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1 Introduction

The study of the so-called entropic solutions of Burgers/Riemann equation
O +ulyu =0, (1)

with random initial conditions has raised a special interest during the last decade. It is mainly
motivated by considerations on the phenomenon of turbulence (see Burgers [6]) and on the formation
of the large scale structures of the universe (see Vergassola et al. [21]). When u(-,0) denotes the
velocity field at time ¢ = 0, it is standard, according to the celebrated Hopf-Cole formula [8, 15], that
the solution u(-,t) at time ¢t > 0 of (1) can be explicitly expressed in terms of the convex hull of the
path

S
1
s +—>/ u(z,0)dz + —s°.
0 2

Suppose now that the so-called initial potential W, = [ u(z,0)dz is 1-periodic and is distributed

on a period as a Brownian bridge. It can be shown, with the help of a path transformation due to



Vervaat [22], that the study of the convex hull of {s — W, + 2%32; s € R} amounts to the study of
the convex hull of a Brownian excursion of duration 1 with parabolic drift {s —es + %32; s €0, 1]}
This observation motivates the present work.

Our analysis of the convex hull of a Brownian excursion with parabolic drift is related to several
works on the convex hull of stochastic processes. Questions on empirical processes and queueing
systems lead Groeneboom [13] (see also Pitman [18] and Cinlar [7]) to consider the convex hull of a
one-sided Brownian motion. He showed that it is a.s. piecewise linear, and that the distribution of its
derivative can be expressed in terms of a Poisson point process. Furthermore, he obtained a striking
decomposition of the Brownian motion conditionally on its convex hull . Roughly speaking, the
“excursions” of the Brownian motion above # are independent conditionally on H and are distributed
as Brownian excursions. Few years later, Groeneboom [14] focused on the case of a two-sided Brownian
motion with parabolic drift. His work was motivated this time by the analysis of the global behaviour
of a wide class of estimators in statistics. He showed in this case that the convex hull is again
a.s. piecewise linear and that its derivative can be characterized in terms of a Markov chain of
known transitions. His work found in the late 90’s a renewal of interest in the setting of the Burgers
turbulence. Frachebourg & Martin [11] recovered independently the results of Groeneboom (see also
Avellaneda & E [2]) and Giraud [12] studied the evolution in the variable ¢ of the convex hull of
{s — Ws + 2%32; s € ]R}, when {Ws; s € R} is a two-sided Brownian motion. He showed besides a
decomposition of the Brownian motion with parabolic drift conditionally on its convex hull, similar to
the case with no drift. Some other works have also been lead in a more general setting. We refer to
Bass [3], Nagasawa & Tanaka [17] and Bertoin [4] for the Markov case, the Lévy case and the Cauchy
case, respectively.
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Figure 1: o and n

The rest of the paper is organized as follows. We obtain in section 2 a simple formula for the joint

probability density function of

azmin{ﬁ es; S E]O,l[},

n = right-most location of this minimum.

(2)

In section 3, we first give a dynamical description of the convex hull of a Brownian excursion of



duration 1 with parabolic drift in terms of a Markov process and then explicit its statistics. The last

section is devoted to the description of the Burgers turbulence on the circle.

2 A key step

The variables ¢ and 7 defined above (see formula (2)), have been introduced in [12]. They play a
major role in the description of the genealogical tree of a shock of the solution of Burgers equation
(1) with white noise initial velocity. Their joint law is given in Lemma 4 (of [12]) by a complicated
formula in terms of the derivative of an integral depending of a parameter. The formula we obtain
in Theorem 1 is explicit and easily amenable to mathematical as well as to numerical analysis. It
involves the Laplace transform C()) of the integral of a Brownian excursion fol es ds. According to

Groeneboom’s formula (see [14], Lemma 4.2.(iii)),
1 %
C(\):=E (—)\/ es ds) =AV2r ) exp (—2_1/3wn)\2/3) , forA>0, (3)
0 n=1

where 0 > —w; > —wy > --- denotes the zeros of the Airy function (see [1] on p. 446).

Theorem 1 (law of (o,7))
For a >0 and 0 < z < 1, the probability density function of (o,n) is given by

—a? /24
P(o € da,n € dz) = m C (aa:3/2) C (a(l — 56)3/2) dadz .

Before starting the proof of Theorem 1, we make some few remarks.
Remarks

1- There is a symmetry z «— 1 — z. Indeed, (o, n) taw (0,1 —n).

2- For z close to 0, we have the asymptotic:

z—0 e—a2/24

P(o € da,n € dz) ~~ N
T

3- Recall from Lemma 4 in [12] that the probability distribution function of o is

C(a) dadzx .

P(o > a) = efa2/24C(a) . (4)

It follows that the conditional probability density function of 1 given o = a is

C (ax3/2) C(a(l — z)3/?) y da dx
C'(a) — 15 C(a) 8rz(l — x) ’

P(nedr|o=a)=

We may notice two facts. First, the variable n conditioned by ¢ = 0 is distributed as the celebrated

arcsin law:

dr

m/z(l—z)

P(nedr|o=0)=



Second, it is easy to check that, for any value of ¢ > 0, the conditional probability density function
P(n € dz|o = a) is convex in the variable z. Yet, one may observe a change of concavity when a goes

to infinity, since lim, oo P(n € dz |0 =a) =6z(1 — z)dz.

