procedures is somewhat more involved than the theory presented in
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the previous chapters, so we mainly focus in this chapter on the practical description
of the procedures, and we refer to the original papers for details on the theoretical
aspects.

7.1 Estimator Selection

Let us formalize the issues discussed above in the regression setting

Yi = f (x(i))+ εi, i = 1, . . . ,n,

with f : Rp → R, for the problem of estimating f ∗ = [ f (x(i))]i=1,...,n. We want to
choose at best one estimator among many different estimators corresponding to dif-
ferent classes of structures (coordinate sparsity, group sparsity, etc.), to different es-
timation schemes (Lasso, mixing, etc.) and to different values of their tuning param-
eters.

For an estimation scheme s and a tuning parameter h (possibly multidimensional),
we denote by f̂(s,h) the corresponding estimator of f ∗. Let S be a (finite) family of
estimation schemes. At each scheme s ∈S , we associate a (finite) set Hs of tuning
parameters. Pooling together all these estimators

{
f̂(s,h) : s ∈S , h ∈Hs

}
, our ideal

goal is to select among this family an estimator f̂(s,h) whose risk

R
(

f̂(s,h)
)
= E

[
‖ f̂(s,h)− f ∗‖2

]
is almost as small as the oracle risk min{s∈S ,h∈Hs}R

(
f̂(s,h)

)
.

In order to lighten the notations, let us denote by λ the couple (s,h). Setting

Λ =
⋃

s∈S

⋃
h∈Hs

{(s,h)},

this ideal objective can be rephrased as the problem of selecting among { f̂λ , λ ∈ Λ}
an estimator f̂

λ̂
whose risk R( f̂

λ̂
) is almost as small as the oracle risk minλ∈Λ R( f̂λ ).

Tuning the Lasso Estimator

The Lasso estimator is a prototypal example of estimator requiring a data-driven se-
lection of its tuning parameter λ . Actually, the choice of λ proposed in Corollary 5.3
is proportional to the standard deviation σ of Y , which is usually unknown. This issue
is due to the fact that the Lasso estimator is not invariant by rescaling, as explained
below.

Let β̂ (Y,X) be any estimator of β ∗ in the linear model Y = Xβ ∗+ ε . Assume that
we change the unit of measurement of Y , which amounts to rescale Y by a scaling
factor s > 0. We then observe sY = X(sβ )+ sε instead of Y . A proper estimator of β

should be scale-invariant, which means that it fulfills

β̂ (sY,X) = sβ̂ (Y,X) for any s > 0.
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It turns out that the Lasso estimator (5.4) is not scale-invariant. Actually, let us de-
note by β̂ lasso

λ
(Y,X) the solution of the minimization problem (5.4) (assuming for

simplicity that there is a unique solution). Since

‖sY −Xβ‖2 +λ |β |1 = s2
(
‖Y −X(β/s)‖2 +

λ

s
|β/s|1

)
,

we have
β̂
lasso
λ

(sY,X) = sβ̂
lasso
λ/s (Y,X),

so the Lasso estimator is not scale-invariant, since we need to rescale the parameter
λ by 1/s. This explains why a sensible choice of the tuning parameter λ of the Lasso
estimator (5.4) should be proportional to the standard deviation σ of the response Y .

In practice, to choose the parameter λ , we choose a finite grid Λ of R+ and select a
Lasso estimator f̂

λ̂
= Xβ̂ lasso

λ̂
(Y,X) among the collection

{
f̂λ = Xβ̂ lasso

λ
(Y,X) : λ ∈

Λ
}

with one of the procedures described below.

7.2 Cross-Validation Techniques

The cross-validation (CV) schemes are nearly universal in the sense that they can be
implemented in most statistical frameworks and for most estimation procedures. The
principle of the cross-validation schemes is to keep aside a fraction of the data in
order to evaluate the prediction accuracy of the estimators. More precisely, the data
is split into a training set and a validation set: the estimators are computed with the
training set only, and the validation set is used for estimating their prediction risk.
This training / validation splitting is eventually repeated several times. The cross-
validated estimator then selects the estimator with the smallest estimated risk (see
below for details). The most popular cross-validation schemes are:
• Hold-out CV, which is based on a single split of the data for training and valida-

tion.
• V -fold CV, where the data is split into V subsamples. Each subsample is suc-

cessively removed for validation, the remaining data being used for training; see
Figure 7.1.

• Leave-one-out, which corresponds to n-fold CV.
• Leave-q-out (or delete-q-CV) where every possible subset of cardinality q of the

data is removed for validation, the remaining data being used for training.

V -fold cross-validation is arguably the most popular cross-validation scheme: It is
more stable than the hold-out thanks to the repeated subsampling, and for small V
it is computationally much less intensive than the Leave-one-out or Leave-q-out.
We describe below the V -fold CV selection procedure in the regression setting of
Section 7.1.
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train train train train test

train train train test train

train train test train train

train test train train train

test train train train train

Figure 7.1 Recursive data splitting for 5-fold CV.

V -Fold Cross-Validation

Cross-validation schemes are naturally suited to estimators f̂λ of f ∗ of the following
form. Let us denote by D = (yi,x(i))i=1,...,n ∈R(p+1)n our data and assume that there
is a map Fλ : ∪n∈NR(p+1)n×Rp→ R such that f̂λ = [Fλ (D ,x(i))]i=1,...,n. In the case
of Lasso estimator (5.4), the map Fλ is given by Fλ ((Y,X),x) =

〈
β̂ lasso

λ
(Y,X),x

〉
(with the notations of Section 7.1).

Let {1, . . . ,n}= I1∪ . . .∪IV be a partition of {1, . . . ,n}. For a given k∈ {1, . . . ,V}we
denote by D−Ik the partial data set D−Ik =

{
(yi,x(i)) : i ∈ {1, . . . ,n}\ Ik

}
, where we

have removed the data points with index in Ik. For each k, the partial data set D−Ik
is used to compute the map Fλ (D−Ik , ·), and the remaining data DIk = (yi,x(i))i∈Ik
is used to evaluate the accuracy of Fλ (D−Ik , ·) for predicting the response y. More
precisely, in the setting of Section 7.1, this evaluation will be performed by comput-
ing for each i ∈ Ik the square-prediction error (yi−Fλ (D−Ik ,x

(i)))2. Averaging these
prediction errors, we obtain the V -fold CV `2-risk of Fλ

R̂CV [Fλ ] =
1
V

V

∑
k=1

1
|Ik| ∑

i∈Ik

(
yi−Fλ (D−Ik ,x

(i))
)2

. (7.1)

The V -fold CV procedure then selects λ̂CV by minimizing this estimated risk

λ̂CV ∈ argmin
λ∈Λ

R̂CV [Fλ ] .

The final estimator of f ∗ is f̂
λ̂CV

.

V -fold CV is widely used for estimator selection. It is in particular very popular for
tuning procedure such as the Lasso or the group-Lasso. It usually gives good results
in practice, yet it suffers from the two following caveats.

Caveat 1. The V -fold CV selection procedure requires to compute V times the maps{
F(D−Ik , ·) : λ ∈ Λ

}
and also the final estimator f̂

λ̂CV
. The computational cost of the

V -fold CV procedure is therefore roughly V × card(Λ) times the computational cost
of computing a single estimator f̂λ . For large V , this computational cost can overly
exceed the available computational resources. A remedy for this issue is to choose a



COMPLEXITY SELECTION TECHNIQUES 143

small V . Yet, for V small, we lose the stabilizing effect of the repeated subsampling,
and the V -fold CV procedure can be unstable in this case. A suitable choice of V must
then achieve a good balance between the computational complexity and the stability.
A common choice in practice is V = 10, but some choose smaller values (like V = 5)
when the computations resources are limited. We point out that when several Central
Processing Units (CPUs) are available, the maps

{
F(D−Ik , ·) : λ ∈ Λ, k = 1, . . . ,V

}
can be computed in parallel.

Caveat 2. Despite its wide popularity and its simplicity, there is no general theoreti-
cal result that guarantees the validity of the V -fold CV procedure in high-dimensional
settings. Actually, while it is not hard to identify the expected values of R̂CV [Fλ ] in a
random design setting (see Exercise 7.6.1), the analysis of the fluctuations of R̂CV [Fλ ]
around its expectation is much more involved in a high-dimensional setting. In prac-
tice, data splitting can be an issue when n is small, since the estimators Fλ (D−Ik , ·)
are only based on the partial data set D−Ik and they can be unstable. This instability
shrinks when n increases.

7.3 Complexity Selection Techniques

In order to avoid the two above caveats, an alternative point of view is to adapt to
estimator selection the ideas of model selection introduced in Chapter 2. Similarly
to the model selection estimator (2.9), we introduce a collection {Sm, m ∈M } of
models designed to approximate the estimators ( f̂λ )λ∈Λ and a probability distribution
π on M . We choose exactly the same models and probability distributions as in
Chapter 2, depending on the setting under study (coordinate sparsity, group sparsity,
variation sparsity, etc.).

Compared to model selection as described in Chapter 2, we have to address three is-
sues. First, for computational efficiency, we cannot explore a huge collection of mod-
els. For this reason, we restrict to a subcollection of models

{
Sm, m ∈ M̂

}
, possibly

data-dependent. The choice of this subcollection depends on the statistical problem;
see Section 7.3.1 for the coordinate-sparse setting and 7.3.2 for the group-sparse re-
gression. Second, we have to take into account the fact that a good model Sm for
an estimator f̂λ is a model that achieves a good balance between the approximation
error ‖ f̂λ −ProjSm

f̂λ‖2 and the complexity measured by log(1/πm). Therefore, the
selection criterion involves this approximation error term in addition to the penalty.
Finally, the criterion shall not depend on the unknown variance σ2. For this reason,
we replace σ2 in front of the penalty term by the estimator

σ̂
2
m =
‖Y −ProjSm

Y‖2

n−dim(Sm)
. (7.2)

Combining these three features, we can select the estimator f̂
λ̂

by minimizing the
criterion

Crit( f̂λ ) = inf
m∈M̂

[
‖Y −ProjSm

f̂λ‖2 +
1
2
‖ f̂λ −ProjSm

f̂λ‖2 +penπ(m) σ̂
2
m

]
, (7.3)
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where σ̂2
m is given by (7.2) and penπ(m) is defined as the unique solution of

E
[(

U− penπ(m)

1.1(n−dim(Sm))
V
)
+

]
= πm, (7.4)

where U and V are two independent chi-square random variables with dim(Sm)+ 1
and n− dim(Sm)− 1 degrees of freedom, respectively. In the cases we will con-
sider here, the penalty penπ(m) is roughly of the order of log(1/πm) (see Exer-
cise 7.6.3), and therefore it penalizes Sm according to its complexity log(1/πm).
An implementation of Criterion (7.3) is available in the R package LINselect

http://cran.r-project.org/web/packages/LINselect/.

Compared to V -fold CV, this selection criterion enjoys two nice properties:
(i) It does not involve any data splitting. The estimators are then built on the whole

data set (which is wise when n is small) and they are computed once.
(ii) The risk of the procedure is controlled by a bound similar to Theorem 2.2 in Chap-

ter 2 for model selection. Deriving such a risk bound involves the same ideas as
for the model selection procedure of Chapter 2, but it is somewhat more techni-
cal. Therefore, we will not detail these theoretical aspects and we will only focus
below on the practical aspects. The references for the theoretical details are given
in Section 7.5; see also Exercise 7.6.4.

Caveat. The major caveat of the selection procedure (7.3) is that it is designed for the
Gaussian setting and there is no guarantee when the noise does not have a Gaussian
distribution.

In the remainder of this section, we describe the instantiation of Criterion (7.3) in the
coordinate-sparse setting, in the group-sparse setting, and in a mixed setting.

7.3.1 Coordinate-Sparse Regression

Let us consider the problem of selecting among sparse linear regressors
{

f̂λ = Xβ̂λ :
λ ∈ Λ

}
in the linear regression model Y = Xβ ∗+ ε in the coordinate-sparse setting

described in Chapter 2. We consider the collection of models {Sm, m ∈M } and the
probability π designed in Chapter 2 for the coordinate-sparse regression setting. For
λ ∈ Λ, we define m̂λ = supp(β̂λ ) and

M̂ = {m̂λ : λ ∈ Λ and 1≤ |m̂λ | ≤ n/(3 log p)} . (7.5)

The estimator f̂
λ̂
= Xβ̂

λ̂
is then selected by minimizing (7.3).

As mentioned earlier, the risk of the estimator f̂
λ̂

can be compared to the risk of the
best estimator in the collection

{
f̂λ : λ ∈Λ

}
. Let us describe such a result in the case

where β̂λ is a Lasso-estimator and Λ = R+.

For m⊂ {1, . . . , p}, we define φm as the largest eigenvalue of XT
mXm, where Xm is the

matrix derived from X by only keeping the columns with index in m. The following
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proposition involves the restricted eigenvalue φ ∗=max{φm : card(m)≤ n/(3log p)}
and the compatibility constant κ(β ) defined by (5.8) in Chapter 5, page 95.

Proposition 7.1 There exist positive numerical constants C, C1, C2, and C3, such
that for any β ∗ fulfilling

|β ∗|0 ≤C
κ2(β ∗)

φ ∗
× n

log(p)
,

the Lasso estimator f̂
λ̂
= Xβ̂

λ̂
selected according to (7.3) fulfills

‖X(β̂
λ̂
−β

∗)‖2 ≤C3 inf
β 6=0

{
‖X(β ∗−β )‖2 +

φ ∗|β |0 log(p)
κ2(β )

σ
2
}
, (7.6)

with probability at least 1−C1 p−C2 .

The risk Bound (7.6) is similar to (5.13) except that
• it does not require the knowledge of the variance σ2;
• it requires an upper bound on the cardinality of the support of β ∗; and
• it involves two constants C3,φ

∗ larger than 1.
The proof of this result relies on arguments close to those of Theorem 2.2, yet it is
slightly lengthy and we omit it (see Section 7.5 for a reference).

7.3.2 Group-Sparse Regression

Let us now describe the procedure (7.3) in the group-sparse setting of Chapter 2. For
simplicity, we restrict to the specific case where all the groups Gk have the same car-
dinality T = p/M and the columns of X are normalized to 1. For any m⊂{1, . . . ,M},
we define the submatrix X(m) of X by only keeping the columns of X with index in⋃

k∈m Gk. We also write XGk for the submatrix of X built from the columns with in-
dex in Gk. The collection {Sm, m ∈M } and the probability π are those defined in
Chapter 2 for group sparsity. For a given λ > 0, similarly to the coordinate-sparse
case, we define m̂(λ ) =

{
k : [β̂λ ]Gk 6= 0

}
and

M̂ =

{
m̂(λ ) : λ > 0 and 1≤ |m̂(λ )| ≤ n−2

2T ∨3log(M)

}
. (7.7)

The estimator f̂
λ̂
= Xβ̂

λ̂
is then selected by minimizing (7.3).

As above, let us give a risk bound for the case where the estimator β̂λ is the group-
Lasso estimator (5.17) with λ1 = . . .= λM = λ ∈R+. For m⊂ {1, . . . ,M}, we define
φ(m) as the largest eigenvalue of XT

(m)X(m). The following risk bound involves the
cardinality |K (β )| of the set K (β )=

{
k : βGk 6= 0

}
, the group-restricted eigenvalue

φ
∗
G = max

{
φ(m) : 1≤ |m| ≤ n−2

2T ∨3log(M)

}
, (7.8)
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and the group-compatibility constant κG(β ) defined by (5.18) in Chapter 5, page 105.

Proposition 7.2 There exist positive numerical constants C, C1, C2, and C3, such
that when

T ≤ (n−2)/4 and 1≤ |K (β ∗)| ≤C
κ2

G(β
∗)

φ ∗G
× n−2

log(M)∨T
,

the group-Lasso estimator f̂
λ̂
= Xβ̂

λ̂
selected according to (7.3) fulfills

‖X(β̂
λ̂
−β

∗)‖2 ≤C3 inf
β 6=0

{
‖X(β −β

∗)‖2 +
φ ∗G

κ2
G(β )

|K (β )| (T + log(M))σ
2
}
,

(7.9)
with probability at least 1−C1M−C2 .

Again, for conciseness, we omit the proof of this result (see Section 7.5 for a refer-
ence).

7.3.3 Multiple Structures

When we ignore which class of structures (coordinate-sparse, group-sparse,
variation-sparse, etc.) is hidden in the data, we wish to select the best estima-
tor among a collection of estimators corresponding to various classes of struc-
tures. To illustrate this point, let us assume that our family

{
f̂λ = Xβ̂λ : λ ∈ Λ

}
gathers some estimators

{
f̂λ = Xβ̂λ : λ ∈ Λcoord

}
with β̂λ coordinate-sparse, and

some estimators
{

f̂λ = Xβ̂λ : λ ∈ Λgroup
}

with β̂λ group-sparse. Let us denote by{
Scoordm : m ∈M coord

}
and πcoord (respectively,

{
Sgroupm : m ∈M group

}
and πgroup)

the models and the probability distribution defined in Chapter 2 for the coordinate-
sparse setting (respectively, for the group-sparse setting). Writing M̂ coord (respec-
tively, M̂ group) for the family defined by (7.5) (respectively, by (7.7)), the selec-
tion procedure (7.3) can then be applied with the collection of models

{
Scoordm :

m ∈ M̂ coord
}
∪
{

Sgroupm : m ∈ M̂ group
}

, and with the probability distribution πm =

πcoord
m /2 if m ∈M coord and πm = π

group
m /2 if m ∈M group. The theoretical guaran-

tees on the selection procedure (7.3) then ensures that the selected estimator f̂
λ̂

is
almost as good as the best of the estimators in

{
f̂λ : λ ∈ Λ

}
. Again, we refer to the

original papers (see Section 7.5) for details.

7.4 Scale-Invariant Criteria

In this section, we describe an alternative to the cross-validation techniques and the
complexity selection techniques for the specific problem of choosing the tuning pa-
rameter of procedures like the Lasso. In the linear regression setting Y = Xβ ∗+ ε ,
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as explained in Section 7.1, a sensible estimator β̂ (Y,X) of β ∗ should be scale-
invariant, which means that β̂ (sY,X) = sβ̂ (Y,X) for all s > 0. Let us consider an
estimator β̂ (Y,X), obtained by minimizing some function β →L (Y,X,β ). The es-
timator β̂ (Y,X) is scale-invariant if

argmin
β

L (sY,X,sβ ) = argmin
β

L (Y,X,β ).

Such a condition is met, for example, when there exists some functions a(Y,X,s) and
b(Y,X,s), such that

L (sY,X,sβ ) = a(Y,X,s)L (Y,X,β )+b(Y,X,s).

The estimators introduced in Chapter 5 are obtained by minimizing a function

L (Y,X,β ) = ‖Y −Xβ‖2 +λΩ(β ), (7.10)

which is the sum of a quadratic term ‖Y −Xβ‖2 and a convex function Ω homoge-
neous with degree 1. A prototypal example is the Lasso estimator where Ω(β )= |β |1.
Such estimators are not scale-invariant. We observe that the standard deviation σ of
the noise ε is equal to the standard deviation of Y = Xβ ∗+ ε . Setting λ = µσ , we
derive from (7.10) a scale-invariant estimator by minimizing

σ
−1‖Y −Xβ‖2 +µΩ(β ), with σ = sdev(Y ) = sdev(ε)

instead of (7.10). Yet, the standard deviation σ of the noise is usually unknown, so
we cannot compute the above criterion. An idea is to estimate σ with the norm of
the residuals, namely ‖Y −Xβ‖/

√
n. Following this idea, we obtain for µ > 0 the

scale-invariant criterion

L (Y,X,β ) =
√

n‖Y −Xβ‖+µΩ(β ). (7.11)

Since any norm is convex, the function L (Y,X,β ) is convex and L (sY,X,sβ ) =

sL (Y,X,β ), so the minimizer β̂ (Y,X) is scale-invariant.

Square-Root Lasso

Let us investigate the properties of the estimator β̂ obtained by minimizing
L (Y,X,β ) when Ω(β ) = |β |1 (we can follow the same lines with the other crite-
ria). For µ > 0, the resulting estimator is the so-called square-root Lasso estimator

β̂ ∈ argmin
β∈Rp

{√
n‖Y −Xβ‖+µ|β |1

}
. (7.12)

The minimization problem (7.12) is scale-invariant and it can be computed in high-
dimensional settings since it is convex. The next theorem shows that the resulting
estimator enjoys some nice theoretical properties.
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Theorem 7.3 Risk bound for the square-root Lasso

For L > 0, we set µ = 4
√

log(p)+L . Assume that for some δ ∈ (0,1) we have

|β ∗|0 ≤ δ
2 nκ2(β ∗)

64µ2 , (7.13)

with the compatibility constant κ(β ) defined in (5.8). Then, with probability at
least 1− e−L− (1+ e2)e−n/24, the estimator (7.12) fulfills

‖X(β̂ −β
∗)‖2 ≤ 482(log(p)+L)

δ (1−δ )κ(β ∗)2 |β
∗|0σ

2. (7.14)

Proof. We first prove a deterministic bound on ‖X(β̂ −β ∗)‖2.

Lemma 7.4 Deterministic bound
Let us consider some δ ∈ (0,1) and µ > 0. Assume that (7.13) holds and that ε

fulfills
2|XT

ε|∞ ≤ µ‖ε‖/
√

n . (7.15)

Then, for ε 6= 0 we have the upper bound

‖X(β̂ −β
∗)‖2 ≤ 18µ2‖ε‖2

δ (1−δ )κ(β ∗)2n
|β ∗|0. (7.16)

Proof of Lemma 7.4
We set m∗ = supp(β ∗). We first prove that

|(β̂ −β
∗)mc∗ |1 ≤ 3|(β̂ −β

∗)m∗ |1. (7.17)

Since β̂ minimizes (7.12), we have

‖Y −Xβ̂‖−‖Y −Xβ
∗‖ ≤ µ√

n

(
|β ∗|1−|β̂ |1

)
=

µ√
n

(
|β ∗m∗ |1−|β̂m∗ |1−|β̂mc∗ |1

)
≤ µ√

n

(
|(β̂ −β

∗)m∗ |1−|(β̂ −β
∗)mc∗ |1

)
. (7.18)

For ε 6= 0, the differential of the map β →‖Y −Xβ‖ at β ∗ is

∇β‖Y −Xβ
∗‖= −XT (Y −Xβ ∗)

‖Y −Xβ ∗‖
=−XT ε

‖ε‖
.

Since β →‖Y −Xβ‖ is convex, we have (Lemma D.1, page 321, in Appendix D)

‖Y −Xβ̂‖−‖Y −Xβ
∗‖ ≥ −

〈
XT ε

‖ε‖
, β̂ −β

∗
〉

≥−|X
T ε|∞
‖ε‖

|β̂ −β
∗|1 ≥−

µ

2
√

n
|β̂ −β

∗|1, (7.19)
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where the last inequality follows from (7.15). Combining (7.19) with (7.18), we
get (7.17).

We now prove (7.16). Since Criterion (7.12) is convex, when Y 6= Xβ̂ , the first-order
optimality condition (Lemma D.4, page 323, in Appendix D) ensures the existence
of ẑ ∈ ∂ |β̂ |1, such that

−
√

nXT (Y −Xβ̂ )

‖Y −Xβ̂‖
+µ ẑ = 0.

In particular,

−〈Y −Xβ̂ ,X(β̂ −β
∗)〉+ µ√

n
‖Y −Xβ̂‖〈ẑ, β̂ −β

∗〉= 0.

This inequality still holds when Y = Xβ̂ . Since |ẑ|∞ ≤ 1 (Lemma D.5 in Appendix
D), we have according to (7.15) and (7.17)

‖X(β̂ −β
∗)‖2 ≤ 〈ε,X(β̂ −β

∗)〉+µ
‖Y −Xβ̂‖√

n
|β̂ −β

∗|1

≤

(
|XT

ε|∞ +µ
‖Y −Xβ̂‖√

n

)
|β̂ −β

∗|1

≤ 4µ

(
‖ε‖/2+‖Y −Xβ̂‖√

n

)
|(β̂ −β

∗)m∗ |1.

We first observe that ‖Y − Xβ̂‖ ≤ ‖ε‖+ ‖X(β̂ − β ∗)‖. Furthermore, according
to (7.17) and the definition of the compatibility constant (5.8), we have the upper
bound |(β̂ −β ∗)m∗ |1 ≤

√
|β ∗|0 ‖X(β̂ −β ∗)‖/κ(β ∗), so

‖X(β̂ −β
∗)‖2 ≤ 6µ

‖ε‖√
n

√
|β ∗|0 ‖X(β̂ −β ∗)‖

κ(β ∗)
+4µ

√
|β ∗|0 ‖X(β̂ −β ∗)‖2

κ(β ∗)
√

n
.

For the second right-hand-side term, Condition (7.13) ensures that the factor
4µ|β ∗|1/2

0 /(
√

nκ(β ∗)) is smaller than δ/2. Applying the inequality ab≤ (2δ )−1a2+
δb2/2 to the first right-hand-side term then gives

‖X(β̂ −β
∗)‖2 ≤ 18µ2‖ε‖2

δκ(β ∗)2n
|β ∗|0 +

δ

2
‖X(β̂ −β

∗)‖2 +
δ

2
‖X(β̂ −β

∗)‖2,

from which (7.16) follows. 2

Let us now conclude the proof of Theorem 7.3. On the event

A =
{
|XT

ε|2∞ ≤ 2σ
2(log(p)+L) and |σ −‖ε‖/

√
n| ≤ (1−2−1/2)σ

}
,

Condition (7.15) holds with µ2 = 16(log(p) + L), and the Bound (7.16) enforces
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Bound (7.14). So all we need is to check that the probability of the event A is at least
1− e−L− (1+ e2)e−n/24. According to the Gaussian concentration Inequality (B.2)
and Bound (B.4) in Appendix B, we have

P
(
|σ −‖ε‖/

√
n| ≥ (1−2−1/2)σ

)
≤ P

(
‖ε‖ ≥ E [‖ε‖]+ (

√
n−
√

n/2)σ
)
+P

(
‖ε‖ ≤ E [‖ε‖]− (

√
n−4−

√
n/2)σ

)
≤ e−

(√
n−
√

n/2
)2

/2
+ e−

(√
n−4−
√

n/2
)2

/2 ≤ (1+ e2)e−n/24.

Finally, the proof of Corollary 5.3 ensures that

P
(
|XT

ε|2∞ ≥ 2σ
2(log(p)+L)

)
≤ e−L,

so the probability of the event A is at least 1− e−L− (1+ e2)e−n/24. The proof of
Theorem 7.3 is complete. 2

Since Criterion (7.12) has been derived from the Lasso Criterion (5.4), it is worth
it to investigate the possible connections between the square-root Lasso β̂ and the
Lasso β̂ lasso

λ
(Y,X). We first observe that

√
n‖Y −Xβ‖= min

σ>0

{
nσ

2
+
‖Y −Xβ‖2

2σ

}
,

and the minimum is achieved for σ = ‖Y −Xβ‖/
√

n. As a consequence, the estima-
tor β̂ defined by (7.12) and the standard-deviation estimator σ̂ = ‖Y −Xβ̂‖/

√
n are

solution of the convex minimization problem

(β̂ , σ̂) ∈ argmin
(β ,σ)∈Rp×R+

{
nσ

2
+
‖Y −Xβ‖2

2σ
+µ|β |1

}
. (7.20)

In particular, defining σ̂ by (7.20), the square-root Lasso estimator β̂ is a solution
of β̂ ∈ argminβ

{
‖Y −Xβ‖2 +2µσ̂ |β |1

}
. In other words, in the notations of Sec-

tion 7.1, we have
β̂ = β̂

lasso
2µσ̂

(Y,X). (7.21)

This link between the square-root Lasso estimator and the Lasso estimator has some
nice practical and theoretical consequences. From a practical point of view, we ob-
serve that Criterion (7.20) is convex in (β ,σ), so the estimator β̂ can be efficiently
computed by alternating minimization in β and σ . For a given σ , the minimization in
β amounts to solve a Lasso problem with tuning parameter 2µσ , while for a fixed β

the minimization in σ has a closed-form solution σ = ‖Y −Xβ‖/
√

n. The resulting
algorithm is the so-called scaled-Lasso algorithm described below. An implementa-
tion of this algorithm is available in the R package scalreg
http://cran.r-project.org/web/packages/scalreg/.
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Scaled-Lasso algorithm

Initialization: β̂ = 0

Repeat until convergence

• σ̂ = ‖Y −Xβ̂‖/
√

n

• β̂ = β̂ lasso
2µσ̂

(Y,X)

Output: β̂

From a theoretical point of view, the link (7.21) allows to improve Bound (7.14) by
transposing the results for the Lasso estimator. The only issue is to get a control on
the size of σ̂ . Such a control can be derived from Theorem 7.3. The next corollary
provides a risk bound for the square-root Lasso similar to Corollary 5.3, page 97, for
the Lasso.

Corollary 7.5 A tighter risk bound for the square-root Lasso

For L > 0, let us set µ = 3
√

2log(p)+2L and assume that β ∗ fulfills (7.13) with
δ = 1/5. Then, with probability at least 1− e−L− (1+ e2)e−n/24, we have

‖X(β̂λ −β
∗)‖2 ≤ inf

β 6=0

{
‖X(β −β

∗)‖2 +
202σ2(L+ log(p))

κ(β )2 |β |0
}
. (7.22)

We refer to Exercise 7.6.2 for a proof of this corollary.

7.5 Discussion and References

7.5.1 Take-Home Message

When analyzing a data set, after writing down a statistical model (say, a linear re-
gression model), the statistician faces three issues:
• What is the underlying class of structures hidden in the data? (for example, coor-

dinate sparsity, group sparsity, etc.)
• For a given class of structures, which estimator is the best? For example, for

coordinate-sparse structures, shall we use the Lasso estimator, the Dantzig esti-
mator, or the Elastic-Net? No estimator is universally better than the others, so the
choice must be adapted to the data.
• For a given estimator, which tuning parameter should be chosen? Many estima-

tors (like the Lasso) are not scale-invariant, so any sensible choice of the tuning
parameter depends on the variance of the response Y . Since the variance of Y is
usually unknown, the choice of the tuning parameter must be adapted to the data.
Furthermore, even for scale-invariant estimators Xβ̂µ like the square-root Lasso
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estimator (7.12), the oracle tuning parameter

µ
∗
oracle ∈ argmin

µ

E
[
‖X(β̂µ −β

∗)‖2
]

depends on Xβ ∗, so it is wise to also tune µ according to the data.
These three issues can be handled all together by gathering a collection of estima-
tors

{
f̂λ : λ ∈ Λ

}
corresponding to different estimation schemes (adapted to various

classes of structures) with different tuning parameters. The ideal objective is then
to choose f̂

λ̂
in this collection with a risk almost as small as the risk of the oracle

estimator f̂λ ∗oracle
, where

λ
∗
oracle ∈ argmin

λ∈Λ

E
[
‖ f̂λ − f ∗‖2

]
.

Different approaches have been developed in order to handle this issue.

A first class of selection procedures is based on subsampling: part of the data is
used to compute the estimators, while the remaining data is used to evaluate their
prediction accuracy. This process is possibly repeated several times. This approach,
including V -fold CV, is very popular and widely used. It usually provides satisfying
results in practice, yet it suffers from two caveats. First, the repeated subsampling can
lead to intensive computations exceeding the available computing resources. Second,
there are no theoretical guarantees in general on the outcome of the selection process
in high-dimensional settings. In particular, the subsampling device can suffer from
instability for very small sample sizes.

A second estimator selection approach is inspired by the model selection techniques
of Chapter 2. This approach has the nice features to avoid data splitting and to enjoy
some non-asymptotic theoretical guarantees on the outcome of the selection process.
Yet, it is limited to the setting where the noise ε1, . . . ,εn is i.i.d. with Gaussian distri-
bution.

Finally, for tuning estimators based on the minimization of a non-homogeneous cri-
terion, a third strategy is to modify this criterion in order to obtain scale-invariant
estimators like the square-root Lasso. This approach is computationally efficient and
enjoys some nice theoretical properties. Yet, it is limited to the tuning of some spe-
cific estimators like those introduced in Chapter 5, and it does not allow to compare
different estimation schemes.

There are a few other estimator selection procedures that have been proposed recently
in the literature. We point some of them out in the references below. The mathemat-
ical analysis of general estimator selection procedures is somewhat more involved
than the theory described in the previous chapters. We also observe that the results
stated in Proposition 7.1, Proposition 7.2, and Theorem 7.3 involve some extra con-
ditions on the sparsity of the regressor β ∗ compared to Theorem 5.1 and Theorem 5.4
in Chapter 5 for the Lasso or group-Lasso estimators. For example, in the coordinate-
sparse setting, these conditions roughly require that |β ∗|0 remains small compared to
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n/ log(p). This unpleasant condition is unfortunately unavoidable when the variance
σ2 is unknown, as has been shown by Verzelen [160].

The theory of estimator selection has to be strengthened, yet some tools are already
available, each providing various interesting features.

7.5.2 References

Cross-validation techniques date back at least to the ’60s; classical references include
the papers by Mosteller and Tukey [123], Devroye and Wagner [63], Geisser [75],
Stone [147], and Shao [142]. The asymptotic analysis of V -fold-CV was carried out
in the ’80s by Li [110], among others. The non asymptotic analysis of V -fold CV
is much more involved. Some non asymptotic results have been derived by Arlot,
Célisse, and Lerasle [5, 8, 108] for some specific settings. We refer to Arlot and
Celisse [7] for a recent review on the topic.

The complexity selection Criterion (7.3) has been introduced and analyzed by Ba-
raud, Giraud, Huet, and Verzelen [19, 20, 82]. An associated R package LINselect
is available on the CRAN archive network
http://cran.r-project.org/web/packages/LINselect/.

The square-root Lasso estimator (7.12) has been introduced and analyzed by Belloni,
Chernozhukov and Wang [25], Antoniadis [4], and Sun and Zhang [149] (see Städler,
Bühlmann, and van de Geer [145] for a variant based on a penalized maximum like-
lihood criterion). An associated R package scalreg is also available on the CRAN
archive network http://cran.r-project.org/web/packages/scalreg/. An
analog of the square-root Lasso for the group-sparse setting is analyzed in Bunea
et al. [42].

Some other non-asymptotic approaches have been developed for estimator selection
in the regression setting with unknown variance σ2. The slope-heuristic developed by
Birgé and Massart [33], Arlot and Massart [9], and Arlot and Bach [6] builds on the
following idea. Consider f̂

λ̂
selected by minimizing a penalized criterion crit( f̂λ ) =

‖Y − f̂λ‖2 +pen( f̂λ ). Assume that there exists some penalty penmin( f̂λ ), such that

• when pen( f̂λ ) = Kpenmin( f̂λ ) with K > σ2, we have an oracle risk bound like
Theorem 2.2 for f̂

λ̂
, and

• when pen( f̂λ ) = Kpenmin( f̂λ ) with K < σ2, we have f̂
λ̂
≈ Y .

For example, in the setting of Exercise 2.8.1 in Chapter 2, the penalty penmin( f̂m) =
2|m| log(p) is a minimal penalty. When such a minimal penalty exists, we then ob-
serve the following phenomenon. Define λ̂K by

λ̂K ∈ argmin
λ∈Λ

{
‖Y − f̂λ‖2 +Kpenmin( f̂λ )

}
.

When K < σ2, we have f̂
λ̂K
≈ Y , whereas when K > σ2, we have ‖Y − f̂

λ̂K
‖ large.

The rough idea is then to track a value K̂ where this transition occurs and use
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this value as an estimator of σ2. We refer to the original papers [33] and [6] for a
more precise description of the slope-heuristic procedure and some non-asymptotic
bounds.

Another approach based on pairwise test comparisons on a discretized space has been
proposed and analyzed by Baraud and Birgé [31, 16, 18]. The procedure cannot be
easily sketched in a couple of lines, so we refer to the original papers. This estima-
tor selection technique has the nice feature of being very flexible, and it enjoys the
property to be able to automatically adapt to the distribution of the noise. This last
property is extremely desirable, since we usually do not know the distribution of the
noise. Unfortunately, the computational complexity of the selection procedure is gen-
erally very high and it cannot be directly implemented even in moderate dimensions.

As mentioned above, there is a need for some efforts to strengthen the theory of
estimator selection. We refer to Giraud et al. [82] for a recent review on this issue in
the regression setting.

7.6 Exercises

7.6.1 Expected V -Fold CV `2-Risk

A natural setting for analyzing the V -fold CV selection procedure is the random
design regression setting, where the observations (Y1,X1), . . . ,(Yn,Xn) are i.i.d. with
common distribution P. We assume in the following that the variance of Y is finite,
and we keep the notations of Section 7.2. Writing f (x) for (a version of) the con-
ditional expectation f (x) = E [Y |X = x], we have Yi = f (Xi)+ εi with the ε1, . . . ,εn
i.i.d. centered and with finite variance.

For any measurable function g : Rp → R, we denote by ‖g‖L2(PX ) the expectation

‖g‖L2(PX ) = E
[
g(X1)

2
]1/2.

1. Prove that E [ε1|X1] = 0 and E
[
(Y1−g(X1))

2
]
= ‖g− f‖2

L2(PX )
+var(ε1).

2. Prove the equality

E
[
(Y1−Fλ (D−I1 ,X1))

2]= E−I1

[
‖Fλ (D−I1 , ·)− f‖2

L2(PX )

]
+var(ε1),

where E−I1 refers to the expectation with respect to D−I1 .

3. Conclude that the expected value of the V -fold CV `2-risk R̂CV [Fλ ] defined
by (7.1) is given by

E
[
R̂CV [Fλ ]

]
= E−I1

[
‖Fλ (D−I1 , ·)− f‖2

L2(PX )

]
+var(ε1).

Remark. Since the variance of ε1 does not depend on λ , the V -fold CV `2-
risk is equal up to a constant to an unbiased estimator of the integrated risk
E−I1

[
‖Fλ (D−I1 , ·)− f‖2

L2(PX )

]
. This risk can be viewed as an approximation of the
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risk E
[
‖Fλ (D , ·)− f‖2

L2(PX )

]
, which measures the mean L2-distance between the es-

timator Fλ (D , ·) of f and f .

7.6.2 Proof of Corollary 7.5

The proof of Corollary 7.5 builds on the link (7.21) between the Lasso and square-
root Lasso estimators. The idea is to bound σ̂ = ‖Y−Xβ̂‖/

√
n from above and below

and apply Theorem 5.1 for the Lasso. To bound σ̂ , we essentially check that

‖ε‖−‖X(β̂ −β ∗)‖√
n

≤ σ̂ ≤ ‖ε‖+‖X(β̂ −β ∗)‖√
n

(7.23)

and then bound ‖X(β̂ −β ∗)‖ with (7.16). In the following, we work on the event

A =
{

3|XT
ε|∞ ≤ µσ and |σ −‖ε‖/

√
n| ≤ (1−2−1/2)σ

}
.

1. Prove that the event A has probability at least 1− e−L− (1+ e2)e−n/24.
2. Check Inequalities (7.23).
3. From Lemma 7.4, prove that under the hypotheses of Corollary 7.5 we have on

the event A for δ ≤ 1/5

‖X(β̂−β
∗)‖2 ≤ 18µ2|β ∗|0

δ (1−δ )κ(β ∗)2n
‖ε‖2 ≤ 9δ

32(1−δ )
‖ε‖2 ≤

(
1−2−1/2

)2
‖ε‖2.

4. Check that we have 3|XT ε|∞ ≤ 2µσ̂ on the event A .
5. From Theorem 5.1, prove that on the event A we have

‖X(β̂ −β
∗)‖2 ≤ inf

β 6=0

{
‖X(β −β

∗)‖2 +
4µ2σ̂2

κ(β )2 |β |0
}

≤ inf
β 6=0

{
‖X(β −β

∗)‖2 +
202(L+ log(p))σ2

κ(β )2 |β |0
}

and conclude the proof of Corollary 7.5.

7.6.3 Some Properties of Penalty (7.4)

For any positive integers D,N, we denote by XD and XN two independent positive
random variables, such that X2

D and X2
N are two independent chi-square random vari-

ables with, respectively, D and N degrees of freedom. We write

pD(x) = 2−D/2
Γ(D/2)−1xD/2−1e−x/21R+(x), x ∈ R

for the probability distribution function of X2
D. From (B.4), page 302, in Chapter B

we have
√

D−4 ≤ E [XD]≤
√

D. In the following, dm denotes the dimension of the
model Sm.
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A) Computation of the penalty

We prove in this first part that the penalty penπ(m) defined by (7.4), page 144, is
given by penπ(m) = 1.1(n−dm)xn,dm , where xn,dm is solution in x of

πm = (dm +1)P
(

Fdm+3,n−dm−1 ≥
n−dm−1

dm +3
x
)

− x(n−dm−1)P
(

Fdm+1,n−dm+1 ≥
n−dm +1

dm +1
x
)
, (7.24)

where Fd,r is a Fisher random variable with d and r degrees of freedom.
1. Check that xpD(x) = DpD+2(x) for any positive integer D and x ∈ R.
2. For α > 0 prove the equalities

E
[
(X2

D−αX2
N)+

]
=
∫

∞

0

∫
∞

αy
xpD(x)pN(y)dxdy−α

∫
∞

0

∫
∞

αy
ypD(x)pN(y)dxdy

= DP
(
X2

D+2 ≥ αX2
N
)
−αNP

(
X2

D ≥ αX2
N+2
)
.

3. Conclude the proof of (7.24).

B) An upper bound on the penalty

In this second part, we prove that for any model m fulfilling(√
dm +1+2

√
log(8/πm)

)2
≤ n−dm−5, (7.25)

we have the upper bound

penπ(m)≤ 2.2
n−dm

n−dm−5

(√
dm +1+2

√
log(8/πm)

)2
(7.26)

(we refer to Proposition 4 in Baraud et al. [19] for a tighter upper bound).

Let L > 0 and N,D be such that

tD,N,L =

√
D+2

√
L√

N−4
≤ 1.

We define the function Ft : RN+D→ R by

Ft(x1, . . . ,xD+N) =
√

x2
1 + . . .+ x2

D− t
√

x2
D+1 + . . .+ x2

D+N .

1. Prove that FtD,N,L is
√

2-Lipschitz. By considering the variable FtD,N,L(ε) with ε a
standard Gaussian random variable in RN+D, prove with the Gaussian concentra-
tion Inequality (B.2) and the Inequalities (B.4) in Appendix B that there exists a
standard exponential random variable ξ , such that XD− tD,N,LXN ≤ 2

√
ξ −2

√
L,

and thus
X2

D−2t2
D,N,LX2

N ≤ 8
(√

ξ −
√

L
)2

+
.
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2. Prove that for any a,b≥ 0 we have (a−b)2
+≤ (a2−b2)+ and check the inequality

E
[(

X2
D−2t2

D,N,LX2
N
)
+

]
≤ 8E

[
(ξ −L)+

]
= 8e−L.

3. From Definition (7.4) of penπ(m) conclude that we have the upper Bound (7.26)
when the Condition (7.25) is met.

7.6.4 Selecting the Number of Steps for the Forward Algorithm

We consider the linear regression setting Y = Xβ ∗+ ε = f ∗+ ε with β ∗ ∈ Rp and
the collection of models {Sm : m ∈M } defined in Section 2.2, page 32, Chapter 2
for the coordinate-sparse setting. For λ = 1,2, . . ., we denote by m̂λ = { j1, . . . , jλ}
the forward selection algorithm defined recursively by

jλ ∈ argmin
j=1,...,p

‖Y −ProjS{ j1 ,..., jλ−1 , j}
Y‖2.

For m ⊂ {1, . . . , p}, we set πm = p−dm with dm = dim(Sm). In the following, we
restrict to models fulfilling(√

2+2
√

log(8p)
)2

dm ≤ n−dm−5. (7.27)

We define

M̂ =
{

m̂λ : λ = 1,2, . . . such that dm̂λ
fulfills (7.27)

}
,

Λ̂ =
{

λ = 1,2, . . . : m̂λ ∈ M̂
}

, and S̄m = Sm+ < f ∗ >, where < f ∗ > is the line
spanned by f ∗.

For λ = 1,2, . . ., let us define f̂λ = ProjSm̂
λ

Y . The goal of this exercise is to prove

that there exists a numerical constant C > 1, such that when f̂
λ̂

is a minimizer of
Criterion (7.3) over

{
f̂λ : λ = 1,2, . . .

}
, we have

E
[
‖ f̂

λ̂
− f ∗‖2

]
≤CE

[
inf

λ∈Λ̂

{
‖ f̂λ − f ∗‖2 +dm̂λ

log(p)σ2 +σ
2
}]

. (7.28)

1. Prove that the set m̂
λ̂

is a solution of

m̂
λ̂
∈ argmin

m∈M̂

{
‖Y −ProjSm

Y‖2 +penπ(m)σ̂2
m
}
.

2. Following lines similar to the beginning of the proof of Theorem 2.2, prove that
for any λ ∈ Λ̂

‖ f̂
λ̂
− f ∗‖2 ≤‖ f̂λ − f ∗‖2 +2penπ(m̂λ )σ̂

2
m̂λ

+(1.1)−1‖ f̂λ − f ∗‖2 +Z(λ )

+(1.1)−1‖ f̂
λ̂
− f ∗‖2 +Z(λ̂ ),

where Z(λ ) =1.1‖ProjS̄m̂
λ

ε‖2−penπ(m̂λ )σ̂
2
m̂λ

.
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3. Check that ‖Y −ProjS̄m
Y‖2 is stochastically larger than ‖ε−ProjS̄m

ε‖2, and then

E

[
sup

λ=1,2,...
Z(λ )

]
≤ ∑

m∈M
E
[(

1.1‖ProjS̄m
ε‖2−penπ(m)σ̂2

m
)
+

]
≤ ∑

m∈M
E
[(

1.1‖ProjS̄m
ε‖2− penπ(m)

n−dm
‖ε−ProjS̄m

ε‖2
)
+

]
≤ (1+ p−1)p

σ
2 ≤ eσ

2.

4. Prove that when Condition (7.27) is fulfilled, we have n− dm ≥ 24 and (7.25) is
fulfilled. Conclude that according to (7.26), we then have penπ(m)≤ 2.2(n−dm)
and

penπ(m)≤ 3
(√

2+2
√

log(8p)
)2

dm.

5. Prove that

σ̂
2
m ≤

2
n−dm

(
‖ε−ProjSm

ε‖2 +‖ f ∗−ProjSm
f ∗‖2)

≤ 2
n−dm

(
2nσ

2 +
(
‖ε‖2−2nσ

2)
+
+‖ f ∗−ProjSm

Y‖2
)
.

6. By combining the two last questions, prove that when λ ∈ Λ̂, we have

penπ(m̂λ )σ̂
2
m̂λ

≤ 24
(√

2+2
√

log(8p)
)2

dm̂λ
σ

2 +5
(
‖ε‖2−2nσ

2)
+
+5‖ f ∗− f̂λ‖2.

7. Conclude the proof of (7.28) by combining Questions 2, 3, and 6.



Chapter 8

Multivariate Regression

In the previous chapters, we have focused on a response y that was 1-dimensional. In
many cases, we do not focus on a single quantity y∈R, but rather on a T -dimensional
vector y = (y1, . . . ,yT ) ∈ RT of measurements. It is, of course, possible to analyze
each coordinate yt independently, but it is usually wise to analyze simultaneously the
T coordinates y1, . . . ,yT . Actually, when y1, . . . ,yT are the outcome of a common pro-
cess, they usually share some common structures, and handling the T measurements
y1, . . . ,yT together enables to rely on these structures.

In this chapter, we give a special focus on the case where the measurements lie in the
vicinity of an (unknown) low-dimensional space. In a linear model, this kind of struc-
ture translates in terms of low-rank of the regression matrix. We present in the next
sections a theory for estimating low-rank matrices and then we investigate how we
can handle simultaneously low-rank structures with some other sparsity structures.

8.1 Statistical Setting

We now consider the problem of predicting a T -dimensional vector y from a p-
dimensional vector of covariates. Similarly to the examples discussed in Chapter 2,
the linear model is the canonical model and many different situations can be recast
as a linear model. Henceforth, we consider the following model

y(i) = (A∗)T x(i)+ ε
(i) , i = 1, . . . ,n, (8.1)

where y(i) ∈ RT , x(i) ∈ Rp, A∗ is a p × T -matrix, and the ε(i) are i.i.d. with
N (0,σ2IT ) Gaussian distribution in RT . Writing Y and E for the n× T matrices
Y = [y(i)t ]i=1,...,n, t=1,...,T and E = [ε

(i)
t ]i=1,...,n, t=1,...,T , Model (8.1) can be formulated

in a matrix form
Y = XA∗+E , (8.2)

where X is defined as in the previous chapters by Xi j = x(i)j for i = 1, . . . ,n and
j = 1, . . . , p. Let Mk denote the k-th column of a matrix M. If we consider each
column of Y independently, then we have T independent linear regressions

Yk = XA∗k +Ek , k = 1, . . . ,T.

159
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We can consider each regression independently, yet, as mentioned above, these T
regressions may share some common structures, and it is wise in this case to ana-
lyze the T regressions simultaneously. Assume, for example, that the vectors A∗k are
coordinate sparse. In many cases, the vectors A∗1, . . . ,A

∗
T share the same sparsity pat-

tern, and then it helps to analyze simultaneously the T regression; see Section 8.4.1.
The T vectors A∗1, . . . ,A

∗
T may also (approximately) lie in a common (unknown) low-

dimensional space. It then means that the rank of A∗ is small. We understand in
Section 8.3 how we can capitalize on this property. Finally, we investigate in Sec-
tion 8.4.2 how we can handle simultaneously low-rank properties with coordinate-
sparsity.

8.2 Reminder on Singular Values

Singular values play a central role in low-rank estimation. This section is a brief
reminder on singular values; we refer to Appendix C for proofs and additional results.

Singular value decomposition

Any n× p matrix A of rank r can be decomposed as A = ∑
r
j=1 σ j u jvT

j , where
• σ1 ≥ . . .≥ σr > 0,
•
{

σ2
1 , . . . ,σ

2
r
}

are the nonzero eigenvalues of AT A and AAT , and
• {u1, . . . ,ur} and {v1, . . . ,vr} are two orthonormal families of Rn and Rp, such that

AAT u j = σ
2
j u j and AT Av j = σ

2
j v j, for j = 1, . . . ,r.

We refer to Theorem C.1, page 311, in Appendix C for a proof. The values σ1,σ2, . . .
are called the singular values of A.

Some matrix norms

In the following, we denote by σ1(A) ≥ σ2(A) ≥ . . . the singular values of a matrix
A ranked in decreasing order. For k > rank(A), we define σk(A) by σk(A) = 0. The
Frobenius (or Hilbert–Schmidt) norm of A is defined by

‖A‖2
F = ∑

i, j
A2

i j = trace(AT A) =
rank(A)

∑
k=1

σk(A)2.

For any integer q≥ 1 the Ky–Fan (2,q)-norm is defined by

‖A‖2
(2,q) =

q

∑
k=1

σk(A)2.

For q = 0 we set ‖A‖(2,0) = 0. We observe that ‖A‖(2,q) ≤ ‖A‖F , so A→ ‖A‖(2,q) is
1-Lipschitz with respect to the Frobenius norm. For q = 1 the Ky–Fan (2,1)-norm
corresponds to the operator norm

‖A‖(2,1) = σ1(A) = |A|op = sup
x:‖x‖≤1

‖Ax‖;
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see Appendix C. In the next sections, we repeatedly use the two following properties
(see Theorem C.5, page 315, in Appendix C for a proof):
1. For any matrices A,B ∈ Rn×p, we have

〈A,B〉F ≤ ‖A‖(2,r) ‖B‖(2,r), (8.3)

where r = min(rank(A), rank(B)).
2. For any q≥ 1, we have

min
B:rank(B)≤q

‖A−B‖2
F =

r

∑
k=q+1

σk(A)2 for q < r = rank(A) (8.4)

and minB:rank(B)≤q ‖A−B‖2
F = 0 for q≥ r. The minimum is achieved for

(A)(q) =
q∧r

∑
k=1

σk(A)ukvT
k . (8.5)

The matrix (A)(q) is then a “projection” of the matrix A on the set of matrices with
rank not larger than q.

8.3 Low-Rank Estimation

8.3.1 When the Rank of A∗ is Known

In Model (8.2), with {Eit : i = 1, . . . ,n, t = 1, . . . ,T} i.i.d. with N (0,σ2) Gaussian
distribution, the negative log-likelihood of a matrix A is

−log-likelihood(A) =
1

2σ2 ‖Y −XA‖2
F +

nT
2

log(2πσ
2),

where ‖ · ‖F is the Frobenius (or Hilbert–Schmidt) norm. If we knew the rank r∗ of
A∗, then we would estimate A∗ by the maximum-likelihood estimator Âr∗ constrained
to have a rank at most r∗, namely

Âr ∈ argmin
rank(A)≤r

‖Y −XA‖2
F , (8.6)

with r = r∗. This estimator can be computed easily, as explained below.

