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A simple fairness problem
in sequential decision making
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Sequential decision making with covariates

Actions and rewards
Actions: indexed by X ⊂ Rd

Reward: f (x) for action x ∈ X for some unobserved f : X → R.

Bandit problems with covariates
At each round t = 1, . . . ,T

the agent chooses an action xt ∈ X , based on her historical data
she observes the feedback yt = f (xt) + ξt , with (ξt)t≥1 independent.

Goal
Maximise the unobserved cumulated reward

∑
t f (xt).
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Sequential decision making with covariates

Optimal oracle strategy
Sample at each round x∗ ∈ argmax

x∈X
f (x).

Infeasible since x∗ is unknown...

Decision maker objective
Minimize the regret

RT = E
[ ∑

t≤T
(f (x∗)− f (xt))

]

Linear bandit: f (x) = x>θ∗ with θ∗ unknown (very popular in
applications)
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Fairness issue

Unfairness in ML
The main cause of unfairness in applications of ML algorithms, is the
presence of biases in the data.

Setting
Each action x is characterized by an (observed) attribute
zx ∈ {−1,+1} (e.g. gender)
The feedbacks are biased depending on zx

Questions:
1 What is the impact of such a bias?
2 How do handle it?
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Biased Linear Bandits

Linear bandit with biased feedbacks
At each round t = 1, . . . ,T

the agent chooses an action xt ∈ X ⊂ Rd , whose sensitive attribute is
zxt ∈ {−1, 1}
she receives the unobserved reward x>t γ∗;
she observes the biased feedback yt = x>t γ∗ + zxtω

∗ + ξt .

Objective
Minimize the regret

RT = E
[ ∑

t≤T
(x∗ − xt)>γ∗

]
, where x∗ ∈ argmax

x∈X
x>γ∗.
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An insightful toy example
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Toy example - unbiased feedbacks

Unbiased feedback: γT x + ξ with ξ sub-Gaussian

Best action:
if γ = γk action xk is optimal, k = 1, 2;
in both cases x3 is very suboptimal.
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Toy example - unbiased feedbacks

1 The feedbacks differ by 2δ between x1 and x2
2 Confidence intervals have width ∝

√
log(confidence−1)/Nxk (t)

So:
if Nxk (T ) . δ−2, for k = 1 or 2: we cannot find the best action, and
RT = Θ(T δ);
if Nxk (T ) & δ−2 log(T ), for k = 1 and 2: we find the best action with
confidence 1/T , and RT = Θ(δ · δ−2 log(T )) = Θ(δ−1 log(T ));
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Toy example - unbiased feedbacks

if Nxk (T ) ≤ δ−2, for k = 1 or 2: we cannot find the best action, and
RT = Θ(T δ);
if Nxk (T ) ≥ δ−2 log(T ), for k = 1 and 2: we find the best action with
confidence 1/T , and the regret is RT = Θ(δ−1 log(T ));

Optimal regret with unbiased feedbacks
Large T regret: RT = Θ(δ−1 log(T )), when T →∞;

Worst case regret: the worst case is when δ−2 = T , and then

RT = Θ(T δ) = Θ(
√

T ).
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Toy example - biased feedbacks

Biased feedback: γT x+zxω + ξ with ξ sub-Gaussian.

For (γ1, ω1) and (γ2, ω2), the feedbacks are identical for x1, x2:
x1
>γ1 + zx1ω1 = x1

>γ2 + zx1ω2 = 1,
and x2

>γ1 + zx2ω1 = x2
>γ2 + zx2ω2 = 1.

=⇒ We need to sample the very sub-optimal action x3 to discriminate
between (γ1, ω1) and (γ2, ω2).
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Toy example - biased feedbacks

The feedback when choosing x3 differs by 4δ between (γ1, ω1) and
(γ2, ω2):

if Nx3(T ) . δ−2: we cannot find the best action, and RT = Θ(T δ);
if Nx3(T ) & δ−2 log(T ): we find the best and RT = Θ(δ−2 log(T )).

