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Machine Learning is ubiquitous in daily life
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Fairness in Machine Learning: a major societal concern

Machine Learning is ubiquitous in daily life

05-17-19

Schools are using software to help
pick who gets in. What could go
wrong?

Admissions officers are increasingly turning to automation and Al with the hope of
streamlining the application process and leveling the playing field.
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Fairness in Machine Learning: a major societal concern

Machine Learning is ubiquitous in daily life

SCIENCE ADVANCES | RESEARCH ARTICLE

RESEARCH METHODS Copyright © 2018

. . . The Authors, some
The accuracy, fairness, and limits s s
of predicting recidivism American Assciaion

for the Advancement
of Science. No claim to
original US. Government
Works. Distributed

Julia Dressel and Hany Farid*

Algorithms for predicting recidivism are commonly used to assess a criminal defendant’s likelihood of ¢ itting a under a Creative
crime. These predictions are used in pretrial, parole, and sentencing decisions. Proponents of these systems argue that Commons Attribution
big data and advanced machine learning make these analyses more accurate and less biased than humans. We show, NonCommercial

however, that the widely used commercial risk assessment software| COMPAS is no more accurate or fair than predic- License 4.0 (CC BY-NC).
tions made by people with little or no criminal justice expertise. |In addition, despite COMPAS'’s collection of 137

features, the same accuracy can be achieved with a simple linear predictor with only two features.
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A simple fairness problem
in sequential decision making
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Sequential decision making with covariates

Actions and rewards

Actions: indexed by X c R
Reward: f(x) for action x € X’ for some unobserved f : X — R.

Bandit problems with covariates

Ateachround t=1,..., T
@ the agent chooses an action x; € X', based on her historical data
@ she observes the feedback y: = f(x¢) + &, with (&¢)¢>1 independent. )

Goal

Maximise the unobserved cumulated reward >, f(x¢).
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Sequential decision making with covariates

Optimal oracle strategy

Sample at each round x* € argmax f(x).
xeX

Infeasible since x* is unknown...

Decision maker objective
Minimize the regret

Rr =E[ Y (f(x") = f(xt))

t<T

Linear bandit: f(x) = x'6* with * unknown (very popular in
applications)
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Fairness issue

Unfairness in ML

The main cause of unfairness in applications of ML algorithms, is the
presence of biases in the data.

Setting

@ Each action x is characterized by an (observed) attribute
z, € {—1,+1} (e.g. gender)
@ The feedbacks are biased depending on zy

Questions:
@ What is the impact of such a bias?
@ How do handle it?
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Biased Linear Bandits

Linear bandit with biased feedbacks
Ateachround t=1,..., T

@ the agent chooses an action x; € X C R, whose sensitive attribute is
z,, € {-1,1}

@ she receives the unobserved reward x,” 7*;

o she observes the biased feedback y; = x,/ v* + z,w* + &:.

Objective

Minimize the regret

Rt = IE[ Z(X* — xt)T’y*], where x* € argmax x ' v*.
tST xeX
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An insightful toy example
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Toy example - unbiased feedbacks

y2= (1-6,1+9)
x = (0, 1) '

1= (1+6,1-0)

-

X = (-1, 0)

1

1, 0)

Unbiased feedback: 7' x + ¢ with & sub-Gaussian
Best action:

@ if v =, action xi is optimal, k =1,2;

@ in both cases x3 is very suboptimal.
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Toy example - unbiased feedbacks

y2= (1-6,1+9)

=01
2=01 s yi= (146,1-6)

-

-
x;3= (-1, 0) 0 x|

It J

1, 0

@ The feedbacks differ by 2§ between x; and x»
@ Confidence intervals have width \/Iog(confidence_l)/NXk(t)

o if Ny, (T) <672 for k=1 or 2: we cannot find the best action, and
RT = @(Td),
o if Ny (T) = 6 2log(T), for k =1 and 2: we find the best action with
confidence 1/T, and R = ©(0 - 62 log(T)) = ©(6 * log(T));
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Toy example - unbiased feedbacks

o if Ny, (T) <872 for k=1 or 2: we cannot find the best action, and
Rt = ©(T9);

o if Ny (T) > 6 2log(T), for k =1 and 2: we find the best action with
confidence 1/T, and the regret is Rt = ©(6 Llog(T));

Optimal regret with unbiased feedbacks
Large T regret: R = ©(6 Llog(T)), when T — oo;

Worst case regret: the worst case is when 672 = T, and then

Rr =0O(Té8) =0(\T).
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Toy example - biased feedbacks

2= (1-6,1+9)
Wy, = 0
x =01 &
z = -1 vy = (1+6;§1—6)
w = —
i
x3 = (-1, 0) 0 =
Zy, = =

x = (1,0
Zy, 1

Biased feedback: v x+z.w + ¢ with ¢ sub-Gaussian.