The next lemma provides a useful formula for XÂr in terms of the singular value de-
composition of PY , where P is the orthogonal projector onto the range of X. We refer
to Appendix C for a reminder on the Moore–Penrose pseudo-inverse of a matrix.
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Lemma 8.1 Computation of XÂr

Write P = X(XT X)+XT for the projection onto the range of X, with (XT X)+ the
Moore–Penrose pseudo-inverse of XT X.

Then, for any r ≥ 1, we have XÂr = (PY )(r).

As a consequence, denoting by PY = ∑
rank(PY )
k=1 σkukvT

k a singular value decompo-
sition of PY , we have for any r ≥ 1

XÂr =
r∧rank(PY )

∑
k=1

σkukvT
k .

Proof. Pythagorean formula gives ‖Y −XM‖2
F = ‖Y − PY‖2

F + ‖PY −XM‖2
F for

any p×T -matrix M. Since the rank of XÂr is at most r, we have ‖PY −XÂr‖2
F ≥

‖PY − (PY )(r)‖2
F , and hence

‖Y − (PY )(r)‖2
F = ‖Y −PY‖2

F +‖PY − (PY )(r)‖2
F

≤ ‖Y −PY‖2
F +‖PY −XÂr‖2

F = ‖Y −XÂr‖2
F . (8.7)

To conclude the proof of the lemma, we only need to check that we have a decom-
position (PY )(r) = XÃr with rank(Ãr)≤ r. From Pythagorean formula, we get

‖PY − (PY )(r)‖2
F = ‖PY −P(PY )(r)‖2

F +‖(I−P)(PY )(r)‖2
F .

Since rank(P(PY )(r))≤ r, the above equality ensures that

(PY )(r) = P(PY )(r) = X (XT X)+XT (PY )(r)︸ ︷︷ ︸
=: Ãr

,

with rank(Ãr)≤ rank((PY )(r))≤ r. According to (8.7), the matrix Ãr is a minimizer
of (8.6) and finally XÂr = XÃr = (PY )(r). 2

According to Lemma 8.1, for r ≥ rank(PY ), we have XÂr = XÂrank(PY ). Since
rank(PY ) ≤ q∧ T , with q = rank(X) ≤ n∧ p, we only need to consider the col-
lection of estimators

{
Â1, . . . , Âq∧T

}
. As a nice consequence of Lemma 8.1, the

collection of estimators
{

XÂ1, . . . ,XÂq∧T
}

can be computed from a single singu-
lar value decomposition of PY . We also observe from the above proof that the matrix
Âr = (XT X)+XT (PY )(r) is a solution of the minimization problem (8.6). Let us now
investigate the quadratic risk E

[
‖XÂr−XA∗‖2

F
]

of the estimator XÂr.

We remind the reader that σk(M) denotes the k-th largest singular value of a matrix
M, with σk(M) = 0 for k > rank(M).
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Proposition 8.2 Deterministic bound

For any r ≥ 1 and θ > 0, we have

‖XÂr−XA∗‖2
F ≤ c2(θ)∑

k>r
σk(XA∗)2 +2c(θ)(1+θ)r|PE|2op,

with c(θ) = 1+2/θ .

Proof. Write ∑k σk(XA∗)ukvT
k for a singular value decomposition of XA∗. Following

the same lines as in the proof of the previous lemma, we can choose a matrix B of
rank at most r, such that

XB = (XA∗)(r) =
r

∑
k=1

σk(XA∗)ukvT
k .

From the definition of Âr, we have that ‖Y −XÂr‖2
F ≤ ‖Y −XB‖2

F , from which fol-
lows that

‖XÂr−XA∗‖2
F ≤ ‖XB−XA∗‖2

F +2〈E,XÂr−XB〉F . (8.8)

Since XB and XÂr have a rank at most r, the matrix XÂr−XB has a rank at most 2r,
and according to (8.3), we obtain

〈E,XÂr−XB〉F = 〈PE,XÂr−XB〉F ≤ ‖PE‖(2,2r)‖XÂr−XB‖F . (8.9)

We have ‖PE‖2
(2,2r)≤ 2r|PE|2op and ‖XÂr−XB‖F ≤‖XÂr−XA∗‖F +‖XB−XA∗‖F ,

so using twice the inequality 2xy ≤ ax2 + y2/a for all a > 0, x,y ≥ 0, we obtain by
combining (8.8) and (8.9)

(1−1/a)‖XÂr−XA∗‖2
F ≤ (1+1/b)‖XB−XA∗‖2

F +2(a+b)r|PE|2op.

The proposition follows by choosing a = 1+θ/2 and b = θ/2. 2

In order to obtain an upper bound not depending on the noise matrix E, we need a
probabilistic upper bound on |PE|op. Investigating the singular spectrum of random
matrices is a very active field in mathematics, with applications in statistical physics,
data compression, communication networks, statistics, etc. In particular, the operator
norm |PE|2op is known to be almost surely equivalent to (

√
q+
√

T )2σ2, as q and
T goes to infinity (we remind the reader that q is the rank of X). We also have a
non-asymptotic result, which is a nice application of Slepian’s lemma [143].

Lemma 8.3 Spectrum of random matrix
The expectated value of the operator norm of PE is upper-bounded by

E
[
|PE|op

]
≤
(√

q+
√

T
)

σ , with q = rank(X). (8.10)
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We refer to Davidson and Szarek [61] for a proof of this result and to Exercise 12.9.6
(page 288) for a proof of this bound with less tight constants.

The map E → |PE|op is 1-Lipschitz with respect to the Frobenius norm, since
|PE|op ≤ ‖PE‖F ≤ ‖E‖F , so according to the Gaussian concentration Inequal-
ity (B.2), page 301, there exists an exponential random variable ξ with parameter
1, such that |PE|op ≤ E

[
|PE|op

]
+σ

√
2ξ . Since (a+b)2 ≤ 2(a2 +b2), we have

E
[
|PE|2op

]
≤ 2E

[
|PE|op

]2
+4σ

2E [ξ ]≤ 3
(√

q+
√

T
)2

σ
2. (8.11)

According to (8.4), we have

min
rank(A)≤r

‖XA−XA∗‖2
F ≥ min

rank(XA)≤r
‖XA−XA∗‖2

F = ∑
k>r

σk(XA∗)2,

so combining Proposition 8.2 (with θ = 1) with this inequality, and (8.11) gives the
following risk bound.

Corollary 8.4 Risk of Âr
For any r ≥ 1, we have the risk bound

E
[
‖XÂr−XA∗‖2

F

]
≤ 9 ∑

k>r
σk(XA∗)2 +36r

(√
q+
√

T
)2

σ
2,

≤ 36 min
rank(A)≤r

{
‖XA−XA∗‖2

F + r
(√

q+
√

T
)2

σ
2
}
,

(8.12)

with q = rank(X).

Let us comment on this bound. We notice that if r = r∗ = rank(A∗), Bound (8.12)
gives

E
[
‖XÂr∗ −XA∗‖2

F

]
≤ 36r∗

(√
q+
√

T
)2

σ
2.

Conversely, it can be shown (see [80] at the end of Section 3) that there exists a
constant C(X)> 0 only depending on the ratio σ1(X)/σq(X), such that for any r∗ ≤
q∧T with q = rank(X), the minimax lower bound holds

inf
Â

sup
A∗: rank(A∗)=r∗

E
[
‖XÂ−XA∗‖2

F

]
≥C(X)r∗

(√
q+
√

T
)2

σ
2,

where the infimum is over all the estimators Â. This means that, up to a constant
factor, the estimator Âr estimates matrices of rank r at the minimax rate.

Furthermore, according to (8.4), when A∗ has a rank larger than r, any estimator Â of
rank at most r fulfills

‖XA∗−XÂ‖2
F ≥ ‖XA∗− (XA∗)(r)‖2

F = ∑
k>r

σk(XA∗)2.
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Therefore, the term ∑k>r σk(XA∗)2 is the minimal bias that an estimator of rank r
can have.

8.3.2 When the Rank of A∗ Is Unknown

When the rank r∗ of A∗ is unknown, we would like to use the “oracle” estimator
Âro , which achieves the best trade-off in (8.12) between the bias term ∑k>r σk(XA∗)2

and the variance term r
(√

q+
√

T
)2

σ2. Of course, the oracle rank ro is unknown
since it depends on the unknown matrix A∗. Similarly to Chapter 2, we select a rank
r̂ according to a penalized criterion and show that the risk of Âr̂ is almost as small as
the risk of Âro .

For a constant K > 1, we select r̂ by minimizing the criterion

r̂ ∈ argmin
r=1,...,q∧T

{
‖Y −XÂr‖2 +σ

2pen(r)
}
, with pen(r) = Kr

(√
T +
√

q
)2

.

(8.13)
According to (8.6), the estimator Â = Âr̂ is then solution of

Â ∈ argmin
A∈Rp×T

{
‖Y −XA‖2 +K rank(A)

(√
T +
√

q
)2

σ
2
}
, (8.14)

since the rank of the solution to (8.14) is not larger than rank(PY ) ≤ q∧T . Let us
analyze the risk of XÂ with Â = Âr̂.

Theorem 8.5 Oracle risk bound
For any K > 1, there exists a constant CK > 1 depending only on K, such that the

estimator Â defined by (8.14) fulfills the risk bound (with q = rank(X))

E
[
‖XÂ−XA∗‖2

F

]
≤CK min

r=1,...,q∧T

{
E
[
‖XÂr−XA∗‖2

F

]
+ r(
√

T +
√

q)2
σ

2
}
.

(8.15)

If we compare Bounds (8.12) and (8.15), we observe that the risk of the estimator
XÂ is almost as good as the risk of the best of the estimators {XÂr, r = 1, . . . ,q∧T}.
Since the estimator Â can be computed with a single singular value decomposition,
we can adapt in practice to the rank of the matrix A∗. Combining (8.12) and (8.15),
we obtain the upper bound for the risk of XÂ

E
[
‖XÂ−XA∗‖2

F

]
≤C′K min

A∈Rp×T

{
‖XA−XA∗‖2

F + rank(A)(T +q)σ2} , (8.16)

with C′K > 1 depending only on K > 1 (again, the minimum in (8.16) is achieved for
A with rank not larger than q∧T ).

Proof of Theorem 8.5
1- Deterministic bound



166 MULTIVARIATE REGRESSION

Let us fix r ∈ {1, . . . ,q∧T}. From the definition of r̂, we have that ‖Y −XÂ‖2 +

σ2pen(r̂)≤ ‖Y −XÂr‖2 +σ2pen(r), from which it follows that

‖XÂ−XA∗‖2
F ≤ ‖XÂr−XA∗‖2

F +2〈PE,XÂ−XÂr〉F +σ
2pen(r)−σ

2pen(r̂).
(8.17)

Similarly as in the proof of Theorem 2.2 in Chapter 2, if we prove that for some
a > 1, b > 0

2〈PE,XÂ−XÂr〉F −σ
2pen(r̂)≤ a−1‖XÂ−XA∗‖2

F +b−1‖XÂr−XA∗‖2
F +Zr,

(8.18)
with Zr fulfilling E [Zr] ≤ c

(√
q+
√

T
)2

rσ2 for some constant c > 0, then we have
from (8.17)

a−1
a
E
[
‖XÂ−XA∗‖2

F

]
≤ b+1

b
E
[
‖XÂr−XA∗‖2

F

]
+(K + c)

(√
q+
√

T
)2

rσ
2,

and (8.15) follows.

Let us prove (8.18). As in the proof of Proposition 8.2, we bound the cross-term in
terms of the operator norm of PE. The rank of XÂ−XÂr is at most r̂+r, so according
to (8.3), we have for any a,b > 0

2〈PE,XÂ−XÂr〉F
≤ 2‖PE‖(2,r̂+r) ‖XÂ−XÂr‖F

≤ 2|PE|op
√

r̂+ r
(
‖XÂ−XA∗‖F +‖XÂr−XA∗‖F

)
≤ (a+b)(r̂+ r) |PE|2op +a−1‖XÂ−XA∗‖2

F +b−1‖XÂr−XA∗‖2
F ,

where the last line is obtained by applying twice the inequality 2xy≤ ax2+y2/a. We
then obtain (8.18) with

Zr = (a+b)(r̂+ r) |PE|2op−σ
2pen(r̂).

It only remains to prove that E [Zr]≤ c
(√

q+
√

T
)2

rσ2 for some c > 0.

2- Stochastic control
The map E→ |PE|op is 1-Lipschitz with respect to the Frobenius norm, so according
to the Gaussian concentration Inequality (B.2), page 301, and Bound (8.10), there
exists an exponential random variable ξ with parameter 1, such that

|PE|op ≤ σ

(√
T +
√

q
)
+σ

√
2ξ .

Since r̂ ≤ q∧T , taking a = (3+K)/4 and b = (K−1)/4 we obtain that

r̂
(
(a+b)|PE|2op−K(

√
T +
√

q)2
σ

2
)

≤ 1+K
2

(q∧T )
(
|PE|2op−

2K
1+K

(
√

T +
√

q)2
σ

2
)
+

≤ 1+K
2

(q∧T )
((√

T +
√

q+
√

2ξ

)2
− 2K

1+K
(
√

T +
√

q)2
)
+

σ
2.
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From the inequality (
√

T +
√

q+
√

2ξ )2 ≤ (1+α)(
√

T +
√

q)2+2ξ (1+1/α) with
α = (K−1)/(K +1), we obtain

E
[
r̂
(
(a+b)|PE|2op−K(

√
T +
√

q)2
σ

2
)]
≤ 2

K(1+K)

K−1
(q∧T )σ2E [ξ ] .

Since q∧T ≤
(√

T +
√

q
)2
/4, combining this bound with (8.11), we get (8.18), with

E [Zr]≤ 3
K +1

2

(√
q+
√

T
)2

σ
2r+2

K(1+K)

K−1
(q∧T )σ2

≤
(

3
K +1

2
+

K(1+K)

2(K−1)

)(√
q+
√

T
)2

σ
2r,

and the proof of Theorem 8.5 is complete. 2

8.4 Low Rank and Sparsity

As explained at the beginning of the chapter, the matrix A∗ in (8.2) is likely not only
to have (approximately) a low rank, but also to be sparse in some sense (coordinate
sparse, group sparse, etc.). Therefore, we want to exploit simultaneously the low rank
structures and the sparse structures to improve our estimation of A∗.

As a first step, we start with the case where the matrix is row sparse.

8.4.1 Row-Sparse Matrices

A natural assumption is that the response y(i) = ∑
p
j=1 A∗jix

(i)
j + ε(i) depends from x(i)

only through a subset {x(i)j : j ∈ J∗} of its coordinates. This means that the rows of
A∗ are zero except those with index in J∗. Again, the difficulty comes from the fact
that the set J∗ is unknown.

Estimating a row-sparse matrix simply corresponds to a group-sparse regression as
described in Chapter 2. Actually, the matrix structure plays no role in this setting,
and we can recast the model in a vectorial form. We can stack the columns of A∗ into
a vector vect(A∗) of dimension pT and act similarly with Y and E. Then, we end
with a simple group-sparse regression

vect(Y ) = X̃vect(A∗)+vect(E),

where

X̃ =

 X 0 0

0
. . . 0

0 0 X

 ∈ RnT×pT ,

and where the p groups Gk = {k+ pl : l = 0, . . . ,T −1} for k = 1, . . . , p gather the in-
dices congruent modulo p. We can estimate vect(A∗) with the group-Lasso estimator
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(see Chapter 5, Section 5.3.1, page 103)

vect(Âλ ) ∈ argmin
β∈RpT

{
‖vect(Y )− X̃β‖2 +λ

p

∑
j=1
‖βG j‖

}
.

Writing A j: for the j-th row of A, the above minimization problem is equivalent to

Âλ ∈ argmin
A∈Rp×T

{
‖Y −XA‖2

F +λ

p

∑
j=1
‖A j:‖

}
. (8.19)

We assume in the following that the columns X1, . . . ,Xp of X have unit norm. We
observe that in this case the operator norm |X̃Gk |op of

X̃Gk =

 Xk 0 0

0
. . . 0

0 0 Xk

 ∈ RnT×T

is 1 for every k = 1, . . . , p. We can then lift the risk Bound (5.20) from Chapter 5,
page 105.

Theorem 8.6 Risk bound for row-sparse matrices

For λ = 3σ
(√

T +2
√

log(p)
)
, we have with probability at least 1−1/p

‖XÂλ −XA∗‖2
F ≤ min

A∈Rp×T

{
‖XA−XA∗‖2

F +
18σ2

κ̃G(A)
|J(A)|(T +4log(p))

}
,

(8.20)
where J(A) =

{
j ∈ {1, . . . , p} : A j: 6= 0

}
and

κ̃G(A)= min
B∈CG(J(A))

√
|J(A)|‖XB‖F

∑ j∈J(A) ‖B j:‖
with CG(J)=

{
B : ∑

j∈Jc
‖B j:‖< 5 ∑

j∈J
‖B j:‖

}
.

We next investigate whether we can improve upon Theorem 8.5 and Theorem 8.6 by
taking simultaneously into account low rank and row sparsity.

8.4.2 Criterion for Row-Sparse and Low-Rank Matrices

We now consider the case where the matrix A∗ has a low rank and a small number of
nonzero rows. The rank of a matrix is not larger than the number of its nonzero rows,
so the estimator (8.19) already has a small rank. But here we have in mind a case
where the rank of A∗ is much smaller than the number of its nonzero rows, and we
want to exploit this feature. The rank of A∗ and the location of its nonzero rows are
unknown. We first investigate how much we can gain by taking into account simulta-
neously row sparsity and low rank. In this direction, a model selection estimator will
be our benchmark.
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Let π be a probability distribution on P({1, . . . , p}). For example, we can set

πJ =
(

C|J|p

)−1
e−|J|(e−1)/(e− e−p) for all J ⊂ {1 . . . , p} , (8.21)

with Ck
p = p!/(k!(p− k)!). For K > 1, we define Â as a minimizer of the criterion

Crit(A) = ‖Y −XA‖2
F +pen(A)σ2,

with pen(A) = K
(√

r(A)
(√

T +
√
|J(A)|

)
+
√

2log
(
π
−1
J(A)

))2
, (8.22)

where r(A) is the rank of A and where J(A) =
{

j ∈ {1, . . . , p} : A j: 6= 0
}

is the set of
nonzero rows of A. Penalty (8.22) is very similar to Penalty (2.9), page 35, for model
selection. Actually, the set VJ,r =

{
A ∈ Rp×T : J(A)⊂ J, r(A) = r

}
is a submanifold

of dimension r(T + J− r). Since

√
r
(√

T +
√

J
)
≥
√

r(T + J− r) =
√

dim(VJ,r),

Penalty (8.22) can be viewed as an upper bound of the penalty

pen′(A) = K
(√

dim(VJ,r)+
√

2log(π−1
J )

)2

, for A ∈VJ,r ,

which has the same form as Penalty (2.9).

The minimization Problem (8.22) has a computational complexity that is prohibitive
in high-dimensional settings, since it requires to explore all the subsets J ⊂ {1 . . . , p}
in general. Yet, the resulting estimator provides a good benchmark in terms of statis-
tical accuracy. We discuss in the following sections how we can relax (8.22) in order
to obtain a convex criterion.

Theorem 8.7 Risk bound for row-sparse and low-rank matrices

For any K > 1, there exists a constant CK > 1 depending only on K, such that the
estimator Â defined by (8.22) fulfills the risk bound

E
[
‖XÂ−XA∗‖2

F

]
≤CK min

A6=0

{
‖XA−XA∗‖2

F + r(A)(T + |J(A)|)σ2 + log
(
π
−1
J(A)

)
σ

2
}
. (8.23)

If we choose πJ as in (8.21), we obtain for some constant C′K > 1 depending only on
K > 1

E
[
‖XÂ−XA∗‖2

F

]
≤C′K min

A 6=0

{
‖XA−XA∗‖2

F + r(A)(T + |J(A)|)σ2 + |J(A)| log(ep/|J(A)|)σ
2} .
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We observe that the term r(A)(T + |J(A)|) can be much smaller than |J(A)|T ap-
pearing in (8.20) if r(A) is small compared to min(|J(A)|,T ). Similarly, if |J(A)| is
small compared to rank(X), then the above upper bound is small compared to the risk
Bound (8.16) for the low-rank case. Thus, with an estimator that takes into account
simultaneously row sparsity and low rank, we can get a significant improvement in
estimation.

Proof of Theorem 8.7
1- Deterministic bound
We fix a nonzero matrix A ∈ Rp×T . Starting from Crit(Â)≤ Crit(A), we obtain

‖XÂ−XA∗‖2
F ≤ ‖XA−XA∗‖2

F +2〈E,XÂ−XA〉F +pen(A)σ2−pen(Â)σ2, (8.24)

with
pen(A)≤ 4K

(
r(A)(T + |J(A)|)+ log

(
π
−1
J(A)

))
.

As in the proofs of Theorem 2.2 and Theorem 8.5, if we prove that there exist some
constants c1 < 1, c2,c3 > 0 and a random variable Z(A), such that

2〈E,XÂ−XA〉F −pen(Â)σ2 ≤ c1‖XÂ−XA∗‖2
F +c2‖XA−XA∗‖2

F +Z(A), (8.25)

with E [Z(A)]≤ c3r(A)T σ2, then (8.23) follows from (8.24) and (8.25).

Let us prove (8.25). For any J ⊂ {1, . . . , p}, we write XJ for the matrix obtained from
X by keeping only the columns in J, and we define SJ as the orthogonal of range(XA)
in range(XA)+ range(XJ), so that

range(XA)+ range(XJ) = range(XA)©⊥ SJ .

In particular, the linear span SJ has a dimension at most |J|. For notational simplicity,
we will write in the following Ĵ for J(Â), r̂ for the rank of Â, PJ for the orthogonal
projector onto SJ and PA for the orthogonal projector onto the range of XA. Since
X(Â−A) = PĴ XÂ+PAX(Â−A) with rank(PĴ XÂ)≤ r̂, from (8.3) we get

2〈E,XÂ−XA〉F
= 2〈PĴ E,PĴ XÂ〉F +2〈PAE,PAX(Â−A)〉F
≤ 2‖PĴ E‖(2,r̂)‖PĴ XÂ‖F +2‖PAE‖F ‖PAX(Â−A)‖F

≤ K +1
2

[
‖PĴ E‖2

(2,r̂)+‖PAE‖2
F

]
+

2
K +1

[
‖PĴ XÂ‖2

F +‖PAX(Â−A)‖2
F

]
,

where we used twice in the last line the inequality 2xy≤ ax2 +a−1y2 with a = (K +

1)/2. According to Pythagorean formula, we have ‖PĴ XÂ‖2
F + ‖PAX(Â−A)‖2

F =

‖X(Â−A)‖2
F . Since ‖X(Â−A)‖2

F ≤ (1+b)‖X(Â−A∗)‖2
F +(1+b−1)‖X(A−A∗)‖2

F ,
taking b = (K−1)/4, we obtain (8.25) with c1 = a−1(1+b)< 1, c2 = a−1(1+b−1)
and

Z(A) =
K +1

2
‖PAE‖2

F + ∆̂, where ∆̂ =
K +1

2
‖PĴ E‖2

(2,r̂)−pen(Â)σ2.
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We observe that E
[
‖PAE‖2

F
]
= rank(XA)T σ2 ≤ r (A)T σ2, so to conclude the proof

of (8.23), it only remains to check that

E
[

∆̂

]
≤ 2K(K +1)

K−1
T σ

2. (8.26)

2- Stochastic control
We know from Lemma 8.3 that for any J ⊂ {1, . . . , p} and r ≤ p∧T ,

E
[
‖PJE‖(2,r)

]
≤
√

rE [σ1(PJE)]≤ σ
√

r
(√

dim(SJ)+
√

T
)
≤ σ
√

r
(√
|J|+

√
T
)
.

Since the map E → ‖PJE‖(2,r) is 1-Lipschitz with respect to the Frobenius norm,
the Gaussian concentration Inequality (B.2) ensures for each J ⊂ {1, . . . , p} and r ∈
{1, . . . , p∧T} the existence of a standard exponential random variable ξJ,r, such that

‖PJE‖(2,r) ≤ σ

(√
r
(√
|J|+

√
T
)
+
√

2ξJ,r

)
. (8.27)

As in the proof of Theorem 2.2 in Chapter 2, we observe that for all J ⊂ {1, . . . , p}
and all r ∈ {1, . . . , p∧T}, we have(√

r
(√
|J|+

√
T
)
+
√

2ξJ,r

)2

≤
(√

r
(√
|J|+

√
T
)
+
√

2log(π−1
J )+

√
2
(
ξJ,r− log(π−1

J )
)
+

)2

≤ 2K
K +1

(√
r
(√
|J|+

√
T
)
+
√

2log(π−1
J )

)2

+
4K

K−1
(
ξJ,r− log(π−1

J )
)
+
.

(8.28)

Since r̂ ≤ p∧T , combining (8.27) with (8.28), we obtain

∆̂ =
K +1

2

(
‖PĴ E‖2

(2,r̂)−
2K

K +1

(√
r̂
(√
|Ĵ|+

√
T
)
+
√

2log(π−1
Ĵ

)

)2

σ
2

)

≤ 2K(K +1)
K−1

σ
2
(

ξĴ,r̂− log(π−1
Ĵ

)
)
+

1r̂≥1.

To conclude the proof of (8.26), we check that

E
[(

ξĴ,r̂− log(π−1
Ĵ

)
)
+

1r̂≥1

]
≤

p∧T

∑
r=1

∑
J⊂{1,...,p}

E
[(

ξJ,r− log(π−1
J )
)
+

]
≤ T ∑

J⊂{1,...,p}
πJ = T.

The proof of Theorem 8.7 is complete. 2

The above procedure satisfies a nice risk bound, but it is computationally untractable
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since we cannot explore all the subsets J ⊂ {1, . . . , p}. A natural idea to enforce row
sparsity is to use a group penalty as in (8.20). Yet, if we a add a constraint on the
rank in (8.20), there is no computationally efficient algorithm for solving exactly this
problem. A possible direction for combining sparse and low-rank constraints is to
convexify the constraint on the rank. We discuss this issue in the next section.

8.4.3 Convex Criterion for Low-Rank Matrices

We emphasize that for the pure low-rank estimation of Section 8.3, there is no need
to convexify Criterion (8.14), since it can be minimized efficiently from a single
singular value decomposition. The convexification is only needed when we want to
combine low-rank properties with some other structures as row sparsity. Yet, as a first
step, we start by analyzing the convexification of (8.14).

The main idea underlying the introduction of the Lasso estimator is to replace the
constraint on the number of nonzero coordinates of β by a constraint on the sum of
their absolute values. Following the same idea, we can replace the constraint on the
rank of A, which is the number of nonzero singular values of A, by a constraint on
the nuclear norm of A, which is the sum of the singular values of A. This gives the
following convex criterion

Âλ ∈ argmin
A∈Rp×T

{
‖Y −XA‖2

F +λ |A|∗
}
, (8.29)

where λ is a positive tuning parameter and |A|∗ = ∑k σk(A) is the nuclear norm of A.
Similarly to the Lasso estimator, we can provide a risk bound for this estimator.

Theorem 8.8 Risk bound for the convex multivariate criterion
Let K > 1 and set

λ = 2Kσ1(X)
(√

T +
√

q
)

σ , with q = rank(X).

Then, with probability larger than 1− e−(K−1)2(T+q)/2, we have

‖XÂλ −XA∗‖2
F ≤ inf

A

{
‖XA−XA∗‖2

F +9K2 σ1(X)2

σq(X)2

(√
T +
√

q
)2

σ
2 rank(A)

}
.

This risk bound is similar to (8.16), except that there is a constant 1 in front of
the bias term (which is good news) and a constant σ1(X)2/σq(X)2 in front of the
variance term (which is bad news). This last constant can be huge in practice, since
the smallest singular values σq(X) of data matrices X tend to be very small. When
this constant remains of a reasonable size, the estimator Âλ has properties similar to
those of Â defined by (8.14).

Proof. The proof is very similar to the proof of (5.13) for the Lasso estimator.
1- Deterministic bound
We first derive a deterministic bound on ‖XÂλ −XA∗‖2

F .
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Lemma 8.9
For λ ≥ 2σ1(XT E), we have

‖XÂλ −XA∗‖2
F ≤ inf

A∈Rp×T

{
‖XA−XA∗‖2

F +
9λ 2

4σq(X)2 rank(A)
}
. (8.30)

Proof of Lemma 8.9.
Let us introduce the set A :=

{
A ∈ Rp×T : A = PXT A

}
, where PXT is the orthogonal

projector onto the range of XT . Since we have the orthogonal decomposition Rp =
ker(X)©⊥ range(XT ), for all matrices A ∈ Rp×T , we have

XPXT A = XA and rank(PXT A)≤ rank(A).

In particular, in (8.30) the infimum over A ∈ Rp×T coincides with the infimum over
A ∈ A, and we only need to prove (8.30) with the infimum over A. Similarly, from
Inequality (C.6), page 315, in Appendix C, we observe that |PXT Âλ |∗ ≤ |Âλ |∗ with
strict inequality if PXT Âλ 6= Âλ . Therefore, the estimator Âλ belongs to the space A.

The optimality condition (D.3), page 323, in Appendix D for convex functions en-
sures the existence of a matrix Ẑ ∈ ∂ |Âλ |∗ such that −2XT (Y −XÂλ ) + λ Ẑ = 0.
Since Y = XA∗+E, for any A ∈ A, we have

2〈XÂλ −XA∗,XÂλ −XA〉F −2〈XT E, Âλ −A〉F +λ 〈Ẑ, Âλ −A〉F = 0.

The subgradient monotonicity of convex functions (D.2), page 322 ensures that for
all Z ∈ ∂ |A|∗, we have 〈Ẑ, Âλ −A〉F ≥ 〈Z, Âλ −A〉F . As a consequence,

for all A ∈ A and for all Z ∈ ∂ |A|∗, we have

2〈XÂλ −XA∗,XÂλ −XA〉F ≤ 2〈XT E, Âλ −A〉F −λ 〈Z, Âλ −A〉F . (8.31)

Let us denote by A = ∑
r
k=1 σkukvT

k the singular value decomposition of A, with
r = rank(A). We write Pu (respectively, Pv) for the orthogonal projector onto
span{u1, . . . ,ur} (respectively, onto span{v1, . . . ,vr}). We also set P⊥u = I−Pu and
P⊥v = I−Pv. According to Lemma D.6, page 324, in Appendix D, the subdifferential
of |A|∗ is given by

∂ |A|∗ =

{
r

∑
k=1

ukvT
k +P⊥u WP⊥v : W ∈ Rp×T with σ1(W )≤ 1

}
.

Let us set W = 2XT E/λ . Since σ1(W ) = 2σ1(XT E)/λ ≤ 1, the matrix Z =

∑
r
k=1 ukvT

k +P⊥u WP⊥v belongs to ∂ |A|∗. The decomposition

Âλ −A = Pu(Âλ −A)+P⊥u (Âλ −A)Pv +P⊥u (Âλ −A)P⊥v
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gives

2〈XT E, Âλ −A〉F −λ 〈Z, Âλ −A〉F

= 2〈XT E, Âλ −A〉F −2〈P⊥u XT EP⊥v , Âλ −A〉F −λ 〈
r

∑
k=1

ukvT
k , Âλ −A〉F

= 2〈XT E, Âλ −A〉F −2〈XT E,P⊥u (Âλ −A)P⊥v 〉F −λ 〈
r

∑
k=1

ukvT
k , Âλ −A〉F

= 2〈XT E,Pu(Âλ −A)〉F +2〈XT E,P⊥u (Âλ −A)Pv〉F −λ 〈
r

∑
k=1

ukvT
k ,Pu(Âλ −A)Pv〉F .

Lemma C.2, page 313, in Appendix C ensures that 〈A,B〉F ≤ σ1(A)|B|∗, so

2〈XT E, Âλ −A〉F −λ 〈Z, Âλ −A〉F

≤ 2σ1(XT E)
(
|Pu(Âλ −A)|∗+ |P⊥u (Âλ −A)Pv|∗

)
+λ |Pu(Âλ −A)Pv|∗.

Since 2σ1(XT E)≤ λ , we obtain

2〈XT E, Âλ −A〉F −λ 〈Z, Âλ −A〉F
≤ λ |Pu(Âλ −A)|∗+λ |P⊥u (Âλ −A)Pv|∗+λ |Pu(Âλ −A)Pv|∗

≤ λ
√

rank(A)
(
‖Pu(Âλ −A)‖F +‖P⊥u (Âλ −A)Pv‖F +‖Pu(Âλ −A)Pv‖F

)
,

where we used in the last line rank(Pu) = rank(Pv) = rank(A) and the inequality
|M|∗ ≤

√
rank(M)‖M‖F from Lemma C.2, page 313, in Appendix C. According to

Inequalities (C.6) and (C.7), page 315, in Appendix C, the three above Frobenius
norms are upper-bounded by ‖Âλ −A‖F , so combining the above bound with (8.31)
and Al-Kashi formula

2〈XÂλ −XA∗,XÂλ −XA〉F = ‖XÂλ −XA∗‖2
F +‖XÂλ −XA‖2

F −‖XA−XA∗‖2
F ,

we obtain

‖XÂλ −XA∗‖2
F +‖XÂλ −XA‖2

F ≤ ‖XA−XA∗‖2
F +3λ

√
rank(A)‖Âλ −A‖F .

Let us denote by X+ the Moore–Penrose pseudo-inverse of X (see Section C.2 in
Appendix C). For any matrix M ∈ A, we have M = PXT M = X+XM, and thus again
according to Lemma C.2, page 313, we have

‖M‖F ≤ |X+|op‖XM‖F = σq(X)−1‖XM‖F .

Since A− Âλ belongs toA, we have ‖Âλ −A‖F ≤ σq(X)−1‖X(Âλ −A)‖F , and there-
fore

‖XÂλ −XA∗‖2
F ≤ ‖XA−XA∗‖2

F −‖XÂλ −XA‖2
F +

3λ
√

rank(A)
σq(X)

‖XÂλ −XA‖F

≤ ‖XA−XA∗‖2
F +

9λ 2

4σq(X)2 rank(A),
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where we used in the last line the inequality 2ab≤ a2 +b2. The proof of Lemma 8.9
is complete. 2

2- Stochastic control
To conclude the proof of Theorem 8.8, it remains to check that

P
(

σ1(XT E)≥ Kσ1(X)
(√

T +
√

q
)
σ

)
≤ e−(K−1)2(T+q)/2, for all K > 1. (8.32)

Writing PX for the projection onto the range of X, we have XT E = XT PXE, so
σ1(XT E)≤σ1(X)σ1(PXE). As in the proof of Theorem 8.5, combining the Gaussian
concentration Inequality (B.2), page 301, and the Bound (8.10), we obtain that

σ1 (PXE)≤ σ

(√
T +
√

q
)
+σ

√
2ξ ,

for some exponential random variable ξ with parameter 1. Bound (8.32) follows, and
the proof of Theorem 8.8 is complete. 2

8.4.4 Computationally Efficient Algorithm for Row-Sparse and Low-Rank
Matrices

In order to combine the benefits of coordinate sparsity and low rankness, it is natural
to penalize the negative log-likelihood by both the group-`1 and the nuclear norms

Âλ ,µ ∈ argmin
A∈Rp×T

{
‖Y −XA‖2

F +λ |A|∗+µ

p

∑
j=1
‖A j:‖

}
,

where A j: denotes the j-th row of A and λ ,µ > 0. The resulting criterion is convex
in A.

It is not difficult to combine the analysis for the Group-Lasso estimator and the anal-
ysis of Theorem 8.8 in order to get a risk bound for Âλ ,µ . Yet, the resulting risk bound
does not improve on the results with the nuclear alone or the group norm alone. To
overcome this issue, some iterative algorithms have been proposed, in the spirit of the
Iterative Hard Thresholding / Iterative Group Thresholding algorithms of Chapter 6.

The main recipe is to decompose A=UV with U ∈Rp×r and V ∈Rr×T , and to notice
that
(i) the rank of A is smaller than r by construction; and
(ii) if U is row sparse, then A is also row-sparse.

The target is then to minimize the ‖Y −XUV‖2
F under the constraint that U is row

sparse. It is a hard task as the row-sparse constraint is not convex and in addition
the objective function (U,V )→ ‖Y −XUV‖2

F is not convex. We could try to apply
an IGT algorithm on (U,V ); yet, this cannot be done directly as, for any α > 0, we
have (αU)(α−1V ) = UV , so hard thresholding the rows of U is ineffective if the
size of the entries of U are not stabilized. To do so, the second recipe is to add to the
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objective function a penalty proportional to ‖UTU−V TV‖2
F . Such a penalty ensures

that the singular values of U and V are similar, stabilizing the size of the entries of
U .

The objective function is then F(U,V ) + λ |J(U)|, where |J(U)| is the number of
non-zero rows of U and

F(U,V ) = ‖Y −XUV‖2
F +

1
2
‖UTU−V TV‖2

F .

Similarly as for the IGT algorithm (6.23), page 131, the related proximal algorithm
amounts to take a gradient step of F and then to apply a group-thresholding to the
rows of U . When initialized with the group-Lasso estimator (8.19), page 168, the
iterative algorithm can be shown to enjoy a risk bound similar to (8.23) under a
restricted isometry property as (6.10). The proof of this result goes beyond the scope
of this chapter, we refer the interested reader to the paper Yu et al. [166].

8.5 Discussion and References

8.5.1 Take-Home Message

We can easily take advantage of the low rank of the regression matrix A∗ by im-
plementing the estimator (8.14). It is possible to improve significantly the estimator
accuracy by taking simultaneously into account low-rank structures with row-sparse
structures, as explained in Section 8.4.2. A computationally tractable procedure with
optimal estimation rates can be obtained via an iterative algorithm, as described in
Yu et al. [166].

8.5.2 References

Most of the material presented in this chapter is adapted from Bunea, She, and
Wegkamp [44, 43]. Lemma 8.3 comes from Davidson and Szarek [61], and Theo-
rem 8.8 is adapted from Koltchinskii, Lounici, and Tsybakov [99].

We refer to Bach [13] for the convex Criterion (8.29) and examples of applications.
Finally, Exercise 8.6.3 is adapted from Giraud [80].

8.6 Exercises

8.6.1 Hard Thresholding of the Singular Values

We consider the estimators Âr defined by (8.6) and for λ > 0 the selection criterion

r̂λ ∈ argmin
r

{
‖Y −XÂr‖2

F +λ r
}
.

The selection Criterion (8.13) corresponds to the choice λ =K
(√

T +
√

q
)2

σ2. With
the same notations as those of Lemma 8.1, we write PY = ∑k σkukvT

k for the SVD
decomposition of PY , with σ1 ≥ σ2 ≥ . . ..
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1. Prove that ‖Y −XÂr‖2
F = ‖Y‖2

F −∑
r
k=1 σ2

k for r ≤ rank(PY ).
2. Check that r̂λ = max

{
r : σ2

r ≥ λ
}

and conclude that

XÂr̂λ
= ∑

k
σk1

σ2
k≥λ

ukvT
k .

8.6.2 Exact Rank Recovery

We denote by r∗ the rank of A∗, by σ1(M) ≥ σ2(M) ≥ . . . the singular values of M
ranked in decreasing order, and we consider the selection procedure (8.13).
1. Prove from the previous exercise that

P(r̂ 6= r∗) =

P
(

σr∗+1(PY )≥
√

K(
√

T +
√

q)σ or σr∗(PY )<
√

K(
√

T +
√

q)σ
)
.

2. Deduce from Weyl inequality (Theorem C.6 in Appendix C) that

P(r̂ 6= r∗)≤

P
(

σ1(PE)≥min
(√

K(
√

T +
√

q)σ ,σr∗(XA∗)−
√

K(
√

T +
√

q)σ
))

.

3. Assume that σr∗(XA∗)≥ 2
√

K(
√

T +
√

q)σ . Prove that in this case, the probabil-
ity to recover the exact rank r∗ is lower-bounded by

P(r̂ = r∗)≥ 1− exp

(
− (
√

K−1)2

2

(√
T +
√

q
)2
)
.

8.6.3 Rank Selection with Unknown Variance

We consider here the case where both the variance σ2 and the rank r∗ = rank(A∗) are
unknown. A classical selection criterion in this setting is

r̂ ∈ argmin
r<nT/λ

{
‖Y −XÂr‖2

F
nT −λ r

}
, with λ > 0. (8.33)

We notice that we can recast this criterion as

r̂ ∈ argmin
r<nT/λ

{
‖Y −XÂr‖2

F +λ rσ̂
2
r

}
with σ̂

2
r =
‖Y −XÂr‖2

F
nT −λ r

,

so it can be viewed as a version of (8.13), with the variance σ2 replaced by σ̂2
r . In

the following, we set λ = K(
√

T +
√

q)2 with K > 1, and we assume that 1 ≤ r∗ =
rank(A∗)≤ nT/(2λ ).
1. Prove that ‖Y − (PY )(r∗)‖F ≤ ‖E‖F .
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2. Deduce from the previous question and Criterion (8.33) that

‖Y − (PY )(r̂)‖2
F ≤ ‖E‖2

F −
λ (r̂− r∗)
nT −λ r∗

‖E‖2
F .

3. Prove from the above inequality and (8.3) that for any α > 0

‖XÂr̂−XA∗‖2
F ≤ 2〈XÂr̂−XA∗,E〉F −

λ (r̂− r∗)
nT −λ r∗

‖E‖2
F

≤ α‖PE‖2
(2,r∗+r̂)+α

−1‖XÂr̂−XA∗‖2
F −

λ (r̂− r∗)
nT −λ r∗

‖E‖2
F .

4. Check that for α > 1

α−1
α
‖XÂr̂−XA∗‖2

F ≤ λ r∗
‖E‖2

F
nT −λ r∗

+αr∗|PE|2op + r̂
(

α|PE|2op−λ
‖E‖2

F
nT

)
.

5. For α > 1 and δ > 0, such that K ≥ α(1+δ )/(1−δ )2, combining the bound

r̂
(

α|PE|2op−λ
‖E‖2

F
nT

)
≤

(q∧T )
(
α|PE|2op−λ (1−δ )2

σ
2)

+
+λ (q∧T )

(
(1−δ )2

σ
2− ‖E‖

2
F

nT

)
+

with the Gaussian concentration Inequality (B.2), page 301, prove that for δ ≥
1−
√

nT−4
nT ≈ 2/nT

E
[

r̂
(

α|PE|2op−λ
‖E‖2

F
nT

)]
≤ 2α(1+δ

−1)(q∧T )σ2 +4KnTe−δ 2nT/2+2
σ

2

≤ 2α(1+δ
−1)(q∧T )σ2 +8Kδ

−2eσ
2.

6. Conclude that there exists a constant CK > 1 depending only on K > 1, such that

E
[
‖XÂr̂−XA∗‖2

F

]
≤CKr∗(T +q)σ2.

Compare this bound with (8.16).



Chapter 9

Graphical Models

Graphical modeling is a convenient theory for encoding the conditional dependencies
between p random variables X1, . . . ,Xp by a graph g. Graphical models are used in
many different frameworks (image analysis, physics, economics, etc.), and they have
been proposed for investigating biological regulation networks, brain connections,
etc.

The concept of conditional dependence is more suited than the concept of depen-
dence in order to catch “direct links” between variables, as explained in Figure 9.1
below.

When there is a snow storm in Paris, we observe both
huge traffic jams and plenty of snowmen in parks. So
there is a strong correlation (and thus dependence) be-
tween the size of the Parisian traffic jams and the number
of snowmen in parks.

Of course, snowmen do not cause traffic jams. Traffic
jams and snowmen are correlated only because they are
both induced by snow falls. These causality relationships
are represented in the side picture by edges.

Conditional dependencies better reflect these relation-
ships. Actually, conditionally in the snow falls, the size
of the traffic jams and the number of snowmen are likely
to be independent.

Figure 9.1 Difference between dependence and conditional dependence.

There are mainly two types of graphical models, which encode conditional depen-
dencies in two different ways. We briefly present these two types based on directed
and non-directed graphs in Section 9.2. Our main goal in this chapter will be to learn
the graph of conditional dependencies between (X1, . . . ,Xp) from an n-sample of
(X1, . . . ,Xp), with a special focus on the case where the graph has few edges and the
sample size n is smaller than the number p of variables. As explained below, it is a
very hard and non-parametric problem in general, and we will mainly investigate the

179
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case where (X1, . . . ,Xp) follows a Gaussian distribution with (unknown) covariance
Σ. In this case, the conditional dependencies are encoded in the precision matrix Σ−1

and our problem mainly amounts to estimate the locations of the nonzero entries of
a sparse precision matrix.

9.1 Reminder on Conditional Independence

We remind the reader that two random variables X and Y are independent condition-
ally on a variable Z (we write X ⊥⊥ Y | Z) if their conditional laws fulfill

law((X ,Y )|Z) = law(X |Z)⊗ law(Y |Z).

In particular, if the distribution of (X ,Y,Z) has a positive density f with respect to a
σ -finite product measure µ , then

X ⊥⊥ Y | Z ⇐⇒ f (x,y|z) = f (x|z) f (y|z) µ-a.e.
⇐⇒ f (x,y,z) = f (x,z) f (y,z)/ f (z) µ-a.e.
⇐⇒ f (x|y,z) = f (x|z) µ-a.e.,

where f (x,y|z) (resp. f (x|z)) represents the conditional density of (x,y) (resp. x)
given z.

We also recall that for any measurable function h, we have the property

X ⊥⊥ (Y,W ) | Z =⇒ X ⊥⊥ Y | (Z,h(W )). (9.1)

In order to avoid unnecessary technicalities, we assume in the remainder of this chap-
ter that the distribution of (X1, . . . ,Xp) has a positive continuous density with respect
to σ -finite product measure in Rp.

9.2 Graphical Models

9.2.1 Directed Acyclic Graphical Models

Let us consider a directed graph g (made of nodes and arrows, with the arrows linking
some nodes) with p nodes labelled from 1 to p, as in Figure 9.2. We will assume that
g is acyclic, which means that no sequence of arrows forms a loop in graph g. We
call parents of a nodes b, such that there exists an arrow b→ a, and we denote by
pa(a) the set of parents of a. We call descendant of a the nodes that can be reached
from a by following some sequence of arrows (a included), and we denote by de(a)
the set of descendants of a. For example, in Figure 9.2, the descendants of 11 are
{11,12,18} and its parents are {5,8,10}.
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Directed acyclic graphical model
Let g be a Directed Acyclic Graph (DAG). The distribution of the random variable
X = (X1 . . . ,Xp) is a graphical model according to g if it fulfills the property

for all a : Xa ⊥⊥ {Xb, b /∈ de(a)}
∣∣ {Xc, c ∈ pa(a)} .

We write L (X)∼ g when this property is met.
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Figure 9.2 Directed Acyclic Graphical models: Xa ⊥⊥ {Xb, b /∈ de(a)} | {Xc, c ∈ pa(a)}.

Let us consider two DAGs, g and g′, with g a subgraph of g′ (denoted by g⊂ g′) and
a random variable X , such that L (X) ∼ g. Writing pa′(a) (respectively, de′(a)) for
the parents (respectively, the descendants) of the node a in g′, we observe that, due
to the acyclicity,

pa(a)⊂ pa′(a)⊂ {1, . . . , p}\de′(a)⊂ {1, . . . , p}\de(a).

Accordingly, it follows from L (X) ∼ g and the property (9.1) of the conditional
independence, that for any a = 1, . . . , p

Xa ⊥⊥
{

Xb : b /∈ de′(a)
}
|
{

Xc : c ∈ pa′(a)
}
.

As a consequence for g⊂ g′, we have L (X)∼ g =⇒ L (X)∼ g′. In particular, there
is in general no unique DAG g, such that L (X) ∼ g. Yet, we may wonder whether
there exists a unique DAG g∗ minimal for the inclusion, such that L (X) ∼ g∗. It is
unfortunately not the case, as can be seen in the following simple example. Consider
X1, . . . ,Xp generated by the autoregressive model

Xi+1 = αXi + εi with X0 = 0, α 6= 0 and εi i.i.d.
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Since (X1, . . . ,Xp) is a Markov chain, we have

(X1, . . . ,Xi)⊥⊥ (Xi, . . . ,Xp) | Xi for all i = 1, . . . , p.

As a consequence, the two graphs

1→ 2→ . . .→ p and 1← 2← . . .← p

are minimal graphs for this model.

! Be careful with the interpretation of directed graphical models!

Our objective in this chapter is to learn from data a (minimal) graph of conditional
dependencies between p variables. Since there is no unique minimal DAG g, such
that L (X) ∼ g, the problem of estimating “the” minimal acyclic graph of a distri-
bution P is an ill-posed problem. Yet, it turns out that the minimal DAGs associated
with a given distribution only differ by the direction of (some of) their arrows. So
instead of trying to estimate a minimal DAG associated to a distribution P, we can
try to estimate the locations (but not the directions) of the arrows of the minimal
DAGs associated to P. This problem can be solved efficiently under some conditions
(see Spirtes et al. [144] and Kalisch and Bühlmann [97, 98]). An alternative is to
consider another notion of graphical models based on non-directed graphs, which
are more suited for our problem. We will follow this alternative in the remainder of
this chapter.

Before moving to non-directed graphical models, we emphasize that directed acyclic
graphical models are powerful tools for modeling, defining a distribution P and com-
puting it. These nice features mainly rely on the factorization formula for distribu-
tions P with a positive density f with respect to a σ -finite product measure in Rp.
Actually, in such a case, for any DAG g such that P ∼ g, we have the factorization
formula

f (x1, . . . ,xp) =
p

∏
i=1

f (xi|xpa(i)), (9.2)

where f (xi|xpa(i)) is the conditional density of xi given xpa(i). This factorization is
easily proved by induction; see Exercise 9.6.1. A common way to use (9.2) is to
start from a known graph g representing known causality relationships between the
variables, and then build the density f from the conditional densities f (xi|xpa(i)) ac-
cording to Formula (9.2).

9.2.2 Non-Directed Models

We consider now non-directed graphs g (made of nodes and edges, with the edges
linking some nodes) with p nodes labelled from 1 to p, as in Figure 9.3. Graph g
induces a symmetric relation on {1, . . . , p} by

a
g∼ b ⇐⇒ there is an edge between a and b in graph g.
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We call neighbors of a, the nodes in ne(a) =
{

b : b
g∼ a
}

, and we set cl(a) = ne(a)∪
{a}.

Non-directed graphical model
The distribution of the random variable X = (X1 . . . ,Xp) is a graphical model ac-
cording to graph g if it fulfills the property

for all a : Xa ⊥⊥ {Xb, b /∈ cl(a)}
∣∣ {Xc, c ∈ ne(a)} .

We write L (X)∼ g when this property is met.
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Figure 9.3 Non-directed graphical models: Xa ⊥⊥ {Xb : b� a} | {Xc : c∼ a}.

Again, we check that if L (X)∼ g and g⊂ g′ then L (X)∼ g′, so there is no unique
graph g, such that L (X)∼ g. In particular, if g# represents the complete graph (where
all the nodes are connected together), then L (X) ∼ g#. Yet, when X has a posi-
tive continuous density with respect to some σ -finite product measure, there exists
a unique minimal graph g∗ (for inclusion), such that L (X)∼ g∗. We will prove this
result in the Gaussian setting in Section 9.3, and we refer to Lauritzen [101], Chapter
3 for the general case. In the following, we call simply “graph of X” the minimal
graph g∗, such that L (X)∼ g∗.

There is a simple connection between directed and non-directed graphical models.
Let g be a directed graph such that L (X)∼ g. We associate to g the so-called moral
graph, which is the non-directed graph gm obtained as follows:
1. For each node, set an edge between its parents in g.
2. Replace all arrows by edges.
We refer to Figure 9.4 for an illustration.
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moralization

Figure 9.4 Moralization of a Directed Acyclic Graph. Left: the original graph. Right: the
associated moral graph. The extra edges linking the parents are represented with dashed lines.

Lemma 9.1 From directed to non-directed graphical models

Let g be a directed graph, and write gm for its (non-directed) moral graph defined
above. Then, if X has a positive density with respect to a σ -finite product measure,

L (X)∼ g =⇒ L (X)∼ gm .

We refer to Exercise 9.6.2 for a proof of this lemma. We emphasize that the moral
graph gm may not coincide with the minimal graph g∗ associated to X .

