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Since recently, there have been an increasing interest in the problem of
estimating a high-dimensional matrix K that can be decomposed in a sum
of a sparse matrix S∗ (i.e., a matrix having only a small number of non-
zero entries) and a low rank matrix L∗. This is motivated by applications
in computer vision, video segmentation, computational biology, semantic
indexing etc. The main contribution and novelty of Chandrasekaran, Parrilo
and Willsky paper (CPW in what follows) is to propose and study a method
of inference about such decomposable matrices for a particular setting where
K is the precision (concentration) matrix of a partially observed sparse
Gaussian graphical model (GGM). In this case, K is the inverse of the
covariance matrix of a Gaussian vector XO extracted from a larger Gaussian
vector (XO, XH) with sparse inverse covariance matrix. Then it is easy to
see that K can be represented as a sum of a sparse precision matrix S∗

corresponding to the observed variables XO and a matrix L∗ with rank at
most h, where h is the dimension of the latent variables XH . If h is small,
which is a typical situation in practice, then L∗ has low rank. The GGM
with latent variables is of major interest for applications in biology or in
social networks where one often does not observe all the variables relevant
for depicting sparsely the conditional dependencies. Note that formally this
is just one possible motivation and mathematically the problem is dealt with
in more generality, namely, postulating that the precision matrix satisfies

(1) K = S∗ + L∗

with sparse S∗ and low-rank L∗, both symmetric matrices. A small amend-
ment to this inherited from the latent variables motivation is that L∗ is
assumed negative definite (in our notation, L∗ corresponds to −L∗ in the
paper). We believe that this is not crucial and all the results remain valid
without this assumption.

CPW propose to estimate the pair (S∗, L∗) from a n-sample of XO by the
pair (Ŝ, L̂) obtained by minimizing the negative log-likelihood with mixed
`1 and nuclear norm penalties, cf. (1.2) of the paper. The key issue in this
context is identifiability. Under what conditions can we identify S∗ and L∗
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separately? CPW provide geometric conditions of identifiability based on
transversality of tangent spaces to the varieties of sparse and low-rank ma-
trices. They show that, under these conditions, with probability close to 1 it
is possible to recover the support of S∗, the rank of L∗ and to get a bound
of order O(

√
p/n) on the estimation errors |Ŝ−S∗|`∞ and ‖L̂−L∗‖2. Here,

p is the dimension of XO and | · |`q and ‖ · ‖2 stand for the componentwise
`q-norm and the spectral norm of a matrix respectively.

Overall, CPW pioneer a hard and important problem of high-dimensional
statistics and provide an original solution both in the theory and in numeri-
cally implementable realization. While being the first work to shed the light
on the problem, the paper does not completely rise the curtain and several
aspects still remain to be understood and elucidated.

The nature of the results. The most important problem for current
applications appears to be the estimation of S∗ or the recovery of its sup-
port. Indeed, the main interest is in the conditional dependencies of the
coordinates of XO in the complete model (XO, XH) and this information is
carried by the matrix S∗. In this context, L∗ is essentially a nuisance, so that
bounds on the estimation error of L∗ and the recovery of the rank of L∗ are
of relatively moderate interest. However, mathematically the most sacrifice
comes from the desire to have precise estimates of L∗. Indeed, if Σ̂n and Σ
denote the empirical and the population covariance matrices, the slow rate
O(

√
p/n) comes from the bound on ‖Σ̂n −Σ‖2 in Lemma 5.4, i.e., from the

stochastic error corresponding to L∗. Since the sup-norm error |Σ̂n − Σ|`∞
is of order

√
(log p)/n, can we get a better rate when solely focusing on

|Ŝ − S∗|`∞?
Extension to high dimensions. The results of the paper are valid and

meaningful only when p < n. However, for the applications of GGM, the case
p� n is the most common. A key question is whether the restriction p < n
is intrinsic, i.e. whether it is possible to have results on S∗ in model (1)
when p � n. Since the traditional model with sparse component S∗ alone
is still tractable when p� n, a related question is whether introducing the
model (1) with two components and estimating both S∗ and L∗ gives any
improvement in the p � n setting as compared to estimation in the model
with sparse component alone. A small simulation study that we provide be-
low suggests that already for p = n including the low-rank component in the
estimator may yield no improvement as compared to traditional sparse esti-
mation without the low-rank component, although this low-rank component
is effectively present in the model.

Optimal rates. The paper obtains bounds of order O(
√
p/n) on the esti-

mation errors |Ŝ−S∗|`∞ and ‖L̂−L∗‖2 with probability 1−2 exp(−p). Can
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we achieve a better rate than
√
p/n when solely focusing on the recovery

of S∗ with the usual probability 1 − p−a for some a > 0? Is the rate
√
p/n

optimal in a minimax sense on some class of matrices? Note that one should
be careful in defining the class of matrices because in reality the rate is not
O(

√
p/n) but rather O(ψ

√
p/n), where ψ is the spectral norm of Σ depend-

ing on p. It can be large for large p. Surprisingly, not much is known about
the optimal rates even in the simpler case of purely sparse precision matri-
ces, without the low-rank component. In this case, [7], [1], [8] provide some
analysis of the upper bounds on the estimation error of different estimators
and under different sets of assumptions on the precision matrix. All these
bounds are of ”order” O(

√
(log p)/n) but again one should be very careful

here because of the factors depending on p that multiply this rate. In [1], the
factor is the squared `1 → `1 norm of the precision matrix while in [7] it is
the squared degree of the graphical model multiplied by some combinations
of powers of matrix norms that are not easy to interpret. The most recent
paper [8] obtains the rate O(d

√
(log p)/n) where d is the degree of the graph

for `∞-bounded precision matrices. An open problem is to find optimal rates
of convergence on classes of precision matrices defined via sparsity and low
rank characteristics. The same problem makes sense for covariance matrices.
Here, some advances have been achieved very recently. In particular, some
optimal rates of estimation of low-rank covariance matrices are provided
by [5].