Worst-case regret is achieved for δ = T−1/3, and RT = Θ̃(T 2/3).
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Toy example: summary

Unbiased Biased
Asymptotic regret RT = Θ(δ−1 log(T )) RT = Θ(δ−2 log(T ))
Worst case regret for δ = T−1/2 for δ = T−1/3

R∗T = Θ(
√

T ) R∗T = Θ̃(T 2/3)

Question: What is the price of biased feedbacks in general?
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Refresher on unbiased linear bandits
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A general recipe in bandits: successive elimination
Confidence interval
Ix (t) := confidence interval (at a prescribed level) for f (x) from the data
collected up to time t.

Recipe
If “Ix (t) < maxx ′ Ix ′(t)”, drop out the action x from X .
If “Ix (t) ∩maxx ′ Ix ′(t) 6= ∅” then get more samples to shrink Ix

Successive Elimination (principle)
Repeat for ε↘ 0

Sample a minimal number of actions from X to get
|Ix (t)| ≤ ε for all x ∈ X ;

Drop out from X all actions x such that Ix (t) < maxx ′ Ix ′(t).
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Linear bandits

Unbiased linear bandit
Reward: f (x) = x>θ∗

Feedback: y = x>θ∗ + ξ with ξ subGaussian(1).

Assumptions
|X | = k <∞ and |x>θ∗| ≤ 1 for all x ∈ X .
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Confidence bounds

OLS estimator
For n sampled actions x1, ..., xn in X , the OLS estimator is

θ̂ = V +∑
s≤n

xsys , where V =
∑
s≤n

xsx>s ,

and V + is the Moore-Penrose pseudo inverse.

Confidence bound
If x1, ..., xn are fixed, then for all x ∈ Range(V ),

P
(∣∣∣∣(θ̂ − θ∗)> x

∣∣∣∣ ≤
√

2 ‖x‖2
V + log

(1
δ

))
≥ 1− δ.

where ‖x‖2
V + := x>V +x .
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G-optimal design
If we choose each action x exactly µ(x) times∑

s≤n
xsx>s = V (µ) :=

∑
x∈X

µ(x)xx>

G-optimal design

µ∗n ∈ argmin
|µ|=n

max
x∈X
‖x‖2

V (µ)+ . (G-optimal design)

fulfills
max
x∈X

‖x‖2
V (µ∗n )+ ≤

d
n .

Confidence bound

If each action x ∈ X is sampled µ∗n(x) times with n = 2d
ε2 log

(
kδ−1

)
,

then
max
x∈X

∣∣∣∣(θ̂ − θ∗)> x
∣∣∣∣ ≤ ε, with probability at least 1− δ.
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Phased Elimination algorithm

Phased Elimination (Lattimore and Szepesvári, 2020)
Input X1 = X .
For l = 1, 2, . . .

εl ← 2−l , nl ←
2d
ε2
l

log (kl(l + 1)T )

Xl+1 ←G-Explore-And-Eliminate(Xl , nl , εl )
End For

G-Explore-And-Eliminate(Xl , nl , εl)
sample µ∗nl (x) times each action x ∈ Xl

compute OLS estimator θ̂

Return Xl \
{

x ∈ Xl : x>θ̂ + εl ≤ max
x∈Xl

x>θ̂ − εl
}
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Phased Elimination algorithm

Gaps
Gaps: ∆x = (x∗ − x)>θ∗

Minimal gap: ∆min = min {∆x : ∆x > 0}

Theorem
Asymptotic regret: RT . d∆−1

min log(T )

The worst case regret: R∗T . C
√

dT log(kT ).
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Biased linear bandits
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Biased Linear Bandits
Our setting
At each round t = 1, . . . ,T

the agent chooses an action xt ∈ X ⊂ Rd , whose sensitive attribute is
zxt ∈ {−1, 1}
she receives the unobserved reward x>t γ∗;
she observes the biased feedback

yt = x>t γ∗ + zxtω
∗ + ξt

= a>xtθ
∗ + ξt , where ax =

( x
zx

)
, θ∗ =

(
γ∗

ω∗

)

Objective

Minimize the regret RT = E
[ ∑

t≤T
(x∗ − xt)>γ∗

]
, where x∗ ∈ argmax

x∈X
x>γ∗.
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A first naive idea

Bias issue
We have the linear model y = a>x θ∗ + ξ, but the reward is

x>γ∗ = a>x θ∗−zxω
∗.