In the following, our goal is to estimate from an n-sample the minimal graph g∗, such
that L (X) ∼ g∗. In general, it is a very hard problem in high-dimensional settings.
Actually, a result due to Hammersley and Clifford [89] ensures that a distribution
with positive continuous density f is a graphical model with respect to a non-directed
graph g if and only if f fulfills the factorization

f (x) = ∏
c∈cliques(g)

fc(xc), (9.3)

where the fc are positive functions and the cliques of g are the subgraphs of g that are
completely connected (all the nodes of a clique are linked together; for example, the
nodes 14, 16 ,17, 19 form a clique in Figure 9.3). We refer again to Lauritzen [101]
Chapter 3 for a proof of this result. Trying to infer such a minimal decomposition
of the density f is a very hard problem in general. Yet, it is tractable in some cases,
for example, when (X1, . . . ,Xp) follows a Gaussian distribution. In the following, we
will focus on this issue of estimating g∗ from an n-sample of a Gaussian distribution.
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9.3 Gaussian Graphical Models

We assume in the remainder of this chapter that X follows a Gaussian N (0,Σ) dis-
tribution, with Σ unknown and non-singular. Our goal will be to estimate from an
n-sample X (1), . . . ,X (n) of X the non-directed graph g∗, minimal for the inclusion,
such that L (X)∼ g∗. We have in mind that the sample size n can be smaller than the
dimension p of X .

We will denote by X the n × p matrix with rows given by the transpose of
X (1), . . . ,X (n) and we write Σ̂ for the empirical covariance matrix

Σ̂ =
1
n

n

∑
i=1

(X (i))(X (i))T =
1
n

XT X.

9.3.1 Connection with the Precision Matrix and the Linear Regression

A nice feature of the Gaussian N (0,Σ) distribution, with Σ non-singular, is that the
minimal graph g∗ is encoded in the precision matrix K = Σ−1. Actually, let us define
graph g with nodes labelled by {1, . . . , p} according to the symmetric relation for
a 6= b

a
g∼ b ⇐⇒ Ka,b 6= 0. (9.4)

The next lemma shows that g is the minimal (non-directed) graph, such that L (X)∼
g.

Lemma 9.2 Gaussian Graphical Models (GGM) and precision matrix

For graph g defined by (9.4), we have

1. L (X)∼ g and g is the minimal graph fulfilling this property.

2. For any a ∈ {1, . . . , p}, there exists εa ∼ N (0,K−1
aa ) independent of

{Xb : b 6= a}, such that

Xa =− ∑
b∈ne(a)

Kab

Kaa
Xb + εa . (9.5)

Proof.
1. We write nn(a) = {1, . . . , p} \ cl(a) for the nodes of g non-neighbor to a. Let

us consider the two sets A = {a} ∪ nn(a) and B = ne(a). The precision matrix
restricted to A is of the form

KAA =

(
Kaa 0
0 Knn(a)nn(a)

)
.

Lemma A.4, page 295, in Appendix A ensures that the distribution of X{a}∪nn(a)
given Xne(a) is Gaussian with covariance matrix

(KAA)
−1 =

(
K−1

aa 0
0 (Knn(a)nn(a))

−1

)
.
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Since independence is equivalent to zero covariance for Gaussian random vari-
ables, the variables Xa and Xnn(a) are independent conditionally on Xne(a). We note
that this property is no longer true if we remove an edge between a and one of its
neighbors in g, since in this case the off-diagonal blocks of (KAA)

−1 are nonzero.

2. The second point simply rephrases Formula (A.3), page 295, in Appendix A.
2

In the next subsections, we build on Lemma 9.2 in order to derive procedures for
estimating g∗.

9.3.2 Estimating g by Multiple Testing

Corollary A.4 in Appendix A ensures that, for a 6= b, the conditional correlation (also
called partial correlation) of Xa and Xb given {Xc : c 6= a,b} is given by

cor(Xa,Xb|Xc : c 6= a,b) =
−Kab√
Kaa Kbb

. (9.6)

As a consequence, there is an edge in the graph g∗ if and only if the conditional
correlation cor(Xa,Xb|Xc : c 6= a,b) is nonzero. A natural idea is then to estimate g∗ by
testing if these conditional correlations are nonzero. When n > p−2, the conditional
correlations can be estimated by replacing K in (9.6) by the inverse of the empirical
covariance matrix Σ̂−1

ĉor(Xa,Xb|Xc : c 6= a,b) = ρ̂ab =
−
[
Σ̂−1

]
ab√[

Σ̂−1
]

aa

[
Σ̂−1

]
bb

.

When cor(Xa,Xb|Xc : c 6= a,b) = 0, we have (see Anderson [3], Chapter 4.3)

t̂ab =
√

n−2− p× ρ̂ab√
1− ρ̂ 2

ab

∼ Student(n− p−2).

For each a< b, let us denote by p̂ab the p-value associated to the test statistic |̂tab|. We
can then estimate the set of nonzero conditional correlations by applying a multiple
testing procedure (see Chapter 10) to the set of p-values { p̂ab,1≤ a < b≤ p}. This
procedure makes perfect sense when n is large, much larger than p. But when n− p
is small, the empirical conditional correlation ρ̂ab is very unstable and the procedure
leads to poor results. When p > n, the empirical covariance matrix Σ̂ is not invertible,
so the procedure cannot be implemented.

There have been several propositions to circumvent this issue. One proposition is to
work with ĉor(Xa,Xb|Xc : c ∈ S), with S a small subset of {1, . . . , p} \ {a,b} (like
pairs), instead of ĉor(Xa,Xb|Xc : c 6= a,b); see, e.g., Wille and Bühlmann [164],
and Castelo and Roverato [49]. While the empirical conditional correlation
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ĉor(Xa,Xb|Xc : c ∈ S) does not suffer from instability when the cardinality of S is
small compared to n, it is unclear what we estimate at the end in general.

If we look carefully at the definition of ĉor(Xa,Xb|Xc : c 6= a,b), we observe that
the instability for large p comes from the fact that we estimate K by Σ̂−1, which is
unstable. An idea is then to build a more stable estimator of K.

9.3.3 Sparse Estimation of the Precision Matrix

We have in mind the case where the underlying graph g is sparse (it has a few edges).
Since Kab = 0 when there is no edge between a and b in g∗, the sparsity of g∗ trans-
lates into coordinate sparsity for the precision matrix K. Exploiting this sparsity can
significantly improve the estimation of K upon Σ̂−1. Following the ideas of Chap-
ter 5, we can then estimate K by minimizing the negative log-likelihood penalized
by the `1 norm of K. Let us first derive the likelihood of a p× p positive symmetric
matrix K ∈S +

p

Likelihood(K) =
n

∏
i=1

√
det(K)

(2π)p exp
(
−1

2
(X (i))T KX (i)

)

=

(
det(K)

(2π)p

)n/2

exp
(
−n

2
〈Σ̂,K〉F

)
,

where the last equality follows from 〈X (i),KX (i)〉= 〈X (i)(X (i))T ,K〉F . Removing the
terms not depending on K, we obtain that the negative-log-likelihood is given (up to
a constant) by

−n
2

log(det(K))+
n
2
〈K, Σ̂〉F .

Since − log(det(K)) is convex (Exercise 9.6.3), the above function is convex. Simi-
larly, as for the Lasso estimator, minimizing the negative log-likelihood penalized by
the `1 norm of K will induce a coordinate-sparse estimator. The resulting estimator

K̂λ = argmin
K∈S +

p

{
−n

2
log(det(K))+

n
2
〈K, Σ̂〉F +λ ∑

a6=b
|Kab|

}
, (9.7)

is usually called the “graphical-Lasso” or simply “glasso” estimator. We point out
that we do not penalize the diagonal elements, since they are not expected to be zero.
From a theoretical point of view, risk bounds similar to those for the Lasso have been
derived for the glasso estimator by Ravikumar et al. [130], under some “compati-
bility conditions” on the true precision matrix, which are hard to interpret. From a
practical point of view, minimizing the convex Criterion (9.7) is more challenging
than for the Lasso Criterion (5.4), but a powerful numerical scheme has been devel-
oped in Friedman et al. [73], and the glasso estimator can be computed in quite large
dimensions (at least a few thousands). This scheme is implemented in the R package
glasso available at http://cran.r-project.org/web/packages/glasso/ .
Nevertheless, some poor results have been reported in practice by Villers et al. [161]
when n≤ p compared to some other estimation schemes.
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9.3.4 Estimation by Regression

From the second part of Lemma 9.2, we observe that the sparsity of K induces some
coordinate-sparsity in the linear regressions (9.5) for a = 1, . . . , p. We can then recast
our problem in a multivariate regression setting.

Let us define the matrix θ by θab =−Kab/Kbb for b 6= a and θaa = 0. Equation (9.5)
ensures that E[Xa|Xb : b 6= a] = ∑b θbaXb, so the vector [θba]b:b6=a minimizes

E

(Xa− ∑
b:b6=a

βbXb

)2


over the vectors β ∈ Rp−1. Writing Θ for the space of p× p matrices with zero on
the diagonal, after summing on a, we obtain

θ ∈ argmin
θ∈Θ

E

 p

∑
a=1

(
Xa− ∑

b:b6=a
θbaXb

)2


= argmin
θ∈Θ

E
[
‖X−θ

T X‖2]
= argmin

θ∈Θ

‖Σ1/2(I−θ)‖2
F , (9.8)

where the last equality comes from E[‖AX‖2] = 〈A,AΣ〉F for X ∼ N (0,Σ). For
a 6= b, since Kab 6= 0 if and only if θab 6= 0, an alternative idea to estimate g∗ is to
build a coordinate-sparse estimator θ̂ of the matrix θ . If we replace Σ by Σ̂ in (9.8),
we obtain

‖Σ̂1/2(I−θ)‖2
F =

1
n
〈(I−θ),XT X(I−θ)〉F =

1
n
‖X(I−θ)‖2

F .

Adding a penalty Ω(θ) enforcing coordinate sparsity, we end with the estimator

θ̂λ ∈ argmin
θ∈Θ

{
1
n
‖X−Xθ‖2

F +λΩ(θ)

}
.

This corresponds to a special case of coordinate-sparse multivariate regression. We
discuss below two choices of penalty for enforcing sparsity: the classical `1 penalty
as in the Lasso estimator and a `1/`2 penalty as in group-Lasso estimator.

With the `1 penalty

If we choose for Ω(θ) the `1 norm of θ , we obtain

θ̂
`1

λ
∈ argmin

θ∈Θ

{
1
n
‖X−Xθ‖2

F +λ ∑
a 6=b
|θab|

}
. (9.9)
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Since we have

1
n
‖X−Xθ‖2

F +λ ∑
a6=b
|θab|=

p

∑
a=1

(
1
n
‖Xa− ∑

b:b6=a
θbaXb‖2 +λ ∑

b:b6=a
|θba|

)
,

we can split the minimization (9.9) on θ ∈Θ into p minimization problems in Rp−1

[
θ̂
`1

λ

]
−a,a ∈ argmin

β∈Rp−1

{
1
n
‖Xa−∑

b
βbXb‖2 +λ |β |`1

}
for a = 1, . . . , p,

with the notation θ−a,a = [θba]b:b6=a. We recognize p Lasso estimators that can be
computed efficiently; see Section 5.2.4 in Chapter 5.

Unfortunately, there is a difficulty in order to define a non-directed graph ĝ from
θ̂ `1

. Actually, whereas the zeros of θ are symmetric with respect to the diagonal, no
constraint enforces that θ̂ `1

ab 6= 0 when θ̂ `1

ba 6= 0 and conversely. So we have to choose
an arbitrary decision rule in order to build a graph ĝ from θ̂ `1

. For example, we may
decide to set an edge between a and b in ĝ when either θ̂ `1

ab 6= 0 or θ̂ `1

ba 6= 0. Another
example is to set an edge a ∼ b in ĝ when both θ̂ `1

ab 6= 0 and θ̂ `1

ba 6= 0. In order to
avoid these unsatisfactory rules, we can modify the penalty in order to enforce the
symmetry of the zeros of θ̂ .

With the `1/`2 penalty

The idea is to regroup the non-diagonal indices (a,b) by symmetric pairs
{(a,b),(b,a)} and apply a group-Lasso penalty, namely

θ̂
`1/`2

λ
∈ argmin

θ∈Θ

{
1
n
‖X−Xθ‖2

F +λ ∑
a<b

√
θ 2

ab +θ 2
ba

}
. (9.10)

This estimator has the nice property to be coordinate sparse with symmetric zeros.

So there is no ambiguity in order to define a graph ĝ from θ̂
`1/`2

λ
.

The minimization problem (9.10) is convex in Rp×p; unfortunately, it cannot be split

into p subproblems. It is then computationally more intensive to compute θ̂
`1/`2

λ
than

θ̂ `1

λ
in large dimensions. We refer to Exercise 9.6.4 for the description of a block

gradient descent algorithm for minimizing (9.10).

Theoretical results

We cannot apply directly the results of Chapter 5 on the Lasso and group-Lasso
estimators, since the design matrix X is random. Nevertheless, we can work condi-
tionally on the design and then integrate the result. For the sake of illustration, we
give an example of the kind of results that we can obtain for the estimator θ̂ `1

λ
.

We introduce the population restricted eigenvalue

φ∗ = max
{
|Σmm|op : m⊂ {1, . . . , p} , card(m)≤ n/(3log p)

}
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and define the degree of a matrix A by d(A) = max{|A:a|0 : a = 1, . . . , p}. Note that
for A = θ , the degree d(θ) is equal to the degree of the graph g∗, which is defined by
degree(g∗) = max{ne(a) : a = 1, . . . , p}.

Theorem 9.3 Risk bound for θ̂ `1

Assume that the diagonal entries of Σ are equal to one and set cor(Σ) =
maxa6=b |Σa,b|. Then there exist some constants C,C′,C1,C2,C3 > 0, such that when

1≤ d(θ)≤C
n

φ∗ log(p)

∧ 1
cor(Σ)

(9.11)

for λ = C′φ∗
√

log(p), the estimator θ̂ `1

λ
fulfills with probability at least 1−

C1
(

p−C2 + p2e−C2n
)

the risk bound

‖Σ1/2(θ̂ `1

λ
−θ)‖2

F ≤C3
φ 2
∗ log(p)

n
|θ |0. (9.12)

The above theorem provides a control of ‖Σ1/2(θ̂ `1 − θ)‖2
F . This quantity does not

directly quantify the accuracy of the estimation of g∗, but rather the accuracy of θ̂ `1

for predicting the variables Xa with (θ̂ `1
)T X . Actually, assume that we obtain a new

observation Xnew∼N (0,Σ) independent of the n-sample used to compute θ̂ `1
. Then

p

∑
a=1
Enew

(Xnew
a − ∑

b:b6=a
θ̂
`1

ba Xnew
b

)2
= Enew

[
‖Xnew− (θ̂ `1

)T Xnew‖2
]

= ‖Σ1/2(I− θ̂
`1
)‖2

F ,

where Enew represents the expectation with respect to Xnew. Since θ is the orthog-
onal projection of I onto Θ with respect to the scalar product 〈·,Σ ·〉F , Pythagorean
formula gives

p

∑
a=1
Enew

(Xnew
a − ∑

b:b6=a
θ̂
`1

ba Xnew
b

)2
= ‖Σ1/2(I−θ)‖2

F +‖Σ1/2(θ − θ̂
`1
)‖2

F .

The first term represents the minimal error for predicting the Xa from the {Xb : b 6= a}
and the second term corresponds to the stochastic error due to the estimation proce-
dure. Theorem 9.3 gives a bound for this last term. Condition (9.11) requires that the
degree of the graph g∗ remains small compared to n/ log(p). It has been shown that
this condition on the degree is unavoidable (see Verzelen [160]), and the degree of
the graph seems to be a notion of sparsity well-suited to characterize the statistical
difficulty for estimation in the Gaussian graphical model. The second constraint on
the product d(θ)cor(Σ) is due to the use of the lower bound of Exercise 5.5.3 on the
restricted eigenvalues, and it is suboptimal.
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Proof. The proof mainly relies on Theorem 5.1 in Chapter 5 for the Lasso estimator.
Yet, the adaptation to the random design setting is slightly technical and lengthy, and
we only sketch the main lines.
The main idea is to start from the formula

n−1/2Xa = ∑
b6=a

n−1/2Xbθab +n−1/2
εa for a = 1, . . . , p,

with εa ∼N (0,K−1
aa In) and work conditionally on {Xb : b 6= a} for each a. Then, for

λ ≥ 3max
a6=b
|XT

b εa/n|,

combining the risk Bound (5.13) with Exercise 5.5.3, we obtain (after summing the
p bounds)

1
n
‖X(θ̂ `1

λ
−θ)‖2

F ≤ inf
A∈Θ

{
1
n
‖X(A−θ)‖2

F +
λ 2|A|0(

1−11d(A)maxb6=a |XT
a Xb|/n

)
+

}

≤ λ 2|θ |0(
1−11d(θ)maxb6=a |XT

a Xb|/n
)
+

. (9.13)

To conclude, all we need is to be able to replace n−1/2X by Σ1/2 in the above bound.
In a high-dimensional setting, where p > n, we do not have ‖Xv‖2/n ≈ ‖Σ1/2v‖2

for all vector v ∈ Rp, yet, the next lemma shows that it is true with high probability
simultaneously for all sparse vectors v. More precisely, there exist some constants
0 < c− < c+ <+∞, such that we have with high probability

c−‖Σ1/2v‖2 ≤ 1
n
‖Xv‖2 ≤ c+‖Σ1/2v‖2

for all v fulfilling |v|0 ≤ n/(3log(p)).

Lemma 9.4 Restricted isometry constants

For 1≤ d < n∧ p, there exists an exponential random variable ξ with parameter
1, such that

inf
β :|β |0≤d

n−1/2‖Xβ‖
‖Σ1/2β‖

≥ 1−

√
d +

√
2log(Cd

p)+δd +
√

2ξ

√
n

, (9.14)

where δd = log
(
4π log(Cd

p)
)
/
√

8log(Cd
p).

Similarly, there exists an exponential random variable ξ ′ with parameter 1, such
that

sup
β :|β |0≤d

n−1/2‖Xβ‖
‖Σ1/2β‖

≤ 1+

√
d +

√
2log(Cd

p)+δd +
√

2ξ ′

√
n

. (9.15)
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Proof. We refer to Exercise 9.6.8 for a proof of this lemma. 2

To conclude the proof of Theorem 9.3, it remains to check that under the hypotheses
of Theorem 9.3, with probability at least 1−C1(p−C2 + p2e−C2n), we have
1. maxa6=b |XT

b εa/n| ≤C
√

log(p)/n and maxa6=b |XT
a Xb|/n≤C4cor(Σ), and

2. d(θ̂ `1

λ
)≤ n/(6log(p)) when λ ≥C′φ ∗

√
log(p)/n,

3. n−1‖X(θ̂ `1

λ
−θ)‖2

F ≥ c−‖Σ1/2(θ̂ `1

λ
−θ)‖2

F .

The first point ensures that under the assumptions of the theorem, we have with large
probability λ ≥ 3maxa6=b |XT

b εa/n| and d(θ)maxb6=a |XT
a Xb|/n≤ 1/22. The two last

points allows to bound ‖Σ1/2(θ̂ `1

λ
− θ)‖2 by a constant times n−1‖X(θ̂ `1

λ
− θ)‖2.

Plugging this bounds in (9.13), we get the risk Bound (9.12).

Checking the abovethree points is somewhat lengthy; we only point out the main
arguments. The first point can be proved with the Gaussian concentration Inequal-
ity (B.2) and by noticing that XT

b εa = ‖Xb‖Na,b, where Na,b is independent of ‖Xb‖
and follows a Gaussian distribution with variance at most 1. The second point can
be proved by combining Lemma 3.2 in the Appendix of Giraud et al. [82], Exer-
cise 5.5.3, and Lemma 9.4. The last point is obtained by combining Lemma 9.4 with
d(θ̂ `1

λ
−θ)≤ d(θ̂ `1

λ
)+d(θ) and the second point. 2

Theorem 9.3 describes the prediction performance of the estimator θ̂ `1
but gives little

information on the recovery of g∗. Various conditions have been proposed to ensure
the recovery of graph g∗ by the estimator θ̂ `1

; see, for example, Wainwright [162]
or Meinshausen and Bühlmann [120]. Unfortunately, these conditions are not likely
to be met in high-dimensional settings, and the best we can expect in practice is a
partial recovery of graph g∗.

9.4 Practical Issues

Hidden variables

It may happen that we do not observe some variables that have a strong impact
on conditional dependencies. For example, if we investigate the regulation between
genes, we may lack the measurements for a key gene that regulates many genes of
interest. In such a case, even if the graph of conditional dependencies between all
the variables (observed and non-observed) is sparse, the graph of conditional de-
pendencies between the sole observed variables will not be sparse in general; see
Exercise 9.6.5. Therefore, the presence of hidden variables can strongly impact the
inference in graphical models. We refer to Exercise 9.6.5 for details on this issue and
an estimation procedure taking into account hidden variables.

Non-Gaussian variables

Our data may not have a Gaussian distribution. As explained above, inferring the con-
ditional dependencies of a general distribution is unrealistic in high-dimensional set-
tings, even when this distribution is a graphical model with respect to a sparse graph.
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In particular, trying to infer graph g and the functions fc in the decomposition (9.3) is
hopeless in a high-dimensional setting without additional structural assumptions. We
need to restrict either to some simple classes of graph g or to some special classes
of densities f . A possible approach is to assume that some transformations of the
data is Gaussian. For example, write Fj for the cumulative distribution function of
X j and Φ for the cumulative distribution of the standard Gaussian distribution. Then,
the variable Z j = Φ−1(Fj(X j)) follows a standard Gaussian distribution. A structural
hypothesis is to assume that in addition (Z1, . . . ,Zp) has a Gaussian distribution with
non-singular covariance matrix. Then, since the minimal graphs of (X1, . . . ,Xp) and
(Z1, . . . ,Zp) coincide, we are back to the Gaussian setting. The point is that in prac-
tice we do not know Fj. A first approach is to estimate Fj with some non-parametric
estimator F̂j and work with the transformed data (Φ−1(F̂1(X1)), . . . ,Φ

−1(F̂p(Xp)))
as if they were distributed according to a Gaussian distribution.

A more powerful approach amounts to estimate the correlation matrix of
(Z1, . . . ,Zp) from the ranked statistics of X1, . . . ,Xp and then replace in the pro-
cedures described above the empirical covariance matrix Σ̂ by this estimated
correlation matrix; see Exercise 9.6.7 for details and Section 9.5.2 for ref-
erences. This procedure is implemented in the R package huge available at
http://cran.r-project.org/web/packages/huge/.

9.5 Discussion and References

9.5.1 Take-Home Message

Graphical modeling is a nice theory for encoding the conditional dependencies be-
tween random variables. Estimating the minimal graph depicting the conditional de-
pendencies is in general out of reach in high-dimensional settings. Yet, it is pos-
sible for Gaussian random variables, since in this case the minimal graph simply
corresponds to the zero entries of the inverse of the covariance matrix of the ran-
dom variables. The estimation of the graph can even be achieved with a sample size
smaller than the number of variables, as long as the degree of the graph remains small
enough.

In practice, we should not expect more than a partial recovery of the graph when the
sample size is smaller than the number of variables. Furthermore, the variables are
not likely to be Gaussian, and we may also have to deal with some hidden variables.
Handling these two issues requires some additional work, as explained in Section 9.4.

9.5.2 References

We refer to Lauritzen [101] for an exhaustive book on graphical models.
The grapical-Lasso procedure has been proposed by Banerjee, El Ghaoui, and
d’Aspremont [15] and the numerical optimization has been improved by Friedman,
Hastie, and Tibshirani [73]. The regression procedure with the `1 penalty has been
proposed and analyzed by Meinshausen and Bühlmann [120]. Theorem 9.3 is a sim-
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ple combination of Proposition 5.1 in Chapter 5, Lemma 3.2 in Appendix of Giraud
et al. [82], and Lemma 1 in Giraud [78].

Similarly to Chapter 7, we have at our disposal many different estimation proce-
dures, which all depend on at least one tuning parameter. Therefore, we have a large
family Ĝ of estimated graphs, and we need a criterion in order to select “at best” a
graph among this family. GGMselect [81] is an R package that has been designed
for this issue http://cran.r-project.org/web/packages/GGMselect/. It se-
lects a graph ĝ among Ĝ by minimizing a penalized criterion closely linked to Cri-
terion (7.3) for estimator selection. The resulting estimator satisfies some oracle-like
inequality similar to (2.12).

Exercise 9.6.5 on graphical models with hidden variables is mainly based on Chan-
drasekaran, Parrilo and Willsky [54]. Exercise 9.6.6 is derived from Cai et al. [46],
and Exercise 9.6.7 on Gaussian copula graphical models is adapted from Lafferty et
al. [100], Liu et al. [112], and Xue and Zou [165].

9.6 Exercises

9.6.1 Factorization in Directed Models

We will prove the factorization formula (9.2) by induction. With no loss of gener-
ality, we can assume that node p is a leaf in graph g (which means that it has no
descendant).
1. Prove that f (x1, . . . ,xp) = f (xp|xpa(p)) f (x1, . . . ,xp−1).
2. Prove the factorization formula (9.2).

9.6.2 Moralization of a Directed Graph

Let us consider a directed graph g. The moral graph gm of the directed graph g is the
non-directed graph obtained by linking all the parents of each node together and by
replacing directed edges by non-directed edges. Assume that X = (X1, . . . ,Xp) has
a positive density with respect to a σ -finite product measure. We will prove that if
L (X)∼ g then L (X)∼ gm.
1. Starting from the factorization formula (9.2), prove that there exists two functions

g1 and g2, such that

f (x) = g1(xa,xnem(a))g2(xnnm(a),xnem(a)),

where nem(a) represents the nodes neighbor to a in gm and nnm(a) = {1, . . . , p}\
clm(a), with clm(a) = nem(a)∪{a}.

2. Prove that f (x|xnem(a)) = f (xa|xnem(a)) f (xnnm(a)|xnem(a)).
3. Conclude that L (X)∼ gm.
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9.6.3 Convexity of −log(det(K))

We will prove the convexity of K→− log(det(K)) on the set of symmetric positive
definite matrices. Let K and S be two symmetric positive definite matrices. Since
K−1/2SK−1/2 is symmetric, there exist an orthogonal matrix U and a diagonal matrix
D, such that K−1/2SK−1/2 =UDUT . We set Q = K1/2U .
1. Check that K = QQT and S = QDQT .
2. For λ ∈ [0,1], prove that

− log(det(λS+(1−λ )K) =− log(det(K))− log(det(λD+(1−λ )I)).

3. From the convexity of x→− log(x), conclude that

− log(det(λS+(1−λ )K)≤− log(det(K))−λ log(det(D))

=−(1−λ ) log(det(K))−λ log(det(S)).

9.6.4 Block Gradient Descent with the `1/`2 Penalty

We fix λ > 0, and we consider the estimator θ̂ defined by (9.10). We will assume
that the columns Xa of X fulfill n−1XT

a Xa = 1.
1. When ‖(θab,θba)‖ 6= 0, check that the partial gradient ∇ab of Criterion (9.10)

according to (θab,θba) is

∇ab =−
2
n

(
XT

a (Xb−∑k 6=b θkbXk)
XT

b (Xa−∑k 6=a θkaXk)

)
+

λ

‖(θab,θba)‖

(
θab
θba

)
2. We define ∆ =

(
∆ab
∆ba

)
with

∆ab =
1
n

XT
a (Xb− ∑

k 6=a,b
θkbXk).

Prove that minimizing (9.10) in the variables (θab,θba) gives(
θ̂ab

θ̂ba

)
=

(
1− λ

2‖∆‖

)
+

(
∆ab
∆ba

)
.

3. Propose an algorithm in order to compute the solution θ̂ of (9.10).
4. Show that if we add a second penalty γ‖θ‖2

F to Criterion (9.10), the only change
in the above algorithm is that the update is divided by (1+ γ).

9.6.5 Gaussian Graphical Models with Hidden Variables

We assume that {1, . . . , p}= O∪H, with O∩H = /0. We consider a Gaussian random

variable X =

(
XO
XH

)
∼N (0,Σ) with Σ =

(
ΣOO ΣOH
ΣHO ΣHH

)
. In particular, the variable

XO follows a N (0,ΣOO) distribution. We set K̃O = (ΣOO)
−1.
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1. Prove that K̃O = KOO−KOH(KHH)
−1KHO, where K := Σ−1 =

(
KOO KOH
KHO KHH

)
.

2. Let gO be the minimal (non-directed) graph such that L (XO) ∼ gO. Is the graph
gO a subgraph of the minimal graph g, such that L (X)∼ g?

3. We assume that L (X) ∼ g with g sparse. What can we say about the sparsity
of KOO? What can we say about the rank of KOH(KHH)

−1KHO compared to h =
card(H)?

4. Very often, we have variables (X1, . . . ,Xp), with conditional dependencies de-
picted by a sparse graph g, but we cannot observe all the variables. Furthermore,
we even do not know the actual number of unobserved variables. In other words,
we only observe an n-sample of XO ∼N (0,ΣOO) and we have no information on
XH and the size of H. Nevertheless, we want to reconstruct on the basis of these
observations, the graph g∗O with nodes labelled by O and defined by

a
g∗O∼ b⇐⇒ a

g∼ b .

Explain why it is equivalent to estimate the location of the nonzero coordinates of
KOO.

5. We have in mind that h is small. We have seen that K̃O = KOO− L, with KOO
sparse and rank(L)≤ h. Propose an estimation procedure inspired by the glasso.

6. Propose another procedure inspired by the regression approach.

9.6.6 Dantzig Estimation of Sparse Gaussian Graphical Models

Let X (1), . . . ,X (n) be a i.i.d. sample of a Gaussian distribution N (0,Σ) in Rp, with Σ

non-singular and K = Σ−1 sparse. In this exercise, we investigate the estimation of K
with a matrix version of the Dantzig selector (see Exercise 5.5.5, page 113)

K̂ ∈ argmin
B∈Rp×p : |Σ̂B−I|∞≤λ

|B|1,∞, (9.16)

where Σ̂ = n−1
∑

n
i=1 X (i)(X (i))T is the empirical covariance matrix, λ is non-negative

and
|A|∞ = max

i, j
|Ai j| and |A|1,∞ = max

j
∑

i
|Ai j|.

Henceforth, A j will refer to the j-th column of the matrix A.
1. Check that for any matrices of appropriate size, we have |AB|∞ ≤ |A|∞|B|1,∞ and

also |AB|∞ ≤ |A|1,∞|B|∞ when A is symmetric.

2. We define the matrix K̃ by K̃i j = β̂
( j)
i , where β̂ ( j) is solution of

β̂
( j) ∈ argmin

β∈Rp : |Σ̂β−e j |∞≤λ

|β |1 ,

with e j the j-th vector of the canonical basis of Rp. Prove that K̃ is a solution
of (9.16).
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In the following, K̂ refers to the solution K̃ defined above. This solution can be com-
puted very efficiently, since it simply amounts to compute p Dantzig selectors.

A) Deterministic bound on |K̂−K|∞
In this part, we consider λ fulfilling

λ ≥ |K|1,∞|Σ̂−Σ|∞. (9.17)

1. Prove that when (9.17) is met, we have |Σ̂K− I|∞ ≤ λ , and therefore |K̂ j|1 ≤ |K j|1
for all j = 1, . . . , p.

2. Prove the inequalities

|K̂−K|∞ ≤ |K|1,∞
(
|Σ̂K̂− I|∞ + |(Σ− Σ̂)K̂|∞

)
≤ |K|1,∞

(
λ + |K|1,∞|Σ̂−Σ|∞

)
.

3. Conclude that when (9.17) is met, we have

|K̂−K|∞ ≤ 2λ |K|1,∞ . (9.18)

B) Probabilistic bound on |Σ̂−Σ|∞
We assume henceforth that Σaa = 1 for a = 1, . . . , p. Since Σ is non-singular, we have
|Σab|< 1 for all a 6= b.
1. Let X be a N (0,Σ) Gaussian random variable. We set Z1 =(2(1+Σ12))

−1/2(X1+
X2) and Z2 = (2(1− Σ12))

−1/2(X1 − X2). Prove that Z1 and Z2 are i.i.d., with
N (0,1) Gaussian distribution and

X1X2 =
1
4
(
2(1+Σ12)Z2

1 −2(1−Σ12)Z2
2
)
.

2. Check that for 0 ≤ x ≤ 1/2, we have − log(1− x) ≤ x+ x2 and − log(1+ x) ≤
−x+ x2/2 and prove the bound for 0≤ s≤ 1/4

E
[
esX1X2

]
= ((1− (1+Σ12)s)(1+(1−Σ12)s))

−1/2 ≤ exp(Σ12s+2s2).

Check that this bound still holds when |Σ12|= 1.
3. For any a,b ∈ {1, . . . , p}, 0≤ s≤ 1/4 and t > 0, prove that

P
(

Σ̂ab−Σab > t
)
≤ e−snte2s2n.

4. For 0 < t ≤ 1, setting s = t/4, prove that

P
(
|Σ̂−Σ|∞ > t

)
≤ p(p+1)e−nt2/8.

5. For log(p)≤ n/32, prove that

P

(
|Σ̂−Σ|∞ > 4

√
2log(p)

n

)
≤ 2

p2 .
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C) Bounds in sup norm and Frobenius norm

We define d = max j=1,...,p |K j|0, which corresponds to the degree of the minimal
graph associated to the Gaussian distribution N (0,Σ).
1. For λ = 4|K|1,∞

√
2log(p)/n, by combining the results of Parts A and B, prove

that with probability at least 1−2/p2, we have

|K̂−K|∞ ≤ 8|K|21,∞

√
2log(p)

n
. (9.19)

2. For any J ⊂ {1, . . . , p}2, we define the matrix KJ by KJ
i j = Ki j1(i, j)∈J . In the fol-

lowing, we set J =
{
(i, j) : |K̂i j|> |K̂−K|∞

}
. Prove that for all j ∈ {1, . . . , p},

we have
|K̂Jc

j |1 = |K̂ j|1−|K̂J
j |1 ≤ |K j|1−|K̂J

j |1 ≤ |K j− K̂J
j |1 ,

and hence |K̂Jc |1,∞ ≤ |K− K̂J |1,∞.
3. Prove that Ki j 6= 0 for all (i, j) ∈ J, and then

|K̂−K|1,∞ ≤ 2|K̂J−K|1,∞ ≤ 2d|K̂J−K|∞ ≤ 4d|K̂−K|∞ .

4. Conclude that

‖K̂−K‖2
F ≤ p|K̂−K|1,∞|K̂−K|∞ ≤ 4pd|K̂−K|2∞.

5. Prove that when λ = 4|K|1,∞
√

2log(p)/n, with probability at least 1−2/p2, we
have

‖K̂−K‖2
F ≤ 512pd|K|41,∞

log(p)
n

.

The estimation procedure (9.16) is implemented in the R package flare available at
http://cran.r-project.org/web/packages/flare/.

9.6.7 Gaussian Copula Graphical Models

We consider here a case where X = (X1, . . . ,Xp) is not a Gaussian random variable.
We assume, as in Section 9.4, that there exists a random variable Z = (Z1, . . . ,Zp),
with N (0,ΣZ) Gaussian distribution and p increasing differentiable functions fa :
R→ R, for a = 1, . . . , p, such that (X1, . . . ,Xp) = ( f1(Z1), . . . , fp(Zp)). We also as-
sume that ΣZ is non-singular, and ΣZ

aa = 1 for a = 1, . . . , p. We define KZ = (ΣZ)−1.
We remind the reader of the classical equality when ΣZ

aa = 1 for a = 1, . . . , p

P(Za > 0,Zb > 0) =
1
4

(
1+

2
π

arcsin(ΣZ
ab)

)
for any a,b ∈ {1, . . . , p} .

1. Prove that the minimal graph g∗ associated to (X1, . . . ,Xp) coincides with the min-
imal graph associated to (Z1, . . . ,Zp). In particular, for a 6= b there is an edge
between a and b in g∗ if and only if KZ

ab 6= 0.
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2. Let Z̃ be an independent copy of Z and define X̃ = ( f1(Z̃1), . . . , fp(Z̃p)). Prove
that for any a,b ∈ {1, . . . , p}

τab = E
[
sign

(
(Xa− X̃a)(Xb− X̃b)

)]
= E

[
sign

(
(Za− Z̃a)(Zb− Z̃b)

)]
=

2
π

arcsin(ΣZ
ab), (9.20)

where sign(x) = 1x>0−1x≤0.

A) Kendall’s tau

We assume now that we only observe an i.i.d. sample X (1), . . . ,X (n) of X . In partic-
ular, the functions f1, . . . , fp and the covariance ΣZ are unknown. Since the minimal
graph g∗ associated to (X1, . . . ,Xp) can be read on the precision matrix KZ = (ΣZ)−1,
our goal here is to estimate KZ from the observations X (1), . . . ,X (n). The main idea is
to build on the equation (9.20) in order to construct an estimator Σ̂Z of ΣZ based on
X (1), . . . ,X (n), and then apply the procedure (9.16) with Σ̂ replaced by Σ̂Z .

For any a,b ∈ {1, . . . , p}, we define Σ̂Z
ab = sin(πτ̂ab/2) where

τ̂ab =
2

n(n−1) ∑
i< j

sign
(
(X (i)

a −X ( j)
a )(X (i)

b −X ( j)
b )
)
.

1. Check that the function F : R2n→ [−1,1] defined by

F
(
(x1,y1), . . . ,(xn,yn)

)
=

2
n(n−1) ∑

i< j
sign((xi− x j)(yi− y j))

fulfills

|F
(
(x1,y1), . . . ,(xi,yi), . . . ,(xn,yn)

)
−F

(
(x1,y1), . . . ,(x′i,y

′
i), . . . ,(xn,yn)

)
| ≤ 4

n

for any x1, . . . ,xn,y1, . . . ,yn,x′i,y
′
i ∈ R.

2. From McDiarmid concentration inequality (Theorem B.5, page 299, in Ap-
pendix B), prove that for a < b and t > 0

P(|τ̂ab− τab|> t)≤ 2e−nt2/8 and P
(
|Σ̂Z

ab−Σ
Z
ab|> t

)
≤ 2e−nt2/(2π2).

3. Conclude that for any t > 0, we have

P
(
|Σ̂Z−Σ

Z |∞ > t
)
≤ p2e−nt2/(2π2) and P

(
|Σ̂Z−Σ

Z |∞ > 2π

√
2log(p)

n

)
≤ 1

p2 .

B) Graph estimation

Let K̂Z be the matrix obtained by solving the minimization problem (9.16), with Σ̂

replaced by Σ̂Z . From K̂Z , we build the graph ĝ by setting an edge between a and b
if and only if both K̂Z

ab and K̂Z
ba are nonzero. We use below the same notations as in

Exercise 9.6.6.
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1. From (9.18), prove that when λ = 2π|KZ |1,∞
√

2log(p)/n, with probability at
least 1−1/p2, we have

|K̂Z−KZ |∞ ≤ 4π|KZ |21,∞

√
2log(p)

n
.

2. Assume that all the entries KZ
ab of KZ are either 0 or larger in absolute value than

4π|KZ |21,∞
√

2log(p)/n. Prove that g∗ ⊂ ĝ, with probability at least 1−1/p2.

9.6.8 Restricted Isometry Constant for Gaussian Matrices

We prove in the following the upper Bound (9.15). The proof of the lower bound
follows exactly the same lines. For a linear span V ⊂ Rp and an n× p matrix Z, we
introduce the notation

λV (Z) = sup
v∈V\{0}

n−1/2‖Zv‖
‖v‖

.

1. Define the matrix Z by Z = XΣ−1/2. Check that the Zi j are i.i.d. with N (0,1)
Gaussian distribution.

2. We write M for the set gathering all the subsets of {1, . . . , p}. For m ∈M , we
define Sm as the linear space spanned by

{
e j : j ∈ m

}
, where e1, . . . ,ep is the

canonical basis of Rp. To each linear span Sm, we associate the linear span Vm =
Σ1/2Sm. Check that for d ≤ n∧ p

sup
β :|β |0≤d

n−1/2‖Xβ‖
‖Σ1/2β‖

= sup
m∈M :|m|=d

λVm(Z). (9.21)

In the following, we prove that for any collection V1, . . . ,VN of d dimensional linear
spaces, we have

sup
i=1,...,N

λVi(Z)≤ 1+

√
d +

√
2log(N)+δN +

√
2ξ√

n
, (9.22)

where ξ is an exponential random variable and

δN =
log
(

1
N +

√
4π log(N)

)
√

2log(N)
.

The upper Bound (9.15) then follows by simply combining (9.21) with (9.22).
3. Let PVi be the orthogonal projector onto Vi. From Lemma 8.3 in Chapter 8,

we know that the largest singular value σ1(ZPVi) of ZPVi fulfills the inequality
E [σ1(ZPVi)] ≤

√
n +
√

d. Applying the Gaussian concentration inequality and
noticing that

√
nλVi(Z) ≤ σ1(ZPVi), prove that there exist some exponential ran-

dom variables ξ1, . . . ,ξN , such that for all i = 1, . . . ,N

λVi(Z)≤ E [λVi(Z)]+
√

2ξi/n≤ 1+
√

d/n+
√

2ξi/n.



EXERCISES 201

4. Applying again the Gaussian concentration inequality, prove that there exists an
exponential random variable ξ , such that

sup
i=1,...,N

λVi(Z)≤ 1+
√

d/n+E
[

max
i=1,...,N

√
2ξi/n

]
+
√

2ξ/n.

5. Prove that for any s > 0,

E
[

max
i=1,...,N

√
2ξi

]
≤ s−1 log

(
N

∑
i=1
E
[
es
√

2ξi
])

.

6. Check that
E
[
es
√

2ξi
]
=
∫

∞

0
esu−u2/2udu≤ s

√
2π es2/2 +1.

7. Choosing s =
√

2log(N), prove that E
[
maxi=1,...,N

√
2ξi

]
≤
√

2log(N)+δN and
conclude the proof of (9.22).





Chapter 10

Multiple Testing

In this chapter, we switch from the estimation problem to the test problem, and we
explain some possible ways to handle the impact of high dimensionality in this con-
text. More precisely, we will focus on the problem of performing simultaneously a
large number of tests. This issue is of major importance in practice: Many scientific
experiments seek to determine if a given factor has an impact on various quantities
of interest. For example, we can seek for the possible side effects (headache, stom-
ach pain, drowsiness, etc.) induced by a new drug. From a statistical perspective, this
amounts to test simultaneously for each quantity of interest the hypothesis “the factor
has no impact on this quantity” against “the factor has an impact on this quantity.” As
we have seen in Chapter 1, considering simultaneously many different tests induces
a loss in our ability to discriminate between the two hypotheses. We present in this
chapter the theoretical basis for reducing at best this deleterious effect. We start by
illustrating the issue on a simple example, and then we introduce the bases of False
Discovery Rate control.

10.1 Introductory Example

10.1.1 Differential Expression of a Single Gene

Let us assume that we have r measurements for the expression of a gene g in two
different conditions A and B (corresponding, for example, to some normal cells and
some cancerous cells).

Conditions Measurements
A XA

1 , . . . ,X
A
r

B XB
1 , . . . ,X

B
r

We want to know if there is a difference in the expression of this gene between these
two conditions A and B. In the formalism of test theory, we want to discriminate
between the two hypotheses:
• H0: “the means of the XA

i and the XB
i are the same”

• H1: “the means of the XA
i and the XB

i are different”

203
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A classical test statistic

Setting Zi = XA
i −XB

i for i = 1, . . . ,r we can reject H0 when

Ŝ :=
|Z|√
σ̂2/r

≥ s = some threshold, (10.1)

with Z the empirical mean of the Zi and σ̂2 the empirical variance of the Zi. The
threshold s is chosen, such that the probability to wrongly reject H0 is not larger
than α .

Case of Gaussian measurements

In the special case where

XA
i

i.i.d.∼ N (µA,σ
2
A) and XB

i
i.i.d.∼ N (µB,σ

2
B),

the hypothesis H0 corresponds to “µA = µB” and the hypothesis H1 corresponds to
“µA 6= µB.” In addition, if the variables XA

1 , . . . ,X
A
r ,X

B
1 , . . . ,X

B
r are independent, then

the Zi = XA
i −XB

i are i.i.d. with N (µA−µB,σ
2
A +σ2

B)-Gaussian distribution. In this
case, the statistic Ŝ defined by (10.1) is distributed under the null hypothesis as the
absolute value of a student random variable T (r−1), with r−1 degrees of freedom.
Let us define the non-increasing function

T0(s) = P(|T (r−1)| ≥ s), for s ∈ R.

We can associate to the test statistic Ŝ, the p-value

p̂ = T0(Ŝ).

Then, the test ψα = 1p̂≤α has level α (the probability to wrongly reject H0 is α) and
we have:
• If the p-value p̂ is larger than α , then the hypothesis H0 is not rejected.
• If the p-value p̂ is not larger than α , then the hypothesis H0 is rejected.

10.1.2 Differential Expression of Multiple Genes

DNA microarrays and the Next Generation Sequencing (NGS) technologies allow us
to measure the expression level of thousands of genes simultaneously. Our statistical
objective is then to test simultaneously for all genes g ∈ {1, . . . ,m}:
• H0,g: “the mean expression levels of the gene g in conditions A and B are the

same”
• H1,g: “the mean expression levels of the gene g in conditions A and B are differ-

ent”
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If we reject H0,g when the p-value p̂g is not larger than α , then for each individual
gene g, the probability to reject wrongly H0,g is at most α . Nevertheless, if we con-
sider the m genes simultaneously the number of hypotheses H0,g wrongly rejected
(called false positives) can be high. Actually, the mean number of false positives is

E [False Positives] = ∑
g :H0,g true

PH0,g(p̂g ≤ α) = card
{

g : H0,g is true
}
×α

since the p-values are such that PH0,g(p̂g ≤ α) = α for every g. For example, for
typical values like α = 5% and card

{
g : H0,g is true

}
= 10000, we obtain on average

500 false positives.

From a biological point of view, a gene that presents a differential expression between
the two conditions A and B is a gene that is suspected to be involved in the response to
the change of “environment” between A and B. Further experiments must be carried
out in order to validate (or not) this “discovery.” If in our list of genes suspected
to present a differential expression there are 500 false positives, it means that we
have 500 false discoveries, and a lot of time and money will be spent in useless
experiments. Therefore, biologists ask for a list of genes that contains as few false
positives as possible. Of course, the best way to avoid false positives is to declare
no gene positive, but, in this case, there is no discovery and the data are useless. In
this chapter, we will present a couple of procedures designed to control the number
of false discoveries in multiple testing settings while not losing too much in terms of
power.

10.2 Statistical Setting

In the remainder of this chapter, we consider the following setting. We have m fam-
ilies of probability distribution {Pθ : θ ∈Θi} with i = 1, . . . ,m, and we consider si-
multaneously the m tests

H0,i : θ ∈Θ0,i against H1,i : θ ∈Θ1,i for i = 1, . . . ,m,

where Θ0,i and Θ1,i are two disjointed subsets of Θi.

10.2.1 p-Values

For each test i, we have access to some data Xi. A p-value p̂i for the test indexed by
i, is any random variable which is σ(Xi)-measurable (it can be computed from the
data), taking values in [0,1] and fulfilling the distributional property

sup
θ∈Θ0,i

Pθ (p̂i ≤ u)≤ u, for all u ∈ [0,1]. (10.2)

We say that, under the null hypotheses, the p-values are stochastically larger than a
uniform random variable.
Let us explain on an example how we can define some p-values.
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Example.

Let Ŝi be any real random variable, which is σ(Xi)-measurable (it can be computed
from the data). For θ ∈Θi, let us denote by Tθ (s) = Pθ (Ŝi ≥ s) the tail distribution of
the statistic Ŝi under Pθ . We can associate to the statistic Ŝi, the p-value for the test i

p̂i = sup
θ∈Θ0,i

Tθ (Ŝi). (10.3)

It corresponds to the maximum probability under the null hypothesis to observe a
value for our statistic not smaller than the value Ŝi that we have actually observed.

The next proposition ensures that (10.3) is indeed a p-value.

Proposition 10.1 p̂i defined by (10.3) is a p-value

The random variable p̂i defined by (10.3) is distributed as a p-value:

sup
θ∈Θ0,i

Pθ (p̂i ≤ u)≤ u, for all u ∈ [0,1].

Proof. For any θ ∈Θ0,i and u ∈ [0,1], we have

Pθ (p̂i ≤ u) = Pθ

(
sup

θ∈Θ0,i

Tθ (Ŝi)≤ u
)
≤ Pθ

(
Tθ (Ŝi)≤ u

)
. (10.4)

For u ∈ [0,1], we define T−1
θ

(u) = inf{s ∈ R : Tθ (s)≤ u}. Since Tθ is non-
increasing, we have

]T−1
θ

(u),+∞[ ⊂ {s ∈ R : Tθ (s)≤ u} ⊂ [T−1
θ

(u),+∞[ .

Let us consider apart the cases where Tθ (T−1
θ

(u))≤ u and Tθ (T−1
θ

(u))> u.

• When Tθ (T−1
θ

(u))≤ u, we have {s ∈ R : Tθ (s)≤ u}= [T−1
θ

(u),+∞[ and then

Pθ

(
Tθ (Ŝi)≤ u

)
= Pθ

(
Ŝi ≥ T−1

θ
(u)
)
= Tθ

(
T−1

θ
(u)
)
≤ u.

• When Tθ (T−1
θ

(u)) > u, we have {s ∈ R : Tθ (s)≤ u} =]T−1
θ

(u),+∞[, and there-
fore

Pθ

(
Tθ (Ŝi)≤ u

)
= Pθ

(
Ŝi > T−1

θ
(u)
)
= lim

ε↘0
Tθ

(
T−1

θ
(u)+ ε

)
≤ u,

where the last inequality comes from T−1
θ

(u) + ε ∈ {s ∈ R : Tθ (s)≤ u} for all
ε > 0.

Combining the two last displays with (10.4), we have proved that Pθ (p̂i ≤ u)≤ u for
all θ ∈Θ0,i and u ∈ [0,1]. 2
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10.2.2 Multiple-Testing Setting

We assume that for each test i ∈ {1, . . . ,m}, we have access to a p-value p̂i.
A multiple-testing procedure is a procedure that takes as input the vector of p-
values (p̂1, . . . , p̂m) corresponding to the m tests and returns a set of indices R̂ =
R(p̂1, . . . , p̂m) ⊂ I = {1, . . . ,m}, which gives the set of the null hypotheses

{
H0,i :

i ∈ R̂
}

that are rejected. Writing I0 for the set

I0 = {i ∈ {1, . . . ,m} : H0,i is true} , (10.5)

we call false positive (FP) the indices i ∈ R̂∩ I0 and true positive (TP) the indices
i ∈ R̂\ I0. In the following, we will use the notations

FP= card(R̂∩ I0) and TP= card(R̂\ I0).

Ideally, we would like a procedure that selects R̂ in such a way that FP is small and
TP is large. Of course, there is a balance to find between these two terms, since a
severe control of the number of false positives usually induces a small number of true
positives.

10.2.3 Bonferroni Correction

The Bonferroni correction provides a severe control of the number of false positives.
It is designed in order to control the probability of existence of false positives P(FP>
0). It is defined by

R̂Bonf = {i : p̂i ≤ α/m} .
Let us denote by m0 the cardinality of I0. According to Proposition 10.1, we have

P(FP> 0) = P(∃i ∈ I0 : p̂i ≤ α/m)≤ ∑
i∈I0

sup
θ∈Θ0,i

Pθ (p̂i ≤ α/m)≤ m0α/m≤ α.

The probability of existence of false positives is thus smaller than α . The Bonferroni
procedure avoids false positives but produces only a few true positives in general.
Actually, it amounts to using the level α/m for each test, which can be very conser-
vative when m is large.

In the next section, we will describe some procedures that control the (mean) propor-
tion of false positives among R̂ instead of the absolute number of false positives.

10.3 Controlling the False Discovery Rate

The False Discovery Proportion (FDP) corresponds to the proportion FP/(FP+TP)
of false positives among the positives (with the convention 0/0 = 0). The False Dis-
covery Rate (FDR) is defined as the mean False Discovery Proportion

FDR= E
[

FP

FP+TP
1{FP+TP≥1}

]
.

This quantity was introduced in the ’90s, and it is now widely used in science, espe-
cially in biostatistics.



208 MULTIPLE TESTING

10.3.1 Heuristics

Let us try to guess what could be a procedure that controls the FDR. To start, we
notice that if we want to have FP as small as possible and TP as large as possible,
then the rejected p-values should correspond to the smallest p-values. So the only
issue is to determine how many p-values can be rejected while keeping the FDR
lower than α . Therefore, we will focus on rejection sets R̂ of the form

R̂ = {i ∈ I : p̂i ≤ t(p̂1, . . . , p̂m)} , (10.6)

with t : [0,1]m→ [0,1]. In the following, we will seek some functions t that prevent
an FDR larger than α , while maximizing the size of R̂.