For (y1,w1) and (72,w2), the feedbacks are identical for xj, xp:

T T
X1 Y1+ Zqwi = X1 Y2+ Zgwr =1,

T T
and  x2 71+ zZuw1 =x2 Y2+ Zowr = 1.

—> We need to sample the very sub-optimal action x3 to discriminate
between (y1,w1) and (7y2,w2).
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Toy example - biased feedbacks

Y2 = (1-6,1+06)

w, = 0
x, = (0,1
2200 y= (1+6,1-6)
Xy —
Wy = -0
%= (-1,0) = (1,0
Zy, = Zy, = 1

The feedback when choosing x3 differs by 46 between (1,w1) and

(72, w2):

o if Ny (T) < 672: we cannot find the best action, and R = ©(TJ);
o if Niy(T) 2> 6 2log(T): we find the best and Rt = ©(5 2 log(T)).

Worst-case regret is achieved for § = T—1/3, and Ry = &(T?/3).
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Toy example: summary

Unbiased Biased
Asymptotic regret | R = ©(6 tlog(T)) | RT = ©(0?log(T))
Worst case regret | for 6 = T—1/2 forg = T-1/3
Ri=O(/T) | Ry=8(T%)

Question: What is the price of biased feedbacks in general?
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Refresher on unbiased linear bandits
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A general recipe in bandits: successive elimination

Confidence interval

Z.(t) := confidence interval (at a prescribed level) for f(x) from the data
collected up to time t.

Recipe
If “Z(t) < max, Z,(t)", drop out the action x from X.
If “Z(t) N max, Z/(t) # 0" then get more samples to shrink Z,

Successive Elimination (principle)
REPEAT for e \,0
@ Sample a minimal number of actions from X to get

|Z.(t)] < e forall x e X;

@ Drop out from X all actions x such that Z,(t) < max, Z,/(t).
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Linear bandits

Unbiased linear bandit
Reward: f(x) = x'6*
Feedback: y = x ' 0* + ¢ with ¢ subGaussian(1).

Assumptions
|X| =k <ooand [x"60*| <1forall x € X.
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Confidence bounds

OLS estimator

For n sampled actions xi, ..., x, in X, the OLS estimator is

0= V+szys, where V = ZXSXST,
s<n s<n

and VT is the Moore-Penrose pseudo inverse.
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Confidence bounds

OLS estimator

For n sampled actions xi, ..., x, in X, the OLS estimator is

0 = V+szys, where V = ZXSXST,

s<n s<n

and VT is the Moore-Penrose pseudo inverse.

Confidence bound
If x1, ..., x, are fixed, then for all x € Range(V),

P(‘(@—g*)TX S\/ZHxlﬁﬁlog(%))Zl—é.

where ||x[|2. = xTV*x.
v
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G-optimal design

If we choose each action x exactly p(x) times

S xex = Vi) = X (o

s<n XEX
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G-optimal design

If we choose each action x exactly p(x) times

S xex = Vi) = X (o

s<n XEX
G-optimal design
* ¢ argmin max ||x||? . G-optimal design
Hn |E|:n s | HV(,u)+ (G-op gn)
fulfills
2 - d
max [|x[|y(uz)e < -
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G-optimal design

If we choose each action x exactly p(x) times

S xex = Vi) = X (o

s<n XEX
G-optimal design
* ¢ argmin max ||x||? . G-optimal design
Hn IEIZn s | HV(,u)+ (G-op gn)
fulfills
2 <4
max [|x[|y(uz)e < -

Confidence bound

2d
If each action x € X' is sampled pj,(x) times with n = —- log (ké‘l),
€
then . T
(6-07) x
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Phased Elimination algorithm

PHASED ELIMINATION (Lattimore and Szepesvari, 2020)
Input X; = X.
For/=1,2,...

