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This paper intends to review the main properties of the solutions of Burgers equa-
tion with random initial conditions of white noise type. These properties are closely
related to those of the convex hull of a Brownian motion with parabolic drift. A
special attention is given to the latter.

1. Introduction

This text aims to survey the main properties of the solutions of the one-
dimensional Burgers equation

Ou+udzu=0 (1)

with initial condition of white noise® type. Burgers introduced in the early
40’s this equation in its multidimensional form d;u + «- Vu = 0 to obtain a
simplified model for hydrodynamic turbulence. It is known nowadays that
it does not provide an accurate model for hydrodynamic turbulence; see
Kraichnan?® for a discussion on the similarities and the differences with
Navier-Stokes equation. Yet, Burgers equation appears in many fields of
mathematical physics, such as the formation of the large scale structures of
the universe or the dynamic of growing surfaces, see e.g. WoyczynskiZ26.
The study of the solution of Burgers equation (1) with white noise ini-
tial condition takes place in the field of the analysis of solutions of PDE
with random initial data. If we think to the phenomenum of turbulence,
it seems interesting to exhibit the statistical properties of the solutions of
some PDE of fluid mechanics, with random and chaotic initial conditions.

2A white noise is the derivative, in the sense of distribution, of a Brownian motion.
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Such studies also appear in astrophysics, when one considers the formation
of the structures of the universe. Solutions of Burgers equation with ran-
dom Gaussian initial data seems to be in this case of particular interest,
see Vergassolla et al 2° for an up-to-date survey. Anyway, the analysis of
Burgers turbulence may be viewed as a first step for depicting the solutions
of more complicated PDE with random initial data.

The choice of the white noise as initial condition stems from the fact
that it appears as a natural model for chaos. Some others initial conditions
have yet been also considered. We refer to Bertoin for the analysis of the
Brownian case* and a survey on the stable noise case®, and to Leonenko?!
and Woyczynski?® for other cases. The white noise initial data also arises
naturally in statistical physics. Consider a time t = 0 particles of mass 1
spread on a regular lattice, say Z, with random initial velocities indepen-
dent and identically distributed (i.i.d.) with centered law of finite variance.
Next, let the system evolves according to the dynamic of free sticky parti-
cles: between collisions particles move at constant speed, and when some of
them meet, they merge into a new particle, whose mass and momentum are
given by the sum of the masses and momenta of the particles involved into
the collision. Then, the velocity field of the hydrodynamic limit of such a
system of ballistic aggregation is solution to Burgers equation with white
noise initial condition; see 1! and also next section for further explanations.

Investigating solutions of Burgers equation with random initial data can
lead to interesting problems in probability theory. Indeed, according to the
celebrated Hopf-Cole formula the solution u(-,¢) of (1) at time ¢ can be
expressed in terms of the convex hull of

z 1 9
zl—>/0 u(x,O)dw+2—tz .

In the case of a white noise initial condition u(-,0), the analysis of u thus
requires a deep analysis of the convex hull of a Brownian motion with
parabolic drift, mainly based on the work of Groeneboom!8. See Section 3
for a survey of this analysis. Some interesting connections with the coales-
cence and the fragmentation have also to be mentioned, see Bertoin?.

The rest of the paper intends to review the main properties of the so-
lutions of Burgers equation (1) with initial condition of white noise type.
Section 2 recalls necessary background on Burgers equation (with deter-
ministic initial condition). In Section 3, various results on the convex hull
of a Brownian motion with parabolic drift are collected. Even if they do
not seems to have anything to do with Burgers turbulence, they are the key
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for the understanding of the proofs of the next sections. In Section 4 the
main properties of the solution of (1) with white noise initial condition are
depicted. A particular attention is given to its time-evolution. In Section
5, some other types of white noise initial condition are presented. Section
6 concludes with few open problems.

2. Some background on Burgers equation

The purpose of this section is to present some standard features on solutions
of Burgers equation (1). We refer to 191519 for proofs.

Even for very smooth initial conditions, solutions of Burgers equation
(1) may develop shocks (discontinuities) at finite time. We then loose the
existence of strong solutions, as well as the uniqueness of weak solutions.
We will focus henceforth on a special (weak) solution of (1), so-called en-
tropy solution, since it is the unique solution of (1) fulfilling some entropy
conditions, see 8. This solution can be obtained in adding a vanishing vis-
cosity term to equation (1). More precisely, when & — 0+ the unique strong
solution u. of

Opu +udyu =€ d2u

converges, excepted maybe on a set of Lebesgue measure 0, to the entropy
solution u of (1).