Let us investigate informally this point. According to (10.2), for a given threshold
τ > 0, the number FP of false positives in the rejection set R̂ = {i : p̂i ≤ τ} fulfills

E [FP] = E

[
∑
i∈I0

1{p̂i≤τ}

]
≤ ∑

i∈I0

sup
θ∈Θ0,i

Pθ (p̂i ≤ τ)≤ card(I0)τ ≤ mτ . (10.7)

Let us denote by p̂(1) ≤ . . . ≤ p̂(m) the p-values ranked in a non-decreasing order.
For any τ ∈ [p̂(k), p̂(k+1)[, we have {i : p̂i ≤ τ}=

{
i : p̂i ≤ p̂(k)

}
. Therefore, we only

have to focus on a threshold t(p̂1, . . . , p̂m) in (10.6) of the form t(p̂1, . . . , p̂m) = p̂
(k̂),

with k̂ = k̂(p̂1, . . . , p̂m). With this choice, we notice that card(R̂) = k̂, so according
to (10.7), we expect to have for t(p̂1, . . . , p̂m) = p̂

(k̂)

FP

FP+TP
=

FP

card(R̂)

?
≤

mp̂
(k̂)

k̂
“on average.”

This non-rigorous computation suggests that we should have an FDR upper-bounded
by α > 0, as soon as the integer k̂ fulfills

p̂
(k̂) ≤ α k̂/m . (10.8)

Since we want to have the cardinality of R̂ as large as possible, and since card(R̂) = k̂,
we then choose k̂ = max

{
k : p̂(k) ≤ αk/m

}
. The rejection set suggested by the above

discussion is then R̂ =
{

i ∈ I : p̂i ≤ p̂
(k̂)

}
or equivalently

R̂ =
{

i ∈ I : p̂i ≤ α k̂/m
}
, with k̂ = max

{
k : p̂(k) ≤ α k/m

}
.

Such a rejection set is illustrated in Figure 10.1.

10.3.2 Step-Up Procedures

The previous informal discussion suggests to choose a set of rejected hypotheses R̂
in the form

R̂ =
{

i ∈ I : p̂i ≤ αβ (k̂)/m
}

with k̂ = max
{

k ∈ I : p̂(k) ≤ αβ (k)/m
}

(10.9)
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Figure 10.1 Some p-values p̂(1) ≤ . . . ≤ p̂(m) ranked in increasing order and their position
relative to the line k→ αk/m (in black). The right picture is an enlargement of the left one.
Dark gray triangles: p-values corresponding to rejected hypotheses. Light gray dots: p-values
corresponding to non-rejected hypotheses.

where β : {1, . . . ,m} → R+ is some non-decreasing function, and p̂(1) ≤ . . . ≤ p̂(m)

are the p-values ranked in non-decreasing order. When
{

k ∈ I : p̂(k) ≤ αβ (k)/m
}
=

/0, we set R̂ = /0. Figure 10.1 gives an illustration of the choice of k̂ for the function
β (k) = k suggested by the previous discussion. The next theorem provides a bound
on the FDR of the procedure (10.9).

Theorem 10.2 General control of the FDR

Let β : {1, . . . ,m} → R+ be a non-decreasing function and for α > 0 define R̂
by (10.9), with the convention that R̂ = /0 when

{
k ∈ I : p̂(k) ≤ αβ (k)/m

}
= /0.

Writing m0 = card(I0) with I0 defined by (10.5), we have the following upper
bound on the FDR of the procedure

FDR(R̂)≤ α
m0

m ∑
j≥1

β ( j∧m)

j( j+1)
. (10.10)

Proof. We use below the convention that k̂ = 0 when R̂ = /0. We observe from the
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Definition (10.9) that k̂ = card(R̂). From the definition of the FDR, we have

FDR(R̂) = E

card
{

i ∈ I0 : p̂i ≤ αβ (k̂)/m
}

k̂
1k̂≥1


= ∑

i∈I0

E
[

1p̂i≤αβ (k̂)/m

1k̂≥1

k̂

]
.

For k̂ ≥ 1, we have
1

k̂
= ∑

j≥1

1 j≥k̂

j( j+1)
,

so applying first Fubini, then β (k̂)≤ β ( j∧m) for j≥ k̂, and finally Proposition 10.1,
we obtain

FDR(R̂) Fubini
= ∑

i∈I0
∑
j≥1

1
j( j+1)

E
[
1 j≥k̂ 1p̂i≤αβ (k̂)/m 1k̂≥1

]
︸ ︷︷ ︸

≤ P
(

p̂i≤αβ ( j∧m)/m
)

Prop. 10.1
≤ ∑

i∈I0
∑
j≥1

1
j( j+1)

×αβ ( j∧m)/m

≤ α
m0

m ∑
j≥1

β ( j∧m)

j( j+1)
.

The proof of Theorem 10.2 is complete. 2

We point out that the upper Bound (10.10) is sharp in the sense that for α small
enough, there exist some distributions of the p-values (p̂1, . . . , p̂m), such that (10.10)
is an equality; see Theorem 5.2 in Guo and Rao [88].

If we choose β in such a way that the sum fulfills the condition

∑
j≥1

β ( j∧m)

j( j+1)
≤ 1, (10.11)

then the FDR of the procedure is less than α . We notice that for our guess β (k) = k
suggested by the informal discussion, the upper Bound (10.10) is equal to αm0Hm/m
with Hm = 1+ 1/2+ . . .+ 1/m. In particular, this choice of β does not meet Con-
dition (10.11). A popular choice of function β fulfilling Condition (10.11) is the
linear function β (k) = k/Hm. The procedure (10.9) with this choice of β is called the
Benjamini–Yekutieli procedure.
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Corollary 10.3 FDR control of Benjamini–Yekutieli procedure

We set Hm = 1+1/2+ . . .+1/m. The multiple-testing procedure defined by R̂ = /0
when

{
k ∈ I : p̂(k) ≤ αk/(mHm)

}
= /0 and otherwise

R̂ =
{

i ∈ I : p̂i ≤ α k̂/(mHm)
}
, with k̂ = max

{
k ∈ I : p̂(k) ≤ αk/(mHm)

}
(10.12)

has an FDR upper-bounded by α .

Another example of function β fulfilling (10.11) is

β (k) = α
k(k+1)

2m
, for k = 1, . . . ,m.

For this choice of β , we have β (k) ≥ k/Hm when k+ 1 ≥ 2m/Hm, so the resulting
procedure tends to reject more hypotheses than the Benjamini–Yekutieli procedure
when there are many positives.

10.3.3 FDR Control under the WPRD Property

In the Benjamini–Yekutieli procedure, function β is linear with a slope 1/Hm ∼
1/ log(m). The smaller the slope, the less true positives we have. Since (10.10) is
sharp for some distributions of the p-values, we know that we cannot choose a larger
slope in general. Yet, we may wonder if in some cases we can choose a linear func-
tion β with a larger slope while keeping the FDR smaller than α .

The discussion in Section 10.3.1 suggests that for some distributions of the p-values,
we may expect some FDR control with the choice β (k) = k instead of β (k) = k/Hm
in Procedure (10.9). The choice β (k) = k corresponds to the Benjamini–Hochberg
procedure defined by

R̂ =
{

i ∈ I : p̂i ≤ α k̂/m
}

where k̂ = max
{

k ∈ I : p̂(k) ≤ αk/m
}
, (10.13)

with the convention R̂ = /0 when
{

k ∈ I : p̂(k) ≤ αk/m
}
= /0. We give below a simple

distributional condition on the p-values which ensures an FDR control at level α for
the Benjamini–Hochberg procedure.

In the next definition, we will say that a function g : [0,1]m→ R+ is non-decreasing
if for any p,q ∈ [0,1]m such that pi ≥ qi for all i = 1, . . . ,m, we have g(p)≥ g(q).

Weak Positive Regression Dependency

The distribution of the p-values (p̂1, . . . , p̂m) is said to fulfill the Weak Positive
Regression Dependency Property (WPRD) if for any bounded measurable non-
decreasing function g : [0,1]m→ R+ and for all i ∈ I0, the function

u→ E [g(p̂1, . . . , p̂m) | p̂i ≤ u] is non-decreasing (10.14)

on the interval {u ∈ [0,1] : P(p̂i ≤ u)> 0}.
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The set of distributions fulfilling the WPRD property includes the independent dis-
tributions.

Lemma 10.4 Independent p-values fulfills the WPRD
Assume that the (p̂i)i∈I0 are independent random variables and that the (p̂i)i∈I\I0

are independent from the (p̂i)i∈I0 . Then, the distribution of (p̂1, . . . , p̂m) fulfills the
WPRD property.

Proof. Let us consider some i ∈ I0 and some bounded measurable non-decreasing
function g : [0,1]m→ R+. With no loss of generality, we can assume (for notational
simplicity) that i = 1. The random variable p̂1 is independent of (p̂2, . . . , p̂m), so for
any u such that P(p̂1 ≤ u)> 0, we have

E [g(p̂1, . . . , p̂m) | p̂1 ≤ u] =∫
(x2,...,xm)∈[0,1]m−1

E [g(p̂1,x2, . . . ,xm) | p̂1 ≤ u] P(p̂2 ∈ dx2, . . . , p̂m ∈ dxm) .

To prove the lemma, we only need to check that u→ E [g(p̂1,x2, . . . ,xm) | p̂1 ≤ u]
is non-decreasing for all x2, . . . ,xm ∈ [0,1]. Since the function g is non-decreasing,
the function g1 : x1 → g(x1,x2, . . . ,xm) is also non-decreasing. Writing g−1

1 (t) =
inf{x ∈ [0,1] : g1(x)≥ t}, with inf{ /0}=+∞, we have

E [g(p̂1,x2, . . . ,xm) | p̂1 ≤ u] = E [g1(p̂1) | p̂1 ≤ u]

=
∫ +∞

0
P(g1(p̂1)≥ t | p̂1 ≤ u)dt

=
∫ +∞

0
P(p̂1 ≥ or > g−1

1 (t) | p̂1 ≤ u)dt,

since
]g−1

1 (t),1]⊂ {p ∈ [0,1] : g1(p)≥ t} ⊂ [g−1
1 (t),1].

To conclude, we simply notice that both

u→ P(p̂1 ≥ g−1
1 (t) | p̂1 ≤ u) =

(
1−

P(p̂1 < g−1
1 (t))

P(p̂1 ≤ u)

)
+

,

and

u→ P(p̂1 > g−1
1 (t) | p̂1 ≤ u) =

(
1−

P(p̂1 ≤ g−1
1 (t))

P(p̂1 ≤ u)

)
+

are non-decreasing for all t ∈ R+. 2

Another example of p-values fulfilling the WPRD property is the p-values associ-
ated to some (Ŝ1, . . . , Ŝm) distributed according to a N (0,Σ) Gaussian distribution,
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with Σi j ≥ 0 for all i, j = 1, . . . ,m; see Exercise 10.6.3. We refer to Benjamini and
Yekutieli [27] for some other examples.

The next theorem ensures that the FDR of the Benjamini–Hochberg proce-
dure (10.13) is upper-bounded by α when the WPRD property is met.

Theorem 10.5 FDR control of Benjamini–Hochberg procedure

When the distribution of the p-values fulfills the WPRD property, the multiple-
testing procedure defined by R̂ = /0 when

{
k ∈ I : p̂(k) ≤ αk/m

}
= /0, and other-

wise

R̂ =
{

i ∈ I : p̂i ≤ α k̂/m
}
, with k̂ = max

{
k ∈ I : p̂(k) ≤ αk/m

}
,

has an FDR upper-bounded by α .

Proof. We use again the convention k̂ = 0 when R̂ = /0. Since k̂ = card(R̂), we have

FDR(R̂) = E

card
{

i ∈ I0 : p̂i ≤ α k̂/m
}

k̂
1k̂≥1


= ∑

i∈I0

E
[

1p̂i≤α k̂/m

1k̂≥1

k̂

]
= ∑

i∈I0

m

∑
k=1

1
k
P
(

k̂ = k and p̂i ≤ αk/m
)

= ∑
i∈I0

m

∑
k=k∗i

1
k
P
(

k̂ = k | p̂i ≤ αk/m
)
P(p̂i ≤ αk/m),

where k∗i = inf{k ∈ N : P(p̂i ≤ αk/m)> 0} and with the convention that the sum
from k∗i to m is zero if m < k∗i . By Proposition 10.1, we have P(p̂i ≤ αk/m)≤ αk/m,
so we obtain

FDR(R̂) ≤ ∑
i∈I0

m

∑
k=k∗i

α

m
P
(

k̂ = k | p̂i ≤ αk/m
)

≤ α

m ∑
i∈I0

m

∑
k=k∗i

[
P
(

k̂ ≤ k | p̂i ≤ αk/m
)
−P

(
k̂ ≤ k−1 | p̂i ≤ αk/m

)]
.

The function
g(p̂1, . . . , p̂m) = 1{max{ j:p̂( j)≤α j/m}≤k} = 1{k̂≤k}

is non-decreasing with respect to (p̂1, . . . , p̂m), so the WPRD property ensures that
for k ≥ k∗i

P
(

k̂ ≤ k | p̂i ≤ αk/m
)
≤ P

(
k̂ ≤ k | p̂i ≤ α(k+1)/m

)
.
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We then obtain a telescopic sum and finally

FDR(R̂) ≤ α

m ∑
i∈I0

1k∗i ≤mP
(

k̂ ≤ m
∣∣ p̂i ≤

α(m+1)
m

)
≤ m0

m
α ≤ α.

The proof of Theorem 10.5 is complete. 2

10.4 Illustration

We illustrate the implementation of the Benjamini–Hochberg procedure on a mi-
croarray data set from Golub et al. [86]. We first load the data that are in the
multtest package available on the website http://www.bioconductor.org.

library(multtest)

library(stats)

data(golub) # load the data

The Golub data set is a 3051×38 matrix. Each row reports the expression level for
m = 3051 genes. The first 27 columns correspond to patients with leukemia of type
“ALL,” the last 11 columns correspond to patients with leukemia of type “AML.” Our
goal is to find genes that have a differential expression between these two conditions.
Therefore, for each gene we perform a t-test and we record the corresponding p-
value.

golub1<-golub[,1:27] # data for Leukemia ALL

golub2<-golub[,28:38] # data for Leukemia AML

m<-3051

p<-rep(0,m)

# compute the p-values with a two-sample t-test

for (i in 1:m) p[i]<-t.test(golub1[i,],golub2[i,])$p.value

We then compute the number k̂ of p-values rejected according to Formula (10.13)
and the rejection set R̂. We also print the names of the genes for which a differential
expression has been detected.

k<-sum(sort(p)<=0.05*(1:m)/m) # number of p-values rejected

R<-(1:m)[p<=0.05*k/m] # rejection set

print(golub.gnames[R,2]) # print the names of the genes
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Figure 10.2 The p-values ranked in increasing order. The dark-gray p-values correspond to
rejected hypotheses, and the light-gray ones correspond to those not rejected. The black line
represents the map k→ αk/m. The right picture is an enlargement of the left one.

Finally, we plot the rejected p-values; see Figure 10.2.

par(mfrow=c(1,2))

plot(1:m,sort(p),col=c(rep(2,k),rep(3,m-k)),type="p",pch=20,cex=0.7,

xlab="index",ylab="p-values")

points(1:m,0.05*(1:m)/m,col=1,type="l",lwd=2)

plot(1:750,sort(p)[1:750],type="p",col=c(rep(2,k),rep(3,750-k)),

pch=20,cex=0.7,xlab="index",ylab="p-values")

points(1:750,0.05*(1:750)/m,col=1,type="l",lwd=2)

We refer the interested reader to the paper by Dudoit, Fridlyand, and Speed [68] for
a careful analysis of this data set.

10.5 Discussion and References

10.5.1 Take-Home Message

When we perform simultaneously m tests of level α the average number of false
positives (tests for which H0 is wrongly rejected) is αm0, where m0 is the number
of tests for which H0 is true. When m0 is large, this number of false positives can
be large, even larger than the number of true positives (tests for which H0 has been
correctly rejected). In order to avoid this deleterious effect of multiple testing, we
must apply a multiple-testing selection procedure on the p-values of the m tests.
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A first possibility is to control the probability of existence of false positives. This can
be performed by the Bonferroni procedure which simply rejects the H0-hypotheses
for which the p-values are not larger than α/m. The main drawback of this procedure
is its lack of power for m large.

An alternative is to control the FDR, which is the mean ratio of the number of false
positives by the total number of rejected hypotheses H0. The Benjamini–Yekutieli
procedure offers such a control, but it can be more conservative than the Bonferroni
procedure in some cases; see Exercise 10.6.1. The Benjamini–Hochberg procedure
is a more powerful procedure, but it offers a control on the FDR only under some
distributional hypotheses on the p-values. This last procedure is widely used in the
scientific literature, especially in biology and medicine.

10.5.2 References

The FDR concept and the procedure (10.13) have been introduced in the semi-
nal paper of Benjamini and Hochberg [26], while the procedure (10.12) has been
introduced and analyzed by Benjamini and Yekutieli [27]. The proofs of Theo-
rem 10.2 and Theorem 10.5 presented in these notes are adapted from Blanchard
and Roquain [34].

It turns out that the controls of the FDR obtained in Theorem 10.2 and Theorem 10.5
are of level m0α/m instead of α . Since m0 is unknown, we cannot directly correct
this level. A lot of work has been done in order to achieve a better level, mainly by
trying to estimate m0. We refer the interested reader to the survey by Roquain [136]
for references on this topic and many other issues related to FDR control. We finally
refer to Goeman and Solari [84], Dudoit and van der Laan [69], and Dickhaus [64]
for a recent review and two detailed books on multiple testing for genomics and life
sciences.

10.6 Exercises

10.6.1 FDR versus FWER

The Family Wise Error Rate (FWER) is defined as FWER= P(FP> 0).
1. Prove that FDR≤ FWER.
2. What control of the FDR offers the Bonferroni procedure?
3. Prove that the number of hypotheses rejected by the Bonferroni procedure is

smaller than the number of hypotheses rejected by the Benjamini–Hochberg pro-
cedure (10.13).

4. Check that the Benjamini–Yekutieli procedure (10.12) rejects more hypothesis
than the Bonferroni procedure only when k̂≥Hm, with k̂ and Hm defined in Corol-
lary 10.3.



EXERCISES 217

10.6.2 WPRD Property

We prove in this exercise that if the distribution of the p-values (p̂1, . . . , p̂m) fulfills
Property (10.14) for any non-decreasing indicator function g = 1Γ, then it fulfills
the WPRD property. Below, g : [0,1]m → R+ denotes a bounded measurable non-
decreasing function.
1. Prove that for any i ∈ {1, . . . ,m} and u, such that P(p̂i ≤ u)> 0, we have

E [g(p̂1, . . . , p̂m) | p̂i ≤ u] =
∫ +∞

0
P(g(p̂1, . . . , p̂m)≥ t | p̂i ≤ u) dt .

2. Check that the indicator function (p̂1, . . . , p̂m)→ 1g−1([t,+∞[)(p̂1, . . . , p̂m) is non-
decreasing for all t ≥ 0, and conclude that (p̂1, . . . , p̂m) fulfills the WPRD property.

10.6.3 Positively Correlated Normal Test Statistics

Assume that (Ŝ1, . . . , Ŝm) is distributed according to a N (µ,Σ)-Gaussian distribu-
tion, with Σi j ≥ 0 for all i, j = 1, . . . ,m. We want to test H0,i: “µi = 0” against H1,i:
“µi > 0.” We consider the tests 1Ŝi≥si

for i = 1, . . . ,m. The associated p-values are

p̂i = Ti(Ŝi) with Ti(s) = P(εi ≥ s), where εi has a N (0,Σii)-Gaussian distribution.

For any vector v∈Rm and any 1≤ i≤m, we define v−i = (v1, . . . ,vi−1,vi+1, . . . ,vm).
For two subsets A,B of {1, . . . , p}, we denote by ΣA,B the matrix [Σi j]i∈A, j∈B .

1. Check with Lemma A.4 in Appendix A that the conditional distribution of Ŝ−i
given Ŝi = x is the Gaussian distribution with mean µ−i +Σ−i,i(x− µi)/Σi,i and
covariance matrix Σ−i,−i−Σ−i,iΣi,−i/Σi,i.

2. For u > 0, prove that to any bounded measurable non-decreasing function g :
[0,1]m → R+, we can associate a bounded measurable non-increasing function
f : Rm→ R+, such that

E [g(p̂1, . . . , p̂m) | p̂i ≤ u] = E
[

f (Ŝi, Ŝ−i) | Ŝi ≥ T−1
i (u)

]
,

with T−1
i (u) = inf{s ∈ R : Ti(s)≤ u}.

3. We define φ(x) = E [ f (x,µ−i +Σ−i,i(x−µi)/Σi,i + ε−i)], where the random vari-
able ε−i follows a N (0,Σ−i,−i−Σ−i,iΣi,−i/Σi,i) Gaussian distribution. Prove the
equalities

E [g(p̂1, . . . , p̂m) | p̂i ≤ u] = E
[
φ(Ŝi) | Ŝi ≥ T−1

i (u)
]

=
∫ +∞

0
P
(

φ(Ŝi)≥ t | Ŝi ≥ T−1
i (u)

)
dt .

4. Check that φ is non-increasing, and prove that the p-values associated with the
tests 1Ŝi≥si

fulfill the WPRD property.





Chapter 11

Supervised Classification

The goal of automatic classification is to predict at best the class y of an object x
from some observations. A typical example is the spam filter of our mailbox, which
predicts (more or less fairly) whether a mail is a spam or not. It is omnipresent in our
daily life, by filtering the spams in our mailbox, reading automatically the post code
on our postal letters, or recognizing faces in photos that we post on social networks.
It is also very important in sciences, e.g., in medicine for early diagnosis of diseases
from high-throughput data and in the industry, e.g., for detecting potential customers
from their profiles.

In this chapter, we consider the setting of supervised classification: We have a data set
recording the label (or class) y of n observed points (or objects) x ∈X , and we want
to build from these data a function h(x) that predicts the label of any point x ∈X .
The function h is called a classifier. When we want to predict a label y with a function
h(x), we fall into the regression setting. Yet, the discrete nature of the labels allows
us to strongly weaken the statistical modeling of the pair (x,y) by merely requiring
that the observations (Xi,Yi)i=1,...,n are i.i.d.

We focus in this chapter on binary classification (only two classes). In Section 11.2,
we present Vapnik’s theory, which can be viewed as an analog of the model selection
problem of Chapter 2 in the context of supervised classification. Due to the discrete
nature of the labels y, the theory relies heavily on some combinatorial arguments.
Similarly as for model selection, the classifier of Section 11.2 enjoys some good sta-
tistical properties, but suffers from a prohibitive computational cost. As in Chapter 5,
some practical procedures can be built from a convex relaxation of the procedure
of Section 11.2. We describe two convex relaxations in Section 11.3 leading to the
popular AdaBoost and Support Vector Machine (SVM) algorithms.

11.1 Statistical Modeling

11.1.1 Bayes Classifier

For the sake of simplicity, we restrict ourselves in this chapter to the case where we
only have two classes (as for the spam filter) labelled by −1 and +1. The problem of
automatic classification can then be modeled as follows. Let X be some measurable
space. Each outcome X ∈X has a label Y ∈ {−1,+1}. We only observe the points

219
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X ∈X , and our aim is to find a (measurable) function h : X → {−1,+1}, called
classifier, such that h(X) predicts at best the label Y .

Let us first quantify the prediction accuracy of a classifier h. Assume that the couple
(X ,Y ) ∈X ×{−1,+1} is sampled from a distribution P. For a classifier h : X →
{−1,+1}, the probability of misclassification is

L(h) = P(Y 6= h(X)).

In the following, we will quantify the quality of a classifier h by its probability L(h)
of misclassification. This measure of quality is natural, yet we point out that some
other measures can be more suited in some specific contexts. For example, while
we do not care if a spam ends from time to time in our main mailbox, we definitely
want to avoid that a personal mail ends in our spam box. In such a case, there is an
asymmetry between the two different types of error, and another measure of quality
should be considered.

Ideally, we would like to classify the data according to the classifier h∗ minimizing
the probability L(h) of misclassification. Since |Y −h(X)| ∈ {0,2}, we have

L(h) =
1
4
E
[
(Y −h(X))2]= 1

4
E
[
(Y −E [Y |X ])2]+ 1

4
E
[
(E [Y |X ]−h(X))2] .

Therefore, L(h) is minimal for the Bayes classifier

h∗(X) = sign(E [Y |X ]) where sign(x) = 1x>0−1x≤0 for x ∈ R. (11.1)

If the distribution P were known, we would simply use the Bayes classifier h∗ in
order to have the smallest possible probability of misclassification. Unfortunately,
the distribution P is usually unknown, so we cannot compute the Bayes classifier h∗.

In practice, we only have access to some training data (Xi,Yi)i=1,...,n i.i.d. with dis-
tribution P, and our goal is to build from this training data a classifier ĥ : X →
{−1,+1}, such that L(ĥ)−L(h∗) is as small as possible.

11.1.2 Parametric Modeling

A first approach is to assume that the distribution P belongs to a parametric family
of distributions. Conditioning on Y , we have

P(X ∈ dx,Y = k) = πkP(X ∈ dx|Y = k), with πk = P(Y = k) for k ∈ {−1,1} .

So in order to parametrize the distribution P, we only need to parametrize the two
conditional distributions P(X ∈ dx|Y = 1) and P(X ∈ dx|Y =−1).

A popular model when X =Rd is to assume that the conditional distributions P(X ∈
dx|Y = k) are Gaussian with mean µk and covariance Σk. When we have Σ1 = Σ−1 =
Σ, the Bayes classifier is given by

h∗(x) = sign
(〈

Σ
−1(µ1−µ−1),x−

µ1 +µ−1

2

〉
+ log(π1/π−1)

)
;
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LDA

Figure 11.1 Linear discriminant analysis. The triangles represent the means µ1 and µ−1, the
arrow represents the vector Σ̂−1(µ̂1− µ̂−1), and the black line represents the frontier between{

ĥLDA = 1
}

and
{

ĥLDA =−1
}

.

see Exercise 11.5.1. A point x is then classified according to its position relative to
the affine hyperplane orthogonal to Σ−1(µ1− µ−1) and with offset log(π1/π−1)−
(µ1−µ−1)

T Σ−1 (µ1 +µ−1)/2. In practice, we can classify the data with

ĥLDA(x) = sign
(〈

Σ̂
−1(µ̂1− µ̂−1),x−

µ̂1 + µ̂−1

2

〉
+ log(π̂1/π̂−1)

)
, (11.2)

where π̂k is the empirical proportion of the label k, the mean µ̂k is the empirical mean
of the Xi, such that Yi = k, and Σ̂ is the empirical covariance of the data. This leads
to the Linear Discriminant Analysis (LDA). We refer to Exercise 11.5.1 for more
details, and to Figure 11.1 for an illustration.

The parametric modeling is powerful when the model is correct, but in many cases,
we do not know the distribution of the points X given the labels Y , and an incorrect
modeling can lead to poor results; see Figure 11.2 for an illustration where the LDA
fails.

11.1.3 Semi-Parametric Modeling

Since the Bayes classifier (11.1) only depends on the conditional distribution of Y
given X , we can avoid to model the distribution of X as above. From the formula

E [Y |X ] = P(Y = 1|X)−P(Y =−1|X) = 2P(Y = 1|X)−1,

we obtain that the Bayes classifier h∗(x) is given by

h∗(x) = sign
(
P(Y = 1|X = x)−1/2

)
, for x ∈X .
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LDA versus Logistic regression

Logistic regression
LDA

Figure 11.2 The black line represents the separating hyperplane of the logistic regression. The
dashed line represents the separating hyperplane of the LDA.

A classical approach is to assume a parametric model for the conditional probability
P(Y = 1|X = x). The most popular model in Rd is probably the logistic model, where

P(Y = 1|X = x) =
exp(α + 〈β ,x〉)

1+ exp(α + 〈β ,x〉)
for all x ∈X , (11.3)

with α ∈ R and β ∈ Rd . In this case, we have P(Y = 1|X = x) > 1/2 if and only if
exp(α + 〈β ,x〉)> 1, so the Bayes classifier h∗ has the simple form

h∗(x) = sign
(
α + 〈β ,x〉

)
for all x ∈X .

We observe that the frontier between {h∗ = 1} and {h∗ =−1} is again an affine
hyperplane, with orthogonal direction β and offset α .

We can estimate the parameters (α,β ) by maximizing the conditional likelihood of
Y given X

(α̂, β̂ ) ∈ argmax
(α,β )∈Rd+1

{
∏

i :Yi=1

exp(α + 〈β ,Xi〉)
1+ exp(α + 〈β ,Xi〉) ∏

i :Yi=−1

1
1+ exp(α + 〈β ,Xi〉)

}
,

and compute the classifier ĥlogistic(x) = sign
(
α̂ + 〈β̂ ,x〉

)
for all x ∈X . We empha-

size that even if the Bayes classifiers have the same shape in the LDA and in the
logistic modeling, the two procedures do not lead to the same classifier in general. In
particular, if the conditional distribution of the X given Y is far from Gaussian, the
LDA can produce some very poor results, while the logistic model will work as long
as the modeling (11.3) remains valid; see Figure 11.2 for such a case.
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11.1.4 Non-Parametric Modeling

We may wish to weaken further our hypotheses on the distribution of (X ,Y ) and
adopt a non-parametric point of view. Instead of assuming that the distribution of
(X ,Y ) belongs to some parametric or semi parametric set of distributions (as in Sec-
tions 11.1.2 and 11.1.3), we will rather assume that h∗ is “smooth” in some sense
(suited to the classification setting).

A classical approach in non-parametric estimation is to replace the ideal risk mini-
mization by some constrained empirical risk minimization. In our case, we cannot
minimize h→ L(h), since L(h) is unknown, but we can minimize instead the empir-
ical probability of misclassification

L̂n(h) :=
1
n

n

∑
i=1

1Yi 6=h(Xi) = P̂n(Y 6= h(X)), (11.4)

where P̂n =
1
n ∑

n
i=1 δ(Xi,Yi). There is in general no unique minimizer of L̂n, and even

if an unconstrained minimizer of the empirical risk perfectly classifies the labels in
the data set, it produces in general a very poor prediction for a new point. We must
then restrict the minimization of h→ L̂n(h) to a set H of classifiers with limited
“flexibility”

ĥH ∈ argmin
h∈H

L̂n(h), with L̂n defined by (11.4). (11.5)

As we will see in the next section, the appropriate notion of “flexibility” in this
context corresponds to some combinatorial complexity of the set H measuring the
classification flexibility offered by the classifiers in H . We stress that the set H of
classifiers, usually called dictionary, plays the same role as the model S in the model
selection setting of Chapter 2. In particular, we face the same issues as in Chapter 2:
How does ĥH behave compared to h∗? Which dictionary H should be chosen? We
investigate these two issues in the next section.

11.2 Empirical Risk Minimization

We analyze in this section the classifier ĥH defined by (11.5), and we explain how
we can handle the problem of the choice of H . Decomposing the difference between
the misclassification probabilities L(ĥH ) and L(h∗), we find

0 ≤ L(ĥH )−L(h∗) = min
h∈H

L(h)−L(h∗)︸ ︷︷ ︸
approximation error

+L(ĥH )− min
h∈H

L(h)︸ ︷︷ ︸
stochastic error

.

The first term is a bias term that measures the ability of the classifiers h ∈ H
to produce a classification as good as the Bayes classifier h∗. This approxima-
tion error is purely deterministic, and enlarging the dictionary H can only re-
duce it. The second term measures the error made by minimizing over h ∈ H
the empirical misclassification probability L̂n(h) instead of the true misclassifica-
tion probability L(h). This term is stochastic, and it tends to increase when H
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Figure 11.3 Examples of classification produced by different dictionaries. Left: dictionary of
linear classifiers Hlin. Center: dictionary of polygon classifiers Hpoly. Right: dictionary of
quadratic forms.

increases. This phenomenon is illustrated in Figure 11.3. In this illustration, with
X = R2, the classifiers of the dictionary Hlin = {h(x) = sign(〈w,x〉) : ‖w‖= 1}
are not flexible enough and they produce a poor classification. In this case, the
approximation error is large. On the other hand, the classifiers of the dictionary
Hpoly = {h(x) = 21A(x)−1 : A polygon in X } are very flexible and can always
classify exactly the data (Xi,Yi)i=1,...,n when the Xi are distinct. The empirical er-
ror L̂n(ĥHpoly

) is then 0, but ĥHpoly
tends to produce a poor classification of new data

(X ,Y ), and the stochastic term L(ĥH )−minh∈H L(h) is large. The last example,
based on a less flexible set of quadratic classifiers, produces a better result, even
though its empirical error is larger than the one of ĥHpoly

.

To choose a good dictionary H , we shall then find a good balance between the
approximation properties of H and its size. The first step toward a procedure for se-
lecting the dictionary H is to assess the misclassification probability of the empirical
risk minimizer ĥH .

11.2.1 Misclassification Probability of the Empirical Risk Minimizer

As mentioned above, increasing the size of H tends to increase the stochastic er-
ror L(ĥH )−minh∈H L(h). Actually, it is not really the size of the dictionary that
matters, but rather its flexibility in terms of classification. For example, we cannot
classify correctly the three labelled points

{(
(0,1),+1

)
,
(
(1,1),−1

)
,
(
(1,0),+1

)}
with

a classifier in Hlin. Conversely, for any set of labelled points (xi,yi)i=1,...,n with dis-
tinct x1, . . . ,xn, there exists h ∈Hpoly such that h(xi) = yi.

In order to capture this classification flexibility, we introduce the shattering coeffi-
cient

Sn(H ) = max
(x1,...,xn)∈X n

card{(h(x1), . . . ,h(xn)) : h ∈H } , (11.6)

which gives the maximal number of different labelling of n points that the classifiers
in H can produce. For example, since n distinct points can be arbitrarily labelled
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with classifiers in Hpoly, we have Sn(Hpoly) = 2n. On the contrary, the number of
possible labelling of n points with classifiers in Hlin is more limited. Actually, Propo-
sition 11.6 in Section 11.2.2 ensures that Sn(Hlin) ≤ (n+ 1)2 in dimension 2. The
next theorem provides an upper bound on the stochastic error and a confidence in-
terval for the misclassification probability L(ĥH ) in terms of the shattering coeffi-
cient (11.6). Again, the proof relies on a concentration inequality.

Theorem 11.1 Control of the stochastic error

For any t > 0, with probability at least 1− e−t , we have

L(ĥH )− min
h∈H

L(h)≤ 4

√
2log(2SH (n))

n
+

√
2t
n

(11.7)

and ∣∣L(ĥH )− L̂n(ĥH )
∣∣≤ 2

√
2log(2SH (n))

n
+

√
t

2n
. (11.8)

Proof. We split the proof of Theorem 11.1 into three lemmas. The first lemma shows
that the left-hand terms in (11.7) and (11.8) can be upper-bounded in terms of the
maximum difference over H between the empirical misclassification probability
and the true misclassification probability

∆̂n(H ) = sup
h∈H

∣∣L̂n(h)−L(h)
∣∣. (11.9)

The second lemma ensures that the difference between ∆̂n(H ) and its expectation is
smaller than

√
ξ/(2n), with ξ a standard exponential random variable. Finally, the

third lemma upper-bounds the expectation of ∆̂n(H ) by 2
√

2log(2SH (n))/n.

Lemma 11.2
We have the upper bounds

L(ĥH )− min
h∈H

L(h)≤ 2 ∆̂n(H ) and
∣∣L(ĥH )− L̂n(ĥH )

∣∣≤ ∆̂n(H ).

Proof of Lemma 5.12. For any h ∈H , we have L̂n(ĥH )≤ L̂n(h), and therefore

L(ĥH )−L(h) = L(ĥH )− L̂n(ĥH )+ L̂n(ĥH )−L(h)

≤ L(ĥH )− L̂n(ĥH )+ L̂n(h)−L(h)

≤ 2 ∆̂n(H ).

Since this inequality is true for any h ∈H , the first bound of Lemma 11.2 follows.
The second bound is obvious. 2
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In order to prove Theorem 11.1, it remains to prove that

∆̂n(H )≤ 2

√
2log(2SH (n))

n
+

√
t

2n
,

with probability at least 1− e−t . The first step is a concentration inequality for
∆̂n(H ).

Lemma 11.3
With probability at least 1− e−t , we have

∆̂n(H )≤ E
[
∆̂n(H )

]
+

√
t

2n
.

Proof of Lemma 11.3. We have ∆̂n(H ) = F((X1,Y1), . . . ,(Xn,Yn)), with

F : (X ×{−1,+1})n → R

((x1,y1), . . . ,(xn,yn)) 7→
1
n

sup
h∈H

∣∣∣ n

∑
i=1

1yi 6=h(xi)−L(h)
∣∣∣ .

For any (x1,y1), . . . ,(xn,yn),(x′i,y
′
i) ∈X ×{−1,+1}, we have

∣∣F((x1,y1), . . . ,(x′i,y
′
i), . . . ,(xn,yn))−F((x1,y1), . . . ,(xi,yi), . . . ,(xn,yn))

∣∣≤ 1
n
,

so according to McDiarmid concentration inequality (Theorem B.5, page 299, in
Appendix B), with probability at least 1−e−2ns2

, we have ∆̂n(H )≤E
[
∆̂n(H )

]
+s.

Lemma 11.3 follows by setting s =
√

t/(2n). 2

It remains to bound the expectation of ∆̂n(H ) in terms of SH (n).
Lemma 11.4

For any dictionary H , we have the upper bound

E
[
∆̂n(H )

]
≤ 2

√
2log(2SH (n))

n
.

Proof of Lemma 11.4. The proof of Lemma 11.4 is divided into two parts. Part (i)
is based on a classical and elegant symmetrization argument. Part (ii) is a classical
application of Jensen inequality.

(i) The first step is to upper-bound E
[
∆̂n(H )

]
with the symmetrization lemma
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(Theorem B.10, page 305, in Appendix B). Let σ1, . . . ,σn be n i.i.d. random vari-
ables uniformly distributed on {−1,+1} and independent of (Xi,Yi)i=1,...,n. Accord-
ing to (B.7), with Zi = (Xi,Yi) for i = 1, . . . ,n and f (Zi) = 1Yi 6=h(Xi), we obtain

E
[
∆̂n(H )

]
≤ 2EEσ

[
sup

h∈H

∣∣∣1
n

n

∑
i=1

σi1Yi 6=h(Xi)

∣∣∣] ,
where Pσ refers to the expectation with respect to σ1, . . . ,σn. This term can be simply
upper-bounded by

E
[
∆̂n(H )

]
≤ 2 max

y∈{−1,+1}n
max
x∈X n

Eσ

[
sup

h∈H

∣∣∣1
n

n

∑
i=1

σi1yi 6=h(xi)

∣∣∣] .
At this point, we notice that we have replaced an expectation with respect to the un-
known probability distribution P by an expectation with respect to the known proba-
bility distribution Pσ .

(ii) For any (x,y) ∈X n×{−1,+1}n, let us define the set

VH (x,y) =
{
(1y1 6=h(x1), . . . ,1yn 6=h(xn)) : h ∈H

}
.

The last upper bound on E
[
∆̂n(H )

]
can be written as

E
[
∆̂n(H )

]
≤ 2

n
× max

y∈{−1,+1}n
max
x∈X n

Eσ

[
sup

v∈VH (x,y)
|〈σ ,v〉|

]
,

where 〈x,y〉 is the canonical scalar product onRn. We notice that for any y∈{−1,1}n

there is a bijection between VH (x,y) and the set {(h(x1), . . . ,h(xn)) : h ∈H }. As a
consequence, we have the upper bound

max
y∈{−1,+1}n

max
x∈X n

card(VH (x,y))≤ Sn(H ).

In view of the last two inequalities, in order to conclude the proof of Lemma 11.4, it
simply remains to prove the following result.

Lemma 11.5
For σ1, . . . ,σn i.i.d. with Pσ (σi = 1) = Pσ (σi =−1) = 1/2, we have

Eσ

[
sup
v∈V
|〈σ ,v〉|

]
≤
√

2n log(2card(V )), for any finite V ⊂ [−1,1]n . (11.10)

Proof of Lemma 11.5. Writing V # = V ∪−V , Jensen inequality ensures that for
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any s > 0

Eσ

[
sup
v∈V
|〈σ ,v〉|

]
= Eσ

[
sup

v∈V #
〈σ ,v〉

]
≤ 1

s
log Eσ

[
sup

v∈V #
es〈σ ,v〉

]

≤ 1
s

log

(
∑

v∈V #

Eσ

[
es〈σ ,v〉

])
. (11.11)

Combining the facts that the σi are independent, (ex+e−x)≤ 2ex2/2 for all x ∈R and
v2

i ≤ 1 for all v ∈ V #, we have

Eσ

[
es〈σ ,v〉

]
=

n

∏
i=1
Eσ [esviσi ] =

n

∏
i=1

1
2
(esvi + e−svi)≤

n

∏
i=1

es2v2
i /2 ≤ ens2/2.

Plugging this inequality in (11.11), we obtain

Eσ

[
sup
v∈V
|〈σ ,v〉|

]
≤ log(card(V #)

s
+

ns
2

for any s > 0.

The right-hand side is minimal for s =
√

2log(card(V #))/n, which gives the upper
bound

Eσ

[
sup
v∈V
|〈σ ,v〉|

]
≤
√

2n log(card(V #)) .

We finally obtain (11.10) by noticing that card(V #)≤ 2card(V ). 2

The proof of Lemma 11.4 is complete, and Bounds (11.7) and (11.8) are obtained by
combining Lemma 11.2, Lemma 11.3, and Lemma 11.4. 2

Theorem 11.1 provides a control of the misclassification probability in terms of the
shattering coefficient (11.6). The shattering coefficient offers a good notion of com-
plexity for a set H of classifiers, but its computation can be tricky in practice. In
the next section, we prove that a nice combinatorial property of the shattering coef-
ficients provides a simple upper bound on Sn(H ), depending on H only through a
single quantity, the Vapnik–Chervonenkis dimension of H .

11.2.2 Vapnik–Chervonenkis Dimension

By convention, we set S0(H ) = 1. From the definition (11.6) of Sn(H ), we have
Sn(H )≤ 2n for all n ∈N. We call Vapnik–Chervonenkis (VC) dimension of H the
integer dH defined by

dH = sup
{

d ∈ N : Sd(H ) = 2d
}
∈ N∪{+∞} . (11.12)

It corresponds to the maximum number of points in X that can be arbitrarily clas-
sified by the classifiers in H . The next proposition gives an upper bound on the
shattering coefficient Sn(H ) in terms of the VC dimension dH .
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Proposition 11.6 Sauer’s lemma

Let H be a set of classifiers with finite VC dimension dH . For any n∈N, we have

Sn(H )≤
dH

∑
i=0

Ci
n ≤ (n+1)dH with Ci

n =

{ n!
i!(n−i)! for n≥ i

0 for n < i.

Proof. We first prove by induction on k the inequality

Sk(H )≤
dH

∑
i=0

Ci
k (11.13)

for any H with finite VC dimension dH .

Let us consider the case k = 1. If dH = 0, then S1(H )< 2 and so S1(H ) = 1 =C0
1 .

If dH ≥ 1, we have S1(H ) = 2, which is also equal to C0
1 +C1

1 .

Assume now that (11.13) is true for all k ≤ n− 1. Let us consider H , with finite
VC dimension dH . When dH = 0, no set of point can be shattered, so all points can
only be labelled in one way. Therefore, Sk(H ) = 1 and (11.13) is true for all k. We
assume now that dH ≥ 1. Let x1, . . . ,xn be n points in X and define

H (x1, . . . ,xn) = {(h(x1), . . . ,h(xn)) : h ∈H } .

We want to prove that

card(H (x1, . . . ,xn))≤
dH

∑
i=0

Ci
k. (11.14)

The set H (x1, . . . ,xn) depends only on the values of h ∈H on {x1, . . . ,xn}, so we
can replace H by F =

{
h|{x1,...,xn} : h ∈H

}
in the definition of H (x1, . . . ,xn).

Since dF is not larger than dH , it is enough to prove (11.14) for F . Therefore,
we assume (with no loss of generality) that X = {x1, . . . ,xn} and H = F . Let us
consider the set

H ′ =
{

h ∈H : h(xn) = 1 and h′ = h−2×1{xn} ∈H
}
.

Since H (x1, . . . ,xn) = H ′(x1, . . . ,xn)∪ (H \H ′)(x1, . . . ,xn), we have

card(H (x1, . . . ,xn))≤ card
(
H ′(x1, . . . ,xn)

)
+ card

(
(H \H ′)(x1, . . . ,xn)

)
.

(11.15)
Let us bound apart the cardinality of H ′(x1, . . . ,xn) and the cardinality of
(H \H ′)(x1, . . . ,xn).

1. We note that card(H ′(x1, . . . ,xn)) = card(H ′(x1, . . . ,xn−1)) since h(xn) = 1
for all h ∈ H ′. Let us check that the VC dimension dH ′ of H ′ is at most
dH − 1. Actually, if d points xi1 , . . . ,xid of X = {x1, . . . ,xn} are shattered by
H ′, then xn /∈

{
xi1 , . . . ,xid

}
since h(xn) = 1 for all h ∈H ′. Furthermore, the set
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xi1 , . . . ,xid ,xn

}
is shattered by H ′∪

{
h′ = h−2×1{xn} : h ∈H

}
, which is in-

cluded in H according to the definition of H ′. So, d + 1 ≤ dH , which implies
dH ′ ≤ dH −1. Applying (11.13) with k = n−1, we obtain

card
(
H ′(x1, . . . ,xn)

)
= card

(
H ′(x1, . . . ,xn−1)

)
≤

dH −1

∑
i=0

Ci
n−1. (11.16)

2. When h,h′ ∈H \H ′ fulfill h(xi) = h′(xi) for i = 1, . . . ,n− 1, they also fulfill
h(xn) = h′(xn); otherwise, either h or h′ would belong to H ′. Therefore, we have
as above card((H \H ′)(x1, . . . ,xn)) = card((H \H ′)(x1, . . . ,xn−1)). Further-
more, dH \H ′ is not larger than dH , since H \H ′ ⊂H , so Equation (11.13)
with k = n−1 gives

card
(
(H \H ′)(x1, . . . ,xn)

)
= card

(
(H \H ′)(x1, . . . ,xn−1)

)
≤

dH

∑
i=0

Ci
n−1 .

(11.17)

Combining (11.15), (11.16), and (11.17), we obtain

card(H (x1, . . . ,xn))≤
dH

∑
i=1

Ci−1
n−1 +

dH

∑
i=0

Ci
n−1 =

dH

∑
i=0

Ci
n ,

since Ci
n−1 +Ci−1

n−1 = Ci
n for i ≥ 1. As a consequence, (11.13) is true for k = n, and

the induction is complete.

The second upper bound of the proposition is obtained by

d

∑
i=0

Ci
n ≤

d

∑
i=0

ni

i!
≤

d

∑
i=0

Ci
d ni = (1+n)d .

The proof of Proposition 11.6 is complete. 2

Remark. The reader may check (by induction) that for d ≤ n, we also have

d

∑
1

Ci
n ≤

(en
d

)d
,

which improves the bound ∑
d
1 Ci

n ≤ (n+1)d when 3≤ d ≤ n.

Let us give some examples of VC dimension for some simple dictionaries on X =
Rd . The proofs are left as exercises.

Example 1: Linear classifiers.
The VC dimension of the set H = {h(x) = sign(〈w,x〉) : ‖w‖= 1} of linear classi-
fiers is d (see Exercise 11.5.2).

Example 2: Affine classifiers.
The VC dimension of the set H = {h(x) = sign(〈w,x〉+b) : ‖w‖= 1, b ∈ R} of
affine classifiers is d +1 (see Exercise 11.5.2).
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Example 3: Hyper-rectangle classifiers.
The VC dimension of the set H =

{
h(x) = 21A(x)−1 : A hyper-rectangle of Rd

}
of hyper-rectangle classifiers is 2d.

Example 4: Convex polygon classifiers.
The VC dimension of the set H =

{
h(x) = 21A(x)−1 : A convex polygon of Rd

}
of convex polygon classifiers is +∞ (consider n points on the unit sphere: For any
subset of these points, you can choose their convex hull as convex polygon).

Finally, we can state the following corollary of Theorem 11.1.

Corollary 11.7 Control of the stochastic error for Vapnick dictionaries

For H with VC dimension 1≤ dH <+∞, for any t > 0, we have the upper bound

L(ĥH )≤ min
h∈H

L(h)+4

√
2dH log(2n+2))

n
+

√
2t
n

with probability at least 1− e−t .

Let us now investigate the problem of the choice of the dictionary H .

11.2.3 Dictionary Selection

Let us consider a collection {H1, . . . ,HM} of dictionaries. Similarly to Chapter 2,
we would like to select among this collection, the dictionary Ho with the smallest
misclassification probability L(ĥHo). The so-called oracle dictionary Ho depends on
the unknown distribution P, so it is not accessible to the statistician. In the following,
we will build on Theorem 11.1 in order to design a data-driven procedure for select-
ing a dictionary Hm̂ among the collection {H1, . . . ,HM}, with performances similar
to those of Ho.

The oracle dictionary Ho is obtained by minimizing the misclassification probability
L(ĥH ) over H ∈ {H1, . . . ,HM}. A first idea is to select Hm̂ by minimizing over the
collection {H1, . . . ,HM} the empirical misclassification probability L̂n(ĥH ). This
selection procedure will not give good results, since for any H ⊂H ′ we always
have L̂n(ĥH ′) ≤ L̂n(ĥH ) by Definition (11.5). So the procedure will tend to select
the largest dictionary. For designing a good selection procedure, we have to take into
account the fluctuations of L̂n(ĥH ) around L(ĥH ), as in Chapter 2. The Bound (11.8)
in Theorem 11.1 gives us a control of these fluctuations. Building on this bound, we
have the following result.
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Theorem 11.8 Dictionary selection

Let us consider the dictionary selection procedure

m̂ ∈ argmin
m=1,...,M

{
L̂n(ĥHm)+pen(Hm)

}
, with pen(H )≥ 2

√
2log(2Sn(H ))

n
.

Then, for any t > 0, with probability at least 1− e−t , we have

L(ĥHm̂)≤ min
m=1,...,M

{
inf

h∈Hm
L(h)+2pen(Hm)

}
+

√
2log(M)+2t

n
. (11.18)

Before proving Theorem 11.8, let us comment on Bound (11.18). Since
minh∈H L(h)≤ L(ĥH ), we obtain with probability 1− e−t

L(ĥHm̂)≤ L(ĥHo)+2pen(Ho)+

√
2log(M)+2t

n
.

In particular, we can compare the misclassification probability of the selected classi-
fier with the misclassification probability of the best classifier among the collection{

ĥH1 , . . . , ĥHM

}
.

We also notice that the second term of Bound (11.18) increases as
√

2log(M)/n with
the number M of candidate dictionaries.

Proof of Theorem 11.8. We recall the notation ∆̂n(H ) = suph∈H
∣∣L̂n(h)− L(h)

∣∣.
The Lemma 11.2 ensures that

L(ĥHm̂)≤ L̂n(ĥHm̂)+ ∆̂n(Hm̂).

According to Lemma 11.3 and Lemma 11.4, we have for s > 0 and m ∈ {1, . . . ,M}

P
(

∆̂n(Hm)> pen(Hm)+
√

s/(2n)
)
≤ e−s.

For s = log(M)+ t, the union bound ensures that

P

(
∆̂n(Hm)≤ pen(Hm)+

√
log(M)+ t

2n
, for all m = 1, . . . ,M

)
≥ 1− e−t

(11.19)
Therefore, according to the definition of the selection criterion, we have with proba-
bility at least 1− e−t

L(ĥHm̂) ≤ L̂n(ĥHm̂)+pen(Hm̂)+

√
log(M)+ t

2n

≤ min
m=1,...,M

{
L̂n(ĥHm)+pen(Hm)

}
+

√
log(M)+ t

2n
. (11.20)
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To conclude, we only need to control the size of L̂n(ĥHm) in terms of infh∈Hm L(h).
This can be done directly by combining (11.7) and (11.8), but the resulting bound is
not tight.

In order to compare L̂n(ĥHm) to infh∈Hm L(h), let us notice that for any h ∈Hm, we
have

L̂n(ĥHm)≤ L̂n(h)≤ L(h)+ ∆̂n(Hm),

so taking the infimum over h ∈Hm, we obtain for all m = 1, . . . ,M

L̂n(ĥHm)≤ inf
h∈Hm

L(h)+ ∆̂n(Hm).

Combining this bound with (11.19) and (11.20), we obtain with probability at least
1− e−t

L(ĥHm̂)≤ min
m=1,...,M

{
inf

h∈Hm
L(h)+2pen(Hm)

}
+2

√
log(M)+ t

2n
.

The proof of Theorem 11.8 is complete. 2

Remark. Combining (11.19) and Lemma 11.2, we obtain the confidence interval for
the misclassification probability

P
(

L(ĥHm̂) ∈
[
L̂n(ĥHm̂)−δ (m̂, t), L̂n(ĥHm̂)+δ (m̂, t)

])
≥ 1− e−t ,

with δ (m̂, t) = pen(Hm̂)+

√
log(M)+ t

2n
.