For the proof of Theorem 1, we need to compute the law of the first passage time I'; of a Brownian

excursion e across the parabola s — gs(1 — s), viz
: a
T, = 1nf{3 >0, e(s) = 53(1 — s)} .

Lemma 1 (Law of T';)
For a >0 and 0 < £ < 1 the probability density function of the first passage time I'y of a Brownian
excursion across s — § s(1 — s) is given by

2 C (a x3/2)

P(T, € dz) = a.exp (—;—4 (:1:3 +3z(1 — a:))) m dz .

Proof of Lemma 1

Lemma 1 bears the same flavor as the formulaes of Groeneboom [14] on the first passage time of a
Brownian motion with parabolic drift across a given level. Indeed, it is a consequence of Theorem
2-1 in [14]. We may state Groeneboom’s result for our special case as follows. Consider a Brownian
motion W€ starting from € > 0 at time 0. For a,z > 0, the probability that this Brownian motion with

parabolic drift s = W — $s(1 — s) crosses for the first time the level 0 in the time interval [z, z + dz]

2 1\* 1 e € e €d
o (5 () 2 2 ) om0

where ﬂ([fie is a three dimensional Bessel bridge of duration z from 0 to e. The law of a normalized

equals

Brownian excursion is not absolutely continuous with respect to the law of a Brownian motion. Yet,
it is the limit, when e decreases to 0, of the law ]P’ﬂy—]’e of a three dimensional Bessel bridge of duration
1 liking € to €, which is itself absolutely continuous on the time interval [0,z] with respect to the
law P¢ of a Brownian motion starting from e. Actually, the relation of absolute continuity on the
canonical filtration F; = o(X;; 0 < s < z) between the law PBes’(c) of a three dimensional Bessel

process starting from e and P is given by

X
PpBes®(e) |p= 220 pe |2 for0<z < 1,
€

x

where Tj represents the first passage time of the canonical process across 0 (see [19] exercise 1.22

Chap. XI). If we write pi(z,y) for the transition densities of the three dimensional Bessel process

pilz,y) = —2 (exp<—M)_exp<_M)>, for z,y > 0,

T/ 27t 2 2t
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. [1]
see [19] on p 446, we deduce of the above equality the relation of absolute continuity between ]P’ﬁel—’f
and P*

—z(X
1oy ) phest) | (gee [19], p 463)
bi\e, 6)

(
pl—l‘((Xl'ae) x X

|7

AT pe |z for0<az<1.
pi(e ) €

Let I'4(X) denote the first passage time of the canonical process across s +— § s(1—s). Since the event

['.(X) € dz is Fy-measurable, the relation of absolutely continuity ensures that

p1(6, 6)

Prz(92,€) % pep o (X) € da) |
p1(6, 6) €

(X X
PAte (Mu(X) € de) = E (pl o(Xe:€) | Xenty . oy e dm>
€

where a; = § (1 — z). The second equality stems from the fact that conditionally on I'4(X) = z, we
have both Ty > z and X, = a,. The probability P¢ (I',(X) € dz) is given by Groeneboom’s formula

(5), so putting pieces together, we obtain

,3[1]
PO (Ty(X) € dr) =

Ps(and @t (0 1\ 1) e & - / o] 0z d
p1(€, €) exP( 6 ((m 2) +23 Jr2 2z E{exp | ~a 0 Bise(s) ds N

We now want to use the (weak) convergence of the law of a Bessel bridge Bg[l_])e to the law of a

Brownian excursion e. Even if the first passage time I',(X) of the canonical process across the parabola

s+ ¢ 5(1 — s), is not a continuous functional of X, standard arguments ensure the convergence

P(T, € dz) = 115511?/3?4 (Tu(X) € da).
€

At the limit ¢ | 0, the three dimensional Bessel bridge ﬂ([fﬂ)e converges in law towards a Brownian

excursion el?! of duration z :

P(T, € dz) = a exp (_g (2% + 32(1 — x))) E (exp (—a /0 elel(s) ds)> \/% .

The scaling property of the Brownian excursion, and the very definition of the function C' entail the

E <exp (—a /0 ’ el®l(s) ds)> = E (exp (—a:z:3/2 /0 1 e(s) ds))

= C (ax3/2) ,

equalities

from which the formula of Lemma 1 follows.



Theorem 1 is at this point a simple consequence of the Markov property of the Brownian excursion at

time z. It will be convenient in the following to use the notation
plam) .— {s > gs(m —s); s € [O,m]} .
The quantity we shall compute is P(T', € dz,0 > a — b), since
P(n € dz,o € da) = lblf(r)l %]P’(Fa €dz,0 >a—b)da.
The Markov property at time x yields

P(T, €dz,0 >a—-0b) = (F €dz; epy. > PO O (g 4. ))

i
P(T, € dz) P (eﬁ. > plab) (g 4 .)|T, = :1:)
P(Ta € do) P (eqr. > PO (@ +2) ez = a)
P(T, € dz) P (ﬁ[ > ple- b,l)($+.)) ,

where the last equality stems from the fact that e(z + -) conditioned by e; = a; has the same law as
a Brownian bridge ﬂglmj(}) of duration 1 — z from a; to 0. The calculus made p.81-82 in [12] justifies
the equality b
P62 PO ) = LR (B0 2 P )
with b, = %:1:(1 — ). We thus obtain
2

P(T, € dz,0 > a —b) = b.exp (—;—4 (z* + 3z(1 - :B)))

C (a :1:3/2)

[1-2] (a—b,1—1x)
P >P dz .
8rx(l — ) <ﬁb’”_’0 - ) x

The law of the three dimensional Bessel bridge ﬁ&__ﬂ converges to the law of a normalized Brownian

1—x]

excursion el of duration 1 — z, when b tends to 0. So, using the scaling property of the Brownian

excursion and formula (4), we get

lblﬁ)l P (IBbm—m > pla—bl— ac)) - P (e[l—z] > rP(a,l—m))

= P (a >a(l— $)3/2)

= exp (—g(l — x)3) C (a(l — x)3/2) .