Naive Debiased G-Explore-And-Eliminate(Xl , nl , εl)
µ∗nl ← G-optimal design({ax : x ∈ Xl} , nl )
sample µ∗nl (x) times each action x ∈ Xl

compute OLS estimator θ̂ =
(
γ̂
ω̂

)
Return Xl \

{
x ∈ Xl : x>γ̂ + εl ≤ max

x∈Xl
x>γ̂ − εl

}
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Failure of the naive idea

Caveat
We have with probability at least 1− δ

max
x∈Xl

∣∣∣∣(θ̂ − θ∗)> ax

∣∣∣∣ ≤ εl .
But, we have no control on the reward /

max
x∈Xl

∣∣∣(γ̂ − γ∗)> x
∣∣∣ ≤ ??

Remedy
We need an additional step of optimal-designed estimation of the bias ω∗.
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Bias estimation

OLS estimation (best unbiased linear estimator)
Sample µ(x) times each x ∈ X

Compute the OLS estimator θ̂ =
(
γ̂
ω̂

)
Then,

P
(
|ω̂ − ω∗| ≤

√
2 ‖ed+1‖2

V (µ)+ log (1/δ)
)
≥ 1− δ,

where V (µ) =
∑

x µ(x)ax a>x and ed+1 = (0, . . . , 0, 1).

Regret for bias estimation
When we sample µ(x) times each x ∈ X , we suffer the regret∑

x∈X
µ(x)∆x , where ∆x = (x∗ − x)>γ∗.
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∆-optimal design

∆-optimal design
For ∆ = (∆x )x∈X , we introduce

µ∆ = argmin
µ ∈MXed+1

s.t.
‖ed+1‖2

V (µ)+ ≤ 1

∑
x∈X

µ(x)∆x (∆-optimal design)
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∆-optimal design

∆-optimal design
For ∆ = (∆x )x∈X , we introduce

σ−1µ∆ = argmin
µ ∈MXed+1

s.t.
‖ed+1‖2

V (µ)+ ≤ σ2

∑
x∈X

µ(x)∆x (∆-optimal design)
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Regret for ∆-optimal bias estimation

Regret for bias estimation
The minimal regret for estimating the bias ω∗ with precision ε and
confidence 1− δ is

minimal regret for bias estimation = 2κ(∆) log(δ−1)
ε2 ,

where
κ(∆) =

∑
x∈X

µ∆(x)∆x

characterizes the difficulty of bias estimation in our setting.

In practice
In practice, ∆x is unknown, we have to rely on some (upper) estimates ∆̂x .

Christophe Giraud (Orsay) Biased linear bandits London, June 2022 27 / 34



Regret for ∆-optimal bias estimation

Regret for bias estimation
The minimal regret for estimating the bias ω∗ with precision ε and
confidence 1− δ is

minimal regret for bias estimation = 2κ(∆) log(δ−1)
ε2 ,

where
κ(∆) =

∑
x∈X

µ∆(x)∆x

characterizes the difficulty of bias estimation in our setting.

In practice
In practice, ∆x is unknown, we have to rely on some (upper) estimates ∆̂x .

Christophe Giraud (Orsay) Biased linear bandits London, June 2022 27 / 34



Fair Phased Elimination

3 main ingredients
1 Actions can be compared within a group:

we apply G-Explore-And-Eliminate within a group

2 bias correction based on ∆̂-optimal design

3 bias estimation breaking criterion: to avoid a too high regret
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Fair Phased Elimination algorithm

Fair Phased Elimination
Input Z = {−1,+1}, and X z

1 = {x ∈ X : zx = z} for z ∈ Z
For l = 1, 2, . . .