11.3 From Theoretical to Practical Classifiers

11.3.1 Empirical Risk Convexification

The empirical risk minimization classifier analyzed in the previous section has some
very nice statistical properties, but it cannot be used in practice because of its compu-
tational cost. Actually, there is no efficient way to minimize (11.5), since neither H
nor L̂n are convex. The situation is very similar to the situation met in Chapter 2 for
the model selection procedure (2.9). As in Chapter 5, we will derive some practical
classifiers from (11.5) by a convex relaxation of the minimization (11.5). Some of
the most popular classification algorithms are obtained by following this principle.
The empirical misclassification probability L̂n will be replaced by some convex sur-
rogate and the set of classifiers H will be replaced by some convex functional set
F ⊂ RX .

Let us consider some convex set F of functions from X to R. A function f ∈F
is not a classifier, but we can use it for classification by classifying the data points
according to the sign of f . In other words, we can associate to f the classifier sign( f ).
The empirical misclassification probability of this classifier can be written as

L̂n(sign( f )) =
1
n

n

∑
i=1

1{Yi sign( f )(Xi)<0} =
1
n

n

∑
i=1

1{Yi f (Xi)<0}.
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Let us replace this empirical misclassification probability L̂n by some convex surro-
gate, which is more amenable to numerical computations. A simple and efficient way
to obtain a convex criterion is to replace the loss function z→ 1z<0 by some convex
function z→ `(z). Building on this simple idea, we will focus in the following on
classifiers obtained by the procedure

ĥF = sign( f̂F ),

where f̂F ∈ argmin
f∈F

L̂`
n( f ), with L̂`

n( f ) =
1
n

n

∑
i=1

`(Yi f (Xi)). (11.21)

This classifier can be computed efficiently, since both F and L̂`
n are convex. Many

classical classifiers are obtained by solving (11.21), with some specific choices of F
and `; see Sections 11.3.3 and 11.3.4 for some examples.

Some popular convex loss `

It is natural to consider a convex loss function `, which is non-increasing and non-
negative. Usually, we also ask that `(z)≥ 1z<0 for all z ∈R, since in this case we can
give an upper bound on the misclassification probability; see Theorem 11.10. Some
classical loss functions are
• the exponential loss `(z) = e−z,
• the logit loss `(z) = log2(1+ e−z), and
• the hinge loss `(z) = (1− z)+, with (x)+ = max(0,x).
A plot of these three functions is given in Figure 11.4.
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Figure 11.4 Plot of the exponential, hinge, and logit losses.
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Some classical functional sets F

The main popular convex functional sets F can be grouped into two classes.

A first popular class of sets F is obtained by taking a linear combination of a finite
family H =

{
h1, . . . ,hp

}
of classifiers

F =

{
f : f (x) =

p

∑
j=1

β jh j(x) with β j ∈ C

}
, (11.22)

where C is a convex subset of Rp. Typical choices for C are the `1-ball
{β ∈ Rp : |β |1 ≤ R}, the simplex

{
β ∈ Rp : β j ≥ 0, ∑

p
j=1 β j ≤ 1

}
, or the whole

spaceRp. This choice appears, for example, in boosting methods; see Section 11.3.4.
The basic classifiers

{
h1, . . . ,hp

}
are often called weak learners. A popular choice

of weak learners in Rd is h j(x) = sign(x j− t j) with t j ∈ R.

A second popular class of sets F is obtained by taking a ball of a Reproducing
Kernel Hilbert Space (RKHS). We refer to Appendix E for a brief introduction to
RKHS. Since the smoothness of a function in an RKHS is driven by its norm (see,
e.g., Formula (E.5), page 327, in Appendix E), a ball of an RKHS corresponds to a
set of smooth functions. Let Fk be an RKHS with reproducing kernel k, and write
‖ f‖F for the Hilbert norm of f ∈ Fk. For notational simplicity, in the following,
we simply write F for Fk. Minimizing L̂`

n over the ball { f ∈F : ‖ f‖F ≤ R} is
equivalent to minimizing over F the dual Lagrangian problem

f̂F ∈ argmin
f∈F

L̃`
n( f ), with L̃`

n( f ) =
1
n

n

∑
i=1

`(Yi f (Xi))+λ‖ f‖2
F , (11.23)

for some λ > 0. This kind of classifier appears, for example, in Support Vector Ma-
chine algorithms, presented in Section 11.3.3. The solution of (11.23) fulfills the
following representation formula.

Proposition 11.9 Representation formula

The minimization problem (11.23) is equivalent to f̂F = ∑
n
j=1 β̂ j k(X j, .), with

β̂ ∈ argmin
β∈Rn

{
1
n

n

∑
i=1

`

( n

∑
j=1

β jYik(X j,Xi)

)
+λ

n

∑
i, j=1

βiβ jk(Xi,X j)

}
. (11.24)

Proof. Let V be the linear space spanned by k(X1, .), . . . ,k(Xn, .), where k(x, .) refers
to the map y→ k(x,y). Decomposing f = fV + fV⊥ according to the orthogonal de-
composition F = V©⊥V⊥, we have by the reproducing property (E.2), page 325,

f (Xi) = 〈 f ,k(Xi, .)〉F = 〈 fV ,k(Xi, .)〉F = fV (Xi) .
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Combining this formula with the Pythagorean formula, we obtain

L̃`
n( fV + fV⊥) =

1
n

n

∑
i=1

`
(
Yi fV (Xi)

)
+λ‖ fV‖2

F +λ‖ fV⊥‖
2
F .

Since λ is positive, any minimizer f̂ of L̃`
n must fulfill f̂V⊥ = 0, so it is of the form

f̂F =
n

∑
i=1

β̂i k(Xi, .).

Furthermore, the reproducing property (E.2) ensures again that 〈k(Xi, .),k(X j, .)〉F =
k(Xi,X j), so ∥∥∥∥ n

∑
j=1

β jk(X j, .)

∥∥∥∥2

F

=
n

∑
i, j=1

βiβ jk(Xi,X j).

The proof of Proposition 11.9 is complete. 2

The representation formula is of major importance in practice, since it reduces the
infinite-dimensional minimization problem (11.23) into an n-dimensional convex
minimization problem (11.24) that can be solved efficiently. In Section 11.3.3 on
Support Vector Machines, we will give a more precise description of the solution of
this problem when ` is the hinge loss.

Another important feature of the representation formula is that we only need to know
the positive definite kernel k in order to compute the classifier ĥF . In particular, we
do not need to identify the RKHS associated to k in order to define and compute the
estimator (11.24). The RKHS F is only used implicitly in order to understand the
nature of the classifier ĥF .

11.3.2 Statistical Properties

The classifier ĥF given by (11.21) with F and ` convex has the nice feature of a low
computational cost, but does it have some good statistical properties?

Link with the Bayes classifier

The empirical risk minimizer ĥH of Section 11.2 minimizes the empirical version
L̂n(h) of the misclassification probability L(h) = P(Y 6= h(X)) over some set H of
classifiers. The function f̂F minimizes instead the empirical version L̂`

n(h) of L̂`(h)=
E [`(Y f (X))] over some functional set F . The classifier ĥH can then be viewed as
an empirical version of the Bayes classifier h∗ which minimizes P(Y 6= h(X)) over
the set of measurable functions h : X → {−1,+1}, whereas the function f̂F is an
empirical version of the function f `∗ , which minimizes E [`(Y f (X))] over the set of
measurable functions f : X → R. A first point is to understand the link between the
Bayes classifier h∗ and the sign of the function f `∗ . It turns out that under some weak
assumptions on `, the sign of f `∗ exactly coincides with the Bayes classifier h∗, so
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sign( f `∗) minimizes the misclassification probability P(Y 6= h(X)). Let us check this
point.

Conditioning on X , we have

E [`(Y f (X)] = E [E [`(Y f (X)|X ]]

= E
[
`( f (X))P(Y = 1|X)+ `(− f (X))(1−P(Y = 1|X))

]
.

Assume that ` is decreasing, differentiable, and strictly convex (e.g., exponential or
logit loss). The above expression is minimum for f `∗(X) solution of

`′(− f (X))

`′( f (X))
=

P(Y = 1|X)

1−P(Y = 1|X)
,

when such a solution exists. Since ` is strictly convex, we then have f (X)> 0 if and
only if `′(− f (X))/`′( f (X))> 1, so

f `∗(X)> 0 ⇐⇒ P(Y = 1|X)> 1/2 ⇐⇒ E[Y |X ] = 2P(Y = 1|X)−1 > 0 .

Since h∗(X) = sign(E [Y |X ]) (see Section 11.1), we obtain sign( f `∗) = h∗. This equal-
ity also holds true for the hinge loss ` (check it!).

To sum up the above discussion, the target function f `∗ approximated by f̂F does
perfectly make sense for the classification problem, since, under some weak assump-
tions, its sign coincides with the best possible classifier h∗ (the Bayes classifier).

Upper-bound on the misclassification probability

We focus now on the misclassification probability L(ĥF ) of the classifier ĥF =

sign( f̂F ) given by (11.21). In practice, it is important to have an upper bound on
the misclassification probability L(ĥF ), which can be computed from the data. The
next theorem provides such an upper bound for some typical examples of set F .

Theorem 11.10 Confidence bound on L(ĥF )

For any R > 0, we set ∆`(R) = |`(R)− `(−R)|. We assume here that the loss-
function ` is convex, non-increasing, non-negative, α-Lipschitz on [−R,R] and
fulfills `(z)≥ 1z<0 for all z in R. We consider the classifier ĥF given by (11.21).

(a) When F is of the form (11.22), with C = {β ∈ Rp : |β |1 ≤ R}, we have with
probability at least 1− e−t

L(ĥF ) ≤ L̂`
n( f̂F )+4αR

√
2log(2p)

n
+∆`(R)

√
t

2n
. (11.25)

(b) Let F be the ball of radius R of an RKHS with kernel k fulfilling k(x,x) ≤ 1
for all x ∈X . Then, we have with probability at least 1− e−t

L(ĥF ) ≤ L̂`
n( f̂F )+

4αR√
n

+∆`(R)

√
t

2n
. (11.26)
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Proof. We first prove a general upper bound for L(ĥF ), similar to Theorem 11.1.

Lemma 11.11
Assume that sup f∈F | f (x)| ≤ R < +∞. For any loss ` fulfilling the hypotheses of
Theorem 11.10, we have with probability at least 1− e−t

L(ĥF )≤ L̂`
n( f̂F )+

4α

n
max
x∈X n

Eσ

[
sup
f∈F

∣∣∣∣ n

∑
i=1

σi f (xi)

∣∣∣∣
]
+∆`(R)

√
t

2n
, (11.27)

where σ1, . . . ,σn are i.i.d. random variables with distribution Pσ (σi = 1) =
Pσ (σi =−1) = 1/2.

Proof of Lemma 11.11. The proof of this lemma relies on the same arguments as the
proof of Theorem 11.1. We set

∆̂
`
n(F ) = sup

f∈F

∣∣L̂`
n( f )−L`( f )

∣∣ with L`( f ) = E [`(Y f (X))] .

The first point is to notice that since `(z)≥ 1z<0 for all real z, we have

L(ĥF ) = P(Y f̂F (X)< 0)≤ E
[
`(Y f̂F (X))

]
≤ L̂`

n( f̂F )+ ∆̂
`
n(F ).

As in Lemma 11.3, the McDiarmid concentration inequality (Theorem B.5, page 299,
in Appendix B) ensures that with probability at least 1− e−t , we have

∆̂
`
n(F )≤ E

[
∆̂
`
n(F )

]
+∆`(R)

√
t

2n
.

To conclude the proof of the lemma, it only remains to prove that

E
[
∆̂
`
n(F )

]
≤ 4α

n
max
x∈X n

Eσ

[
sup
f∈F

∣∣∣∣ n

∑
i=1

σi f (xi)

∣∣∣∣
]
. (11.28)

Following exactly the same lines as in the proof of Lemma 11.4 (replacing 1Yi 6=h(Xi)

by `(Yi f (Xi))− `(0)), we obtain

E
[
∆̂
`
n(F )

]
≤ 2

n
max

y∈{−1,+1}n
max
x∈X n

Eσ

[
sup
f∈F

∣∣∣∣ n

∑
i=1

σi(`(yi f (xi))− `(0))
∣∣∣∣
]
.

We finally use the α-Lipschitz property of ` to conclude: According to the Contrac-
tion principle (Proposition B.11, page 306, in Appendix B, with ϕ(z) = `(z)− `(0)
and Z = {[yi f (xi)]i=1,...,n : f ∈F}), we have

Eσ

[
sup
f∈F

∣∣∣∣ n

∑
i=1

σi(`(yi f (xi))− `(0))
∣∣∣∣
]
≤ 2αEσ

[
sup
f∈F

∣∣∣∣ n

∑
i=1

σiyi f (xi)

∣∣∣∣
]

= 2αEσ

[
sup
f∈F

∣∣∣∣ n

∑
i=1

σi f (xi)

∣∣∣∣
]
,
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where we used in the last line that (σ1, . . . ,σn) has the same distribution as
(y1σ1, . . . ,ynσn) for any y ∈ {−1,1}n. Combining the last two bounds gives (11.28),
and the proof of Lemma 11.11 is complete. �

(a) Let us prove now Bound (11.25). The map β → ∑
n
i=1 σi ∑

p
j=1 β jh j(xi) is linear,

so it reaches its maximum and minimum on the `1-ball C at one of the vertices of C .
Therefore, we have

Eσ

[
sup
f∈F

∣∣∣∣ n

∑
i=1

σi f (xi)

∣∣∣∣
]
= REσ

[
max

j=1,...,p

∣∣∣∣ n

∑
i=1

σih j(xi)

∣∣∣∣
]
.

It remains to apply Inequality (11.10) with V =
{
(h j(x1), . . . ,h j(xn)) : j = 1, . . . , p

}
,

whose cardinality is at most p in order to obtain

Eσ

[
sup
f∈F

∣∣∣∣ n

∑
i=1

σi f (xi)

∣∣∣∣
]
≤ R

√
2n log(2p).

Bound (11.25) then follows from Lemma 11.11.

(b) We now turn to the second Bound (11.26) and write ‖.‖F for the norm in the
RKHS. According to the reproducing formula (E.2), page 325, and the Cauchy–
Schwartz inequality, we have∣∣∣∣ n

∑
i=1

σi f (xi)

∣∣∣∣= ∣∣∣∣〈 f ,
n

∑
i=1

σik(xi, .)

〉
F

∣∣∣∣≤ ‖ f‖F
∥∥∥∥ n

∑
i=1

σik(xi, .)

∥∥∥∥
F

.

Since ‖ f‖F ≤ R, applying Jensen inequality, we obtain

Eσ

[
sup
‖ f‖F≤R

∣∣∣∣ n

∑
i=1

σi f (xi)

∣∣∣∣
]
≤ R Eσ

[∥∥∥∥ n

∑
i=1

σik(xi, .)

∥∥∥∥
F

]

≤ R

√√√√Eσ

[∥∥∥∥ n

∑
i=1

σik(xi, .)

∥∥∥∥2

F

]

= R

√
n

∑
i, j=1

k(xi,x j)Eσ [σiσ j] ,

where we have used 〈k(xi, .),k(x j, .)〉F = k(xi,x j). Since k(x,x)≤ 1 and E [σiσ j] = 0
for i 6= j, we get

Eσ

[
sup
‖ f‖F≤R

∣∣∣∣ n

∑
i=1

σi f (xi)

∣∣∣∣
]
≤ R

√
n

∑
i=1

k(xi,xi)Eσ [σ2
i ] ≤ R

√
n .

Combining again the reproducing property with the Cauchy–Schwartz inequality, we
obtain

| f (x)|= |〈 f ,k(x, .)〉F | ≤ R
√

k(x,x)≤ R.
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So F fulfills the hypotheses of the Lemma 11.11, which gives

L(ĥF )≤ L̂`
n( f̂F )+

4αR√
n

+∆`(R)

√
t

2n
.

The proof of Theorem 11.10 is complete. 2

It is possible to derive risk bounds similar to (11.7) for L(ĥH ); we refer to
Boucheron, Bousquet, and Lugosi [37] for a review of such results. In the remain-
der of this chapter, we will describe two very popular classification algorithms: the
Support Vector Machines and AdaBoost.

11.3.3 Support Vector Machines

The Support Vector Machine (SVM) algorithm corresponds to the estimator (11.23)
with the hinge loss `(z) = (1−z)+. The final classification is performed according to
ĥF (x) = sign( f̂F (x)). We stress that there is a unique solution to (11.23) when ` is
the convex loss since (11.23) is strictly convex when λ > 0. It turns out that there is
a very nice geometrical interpretation of the solution f̂F , from which originates the
name “Support Vector Machines.”

Proposition 11.12 Support Vectors

The solution of (11.23) is of the form f̂F (x) = ∑
n
i=1 β̂i k(Xi,x), with

β̂i = 0 if Yi f̂F (Xi)> 1

β̂i = Yi/(2λn) if Yi f̂F (Xi)< 1

0≤ Yiβ̂i ≤ 1/(2λn) if Yi f̂F (Xi) = 1 .

The vectors Xi with index i, such that β̂i 6= 0, are called support vectors.

Proof. Writing K for the matrix [k(Xi,X j)]i, j=1,...,n, we know from the representation
Formula (11.24) that the solution of (11.23) is of the form f̂F =∑

n
j=1 β̂ j k(X j, .), with

β̂ ∈ argmin
β∈Rn

{
1
n

n

∑
i=1

(
1−Yi[Kβ ]i

)
+
+λβ

T Kβ

}
.

The above minimization problem is not smooth, so we introduce some slack variables
ξ̂i = (1−Yi[Kβ̂ ]i)+ and rewrite the minimization problem as

(β̂ , ξ̂ ) ∈ argmin
β ,ξ ∈ Rn such that
ξi ≥ 1−Yi[Kβ ]i
ξi ≥ 0

{
1
n

n

∑
i=1

ξi +λβ
T Kβ

}
. (11.29)
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This problem is now smooth and convex, and the Karush–Kuhn–Tucker conditions
for the Lagrangian dual problem

(β̂ , ξ̂ ) ∈ argmin
β ,ξ∈Rn

{
1
n

n

∑
i=1

ξi +λβ
T Kβ −

n

∑
i=1

(
αi(ξi−1+Yi[Kβ ]i)+ γiξi

)}
(11.30)

gives the formulas for i, j = 1, . . . ,n

first-order conditions: 2λ [Kβ̂ ] j =
n

∑
i=1

Ki jαiYi and α j + γ j =
1
n
,

slackness conditions: min(αi, ξ̂i−1+Yi[Kβ̂ ]i) = 0 and min(γi, ξ̂i) = 0.

The first first-order condition is fulfilled with β̂i = αiYi/(2λ ). Since f̂F (Xi) = [Kβ̂ ]i,
the first slackness condition enforces that β̂i = 0 if Yi f̂F (Xi)> 1. The second slack-
ness condition, together with the second first-order optimality condition, enforces
that β̂i = Yi/(2λn) if ξ̂i > 0 and 0 ≤ Yiβ̂i ≤ 1/(2λn) otherwise. To conclude the
proof of the proposition, we notice that when ξ̂i > 0, we have β̂i and αi nonzero, and
therefore Yi f̂F (Xi) = 1− ξ̂i < 1 according to the first slackness condition. 2

We observe that when the matrix K = [k(Xi,X j)]i, j=1,...,n is non-singular, there is a
unique solution β̂ to (11.24). We refer to Exercise 11.5.5 for the computation of
β̂ . An implementation of the SVM is available, e.g., in the R package kernlab at
http://cran.r-project.org/web/packages/kernlab/.

Let us now interpret geometrically Proposition 11.12.

Geometrical interpretation: linear kernel

We start with the simplest kernel k(x,y) = 〈x,y〉 for all x,y ∈ Rd . The associated
RKHS is the space of linear forms F =

{
〈w, .〉 : w ∈ Rd

}
. In this case,

f̂F (x) =
n

∑
i=1

β̂i〈Xi,x〉= 〈ŵ,x〉 with ŵ =
n

∑
i=1

β̂iXi ,

so the classifier ĥF (x) = sign(〈ŵ,x〉) assigns labels to points according to their po-
sition relative to the hyperplane

{
x ∈ Rd : 〈ŵ,x〉= 0

}
. The normal ŵ to the hyper-

plane is a linear combination of the support vectors, which are the data points Xi,
such that Yi〈ŵ,Xi〉 ≤ 1. They are represented by squares in Figure 11.5. The hyper-
planes

{
x ∈ Rd : 〈ŵ,x〉=+1

}
and

{
x ∈ Rd : 〈ŵ,x〉=−1

}
are usually called margin

hyperplanes.

We notice the following important property of the SVM. If we add to the learning
data set a point Xn+1, which fulfills Yn+1〈ŵ,Xn+1〉> 1, then the vector ŵ and the clas-
sifier ĥF do not change. In other words, only data points that are wrongly classified
or classified with not enough margin (i.e., Yi〈ŵ,Xi〉 ≤ 1) do influence the separating
hyperplane

{
x ∈ Rd : 〈ŵ,x〉= 0

}
. This property is in contrast with the LDA classi-

fier (11.2), where all the points have an equal weight in the definition of the µ̂k and
Σ̂.
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ξ>0

ξ>0

ξ>0

Figure 11.5 Classification with a linear SVM: The separating hyperplane{
x ∈ Rd : 〈ŵ,x〉= 0

}
is represented in black, and the two margin hyperplanes{

x ∈ Rd : 〈ŵ,x〉=+1
}

and
{

x ∈ Rd : 〈ŵ,x〉=−1
}

are represented in dotted blue and
red, respectively. The support vectors are represented by squares.

φ
FX

Figure 11.6 Classification with a non-linear kernel: The linear classification in F produces
a non-linear classification in X via the reciprocal image of φ .
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Geometrical interpretation: arbitrary positive definite kernels

Let us denote by φ : X →F the map φ(x)= k(x, .), usually called the “feature map.”
According to the reproducing property (E.2), page 325, and Proposition 11.12, we
have

f̂F (x) = 〈 f̂F ,φ(x)〉F =

〈 n

∑
i=1

β̂iφ(Xi),φ(x)
〉

F

.

A point x ∈X is classified by ĥF according to the sign of the above scalar product.
Therefore, the points φ(x) ∈F are classified according to the linear classifier on F

f 7→ sign
(
〈ŵφ , f 〉F

)
, where ŵφ =

n

∑
i=1

β̂iφ(Xi).

The separating frontier
{

x ∈X : f̂F (x) = 0
}

of the classifier ĥF is therefore the
reciprocal image by φ of the intersection of the hyperplane

{
f ∈F : 〈ŵφ , f 〉F = 0

}
in F with the range of φ , as represented in Figure 11.6. We observe that the kernel
k then delinearizes the SVM, in the sense that it produces a non-linear classifier ĥF

with almost the same computational cost as a linear one in Rn.

You can observe SVM in action with the following recreative applet:
http://cs.stanford.edu/people/karpathy/svmjs/demo/.

Why are RKHS useful?

There are mainly two major reasons for using RKHS. The first reason is that using
RKHS allows to delinearize some algorithms by mapping X in F with φ : x→
k(x, .), as represented in Figure 11.6. It then provides non-linear algorithms with
almost the same computational complexity as a linear one.

The second reason is that it allows us to apply to any set X some algorithms that
are defined for vectors. Assume, for example, that we want to classify some proteins
or molecules according to their therapeutic properties. Let X represents our set of
molecules. For any x,y ∈X , let us represent by k(x,y) some measure of similarity
between x and y. If the kernel k : X ×X → R is positive definite, then we can
directly apply the SVM algorithm in order to classify them; see Figure 11.7. Of
course, the key point in this case is to properly design the kernel k. Usually, the
kernel k(x,y) is designed according to some properties of x,y that are known to be
relevant for the classification problem. For example, the number of common short
sequences is a useful index of similarity between two proteins. The computational
complexity for evaluating k(x,y) is also an issue that is crucial in many applications
with complex data.

We point out that RKHS can be used in many other statistical settings in order to ei-
ther delinearize an algorithm or to apply a vectorial algorithm to non-vectorial data.
In principle, it can be used with any algorithm relying only on scalar products 〈x,y〉
by replacing these scalar products by the kernel evaluation k(x,y). Some popular ex-
amples are the kernel-PCA (for a PCA with non-vectorial data; see Exercise 11.5.6)
or the kernel-smoothing in regression.
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φ FX

Figure 11.7 Classification of molecules with an SVM.

Finally, we stress again that as long as we have a representation formula as (11.24),
we do not need to identify the RKHS associated to a positive definite kernel k in
order to implement an algorithm based on RKHS. This property is usually referred
to as the “kernel trick.”

11.3.4 AdaBoost

AdaBoost is an algorithm that computes an approximation of the estimator (11.21)
with the exponential loss `(z) = e−z and the functional space F = span

{
h1, . . . ,hp

}
,

where h1, . . . ,hp are p arbitrary classifiers.

The principle of the AdaBoost algorithm is to perform a greedy minimization of

f̂F ∈ argmin
f∈span{h1,...,hp}

{
1
n

n

∑
i=1

exp(−Yi f (Xi))

}
.

More precisely, it computes a sequence of functions f̂m for m = 0, . . . ,M by starting
from f̂0 = 0 and then solving for m = 1, . . . ,M

f̂m = f̂m−1 +βmh jm ,

where (βm, jm) ∈ argmin
j = 1, . . . , p

β ∈ R

1
n

n

∑
i=1

exp
(
−Yi
(

f̂m−1(Xi)+βh j(Xi)
))

.

The final classification is performed according to ĥM(x) = sign( f̂M(x)), which is an
approximation of ĥH defined by (11.21).
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The exponential loss allows us to compute (βm, jm) very efficiently. Actually, setting
w(m)

i = n−1 exp(−Yi f̂m−1(Xi)), we have

1
n

n

∑
i=1

exp
(
−Yi
(

f̂m−1(Xi)+βh j(Xi)
))

= (eβ − e−β )
n

∑
i=1

w(m)
i 1h j(Xi)6=Yi + e−β

n

∑
i=1

w(m)
i .

When no initial classifier h j perfectly classifies the data (Xi,Yi)i=1,...,n, so that the
condition

errm( j) =
∑

n
i=1 w(m)

i 1h j(Xi)6=Yi

∑
n
i=1 w(m)

i

< 1 for all j = 1, . . . , p

is met, the minimizers (βm, jm) are given by

jm = argmin
j=1,...,p

errm( j) and βm =
1
2

log
(

1− errm( jm)
errm( jm)

)
.

Noticing that −Yih(Xi) = 21Yi 6=h(Xi)− 1, we obtain the standard formulation of the
AdaBoost algorithm.

AdaBoost
Init: w(1)

i = 1/n, for i = 1, . . . ,n

Iterate: For m = 1, . . . ,M do

jm = argmin
j=1,...,p

errm( j)

2βm = log(1− errm( jm))− log(errm( jm))

w(m+1)
i = w(m)

i exp(2βm1h jm (Xi)6=Yi −βm), for i = 1, . . . ,n

Output: f̂M(x) = ∑
M
m=1 βmh jm(x).

We notice that the AdaBoost algorithm gives more and more weight in errm( j) to the
data points Xi, which are wrongly classified at the stage m.

You can observe AdaBoost in action (with half-plane weak-learners h j) with the
following recreative applet: http://cseweb.ucsd.edu/∼yfreund/adaboost/.

11.3.5 Classifier Selection

The practical implementation of the SVM classifier or the AdaBoost classifier re-
quires us to choose different quantities: the kernel k and the tuning parameter λ for
the SVM, the weak learners

{
h1, . . . ,hp

}
and the integer M for AdaBoost. The most

popular technique for choosing these quantities is to apply a V -fold cross-validation
scheme (see Chapter 7). Cross-validation can also be used to compare the SVM to
the boosting, the Linear Discriminant Analysis, the logistic regression, etc.
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11.4 Discussion and References

11.4.1 Take-Home Message

The discrete nature of the labels y enables us to relax the modeling of the data, by
merely assuming that the data are i.i.d. For this reason, some may believe that the
theory of classification presented in Section 11.2 is “model-free.” It is not really
the case, since Estimator (11.5) relies on a dictionary H , which must provide a
good approximation of the Bayes classifier h∗ in the sense that minh∈H L(h)−L(h∗)
must be small. Otherwise, the misclassification probability of Estimator (11.5) will
be large and the theory is useless. There are then some implicit assumptions on the
distribution of the data that are hidden in the choice of the dictionary H (or of the
collection of dictionaries in Section 11.2.3). Yet, Estimator (11.5) enjoys some very
nice statistical properties under very weak assumptions. Its main drawback is its high
computational complexity that is prohibitive when n is larger than a few tens. As in
Chapter 5, a powerful strategy is to relax the minimization problem (11.5) in order to
obtain classifiers that are both computationally efficient and statistically grounded.
Combining this strategy with the use of kernels provides a very flexible theory of
classification that can handle data such as text, graph, images, etc. As usual, the
resulting classifiers depend on some tuning parameters and, again, cross-validation
is a useful technique for selecting them.

11.4.2 References

The mathematical foundations of supervised classification date back to the seminal
work of Vapnik and Chervonenkis [155, 156] in the ’70s, and this topic has since
attracted a lot of effort. For the reader interested in going beyond the basic concepts
presented in this chapter, we refer to the book by Devroye, Györfi, and Lugosi [62]
and the survey by Boucheron, Bousquet, and Lugosi [37] for recent developments
on the topic and a comprehensive bibliography. For more practical consideration,
we refer to the book by Hastie, Tibshirani, and Friedman [91], where many practi-
cal algorithms are described and discussed. Finally, we point out that the concepts
introduced here arise also for the ranking problem (rank at best some data, as your
favorite search engine does); see, e.g., Clémençon, Lugosi and Vayatis [58].

11.5 Exercises

11.5.1 Linear Discriminant Analysis

Let us consider a couple of random variables (X ,Y ) with values in Rd×{−1,1}, and
distribution

P(Y = k) = πk > 0 et P(X ∈ dx|Y = k) = gk(x)dx, k ∈ {−1,1}, x ∈ Rd ,

where π−1 +π1 = 1 and g−1,g1 are two densities in Rd .
1. What is the distribution of X?
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2. Check that the Bayes classifier is given by h∗(x) = sign(π1g1(x)−π−1g−1(x)) for
x ∈ Rd .

We assume henceforth that

gk(x) = (2π)−d/2
√

det(Σ−1
k )exp

(
−1

2
(x−µk)

T
Σ
−1
k (x−µk)

)
, k =−1,1,

for two non-singular matrices Σ−1, Σ1 and µ−1,µ1 ∈ Rd , with µ−1 6= µ1.
3. Prove that when Σ−1 = Σ1 = Σ, the condition π1g1(x)> π−1g−1(x) is equivalent

to

(µ1−µ−1)
T

Σ
−1
(

x− µ1 +µ−1

2

)
> log(π−1/π1).

4. What is the nature of the frontier between {h∗ = 1} and {h∗ =−1} in this case?
5. We assume in addition that π1 = π−1. Prove that

P(h∗(X) = 1|Y =−1) = Φ(−d(µ1,µ−1)/2),

where Φ is the standard Gaussian cumulative function and d(µ1,µ−1) is the Ma-
halanobis distance associated to Σ defined by d(µ1,µ−1) = ‖Σ−1/2(µ1−µ−1)‖.

6. When Σ1 6= Σ−1, what is the nature of the frontier between {h∗ = 1} and {h∗ =
−1}?

In this exercise, we have analyzed the risk of the Bayes classifier h∗, which has a full
knowledge of the parameters π1,µ1,µ−1,Σ of the distribution. We refer to Section
12.7.1, page 270, for an analysis of the LDA classifier (11.2), when Σ = σ2In.

11.5.2 VC Dimension of Linear Classifiers in Rd

For any w ∈ Rd , we denote by hw : Rd →{−1,1}, the classifier

hw(x) = sign(〈w,x〉), for x ∈ Rd .

We compute below the VC dimension of H = {hw : w ∈ Rd}.
1. We write e1, . . . ,ed for the canonical basis of Rd . Prove that for any δ ∈ {−1,1}d

there exists wδ ∈ Rd , such that hwδ
(ei) = δi for i = 1, . . . ,d. Give a lower bound

on dH .
2. For any x1, . . . ,xd+1 ∈Rd , there exists λ ∈Rd+1 nonzero, such that ∑

d+1
i=1 λixi = 0.

We can assume that there exists j, such that λ j > 0, by changing λ in −λ if
necessary. We define δ by δi = sign(λi). By considering the sum ∑

d+1
i=1 λi〈wδ ,xi〉,

prove that there exists no wδ ∈ Rd , such that hwδ
(xi) = δi, for i = 1, . . . ,d + 1.

Conclude that dH = d.
3. We define H̃ = {hw,b : w ∈ Rd , b ∈ R}, where hw,b(x) = sign(〈w,x〉−b). Prove

that the VC dimension of H̃ is d +1.
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11.5.3 Linear Classifiers with Margin Constraints

Assume that F is a Hilbert space, and consider {x1, . . . ,xM} ⊂F with ‖xi‖F ≤ A
for any i = 1, . . . ,M. For r,R > 0 we set

H =
{

hw : w ∈F , ‖w‖F ≤ R and |〈w,xi〉F | ≥ r for i = 1, . . . ,M
}
,

where hw : {x1, . . . ,xM} → {−1,1} is defined by hw(x) = sign(〈w,x〉F ) for any x ∈
{x1, . . . ,xM}. We assume henceforth that M > A2R2/r2. We will prove that dH ≤
A2R2/r2.
1. For n≤M and σ1, . . . ,σn i.i.d. uniform on {−1,1}, prove that

E

[∥∥ n

∑
i=1

σixi
∥∥2

F

]
=

n

∑
i=1
E
[∥∥σixi

∥∥2
F

]
≤ nA2.

2. Conclude that there exists y ∈ {−1,1}n, such that
∥∥∑

n
i=1 yixi

∥∥2
F
≤ nA2.

3. Assume there exists w ∈F , such that hw ∈H and yi〈w,xi〉F ≥ r for i = 1, . . . ,n.
Prove that

nr ≤
〈

w,
n

∑
i=1

yixi

〉
F
≤ RA

√
n.

4. Show that Sn(H )< 2n for R2A2/r2 < n≤M and conclude.

11.5.4 Spectral Kernel

The spectral kernel is a classical kernel for classifying “words” from a finite alphabet
A . For x ∈

⋃
n≥q A n and s ∈A q, we set

Ns(x) = number of occurence of s in x.

The spectral kernel is then defined by

k(x,y) = ∑
s∈A q

Ns(x)Ns(y)

for all x,y ∈
⋃

n≥q A n. It counts the number of common sequences of length q in x
and y.
1. Prove that k is a positive definite kernel on

⋃
n≥q A n.

2. Check that the computational complexity for computing k(x,y) is at most of order
`(x)+ `(y), where `(x) is the length of x.

11.5.5 Computation of the SVM Classifier

We consider the SVM classifier ĥSVM = sign
(

∑
n
j=1 β̂ jk(X j, .)

)
, with β̂ solution

of (11.29). We assume that K = [k(Xi,X j)]i, j=1,...,n is non-singular.
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1. From the Lagrangian problem (11.30) and the Karush–Kuhn–Tucker conditions
prove that

β̂ ∈ argmin
β∈Rn

{
λβ

T Kβ −
n

∑
i=1

α̂i(Yi(Kβ )i−1)
}

for some α̂ ∈ Rn, fulfilling 0≤ α̂i ≤ 1/n for all i = 1, . . . ,n.
2. By Lagrangian duality, we know that α̂ is a solution of

α̂ ∈ argmax
0≤αi≤1/n

min
β∈Rn

{
λβ

T Kβ −
n

∑
i=1

αi(Yi(Kβ )i−1)
}
.

Proves that β̂i = α̂iYi/(2λ ), where

α̂ ∈ argmax
0≤αi≤1/n

{ n

∑
i=1

αi−
1

4λ

n

∑
i, j=1

Ki jyiy jαiα j

}
.

In particular, the SVM classifier ĥSVM can be computed from a simple constrained
quadratic maximization.

11.5.6 Kernel Principal Component Analysis

As discussed above, RKHS allows us to “delinearize” some linear algorithms. We
give an example here with the Principal Component Analysis (see Exercise 1.6.4,
page 22). Assume that we have n points X (1), . . . ,X (n) ∈ X , and let us consider
an RKHS F associated to a positive definite kernel k on X . We denote by φ the
map from X to F defined by φ : x → k(x, .). The principle of Kernel Principal
Component Analysis (KPCA) is to perform a PCA on the points φ(X (1)), . . . ,φ(X (n))
mapped by φ in the RKHS. We then seek for the space Vd ⊂F fulfilling

Vd ∈ argmin
dim(V )≤d

n

∑
i=1
‖φ(X (i))−PV φ(X (i))‖2

F ,

where the infimum is taken over all the subspaces V ⊂F with dimension not larger
than d, and PV denotes the orthogonal projection onto V with respect to the Hilbert
norm ‖.‖F on F . In the following, we denote by L the linear map

L : Rn→F

α →L α =
n

∑
i=1

αiφ(X (i)).

1. By adapting the arguments of Proposition 11.9, prove that Vd = LVd , with Vd
fulfilling

Vd ∈ argmin
dim(V )≤d

n

∑
i=1
‖φ(X (i))−PLV φ(X (i))‖2

F ,

where the infimum is taken over all the subspaces V ⊂ Rn with dimension not
larger than d.
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2. We denote by K the n×n matrix with entries Ki, j = k(X (i),X ( j)) for i, j = 1, . . . ,n.
We assume in the following that K is non-singular. Prove that ‖L K−1/2α‖2

F =
‖α‖2 for any α ∈ Rn.

3. Let V be subspace of Rn of dimension d and denote by (b1, . . . ,bd) an orthonor-
mal basis of the linear span K1/2V . Prove that (L K−1/2b1, . . . ,L K−1/2bd) is an
orthonormal basis of LV .

4. Prove the identities

PLV L α =
d

∑
k=1
〈L K−1/2bk,L α〉F L K−1/2bk

= L K−1/2ProjK1/2V K1/2
α ,

where ProjK1/2V denotes the orthogonal projector onto K1/2V in Rn.
5. Let us denote by (e1, . . . ,en) the canonical basis of Rn. Check that

n

∑
i=1
‖φ(X (i))−PLV φ(X (i))‖2

F =
n

∑
i=1
‖L ei−L K−1/2ProjK1/2V K1/2ei‖2

F

=
n

∑
i=1
‖K1/2ei−ProjK1/2V K1/2ei‖2

= ‖K1/2−ProjK1/2V K1/2‖2
F ,

where ‖.‖F denotes the Frobenius norm ‖A‖2
F = ∑i, j A2

i j.
6. With Theorem C.5, page 315, in Appendix C, prove that Vd = span{v1, . . . ,vd},

where v1, . . . ,vd are eigenvectors of K associated to the d largest eigenvalues of
K.

7. We set fk = L K−1/2vk for k = 1, . . . ,d. Check that ( f1, . . . , fd) is an orthonormal
basis of Vd and

PV φ(X (i)) =
n

∑
k=1
〈vk,K1/2ei〉 fk.

So, in the basis ( f1, . . . , fd), the coordinates of the orthogonal projection of the
point φ(X (i)) onto V are

(
〈v1,K1/2ei〉, . . . ,〈vd ,K1/2ei〉

)
.



Chapter 12

Clustering

In the previous chapters, the data were considered homogeneous: all the observa-
tions were distributed according to a common model. Such an assumption is valid
for data coming from small-scale controlled experiments, but it is highly unrealis-
tic in the era of “Big Data”, where data come from multiple sources. A recipe for
dealing with such inhomogeneous data is to consider them as an assemblage of sev-
eral homogeneous data sets, corresponding to homogeneous “subpopulations”. Then
each subpopulation can be treated either independently or jointly. The main hurdle
in this approach is to recover the unknown subpopulations, which is the main goal of
clustering algorithms.

Clustering algorithms can also be used for some other purposes. Two important mo-
tivations are scientific understanding and data quantization. In many fields, finding
groups of items with similar behavior is of primary interest, as finding structures is
a first step towards the scientific understanding of complex systems. For example,
finding groups of genes with similar expression level profiles is important in biology,
as these genes are likely to be involved in a common regulatory mechanism. Sum-
marizing a cloud of n data points by a smaller cloud of K points is another important
motivation for clustering. For example, we may wish to summarize the expression
level profiles of tens of thousands of genes by a small number of representative pro-
files (templates) and then only work with these templates which are lighter to handle.

The methodology for clustering can be based on some proximity-separation
paradigms, or on some statistical models. The proximity-separation paradigm is
model free and offers some easy-to-understand algorithms. It is yet difficult to define
a clear “ground truth” objective in this perspective, and to evaluate the performance
of a given algorithm. The statistical paradigm, based on a probabilistic modeling, is
more easily amenable to interpretation and statistical analysis. Most of this chapter’s
focus is on this approach.

251
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12.1 Proximity-Separation-Based Clustering

12.1.1 Clustering According to Proximity and Separation

Assume that we have n data points X1, . . . ,Xn in a metric space (X ,d). Informally,
the goal of clustering is to find a partition G= {G1, . . . ,GK} of the indices {1, . . . ,n},
such that, data points with indices within a group are similar, and those with indices
in different groups are different. Can we make this statement more formal?

The answer is no, in general, as the two objectives “group similar points” and “sep-
arate different points” can be contradictory. For example, consider the cells of your
two legs, while standing. The cells of one leg can be considered similar, as they are
in the same connected components. And the cells of different legs can be consid-
ered different, as they are in different connected components. Yet, when standing,
the cells of your right foot are much closer to the cells of your left foot, than to the
cells of your right thigh. Shall we group together cells of feet, or cells of a common
leg? From this toy example, we observe that we have no “ground truth”. Is it better
to split cells in terms of “left / right legs” or in terms of “foot / thigh”? Hence, there
are as many notions of proximity-separation-based clustering as there are notions of
proximity and separation.

In this section, we briefly present the two most widely used algorithms for proximity-
separation clustering: Kmeans algorithm and hierarchical clustering algorithm(s).

12.1.2 Kmeans Paradigm

The principle of Kmeans clustering is to represent the n data points X1, . . . ,Xn ∈X
by K representative points θ1, . . . ,θK ∈X such that the cumulative residual square
distance

n

∑
i=1

min
k=1,...,K

d(xi,θk)
2,

is minimal. Hence, Kmeans clustering seeks to solve the minimization problem(
θ̂1, . . . , θ̂K

)
∈ argmin

(θ1,...,θK)∈X K

n

∑
i=1

min
k=1,...,K

d(xi,θk)
2. (12.1)

Then, the partition ĜKmeans is defined by

ĜKmeans
k =

{
i ∈ {1, . . . ,n} : d(xi,θk) = min

k′=1,...,K
d(xi,θk′)

}
,

with ties broken randomly.

In general, solving the minimization problem (12.1) is NP-hard, and even hard to
approximate [11]. We refer to Section 12.3 for an analysis of Kmeans clustering.
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Figure 12.1 Left: data points in R2. Right: dendrogram of hierarchical clustering with Eu-
clidean distance d and complete linkage `. The colors correspond to the clustering output
when selecting K = 2 clusters.

12.1.3 Hierarchical Clustering Algorithms

The principle of Kmeans clustering is to try to minimize the global criterion (12.1).
The strategy in hierarchical clustering is different. The principle is to merge data
points step-by-step, by merging at each step the two closest groups of points.

More precisely, the hierarchical clustering algorithms cluster data points sequentially,
starting from a trivial partition with n singletons (each data point is a cluster on its
own) and then merging them step-by-step until eventually getting a single cluster
with all the data points. At the end of the process, we obtain a hierarchical family of
nested clusterings and the data scientist can choose her favorite one.

Linkage

In hierarchical clustering, the recipe for merging points is quite simple: at each step
the algorithm merges the two closest clusters (in a sense to be defined) of the current
clustering, letting the other clusters unchanged. This requires the definition of a “dis-
tance” `(G,G′) between clusters G and G′, usually called “linkage”. Let d(x,y) be
any distance on X ; typically d(x,y) = ‖x− y‖ or d(x,y) = |x− y|1 when X = Rp.
Some classical examples of linkage are:
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• Single linkage: single linkage corresponds to the smallest distance between the
points of the two clusters

`single(G,G′) = min
{

d(xi,x j) : i ∈ G, j ∈ G′
}
.

Single linkage clustering tends to produce clusters looking like “chains”, and we
can have within a cluster two data points x,y with d(x,y) very large.

• Complete linkage: complete linkage is somewhat the opposite of single linkage.
It corresponds to the largest distance between the points of the two clusters

`complete(G,G′) = max
{

d(xi,x j) : xi ∈ G, x j ∈ G′
}
.

Complete linkage clustering tends to produce “compact” clusters where all data
points are close to each other.

• Average linkage: average linkage corresponds to the average distance between
the points of the clusters G,G′

`average(G,G′) =
1

|G||G′| ∑
i∈G, j∈G′

d(xi,x j).

The clustering produced by average linkage is less “chainy” than those produced
by single linkage and less compact than those produced by complete linkage.

Hierarchical Clustering Algorithm

Hierarchical clustering algorithms start from the trivial partition G(n)= {{1} , . . . ,{n}}
with n clusters, and then sequentially merge clusters two-by-two. At each step, the
algorithm merges the two clusters G,G′ available at this step with the smallest link-
age `(G,G′). The output is a sequence of clustering G(1), . . . ,G(n) with K = 1, . . . ,n
clusters. These clusterings are nested, in the sense that for j ≤ k the partition G(k) is
a sub-partition of G( j).

Hierarchical clustering
• Input: data points X1, . . . ,Xn and a linkage `

• Initialization: G(n) = {{1} , . . . ,{n}}
• Iterations: for t = n, . . . ,2

– find (â, b̂) ∈ argmin(a,b) `(G
(t)
a ,G(t)

b )

– build G(t−1) from G(t) by merging G(t)
â and G(t)

b̂
. The other clusters are left

unchanged.
• Output: the n partitions G(1), . . . ,G(n) of {1, . . . ,n}.
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Dendrogram

It is popular to represent the sequence of clustering G(1), . . . ,G(n) with a dendrogram,
which is a tree, rooted in G(1), and whose leaves correspond to G(n). The dendrogram
depicts how the merging is performed. The partition G(k) can be read on the dendro-
gram as follows, see Figure 12.1:
1. locate the level where there are exactly k branches in the dendrogram;
2. cut the dendrogram at this level in order to get k subtrees; and
3. read the clustering as follows: Each subtree corresponds to one cluster, gathering

the points corresponding to its leaves.
The height in the tree represents the distance between two clusters. A classical recipe
for choosing the number k of clusters is to look for a level k where the height between
two successive merges increases abruptly.

Hierarchical clustering algorithms are popular, as they are simple to understand and
to visualize. When the clusters are well separated, they succeed to recover the hid-
den partition G∗, see Exercise 12.9.1. Yet, hierarchical clustering is based on local
information, and does not take into account global information on the distribution
of the cloud of points, especially at the first steps. As the mistakes in the first steps
cannot be repaired in the following steps, it is a strong limitation for clustering in a
less separated case. It is also not clear which global criteria hierarchical clustering
seek to minimize and for which data distributions it has an optimal behavior.

In the remaining of this chapter, we change the point of view. Starting from a data
distribution modeling, we seek algorithms achieving the best possible performance,
with computational complexity constraints.

12.2 Model-Based Clustering

12.2.1 Gaussian Sub-Population Model

We assume from now on that the n observations X1, . . . ,Xn ∈ Rp are independent,
but not identically distributed. We denote by µi = E[Xi] the mean of Xi and by
Σi = Cov(Xi) the covariance of Xi. As discussed in introduction, we assume that
the distribution of the Xi is homogeneous across some subpopulations. This means
that there exists an unknown partition G∗ = {G∗1, . . . ,G∗K} of {1, . . . ,n}, such that,
within a group G∗k all the means and covariances are equal. In this chapter, we re-
strict ourselves to the Gaussian setting and consider the following model.

Definition Gaussian cluster model
We assume that

1. the observations X1, . . . ,Xn ∈ Rp, are independent,

2. there exists a partition G∗ = {G∗1, . . . ,G∗K} of {1, . . . ,n}, and θ1, . . . ,θK ∈ Rp,
Λ1, . . . ,ΛK ∈ Rp×p such that

for all i ∈ G∗k : Xi ∼N (θk,Λk). (12.2)
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As in the previous chapter, we denote by X∈Rn×p the matrix whose i-th row is given
by Xi. We define similarly the matrices
• M ∈ Rn×p the matrix whose i-th row is given by E[Xi] = µi;
• E ∈ Rn×p the matrix whose i-th row is given by Ei = Xi−µi;
• Θ ∈ RK×p the matrix whose k-th row is given by θk;
• and A ∈Rn×K the membership matrix defined by Aik = 1i∈G∗k

, for i = 1, . . . ,n, and
k = 1, . . . ,K.

Then we have the compact formula

X = M+E = AΘ+E.

Remark: a popular variant of the Gaussian cluster model is the Gaussian mixture
model. This model has an additional generating feature compared to the Gaussian
cluster model: Instead of being arbitrary, the partition G∗ is generated by sampling
for each observation i the label of the group according to a probability distribution
π on {1, . . . ,K}. We refer to Exercise 12.9.9 for properties of this model and the
associated EM algorithm.

12.2.2 MLE Estimator

The negative log-likelihood of the distribution N (θk,Λk) with respect to the obser-
vation Xi is

1
2
(Xi−θk)

T
Λ
−1
k (Xi−θk)+

1
2

log(det(Λk))+
p
2

log(2π),

so the maximum likelihood estimator of the partition G∗ is given by

ĜMLE ∈ argmin
G

K

∑
k=1

min
Λk∈S +

p

min
θk∈Rp ∑

i∈Gk

(
(Xi−θk)

T
Λ
−1
k (Xi−θk)+ log(det(Λk))

)
(12.3)

where S +
p is the set of p× p positive semi-definite matrices and where the first

minimum is over all partitions G of {1, . . . ,n} into K groups.

The MLE estimator ĜMLE suffers from several drawbacks.
1. A first drawback is related to the cardinality of the set of partitions of {1, . . . ,n}

into K groups. This cardinality, known as Sterling number of the second kind,
grows exponentially fast with n like Kn/K!, see Exercise 12.9.8. Hence, the com-
putational cost of scanning the set of partitions of {1, . . . ,n} into K groups is
prohibitive and ĜMLE cannot be computed except for very small sample sizes.

2. From a more statistical point of view, the estimation of Λk is unstable in high-
dimensional settings, and even degenerated when p is larger than n.

To avoid the second issue, a classical solution is to consider Criterion (12.3) with all
Λk set to σ2In. This leads to the already met Kmeans criterion.
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12.3 Kmeans

12.3.1 Kmeans Algorithm

When setting all Λk to σ2In, Criterion (12.3) reduces to the Kmeans criterion (12.1).
Let us observe that

min
θk∈Rp ∑

i∈Gk

‖Xi−θk‖2 = ∑
i∈Gk

‖Xi−XGk‖
2, where XGk =

1
|Gk| ∑

i∈Gk

Xi

is the mean of the observations in Gk.
Then, the minimization of (12.3) when all Λk have been set to σ2In, is given by the
Kmeans clustering.

ĜKmeans ∈ argmin
G

CritK(G), with CritK(G) =
K

∑
k=1

∑
i∈Gk

‖Xi−XGk‖
2. (12.4)

We have the alternative formulas for Kmeans
Lemma 12.1 Alternative formulas for Kmeans.

Symmetrization: we have

CritK(G) =
1
2

K

∑
k=1

1
|Gk| ∑

i, j∈Gk

‖Xi−X j‖2. (12.5)

Matrix form: the Kmeans minimization problem can be written as

ĜKmeans ∈ argmax
G
〈XXT ,B(G)〉F , (12.6)

where the p× p matrix B(G) is defined by

Bi j(G) =
1
|Gk|

if i, j ∈ Gk, k = 1, . . . ,K,

and Bi j(G) = 0 if i and j are in different groups.

Proof of Lemma 12.1.
Symmetrization: Let us observe that

1
|Gk| ∑

i∈Gk

‖Xi−XGk‖
2 =

1
|Gk| ∑

i∈Gk

〈Xi−XGk ,Xi〉−
1
|Gk| ∑

i∈Gk

〈Xi−XGk ,XGk〉.

with the second sum equal to 0 by bilinearity of the scalar product. Hence, by sym-
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metry

∑
i∈Gk

‖Xi−XGk‖
2 =

1
|Gk| ∑

i, j∈Gk

〈Xi−X j,Xi〉

=
1
2

(
1
|Gk| ∑

i, j∈Gk

〈Xi−X j,Xi〉+
1
|Gk| ∑

i, j∈Gk

〈X j−Xi,X j〉

)

=
1
2

1
|Gk| ∑

i, j∈Gk

‖Xi−X j‖2.

Summing over k gives Equation (12.5).

Matrix form: We observe that

K

∑
k=1

1
|Gk| ∑

i, j∈Gk

‖Xi‖2 =
n

∑
i=1
‖Xi‖2 = ‖X‖2

F ,

so expanding the squares in (12.5) gives

CritK(G) = ‖X‖2
F −

K

∑
k=1

∑
i, j∈Gk

1
|Gk|
〈Xi,X j〉.