We can now conclude that

1
P(n € dr,o0 € da) = lbifon ZP(FG €dz,0 >a—>b)da
—a?/24
= < ¢ (aw3/2) C (a(l — x)3/2) dz da .
8rx(l — x)

The proof of Theorem 1 is complete.



3 The convex hull of a Brownian excursion with parabolic drift

We focus now on the convex hull H, of a Brownian excursion with parabolic drift s — es + § 52 Tt
can be shown that the path #, is a.s. piecewise linear. We call Mﬁ“) - < M( 9 the absmssaes
of its N, edges and aXl(a) < e L aé\.’](\;i)ﬂ the slopes of its N, + 1 pieces of line. It is convenient for

the understanding to keep in mind the following geometrical interpretations of the convex hull H,.

5 s2 — axs. On the one hand, they

coincide with the locations of the minimum of s — e, + %(s — z)2. On the other hand, the location

(a) (

of this minimum is unique and equals Mz(a) when z € | X;71, Xi(a)[ ; whereas for z = A ) there are

(a)

at least two locations of this minimum, the smallest of them is M,"’;, and the largest Mga). From a

Consider for 0 < z < 1, the locations of the minimum of s — e; +

geometrical point of view, this means that if you bring up a line s — az s + K until it touches the
graph of s — es + 5 s2, or equivalently if you bring up a parabola, s —2(s— z)? 4+ K’ until it touches
the graph of s — e, then there is a unique contact point when z € ]Xi(f)l, Xi(a)[ , the abscissa of which
is M(a) On the other hand, when z = XA(a) there are at least two contact points, the abscissa of the
left-most of them is M( )1 and the abscissa of the right-most of them is M( 9 see Figure 2. We call
a-parabolic hull of the excursion e, the set of parabolaes {s = =2 (s — (a)) +K;; 1 =1,N, + 1}

with K; chosen such that the i-th parabola touches s — e; at s = Mz((i)l and s = Mz(-a .

a
. s—>e(s) s—> 2(s xi)2+Ki

— Q‘ 2 //
s—>e(s)+ 35S g
& axX.

0 / Mi;1 M; I1 0 \ M, Xi/ Mi \1

Convex Hull

Parabolic Hull

Figure 2: convex and parabolic hull

The set M(®) := { M(a) .- ,MS&E , 1} corresponds to the set of the locations of the minimum of
s+rest+gs s?2—azs, when z € [0,1]. For 0 < b < a, the path s ~ (es + 332 — a:vs) (es + %32 - bms) =
a= b(s — z5) is monotone increasing, which entails the embedding M® c M@ The set M©) as.

equals {0,1}, and as time a runs, the edges appear one by one in the interval [0, 1].

Lemma 2 The convex hull H, can be recovered from the process (M(O‘), 0<a< a), and conversely.
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Proof of Lemma 2
The convex hull H, is completely determined by the coordinates of its N, edges. The abscissaes

M(a) - Mg\?j are given by M@ The ordinates can be computed in the following way. Let the

time « increase from 0 to a. A first edge of abscissa M( appears at a time «, we denote by a(a).

(a) (a

For a > o ”, ) , the edge jo belongs to the

2
its ordinate equals e M@ +3 (Mg‘;)) whereas at time o
Jo

segment liking (0,0) to (1, ag—';)/Z), so that
(a)

%Yjo

2

() =

Jo

(a)

Putting pieces together, one obtains that the ordinate of the edge jy equals at time o > @
(a) (a)
e} a— o 2
Jjo (a) Jo (a)
LM+ — (M)
We compute in the same manner the ordinate of the next edge j; appearing when « increases. Sup-

(a)

pose for example that j1 < jo. At time «;” the edge ji belongs to the segment liking (0,0) to

(@) _4(@) 2
(M(a) %o M( a) % (Mgz)) ), so that at time o > ag-l) the ordinate of the edge j; equals
(a) (a) (a) (a)
Yo aq@ L % T % @), ¥~ % (@))?
2 Mot 2 (MJ'O ) T (Mﬂ'l ) '

Iterating the procedure, we calculate the ordinates of all edges of H,,.
Conversely, we can recover (Hq, 0 < a < a) and thus (M("‘), 0<a< a) from the convex hull H,,

)

by reversing the procedure. Call (9](-“ the ordinate of the edge j of the convex hull H, and let «

2
decrease from a to 0. At time a < a, the ordinate of the edge j equals O](-a) + 25 (Mg-a)) . When
three edges j; < jo < j3 become aligned (while « is decreasing) erase the edge jo. Then, the edges
which remain at time « correspond to the edges of H,.

|

The next corollary of Theorem 1 characterizes the process a — M(® in terms of the function C.