Provided that the so-called initial potential W (z) := foz u(z,0) dx ful-
filled the condition

W(z) =o(2%) as |z| = oo, (2)
it is remarkable that the (entropy) solution u(-,t) of Burgers equation (1)

at time ¢t can be expressed in terms of the convex hull #; of

L
2 W(z) + oYL
Indeed, write a(x,t) for the right-most location of the minimum of
1
2= W(z)+ ﬂ(z — )2

Then, on the one hand a(z,t) coincides with the right-continuous inverse of
t times the derivative of the convex hull ;. On the other hand, a version”

bA weak solution is only defined up to a set of Lebesgue measure 0, we can thus only
speak of a version of it.
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of the entropy solution u of (1) is given by the Hopf-Cole formula

Tz —a(z,t
u(e, by = 2450
see 1019 Notice already that the discontinuities of z — u(z,t) comes from

the discontinuities of  — a(x,t). Since z + a(z,t) is right-continuous and
increasing, they are only negative and of the first kind.

As mentioned before, we can interpret the entropy solution of (1) in
terms of a system of ballistic aggregation. Consider at time ¢t = 0, in-
finitesimal particles spread on the real line according to the uniform den-
sity p(dz,0) = dx, with velocities given by the velocity field u(-,0). Then,
let the system evolves according to the dynamic of free sticky particles de-
scribed in the introduction. At time ¢, the velocity field of the system fit
with (a version of) the entropy solution u(-,t) of (1) with initial condition
u(+,0). Moreover, the function a(z,t) defined above represents the right-

most initial location of the particles lying in ] — 0o, z] at time ¢. In other
words, the density of mass in the system is given at time ¢ by the Stieljes
measure

p(lz,yl,t) = a(y,t) — a(z,1).

Therefore, the jumps of z — a(z,t), which correspond to the shocks of z +»
u(z,t), also correspond to the macroscopic clusters of particles (clusters of
positive mass) present in the system at time ¢. Actually, a jump of a(-,t) at
x exactely corresponds to a macroscopic cluster located in x, whose mass
is given by a(z,t) —a(x—, t); the notation a(x—,t) refers to the left limit of
a(-,t) at z. The velocity V of this cluster is enforced by the conservation
of momentum

1 a(@,t) 2z — a(z,t) — a(z—,1)
= d — ? ’ .
v a(z,t) — alz—, 1) /a(w’t) u(z,0) d= 2t

In the special case where z — a(x,t) is a step function, we say that the
shock structure is discrete at time ¢. The path z — u(z,t) is then shaped
as a toothpath made of pieces of line of slope 1/t separated by negative
jumps (shocks). In terms of ballistic aggregation, a discrete shock structure
corresponds to a state of the system where all particles have clumped into
macroscopics clusters, whose locations form a discrete sequence of the real
line. In a geometrical point of view, the shock structure is discrete if and
only if the convex hull H; of z — W(z) + %2z is piecewise linear. It is
convenient in this case to introduce the so-called %t—pambolic hull Py of the
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initial potential W, defined by
1
Pi(z) = He(z) — 2—tz2, z€eR
When the convex hull H; is piecewise linear, the parabolic hull P; is made
of pieces of parabola. Indeed, to a linear piece of H; with slope X/t, say
(z — %X z+ka<z< b), corresponds a piece of parabola of P;

1 1
(zr—)—ﬂzz+zXz+k;a§z§b>

= (zr—) —Qlt(z—X)z-i-k'; agng)
with leading coefficient — - and vertex of abscissa X. A moment of thought
then shows that there is a one-to-one correspondance between the (pieces
of) parabolaes of P; and the macroscopic clusters present in the system
of ballistic aggregation at time ¢. Indeed, to a parabola of P; corresponds
a cluster whose location X is given by the abscissa of the vertex of the
parabola. Consider the two extremal contact points between this parabola
and the initial potential W. Then, the difference between the abscissaes of
these contact points gives the mass of the cluster, whereas the slope of the
line going through these two points fits with its velocity, see Figure 1. The
state of the system is thus completely determined by P;.