The first term in the right-hand side is independent of G, and the second term can be
written as 〈XXT ,B(G)〉F , since [XXT ]i j = 〈Xi,X j〉. Equation (12.6) follows. �

12.3.2 Bias of Kmeans

Let us denote by Γ the diagonal matrix, with entries Γii = Tr(Cov(Xi)) =
Tr(Cov(Ei)). Since, for any i 6= j

E
[
‖Xi−X j‖2]= ‖E [Xi−X j]‖2 +Tr(Cov(Xi−X j)) = ‖µi−µ j‖2 +Γii +Γ j j ,

we get that for any partition G of {1, . . . ,n} into K groups

E [CritK(G)] =
1
2

K

∑
k=1

1
|Gk| ∑

i, j∈Gk

(
‖µi−µ j‖2 +Γii +Γ j j

)
1i6= j

=
1
2

K

∑
k=1

1
|Gk| ∑

i, j∈Gk

‖µi−µ j‖2 +Tr(Γ)−
K

∑
k=1

1
|Gk| ∑

i∈Gk

Γii. (12.7)

When all the covariances are the same, we have Γii = Tr(Γ)/p so

E [CritK(G)] =
1
2

K

∑
k=1

1
|Gk| ∑

i, j∈Gk

‖µi−µ j‖2 +

(
1− K

p

)
Tr(Γ).

Since the second term in the right-hand side of the equality is independent of G, we
observe that E [CritK(G)] is minimum for the target partition G∗, as it is the only
partition for which µi = µ j for any i, j in the same group.
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Yet, when the Γii do not all have the same value, the minimum of (12.7) may not be
G∗. Actually, smaller values than E [CritK(G∗)] can be achieved by splitting groups
with large Γii in order to increase the last sum in (12.7). We refer to Exercise 12.9.2
for such an example.
The origin of the bias is easily seen on the formulation (12.6) of the Kmeans criterion.
Indeed, since

(XXT )i j = (AΘΘ
T AT )i j +ET

i E j +ET
i (Θ

T AT ) j +(AΘ)T
i E j,

with E
[
ET

i E j
]
= 1i= j Γii, we have

E
[
XXT ]= AΘΘ

T AT +Γ,

which is the sum of a block structured matrix AΘΘT AT and a diagonal matrix Γ.
When the diagonal matrix Γ is not proportional to the idendity, it can blur the signal
AΘΘT AT as in Exercise 12.9.2. To overcome this issue, a solution is to “debias” the
Gram matrix XXT by removing an estimator Γ̂ of Γ.

12.3.3 Debiasing Kmeans

For a given estimator Γ̂ of Γ, the debiased Kmeans criterion is defined by

ĜDebiased−Kmeans ∈ argmax
G
〈XXT − Γ̂,B(G)〉F , (12.8)

where the p× p matrix B(G) is defined by

Bi j(G) =
1
|Gk|

if i, j ∈ Gk, k = 1, . . . ,K,

and Bi j(G) = 0 if i and j are in different groups.
A first approach to handle the bias induced by Γ̃ii := ‖Ei‖2 is to remove the diagonal
of XXT , which amounts to take

Γ̂
(0) = diag(XXT ).

Let us define the quantities

‖Θ‖2∞ = max
k
‖θk‖, |Λ|op = max

k
|Λk|op and ‖Λ‖F = max

k
‖Λk‖F . (12.9)

Then, since
Γ̂
(0)
ii − Γ̃ii = ‖Xi‖2−‖Ei‖2 = ‖µi‖2 +2〈µi,Ei〉,

with 〈µi,Ei〉 distributed as a N (0,µT
i Σiµi) Gaussian random variable, and since

µ
T
i Σiµi ≤ |Σi|op‖µi‖2 ≤ |Λ|op‖Θ‖2∞,

we get for any L≥ 0

P
[
|Γ̂(0)− Γ̃|∞ ≤ ‖Θ‖2

2∞ +‖Θ‖2∞

√
2|Λ|op(log(n)+L)

]
≤ 1− e−L.
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We observe that this bound involves ‖Θ‖2
2∞

, which can be much larger than the
mean differences ‖µi − µ j‖2. Worst, this error is systematic, in the sense that

E
[
Γ̂
(0)
ii − Γ̃ii

]
= ‖µi‖2 for i = 1, . . . ,n. Since debiasing with Γ̂(0) amounts to replace

Γii by Γii−E
[
Γ̂
(0)
ii

]
= −‖µi‖2 in (12.7), removing the diagonal amounts to replace

the bias

−
K

∑
k=1

1
|Gk| ∑

i∈Gk

Γii by the bias
K

∑
k=1

1
|Gk| ∑

i∈Gk

‖µi‖2.

In the case where the means in the different groups have quite different norms, this
bias tends to enforce a splitting of the groups with small means, and a merging of the
groups with large means.

In order to avoid this unwanted phenomenon, it is possible to derive some more subtle
estimators Γ̂, with error bound independent of ‖Θ‖2∞. Let us explain a first step in
this direction. A more complex estimator completely removing the dependence in
‖Θ‖2∞ is described in Exercise 12.9.3.

If we knew the partition G∗, “estimating1” the random quantity Γ̃ii (or the parameter
Γii) would be a simple task. Actually, if i′ 6= i belongs to the same group as i, then

〈Xi−Xi′ ,Xi〉= ‖Ei‖2−〈Ei,Ei′〉+ 〈µi,Ei−Ei′〉, (12.10)

with E [〈Ei,Ei′〉] = E [〈µi,Ei−Ei′〉] = 0. So 〈Xi−Xi′ ,Xi〉 is an unbiased “estimator”
of Γ̃ii (and Γii).
The difficulty is that we do not know G∗, and we need to estimate Γii to estimate G∗.
We can build yet on (12.10), by replacing i′ by a data-driven choice î. We observe
that we have the decomposition

〈Xi−Xî,Xi〉−〈Xi−Xi′ ,Xi〉= 〈Xi−Xî,Xi′〉−〈Xi−Xi′ ,Xî〉,

and we will be able to control the size of the right-hand side if we are able to con-
trol maxk |〈Xi−Xî,Xk〉|. This observation motivates the definition of the following
estimator

Γ̂
(1)
ii = 〈Xi−Xî,Xi〉, with î ∈ argmin

j
max

k:k 6=i, j
|〈Xi−X j,Xk〉|. (12.11)

This estimator fulfills the following bound.

Lemma 12.2 Assume that each group Gk has a cardinality as least 2. Then, with
probability at least 1−2e−L, we have

|Γ̂(1)− Γ̃|∞

≤ 6‖Θ‖2∞

√
|Λ|op(3log(n)+L)+10(‖Λ‖F

√
2log(n)+L)∨ (|Λ|op(4log(n)+2L)).

1we use the word “estimation” even if Γ̃ii is a random quantity, not a parameter
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Proof of Lemma 12.2. Take i′ 6= i in the same group as i. Starting from the decom-
position

〈Xi−Xî,Xi〉= 〈Xi−Xi′ ,Xi〉+ 〈Xi−Xî,Xi′〉−〈Xi−Xi′ ,Xî〉

and using µi = µi′ , as well as the definition of î, we get

|Γ̂(1)
ii − Γ̃ii| ≤|〈µi,Ei−Ei′〉|+ |〈Ei′ ,Ei〉|+max

k 6=i,̂i
|〈Xi−Xî,Xk〉|+max

k 6=i,i′
|〈Xi−Xi′ ,Xk〉|

≤|〈µi,Ei−Ei′〉|+ |〈Ei′ ,Ei〉|+2max
k 6=i,i′
|〈Xi−Xi′ ,Xk〉|

≤3max
k,i,i′
|〈µk,Ei−Ei′〉|+5max

k,i
|〈Ei,Ek〉|.

Since 〈µk,Ei − Ei′〉 follows a N (0,µT
k (Σi + Σi′)µk) Gaussian distribution with

µT
k (Σi +Σi′)µk ≤ 2|Λ|op‖Θ‖2∞, a simple union bound gives

P
[

max
k,i,i′
|〈µk,Ei−Ei′〉|> 2‖Θ‖2∞

√
|Λ|op(3log(n)+L)

]
≤

n

∑
i,i′,k=1

P
[
|〈µk,Ei−Ei′〉|> 2‖Θ‖2∞

√
|Λ|op(3log(n)+L)

]
≤ e−L.

We can write the scalar product 〈Ei,Ek〉 as εT
i Σ

1/2
i Σ

1/2
k εk, with εi,εk, two independent

standard Gaussian random variables in Rp. Hence, Hanson-Wright inequality (B.6)
on page 303 ensures that

P
[
|〈Ei,Ek〉|> (2‖Σ1/2

i Σ
1/2
k ‖F

√
L)∨ (4|Σ1/2

i |op|Σ1/2
k |opL)

]
≤ e−L.

So, a union bound gives

P
[

max
i 6=k
|〈Ei,Ek〉|> (2‖Λ‖F

√
2log(n)+L)∨ (4|Λ|op(2log(n)+L))

]
≤ e−L.

(12.12)
The proof of Lemma 12.2 is complete. �

We observe that the upper bound in Lemma 12.2 still depends on ‖Θ‖2∞. The im-
provement upon Γ̂(0) is that the dependence is linear, instead of quadratic. In order
to get rid of this dependence, we must go one step further and consider an estima-
tor of the form 〈Xi−Xî1

,Xi−Xî2
〉 for two well-chosen indices î1, î2. We refer to the

Exercise 12.9.3 for such an estimator.

12.4 Semi-Definite Programming Relaxation

While Kmeans has the nice feature of not requiring to estimate all the covariance
matrices Λk, it suffers from the same computational issue as the MLE, since we need
to explore the set of partitions in order to minimize it.
In the spirit of Chapter 5, an approach to overcome this issue is to convexify
the optimization problem. In this direction, the formulation (12.6) is useful as the
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set {B(G) : G partition into K groups} is easily amenable to a convexification. Next
lemma gives a helpful representation of this set.

Lemma 12.3 Let us denote by 1 the n-dimension vector with all entries equal to
1, and by S +

n the set of n×n symmetric positive semi-definite matrices. Then, for
any 1≤ K ≤ n, we have

{B(G) : G partition of {1, . . . ,n} into K groups}
=
{

B ∈S +
n : B2 = B, B1 = 1, Tr(B) = K, B≥ 0

}
(12.13)

where the matrix B(G) has been defined in Lemma 12.1, page 257 and where
B≥ 0 denotes the set of constraints Bi j ≥ 0, for i, j = 1, . . . ,n.

Proof of Lemma 12.3. First, we observe that all matrices B(G) fulfill the properties
B ∈S +

n , B2 = B, B1 = 1, Tr(B) = K, B≥ 0, so the left-hand side set is included in
the right-hand side set.
Let us consider a matrix B in the right-hand side set. The properties B∈S +

n , B2 = B,
and Tr(B) = K enforce that B is an orthogonal projector of rank K. Let us consider
an index a corresponding to the maximum value on the diagonal Baa = maxb Bbb.
The three properties Baa = [B2]aa (since B2 = B), Bab ≤

√
BaaBbb ≤ Baa (Cauchy–

Schwartz), and ∑b Bab = 1 (since B1 = 1) give

Baa =
n

∑
b=1

BabBab ≤
n

∑
b=1

BabBaa = Baa.

So the inequality must be an equality in the above display. As a consequence, Bab is
either equal to 0 or Baa. Let us define G = {b : Bab = Baa}. Since

1 =
p

∑
b=1

Bab = ∑
b∈G

Bab = |G|Baa,

we get that Bab = 1/|G| for all b ∈ G, and Bab = 0 otherwise.
Furthermore, since for any b ∈ G we have

Baa = Bab ≤
√

BaaBbb ≤ Baa,

we obtain that Bbb = Baa for all b ∈ G. Following the same reasoning as for a, we
get that Bbc = 1/|G| for all c ∈ G, and Bbc = 0 otherwise. So we have the block-
decomposition

B =

[
BGG BGGc

BGcG BGcGc

]
=

[ 1
|G| 0
0 BGcGc

]
.

We observe that the matrix BGcGc belongs to the set{
B ∈S +

n−|G| : B2 = B, B1 = 1, Tr(B) = K−1, B≥ 0
}
,
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so we can apply the same reasoning as before and by induction we get that there
exists G1, . . . ,GK disjoints such that

B =


1
|G1|

0 . . . 0
. . . . . . . . . 0
0 . . . 1

|GK | 0
0 . . . . . . 0

 ,
where the (K+1)-th group with only 0, may be empty. To conclude, we observe that
since B1 = 1, the (K + 1)-th group is actually empty, so {G1, . . . ,GK} is a partition
of {1, . . . ,n} and B = B({G1, . . . ,GK}). �

A consequence of Lemmas 12.1 and 12.3, is that Kmeans algorithm (12.4) is equiv-
alent to the maximization problem

B̂Kmeans ∈ argmax
B in (12.13)

〈XXT ,B〉,

with the partition ĜKmeans obtained by grouping together indices i, j such that
B̂Kmeans

i j 6= 0.

From an optimization point of view, we observe that the objective function B→
〈XXT ,B〉 is linear, the constraints B1 = 1, Tr(B) = K, B ≥ 0 are linear and the
constraint B∈S +

n is conic. Hence, the difficulty of the optimization problem is only
due to the projector constraint B2 = B. Hence, a simple way to convexify the problem
is to drop out this constraint B2 = B and to compute the solution of the Semi-Definite
Programming (SDP) problem

B̂SDP ∈ argmax
B∈C

〈XXT ,B〉, with C =
{

B ∈S +
n : B1 = 1, Tr(B) = K, B≥ 0

}
,

(12.14)
which can be solved numerically in polynomial time.

Since we have dropped the condition B2 = B in C , we may not have B̂SDP ∈
{B(G) : G partition into K groups}, so in general, the matrix B̂SDP is not linked to
a specific ĜSDP by B̂SDP = B(ĜSDP). In order to get a partition, we need to apply
some “rounding” to the entries of B̂SDP. For example, we can run a basic cluster-
ing algorithm on the entries of B̂SDP, like hierarchical clustering algorithm to get an
estimated partition ĜSDP.

For the same reason as before, when Γ is not proportional to the identity, it is wise to
replace the Gram matrix XXT in (12.14) by a debiased version XXT − Γ̂.

This SDP-Kmeans clustering algorithm has some nice theoretical properties, and can
be computed in polynomial time. Yet, in practice, it suffers of a quite high computa-
tional cost since C gathers O(n2) linear constraints together with a semi-definite pos-
itive constraint. Computationally more efficient alternatives are needed for n larger
than a few hundreds. Similarly as in Chapter 6, instead of following the convex-
ification approach of Chapter 5, we may try a more greedy approach, seeking to
approximately minimize the Kmeans criterion (12.4). This approach is implemented
in the Lloyd algorithm.
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12.5 Lloyd Algorithm

The principle of the Lloyd algorithm is to decouple the estimation of the partition
G and the estimation of the centers θk in (12.4), and to alternate between the two
estimation problems.

Lloyd algorithm

Initialization: start from Ĝ(0) and t = 0.

Iterate: until convergence

1. θ̂
(t)
k = X

G(t)
k

, for k = 1, . . . ,K;

2. G(t+1)
k =

{
i : k ∈ argmin

j=1,...,K
‖Xi− θ̂

(t)
j ‖

2
}

, for k = 1, . . . ,K;

3. t← t +1.

Output: G(t) =
{

G(t)
1 , . . . ,G(t)

K

}
Each iteration of the Lloyd algorithm is cheap in terms of computations, and the
running cost of the Lloyd algorithm is low. Yet, it suffers from two drawbacks. First,
as Kmeans, it suffers from a bias, and this issue is even stronger in this case as it
happens even when the covariances are all equal (see below). Second, the output of
the algorithm is very sensitive to the initialization, so it must be initialized with care.
Let us detail these two points.

12.5.1 Bias of Lloyd Algorithm

Let us consider two groups G j and Gk. At the second stage of Lloyd iterations, we
ideally would like to have ‖Xi−XG j‖2 < ‖Xi−XGk‖2 as soon as ‖µi− µG j

‖2 <

‖µi−µGk
‖2. Let us investigate the population values of these quantities. Writing 1̃G

for the vector with entries equal to [1̃G]i = 1/|G| if i ∈ G and [1̃G]i = 0 if i /∈ G, and
writing ΓG for the average of the values {Γii : i ∈ G} and ei for the i-th vector of the
canonical basis, we have

E
[
‖Xi−XG j‖

2−‖Xi−XGk‖
2]

= (ei− 1̃G j)
TE
[
XXT ](ei− 1̃G j)− (ei− 1̃Gk)

TE
[
XXT ](ei− 1̃Gk)

= ‖µi−µG j
‖2−‖µi−µGk

‖2 +(ei− 1̃G j)
T

Γ(ei− 1̃G j)− (ei− 1̃Gk)
T

Γ(ei− 1̃Gk)

= ‖µi−µG j
‖2−‖µi−µGk

‖2 +

(
ΓG j

|G j|
−

ΓGk

|Gk|

)
−2Γii

(1i∈G j

|G j|
−

1i∈Gk

|Gk|

)
.

We observe that E
[
‖Xi−XG j‖2−‖Xi−XGk‖2

]
is equal to ‖µi − µG j

‖2 − ‖µi −
µGk
‖2 plus two additional terms. These two terms have different impact on the popu-

lation version of the Lloyd algorithm. The first term tends to favor groups with small
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sizes, and as for the Kmeans criterion it tends to split groups with large variances.
The second term is of a different nature: it tends to favor the group G(t)

j to which
i belongs to at step t. As a consequence, this term can prevent from reclassifying a
misclassified Xi.
We emphasize that, contrary to the Kmeans criterion (12.4), this bias exists even in
the case where Γ is proportional to the identity matrix Γ = |Γ|∞In. Indeed, in this case
we have

E
[
‖Xi−XG j‖

2−‖Xi−XGk‖
2]= ‖µi−µG j

‖2−‖µi−µGk
‖2

+ |Γ|∞
(

1−21i∈G j

|G j|
−

1−21i∈Gk

|Gk|

)
.

So, even when all the covariances Σi are the same, we need to remove the bias from
the Lloyd updates. Similarly to Kmeans, we reduce the bias by subtracting to XXT

an estimator Γ̂ of Γ.

Debiased Lloyd algorithm

Input: Γ̂, Ĝ(0) and t = 0.

Iterate: until convergence

1. θ̂
(t)
k = X

G(t)
k

, for k = 1, . . . ,K;

2. G(t+1)
k =

{
i : k ∈ argmin

j=1,...,K
(ei− 1̃

G(t)
j
)T (XXT − Γ̂

)
(ei− 1̃

G(t)
j
)
}

, for k = 1, . . . ,K;

3. t← t +1.

Output: G(t) =
{

G(t)
1 , . . . ,G(t)

K

}
For the special case where all the covariances are equal to a common matrix Σ, so
that Γ = Tr(Σ) In, we can use the following simple estimator

Γ̂ =
1
2

min
i6= j
‖Xi−X j‖2 In (12.15)

of Γ.

Lemma 12.4 When all the covariances are equal to a common matrix Σ, so that
Γ = Tr(Σ) In, and when 2≤ K < n, the Estimator (12.15) fulfills the bound

P
[
‖Γ̂−Γ‖∞ ≤ (3

√
2‖Σ‖2

F(2log(n)+L))∨ (10|Σ|op(2log(n)+L))
]
≥ 1−3e−L.



266 CLUSTERING

Proof of Lemma 12.4. For any i 6= j, we have

‖Xi−X j‖2 = ‖µi−µ j‖2 +2〈µi−µ j,Ei−E j〉+‖Ei−E j‖2

=

(
‖µi−µ j‖+

〈
µi−µ j

‖µi−µ j‖
,Ei−E j

〉)2

−
〈

µi−µ j

‖µi−µ j‖
,Ei−E j

〉2

+‖Ei−E j‖2

≥−
〈

µi−µ j

‖µi−µ j‖
,Ei−E j

〉2
+‖Ei−E j‖2.

The random variable ε = (2Σ)−1/2(Ei−E j) follows a standard Gaussian distribution,
so from (B.5), with S =−2Σ we have

P
[
‖Ei−E j‖2 ≥ 2Tr(Σ)− (4

√
2‖Σ‖2

F L)∨ (16|Σ|opL)
]
≥ 1− e−L.

In addition, the random variable
〈

µi−µ j
‖µi−µ j‖ ,Ei−E j

〉
follows a Gaussian distribution

with variance bounded by 2|Σ|op, so

P
[〈

µi−µ j

‖µi−µ j‖
,Ei−E j

〉2
≥ 4|Σ|opL

]
≤ e−L.

Hence, we have

P
[

1
2
‖Xi−X j‖2 ≥ Tr(Σ)−2|Σ|opL− (2

√
2‖Σ‖2

F L)∨ (8|Σ|opL)
]
≥ 1−2e−L.

With 2a+(2b)∨ (8a)≤ (3b)∨ (10a) and a union bound, we obtain that

P
[

1
2

min
i 6= j
‖Xi−X j‖2 ≥ Tr(Σ)− (3

√
2‖Σ‖2

F(2log(n)+L))∨ (10|Σ|op(2log(n)+L))
]

≥ 1−2e−L.

Let us turn now to the upper bound. Taking any i 6= j in the same group (always
possible as K < n), we have

‖Xi−X j‖2 = ‖Ei−E j‖2,

so applying (B.5) with S = 2Σ, we get

P
[

1
2
‖Xi−X j‖2 ≤ Tr(Σ)+(2

√
2‖Σ‖2

F L)∨ (8|Σ|opL)
]
≥ 1− e−L.

Since this upper bound still holds when replacing ‖Xi−X j‖2 by mini6= j ‖Xi−X j‖2,
this concludes the proof of Lemma 12.4. �

Now that the bias of Lloyd algorithm is fixed, it remains to give a good initialization
Ĝ(0) to the algorithm.
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12.6 Spectral Algorithm

Many state-of-the-art procedures in clustering have two stages. The first step pro-
duces a primary estimation of the groups, typically with spectral algorithms, while
the second step is a refinement where each observation is reclassified according to
a more specialized algorithm. In our Gaussian cluster model (12.2), the spectral al-
gorithm is a good and simple algorithm in order to get a primary estimation of the
groups, and these groups can then be refined by running the (debiased) Lloyd algo-
rithm.
The principle of spectral algorithm is to compute the K leading eigenvectors of XXT

and apply a rounding procedure on it, in order to get a clustering. Let us explain why
this approach makes sense.
We remind the reader that E

[
XXT

]
=AΘΘT AT +Γ, where A∈Rn×K is the member-

ship matrix defined by Aik = 1i∈Gk . Hence, E
[
XXT

]
is the sum of a rank K matrix,

which is structured by the partition G, and a diagonal matrix Γ. Hence it makes sense
to look at the best rank K approximation of XXT , in order to estimate the parti-
tion G. Writing XXT = ∑k λkvkvT

k for an eigenvalue decomposition of XXT , with
eigenvalues ranked in decreasing order, the best rank K approximation of XXT is(
XXT

)
(K)

= ∑
K
k=1 λkvkvT

k . At this stage, we can either apply some rounding proce-

dure on the rows/columns of
(
XXT

)
(K)

, or directly to the eigenvectors v1, . . . ,vk, as
suggested by the following lemma.

Lemma 12.5 Let

AΘΘ
T AT =

K

∑
k=1

dkukuT
k

be a spectral decomposition of AΘΘT AT , and set U = [u1, . . . ,uk] ∈ Rn×K . Then,
there exist Z1, . . . ,ZK ∈ RK , such that

Ui: = Zk for all i ∈ Gk, and ‖Zk−Z`‖2 =
1
|Gk|

+
1
|G`|

, for k 6= `.

Proof of Lemma 12.5. Let us define ∆ = diag
(
|G1|−1/2, . . . , |GK |−1/2

)
. We notice

that the columns of A∆

[A∆]:k =

[ 1i∈G∗k

|G∗k |1/2

]
i=1,...,n

are orthonormal. Let us consider V DV T an eigenvalue decomposition of
∆−1ΘΘT ∆−1. Since

AΘΘ
T AT = A∆V DV T (A∆)T ,

and since the columns of A∆ are orthonormal, we get that AΘΘT AT = UDUT with
U = A∆V orthogonal. Hence, for k = 1, . . . ,K, we have

Ui: = [∆V ]k: = |Gk|−1/2Vk: , for i ∈ Gk.
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The vectors Zk = [∆V ]k: are orthogonal with norm ‖Zk‖2 = 1/|Gk|, as ‖Vk:‖2 = 1.
Hence, for k 6= `

‖Zk−Z`‖2 =
1
|Gk|

+
1
|G`|

.

The proof of Lemma 12.5 is complete. �

When Γ is proportional to the identity matrix, the eigenvectors of AΘΘT AT +Γ and
AΘΘT AT are the same, so we can directly work on the eigenvalues of XXT . When Γ

is not proportional to the identity matrix, similarly to the Kmeans criterion, it is wise
to reduce the bias of XXT by considering the eigenvalue decomposition of XXT − Γ̂,
for some estimator Γ̂ of Γ. Let us sum up the spectral algorithm.

(Debiased) Spectral clustering algorithm

1. Compute the eigenvalue decomposition XXT − Γ̂ =
n

∑
k=1

dkvkvT
k , with eigenval-

ues ranked in decreasing order; and
2. Apply a rounding procedure on the rows of ν = [v1, . . . ,vK ] in order to get a

partition of {1, . . . ,n}.

There are many possible choices of rounding procedures, for example hierarchical
clustering. In the two clusters problem investigated in Section 12.7.2, the rounding
procedure will simply be based on the sign of the entries.
It is worth mentioning that the spectral algorithm corresponds to a relaxed version of
the SDP algorithm (12.14), where we have removed in C the constraints B1 = 1 and
B≥ 0.

Lemma 12.6

Let XXT − Γ̂ =
n

∑
k=1

dkvkvT
k be an eigenvalue decomposition of XXT − Γ̂, with eigen-

values ranked in decreasing order, and set ν = [v1, . . . ,vk]. Then

νν
T ∈ argmax

B∈Csp

〈XXT − Γ̂,B〉, where Csp =
{

B ∈S +
n : Tr(B) = K, I−B ∈S +

n
}
.

(12.16)

You may have noticed that the condition I−B∈S +
n , which was not present in C has

appeared in Csp. It turns out that this condition was actually implicit in C , since any
matrix B∈C has eigenvalues between 0 and 1. Indeed, let v be an eigenvector of B∈
C , with eigenvalue λ ≥ 0. Since ∑b Babvb = λva and ∑b Bab = 1, with Bab ≥ 0, we
obtain that all (λva) belong to the convex hull of the coordinates {va : a = 1, . . . ,n}.
This is in particular true for an entry va with largest absolute value, which enforces
that 0≤ λ ≤ 1.

Proof of Lemma 12.6. Let ΠK = diag(1, . . . ,1,0, . . . ,0) with K ones and n−K zeros.
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We observe that for any diagonal matrix D = diag(d1, . . . ,dn), with d1 ≥ . . .≥ dn,

max
B: 0≤Bkk≤1, ∑k Bkk=K

〈D,B〉=
K

∑
k=1

dk = 〈D,ΠK〉.

In addition, ΠK ∈ Csp and Csp ⊂ {B : 0≤ Bkk ≤ 1, ∑k Bkk = K}. This inclusion is
due to the two constraints B ∈S +

n and I−B ∈S +
n . So,

ΠK = argmax
B∈Csp

〈D,B〉.

Let V DV T be an eigenvalue decomposition of XXT − Γ̂, with D = diag(d1, . . . ,dn),
such that d1 ≥ . . .≥ dn. Since V T BV and B have the same spectral properties, Csp ={

V T BV : B ∈ Csp
}

. Hence,

νν
T =V ΠKV T ∈ argmin

B∈Csp

〈D,V T BV 〉= argmin
B∈Csp

〈V DV T ,B〉.

The proof of Lemma 12.6 is complete. �

We now have at hand a practical two-steps clustering strategy: first, a global local-
ization with spectral clustering, and then a refinement with Lloyd algorithm. Let us
analyze theoretically these two steps.

12.7 Recovery Bounds

In this section, we investigate the ability of spectral clustering and (corrected) Lloyd
algorithm to recover the groups. In order to avoid an inflation of technicalities, we
focus on the most simple setting where there are only two groups with means sym-
metric with respect to 0. More precisely, we assume that there exists an unobserved
sequence z1, . . . ,zn ∈ {−1,+1} of binary labels such that the observations X1, . . . ,Xn
are independent, and the distribution of Xi is a Gaussian distribution N (ziθ ,σ

2Ip)
for i = 1, . . . ,n.
Stacking as before the observations X1, . . . ,Xn into a n× p matrix X, we then observe

X = zθ
T +E, (12.17)

where z ∈ {−1,+1}n and the Ei j are i.i.d. with a N (0,σ2) distribution. The under-
lying partition is G∗ = {{i : zi = 1} ,{i : zi =−1}}.
A good clustering algorithm is an algorithm that recovers the vector z, up to a sign
change. Hence, if ẑ ∈ {−1,+1}n encodes the clustering output by this algorithm,
( ẑi = 1 if i ∈ Ĝ1 and ẑi =−1 if i ∈ Ĝ2), we measure the quality of the clustering by
the metric

recov(ẑ) :=
1
n

min
δ∈{−1,+1}

|z−δ ẑ|0 (12.18)

which counts the proportion of mismatches between Ĝ and G∗.
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12.7.1 Benchmark: Supervised Case

As a warm-up, let us consider the arguably simpler problem, where the labels
z1, . . . ,zn are observed and we want to predict the unobserved label znew of a new
data point Xnew. This situation would happen in the clustering problem if we were
able to cluster correctly n data points and wanted to cluster a remaining one. This
situation exactly corresponds to a supervised classification problem as in Chapter 11,
with learning data set L = (Xa,Za)a=1,...,n. The Bayes misclassification error has
been quantified in Exercise 11.5.1 (page 246) and P [Ynew 6= h∗(Xnew] was shown to
decrease as exp(−2θ 2/σ2).

Yet, the Bayes classifier in Exercise 11.5.1 uses the knowledge of θ , so this rate does
not take into account the price to pay for not knowing θ . In order to derive optimal
classification rates, we focus on a fully Bayesian scenario where the labels Z1, . . . ,Zn
have been generated as an i.i.d. sequence with uniform distribution on {−1,1}, and
the mean θ has been sampled uniformly over the sphere ∂B(0,∆/2) independently of
Z1, . . . ,Zn. As above, conditionally on Z1, . . . ,Zn,µ , the Xi are independent Gaussian
random variables with mean Ziθ and covariance σ2Ip.
In this Bayesian setting, the misclassification error P[Znew 6= ĥ(Xnew)] for a classifier
h, plays a similar role as the proportion of mismatches (12.18) in the clustering prob-
lem. The classifier ĥ minimizing the misclassification probability P

[
Znew 6= ĥ(Xnew)

]
over all the σ(L )-measurable classifiers ĥ is the Bayes classifier given by

ĥ(x) = sign
(
P [Z = 1|X = x,L ]−P [Z =−1|X = x,L ]

)
.

This classifier ĥ can be computed explicitly and is given by

ĥ(x) = sign

(〈
1
n

n

∑
i=1

ZiXi,x
〉)

,

see Exercise 12.9.4 for a proof of this formula.
Denoting by γ the uniform distribution on ∂B(0,∆/2), the probability of misclassifi-
cation of the Bayes classifier is given by

P
[
Znew 6= ĥ(Xnew)

]
=
∫

∂B(0,∆/2)
P
[
Zĥ(X)< 0

∣∣∣θ] dγ(θ)

=
∫

∂B(0,∆/2)
P
[〈

θ +
σ√

n
ε,θ +σε

′〉< 0
∣∣∣θ] dγ(θ),

where ε and ε ′ are two independent standard Gaussian random variables in Rp.
The above conditional probability is invariant over ∂B(0,∆/2), hence we only
need to evaluate it for a fixed θ ∈ ∂B(0,∆/2), say θ∆ = [∆/2,0, . . . ,0]. Let us set

W = −2
(

∆
√

1+1/n
)−1
〈θ∆,

1√
n ε + ε ′〉 which follows a standard Gaussian distri-
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bution in R and Q =−〈ε,ε ′〉. Then, we have

P
[
Znew 6= ĥ(Xnew)

]
= P

[〈
θ∆ +

σ√
n

ε,θ∆ +σε
′〉< 0

]
= P

[
∆2

4σ2 <
∆

2σ

√
1+

1
n

W +
1√
n

Q

]

≤ P

[
∆2

8σ2 <
∆

2σ

√
1+

1
n

W

]
+P

[
∆2

8σ2 <
1√
n

Q
]

Since ∆ = 2‖θ‖, the first probability is smaller than exp(−‖θ‖2/(8σ2)). According
to Hanson-Wright concentration inequality (B.6) page 303 with A =−Ip, the second
one is upper-bounded by

P
[

Q >

√
n∆2

8σ2

]
≤ exp

(
−
√

n∆2

32σ2 ∧
n∆4

256pσ4

)
= exp

(
−
√

n‖θ‖2

8σ2 ∧ n‖θ‖4

16pσ4

)
.

Hence, P
[
Znew 6= ĥ(Xnew)

]
≤ 2e−s2/16 with

s2 =
‖θ‖4

‖θ‖2σ2 + p
n σ4 . (12.19)

We observe two interesting regimes in (12.19). When n is large, much larger than
pσ2/‖θ‖2, the SNR s2 essentially reduces to s2 ≈ ‖θ‖2/σ2 as for the Bayes classi-
fier, see Exercise 11.5.1 (page 246). Conversely, in a high-dimensional regime, with p
much larger than n‖θ‖2/σ2, the SNR is approximately equal to s2 ≈ n‖θ‖4/(pσ4).
This new regime compared to Exercise 11.5.1 is due to the fact that, contrary to the
Bayes classifier, we are estimating the mean θ and pσ2/n corresponds to the vari-
ance induced by this estimation.

12.7.2 Analysis of Spectral Clustering

When X follows Model (12.17), we have

E
[
XXT ]= ‖θ‖2zzT +Γ,

with Γii = Tr(cov(Xi)). As all the covariances are assumed to be equal to σ2Ip, the
matrix Γ = pσ2In is proportional to the identity, and hence, we do not need to debias
XXT in the spectral clustering algorithm. Hence we set Γ̂ = 0. Since zzT is of rank
one, we only focus on the first eigenvector v̂1 of XXT .

The first eigenvector v̂1 of XXT does not provide a clustering of {1, . . . ,n} into two
groups and a rounding procedure is needed (second step of spectral algorithm). One
of the nice features of Model (12.17) is that we can choose a very simple rounding
procedure. Actually, as, hopefully, v̂1 ≈±z/‖z‖, we can simply take the sign of v̂1 in



272 CLUSTERING

order to get a partition of {1, . . . ,n} into two groups, corresponding to positive and
negative entries of v̂1.

We consider then the following spectral algorithm

ẑ = sign(v̂1), with v̂1 a leading eigenvector of
1
n

XXT . (12.20)

Theorem 12.7 Assume that X follows the model (12.17). Then, there exists a nu-
merical constant c≥ 1, such that, with probability at least 1−2e−n/2, the spectral
clustering (12.20) fulfills the recovery bound

recov(ẑ)≤ 1∧ c
s2 , (12.21)

with s2 defined in (12.19).

We observe that the upper bound (12.21) is decreasing with s2, yet not exponen-
tially fast as in the supervised case investigated above. Yet, when combining spectral
clustering with Lloyd algorithm, we obtain an exponential decay with s2, see Theo-
rem 12.14.
The remaining of this subsection is devoted to the proof of Theorem 12.7.

Proof of Theorem 12.7.
Let us first connect the Hamming distance |z−δ ẑ|0 to the square norm ‖z−δ

√
nv̂1‖2.

Lemma 12.8
For any x ∈ {−1,1}n and y ∈ Rn, we have

|x− sign(y)|0 ≤min
α>0
‖x−αy‖2.

This lemma simply follows from the inequality

1xi 6=sign(yi) = 1xi 6=sign(αyi) ≤ |xi−αyi|2,

for any α > 0 and i = 1, . . . ,n.
From Lemma 12.8 with α =

√
n and ‖z‖2 = n, we get

min
δ=−1,+1

|z−δ sign(v̂1)|0 ≤ min
δ=−1,+1

‖z−δ
√

nv̂1‖2 = 2n(1−|〈z/
√

n, v̂1〉|)

≤ 2n(1−〈z/
√

n, v̂1〉2),

where we used |〈z/
√

n, v̂1〉| ≤ ‖z/
√

n‖‖v̂1‖= 1 in the last inequality.
Notice that z/

√
n is a unit-norm leading eigenvector of 1

n‖θ‖
2zzT , associated to the

eigenvalue ‖θ‖2. Notice also that the second eigenvalue of 1
n‖θ‖

2zzT is 0, since
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1
n‖θ‖

2zzT is a rank one matrix. Combining the previous bound with Davis-Kahan
inequality (C.11), page 318, with A = 1

n‖θ‖
2zzT and B = 1

n XXT = A+W , we get

recov(ẑ) = min
δ=−1,+1

1
n
|z−δ ẑ|0 ≤ 8 inf

λ∈R

|λ In +W |2op

‖θ‖4 . (12.22)

It remains to upper bound |W +λ In|op.

Proposition 12.9 Let D be any diagonal matrix. Then, there exists two exponen-
tial random variables ξ ,ξ ′ with parameter 1, such that the operator norm of

W ′ =
1
n

XXT − ‖θ‖
2

n
zzT −D

is upper-bounded by

|W ′|op

σ2 ≤ 4

√
p
n

(
6+2

ξ

n

)
+

(
48+

16ξ

n

)
+2
‖θ‖
σ

(
1+

√
2ξ ′

n

)
+

∣∣∣∣ p
n

In−
D
σ2

∣∣∣∣
∞

.

(12.23)

Let us explain how Theorem 12.7 follows from this bound. According to (12.22)
with λ =−pσ2/n and (12.23) with D = pσ2In/n, we have with probability at least
1−2e−n/2, the upper bound

min
δ=−1,+1

1
n
|z−δ ẑ|0 ≤ 1∧

(
30
√

p/n+159+16‖θ‖/σ

‖θ‖2/σ2

)2

.

The right-hand side is smaller than 1 only if 16≤ ‖θ‖/σ , so 159≤ 10‖θ‖/σ , from
which follows

min
δ=−1,+1

1
n
|z−δ ẑ|0 ≤ 1∧

(
30
√

p/n+26‖θ‖/σ

‖θ‖2/σ2

)2

≤ 1∧
(

1800
p/n+‖θ‖2/σ2

‖θ‖4/σ4

)
= 1∧ 1800

s2 ,

which gives (12.21). It remains to prove Proposition 12.9.

Proof of Proposition 12.9.
We have nW ′ = (EET − pσ2In)+(pσ2In−nD)+EθzT +zθ T ET . Let us first control
the quadratic term.

Lemma 12.10
There exists a random variable ξ with exponential distribution with parameter 1
such that

|EET − pσ
2In|op ≤ 4σ

2
√

p(6n+2ξ )+(48n+16ξ )σ2. (12.24)
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Proof of Lemma 12.10.
The proof proceeds into three steps: first, a discretization, then Gaussian concentra-
tion, and finally a union bound. Dividing both sides of (12.24) by σ2, we can assume
with no loss of generality that σ2 = 1.

Step 1: Discretization. Let ∂BRn(0,1) denote the unit sphere in Rn. For any sym-
metric matrix A, the operator norm of A is equal to

|A|op = sup
x∈∂BRn (0,1)

|〈Ax,x〉|.

When A = EET − pσ2In, since ∂BRn(0,1) is an infinite set, we cannot directly use
a union bound in order to control the fluctuation of the supremum. Yet, we notice
that for two close x and y in ∂BRn(0,1), the values 〈Ax,x〉 and 〈Ay,y〉 are also close.
Hence, the recipe is to discretize the ball ∂BRn(0,1) and to control the supremum
over ∂BRn(0,1) by a supremum over the discretization of the ball plus the error
made when replacing ∂BRn(0,1) by its discretization.
A set Nε ⊂ ∂BRn(0,1) is called an ε-net of ∂BRn(0,1), if for any x ∈ ∂BRn(0,1),
there exists y ∈Nε such that ‖x− y‖ ≤ ε . Next lemma links the operator norm of a
matrix to a supremum over an ε-net.

Lemma 12.11
For any symmetric matrix A ∈ Rn×n and any ε-net of ∂BRn(0,1), we have

|A|op ≤
1

1−2ε
sup

x∈Nε

|〈Ax,x〉|. (12.25)

Proof of Lemma 12.11.
Let x∗ ∈ ∂BRn(0,1) be such that |A|op = |〈Ax∗,x∗〉| and let y ∈Nε fulfilling ‖x∗−
y‖ ≤ ε . According to the decomposition

〈Ax∗,x∗〉= 〈Ay,y〉+ 〈A(x∗− y),y〉+ 〈Ax∗,x∗− y〉,

and the triangular inequality, we have

|A|op = |〈Ax∗,x∗〉| ≤ |〈Ay,y〉|+ |〈A(x∗− y),y〉|+ |〈Ax∗,x∗− y〉|
≤ sup

y∈Nε

|〈Ay,y〉|+2|A|opε.

Bound (12.25) then follows. �

Next lemma provides an upper bound on the cardinality of a minimal ε-net of
∂BRn(0,1).
Lemma 12.12

For any n∈N and ε > 0, there exists an ε-net of ∂BRn(0,1) with cardinality upper-
bounded by

|Nε | ≤
(

1+
2
ε

)n

.
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We refer to Exercise 12.9.5 for a proof of this lemma based on volumetric arguments.
Choosing ε = 1/4, we get the existence of an 1/4-net N1/4 of ∂BRn(0,1) with car-
dinality at most 9n and such that

|EET − pIn|op ≤ 2 max
x∈N1/4

|〈(EET − pIn)x,x〉|= 2 max
x∈N1/4

∣∣‖ET x‖2− p
∣∣ . (12.26)

Step 2: Gaussian concentration. Let E:i denote the ith column of E. We observe that
xT E:i ∼N (0,xT x) and that the (xT E:i)i=1,...,p are independent since the columns E:i
are independent. Hence, since N1/4 ⊂ ∂BRn(0,1), the coordinates [ET x]i = ET

:i x are
i.i.d. N (0,1), and the random vector ET x follows a standard Gaussian distribution
N (0, Ip) in Rp. Hanson-Wright inequality (B.5) with S = Ip and S = −Ip ensures
that there exist two exponential random variables ξx,ξ

′
x, such that

‖ET x‖2− p≥
√

8pξx∨8ξx and p−‖ET x‖2 ≥
√

8pξ ′x∨8ξ
′
x.

Therefore, combining with (12.26), we obtain the concentration bound

|EET − pIn|op ≤ 2

(
2
√

2p max
x∈N1/4

(ξx∨ξ ′x)+8 max
x∈N1/4

(ξx∨ξ
′
x)

)
. (12.27)

Step 3: Union bound. A union bound gives

P

[
max

x∈N1/4
(ξx∨ξ

′
x)> log(2|N1/4|)+ t

]
≤ 2 ∑

x∈N1/4

exp(− log(2|N1/4|)− t) = e−t ,

so there exists an exponential random variable ξ with parameter 1 such that

max
x∈N1/4

(ξx∨ξ
′
x)≤ log(2|N1/4|)+ξ ≤ 3n+ξ .

Combining this bound with (12.27), we obtain (12.24). The proof of Lemma 12.10
is complete. �

Let us now control the cross-terms in W ′.
Lemma 12.13

There exists an exponential random variable ξ ′ with parameter 1, such that

1
n
|zθ

T ET |op =
1
n
|EθzT |op ≤ ‖θ‖σ

(
1+

√
2ξ ′

n

)
. (12.28)

Proof of Lemma 12.13. Again, we can assume with no loss of generality that σ = 1.
Let us set u = θ/‖θ‖ and v = z/

√
n.

We observe that for x with norm 1,

‖EuvT x‖= |vT x|‖Eu‖ ≤ ‖Eu‖,
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with equality for x = v. Hence |EuvT |op = ‖Eu‖.
For the same reasons as in Step 2 of the proof of Lemma 12.10, the random vari-
able Eu follows a standard Gaussian N (0, In) distribution. Hence, according to the
Gaussian concentration inequality, there exists an exponential random variable ξ ′

with parameter 1, such that

|EuvT |op = ‖Eu‖ ≤ E [‖Eu‖]+
√

2ξ ′ ≤
√
E [‖Eu‖2]+

√
2ξ ′ =

√
n+
√

2ξ ′.

Since
1
n
|EθzT |op =

‖θ‖√
n
|EuvT |, Bound (12.28) follows. �

Combining Lemma 12.10, Lemma 12.13, the decomposition

nW ′ = (EET − pσ
2In)+(pσ

2In−nD)+EθzT + zθ
T ET ,

and the equality |pσ2In − nD|op = |pσ2In − nD|∞, we get (12.23). The proof of
Proposition 12.9 is complete. �

12.7.3 Analysis of Lloyd Algorithm

In the setting (12.17), page 269, Kmeans criterion and Lloyd algorithm take a very
simple form. Let G̃ be a partition with two groups: one group with mean θ̃ and
one group with mean −θ̃ . Let z̃ ∈ {−1,+1}n encodes the partition G̃ as follows:
G̃1 = {i : z̃i = 1} is the group with mean θ̃ and G̃2 = {i : z̃i =−1} is the group with
mean −θ̃ . Then, the Kmeans criterion associated to G̃ is

CritK(G̃) = min
θ̃∈Rp

(
∑

i:z̃i=1
‖Xi− θ̃‖2 + ∑

i:z̃i=−1
‖Xi + θ̃‖2

)

= min
θ̃∈Rp

n

∑
i=1
‖Xi− z̃iθ̃‖2.

Since ‖Xi− z̃iθ̃‖2 = ‖z̃iXi− θ̃‖2, we have

min
θ̃∈Rp

n

∑
i=1
‖Xi− z̃iθ̃‖2 =

n

∑
i=1
‖z̃iXi− θ̄(z̃)‖2, where θ̄(z̃) =

1
n

n

∑
i=1

z̃iXi = XT z̃/n.

So, in this context, Kmeans algorithm amounts to minimize

ẑKmeans ∈ argmin
z̃∈{−1,+1}n

n

∑
i=1
‖z̃iXi−XT z̃/n‖2,

and then, to partition {1, . . . ,n} according to the sign of the entries of ẑKmeans.

The corresponding Lloyd algorithm iterates the updates for t = 1,2, . . .

ẑ(t+1) ∈ argmin
z̃∈{−1,+1}n

n

∑
i=1
‖z̃iXi−XT ẑ(t)/n‖2.
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As ‖z̃iXi‖2 = ‖Xi‖2 and ‖XT ẑ(t)‖2 do not depend on z̃, expanding the squares, we get
that

ẑ(t+1) ∈ argmax
z̃∈{−1,+1}n

1
n

n

∑
i=1
〈z̃iXi,XT ẑ(t)〉

= argmax
z̃∈{−1,+1}n

1
n

z̃T XXT ẑ(t)

= sign
(

1
n

XXT ẑ(t)
)
.

Keeping in mind that Lloyd algorithm needs to be debiased, even in our case where
Γ = pσ2In, we analyze below the debiased Lloyd algorithm started from some ẑ(0)

and with updates

ẑ(t+1) = sign(Ŝ ẑ(t)), with Ŝ =
1
n

(
XXT − Γ̂

)
, (12.29)

where Γ̂ is an estimator of Γ, for example (12.15).
Next theorem provides an upper bound on the misclassification error of the debiased
Lloyd algorithm (12.29).

Theorem 12.14 Let us define the events

Ω0 =
{

recov(ẑ(0))≤ u0

}
and ΩΓ =

{
1
n
|Γ̂−Γ|∞ ≤

‖θ‖2

32

}
.

There exists a constant C ∈ R+, such that under the assumptions, u0 ≤
1/32 and s2 ≥ C, the Lloyd algorithm (12.29) fulfills at the iteration t∗ =
dlog2

(
u0 exp

(( 1
162 ∧

n
2C

)
s2
))
e

E
[
recov(ẑ(t

∗))
]
≤ 16exp

(
−
(

1
162
∧ n

2C

)
s2
)
+P [Ωc

0]+P [Ωc
Γ] , (12.30)

with s2 defined by (12.19), page 271.

Before proving this theorem, let us specify the above result for the choices (12.20)
for the initialization ẑ(0) and (12.15) for the debiasing Γ̂.

Corollary 12.15 There exists C ∈ R+, such that for s2 ≥C, the Lloyd algorithm
(12.29) initialized with ẑ(0) given by (12.20) and debiased with (12.15), fulfills at
the iteration t∗ = dlog2

(
exp
(( 1

162 ∧
n

2C

)
s2
)
/32
)
e

E
[
recov(ẑ(t

∗))
]
≤ 21exp

(
−
(

1
162
∧ n

2C

)
s2
)
. (12.31)
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The proof of Corollary 12.15 is deferred after the proof of Theorem 12.14.

By initializing Lloyd algorithm with spectral clustering, we have obtained a recov-
ery bound decreasing exponentially fast with s2, as in the supervised learning case
Section 12.7.1, page 270. So, in this setting, when there is enough separation be-
tween the means in order to be able to classify correctly at least a fixed fraction of
the data points, clustering is not significantly harder than supervised classification as
in Section 12.7.1. This feature also holds for a higher number K of groups, as long
as s2 ≥ c′K for some numerical constant c′.

The result in Corollary 12.15 is about the mean proportion of mismatches between
Ĝ(t∗) and G∗. We might be interested by some other quantities, such as the probability
of exact recovery of G∗. Since recov(ẑ(t

∗)) takes value in {1/n,2/n, . . . ,n/n}, we can
recover a bound on the probability P

[
Ĝ(t∗) 6= G∗

]
from (12.31)

1
n
P
[
Ĝ(t∗) 6= G∗

]
≤ E

[
recov(ẑ(t

∗))
]
≤ 21exp

(
−
(

1
162
∧ n

2C

)
s2
)
.

Hence, when s2 grows with n faster than c log(n) for some c ≥ 164, the probability
of exact recovery P

[
Ĝ(t∗) = G∗

]
tends to one. While the constant 164 is not sharp at

all, we can easily understand why a growth proportional to log(n) is needed for exact
recovery from the supervised case described in Section 12.7.1, page 270. In a thought
experiment where all the labels, but one, are revealed, the probability to misclassify
the unknown label from the remaining data decays like exp(−cs2) for some c > 0.
Since we want to correctly classify the n data points with large probability, we need
to classify each data point with a probability smaller than 1/n. This can only be
achieved if s2 ≥ c−1 log(n).

Proof of Theorem 12.14. We can decompose Ŝ as Ŝ = 1
n‖θ‖

2zzT +W , with

W =
1
n

(
EET −Γ+EθzT + zθ

T ET +Γ− Γ̂

)
.

The core of the proof is the following lemma proving a geometric decrease of the
error.

Lemma 12.16 Geometric convergence.
Let us define

µ = 2
√

2|W |op +4‖θ‖2u0 and E (µ) =
n

∑
i=1

1ziŜT
i z<µ

.

Then, on the event Ω(µ,u0) = {E (µ)≤ nu0}∩Ω0, we have for all t ∈ N

recov(ẑ(t))≤ 2−tu0 +
1
n
E (µ)

t−1

∑
j=0

2− j ≤ 2u0. (12.32)
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Proof of Lemma 12.16. Bound (12.32) holds for t = 0 on the event Ω(µ,u0). Let
us prove by induction that it holds for all t ∈ N. Assume that (12.32) holds up to
iteration t−1 and let us check that it holds at iteration t.
With no loss of generality, we can assume that recov(ẑ(t−1)) = n−1|ẑ(t−1)− z|0.
Writing Ŝi for the i-th row of Ŝ, we get from the definition (12.29) of ẑ(t), that
ẑ(t)i 6= zi if and only if zi and ŜT

i ẑ(t−1) are of a different sign. From the decompo-
sition ziŜT

i ẑ(t−1) = ziŜT
i z+ ziŜT

i (ẑ
(t−1)− z), we obtain

1ziŜT
i ẑ(t−1)<0 ≤ 1ziŜT

i z<µ
+1ziŜT

i (ẑ
(t−1)−z)<−µ

.

So, as

ziŜT
i (ẑ

(t−1)− z) =
‖θ‖2

n
zT (ẑ(t−1)− z)+ ziW T

i (ẑ(t−1)− z)

=
−2‖θ‖2

n
|ẑ(t−1)− z|0 + ziW T

i (ẑ(t−1)− z),

combining the above inequality with the inequalities 1x>y ≤ (x/y+)
2 and

∑i(W T
i x)2 = ‖Wx‖2, we get

|ẑ(t)− z|0 ≤
n

∑
i=1

1ziŜT
i z<µ

+
n

∑
i=1

1{
−ziW T

i (ẑ(t−1)−z)>µ− 2‖θ‖2
n |ẑ(t−1)−z|0

}
≤ E (µ)+

n

∑
i=1

 W T
i (ẑ(t−1)− z)(

µ− 2‖θ‖2
n |ẑ(t−1)− z|0

)
+


2

≤ E (µ)+

 |W |op‖ẑ(t−1)− z‖(
µ− 2‖θ‖2

n |ẑ(t−1)− z|0
)
+


2

.