Corollary 1 (A dynamical description of the convex hull H,)

The process o — M) is a pure jump (inhomogeneous) strong Markov process. For a* > a and M; <
< Mj_y < M* < M; < --- < My, the conditional probability given M@ = {0, My,...,Mn,1}

that the next edge appears during the time interval [a*,a* + da*] with an abscissa in [M*, M* + dM*],

equals

(M; = My 1) da* dM* O (a*(M; = M*)*?) C (a*(M* — Mi1)*?)
\/SW(MZ—M*)(M*_MZ71) C( *(M_Mz—1)3/2)

Hexp(

with the function C defined at the beginning of the previous section, see formula (3).

*2 2 C(a*(Mj _Mj—1)3/2)

C (a (Mj — Mj_,)3?)" (6)

o, - M)



Specifying formula (6) for a* = a, we obtain the rates of jump of @ — M) :

) _ e _
hm M= A0 Ma o, My, MO My M UE o) g0, g, by, 1)
blab—a M* € [M, M + dM]
_ (M- M) aM C(a(Mi— M)*?) C (a (M — M;1)*?)
N /8 (M; — M)(M — M;_) C (a (M; — Mi_1)3/2)

Proof of Corollary 1

Corollary 1 largely rephrases Theorem 1 and 2 in [12]. We sketch the main lines of the proof. The
first step is to obtain a path decomposition of the excursion e conditionally on its convex hull H,.
This decomposition is depicted in the next lemma. We omit its proof since it can be obtained by
a slight variation of the proof of proposition 1 in [12], which mainly uses a path decomposition for
Markov processes due to Millar [16]. We write as before e[™ for a Brownian excursion of duration m,

(o(m),n(m)) for the minimum and right-most location of the minimum of

2elm(s)

SHs(m—s)

and v(a,m) for the law of
s elm — %s(m —s), with e™ conditioned by o(m) > a.

Lemma 3 (A path decomposition of the excursion e conditionally on convex hull H,)

The No + 1 “excursions” of a Brownian excursion with parabolic drift s — es + § s above its convex

hull H,g,

el = (e (MZ(“_)I + s) + % (Mg“_)l + 5)2 — M, (ME“_)l + 3) ;s € [O,Mz@ - Mz('ci)l]) yi=1, Notl

(with the convention M(()a) =0 and MS@H = 1) are independent conditionally on H,, with conditional
law v (a, Mga) — Mz@l).

Let us now briefly explain the mechanism of growth of & — M(®). Keep in mind the geometrical

interpretation in terms of the parabolic hull. The “excursions” 5§a), 1 =1,...,N, + 1, exactly

correspond to the “excursions” of s — e, above its a-parabolic hull. As time a runs, the parabolaes of
the parabolic hull are drawn in the vertical direction. An edge of abscissa M* € [Mz('(i)p Mz(a)], appears

at time a*, if the parabola s — —% (s — Xi(a*)) + K; enters in contact with s — e; at s = M*.

The time a* and the abscissa M™ then correspond to o (s > el (s) + gs(Mg") - Mga_)l - s)) and

i
n (s — ega)(s) + 4 s(MZ(-a) - Mgi)l — 5)) + Mz(-(i)l. After time a*, we deal with Ng» +1 = N, + 2

“excursions” and the same procedure gives the next edge. And so on.



It follows from this mechanism (see Lemma 1 in [12] for a close argument) that there exists a
function

F:RY x | c(o,m],R") - [ J 0,1V
m>0 NeN

such that for any time a > 0 and index i € {1,..., N,+1}, the process (M(ﬁ) N ] M(a) M ] B> a)
is given by F (a, sz(-a)). The process (M(ﬁ); 8> a) considered on the whole interval [0, 1] is then

(M(ﬂ); IBZG) :O*F(a,ega)) *.--*F(a,€§$3+1>a

where * denotes the concatenation (mq,...,mp) * (rl, ., Tg (ml, ey Mp,T1,...,Tq). Since the
conditional law of Ega) given H, (or (M 0< a<a)) isv (a M Mga_)1>, the conditional law
of (M(’B); B> a) given (M 0 < a <a) only depends of M@ . The process a — M@ is thus
Markovian.

Consider now what happens at a jump time. Call a* the first time after ¢ where an edge appears, and

M* e [Mga)l, M( )] the abscissa of this edge. Lemma 5 in [12] ensures that the “excursion’ 6( a) splits
at time a* into two “excursions” 6( ) and @) independent conditionally on (M(O‘); 0<a<L a*),
with respective conditional laws v (a , M* — Mz@l) and v (a*, Mz(-a) - M *) The evolution of M after
time a*, viz (M(ﬂ); B8 > a*) is given by 0 * F' (a gga )) x F (a*,gg\(]l:3+1), where the processes
6§”*); j=1,..., Ny« + 1, are independent conditionally on (M(O‘); 0<a<L a*), with conditional law
v (a*, Ml-(a*) — Mg‘i*l)). The Markov property at time a* follows. Since @ — M(® is a pure jump
Markov process fulfilling the Markov property at jump times, it is strong Markov process.