M /\ location —=——
\/\ ,\1\ A X n Mn—l Mn
Y y |

\

z->-L @-x 2+k
27

Figure 1. Geometrical interpretation of a shock.

Finally, we emphasize that the above analysis still makes sense when the
initial condition u(-,0) is not a real function, but is defined as the derivative
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in the sense of Schwartz of an initial potential W fulfilling condition (2).
The solution u(-,t) is then a real function at any time ¢ > 0 and when
t — 0+, it converges in the sense of Schwartz to u(-,0), which is still
said to be the initial condition. The white noise initial condition is to be
understood in this sense.

3. Parabolic hull of a Brownian motion

According to the work of Groeneboom!” (see also Pitman?2), it is well

known that the convex hull of a Brownian motion W is a.s. piecewise linear.
A standard application of Girsanov Theorem shows that this property still
holds for the convex hull of a Brownian motion with parabolic drift, see
Groeneboom!® and also Avellaneda & E3.

Theorem 3.1. The convez hull H; of a (two-sided) Brownian motion with
parabolic drift (Wz + %tz2; z € R) is piecewise linear with probability one.

Recall from the previous section that when the convex hull H; is piecewise
linear, the %—parabolic hull of W is made of pieces of parabola. We can
index these pieces of parabola on Z, with indices increasing from left to
right and the convention that the parabola number 1 is the first parabola
whose vertex is located at the right of 0. We write X, for the abscissa of
the vertex of the piece of parabola number n and also M,_; and M,, for
the abscissaes of its end-points; see Figure 1. One may notice that, in the
notation of the previous section, M,, = a(X,,1).

The parabolic hull P; is fully determined by the sequence (X,,, Mp)nez-
A characterization of this sequence can be easily derived from the work
of Groeneboom'® on Brownian motions with parabolic drift. It involves
the Laplace transform C()\) of the integral of a Brownian excursion e of
duration 1. According to Groeneboom’s formula (see '® Lemma 4.2.(iii))

C(\) =E <exp (—)\/01 e, ds))

= \27 Zexp (—2’1/310”/\2/3) , for A >0, (3)
n=1
where 0 > —w; > —wy > --- denotes the zeros of the Airy function Ai

(see ! on p 446). We also introduce, following Groeneboom’s notations, the
function g : R — Rt defined by its Fourier transform

) 1/3
90 = [ glo)ds =

M (i) @
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Theorem 3.2.
The sequences {(0, M), (Xn, Mp)n>1} and {(0,Mo),(X_ny1, M_n)n>1}
are two Markov chains, independent conditionally on My, with transitions
given by

P (Xn € dwn; M, — M, 1 € dmy, | Xno1= wnflaMnfl = anfl) =

1 2.\ 9 ((2t)_2/3(mn +an-1 — xn))
t\/T—mn C (mi/ /t) g ((2t)72/3(an—1 _ :L'n—l))

RN _ 3
xexp((a"l Tn)® = (@n—1 — Tn_1) ) dz, . (5)

612
Moreover, the law of My is given by
P(M, € da) = mg (—(2t)_2/3a) g ((21&)_2/3(1) da. |
This result has been recently recovered by Frachebourg and Martin!3.

It is known that the ”excursions” of the Brownian motion above its con-
vex hull are distributed, conditionally on the convex hull, as independent
Brownian excursions, see Groeneboom!” and Pitman?2. The next theorem
states a similar path decomposition of the Brownian motion conditionally
on its parabolic hull, see 14 for proof. We write el for a Brownian excur-
sion of duration m and

o(m) = min { m(mz_ﬁ) elml. ¢ E]O,m[}
n(m) = right-most location of this minimum.

Theorem 3.3. The “excursions” of the Brownian motion above its
parabolic hull Py
EM = (W(Mpy +2) = Pe(Mn—1 +2); 0 <z < My = Mny)

are independent conditionally on Py, with as conditional law, the law

1
(ac > elmnl 2—t$(mn —z)|o(my,) > 1/t)

where m,, = M, — M, _1. [ ]

Remark: A straighforward application of Girsanov Theorem shows that
the law v(m, t) is absolutely continuous with respect to the law Pl of elml,
Actually,

exp (—% fom elm d:z:)

E (exp (—% fom e[zm] dw))

dPplm].

dv(m,t) =
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The law of the variables o(m) and n(m) plays a key role in the analysis of
Burgers turbulence with white noise initial data. It is specified in the next
theorem, in terms of the function C defined above. See ® for proof.