By induction hypothesis, we have |ẑ(t−1)−z|0 ≤ 2nu0; so, by definition of µ , we have

µ− 2‖θ‖2

n
|ẑ(t−1)− z|0 ≥ 2

√
2|W |op.

As ‖ẑ(t−1)− z‖2 = 4|ẑ(t−1)− z|0, we conclude that, on Ω(µ,u0),

1
n
|ẑ(t)− z|0 ≤

1
n
E (µ)+

1
8n
‖ẑ(t−1)− z‖2

≤ 1
n
E (µ)+

1
2n
|ẑ(t−1)− z|0

≤ 2−tu0 +
1
n
E (µ)

t−1

∑
j=0

2− j ≤ 2u0.

Hence (12.32) holds at iteration t, and the proof of Lemma 12.16 is complete. �
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To complete the proof of Theorem 12.14, we need to handle the event (Ω0 ∩ΩΓ)
c

and to bound the expectation of E (µ) on Ω0∩ΩΓ.

Since recov(ẑ(t))≤ 1, we have

recov(ẑ(t))≤ recov(ẑ(t))1Ω0∩ΩΓ
+1Ωc

0
+1Ωc

Γ

≤
(

2−tu0 +
2
n
E (µ)+1E (µ)>nu0

)
1Ω0∩ΩΓ

+1Ωc
0
+1Ωc

Γ
.

The random variable E (µ) is a sum of Bernoulli random variables. If these variables
were independent, we could use a large deviation bound, as in Exercise 12.9.7. As the
Bernoulli variables are not independent, we use instead the simple bound 1E (µ)>nu0 ≤
(nu0)

−1E (µ) to get

E
[
recov(ẑ(t))

]
≤ 2−tu0 +

(
2+

1
u0

)
1
n
E
[
E (µ)1Ω0∩ΩΓ

]
+P [Ωc

0]+P [Ωc
Γ] . (12.33)

It remains to upper-bound the expectation E
[
E (µ)1Ω0∩ΩΓ

]
.

Lemma 12.17 Probabilistic control.
There exists a constant C > 0 such that, for s2 ≥C and n≥ 2,

1
n
E
[
E (µ)1Ω0∩ΩΓ

]
≤ 5exp

(
−
(

1
81
∧ n

C

)
s2
)
.

Before proving this bound, let us explain how Theorem 12.14 follows from
Lemma 12.17.
By definition of t∗, we always have

2−t∗u0 ≤ exp
(
−
(

1
162
∧ n

2C

)
s2
)
.

When u0 ≤ exp
(
−
( 1

162 ∧
n

2C

)
s2
)
, we have t∗ = 0 and Bound (12.30) holds.

Let us focus now on the case u0 > exp
(
−
( 1

162 ∧
n

2C

)
s2
)
. Then, combining (12.33)

with Lemma 12.17, we obtain

E
[
recov(ẑ(t

∗))
]
≤exp

(
−
(

1
162
∧ n

2C

)
s2
)

+5
(

2+ exp
((

1
162
∧ n

2C

)
s2
))

exp
(
−
(

1
81
∧ n

C

)
s2
)

+P [Ωc
0]+P [Ωc

Γ] .

Bound (12.30) follows.
It remains to prove Lemma 12.17.

Proof of Lemma 12.17. Let us first observe that since u0 ≤ 1/32 and µ =
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2
√

2|W |op+4u0‖θ‖2, splitting apart the cases 2
√

2|W |op ≤‖θ‖2/8 and 2
√

2|W |op >
‖θ‖2/8, we obtain

1
n
E
[
E (µ)1Ω0∩ΩΓ

]
= P

[{
ziŜT

i z < µ

}
∩Ω0∩ΩΓ

]
≤ P

[{
ziŜT

i z <
‖θ‖2

4

}
∩ΩΓ

]
+P

[{
|W |op >

‖θ‖2

16
√

2

}
∩ΩΓ

]
.

(12.34)

1- Bounding the probability P
[{
|W |op >

‖θ‖2
16
√

2

}
∩ΩΓ

]
.

From Proposition 12.9 with D = Γ̂/n, we have for any L > 0

P
[{
|W |op > 4σ

2
√

p
n
(6+2L)+(48+16L)σ2 +2‖θ‖σ(1+

√
2L)+

‖θ‖2

32

}
∩ΩΓ

]
≤ 2e−nL.

Let us set L = s2/C. Since s2 = ‖θ‖4/(‖θ‖2σ2 + pσ4/n), when s2 ≥ C, we have
both pσ4/n≤ ‖θ‖4/C and σ2 ≤ ‖θ‖2/C. So using that ps2/n≤ ‖θ‖4/σ4 and s2 ≤
‖θ‖2/σ2, we get

4σ
2
√

p
n
(6+2L)+(48+16L)σ2 +2‖θ‖σ(1+

√
2L)

≤ ‖θ‖2

(
4

√
8
C
+

64
C

+
2(1+

√
2)√

C

)

≤ ‖θ‖
2

32

(√
2−1

)
,

for C large enough, for example C = e15. Hence, for this choice of C, we have

P
[{
|W |op >

‖θ‖2

16
√

2

}
∩ΩΓ

]
≤ 2exp(−ns2/C). (12.35)

2- Bounding the probability P
[{

ziŜT
i z < ‖θ‖2

4

}
∩ΩΓ

]
.

The bound on P
[{

ziŜT
i z < ‖θ‖2

4

}
∩ΩΓ

]
is very similar to the bound in Section 12.7.1

for the supervised setting. As

Ŝi j =
1
n
〈Xi,X j〉−

1
n

Γ̂ii =
1
n
〈ziθ +Ei,z jθ +E j〉−

1
n

Γ̂ii,
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defining εi = ziEi, we have

ziŜT
i z =

〈
θ + εi,θ +

1
n

n

∑
j=1

ε j

〉
− 1

n
Γ̂ii

≤ ‖θ‖2 +
〈

θ ,

(
1+

1
n

)
εi +

1
n ∑

j: j 6=i
ε j

〉
+

1
n

〈
εi, ∑

j: j 6=i
ε j

〉
+

1
n
‖εi‖2− Γ̂ii

≤ ‖θ‖2−‖θ‖σ
√

1+3/nZ−
√

n−1
n

σ
2Q+

1
n
(‖εi‖2−Γii)+

1
n
(Γii− Γ̂ii),

with the Z a standard N (0,1) Gaussian random variable, and Q = 〈ε,ε ′〉 the scalar
product between two independent standard N (0, Ip) Gaussian random variables.
Since 1−1/4−1/32≥ 2/3, we have

P
[{

ziŜT
i z <

‖θ‖2

4

}
∩ΩΓ

]
≤ P

[
‖θ‖σ

√
1+3/nZ +

√
n−1
n

σ
2Q− 1

n
(‖εi‖2−Γii)>

2‖θ‖2

3

]
≤ P

[
‖θ‖σZ >

2‖θ‖2

9

]
+P

[√
1
n

σ
2Q >

2‖θ‖2

9

]
+P

[
1
n
(Γii−‖εi‖2)>

2‖θ‖2

9

]
.

The Hanson-Wright inequalities (B.5) with S =−Ip and (B.6) with A= Ip (page 303)
and Lemma B.4 (page 298) give us, for n≥ 2,

P
[{

ziŜT
i z <

‖θ‖2

4

}
∩ΩΓ

]
≤ exp

(
−2‖θ‖2

81σ2

)
+ exp

(
−1

4

(
2
√

n‖θ‖2

9σ2 ∧
(

2
√

n‖θ‖2

9
√

pσ2

)2
))

+ exp

(
−1

8

(
2n‖θ‖2

9σ2 ∧
(

2n‖θ‖2

9
√

pσ2

)2
))

≤ 3exp
(
−
(
‖θ‖2

42σ2

)
∧
(

n‖θ‖4

81pσ4

))
≤ e−s2/81.

Combining this last bound with Bounds (12.34) and (12.35) complete the proof of
Lemma 12.17. �

We now turn to the proof of Corollary 12.15.

Proof of Corollary 12.15.
According to (12.30), all we need is to prove the following lemma.
Lemma 12.18
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There exists C ∈ R+, such that for s2 ≥C we have

P [Ωc
0]+P [Ωc

Γ]≤ 5e−ns2/C.

Let us prove this lemma. We first bound from above P [Ωc
Γ
]. According to Lemma

12.4, Estimator (12.15) fulfills with probability at least 1−3e−ns2/C

1
n
|Γ̂−Γ|∞ ≤ 3

√
4p log(n)σ4

n2 +
2pσ4s2

nC

∨(20log(n)σ2

n
+

10s2σ2

C

)
.

Since s2 = ‖θ‖4/(‖θ‖2σ2 + pσ4/n), when s2 ≥C, we have both pσ4/n≤ ‖θ‖4/C
and σ2 ≤ ‖θ‖2/C. So using that ps2/n≤ ‖θ‖4/σ4 and s2 ≤ ‖θ‖2/σ2, we get

1
n
|Γ̂−Γ|∞ ≤ ‖θ‖2

(
3

√
2+4log(n)/n

C

∨(20log(n)/n+10
C

))
.

The right-hand side of the above inequality is smaller than ‖θ‖2/32 for C large
enough, hence P [Ωc

Γ
]≤ 3e−ns2/C.

Let us now bound from above P
[
Ωc

0
]

for u0 = 1/32. Inequality (12.23) with D =

pσ2In/n ensures that with probability at least 1−2e−ns2/C, we have

|1
n

XXT − ‖θ‖
2

n
zzT − pσ2

n
In|op ≤ 4σ

2
√

p
n

√
6+

2s2

C
+48σ

2 +
16s2σ2

C

+2‖θ‖σ

(
1+

√
2s2

C

)

≤ ‖θ‖2

(
4

√
8
C
+

64
C

+
2(1+

√
2)√

C

)
, (12.36)

where we used again the majorations pσ4/n ≤ ‖θ‖4/C, σ2 ≤ ‖θ‖2/C, ps2/n ≤
‖θ‖4/σ4 and s2 ≤ ‖θ‖2/σ2 for the last inequality. The right-hand side of (12.36)
is smaller than (32× 8)−1 for C large enough. Hence, according to (12.22) with
λ = −pσ2/n, the spectral clustering algorithm ẑ(0) given by (12.20) and debiased
with (12.15) fulfills P

[
Ωc

0
]
≤ 2e−ns2/C.

The proof of Corollary 12.15 is complete. �

12.8 Discussion and References

12.8.1 Take-Home Message

Clustering algorithms are very useful when dealing with data gathering some un-
known subpopulations with different statistical behaviors. They provide a partition
of the dataset, which, when the differences are strong enough, matches the underly-
ing partition into subpopulations. This identification of the subpopulations can be of
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interest on its own, for scientific understanding of complex systems. It is also an im-
portant preliminary step for further analyzes, taking into account the heterogeneity
in the data set.

There is a wide zoology of clustering algorithms. Some of them are based on some
proximity/separation notions, such as hierarchical clustering algorithms. Some others
are derived from probabilistic models. In such models, the MLE is usually computa-
tionally intractable. Again, some convex relaxations have been proposed, with strong
theoretical garanties. Yet, while being convex, the minimization problems are diffi-
cult to solve efficiently, and current state-of-the-art optimization algorithms have a
prohibitive computational time when sample sizes exceed a few thousands. Spectral
algorithms offer an interesting alternative, coupled or not, with a local refinement,
such as Lloyd algorithm.

12.8.2 References

Kmeans criterion has been introduced in [115, 146]. The convex relaxation (12.14)
has been proposed by [128], and its statistical properties have been investigated in
[40, 41, 57, 83, 122, 137]. Lloyd algorithm has been introduced by [113], and the
analysis presented in this chapter is taken from [114, 124]. The spectral algorithm
has been investigated in a long series of papers, we refer to [1, 157] for some strong
results on exact and partial recovery.

12.9 Exercises

12.9.1 Exact Recovery with Hierarchical Clustering

In this exercise, we provide some conditions ensuring that hierarchical clustering ex-
actly recovers the hidden partition in the setting (12.17) of Section 12.7.2 (page 269).
We denote by W =

{
(i, j) : zi = z j, i < j

}
the set of pairs of points within the same

cluster G1 = {i : zi =−1} or G2 = {i : zi = 1}, and by B =
{
(i, j) : zi 6= z j, i < j

}
the set of pairs of points between the two clusters. The concentration bounds be-
low are based on the concentration bounds of Exercise1.6.6 for the square norm of
standard Gaussian random variables.

1. What is the value of E
[
‖Xi−X j‖2

]
for (i, j) ∈W ? and for (i, j) ∈B?

2. Prove that

P
(

max
(i, j)∈W

‖Xi−X j‖2 ≥ 2pσ
2 +12σ

2
(√

p log(n))+ log(n)
))
≤ 1

2n
.

3. Similarly, prove that

P
(

min
(i, j)∈B

‖Xi−X j‖2 ≤ 2pσ
2 +4‖θ‖2−8σ

2
√

p log(n)−16σ‖θ‖
√

log(n)
)

≤ 1
2n

.
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4. Conclude that, when ‖θ‖2 ≥ 10σ2
(√

p log(n)+3log(n)
)

, the hierarchical clus-
tering algorithm with Euclidean distance and single or complete linkage recovers
the clusters G1 and G2 with probability at least 1−1/n.

12.9.2 Bias of Kmeans

We consider the Gaussian cluster model (12.2). We assume that we have K = 3
groups of size s (with s even),

θ1 = (1,0,0)T , θ2 = (0,1,0)T , θ3 =

(
0,1− τ,

√
1− (1− τ)2

)T

,

with τ > 0, and
Tr(Λ1) = γ+, Tr(Λ2) = Tr(Λ3) = γ−.

1. Check that ‖θ2−θ3‖2 = 2τ .
2. Compute E[CritK(G∗)].
3. Let us define G′ obtained by splitting G∗1 into two groups G′1,G

′
2 of equal size s/2

and by merging G∗2 and G∗3 into a single group G′3 of size 2s. Check that

E[CritK(G′)] = s(γ++2γ−+ τ)− (2γ++ γ−).

4. Check that we have E[CritK(G∗)] < E[CritK(G′)] only when ‖θ2 − θ3‖2 >
2
(

γ+−γ−
s

)
.

12.9.3 Debiasing Kmeans

We consider again the Gaussian cluster model (12.2), on page 255. We assume
also that all the clusters have a cardinality not smaller than 3. The risk bound in
Lemma 12.2 (page 260) for the estimator Γ̂(1) of Γ̃ still depends on ‖Θ‖2∞. In order
to get rid of this dependence, we consider the more complex estimator

Γ̂
(2)
ii = 〈Xi−X j1 ,Xi−X j2〉

where j1, j2 are the two indices j ∈ {1, . . . ,n}\{i} for which

Vi( j) := max
a6=b/∈{i, j}

〈
Xi−X j,

Xa−Xb

‖Xa−Xb‖

〉
takes the two smallest values.

The goal of this exercise is to prove that there exists a numerical constant c > 0, such
that, with probability larger than 1−5/n, we have

|Γ(2)− Γ̃|∞ ≤ c
(
|Λ|op log(n)+

√
|Λ|op|Λ|∗ log(n)

)
(12.37)

where |Λ|op and ‖Λ‖F have been defined in (12.9) on page 259, and |Λ|∗ =
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maxk Tr(Λk). We observe, in particular, that this bound does not depend on ‖Θ‖2∞

anymore.

A) Deterministic Bound
It is convenient to introduce the three random quantities

Z1 = max
a=1,...,n, k 6=`

〈
θk−θ`

‖θk−θ`‖
,Ea

〉2

, Z2 = max
i6= j
|〈Ei,E j〉|, Z3 = max

i 6= j
‖Ei−E j‖.

Let k and `1, `2 be such that i ∈ G∗k , and jw ∈ G∗`w
for w = 1,2.

1. For c ∈ G∗k \{i} and d ∈ G∗`w
\{ jw}, prove the inequalities

1
2
‖θk−θ`w‖

2−8Z1−4Z2 ≤ |〈Xi−X jw ,Xc−Xd〉|

≤Vi( jw)(‖θk−θ`w‖+Z3)

2. From the previous question, prove that

‖θk−θ`w‖
2 ≤ 4

(
Vi( jw)2 +Z3Vi( jw)+8Z1 +4Z2

)
.

3. Setting Vi =Vi( j1)∨Vi( j2), prove that

|Γ̂(2)
ii − Γ̃ii| ≤ ‖θk−θ`1‖

2 +‖θk−θ`2‖
2 +Z1 +3Z2

≤ 8(V 2
i +Z3Vi)+65Z1 +35Z2.

B) Stochastic Controls

1. Let i′1, i
′
2 ∈ Gk \ {i}. For w = 1,2 and for a 6= b /∈ {i, i′w}, what is the distribution

of the random variable
〈

Ei−Ei′w ,
Xa−Xb
‖Xa−Xb‖

〉
conditionally on Xa,Xb?

2. Prove that with probability at least 1−2/n2, we have for some constant cV > 0

Vi =Vi( j1)∨Vi( j2)≤Vi(i′1)∨Vi(i′2)≤ cV

√
|Λ|op log(n).

3. Prove that with probability at least 1−1/n, we have for some constant c1 > 0

Z1 ≤ c1|Λ|op log(n).

4. With Hanson-Wright inequality (B.5) on page 303, prove that with probability at
least 1−1/n, we have for some constant c3 > 0

Z3 ≤ c3

(√
‖Λ‖2

F log(n)∨ (|Λ|op log(n))∨|Λ|∗
)1/2

≤ c3

√
(|Λ|op log(n))∨|Λ|∗.

5. Combining the deterministic analysis of part (A), with the stochastic controls
above and (12.12) on page 261, conclude the proof of (12.37).
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12.9.4 Bayes Classifier for the Supervised Case

In this exercise, we consider the Gaussian supervised classification problem with two
balanced classes, with identical covariances σ2Ip and opposite means θ−1 = −θ1
uniformly distributed on the Euclidean sphere ∂B(0,∆/2) in Rp.
We denote by L = (Xa,Za)a=1,...,n the learning sample distributed as follows. The la-
bels Z1, . . . ,Zn are i.i.d. with uniform distribution on {−1,1}, a random vector θ ∈Rp

is sampled uniformly over the sphere ∂B(0,∆/2) independently of Z1, . . . ,Zn, and,
conditionally on Z1, . . . ,Zn,θ , the Xa are independent Gaussian random variables
with mean Zaθ and covariance σ2Ip.

The classifier minimizing the misclassification probability P
[
Znew 6= ĥ(Xnew)

]
over

all the σ(L )-measurable classifiers ĥ is the Bayes classifier given by

ĥ(x) = sign
(
P [Z = 1|X = x,L ]−P [Z =−1|X = x,L ]

)
.

Let us compute the Bayes classifier in this setting.

1. Prove that

P[Z = δ |X = x,L ,θ ] = P[Z = δ |X = x,θ ] =
e−0.5‖δx−θ‖2/σ2

e−0.5‖x+θ‖2/σ2
+ e−0.5‖x−θ‖2/σ2

and

dP[θ |X = x,L ] ∝

(
e−0.5‖x+θ‖2/σ2

+ e−0.5‖x−θ‖2/σ2
)

e−0.5∑a ‖ZaXa−θ‖2/σ2
.

2. Denoting by γ the uniform distribution on ∂B(0,∆/2), check that

P [Z = δ |X = x,L ]

=

∫
∂B(0,∆/2) e−〈δx+∑a ZaXa,θ〉/σ2

dγ(θ)∫
∂B(0,∆/2) e−〈x+∑a ZaXa,θ ′〉/σ2dγ(θ ′)+

∫
∂B(0,∆/2) e−〈−x+∑a ZaXa,θ ′〉/σ2dγ(θ ′)

.

3. Check that F(v) =
∫

∂B(0,∆/2) e〈v,θ〉dγ(θ) depends only on ‖v‖ and is monotone
increasing with ‖v‖ and hence

P [Z = 1|X = x,L ]> P [Z =−1|X = x,L ] ⇐⇒
〈
x,∑

a
ZaXa

〉
> 0,

and

ĥ(x) = sign

(〈
1
n

n

∑
i=1

ZiXi,x
〉)

.

12.9.5 Cardinality of an ε-Net

In this exercise, we prove Lemma 12.12 (page 274). Let us define Nε as follows. Start
from any x1 ∈ ∂BRn(0,1), and for k = 2,3, . . . choose recursively any xk ∈ ∂BRn(0,1)
such that xk /∈∪ j=1,...,k−1BRn(x j,ε). When no such xk remains, stop and define Nε =
{x1,x2, . . .}.
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1. Why is the cardinality of Nε finite?
2. Observe that Nε is an ε-net of ∂BRn(0,1) and that ‖x− y‖> ε for any x,y ∈Nε ,

with x 6= y.
3. Check that

i) the balls {BRn(x,ε/2) : x ∈Nε} are disjoint; and
ii)
⋃

x∈Nε
BRn(x,ε/2)⊂ BRn(0,1+ ε/2).

4. Conclude by comparing the volume of the balls BRn(x,ε/2) and BRn(0,1+ ε/2).

12.9.6 Operator Norm of a Random Matrix

Let E ∈ Rn×p be a matrix with i.i.d. entries distributed according to a Gaussian
N (0,σ2) distribution. For q ≤ n, let P ∈ Rn×n be an orthogonal projector onto a
linear span S ⊂ Rn of dimension q. In this exercise, we derive from Lemma 12.10
some bounds on |E|op and |PE|op, both in probability and in expectation.
1. Prove the sequence of inequalities

|E|2op ≤ |pσ
2In|op + |EET − pσ

2In|op

≤ σ
2
(√

p+7
√

n+ξ

)2
,

where ξ is an exponential random variable with parameter 1.
2. Conclude that for any L > 0

E
[
|E|op

]
≤ σ

(√
p+7

√
n+1

)
and P

[
|E|op ≥ σ

(√
p+7

√
n+L

)]
≤ e−L.

3. Let u1, . . . ,uq ∈ Rn be an orthonormal basis of S and set U = [u1, . . . ,uq] ∈ Rn×q

and W = UT E ∈ Rq×p. Check that the columns of W are independent with
N (0,σ2Iq) distribution.

4. Check that P =UUT and |PE|op = |W |op.
5. Conclude that for any L > 0

E
[
|PE|op

]
≤ σ

(√
p+7

√
q+1

)
and P

[
|PE|op ≥ σ

(√
p+7

√
q+L

)]
≤ e−L.

As explained on page 163, combining Lemma 8.3 and the Gaussian concentration
inequality (Theorem B.7), we can get tighter constants in the bounds

E
[
|PE|op

]
≤ σ (

√
p+
√

q) and P
[
|PE|op ≥ σ

(√
p+
√

q+
√

2L
)]
≤ e−L.

12.9.7 Large Deviation for the Binomial Distribution

Let X = ∑
n
i=1 Yi be the sum of n i.i.d. Bernoulli random variables with parameter q.

Let p ∈ [0,1], with p > q.
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1. With Markov inequality (Lemma B.1, page 297), prove that for any λ > 0,

P(X > pn)≤ e−λ pn
[
eλ q+1−q

]n
.

2. Check that the above upper-bound is minimal for eλ = p(1−q)
q(1−p) , so that

P(X > pn)≤ e−nkl(p,q) with kl(p,q) = p log
(

p
q

)
− (1− p) log

(
1−q
1− p

)
.

3. For p = αq, check that

kl(αq,q) =
αq
2

log(α)+

[
αq
2

log(α)− (1−αq) log
(

1+
q(α−1)
1−αq

)]
≥ αq

2
log(α)+q

(
α

2
log(α)−α +1

)
.

4. Conclude that for α ≥ 5, we have

P(X > αqn)≤ exp
(
−αq

2
log(α)

)
.

12.9.8 Sterling Numbers of the Second Kind

Let us denote by S(n,K) the number of partitions of {1, . . . ,n} into K (non-empty)
clusters.
1. What is the value of S(n,1)? of S(n,n)?
2. With a combinatorial argument, prove the recursion formula

S(n,k) = kS(n−1,k)+S(n−1,k−1), for 2≤ k ≤ n−1.

3. Prove by induction that

S(n,k) =
1
k!

k

∑
j=0

(−1) jC j
k(k− j)n,

with C j
k = k!/( j!(k− j)!) the binomial coefficient.

4. With the recursion formula, prove the simple lower bound

S(n,k)≥ kn−k.

The numbers S(n,k) are called the Sterling numbers of the second kind. The total
number Bn = ∑

n
k=1 S(n,k) of possible partitions of n elements (without constraints

on the number of groups) are called the Bell numbers.
For a fixed k, we observe that S(n,k) grows exponentially fast with n, and for k =
n/ log(n) the growth is even super-exponential: For any 0 < c < 1, we have S(n,k)≥
exp(cn log(n)) for n large enough. In particular, the Bell number Bn grows super-
exponentially fast with n.
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12.9.9 Gaussian Mixture Model and EM Algorithm

We consider in this exercise the Gaussian mixture model, which can be described
as follows. Let π be a probability distribution on {1, . . . ,K}. Let Z1, . . . ,Zn be n
independent random variables taking values in {1, . . . ,K}, with distribution π . Hence
P(Zi = k) = πk. Define the partition G∗= {G∗1, . . . ,G∗K} of {1, . . . ,n} by setting G∗k =
{i : Zi = k} for k = 1, . . . ,K. Then, conditionally on G∗, assume that the data points
X1, . . . ,Xn follow the model (12.2) with Λk = σ2

k Ip. Compared to the cluster model
described on page 255, we have then added a layer of modeling, by assuming that
the partition G∗ is issued from a sampling process governed by the distribution π .

The Expectation-Maximization (EM) algorithm is classically associated to the mix-
ture models. We introduce and quickly analyze this algorithm in this exercise.

A) EM Algorithm
Let us set w = (θ1, . . . ,θK ,σ

2
1 , . . . ,σ

2
K ,π) ∈ W = RpK ×RK

+×PK , where PK is the
simplex

{
x ∈ [0,1]K : |x|1 = 1

}
. Let also gθ ,σ denote the probability density func-

tion of the N (θ ,σ2Ip) Gaussian distribution.

1. Check that the likelihood of w relative to the observations X = {X1, . . . ,Xn} is
given by

LX(w) =
n

∏
i=1

K

∑
k=1

πkg
θk,σ

2
k
(Xi). (12.38)

The log-likelihood of w relative to the observations X is given by

log(LX(w)) =
n

∑
i=1

log
( K

∑
k=1

πkg
θk,σ

2
k
(Xi)

)
,

which is not easily amenable to maximization.
Let us assume for a moment that the hidden variables Z are observed.
2. Prove that the likelihood of w relative to the observations X and Z = {Z1, . . . ,Zn}

is given by

LX,Z(w) =
K

∏
k=1

∏
i:Zi=k

πkg
θk,σ

2
k
(Xi).

This likelihood LX,Z(w) is usually called complete likelihood, as it corresponds to the
complete observation of the generating process. We observe that the log-likelihood
of w relative to the observations X and Z

log(LX,Z(w)) =
n

∑
i=1

K

∑
k=1

1Zi=k

(
log(πk)+ log(g

θk,σ
2
k
(Xi))

)
is easily amenable to optimization. Can we take profit of this nice feature for the case
where Z is not observed?

The first recipe of the EM algorithm is to replace the maximization of log(LX(w))
by an approximate maximization of Ew [log(LX,Z(w))|X], where Pw is the mixture
distribution with parameter w. Let us compute this quantity.
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3. Check that

Ew [log(LX,Z(w))|X] =
n

∑
i=1

K

∑
k=1
Pw (Zi = k|X)

(
log(πk)+ log(g

θk,σ
2
k
(Xi))

)
.

If the conditional probabilities Pw (Zi = k|X) were not depending on w, the max-
imization of Ew [log(LX,Z(w))|X] would be easy to compute. Yet, the dependence
of Pw (Zi = k|X) on w makes the optimization hard. The second recipe of the EM
algorithm is to iterate sequentially the maximization

wt+1 ∈ argmax
w∈W

Ewt [log(LX,Z(w))|X] , (12.39)

starting from some randomly chosen w0. As we will see, the maximization in w
of Ewt [log(LX,Z(w))|X] can be easily performed. Before proceeding to this max-
imization, notice that the iterates (12.39) proceed in two steps: first, compute the
conditional expectation Ewt [log(LX,Z(w))|X], and then maximize it. Hence the name
Expectation-Maximization (EM) algorithm.
4. Let us set pt(i,k) = Pwt (Zi = k|X) and Nk = ∑

n
i=1 pt(i,k). Check that the update

wt+1 is given by

θ
t+1
k =

1
Nk

n

∑
i=1

pt(i,k)Xi,

(σ2
k )

t+1 =
1

pNk

n

∑
i=1

pt(i,k)‖Xi−θ
t+1
k ‖2,

π
t+1
k =

Nk

n
,

for k = 1, . . . ,K.
Notice that the updates are very similar to those of Kmeans, except that, for com-
puting the centers θ

(t+1)
k , the hard assignments 1

i∈G(t)
k

are replaced by the estimated

conditional probabilities pt(i,k) = Pwt (Zi = k|X). Hence, the EM algorithm is less
greedy than Kmeans.

The EM algorithm does not directly provide a clustering of the data point X1, . . . ,Xn,
yet, a partition Ĝt can be derived from wt by applying the Bayes rule

Ĝt
k =

{
i : pt(i,k) = max

k′=1,...,K
pt(i,k′)

}
,

with ties broken randomly.

B) The Likelihood is Non-Decreasing Along the EM Path
The EM updates are easy to compute, but do they make sense? In this part, we will
show that the log-likelihood log(LX(wt)) is non-decreasing at each iteration.
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We introduce the two following notations. First, we set

Qv(w) = Ev [log(LX,Z(w))|X] , so that wt+1 ∈ argmin
w∈W

Qwt (w).

Second, we set

pw(z|X) := Pw (Z1 = z1, . . . ,Zn = zn|X) , for z ∈ {1, . . . ,K}n .

1. Check that
log(LX,Z(w)) = log(LX(w))+ log(pw(Z|X)),

and
Qwt (w) = log(LX(w))+Ewt [log(pw(Z|X))|X] .

2. Writing K (P,Q) =
∫

log(dP/dQ)dP for the Kullback–Leibler divergence be-
tween P and Q, with P�Q, check that

Qwt (w)−Qwt (wt) = log(LX(w))− log(LX(wt))−K (pwt (·|X), pw(·|X)) .

3. Prove with Jensen inequality that K (P,Q)≥ 0 for any P�Q.
4. Conclude that log(LX(wt+1)) ≥ log(LX(wt)), i.e., the log-likelihood is non-

decreasing at each iteration.



Appendix A

Gaussian Distribution

A.1 Gaussian Random Vectors

A random vector Y ∈ Rd is distributed according to the N (m,Σ) Gaussian distribu-
tion, with m ∈ Rd and Σ ∈S +

d (the set of all d×d symmetric positive semi-definite
matrix), when

E
[
ei〈λ ,Y 〉

]
= exp

(
i〈λ ,m〉− 1

2
λ

T
Σλ

)
, for all λ ∈ Rd . (A.1)

When matrix Σ is non-singular (i.e., positive definite), the N (m,Σ) Gaussian distri-
bution has a density with respect to the Lebesgue measure on Rd given by

1

(2π)d/2 det(Σ)1/2
exp
(
−1

2
(y−m)T

Σ
−1(y−m)

)
.

Affine transformations of Gaussian distribution are still Gaussian.

Lemma A.1 Affine transformation
Let Y ∈Rd be a random vector with N (m,Σ) Gaussian distribution. Then for any
A ∈ Rn×d and b ∈ Rn,

AY +b∼N (Am+b,AΣAT ).

In particular, for a ∈ Rd ,

〈a,Y 〉 ∼N (〈m,a〉,aT
Σa).

Proof. The first identity is obtained by computing the characteristic function of AY +
b

E
[
ei〈λ ,AY+b〉

]
= E

[
ei〈AT λ ,Y 〉+i〈λ ,b〉

]
= exp

(
i〈AT

λ ,m〉− 1
2
(AT

λ )T
ΣAT

λ

)
ei〈λ ,b〉

= exp
(

i〈λ ,Am+b〉− 1
2

λ
T AΣAT

λ

)
.

The second identity is obtained with A = aT and b = 0. 2

293
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Lemma A.2 Orthogonal projections onto subspaces
Let Y ∈ Rd be a random vector with N (m,Σ) Gaussian distribution, and let S
and V be two linear spans of Rd orthogonal with respect to the scalar product
induced by Σ. Then the variables ProjSY and ProjVY are independent and follow,
respectively, the N (ProjSm,ProjSΣProjS) and N (ProjV m,ProjV ΣProjV ) Gaus-
sian distribution.

Proof. Since the projection matrices ProjS and ProjV are symmetric, we obtain that
the joint characteristic function of ProjSY and ProjVY is

E
[
ei〈λ ,ProjSY 〉+i〈γ,ProjV Y 〉

]
= E

[
ei〈ProjSλ+ProjV γ,Y 〉

]
= exp

(
i〈ProjSλ +ProjV γ,m〉− 1

2
(ProjSλ +ProjV γ)T

Σ(ProjSλ +ProjV γ)

)
= exp

(
i〈λ ,ProjSm〉− 1

2
λ

T ProjSΣProjSλ

)
× exp

(
i〈γ,ProjV m〉− 1

2
γ

T ProjV ΣProjV γ

)
= E

[
ei〈λ ,ProjSY 〉

]
E
[
ei〈γ,ProjV Y 〉

]
.

We conclude with Lemma A.1. 2

A.2 Chi-Square Distribution

Let Y ∈Rn be a random vector with N (0, In) Gaussian distribution. The χ2 distribu-
tion with n degrees of freedom, corresponds to the distribution of ‖Y‖2. In particular,
the mean of a χ2(n) distribution is

E
[
‖Y‖2]= n

∑
i=1
E
[
Y 2

i
]
= n.

Lemma A.3 Norms of projections
Let Y ∈ Rn be a random vector with N (0, In) Gaussian distribution, and let S
be a linear subspace of Rn with dimension d. Then, the variable ProjSY follows
the N (0,ProjS) Gaussian distribution and the square-norm ‖ProjSY‖2 follows a
χ2-distribution of degree d.

In particular, E
[
‖ProjSY‖2

]
= dim(S).

Proof. The projection ProjS is symmetric, so ProjSProjTS = ProjS and ProjSY follows
a N (0,ProjS) Gaussian distribution according to Lemma A.1.

Let u1, . . . ,ud be an orthonormal basis of S and set U = [u1, . . . ,ud ]. Since UTU = Id ,
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the vector UTY follows a N (0, Id)-distribution and

‖ProjSY‖2 =
d

∑
k=1

(uT
k Y )2 = ‖UTY‖2

follows a χ2 distribution of degree d. 2

A.3 Gaussian Conditioning

We provide in this section a few useful results on Gaussian conditioning.

Lemma A.4
We consider two sets A = {1, . . . ,k} and B = {1, . . . , p}\A, and a Gaussian ran-

dom vector X =

[
XA
XB

]
∈ Rp with N (0,Σ) distribution. We assume that Σ is

non-singular and write K =

[
KAA KAB
KBA KBB

]
for its inverse.

In the next formulas, K−1
AA will refer to the inverse (KAA)

−1 of KAA (and not to
(K−1)AA = ΣAA).

Then, the conditional distribution of XA given XB is the Gaussian
N
(
−K−1

AA KABXB,K−1
AA

)
distribution. In others words, we have the decomposition

XA =−K−1
AA KABXB + εA, where εA ∼N

(
0,K−1

AA

)
is independent of XB.

(A.2)

Proof. We write g(xA,xB), respectively, g(xA|xB) and g(xB), for the density of the
distribution of X , respectively, of XA given XB = xB and XB. We have

g(xA|xB) = g(xA,xB)/g(xB)

=
1

(2π)k/2 exp
(
−1

2
xT

AKAAxA− xT
AKABxB−

1
2

xT
B
(
KBB−Σ

−1
BB
)

xB

)
,

with ΣBB the covariance matrix of XB. Since Σ
−1
BB = KBB−KBAK−1

AA KAB, we have

g(xA|xB) =
1

(2π)k/2 exp
(
−1

2
(xA +K−1

AA KABxB)
T KAA(xA +K−1

AA KABxB)

)
.

We recognize the density of the Gaussian N
(
−K−1

AA KAB xB,K−1
AA

)
distribution. 2

Corollary A.5 For any a ∈ {1, . . . , p}, we have

Xa =− ∑
b :b6=a

Kab

Kaa
Xb+εa, where εa∼N (0,K−1

aa ) is independent of {Xb : b 6= a} .

(A.3)
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Proof. We apply the previous lemma with A = {a} and B = Ac. 2

Finally, we derive from (A.2) the following simple formula for the conditional cor-
relation of Xa and Xb given {Xc : c 6= a,b}, which is defined by

cor(Xa,Xb|Xc : c 6= a,b) =
cov(Xa,Xb|Xc : c 6= a,b)√

var(Xa|Xc : c 6= a,b)var(Xb|Xc : c 6= a,b)
.

Corollary A.6 For any a,b ∈ {1, . . . , p}, we have

cor(Xa,Xb|Xc : c 6= a,b) =
−Kab√
Kaa Kbb

. (A.4)

Proof. The previous lemma with A = {a,b} and B = Ac gives

cov(XA|XB) =

(
Kaa Kab
Kab Kbb

)−1

=
1

KaaKbb−K2
ab

(
Kbb −Kab
−Kab Kaa

)
.

Plugging this formula in the definition of the conditional correlation, we obtain For-
mula (A.4). 2



Appendix B

Probabilistic Inequalities

B.1 Basic Inequalities

Markov inequality plays a central role in the control of the fluctuations of random
variables.

Lemma B.1 Markov inequality
For any non-decreasing positive function ϕ :R→R+ and any real-valued random
variable X, we have

P(X ≥ t)≤ 1
ϕ(t)

E [ϕ(X)] for all t ∈ R.

In particular, for any λ > 0, we have

P(X ≥ t)≤ e−λ tE
[
eλX
]

for all t ∈ R.

Proof. Since ϕ is positive and non-decreasing, we have

P(X ≥ t)≤ E
[

ϕ(X)

ϕ(t)
1X≥t

]
≤ 1

ϕ(t)
E [ϕ(X)] .

2

A consequence of Markov inequality is the Chernoff bound on the deviation of X
from its expectation.

Lemma B.2 Chernoff bound
Let X be a real random variable, with finite expectation. For any λ ≥ 0, we define
Λ(λ ) = logE [exp(λ (X−E [X ]))], with the convention log(+∞) = +∞. We write

Λ
∗(t) = max

λ≥0
{λ t−Λ(λ )} ,

for the Legendre transform of Λ. Then, we have

P [X ≥ E [X ]+ t]≤ exp(−Λ
∗(t)).

297
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Proof. The proof technique is more important than the result itself. From Markov
inequality, we have for any λ ≥ 0

P [X ≥ E [X ]+ t]≤ exp(−λ t +Λ(λ )).

Since the left-hand side does not depend on λ ≥ 0, we get the result by taking the
maximum over λ ≥ 0. 2

Jensen inequality is another important inequality that controls expectations.

Lemma B.3 Jensen inequality
For any convex function ϕ : Rd → R and any random variable X in Rd , such that
ϕ(X) is integrable, we have

ϕ(E [X ])≤ E [ϕ(X)] .

Proof. Let us denote by Lϕ the set of affine functions from Rd to R, such that
L(x)≤ ϕ(x) for all x ∈ Rd . Since

ϕ(x) = sup
L∈Lϕ

L(x) ,

the linearity of the expectation gives

E [ϕ(X)] = E

[
sup

L∈Lϕ

L(X)

]
≥ sup

L∈Lϕ

E [L(X)] = sup
L∈Lϕ

L(E [X ]) = ϕ(E [X ]) .

2

Lemma B.4 Tail of the Gaussian distribution
Let Z be a standard Gaussian random variable. For any x≥ 0, we have

P(|Z| ≥ x)≤ e−x2/2.

Proof. The function

ϕ(x) = e−x2/2−P(|Z| ≥ x) = e−x2/2−
√

2
π

∫
∞

x
e−t2/2 dt , x≥ 0 ,

takes value 0 at x = 0 and its derivative ϕ ′(x) =
(√

2/π− x
)

e−x2/2 is positive for

x≤
√

2/π , so it is positive on [0,
√

2/π]. Furthermore, for x≥
√

2/π we have√
2
π

∫
∞

x
e−t2/2 dt ≤

∫
∞

x
te−t2/2 dt = e−x2/2 ,

so ϕ is positive on R+. 2



CONCENTRATION INEQUALITIES 299

B.2 Concentration Inequalities

Concentration inequalities provide bounds on the fluctuation of functions of inde-
pendent random variables around their means. They are central tools for designing
and analyzing statistical procedures. We refer to the books by Ledoux [105] and by
Boucheron, Lugosi, and Massart [38] for detailed accounts on this topic.

B.2.1 McDiarmid Inequality

McDiarmid concentration inequality [119] is adapted to the setting where the vari-
ables are bounded, as in supervised classification.

Theorem B.5 McDiarmid inequality

Let X be some measurable set and F : X n→R be a measurable function, such
that there exists δ1, . . . ,δn, fulfilling∣∣F(x1, . . . ,x′i, . . . ,xn)−F(x1, . . . ,xi, . . . ,xn)

∣∣≤ δi, for all x1, . . . ,xn,x′i ∈X ,

for all i = 1, . . . ,n. Then, for any t > 0 and any independent random variables
X1, . . . ,Xn, with values in X , we have

P
(
F(X1, . . . ,Xn)> E [F(X1, . . . ,Xn)]+ t

)
≤ exp

(
− 2t2

δ 2
1 + . . .+δ 2

n

)
.

In other words, under the assumptions of Theorem B.5, there exists a random variable
ξ with exponential distribution of parameter 1, such that

F(X1, . . . ,Xn)≤ E [F(X1, . . . ,Xn)]+

√
δ 2

1 + . . .+δ 2
n

2
ξ .

We give here the original proof, combining Markov inequality with a martingale
argument due to Azuma [12]. We refer to Boucheron, Lugosi, and Massart [38],
Chapter 6, for a more conceptual proof based on the entropy method.

Proof. Let us denote by Fk the σ -field σ(X1, . . . ,Xk) with F0 = { /0,Ω}. For sim-
plicity, we write in the following F for F(X1, . . . ,Xn), and we define for k = 1, . . . ,n

∆k = E [F |Fk]−E [F |Fk−1] .

Let us fix some λ , t > 0. The principle of the proof is to start from the Markov
inequality

P(F > E[F ]+ t) ≤ e−λ t E
[
eλ (F−E[F ])

]
= e−λ t E

[
n

∏
k=1

eλ∆k

]
, (B.1)

and then apply repeatedly the following lemma.
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Lemma B.6
For any λ > 0 and k ∈ {1, . . . ,n}, we have

E
[
eλ∆k

∣∣Fk−1

]
≤ eλ 2δ 2

k /8.

Proof of the lemma. Let us define the function Fk by Fk(X1, . . . ,Xk) = E [F |Fk] and
the variables Sk and Ik by

Sk = sup
x∈X

Fk(X1, . . . ,Xk−1,x)−E [F |Fk−1]

and Ik = inf
x∈X

Fk(X1, . . . ,Xk−1,x)−E [F |Fk−1] .

We have almost surely Ik ≤ ∆k ≤ Sk and 0≤ Sk− Ik ≤ δk. The convexity of x→ eλx

ensures that
eλ∆k ≤ ∆k− Ik

Sk− Ik
eλSk +

Sk−∆k

Sk− Ik
eλ Ik .

Since Ik,Sk are Fk−1-measurable and E [∆k|Fk−1] = 0, we obtain

E
[
eλ∆k

∣∣Fk−1

]
≤ E

[
∆k− Ik

Sk− Ik
eλSk +

Sk−∆k

Sk− Ik
eλ Ik

∣∣∣∣Fk−1

]
=

−Ik

Sk− Ik
eλSk +

Sk

Sk− Ik
eλ Ik = eφ(λ (Sk−Ik)) ,

with

φ(x) =
Ikx

Sk− Ik
+ log

(
Sk− Ikex

Sk− Ik

)
.

Since 0≤ Sk− Ik ≤ δk, we only have to check that φ(x)≤ x2/8 for all x≥ 0, in order
to conclude the proof of the lemma. Straightforward computations give

φ(0) = 0, φ
′(0) = 0, and φ

′′(x) =
−SkIkex

(Sk− Ikex)2 ≤
1
4
,

where the last inequality follows from 4ab≤ (a+b)2. Taylor inequality then ensures
that

φ(x) ≤ x2

2
sup

t∈[0,x]
φ
′′(t) ≤ x2

8
, for all x≥ 0,

which conclude the proof of Lemma B.6. �

Let us now prove the McDiarmid inequality. Applying repeatedly Lemma B.6, we
obtain

E

[
n

∏
k=1

eλ∆k

]
= E

[
n−1

∏
k=1

eλ∆kE
[
eλ∆n |Fn−1

]]

≤ eλ 2δ 2
n /8E

[
n−1

∏
k=1

eλ∆k

]
≤ . . .≤ eλ 2

∑
n
k=1 δ 2

k /8.



CONCENTRATION INEQUALITIES 301

Combining this inequality with (B.1), we get

P(F > E[F ]+ t)≤ e−λ t eλ 2
∑

n
k=1 δ 2

k /8.

For λ = 4t
(
∑

n
k=1 δ 2

k

)−1, it gives the McDiarmid inequality. 2

B.2.2 Gaussian Concentration Inequality

Lipschitz functions of Gaussian random variables also fulfill a good concentration
around their mean.

Theorem B.7 Assume that F : Rd → R is 1-Lipschitz and Z has a Gaussian
N (0,σ2Id) distribution.

Then, there exists a variable ξ with exponential distribution of parameter 1, such
that

F(Z)≤ E[F(Z)]+σ
√

2ξ . (B.2)

A striking point with the Gaussian concentration is that the size of the fluctuation
σ
√

2ξ does not depend on the dimension d. We give here a short proof based on Itô
calculus due to Ibragimov, Sudakov, and Tsirel’son [94]. We refer to Exercise 1.6.7,
on page 25, for a simple proof of a less tight version of (B.2) and to Ledoux [105]
for some more classical and elementary proofs and further references.

Proof. We can assume in the following that Z ∼N (0, Id), since F(Z) = σ F̃(Z/σ),
where F̃(x) = σ−1F(σx) is 1-Lipschitz and Z/σ has a N (0, Id) distribution. Let
(Wt)t≥0 be a standard Brownian motion in Rd and set for x ∈ Rd and t ∈ [0,1]

G(t,x) = E [F(x+W1−t)] .

The function G is continuous on [0,1]×Rd , differentiable in t, and infinitely differ-
entiable in x for any t ∈ [0,1[. Furthermore, since the infinitesimal generator of the
standard Brownian motion is 1

2 ∆, we have for all (t,x) ∈ ]0,1[×Rd

∂

∂ t
G(t,x) =−1

2
∆xG(t,x), (B.3)

where ∆x represents the Laplacian in the variable x. Let (Bt)t≥0 be another standard
Brownian motion in Rd , independent of W . Itô’s formula (see Revuz–Yor [131],
Chapter 4, Theorem 3.3) gives

G(1,B1)︸ ︷︷ ︸
=F(B1)

= G(0,0)+
∫ 1

0

∂

∂ t
G(s,Bs)ds+

∫ 1

0
∇xG(s,Bs) ·dBs +

1
2

∫ 1

0
∆xG(s,Bs)ds

= G(0,0)︸ ︷︷ ︸
=E[F(W1)]

+
∫ 1

0
∇xG(s,Bs) ·dBs ,
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where the last equality follows from Equation (B.3). The stochastic integral∫ t
0 ∇xG(s,Bs) · dBs defines a continuous martingale starting from 0, so according to

Dubins–Schwarz’s representation of continuous martingales ([131], Chapter 5, The-
orem 1.6), there exists a 1-dimensional standard Brownian motion β , such that∫ 1

0
∇xG(s,Bs) ·dBs = βT1 , where T1 =

∫ 1

0
‖∇xG(s,Bs)‖2ds .

Since F is 1-Lipschitz, the function x→ G(t,x) is 1-Lipschitz for all t ∈ [0,1], and
therefore ‖∇xG(t,x)‖ ≤ 1 for all (t,x) ∈ [0,1[×Rd . As a consequence, we have that
T1 ≤ 1 a.s. and ∣∣∣∣∫ 1

0
∇xG(s,Bs) ·dBs

∣∣∣∣≤ sup
t∈[0,1]

βt a.s.

Finally, the random variable supt∈[0,1] βt has the same distribution as the absolute
value of a standard Gaussian random variable ([131], Chapter 3, Theorem 3.7), so

P(F(B1)≥ E [F(W1)]+ x) ≤ P

(
sup

t∈[0,1]
βt ≥ x

)

≤ 2
∫ +∞

x
e−t2/2 dt√

2π
≤ e−x2/2.

We conclude by noticing that B1 and W1 have a Gaussian N (0, Id) distribution. 2

We note that replacing F by −F , we also have F(Z) ≥ E[F(Z)]−σ
√

2ξ ′ for some
ξ ′ with exponential distribution of parameter 1.

Remark 1. A typical example of use of the Gaussian concentration inequality is
with the norm ‖Z‖ of a N (0,σ2Id) Gaussian random variable. Since the norm is
1-Lipschitz, and since we have E[‖Z‖] ≤

√
E[‖Z‖2] = σ

√
d, the norm ‖Z‖ fulfills

the inequality
‖Z‖ ≤ σ

√
d +σ

√
2ξ ,

where ξ is an exponential random variable of parameter 1.

Remark 2. Another consequence of the Gaussian concentration is that the variance
of the norm ‖Z‖ of a N (0,σ2Id) Gaussian random variable can be bounded inde-
pendently of the dimension d. Actually, there exists two standard exponential random
variables ξ and ξ ′, such that

E[‖Z‖]−σ
√

2ξ ′ ≤ ‖Z‖ ≤ E[‖Z‖]+σ
√

2ξ .

Accordingly, we have the upper bound

var[‖Z‖] = E
[
(‖Z‖−E[‖Z‖])2

+

]
+E

[
(E[‖Z‖]−‖Z‖)2

+

]
≤ 2E[ξ ]σ2 +2E[ξ ′]σ2 = 4σ

2.

As a consequence, we have the following bounds on the expectation of ‖Z‖

(d−4) σ
2 ≤ E

[
‖Z‖2]−var[‖Z‖] = E [‖Z‖]2 ≤ E

[
‖Z‖2]= d σ

2. (B.4)
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B.2.3 Concentration of Quadratic Forms of Gaussian Vectors

The next lemma gathers two simple versions of Hanson-Wright inequality for con-
centration of quadratic forms of Gaussian vectors.

Theorem B.8 Concentration of Quadratic forms of Gaussian vectors
Symmetric forms. Let ε be a standard Gaussian random variable N (0, Ip) in
Rp and S be a real symmetric p× p matrix. Then, we have for any L≥ 0

P
[

ε
T Sε−Tr(S)>

√
8‖S‖2

F L∨ (8|S|opL)
]
≤ e−L. (B.5)

Cross-products. Let ε,ε ′ be two independent standard Gaussian random vari-
ables N (0, Ip) in Rp and A be any real p× p matrix. Then, we have for any
L≥ 0

P
[

ε
T Aε

′ >
√

4‖A‖2
F L∨ (4|A|opL)

]
≤ e−L. (B.6)

Proof of Theorem B.8.
Symmetric forms. The proof is based on the Chernoff argument, page 297. Next
lemma provides an upper bound on the Laplace transform of a square Gaussian ran-
dom variable.
Lemma B.9

Let Z be a N (0,1) standard Gaussian random variable. Then, for any |s| ≤ 1/4,
we have

E
[
exp(s(Z2−1))

]
≤ e2s2

.

Proof of Lemma B.9. Since − log(1− x)≤ x+ x2 for |x| ≤ 1/2, we have

E
[
exp(s(Z2−1))

]
=

e−s

(1−2s)1/2 ≤ e2s2
.

The proof of Lemma B.9 is complete. �

Since S is symmetric we can diagonalize it, S = ∑
p
k=1 λkvkvT

k and

ε
T Sε =

p

∑
k=1

λk(vT
k ε)2.