2d
o e« 27!, nj+ S log(ki(I+1)T)
€
o X1 +G-EXPLORE-AND-ELIMINATE(X), ny, €/)
End For
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Phased Elimination algorithm

PHASED ELIMINATION (Lattimore and Szepesvari, 2020)
Input X; = X.
For/=1,2,...

2d
o e« 27!, nj+ S log(ki(I+1)T)
€
o X1 +G-EXPLORE-AND-ELIMINATE(X), ny, €/)

End For

G-EXPLORE-AND-ELIMINATE(AX), nj, €/)
@ sample i, (x) times each action x € &)

@ compute OLS estimator )

Return X \ {x EX:x' 0+ ¢ <maxx 0— e/}

XEX]
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Phased Elimination algorithm

Gaps
Gaps: A, = (x* —x)6*
Minimal gap: Anin = min{A, : A, > 0}

Theorem
Asymptotic regret: Rt < dA_L log(T)

min

The worst case regret: R% < C./dT log(kT).
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Biased linear bandits
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Biased Linear Bandits

Our setting
At eachround t=1,..., T

o the agent chooses an action x; € X C R?, whose sensitive attribute is
Zy, € {_17 1}
@ she receives the unobserved reward x,” 7*;

@ she observes the biased feedback

Ve =X 7+ zow" + &
*
:31;9*4—&, Whereaxz<x),0*:(fy>

Zx
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Biased Linear Bandits

Our setting
At eachround t=1,..., T

o the agent chooses an action x; € X C R?, whose sensitive attribute is
Zy, € {_17 1}
@ she receives the unobserved reward x,” 7*;

@ she observes the biased feedback

Ve =X 7+ zow" + &
*
:3)19*4—&, Whereaxz<x),0*:(fy>

Objective

Minimize the regret Ry = ]E[ > (x* = xt)T'y*}, where x* € argmax x| y*.
t<T x€EX

v
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A first naive idea

Bias issue

We have the linear model y = a] 6* + £, but the reward is

xTy* = al 0*—zw*.
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A first naive idea

Bias issue

We have the linear model y = a] 6* + £, but the reward is

xTy* = al 0*—z.w*.

Naive DEBIASED G-EXPLORE-AND-ELIMINATE(X), nj, €/)
o uy, < G-optimal design({ax : x € X}, ny)

@ sample s, (x) times each action x € &)

@ compute OLS estimator 6= (5)

Return X \ {x c X : XT”? +¢€ < maxxT”Ay — 6/}

XEX)
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Failure of the naive idea

Caveat
We have with probability at least 1 — §

<§— 9*)T ax

But, we have no control on the reward ®

maX
XEX/

< €.

max
xEX)

~ *\ 1
(-5 <7
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Failure of the naive idea

Caveat
We have with probability at least 1 — §
. T
*
may|(-0) | <

But, we have no control on the reward ®

max
xEX)

~ *\ 1
(-5 <7

Remedy

We need an additional step of optimal-designed estimation of the bias w*.
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Bias estimation

OLS estimation (best unbiased linear estimator)
@ Sample p(x) times each x € X

e Compute the OLS estimator § = (%)

Then,

P (16—l < y/2lleanllyg 0(1/5)) 2 15

where V(1) = 3", p(x)axa, and eq11 = (0,...,0,1).
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Bias estimation

OLS estimation (best unbiased linear estimator)

@ Sample p(x) times each x € X

e Compute the OLS estimator § = (%)

Then,

P (16—l < y/2lleanllyg 0(1/5)) 2 15

where V(1) = 3", p(x)axa, and eq11 = (0,...,0,1).