Theorem 3.4. The scaling property of Brownian excursions enforces the
identity in law

(o(m),n(m)) "2 (m=*/20(1), mn(1)).

For any a > 0 and 0 < = < 1, the probability density function of
(0(1),m(1)) is given by

e/ 3/2 3/2
P(o(1) € da,n(1) € do) = ————=C Cla(l- dadz .
(c(1) € da,n(1) € dx) o g (aa: ) (a( x) ) adz
Moreover, P(c(1) > a) = 6_0‘2/240(61), fora > 0. [ |

4. Burgers turbulence with white noise initial velocity

In this section, we turn our attention to the solutions of Burgers equation
(1) with initial condition w(-,0) distributed as a white noise. In other
words, we consider an initial potential (W,; z € R) distributed as a two-
sided Brownian motion. We first describe the solution at a fixed time ¢ > 0,
and then focus on its time-evolution.

4.1. State at a fized time t > 0

According to Theorem 1 (Section 3), when W is distributed as a Brownian
motion, the convex hull of the path x — W, + Qit;c2 is piecewise linear
with probability one. As a consequence (see Section 2), when w(-,0) is
distributed as a white noise, the shock structure is discrete a.s. We recall
that in this case, the solution z — u(z,t) is a toothpath, fully determined by
the sequence ((X,, My); n € Z) described in Theorem 2. Indeed, X,, gives
the location of its n'" shock at the right of the origine, and (M,, — M,,_1)/t
the strength of this shock. In terms of ballistic aggregation, the state of the
system is the following. All particles have a.s. clumped into macroscopic
clusters located in (X,; n € Z), with mass and velocity given by (m,, =
M, —M,_1;n€Z)and

2X, — M, — M, _
(1, = 2= )
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Besides, it is to be mentioned that the scaling property of the white noise
propagates to the turbulence and induces the identity in law, see e.g. 3,

(u(z,t); x € R) taw (t_1/3u (a:t_2/3, 1) i€ ]R) )

4.2. Time evolution of the turbulence

The previous section gives a complete description of the state of the turbu-
lence at a fixed time ¢ > 0. The natural question now is to understand its
time evolution. It will convenient in this view to use the ballistic interpre-
tation of the turbulence.

As time runs, the clusters present in the system aggregate according to
the dynamic of sticky particles. This clustering is deterministic, because
80 is the dynamic of sticky particles. But it induces a loss of information
in the sense that we cannot recover the state of the system at a time ¢,
from the state of the system at a time to > ¢1. Suppose now that time runs
backwards. Then, clusters dislocate and due to the loss of information, this
dislocation goes randomly. If we do understand how a cluster breaks into
pieces in backward times, then we will understand how it did aggregate in
forward times. Roughly, in this subsection we will answer to the question:
what does the genealogical tree of a given cluster look like?

forward time
awi plemxleq

Figure 2. Genealogical tree of a Cluster

Henceforth, we focus on the fragmentation of the clusters in backwards
time. The next theorem specified on which parameters the fragmentation
of a cluster does depend on.

Theorem 4.1. Conditionally on the state of the system at time t, each
cluster present at time t breaks into pieces independently of the others, and
according to a conditional law only depending on its mass and time t.
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Physically, the independence of the fragmentation of a cluster from its lo-
cation and velocity may be viewed as a consequence of the invariance of
the system under translation and Galilean transformations. The fact that
it does not depend on the fragmentation of the other clusters may be un-
derstood as follow. Consider at time 0 two (infinitesimal) particles, which
belong at time ¢ to two different clusters. These two particles cannot in-
teract up to time ¢, else they would stick and belong to the same cluster.
Therefore, the particles which made up a cluster at time ¢ cannot interact
before time ¢ with the other particles. Since in addition the initial velocities
of the particles are uncorrelated, the aggregation processes of the clusters
are expected to be independent.