The assumptions of the paper are stated in terms of some inaccessible
characteristics such as ξ(T ) and µ(Ω) and seem to be very strong. They are
in the spirit of the irrepresentability condition for the vector case used to
prove model selection consistency of the Lasso. For a given set of data, there
is no means to check whether these assumptions are satisfied. What happens
when they do not hold? Can we still have some convergence properties under
no assumption at all or under weaker assumptions akin to the restricted
eigenvalue condition in the vector case?

Choice of the tuning parameters. The choice of parameters (γ, λn)
ensuring algebraic consistency in Theorem 4.1 depends on various unknown
quantities. Proposing a reasonable data-driven selector for (γ, λn) (for ex-
ample, similarly to [4] for the pure sparse setting) would be very helpful for
the practice.

Alternative methods of estimation. Constructively, the method of
CPW is obtained from the GLasso of [2] by adding a penalization by the
nuclear norm of the low-rank component. Similar low-rank extensions can
be readily derived from other methods, such as the Dantzig type approach of
[1] and the regression approach of [6, 3]. Consider a Gaussian random vector
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X ∈ Rp with mean 0 and nonsingular covariance matrix Σ. Let K = Σ−1

be the precision matrix. We assume that K is of the form (1) where S∗ is
sparse and L∗ has low rank.

(a) Dantzig type approach. In the spirit of [1], we may define our estimator
as a solution of the following convex program:

(2) (Ŝ, L̂) = argmin
(S,L)∈G

{|S|`1 + µ‖L‖∗},

where ‖ · ‖∗ is the nuclear norm, G = {(S,L) : |Σ̂n(S + L) − I|`∞ ≤ λ}
and µ, λ > 0 are tuning constants. Here, the nuclear norm ‖L‖∗ is a convex
relaxation of the rank of L∗.

(b) Regression approach. The regression approach [6, 3] is an alternative
point of view for estimating the structure of a GGM. In the pure sparse
setting, some numerical experiments [9] suggest that it may be more reli-
able than the `1-penalized log-likelihood approach. Let diag(A) denote the
diagonal of square matrix A and ‖A‖F its Frobenius norm. Defining

Θ = argmin
A : diag(A)=0

‖Σ1/2(I −A)‖2
F ,

we have Θ = K∆ + I where I is the identity matrix and ∆ is the diagonal
matrix with diagonal elements ∆jj = −1/Kjj for j = 1, . . . , p. Thus, we
have the decomposition

Θ = S̄ + L̄, where S̄ = S∗∆ + I and L̄ = L∗∆.

Note that rank(L̄) = rank(L∗) and the non-diagonal elements S̄ij of matrix
S̄ are non-zero only if S∗ij is non-zero. Therefore, recovering the support of
S∗ and rank(L∗) is equivalent to recovering the support of S̄ and rank(L̄).

Now, we estimate (S̄, L̄) from a n-sample of X represented as a n × p
matrix X. Noticing that the sample analog of ‖Σ1/2(I − A)‖2

F is ‖X(I −
A)‖2

F /n and using the decomposition Θ = S̄ + L̄, we arrive at the following
estimator

(3) (Ŝ, L̂) = argmin
(S,L): diag(S+L)=0

{
1
2
‖X(I − S − L)‖2

F + λ|S|`1,off + µ‖XL‖∗
}

where µ, λ are positive tuning constants and |S|`1,off =
∑

i6=j |Sij |. Note that
here the low-rank shrinkage is driven by the nuclear norm ‖XL‖∗ rather
than by ‖L‖∗. The convex minimization in (3) can be performed efficiently
by alternating block descents on the off-diagonal elements of S, the matrix
L and the diagonal of S. The off-diagonal support of S∗ is finally estimated
by the off-diagonal support of Ŝ.
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Figure 1. Each color corresponds to a fixed value of µ, the solid-black color being for
µ = +∞. For each choice of µ, different quantities are plotted for a series of values of
λ. Left: Mean rank of XL̂. Middle: The curve of estimated power versus estimated FDR.
Right: The power versus FDR for the estimators fulfilling E[rank(XL̂)] ≈ h = 3 (red dots),
superposed with the Power versus the FDR for µ = +∞ (in solid-black).

Numerical experiment. A sparse Gaussian graphical model in R30 is
generated randomly according to the procedure described in Section 4 of [4].
A sample of size n = 30 is drawn from this distribution and X is obtained
by hiding the values of 3 variables. These 3 hidden variables are chosen
randomly among the connected variables. The estimators (Ŝ, L̂) defined in
(3) are then computed for a grid of values of λ and µ. The results are
summarized in Figure 1 (average over 100 simulations).

Strikingly, there is no significative difference in these examples between
the procedure of [6] (corresponding to µ = +∞, in solid-black) and the
procedure (3) that includes the low-rank component (corresponding to finite
µ).
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