Since the eigenvectors
{

v1, . . . ,vp
}

form an orthonormal basis of Rp, the matrix
V = [v1, . . . ,vp] fulfills V TV = I. Hence, Z = V T ε follows a N (0, I) distribution,
which means that the random variables Zk = vT

k ε , for k = 1, . . . , p are i.i.d. N (0,1)-
random variables.
Applying Markov inequality (Lemma B.1, page 297), we get for t ≥ 0 and |s| ≤
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(4|S|op)
−1

P
[
ε

T Sε−Tr(S)> t
]
≤ e−st E

[
es(εT Sε−Tr(S))

]
≤ e−st

p

∏
k=1
E
[
exp
(
sλk(Z2

k −1)
)]

≤ exp

(
−st +2s2

p

∑
k=1

λ
2
k

)
= exp

(
−st +2‖S‖2

F s2)
The minimum of s → −st + 2‖S‖2

F s2 over |s| ≤ (4|S|op)
−1 is achieved for s =

1
4 (t/‖S‖

2
F)∧ (1/|S|op) and hence

min
|s|≤(4|S|op)−1

(
−st +2‖S‖2

F s2)=− t2

8‖S‖2
F

1{t≤‖S‖2F/|S|op}+

(
‖S‖2

F
8|S|2op

− t
4|S|op

)
1{t>‖S‖2F/|S|op}

≤ −1
8

(
t2

‖S‖2
F
∧ t
|S|op

)
.

The bound (B.5) follows.

Cross-products. The trick for (B.6) is to notice that

ε
T Aε

′ =

[
ε

ε ′

]T

S
[

ε

ε ′

]
, with S =

1
2

[
0 A

AT 0

]
.

Since S is symmetric, we can apply (B.5). The conclusion follows by noticing that
Tr(S) = 0, |S|op = |A|op/2 and ‖S‖2

F = ‖A‖2
F/2. �

Remark. When S is symmetric positive semi-definite, we have εT Sε = ‖S1/2ε‖2.
Since ∣∣∣‖S1/2y‖−‖S1/2x‖

∣∣∣≤ ‖S1/2(y− x)‖ ≤ |S|1/2
op ‖y− x‖,

the application x→ ‖S1/2x‖ is |S|1/2
op -Lipschitz, and we can use the Gaussian con-

centration inequality in order to bound from above εT Sε −Tr(S). Yet, as explained
below, the bound obtained is less tight than (B.5) when the spectrum of S is not flat.

Indeed, since

E
[
‖S1/2

ε‖
]2
≤ E

[
‖S1/2

ε‖2
]
= Tr(S),

the Gaussian concentration inequality (Theorem B.7, page 301) ensures that for L> 0

P
[
‖S1/2

ε‖ ≥
√

Tr(S)+
√

2|S|opL
]
≤ e−L.

It then follows the concentration bound

P
[

ε
T Sε−Tr(S)≥ 2

√
2|S|opTr(S)L+2|S|opL

]
≤ e−L.
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This bound is similar to (B.5), except that ‖S‖2
F has been replaced by |S|opTr(S).

When the spectrum of S is not flat and the dimension p is large, this last quantity
|S|opTr(S) = ∑

p
k=1(λ1λk) can be much larger than ‖S‖2

F = ∑
p
k=1 λ 2

k . For example, if
λk = 1/k, the quantity |S|opTr(S) diverges to infinity when p goes to infinity, while
‖S‖2

F remains bounded.

B.3 Symmetrization and Contraction Lemmas

B.3.1 Symmetrization Lemma

The symmetrization lemma is a simple bound, very useful for bounding the expecta-
tion of suprema of empirical processes, as, for example, in the proof of Theorem 11.1
in Chapter 11.

Theorem B.10 Symmetrization lemma

Let Z be a measurable set, and F be a set of integrable functions f : Z → R.
Let Z1, . . . ,Zn be i.i.d. random variables in Z , and σ1, . . . ,σn be i.i.d. random
variables independent of Z1, . . . ,Zn, with uniform distribution on {−1,+1}. Then,
we have

E

[
sup
f∈F

∣∣∣1
n

n

∑
i=1

( f (Zi)−E [ f (Zi)])
∣∣∣]≤ 2EEσ

[
sup
f∈F

∣∣∣1
n

n

∑
i=1

σi f (Zi)
∣∣∣] , (B.7)

where E refers to the expectation with respect to Z1, . . . ,Zn, and Eσ refers to the
expectation with respect to σ1, . . . ,σn.

Proof. Let (Z̃i)i=1,...,n be an independent copy of (Zi)i=1,...,n. We first observe that

1
n

n

∑
i=1
E [ f (Zi)] = Ẽ

[
1
n

n

∑
i=1

f (Z̃i)

]
,

where Ẽ refers to the expectation with respect to the random variables (Z̃i)i=1,...,n.
According to Jensen inequality, we have

E

[
sup
f∈F

∣∣∣1
n

n

∑
i=1

( f (Zi)−E [ f (Zi)])
∣∣∣]= E[ sup

f∈F

∣∣∣∣∣1n n

∑
i=1

f (Zi)− Ẽ

[
1
n

n

∑
i=1

f (Z̃i)

]∣∣∣∣∣
]

≤ E

[
sup
f∈F

Ẽ

[∣∣∣∣∣1n n

∑
i=1

f (Zi)−
1
n

n

∑
i=1

f (Z̃i)

∣∣∣∣∣
]]

≤ EẼ

[
sup
f∈F

∣∣∣1
n

n

∑
i=1

(
f (Zi)− f (Z̃i)

)∣∣∣] .
By symmetry, we notice that

(
σi
(

f (Zi)− f (Z̃i)
))

i=1,...,n
has the same distribution as
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f (Zi)− f (Z̃i)

)
i=1,...,n

, so the previous bound and the triangular inequality give

E

[
sup
f∈F

∣∣∣1
n

n

∑
i=1

( f (Zi)−E [ f (Zi)])
∣∣∣]

≤ EẼEσ

[
sup
f∈F

∣∣∣1
n

n

∑
i=1

σi

(
f (Zi)− f (Z̃i)

)∣∣∣]

≤ EEσ

[
sup
f∈F

∣∣∣1
n

n

∑
i=1

σi f (Zi)
∣∣∣]+ ẼEσ

[
sup
f∈F

∣∣∣1
n

n

∑
i=1

σi f (Z̃i)
∣∣∣]

≤ 2EEσ

[
sup
f∈F

∣∣∣1
n

n

∑
i=1

σi f (Zi)
∣∣∣] .

The proof of Theorem B.10 is complete. 2

B.3.2 Contraction Principle

The contraction principle of Ledoux and Talagrand (Theorem 4.12 in [106]) is a
useful tool for analyzing empirical processes, as, for example, in the proof of Theo-
rem 11.10 in Chapter 11.

Theorem B.11 Contraction principle

Let Z be a bounded subset of Rn, and ϕ : R → R be an α-Lipschitz func-
tion fulfilling ϕ(0) = 0. For σ1, . . . ,σn i.i.d. random variables with distribution
Pσ (σi = 1) = Pσ (σi =−1) = 1/2, we have

Eσ

[
sup
z∈Z

∣∣∣∣ n

∑
i=1

σiϕ(zi)

∣∣∣∣
]
≤ 2αEσ

[
sup
z∈Z

∣∣∣∣ n

∑
i=1

σizi

∣∣∣∣
]
. (B.8)

Proof. We will actually prove the following stronger result: For any function g :Rn→
R and any integer d ≤ n,

Eσ

[
sup
z∈Z

(
g(z)+

d

∑
i=1

σiϕ(zi)

)
+

]
≤ αEσ

[
sup
z∈Z

(
g(z)+

d

∑
i=1

σizi

)
+

]
. (B.9)

Let us first check that (B.8) follows from (B.9). Since |x|= (x)++(−x)+, we have

Eσ

[
sup
z∈Z

∣∣∣∣ n

∑
i=1

σiϕ(zi)

∣∣∣∣
]
≤Eσ

[
sup
z∈Z

( n

∑
i=1

σiϕ(zi)

)
+

]
+Eσ

[
sup
z∈Z

(
−

n

∑
i=1

σiϕ(zi)

)
+

]
.

The random variable−σ has the same distribution as σ , so applying (B.9) with g= 0
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and d = n, we obtain

Eσ

[
sup
z∈Z

∣∣∣∣ n

∑
i=1

σiϕ(zi)

∣∣∣∣
]
≤ 2αEσ

[
sup
z∈Z

( n

∑
i=1

σizi

)
+

]

≤ 2αEσ

[
sup
z∈Z

∣∣∣∣ n

∑
i=1

σizi

∣∣∣∣
]
,

which gives (B.8).

To conclude the proof of Theorem B.11, it remains to prove (B.9). Replacing ϕ by
ϕ/α , we can assume that ϕ is 1-Lipschitz. The following technical lemma is the key
of the proof.
Lemma B.12

Let Z be a bounded subset of Rn, and consider ϕ : R→ R a 1-Lipschitz function
fulfilling ϕ(0) = 0. Then for any function g : Rn→ R, we have

sup
z,z′∈Z

{
(g(z)+ϕ(z1))++(g(z′)−ϕ(z′1))+

}
≤ sup

z,z′∈Z

{
(g(z)+ z1)++(g(z′)− z′1)+

}
where z1 denotes the first coordinate of z.

Proof of Lemma B.12. For any z,z′ ∈Z , we have for any ϕ :R→R and g :Rn→R

(g(z)+ϕ(z1))++(g(z′)−ϕ(z′1))+
= max

{
g(z)+ϕ(z1)+g(z′)−ϕ(z′1),g(z)+ϕ(z1),g(z′)−ϕ(z′1),0

}
. (B.10)

Let us bound each term in the right-hand side maximum.
1. Let us bound the first term. Since ϕ is 1-Lipschitz, we have

g(z)+ϕ(z1)+g(z′)−ϕ(z′1) ≤ g(z)+g(z′)+ |z1− z′1|
≤ sup

z,z′∈Z

{
g(z)+g(z′)+ |z1− z′1|

}
.

Due to the symmetry in z and z′, we have

sup
z,z′∈Z

{
g(z)+g(z′)+ |z1− z′1|

}
= sup

z,z′∈Z

{
g(z)+g(z′)+ z1− z′1

}
,

and therefore

g(z)+ϕ(z1)+g(z′)−ϕ(z′1) ≤ sup
z,z′∈Z

{
g(z)+g(z′)+ z1− z′1

}
≤ sup

z,z′∈Z

{
(g(z)+ z1)++(g(z′)− z′1)+

}
. (B.11)

2. Let us bound the two other terms in the right-hand side of (B.10). Since ϕ is
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1-Lipschitz and ϕ(0) = 0, we have |ϕ(z1)| ≤ |z1| for all z1 ∈ R. This inequality
gives

g(z)±ϕ(z1) ≤ g(z)+ |z1|
≤ (g(z)+ z1)++(g(z)− z1)+

≤ sup
z,z′∈Z

{
(g(z)+ z1)++(g(z′)− z′1)+

}
. (B.12)

Combining (B.10) with (B.11) and (B.12) completes the proof of Lemma B.12. �

We now prove (B.9) by induction on d.
• For d = 1, we have

Eσ1

[
sup
z∈Z

(g(z)+σ1ϕ(z1))+

]
=

1
2

sup
z∈Z

(g(z)+ϕ(z1))++
1
2

sup
z′∈Z

(
g(z′)−ϕ(z′1)

)
+

=
1
2

sup
z,z′∈Z

{
(g(z)+ϕ(z1))++

(
g(z′)−ϕ(z′1)

)
+

}
.

Lemma B.12 ensures that

Eσ1

[
sup
z∈Z

(g(z)+σ1ϕ(z1))+

]
≤ 1

2
sup

z,z′∈Z

{
(g(z)+ z1)++(g(z′)− z′1)+

}
= Eσ1

[
sup
z∈Z

(g(z)+σ1z1)+

]
,

which proves (B.9) for d = 1.
• Assume now that Inequality (B.9) has been proved up to d = k− 1, with k ≥ 2.
Below, we will denote by Eσk the expectation under the variable σk and by Eσ−k the
expectation under the variables σ1, . . . ,σk−1. Applying successively Inequality (B.9)
with d = k−1 and d = 1, we obtain

Eσ

[
sup
z∈Z

(
g(z)+

k

∑
i=1

σiϕ(zi)

)
+

]

= Eσk

[
Eσ−k

[
sup
z∈Z

((
g(z)+σkϕ(zk)

)
+

k−1

∑
i=1

σiϕ(zi)

)
+

]]
(Fubini)

≤ Eσk

[
Eσ−k

[
sup
z∈Z

((
g(z)+σkϕ(zk)

)
+

k−1

∑
i=1

σizi

)
+

]]
(Ineq. (B.9) with d = k−1)

= Eσ−k

[
Eσk

[
sup
z∈Z

((
g(z)+

k−1

∑
i=1

σizi

)
+σkϕ(zk)

)
+

]]
(Fubini)

≤ Eσ−k

[
Eσk

[
sup
z∈Z

(
g(z)+

k

∑
i=1

σizi

)
+

]]
(Inequality (B.9) with d = 1),

which gives (B.9) for d = k. By induction, this completes the proof of (B.9) for any
d ≤ n. 2
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B.4 Birgé’s Inequality

Birgé’s inequality [30] is very useful for deriving minimax lower bounds, as, for ex-
ample, in Theorem 3.5 and Exercise 3.6.2. We state here a simple version of the in-
equality, and we refer to Corollary 2.18 in Massart’s lecture notes [118] for a stronger
result.

In the following, we denote by

KL(P,Q) =
{ ∫

log dP
dQ dP when P�Q

+∞ else

the Kullback–Leibler divergence between P and Q.

Theorem B.13 Birgé’s Inequality
Let us consider a family (Ai)i=1,...,N of disjointed events, and a collection

(Pi)i=1,...,N of probability measures. Then, we have

min
i=1,...,N

Pi(Ai)≤
2e

2e+1

∨ maxi6= j KL(Pi,P j)

log(N)
. (B.13)

Proof. We can assume that Pi� P j for all i 6= j, otherwise maxi 6= j KL(Pi,P j) = +∞

and (B.13) is obvious. The proof is mainly based on the following simple inequality.
Lemma B.14

Let X be a bounded random variable and P1,P2 be two probability measures, such
that P1� P2 and P2� P1. Then, we have

E2 [X ]− logE1
[
eX]≤ KL(P2,P1) , (B.14)

where Ei denotes the expectation with respect to Pi.

Proof of the lemma. Since − log is convex, Jensen inequality ensures that

− logE1
[
eX] = − log

(∫
eX dP1

dP2
dP2

)
≤
∫
− log

(
eX dP1

dP2

)
dP2 = −E2 [X ]+KL(P2,P1) ,

which concludes the proof of Lemma B.14. �

We set m = mini=1,...,N Pi(Ai), and for i ≤ N− 1, we define X = 1Ai log(m/q) with
q = (1−m)/(N−1). Inequality (B.14) gives

Pi(Ai) log(m/q)− logEN

[(
m
q

)1Ai
]
≤ KL(Pi,PN) .
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Computing the expectation, we find

logEN

[(
m
q

)1Ai
]

= log
(
PN(Ai)

(
m
q
−1
)
+1
)

≤ PN(Ai)

(
m
q
−1
)
≤ m

q
PN(Ai).

We have Pi(Ai)≥ m, so averaging over i ∈ {1, . . . ,N−1} gives

m log(m/q)− m
q(N−1)

N−1

∑
i=1
PN(Ai) ≤ KL =

1
N−1

N−1

∑
i=1

KL(Pi,PN) .

Since
N−1

∑
i=1
PN(Ai)≤ 1−PN(AN)≤ 1−m and q =

1−m
N−1

,

we finally obtain

m log
(

m(N−1)
e(1−m)

)
≤ KL .

To conclude the proof of (B.13), we simply check that for m≥ 2e/(2e+1), we have

log
(

m(N−1)
e(1−m)

)
≥ log(2(N−1))≥ log(N) ,

and that KL≤maxi 6= j KL(Pi,P j). 2



Appendix C

Linear Algebra

C.1 Singular Value Decomposition

The Singular Value Decomposition (SVD) is a matrix decomposition that is very
useful in many fields of applied mathematics. In the following, we will use that, for
any n× p matrix A, the matrices AT A and AAT are symmetric positive semi-definite.

Theorem C.1 Singular value decomposition
Any n× p matrix A of rank r can be decomposed as

A =
r

∑
j=1

σ j u jvT
j , (C.1)

where

• r = rank(A),
• σ1 ≥ . . .≥ σr > 0,

•
{

σ2
1 , . . . ,σ

2
r
}

are the nonzero eigenvalues of AT A (which are also the nonzero
eigenvalues of AAT ), and

• {u1, . . . ,ur} and {v1, . . . ,vr} are two orthonormal families of Rn and Rp, such
that

AAT u j = σ
2
j u j and AT Av j = σ

2
j v j.

The values σ1, . . . ,σr are called the singular values of A. The vectors {u1, . . . ,ur}
and {v1, . . . ,vr} are said to be left-singular vectors and right-singular vectors, re-
spectively.

Proof. Let us prove that such a decomposition exists. Since AAT is positive semi-
definite, we have a spectral decomposition

AAT =
r

∑
j=1

λ ju juT
j ,

with λ1 ≥ . . . ≥ λr > 0 and {u1, . . . ,ur} an orthonormal family of Rn. Let us define
v1, . . . ,vr by v j = λ

−1/2
j AT u j for j = 1, . . . ,r. We have

‖v j‖2 = λ
−1
j uT

j AAT u j = uT
j u j = 1,

311



312 LINEAR ALGEBRA

and
AT Av j = λ

−1/2
j AT (AAT )u j = λ

1/2
j AT u j = λ jv j,

so {v1, . . . ,vr} is an orthonormal family of eigenvectors of AT A. Setting σ j = λ j
1/2,

we obtain
r

∑
j=1

σ ju jvT
j =

r

∑
j=1

λ
1/2
j λ

−1/2
j u juT

j A

=

( r

∑
j=1

u juT
j

)
A.

We notice that ∑
r
j=1 u juT

j is the projection onto the range of AAT . To conclude, we
recall that Rp = ker(A)©⊥ range(AT ) is the orthogonal sum of ker(A) and range(AT ),
so the range of A and the range of AAT coincide and

r

∑
j=1

σ ju jvT
j =

( r

∑
j=1

u juT
j

)
A = Projrange(A) A = A.

The proof of Lemma C.1 is complete. 2

C.2 Moore–Penrose Pseudo-Inverse

The Moore–Penrose pseudo-inverse A+ of a matrix A generalizes the notion of in-
verse for singular matrices. It is a matrix such that AA+y = y for all y in the range
of A and A+Ax = x for all x in the range of A+. Furthermore, the matrices AA+ and
A+A are symmetric. When A is non-singular, we have the identity A+ = A−1. We
first describe A+ for diagonal matrices, then for symmetric matrices, and finally for
arbitrary matrices.

Diagonal matrices
The Moore–Penrose pseudo-inverse of a diagonal matrix D is a diagonal matrix D+,
with diagonal entries [D+] j j = 1/D j j when D j j 6= 0 and [D+] j j = 0 otherwise.

Symmetric matrices
Write A =UDUT for a spectral decomposition of A with D diagonal and U unitary1.
The Moore–Penrose pseudo-inverse of A is given by A+ =UD+UT .

Arbitrary matrices
Write A =∑

r
j=1 σ j(A)u jvT

j for a singular value decomposition of A with r = rank(A).
The Moore–Penrose pseudo-inverse of A is given by

A+ =
r

∑
j=1

σ j(A)−1v juT
j . (C.2)

1U unitary if UTU =UUT = I.
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We notice that

A+A =
r

∑
j=1

v jvT
j = Projrange(AT ) and AA+ =

r

∑
j=1

u juT
j = Projrange(A). (C.3)

In particular, AA+ = A+A = I when A is non-singular.

C.3 Matrix Norms

In the following, we denote by σ1(A)≥ σ2(A)≥ . . . the singular values of A. Several
interesting norms are related to the singular values.

Frobenius norm
The standard scalar product on matrices is 〈A,B〉F = ∑i, j Ai, jBi, j. It induces the
Frobenius norm

‖A‖2
F = ∑

i, j
A2

i, j = Tr(AT A) = ∑
k

σk(A)2.

The last equality follows from the fact that the σk(A)2 are the eigenvalues of AT A.

Operator norm
The `2→ `2 operator norm is defined by

|A|op = sup
‖x‖≤1

‖Ax‖= σ1(A).

Let us prove this last equality. We have Ax = ∑k σk(A)ukvT
k x, so ‖Ax‖2 =

∑k σ2
k (A)〈vk,x〉2 ≤ σ1(A)2‖x‖2, with equality for x = v1.

Nuclear norm
The nuclear norm is defined by

|A|∗ =
r

∑
k=1

σk(A).

The three following inequalities are very useful.

Lemma C.2 We have

1. |A|∗ ≤
√

rank(A) ‖A‖F ,

2. 〈A,B〉F ≤ |A|∗|B|op ,

3. ‖AB‖F ≤ |A|op‖B‖F .

Proof. The first inequality is simply Cauchy–Schwartz inequality. For the second
inequality, we start from

〈A,B〉F = ∑
k

σk(A)〈ukvT
k ,B〉F = ∑

k
σk(A)〈uk,Bvk〉
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and notice that 〈uk,Bvk〉 ≤ ‖Bvk‖ ≤ |B|op since ‖uk‖= ‖vk‖= 1. The inequality

〈A,B〉F ≤∑
k

σk(A)|B|op

then follows. Let us turn to the third inequality. We denote by B j the j-th column of
B. We observe that ‖B‖2

F = ∑ j ‖B j‖2, so

‖AB‖2
F = ∑

j
‖(AB) j‖2 = ∑

j
‖AB j‖2 ≤∑

j
|A|2op‖B j‖2 = |A|2op‖B‖2

F .

The proof of Lemma C.2 is complete. 2

C.4 Matrix Analysis

C.4.1 Characterization of the Singular Values

Next result is a geometric characterization of the singular values.

Theorem C.3 Max–Min / Min–Max formula
For any n× p matrix A and k ≤min(n, p), we have

σk(A) = max
S:dim(S)=k

min
x∈S\{0}

‖Ax‖
‖x‖

, (C.4)

where the maximum is taken over all the linear spans S⊂ Rp with dimension k.
Symmetrically, we have

σk(A) = min
S:codim(S)=k−1

max
x∈S\{0}

‖Ax‖
‖x‖

, (C.5)

where the minimum is taken over all the linear spans S ⊂ Rp with codimension
k−1.

Proof. We start from the singular value decomposition A = ∑
r
j=1 σ j(A)u jvT

j and we
consider

{
vr+1, . . . ,vp

}
, such that

{
v1, . . . ,vp

}
is an orthonormal basis of Rp. We

define Sk = span{v1, . . . ,vk} and Wk = span
{

vk, . . . ,vp
}

. For any linear span S⊂Rp

with dimension k, we have dim(S) + dim(Wk) = p+ 1, so S∩Wk 6= {0}. For any
nonzero x ∈ S∩Wk we have

‖Ax‖2

‖x‖2 =
∑

r
j=k σ j(A)2〈v j,x〉2

∑
p
j=k〈v j,x〉2

≤ σk(A)2,

so

max
S:dim(S)=k

min
x∈S\{0}

‖Ax‖
‖x‖

≤ σk(A).

Conversely, for all x ∈ Sk \{0}, we have

‖Ax‖2

‖x‖2 =
∑

k
j=1 σ j(A)2〈v j,x〉2

∑
k
j=1〈v j,x〉2

≥ σk(A)2,
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with equality for x = vk. As a consequence,

max
S:dim(S)=k

min
x∈S\{0}

‖Ax‖
‖x‖

= σk(A),

with equality for S = Sk, which proves (C.4). The min–max formula (C.5) is proved
similarly. 2

Corollary C.4 For an n× p matrix A and k ≤ min(n, p), we have for any P ∈
Rn×n with |P|op ≤ 1

σk(PA)≤ σk(A) and ‖PA‖F ≤ ‖A‖F . (C.6)

Similarly, we have for any P ∈ Rp×p with |P|op ≤ 1

σk(AP)≤ σk(A) and ‖AP‖F ≤ ‖A‖F . (C.7)

Proof. Since |P|op ≤ 1, we have ‖PAx‖ ≤ ‖Ax‖. The inequality (C.6) then follows
from (C.4). Furthermore, we have σk(AP) = σk(PT AT ) ≤ σk(AT ) = σk(A), which
gives (C.7). 2

C.4.2 Best Low-Rank Approximation

The next theorem characterizes the “projection” on the set of matrices of rank
r. It also provides an improvement of the Cauchy–Schwartz inequality 〈A,B〉F ≤
‖A‖F‖B‖F in terms of the Ky–Fan (2,q)-norm

‖A‖2
(2,q) =

q

∑
k=1

σk(A)2, (C.8)

with q = rank(A)∧ rank(B). We observe that ‖A‖(2,q) ≤ ‖A‖F , with strict inequality
if q < rank(A).

Theorem C.5 For any matrices A,B ∈ Rn×p, we set q = rank(A)∧ rank(B). We
then have

〈A,B〉F ≤ ‖A‖(2,q) ‖B‖(2,q),

where the Ky–Fan (2,q)-norm ‖A‖(2,q) is defined in (C.8).

As a consequence, for A = ∑
r
k=1 σk(A)ukvT

k and q < r, we have

min
B:rank(B)≤q

‖A−B‖2
F =

r

∑
k=q+1

σk(A)2.

In addition, the minimum is achieved for

B =
q

∑
k=1

σk(A)ukvT
k .
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Proof. We can assume, e.g., that the rank of B is not larger than the rank of A. Let us
denote by q the rank of B and PB the projection on the range of B. We have

〈A,B〉F = 〈PBA,B〉F ≤ ‖PBA‖F‖B‖F .

The rank of PBA is at most q and previous corollary ensures that σk(PBA) ≤ σk(A),
since |PB|op ≤ 1. So,

‖PBA‖2
F =

q

∑
k=1

σk(PBA)2 ≤
q

∑
k=1

σk(A)2 = ‖A‖2
(2,q).

Since q = rank(B), we have ‖B‖F = ‖B‖(2,q), and the first part of the theorem is
proved.

According to the first part of the theorem, for any matrix B of rank q, we have

‖A−B‖2
F = ‖A‖2

F −2〈A,B〉F +‖B‖2
F ≥ ‖A‖2

F −2‖A‖(2,q)‖B‖F +‖B‖2
F .

The right-hand side is minimum for ‖B‖F = ‖A‖(2,q), so

‖A−B‖2
F ≥ ‖A‖2

F −‖A‖2
(2,q) =

r

∑
k=q+1

σk(A)2.

Finally, we observe that this lower bound is achieved for B = ∑
q
k=1 σk(A)ukvT

k . 2

C.5 Perturbation Bounds

In statistics and in machine learning, it is useful to relate the SVD of the observed
matrix B = A+E to the SVD of the signal matrix A.

C.5.1 Weyl Inequality

Weyl inequality states that the singular values are 1-Lipschitz with respect to the
operator norm.

Theorem C.6 Weyl inequality
For two n× p matrices A and B, we have for any k ≤min(n, p)

|σk(A)−σk(B)| ≤ σ1(A−B) = |A−B|op.

Proof. For any x ∈ Rp \{0}, we have

‖Ax‖
‖x‖

≤ ‖Bx‖
‖x‖

+
‖(A−B)x‖
‖x‖

≤ ‖Bx‖
‖x‖

+σ1(A−B).

The inequality follows by applying the Max–Min formula (C.3). 2
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C.5.2 Eigenspaces Localization

Let A,B∈Rn×n be two symmetric matrices and let A=∑k λkukuT
k and B=∑k ρkvkvT

k
be their eigenvalue decomposition with λ1 ≥ λ2 ≥ ·· · and ρ1 ≥ ρ2 ≥ ·· · . We want
to compare the eigenspaces span{u1, . . . ,ur} and span{v1, . . . ,vr}, spanned by the r
leading eigenvectors of A and B.
A first idea could be to compare the two matrices Ur = [u1, . . . ,ur] and
Vr = [v1, . . . ,vr]. Yet, there exist some orthogonal transformation R, such that
span{Ru1, . . . ,Rur} = span{u1, . . . ,ur}, but RUr 6= Ur, so a directed comparison of
Ur and Vr is not suited. Instead, we will compare

UrUT
r =

r

∑
k=1

ukuT
k and VrV T

r =
r

∑
k=1

vkvT
k ,

which are the orthogonal projectors inRn onto span{u1, . . . ,ur} and span{v1, . . . ,vr},
respectively. The next proposition relates the Frobenius distance between UrUT

r and
VrV T

r to the Frobenius norm of UT
−rVr.

Proposition C.7 Let U−r = [ur+1, . . . ,un] and V−r = [vr+1, . . . ,vn]. Then, we have

‖UrUT
r −VrV T

r ‖2
F = 2‖V T

−rUr‖2
F = 2‖UT

−rVr‖2
F .

Proof of Proposition C.7. We first expand the squares and use that the Frobenius
norm of a projector is equal to its rank

‖UrUT
r −VrV T

r ‖2
F = ‖UrUT

r ‖2
F +‖VrV T

r ‖2
F −2〈UrUT

r ,VrV T
r 〉F

= 2r−2Tr(UT
r VrVT

r Ur).

Then, since span{vr+1, . . . ,vn} is the orthogonal complement of span{v1, . . . ,vr}, we
have VrV T

r = In−V−rV T
−r. So, as UT

r Ur = Ir

‖UrUT
r −VrV T

r ‖2
F = 2r−2Tr(Ir−UT

r V−rVT
−rUr)

= 2Tr(UT
r V−rVT

−rUr) = 2‖VT
−rUr‖2

F.

The second equality of Lemma C.7 follows by symmetry. �

A classical inequality to bound the norm ‖UT
−rVr‖2

F is the Davis-Kahan perturbation
bound.
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Theorem C.8 Davis-Kahan perturbation bound.
Let A,B ∈ Rn×n be two symmetric matrices and let A = ∑k λkukuT

k and B =

∑k ρkvkvT
k be their eigenvalue decomposition with λ1≥ ·· · ≥ λn and ρ1≥ ·· · ≥ ρn.

Let Ur = [u1, . . . ,ur], U−r = [ur+1, . . . ,un] and similarly Vr = [v1, . . . ,vr], V−r =
[vr+1, . . . ,vn]. Then, we have

‖UT
−rVr‖F ≤

(
√

r|A−B|op)∧‖A−B‖F

(ρr−λr+1)∨ (λr−ρr+1)
(C.9)

≤ 2
(
√

r|A−B|op)∧‖A−B‖F

λr−λr+1
. (C.10)

In many cases, we only wish to compare the two leading eigenvectors of A and B,
which corresponds to the case r = 1.

Corollary C.9 Comparing leading eigenvectors.√
1−〈u1,v1〉2 ≤

2infλ∈R |A+λ I−B|op

λ1−λ2
. (C.11)

Proof of Corollary C.9.
We first observe that

‖UT
−1v1‖2 = vT

1 U−1UT
−1v1 = vT

1 (I−u1uT
1 )v1 = 1− (uT

1 v1)
2.

In addition, the eigenvectors of A and A+ λ I are the same, while the eigenvalues
are all translated by λ , preserving the eigengap λ1 − λ2 between the two largest
eigenvalues. So we have for any λ ∈ R, the Inequality (C.10) applied to A+λ I and
B gives √

1−〈u1,v1〉2 ≤
2|A+λ I−B|op

λ1−λ2
.

The proof of Corollary C.9 is complete. �

Proof of Theorem C.8.
We first observe that the Bound (C.10) directly follows from (C.9) and the inequali-
ties

λr−λr+1 = λr−ρr+1− (ρr−ρr+1)+ρr−λr+1

≤ (λr−ρr+1)+(ρr−λr+1)≤ 2((ρr−λr+1)∨ (λr−ρr+1)).

Let us prove (C.9). As a starting point, we notice that either ρr > λr+1 or λr ≥ ρr+1,
so

(ρr−λr+1)∨ (λr−ρr+1) = (ρr−λr+1)+∨ (λr−ρr+1)+.

In addition, we observe from Lemma C.7 that the roles of A and B are symmetric.
Hence, we only need to prove

‖UT
−rVr‖F ≤

(
√

r|A−B|op)∧‖A−B‖F

(ρr−λr+1)+
. (C.12)
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When ρr ≤ λr+1 the right-hand side is infinite, so we only need to focus on the case
where ρr > λr+1.
We have the decomposition

‖UT
−rVr‖2

F =
r

∑
k=1
‖UT
−rvk‖2, (C.13)

so we will start by bounding the square norms ‖UT
−rvk‖2. Since

A =
n

∑
k=1

λkukuT
k =Ur diag(λ1, . . . ,λr)UT

r +U−r diag(λr+1, . . . ,λn)UT
−r,

we have UT
−r A = diag(λr+1, . . . ,λn)UT

−r. Hence, with Bvk = ρkvk, we have for k =
1, . . . ,r

ρkUT
−rvk =UT

−r Bvk =UT
−r(A+B−A)vk

= diag(λr+1, . . . ,λn)UT
−rvk +UT

−r(B−A)vk.

Hence
UT
−rvk = diag(ρk−λr+1, . . . ,ρk−λn)

−1UT
−r(B−A)vk,

and then, since ρk ≥ ρr > λr+1,

‖UT
−rvk‖2 ≤ |diag(ρk−λr+1, . . . ,ρk−λn)

−1UT
−r|2op ‖(B−A)vk‖2

≤ ‖(B−A)vk‖2

(ρk−λr+1)2 ≤
‖(B−A)vk‖2

(ρr−λr+1)2 ,

for k = 1, . . . ,r. To conclude, we observe that

r

∑
k=1
‖(B−A)vk‖2 ≤ |B−A|2op

r

∑
k=1
‖vk‖2 = r|B−A|op,

since ‖vk‖= 1. So, with (C.13) we get

‖UT
−rVr‖2

F ≤
r|A−B|2op

(ρr−λr+1)2 . (C.14)

In addition, since In =VrV T
r +V−rV T

−r, we have

‖A−B‖2
F = 〈(A−B)(VrV T

r +V−rV T
−r),A−B〉F = ‖(A−B)Vr‖2

F +‖(A−B)V−r‖2
F ,

so

r

∑
k=1
‖(B−A)vk‖2 = ‖(B−A)Vr‖2

F

≤ ‖(B−A)Vr‖2
F +‖(B−A)V−r‖2

F = ‖B−A‖2
F .
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Combining this bound with (C.13), we get

‖UT
−rVr‖2

F ≤
‖A−B‖2

F
(ρr−λr+1)2 . (C.15)

Combining (C.14) and (C.15), we get (C.12), completing the proof of Theorem C.8.
�

We refer to Horn and Johnson [93] for more involved results on matrix analysis.



Appendix D

Subdifferentials of Convex Functions

D.1 Subdifferentials and Subgradients

A function F : Rn → R is convex if F(λx + (1− λ )y) ≤ λF(x) + (1− λ )F(y)
for all x,y ∈ Rn and λ ∈ [0,1]. An equivalent definition is that the epigraph
{(x,y), x ∈ Rn, y ∈ [F(x),+∞[} is a convex subset of Rn+1.

Lemma D.1 When the function F :Rn→R is convex and differentiable, we have

F(y)≥ F(x)+ 〈∇F(x),y− x〉 , for all x,y ∈ Rn.

Proof. Let x,h ∈ Rn, and define f : R→ R by f (t) = F(x+ th). Since F is differen-
tiable, so is f and f ′(t) = 〈∇F(x+ th),h〉. By Taylor’s expansion, we have for some
t∗ ∈ [0,1]

F(x+h)−F(x) = 〈∇F(x+ t∗h),h〉= f ′(t∗).

Since

f (λ t +(1−λ )s) = F(λ (x+ th)+(1−λ )(x+ sh))≤ λ f (t)+(1−λ ) f (s) ,

the function f is convex, so

F(x+h)−F(x) = f ′(t∗)≥ f ′(0) = 〈∇F(x),h〉.

We conclude by setting h = y− x. 2

We define the subdifferential ∂F of a convex function F : Rn→ R by

∂F(x) = {w ∈ Rn : F(y)≥ F(x)+ 〈w,y− x〉 for all y ∈ Rn} . (D.1)

A vector w ∈ ∂F(x) is called a subgradient of F in x.

Lemma D.2
1. F : Rn→ R is convex if and only if the set ∂F(x) is non-empty for all x ∈ Rn.

2. When F is convex and differentiable in x, ∂F(x) = {∇F(x)}.

321
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Proof.
1. Assume that ∂F(x) is non-empty for all x ∈ Rn. For any x,y ∈ Rn and λ ∈ [0,1],
there exists w ∈ ∂F(λx+ (1− λ )y). By definition of the subdifferential, we have
F(y) ≥ F(λx+(1− λ )y)+ 〈w,λ (y− x)〉 and F(x) ≥ F(λx+(1− λ )y)+ 〈w,(1−
λ )(x−y)〉. Multiplying the first inequality by (1−λ ) and the second by λ , we obtain
by summing the results

(1−λ )F(y)+λF(x)≥ F(λx+(1−λ )y),

so F is convex.

Conversely, if F is convex, then its epigraph is convex in Rn+1, so there exists a
supporting hyperplane Hx separating the epigraph from any (x,z) with z < F(x).
Since F is finite on Rn, this hyperplane is not vertical, so there exists u ∈Rn and a ∈
R, such that Hx = {(α,β ) : 〈u,α〉+β = a} and such that any (α,β ) in the epigraph
of F fulfills 〈u,α〉+β ≥ a. Since (x,F(x)) ∈Hx, we have a = 〈u,x〉+F(x). For any
y ∈ Rn, the couple (y,F(y)) belongs to the epigraph of F , and therefore

〈u,y〉+F(y)≥ a = 〈u,x〉+F(x).

This ensures that −u ∈ ∂F(x).

2. Let w be a subgradient of F . When F is differentiable, Taylor’s formula gives for
any x,h ∈ Rn and t > 0

F(x± th)−F(x) =±t〈∇F(x),h〉+o(t)≥±t〈w,h〉.

Letting t go to zero, this enforces 〈∇F(x),h〉= 〈w,h〉 for all h ∈ Rn, so w = ∇F(x).
2

More generally, when F : D → R is convex on a convex domain D of Rn, the subd-
ifferential ∂F(x) is non-empty for all x in the interior of D .

It is well-known that the derivative f ′ of a smooth convex function f : R→ R is
increasing. The next lemma shows that this result remains valid for subdifferentials.

Lemma D.3 Monotonicity
The subdifferential of a convex function F is monotone increasing:

〈wx−wy,x− y〉 ≥ 0, for all wx ∈ ∂F(x) and wy ∈ ∂F(y). (D.2)

Proof. By definition, we have F(y)≥ F(x)+ 〈wx,y− x〉 and F(x)≥ F(y)+ 〈wy,x−
y〉. Summing these two inequalities gives 〈wx−wy,x− y〉 ≥ 0. 2

Finally, the minimum of a convex function can be easily characterized in terms of its
subdifferential.
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Lemma D.4 First-order optimality condition
For any convex function F : Rn→ R, we have

x∗ ∈ argmin
x∈Rn

F(x) ⇐⇒ 0 ∈ ∂F(x∗). (D.3)

Proof. Both conditions are equivalent to F(y)≥ F(x∗)+ 〈0,y−x∗〉 for all y ∈Rn. 2

D.2 Examples of Subdifferentials

As examples, we compute the subdifferential of several common norms. For x ∈ R,
we set sign(x) = 1x>0−1x≤0.

Lemma D.5 Subdifferential of `1 and `∞ norms

1. For x ∈ Rn, let us set J(x) =
{

j : x j 6= 0
}

. We have

∂ |x|1 =
{

w ∈ Rn : w j = sign(x j) for j ∈ J(x), w j ∈ [−1,1] for j /∈ J(x)
}
.

2. Let us set J∗ =
{

j : |x j|= |x|∞
}

and write P(J∗) for the set of probabilities
on J∗. We have for x 6= 0

∂ |x|∞ =

{
w ∈ Rn :

w j = 0 for j /∈ J∗
w j = λ j sign(x j) for j ∈ J∗ with λ ∈P(J∗)

}
.

Proof. For p ∈ [0,+∞] and q, such that 1/p+ 1/q = 1, Hölder’s inequality ensures
that |x|p = sup

{
〈φ ,x〉 : |φ |q ≤ 1

}
. To prove Lemma D.5, all we need is to check that

∂ |x|p =
{

φ ∈ Rn : 〈φ ,x〉= |x|p and |φ |q ≤ 1
}
.

i) Consider φx, such that 〈φx,x〉= |x|p and |φx|q ≤ 1. Then, we have for any y ∈ Rn

|y|p ≥ 〈φx,y〉= |x|p + 〈φx,y− x〉,

and therefore φx ∈ ∂ |x|p.
ii) Conversely, let us consider w ∈ ∂ |x|p. For y = 0 and y = 2x, Equation (D.1) gives

0≥ |x|p−〈w,x〉 and 2|x|p ≥ |x|p + 〈w,x〉,

from which we get |x|p = 〈w,x〉. Furthermore, we have |w|q = 〈w,φw〉 for some φw ∈
Rn fulfilling |φw|p ≤ 1. The triangular inequality and (D.1) give

|x|p + |φw|p ≥ |x+φw|p ≥ |x|p + 〈w,φw〉,

which finally ensures that |w|q = 〈w,φw〉 ≤ |φw|p ≤ 1. The proof of Lemma D.5 is
complete. 2
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The next lemma characterizes the subdifferential of the nuclear norm. We refer to
Appendix C for the definition of the nuclear norm | · |∗, the operator norm | · |op, and
the singular value decomposition (SVD).

Lemma D.6 Subdifferential of the nuclear norm
Let us consider a matrix B with rank r and singular value decomposition B =

∑
r
k=1 σkukvT

k . We write Pu for the orthogonal projector onto span{u1, . . . ,ur} and
Pv for the orthogonal projector onto span{v1, . . . ,vr}. We also set P⊥u = I−Pu and
P⊥v = I−Pv. Then, we have

∂ |B|∗ =
{ r

∑
k=1

ukvT
k +P⊥u WP⊥v : |W |op ≤ 1

}
. (D.4)

Proof. With the same reasoning as in the proof of Lemma D.5, we have

∂ |B|∗ =
{

Z : 〈Z,B〉F = |B|∗ and |Z|op ≤ 1
}
.

All we need is then to check that this set coincides with (D.4).

i) First, we observe that any matrix Z = ∑
r
k=1 ukvT

k +P⊥u WP⊥v with |W |op ≤ 1 fulfills
|Z|op ≤ 1 and 〈Z,B〉F = |B|∗. Therefore, such a matrix Z is in the subdifferential of
|B|∗.

ii) Conversely, let Z be a matrix fulfilling 〈Z,B〉F = |B|∗ and |Z|op ≤ 1. Since

r

∑
k=1

σk = 〈Z,B〉F =
r

∑
k=1

σk〈Z,ukvT
k 〉F =

r

∑
k=1

σk〈Zvk,uk〉F

and 〈Zvk,uk〉F ≤ ‖Zvk‖ ≤ |Z|op ≤ 1, we then have 〈Zvk,uk〉F = ‖Zvk‖ = 1. Since
‖uk‖ = 1, this enforces Zvk = uk. Since 〈Zvk,uk〉F = 〈vk,ZT uk〉F , we have for the
same reasons ZT uk = vk. In particular, u1, . . . ,ur are eigenvectors of ZZT associated
to the eigenvalue 1, and v1, . . . ,vr are eigenvectors of ZT Z also associated to the
eigenvalue 1. As a consequence, an SVD of Z is given by

Z =
r

∑
k=1

ukvT
k +

rank(Z)

∑
k=r+1

σ̃kũkṽT
k ,

where ũk is orthogonal to u1, . . . ,ur and ṽk is orthogonal to v1, . . . ,vr. Furthermore,
we have σ̃k ≤ 1 since |Z|op ≤ 1. In particular, we can write

rank(Z)

∑
k=r+1

σ̃kũkṽT
k = P⊥u WP⊥v

for some matrix W , fulfilling |W |op ≤ 1. The derivation of (D.4) is complete. 2



Appendix E

Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Spaces (RKHS) are some functional Hilbert spaces,
where the smoothness of a function is driven by its norm. RKHS also fulfill a special
“reproducing property” that is crucial in practice, since it allows efficient numerical
computations as in Proposition 11.9 in Chapter 11.

A function k : X ×X → R is said to be a positive definite kernel if it is symmet-
ric (k(x,y) = k(y,x) for all x,y ∈ X ), and if for any N ∈ N, x1, . . . ,xN ∈ X and
a1, . . . ,aN ∈ R we have

N

∑
i, j=1

aia jk(xi,x j)≥ 0. (E.1)

Examples of positive definite kernels in X = Rd:
• linear kernel: k(x,y) = 〈x,y〉
• Gaussian kernel: k(x,y) = e−‖x−y‖2/2σ2

• histogram kernel (d = 1): k(x,y) = min(x,y)
• exponential kernel: k(x,y) = e−‖x−y‖/σ .

We can associate to a positive definite kernel k a special Hilbert space F ⊂ RX

called Reproducing Kernel Hilbert Space associated to k. In the following, the nota-
tion k(x, .) refers to the map y→ k(x,y).

Proposition E.1 Reproducing Kernel Hilbert Space (RKHS)

To any positive definite kernel k on X , we can associate a (unique) Hilbert space
F ⊂ RX fulfilling

1. k(x, .) ∈F for all x ∈X

2. reproducing property:

f (x) = 〈 f ,k(x, .)〉F for all x ∈X and f ∈F . (E.2)

The space F is called the Reproducing Kernel Hilbert Space associated to k.

Proof. From the first property, if the Hilbert space F exists, it must include the linear
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space F0 spanned by the family {k(x, .) : x ∈X }

F0 =

{
f : X →R : f (x) =

N

∑
i=1

aik(xi,x), N ∈N, x1, . . . ,xN ∈X , a1, . . . ,aN ∈R
}
.

Furthermore, from the reproducing property, if F exists, we must have
〈k(x, .),k(y, .)〉F = k(x,y) and〈 N

∑
i=1

aik(xi, .),
M

∑
j=1

b jk(y j, .)

〉
F

=
N

∑
i=1

M

∑
j=1

aib jk(xi,y j).

Accordingly, we define for any f = ∑
N
i=1 aik(xi, .) and g = ∑

M
j=1 b jk(y j, .) in F0

〈 f ,g〉F0 :=
N

∑
i=1

M

∑
j=1

aib jk(xi,y j) =
N

∑
i=1

aig(xi) =
M

∑
j=1

b j f (y j) ,

where the last two equalities ensures that 〈 f ,g〉F0 does not depend on the choice
of the expansion of f and g, so 〈 f ,g〉F0 is well-defined. The application ( f ,g)→
〈 f ,g〉F0 is bilinear, symmetric, positive (according to (E.1)), and we have the repro-
ducing property

f (x) = 〈 f ,k(x, .)〉F0 for all x ∈X and f ∈F0. (E.3)

The Cauchy–Schwartz inequality 〈 f ,g〉F0 ≤ ‖ f‖F0‖g‖F0 and the reproducing for-
mula (E.3) give

| f (x)| ≤
√

k(x,x) ‖ f‖F0 . (E.4)

As a consequence ‖ f‖F0 = 0 implies f = 0 so 〈 f ,g〉F0 is a scalar product on F0.
Therefore F0 is a pre-Hilbert space fulfilling the reproducing property. We obtain F
by completing F0. 2

Remark 1. Let us consider two sequences (xi) ∈ X N and (ai) ∈ RN fulfilling
∑i, j≥1 aia jk(xi,x j)<+∞. According to (E.4), for any M < N and x ∈X , we have∣∣∣ N

∑
i=M+1

aik(xi,x)
∣∣∣≤√k(x,x)

N

∑
i, j=M+1

aia jk(xi,x j).

When ∑i, j≥1 aia jk(xi,x j) is finite, the right-hand side goes to 0 when M,N goes to
infinity, so the partial series ∑

N
i=1 aik(xi,x) is Cauchy and it converges when N→ ∞.

We can therefore define the space

F ′
0 =

{
f : X → R : f (x) =

∞

∑
i=1

aik(xi,x),

(xi) ∈X N, (ai) ∈ RN, ∑
i, j≥1

aia jk(xi,x j)<+∞

}
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and the bilinear form

〈 f ,g〉F ′0 :=
∞

∑
i, j=1

aib jk(xi,y j) =
∞

∑
i=1

aig(xi) =
∞

∑
j=1

b j f (y j)

for f =∑
∞
i=1 aik(xi, .) and g=∑

∞
j=1 b jk(y j, .) in F ′

0. Exactly as above, the application
( f ,g)→ 〈 f ,g〉F ′0 is a scalar product fulfilling the reproduction property

f (x) = 〈 f ,k(x, .)〉F ′0 for all x ∈X and f ∈F ′
0.

In addition, the partial sums fN = ∑
N
i=1 aik(xi, .) relative to a function f =

∑
∞
i=1 aik(xi, .) ∈F ′

0 are Cauchy, since

‖ fM− fN‖2
F0

=
M

∑
i, j=N+1

aia jk(xi,x j)
N,M→∞→ 0,

and they converge to f . As a consequence, F ′
0 is included in the completion F of

F0 and the scalar product 〈., .〉F restricted to F ′
0 coincides with 〈., .〉F ′0 .

Remark 2. The norm of a function f in an RKHS F is strongly linked to its smooth-
ness. This appears clearly in the inequality

| f (x)− f (x′)|= |〈 f ,k(x, .)− k(x′, .)〉F | ≤ ‖ f‖F ‖k(x, .)− k(x′, .)‖F . (E.5)

Let us illustrate this point by describing the RKHS associated to the histogram and
Gaussian kernels.

Example 1: RKHS associated to the histogram kernel.
The Sobolev space

F =
{

f ∈C([0,1],R) : f is a.e. differentiable, with f ′ ∈ L2([0,1]) and f (0) = 0
}

endowed with the scalar product 〈 f ,g〉F =
∫ 1

0 f ′g′ is an RKHS with reproducing
kernel k(x,y) = min(x,y) on [0,1]. Actually, k(x, .) ∈F for all x ∈ [0,1] and

f (x) =
∫ 1

0
f ′(y)1y≤x dy = 〈 f ,k(x, .)〉F , for all f ∈F and x ∈ [0,1].

In this case the norm ‖ f‖F corresponds simply to the L2-norm of the derivative of
f . The smaller is this norm, the smoother is f .

Example 2: RKHS associated to the Gaussian kernel.
Let us write F[ f ] for the Fourier transform in Rd with normalization

F[ f ](ω) =
1

(2π)d/2

∫
Rd

f (t)e−i〈ω,t〉, for f ∈ L1(Rd)∩L2(Rd) and ω ∈ Rd .
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For any σ > 0, the functional space

Fσ =

{
f ∈C0(Rd)∩L1(Rd) such that

∫
Rd

∣∣F[ f ](ω)
∣∣2eσ |ω|2/2 dω <+∞

}
,

endowed with the scalar product

〈 f ,g〉Fσ
= (2πσ

2)−d/2
∫
Rd

F[ f ](ω)F[g](ω)eσ |ω|2/2 dω,

is an RKHS associated with the Gaussian kernel k(x,y) = exp(−‖y−x‖2/2σ2). Ac-
tually, for all x ∈ Rd the function k(x, .) belongs to Fσ , and straightforward compu-
tations give

〈k(x, .), f 〉Fσ
= F−1[F[ f ]](x) = f (x) for all f ∈F and all x ∈ Rd .

The space Fσ gathers very regular functions, and the norm ‖ f‖Fσ
directly controls

the smoothness of f . We note that when σ increases, the space Fσ shrinks and
contains smoother and smoother functions.

We refer to Aronszajn [10] and Schölkopf and Smola [140] for more details on
RKHS.



Notations

(x)+ = max(0,x)
x∨ y = max(x,y)
x∧ y = min(x,y)

‖β‖ =
√

∑
j

β 2
j

〈x,y〉 = xT y = ∑
j

x jy j

|β |1 = ∑
j
|β j|

|β |∞ = max
j
|β j| or max

i, j
|βi j| if β is a matrix

supp(β ) =
{

j : β j 6= 0
}

|β |0 = card(supp(β ))
βS = [β j] j∈S

|S| = card(S)
In = identity matrix on Rn

∂iF = partial derivative of F according to variable i

div(F) = ∑
i

∂iF (divergence of F)

∇F = gradient of F

∂F(x) = subdifferential of F at point x

σ j(A) = j-th largest singular value of A

|A|op = σ1(A) = sup
‖x‖≤1

‖Ax‖

|A|∗ = ∑
j

σ j(A)

‖A‖F =
√

∑
i j

A2
i j =

√
∑

j
σ j(A)2

‖A‖(2,q) =

√
q

∑
k=1

σk(A)2
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|A|1,∞ = max
j

∑
i
|Ai j|

A j: = j-th row of matrix A

A j = j-th column of matrix A

ProjS = orthogonal projector onto the linear span S

Cd
p =

p!
d!(n−d)!

sign(x) = 1x>0−1x≤0

xT = transpose of vector or matrix x

argmin
β∈C

F(β ) = set of the minimizers in C of F

P(E) = set gathering all the subsets of E

E = F©⊥G = decomposition E = F +G with F orthogonal to G

]a,b] = {x ∈ R : a < x≤ b}
i = imaginary unit

var(X) = E
[
(X−E[X ])2

]
sdev(X) =

√
var(X)
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