Proof: We only sketch the proof of Theorem 4, and refer to '* for details.
The main point is to traduce the fragmentation of the clusters in terms
of the parabolic hull of the initial potential W. Recall there is a one-to-
one correspondance between the clusters present at time ¢ in the system

1

and the (pieces of) parabolaes of the 5;—parabolic hull of the initial po-

tential. Consider a given cluster at time ¢ and its corresponding parabola

with leading coefficien —%. At time s < t, its corresponding parabola of

the %—parabolic hull of W is stretched in the vertical direction, since its
leading coeflicient is —21—5. Let time s decreases from ¢ to 0. The parabola
corresponding to the cluster get more and more stretched, up to a time
t* < t where it enters into contact with the initial potential W. This time
t* corresponds to the time at which the cluster splits into two clusters. Let
time s decreases further. We now have two parabolaes corresponding to
the two clusters. They are stretched in the vertical direction, up to the
moment where one of them touches W in a new point, and also splits into
two new parabolaes, giving at all three parabolaes/clusters. And so on.
z->W(z)
=z

/

{ 2
z->—5=(z-x) +k

1 2
z->= = (z-x’) +k’ 2t*
2t

[

Figure 3. Time t* of splitting.
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A moment of thought thus shows that the fragmentation of a given cluster
at time t only depends on the ”excursion ” £ of the initial potential W
above the parabola corresponding to the cluster. When W is distributed
as a Brownian motion, it follows from Theorem 3 that conditionally on the
state of the system at time ¢, each cluster breaks into pieces independently of
the others. Moreover, since the conditional law of £ given P; only depends
on time ¢ and the mass m of the cluster, the fragmentation of the cluster
only depends on m and ¢, and not on its velocity or location. |

According to the previous theorem, we can focus on a single cluster of
mass m at time ¢t. We now turn our attention to its first splitting.

Theorem 4.2. With probability one a cluster splits into exactely two clus-
ters at its first splitting. The law of the time t* of the splitting of a cluster
of mass m at time t and of the mass m* of the left-most cluster arising
during this splitting is given by

P(t* € ds,m* € dmy) =

e (5 (2 2)) oy

82\/87rm1m2 & ﬁ t_2 B 8_2 C (m3/2/t)
for (s,mq) €]0,t[x]0,m[, with the notation my = m —my and C defined
by (3)-

Moreover, we have for 0 < s <t

We refer to 4 for numerical illustrations of these laws.

Proof: We write as before £ for the ”excursion” of the initial potential W
above the parabola corresponding to the cluster at time ¢. Recall from the
proof of the previous theorem that the time t* corresponds to the time at
which the parabola enters into contact with the initial potential in a new
point. When the initial potential is distributed as a Brownian motion, the
cluster splits a.s. into two clusters, because the parabola enters a.s. into
contact with the Brownian motion in a single new point, see 4 for proof.
The location of this contact point gives the distribution of mass between the
two new clusters. Indeed, it should be plain from the mechanism described
above that 1/t* and m* correspond to the maximum and the location of
the maximum of
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When W is distributed as a Brownian motion, the conditional law of £
given P; is v(m,t). Therefore, 1/t* and m* are distributed as the variables
o(m) and n(m) conditioned by {o(m) > 1/t}. Formulaes (6) and (7) follow
thus from Theorem 3. |

The previous result depicts the first splitting. Combined with a Markov
property at the time of fragmentation (see !*), it yields a complete descrip-
tion of the fragmentation of a cluster. This description can be formulated
as follow. We denote by my, ..., my the masses of the clusters resulting at
time s =t — r of the fragmentation of a cluster of mass m at time ¢. The
mass m; refers to the mass of the left-most cluster, the mass my to the one
of the right-most cluster. We write also

MO (r) = (ma, .., my).

Theorem 4.3. The process (r — M™Y(r); 0 <r <t) is a pure-jump
(inhomogeneous) strong Markov process, with rate of jump at time r

MmO () = )

(M(m’t)(T + h) = (ml,. -y, MG 1, M2, ,mk)
(mla-"amia"'amk)

m;1 € d\;

h—0+ m?/z dA\; c (/\:f/Q/t - 7') C ()\g/2/t — r)
- h\/mx C(m?/Z/t—r)

with the function C' defined by (3) and Ao = m; — A1

We refer to 1 for the proof of the Markov property and ® for the compu-
tation of the rate of jump.