εl ← 2−l , nl ← 2(d+1)
ε2

l
log
(

kl(l+1)
δ

)
, ml ← 2

ε2
l

log
(

l(l+1)
δ

)
For z ∈ Z

I X z
l+1, θ̂

(z)
l ←G-Explore-And-Eliminate(X z

l , nl , εl )
If Z = {−1,+1}

I If εl ≤
(
κ(∆̂l ) log(T )/T

)1/3
, then break and sample best empirical

action for remaining time
I ω̂l ← ∆-Explore(∆̂

l
,ml )

I m̂x ← a>x θ̂
(z)
l − zω̂l for x ∈ X (−1)

l ∪ X (1)
l , update ∆̂

l

I If ∃z ∈ Z s.t. maxx∈X (z)
l

m̂x ≥ maxx∈X (−z)
l

m̂x + 4εl then Z ← {z}
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Optimal Regret for Biased Linear Bandits
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Geometry of worst-case regret
Theorem (Gaucher, Carpentier, Giraud, 2022)

Define
κ∗ = min

µ ∈MXed+1
s.t.

‖ed+1‖2
V (µ)+ ≤ 1

max
θ:|a>x θ|≤1

∑
x∈X

µ(x)∆x (θ).

Then, Fair Phased Elimination algorithm fulfills

RT ≤ C κ
1/3
∗ T 2/3 log(T )1/3, for T ≥ Tk,d ,κ∗ .

Remarks
Matching lower bound up to a log(T )1/3;
κ

1/3
∗ captures the dependency on the geometry of the set of actions;

Regret in Θ̃(T 2/3) instead of Θ̃(T 1/2) is the price for debiasing the
rewards.
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Geometry of bias estimation

Lemma

κ∗ = ∆max

(R + δ

R − δ

)2

with the largest δ/R ∈ [0, 1] such that a δ-separation as above exists
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∆-dependent regret bound
∆min := min

x 6=x∗
(x∗ − x)>γ∗ and ∆ 6= := min

zx 6=zx∗
(x∗ − x)>γ∗.

Theorem (Gaucher, Carpentier, Giraud, 2022)

Fair Phased Elimination algorithm fulfills

RT ≤ C
(

d
∆min

+
κ
(
∆ ∨∆ 6= ∨ εT

)
∆2
6=

)
log(T ), for T ≥ k ∨ ed∆min

where εT = (κ∗ log(T )/T )1/3.

Comments
Some matching lower bounds;
d log(T )

∆min
is the (worst gap-dependent) regret of the classical linear bandit;

κ(∆) log(T )
∆2
6=

is the price for debiasing the rewards.
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(x∗ − x)>γ∗ and ∆ 6= := min

zx 6=zx∗
(x∗ − x)>γ∗.

Theorem (Gaucher, Carpentier, Giraud, 2022)

Fair Phased Elimination algorithm fulfills

RT ≤ C
(

d
∆min

+
κ
(
∆ ∨∆ 6= ∨ εT

)
∆2
6=

)
log(T ), for T ≥ k ∨ ed∆min

where εT = (κ∗ log(T )/T )1/3.

Comments
Some matching lower bounds;
d log(T )

∆min
is the (worst gap-dependent) regret of the classical linear bandit;

κ(∆) log(T )
∆2
6=

is the price for debiasing the rewards.
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Take home message

In biased linear bandit problems
In the worst case, the regret can be Θ̃(T 2/3) instead of Θ̃(

√
T ).

The geometric dependence is captured by the largest δ-separation.

In gap-depend worst case:
I an additional κ(∆) log(T )

∆2
6=

term shows up
I can be as easy as classical bandit if κ(∆) log(T )

∆2
6=

≤ d log(T )
∆min
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