For a* >agand My < --- < M; 1 < M* < M; <--- < My, we compute the conditional probability
given M(® = {0, My,..., My, 1} that the next edge appears in the time interval [a*, a* + da*] with an
abscissa in [M*, M* + dM*]. It corresponds to the event o (s — 6§u)(8) + G s(M; — M; 1 — s)) €
[a*,a* + da*], 7 (s > 81(-(1) (s) + & s(M; — M;_, — s)) € [M*— M;_,dM* + M* — M;_] and also
o (s — eg-a)(s) + §s(M; — Mj_y — s)) > a*, for j # 4. Since for j = 1,..., N, + 1, the processes
5 eg-a)(s) + & s(Mj — M;_, — s) are distributed conditionally on (M(®); 0 < @ < a) as independent
Brownian excursions of duration M; — M;_; conditioned by o(M; — M;_1) > a, the probability of this

event equals

P(o(M; — M;_4) € da*,n(M; — M; 1) € d(M* — M;_1)) H P(o(M; — Mj_1) > a*)
]P)(O'(MZ'—MZ'_l)Za) i ]P)(O'(M] Mj 1)2 ) .

Y (=3 %0, mn), Theorem 1 and

Formula (6) follows now from the scaling property (o(m),n(m)) (m
formula (4).
|

It is interesting for the physical applications of this work to compute the probability that H, has

10



N edges, satisfying

] 2

(M(.“), X.(“))i:LN € ilj_:\llldMi x dX;.

It is to be noticed that (Mga), Xz-(a)) N completely determines the coordinates of the edges, which
t=1,Na

means that the variable X 1(\21 ) 41 is redundant. Indeed, since aX 1(\21 ) +

the N' edge and (1,a/2), it can be expressed in terms of (Mga), Xi(a))

1 is the slope of the segment liking

i=1,Ng

Na
@ _ _ 1 1 (@) ( q@ _ pq@
N1 = M@ (5 - E I:Xz- (Mi - Mz’—l)) :
a =

1

We must first determine the values (M;, X;)1 v which are acceptable for (M,(“),Xi(“))l . It is

convenient to call (Y;; 7 =1,...,N), the ordinates of the intersection points of the parabolaes of the
a-parabolic hull of e, when (Mga), Xi(a)>1 N (M;, Xi)1,n, Viz

)

1
YéZa(X1M1+X2(M2—M1)+"'+Xi(Mi—Mi1)—§M¢2>a fori=1,....,N. (7)

2

The values (M;, X;)i=1,n are acceptable for (M(a),;\fi(“)) . if and only if they belong to the set

=1,Nq

O<M<---<My<1,
0<Xi<---<Xy<1,

A=
X1 M, +X2(M2 _M1)++XZ(MZ _Mi—l) > %MZQ, fori=1,...,N
XN < = (3 — XiMy — Xo(My — My) —--- — Xy(My — My 1))
The two first conditions are obvious. The third one expresses that Y; is non-negative for¢ =1,..., N,

and the last one ensures that X](\?) < X](\?J)rl.

In order to state our result, we need to associate to a vector (M;, X;)i=1,y € A the genealogical
tree T induced by (M("‘); 0<a< a) when (MZ(-“), Xi(a))l M (M;, X;)1,n. The root iy corresponds
to the index of the first edge appearing when time « goes from 0 to a. The index i1 (respectively
i9) is the index of the first edge appearing at the left (resp.right) of ME?, when « runs, and so
on. The genealogical tree 7 can be obtained from the geometrical configuration of (M;, X;)1 n as
follows. Recall that (M;,Y;);=1,~ represents the coordinates of the intersection points of the parabolaes
s = %(s — X;)? + K;, see formula (7). Let « increase from 0 until the parabola s —  s(1 — s) touches
one of the points (M;,Y;), we call (M;,,Y;,). Consider now two parabolaes with leading coefficient —5,
the first one which runs trough (0,0) and (M;,,Y;,), and the second one which runs trough (M;,,Y;,)
and (0,1). Let « increase in the first one, until it touches a third point (or @ = a), we denote by
(M;,,Yi,). Do the same in the second one, and call (M;,,Y;,) the third point. We deals at this point
with four parabolaes with leading coefficient —%. The first one runs trough (0,0) and (M;,,Y;,), the
second one runs trough (M;,,Y;,) and (M;,,Y;,), the third one runs trough (M;,,Y;,) and (M,,,Y;,)
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and the last one runs trough (M;,,Y;,) and (0,1). As before, let « increase in each of them, until it

touches a third point (or @ = a), the index of which is called i1; for the first parabola, i19 for the

second one, i91 for the third one and 499 for the last one; and so on, see Figure 3. We have excluded the

cases where the parabolaes touche two points at the same time, since the set of values of (M;, Xi)z-zl, N

for which this phenomenon occurs has Lebesgue measure 0. We say that the point ig is the father of

i1 and 79, or equivalently that ¢; and i9 are the sons of 4. In the same manners, we say that ¢ is of

the first generation, i1 and i, of the second generation, and so on. The quantities we are interested

with are the functions [ and r defined as

I(i1) = sup{0;j < i, such that j ancestor of i}

and r(i) = inf{1;5 > ¢, such that j ancestor of i},

where j is said to be an ancestor of i, if it is of a smaller generation than ;. We can now give the

explicit statistics of H,,.