We end this section with a remark about the dynamic of fragmentation.
The property stated in Theorem 4 bears the same flavor as the so-called
fragmentation property considered by Pitman?® and Bertoin®. Nevertheless,
the fragmentation process r = M (™) (r) we study here is not homogeneous
in time and therefore differs from those considered by Pitman and Bertoin.
Besides, a cluster of mass m at time ¢ statistically breaks into pieces in the
same way as a cluster of mass mt—2/3 at time 1. This permits to associate
a time homogeneous Markov process to r — M(m:t) (r). Indeed, the process

M) (5) = §2/3e25/3 pf(mt) (1679) | 5 € RF

is a time homogeneous strong Markov process, whose dynamic can be de-
picted as follow. Each cluster making up M ™" grows deterministically as
s — e2*/3 and also splits randomly, independently of the others, according
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to the fragmentation rate
232 c (W) ((=2)%2)

SN =) | c (3r)

F(A, A=A =

5. Burgers turbulence with some other initial velocities of
white noise type

In this section, we consider other initial conditions of white noise type for
equation (1). We outline in Section 5.1 the main properties of the solution
of Burgers equation (1) with as initial condition u(-,0), a white noise on R
and 0 on R™. In Section 5.2, we depict the case where u(-,0) is a periodic
white noise. We omit the proof.

5.1. The one-sided white noise case

In this subsection, we deals with the initial condition

u(',o):{o on]—oo,O]}

white noise on ]0, oo .

In terms of ballistic aggregation, such an initial condition arises at the
hydrodynamic limit of the following system. At time ¢ = 0 the sticky
particles are spread uniformely on Z and those on the right of the origine
receive random i.i.d. velocities (with finite variance), where as those on the
left of the origine stay at rest.

The phenomenum of main interest here is the propagation to the left of
the chaos initially located on the right of 0. The solution x — u(z,t) has a
shock front, which travels to the left as time ¢ runs. At the left of this shock
front u(-,t) equals 0, where as at its right z — u(z,t) is a.s. a toothpath,
made of pieces of line of slope 1/t separated by a discrete sequence of shocks,
see Figure 4. The location X,, and M,, = txthe strength of the nt" shock
at the right of the shock front form a Markov chain, with transitions given
by (5). We write henceforth x; and M; for the location and ¢ times the
strength of the shock front.

It is convenient to use the ballistic description of wu(-,t). There ex-
ists a so-called front cluster, travelling to the left, on the left of which
there are infinitesimal particles at rest. On its right, all particles have
clumped into macroscopic clusters, whose locations and masses are given
by (X, Mp)nen- The location and the mass of the front cluster correspond
to z; and M.



September 10, 2002 19:25 WSPC/Trim Size: 9in x 6in for Proceedings SURVEY1

14

Shock front
" /l 0’ AVA /
N 4

M /t X =>u(x,t)

Figure 4. Shape of z — u(z,t).

infinitesimal macroscopic clusters
particles front cluster
0
» » » f = =
(x¢My) OMLD) (x40, ML) (x40.M40)

Figure 5. Shape of the system of sticky particles.

The first property to mention about the shock front is the time-scaling
identity in law

(.’L‘t,Mt) lazw (t2/3$1,t2/3M1) . (8)

This property originates from the scaling property of the white noise and
permits to focus on time ¢ = 1. The second property to be noticed, is that
the shock front is completely described at time ¢ = 1 by the variables x;
and M;. Indeed, according to the conservation of mass and momentum the
velocity Vi of the shock front is given by V4 = —1M;. This equality can
be extended at any time ¢ > 0 by
1

Vi= _Z_tMt' (9)
It is an easy task to derive from the work of Groeneboom!® the law of
(21, M), in terms of the function g defined by (4) and the function h(m,-) :

+ — RT defined by the series

h(m,z) = 2'/3 Z Al 2 om - )wn) exp (—21/3mwn) )

where as before, 0 > —w; > —wy > --- represents the zeros of the Airy
function Ai ranked in decreasing order. See '® for proof and also the law
of z; alone.
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Theorem 5.1. In the above notation, the law of (x1, M) is given by

e~ I3 M
——(

P(—z; € dz, M € dM) = 2—2/3M) h (2—4/%2,2—2/3(M - x))

for M,z > 0.

We now turn our attention to the time-evolution of the shock front. It is
conspicious from the ballistic description of the system, that the dynamic
of the shock front is governed by two phenomena. First its movment to
the left is continuously braked by the infinitesimal particles at rest on its
left. Second, macroscopic clusters on its right sometimes catch it and then
increase sharply its velocity. We are mainly interested by the evolution of
the location x; of the shock front. The identity (8) suggets that z; behave
roughly as ¢t — —t>/3. But we stress that the identity (8) is only true for a
fized time t > 0 and therefore does not give the time-evolution of ¢t — x;.
The identity (9) enforces the equality

t
d
xt:_/ Ms_s;
0 2s

so that the evolution of the shock front can be fully expressed in terms of
the process t — My, which is characterized in the following theorem.