Figure 3: Genealogical tree associated to (M;,Y;)1,n

Corollary 2 (Explicit statistics of H,)

Foranya >0, N € N and (M;, X;)i=1,n € A, the probability that H, has N edges and (Mga), Xi(a))

belongs to Hf\il dM; x dX; equals

1

N
P (’Hu has N edges; (Mga), X.(a))_ " € HdMi X dXi> =
= i=1

3/2
o N+1 a2m3 aC(amj
24

exp (—a®® ((M;, X3)i=1,n)) [] exp .
1 1)1 ‘El 27“'m‘]

aMmMN41

12

i=1,N

) dMi...dMyndX;...dXn,



where m; = M; — M;_1 and

@ (M, X;)i=1,N) =

. . 2

zj: mp Xp 9 m X L M) = Mu)
—M; 2

EN: (M,(jy — Mj)(M; — M)
; 2(M, () — My5))

j=1

k=1(j)+1 Mj = Myg) k=j+1 M)

Proof of Corollary 2
We will not iterate, as expected, formula (6) at the successive times of jump of a — M@ but rather
follow the genealogical tree 7. We must first compute for (ai,...,ax) € [0,a]Y and 0 < M; < ... <

Mpy < 1 the probability density that (M;a),ag.a))l v = (Mj,a;)1,n, where as before ag-a) denotes

tYa

the time at which the edge of abscissa M(a appears. Let us first describe the genealogical tree T
g

induced by (M(O‘); 0<a< a) when (Mga), 5 ))1 N, = (Mj,aj)1,n. The root iy corresponds to the
index for which a; is minimal, viz a;, = min{a;; 1 < j < N}; i; and iy are the indices satisfying
a;, =min{a;; 1 < j < ip} and a4, = min{a;; ig < j < N}, and so on.

When we follow the genealogical tree 7, we can take advantage at any time of jump « of the
independence of the “excursions” ez(-a), 1 =1,..., Ny + 1 conditionally on H,. The probability that

(Mz(g), (a )) € dM;, x daji, equals P(o € daj,,n € dM;,). Conditionally on (M( @) — MZO,OA,E;I) = ai0>,
(aio)

g; ° and 52
a!” and M equal o (3 — Eg%) + %o g(M;, — s)) and 7 (3 — egaio) + a% s(M;, — 3)), with s +—

“i0) are independent with conditional law v(a;,, M;,) and v(ai,, 1 — M;,). The variables

Z1 2
6(%) + %o s(M — s) distributed conditionally on (Mz(g) = M;,, al(g) = ai0> as a Brownian excursion
of duration M;, conditioned by o(M;,) > a;,. Similar formulaes also hold for a(:) and M(:) so that
the probability of the event (M@ a(“)) € dM;, x daj, (respectively (M(“) (a )) € dM;, x daw)

11 7 12 12

conditionally on (M( ) — M;,, ol = ai0> equals

207 10

P(U(Mio) € dailan( ) € dMZl) /P( ( ) > alo)
respectively P (o(1 — M;,) € dag,,n(1 — M;y) € d(M;, — M;y)) [ P(o(1 — My,) > aiy) -

More generally, if we write f(j) for the father of j and ay(;,) = 0, the probability that (aga),M(-a)) €

J
. a (a) (@) _
daj x dMj, given (“Sf&') = af(j)) and (Mzm = My, Mgy = TU))’ is

P (o (M) — Myy)) € daj,n (M) — M) € d(My — M) |0 (My(g) — Mygy) = ag)
_ Plo (My) — Myy)) € dajn (M) — Muy)) € d(M; — M)
P (o (M) — Migs)) > ag(y)

An index j is said to be a left-leaf (respectively a right-leaf) of 7T, if it has no left son (resp. right son)

in the tree 7. We shall compute the probability that left-leaves (resp. right-leaves) of 7 have no left
sons (resp. right sons). When j is a left-leaf (resp. a right-leaf) of 7, the probability that, conditionally

13



on (Mg-a) M( @) M;_1,a ga) = a]) the interval [Mga_)l,M;a)] (respectively [M(a) Mg +)1]>

-1 =
does not split before a = a equals

P(o(Mj — Mj_1) > a)
P(o(M; — Mj_1) > a;)
P(o(Mj1 — Mj) > a)
P(o(Mj1 — Mj) > aj)

P(o(Mj— Mj_1) 2 alo(Mj — Mj_1) > a;) =

resp. P(o(Mjy1 — Mj) > alo(Mj1 — Mj) > a;) =

Putting pieces together, we obtain by conditioning at the successive times (a;);,n taken in their

increasing order

N
('H has N edges, (Mga),ag-a))l N € Hde X daj>
) j:l

ﬂ M, ) — My;)) € daj,n (M) — My;)) € d(M; — My;)))
i P (o (M) = Myj)) > az)
11 P(o(My — My—1) > a) P(o(Myi1 — M)) > a) (8)
P(o(My) — My_1) > P(o(Myx11 — My) > ay)

a
A left-leaf of T Zax) right-leaf of T

law

Formula of Theorem 1, combined with the scaling property (o(m),n(m)) = (m_?’/ 20,mmn) and for-

mula (4) yields

P (o (M) — Myy) € daj,n (M) — Myy)) € d(M; — M)

( T M, ')3/2 6
G) — Mig) ) exp | =5 (M) = Mi) (My ) = My) (M — M)
)

2\/27r M) (M; — M,

X P (o (M) — Mj) > a;) P (o (M; — My;)) > a;) daj dM; .

Many terms at the numerator and denominator of formula (8) will cancel. If s; is a left son of j then
I(s1) = 1(j) and r(s1) = 7, and in the same way if so is a right son of j then I(s3) = j and r(s2) = 7(j).
This implies that if 7 has a left son s; then

P (0 (Mj _ Ml(j)) = aj) cancels with \/MT(SI) _ Ml(sl)

VM — My;, P (0 (My(sy) — Misy)) > ag(s))

and if j has a right son so then

Plo (M) = M) 2a5) VMr(s;) — Migs,) _
M, ;) — M; P (0 (My(s,) = Misy)) = af(sy))

14



After cancelling also every terms involving right or left leaves, it remains

NoOM,y — My a2
= ]1:[1 . Tor Dexp |~ (M) — M) (Mrgg) — My) (M; — Migy) | dM; day

H P (U(M)\ — M)\—l) > a/) H ]P)(O’(M)\_H - M)\) > a)
A left leaf of T VM — My A right leaf of 7 vV M1 — M)
Since for any i € {0,..., N}, either i is a right leaf or 7 + 1 is a left leaf, we finally obtain with the

notation m; = M; — M;

N
(7—[ has N edges, (Mga),ag-a))l v E Hde X daj>
3 j:l

_ ﬁ M,y — My exp _a_? ( i) — My )) (Mr(') — Mj) (Mj — Ml(j)) dM; da;
Jj=1 2v2m 8 ’ ’ ’

N+1 2
H m;1/2 exp (—;—4mf’) C (am3/2) .

i=1
We now want to come back to the variable (Mg-a), Xj(a)) e Geometrical considerations show that
o) _ 2 (9" (M) - Ml( )) = i) (MG — M) -9 (M7 - M) ))
’ (MIG) — MiG)) (M7 = M) ) (MG, - M)

where
W =a (Xf“)/vtg‘” £ 20 (M~ M) e 2@ (MO M) - (M;@)?) .

A change of variable thus leads to

P | H, has N edges, M(-“),X.(“) L€ dM x dX; | = exp (—a2® (M, Xi)i—1.n)
J J P

7j=1
am; ( — Myy) dM; dX; Y, ( ) 3/2
| | | | m; '“exp | —-—m; | Clam; ,
V2m M Ml(J))( () — M;) 24 ( )

with @ defined in the statement of Corollary 2. Cancellations occur again, excepted for left or right-

leaves, and after mixing the two products, there remains the expected formula

N
M; xdX; | =
Nejli[ld i xd J)

’

P (’Ha has N edges, (Mga),Xj(a))l

/
o N+1 a2 s aC’( y )
20 (M, X; ——— dX;...dXydM;...dMy.
amNL1 eXP( ((Mi, Xi)i=1,n) H eXp( 24 ) omm; 1 N 1 N
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4 Application to Burgers Turbulence on the circle

We apply in this section the previous results to the analysis of the (weak) solutions of Burgers/Riemann
equation (1), when the initial condition u(-,0) is a periodic white noise. The solutions of Burgers
equation are not unique in general. We focus henceforth to the so-called entropic solution, which may
be view as the limit of the (unique) solution of the viscous Burgers equation 0;u + u 0,u = €02, u,
when the viscosity € tends to 0. This solution develops shocks which can be interpreted in terms of
a ballistic model of aggregation. Consider at time ¢ = 0 infinitesimal particles uniformly spread on
the real axis, with velocity field u(-,0). Suppose that they evolve according to the dynamic of free
sticky particles, which means that between the collisions the motion of the particles is free, and when
particles meet, they merge into a new heavier particle, with mass (respectively momentum), the sum
of the masses (respectively momenta) of the particles involved into the collision. The macroscopic
clusters present at time ¢ are isomorphic to the shocks of the solution of u(-,¢) of Burgers equation
(1) at time ¢. The locations of the clusters coincide with the locations of the shocks, and their masses
with the amplitude of the shocks.
When the so-called initial potential

W (s) = /Osu(x,O) dz

satisfies the condition of growth, W (s) < s as |s| — oo, it is standard, according to the celebrated
Hopf-Cole formula (see [8, 15]), that the solution at time ¢ of Burgers equation may be determined in
terms of the convex hull of s — W (s) + %32. When this convex hull is piecewise linear, viz of the form
s >t Y Xis+ ki)1(as,_;,;)(8), every particle (of the ballistic model) has merged into macroscopic
cluster of mass m; = M; — M;_1, located at X; and one says that the shock structure is discrete. The
vertex of a parabola of the %—parabolic hull of W thus represents the location of a cluster, whose mass
corresponds to the difference between the abscissaes of the two contact points of the parabola with its
neighbours. See Figure 4 for the geometrical interpretation of the physical quantities.

The statistics of the system are well known, when the initial velocity is a white noise, namely when
s — Wy is a one or two-sided Brownian motion, see [5, 6, 11, 12, 14]. We shall focus thenceforth on
the case where the initial velocity is a periodic white noise, and more precisely on the case where the
initial potential s — Wy is 1-periodic, and coincides on [0, 1] with a Brownian bridge from 0 to 0. This
case may be thought as a circular system of free sticky particles, which is a system of sticky particles
evolving on a circle, with constant angular velocity between collisions. Indeed, it corresponds to the
hydrodynamic limit of such a system starting from a regular setting, with random angular velocities
(wj)1,n i.d.d., of finite variance and satisfying Zfi L w; = 0. We will describe what happens on R/Z. If
we think to the system as a circular system, it can be shown that for ¢ large enough all particles have
merged into a single cluster. As the total momentum of the circular system is conserved and equals 0,