Theorem 5.2. The process t — M, = \/Lz M; is a pure-jump inhomoge-
neous and increasing Markov process, with rate of jump

]I’(Mt+h—Mt€dm|Mt=M)

~2/3;,—1/6
h0+ (M +m) dmC <m3/2/t1/4) g9 (27230 (M +m))
t3/4/8tm g (2-2/3¢t-1/6 )

for any M, m,t > 0.

We can also gives the asymptotic behaviour of ¢ — x; for small and large
time ¢

Proposition 5.1. When time t tends to 0 or 0o, we have with probability
one the asymptotics
—zy 925/3

li S E—
is0soy (7 log[logt)'/3 — 3

. -
and t—1>1(§;loo t2—/; [logt[?/?*+% =00, Vd>0.
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Some other aspects of the solution u(-,t) have also been investigated. The
main contributions are perhaps the description of the flux of particles cross-
ing a given point and the study of the different scaling regimes of the solu-
tion by Frachebourg, Jacquemet and Martin'2, see also 7. Besides, it can
be noticed that the genealogy of a macroscopic cluster present at the right
of the shock front, is statistically the same as the genealogy considered in
Section 4. Finally, we mention the work of Tribe & Zaboronski?* and also
of Frachebourg et al.!? on the case where the initial condition is given by
a white noise on a finite interval, and 0 elsewhere.

5.2. The periodic white noise case

We focus henceforth on the solution of Burgers equation (1) with initial
condition u(-,0) distributed as a periodic white noise. In other words,
we consider the case where the initial potential W is 1-periodic and is
distributed on [0, 1] as a Brownian bridge of duration 1. Since the solution
x — u(z,t) is also 1-periodic at any time ¢ > 0, we can focus on a period.

It is convenient for investigating such a solution to use the ballistic de-
scription of z — u(z,t). The system of sticky particles associated to u(.,t)
is 1-periodic and can therefore be thought as a circular system, correspond-
ing to the hydrodynamic limit of the following system. Consider at time
t = 0, N particles uniformely spread on a circle, with random angular ve-
locities (w;)1,n i.d.d., of finite variance and fulfilling Zf;l w;. Then, let the
system evolves according to the next dynamic. Between collisions the par-
ticles evolve on the circle with constant angular velocities and when some
particles meet, they merge into a new particle with conservation of mass
and momenta.

As before, the shock structure of u(-, ) is discrete a.s. at any time ¢ > 0.
In a circular point of view it means that all particles have clumped into a
finite number of macroscopic clusters. Moreover, it can be shown that when
time ¢ tends to oo there remains a.s. a single cluster of mass 1 and velocity
0. Its location follows the uniform law on the circle. The genealogy of this
final cluster is distributed as the limit law of the genealogy of a cluster of
mass 1 at time ¢ in Section 4, when time t — oo. This permits to compute
the probability density of a given state in terms of the function C' defined
by (3). Indeed, the probability density to have exactely N clusters of mass
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Mmy,...,my (m1+...+my = 1) located at §; < --- < Oy equals

3/2
e (00001 /) Y (_ m] ) 0 (m3" /1)
(t /—%)N—l e 2412 N T
where ¢ is a completely determined ”polynomial-like” function of

(my,0:)1,n, see 15 Section 4 Proposition 1. Since the formula of ¢ is some-
what complicated, we refer to !5 for its very definition.

6. Some open problems

To conclude we evoke some open problems. Many question on the one-
dimensional Burgers turbulence remains open. For example, concerning the
periodic case, it would be worth to obtain a simple formula for the law of the
number N of clusters present at time ¢. For more general initial conditions,
we may wonder if it is possible to extend some of the above results (see °
for a discussion in the stable noise case)? Yet, going in higher dimensions
appears now as the most challenging problems in Burgers turbulence, see
Vergassola et al.2® for motivations and simulations.

Besides, for a best understanding of the phenomenum of turbulence, it
would be worth to exhibit some statistical properties of the solutions of
some PDE of fluid mechanics (especially of Navier-Stoke equation), with
adapted random initial conditions.
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