the velocity of the final cluster is 0. Since the parabola s — 2%32 becomes flat when ¢ tends to infinity,
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Figure 4: Physical interpretation of the parabolic hull

the abscissaes of the edges of the convex hull of s — W, + 2%32 corresponds, for ¢ large enough, to
the location L of the minimum of the Brownian bridge (Ws, 0 < s < 1) modulo 1. In this case, the
vertices of the parabolaes of the parabolic hull coincide with L + % modulo 1. From a circular point
of view, it means that the final cluster is located at | L + 5|, where |z]r denotes the fractional part
of z, defined as the difference between z and its entire part. According to Vervaat’s transformation
(see [22]), the process & = (WLL+5 1 0<s < 1) is distributed as a Brownian excursion, independent
of L. Moreover, the state of the system can be obtained from the convex hull H,/; of s — & + %82.
At time ¢, all particles have merged into N macroscopic clusters of mass MU Mgi/lt ), located at

i
| L+ Xi(l/t)JF, i=1,...,N. The statistics of the system thus simply rephrases those of ¢ — H, ;.

The genealogical tree of the final cluster is given by ¢ — M(/%)_ Indeed, at time ¢ there are N; s+l

clusters in the system, of mass Mgl/t) - Mg/f), t=1,..., Ny + 1. It is also interesting to calculate
the statistics of the system at a given time t. We write py(m1,...,mpy,01,...,0x) for the probability
density that there exists N clusters of mass mi,...,my, located at 0 < 0; < --- < Oy < 1. Let us

compute in this case, the value L of the location of the minimum of the initial potential s — Wy on
[0,1]. The locations 61, ...,0y correspond to the abscissaes in [0, 1] of the vertices of the parabolic hull
of s — Wy. We denote by My < --- < My the abscissaes of the intersection points of the parabolic
hull, viz M; = My + mq + --- + my, is the abscissa of the intersection of s — E—tI (s —6;)? + K; and

s> ;—tl (s —0;41)? + K;11. It is standard that the velocity of the cluster number j then equals

29]' — Mj — Mj_l
2t )

u; =

We write Y; = Wyy;, and have the relation Y; = Y + 23:1 m; u;. The 1-periodicity implies the

17



equality Yo =Yy =Yy + Zf\il m; u;, from which follows
N i -
— . . i
_Z:'rnZ (91 ka—}— 2).
=1 k=1

In this notation L coincides with M;, = My + Z{il m;, where jo is the index which minimizes

Zgzl m; u;. In terms of (m;,6;)1,n, the value of L is given by

Jo N i
L:Zmi—FZmi (9,’-ka+%> .
i=1 i=1 k=1

where jo is the index j which minimizes

my, Hk—l———Zmp Zm, Z-—Zmp—i-% for j=1,...,N.

bl
—

We can also specify the characteristics of the convex hull H; of (WL5+ Lir s2,0< s < 1) in terms

+ 5
of (m;,0;)1,n. Actually, H,/, has N — 1 edges, of abscissa

M(l/t) M, = Mjo1 + oo+ Mjg4j whenl < j < N — jg
0>
Mjo+1+...+my+m1+...+mjjo—n else

connected by segments of slope t_l)(j(l/t) =110, :=t7 044, — (m1+...+mj,)|F. Putting pieces

together, we obtain, using the independence of L and &

pN(ml,...,mN,el,...,eN)dml...dmeldel...deN =

Jo N i

m

(5(m1+...+mN:1)]P’ Led Zm,-l—Zmz 0,~—Zmp+ ’
=1

i=1 i=1
N-1

X P | Hays has N — 1 edges, (M7, Xj(l/t))l e IT ayo x doy,,g
’_ j=1

The formula of Corollary 2 ensures that the probability density function equals (recall that L is
uniformly distributed on [0, 1])

pN(ml,...,mN,Ql,...,eN) :5(m1+...+mN: 1) X My
3/2

N-1 3 t

L Vo 1 1 md ( Mot/ )
ex =D (M, 3,050 :)i—1.N— ”—ex U ,

m P( 2 ((Mjo 35 Ojo,i)i=1,n 1)) i 7 p( 24 2 f2mmy g

when (M;, ;, 9jo,j)j:1 N1 € Aand 0 else. We can simplify the previous expression as follows.
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Proposition 1 In the above notations, the probability density that there exists N clusters at time t

of mass my,...,mpy located at 0 < 01 < --- < Oy < 1 is given by

pN(ml,...,mN,Gl,...,HN) =

1 3 C (m?ﬂ/t)
tV2r d(mi+...+my=1) exp _t_Q(I)((MjO’i’GJO’ i=1,N—1) H exp " ™ ,

when (Mjo,5,050,5) j—1,5—1 € A and 0 else.

We conclude with the remark that the law of the genealogical tree of a given cluster of mass m at
time ¢ is exactly the law p(¢,m) described in [12]. We can simplify the formula of Theorem 3 in [12],
thanks to Theorem 1. Indeed, the joint probability density function of (p(¢,m), R(t,m)) (see [12] for
the definition of p and R) also equals

u(t,m)(p € dr,R € da) =

m3 /1 1 C ((am)*2/t =) € (((1 = a)m)*? /t = r) m3/2 dr do
P ( 24 ( (t— T)2>) C (m?2/t) 8 (t—7)2 /Bra(l—a)
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