Regret for bias estimation

When we sample p(x) times each x € X', we suffer the regret

Z w(x)Ay, where A, = (x* —x) 4"
xeX
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A-optimal design

A-optimal design
For A = (Ax)xex, we introduce
pd = argmin Z,LL(X)AX

WwE Mze)‘(’“ s.t. xex
||ed+1||V(,u)+ <1

(A-optimal design)
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A-optimal design

A-optimal design
For A = (Ax)xex, we introduce
oLt = argmin Z,U,(X)AX

wEe M;‘ZH s.t. xEX
leasaliZy: < o

(A-optimal design)
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Regret for A-optimal bias estimation

Regret for bias estimation

The minimal regret for estimating the bias w* with precision € and
confidence 1 —§ is

2k(A) log(d71)

minimal regret for bias estimation = 5 ,
€

where

w(B) = 3 1 (x) D

XEX

characterizes the difficulty of bias estimation in our setting.
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Regret for A-optimal bias estimation

Regret for bias estimation

The minimal regret for estimating the bias w* with precision € and
confidence 1 —§ is

2k(A) log(d71)

minimal regret for bias estimation = 5 ,
€

where

w(B) = 3 1 (x) D

XEX

characterizes the difficulty of bias estimation in our setting.

In practice

In practice, A, is unknown, we have to rely on some (upper) estimates A,.
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FAIR PHASED ELIMINATION

3 main ingredients

© Actions can be compared within a group:
we apply G-EXPLORE-AND-ELIMINATE within a group

@ bias correction based on E—optimal design

© bias estimation breaking criterion: to avoid a too high regret
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FAIR PHASED ELIMINATION algorithm

FAIR PHASED ELIMINATION

InputZz{—l,—i—l}, and A ={xeX:z,=z}forze Z
For I =1,2,.

® ¢ 2 /, iy e 2(dl+1)I (k/(lg—i—l)), i e 2 |Og(/(/+1))

o For zEZ

Xf, 9, eG-EXPLORE-AND-ELIMINATE(X,Z, ny, €r)
o If Z={-1,+1}

~ 1/3
If ¢ < (FL(AI) log(T)/ T) , then break and sample best empirical
action for remaining time

)
Wy < A-EXPLORE(A , m))
_ N
My aj@fz) — zW) for x € X,( Yy X,(l), update A
If 3z € Z s.t. Max, ¢ (o my > Max, ¢ (- my + 4¢; then Z + {z}
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Optimal Regret for Biased Linear Bandits
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Geometry of worst-case regret

Theorem (Gaucher, Carpentier, Giraud, 2022)

Then, FAIR PHASED ELIMINATION algorithm fulfills

Rr < CriPT?Rlog(T)'3,  for T> Thgp..
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Geometry of worst-case regret
Theorem (Gaucher, Carpentier, Giraud, 2022)

Define
Ky = m|n max x)Ax(0).
weME 0:]a] 0]<1 7 Z,u JAx(9)

ed 1
||ed+1||v(u)+ S 1

Then, FAIR PHASED ELIMINATION algorithm fulfills

Rr < CriPT?Rlog(T)'3,  for T> Thgp..
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Geometry of worst-case regret

Theorem (Gaucher, Carpentier, Giraud, 2022)
Define

Ky = m|n max x)Ax(0).
weME 0:]a] 0]<1 7 Z,u JAx(9)

ed 1
||ed+1||v(u)+ S 1

Then, FAIR PHASED ELIMINATION algorithm fulfills

Rr < CriPT?Rlog(T)'3,  for T> Thgp..

Remarks

@ Matching lower bound up to a log(T)/3;
° 51/3 captures the dependency on the geometry of the set of actions;

o Regret in ©(T?/3) instead of ©(T/2) is the price for debiasing the
rewards.

v
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Geometry of bias estimation

Lemma

R+ 5)2
R—¢
with the largest /R € [0, 1] such that a J-separation as above exists

k' = Amax <
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A-dependent regret bound

Anmin := min(x* —x)Ty* and Ay = min (x* —x) Ty

XFEX* Z FZx
Theorem (Gaucher, Carpentier, Giraud, 2022)

FAIR PHASED ELIMINATION algorithm fulfills

d k(A

<
RT N ¢ (Amin + Ai

)> log(T),  for T >k edhmn
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A-dependent regret bound

Apin 1= n;in*(x* —x) Ty and Ay = n;in (x* — x)Ty".
Theorem (Gaucher, Carpentier, Giraud, 2022)
FAIR PHASED ELIMINATION algorithm fulfills
d AV ALV
Ry < C + al 7 7) log(T),  for T > kv edlmn
Amin A;g

where e = (k. log( T)/T)l/s-
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A-dependent regret bound

Apin 1= n;in*(x* —x) Ty and Ay = r;in (x* — x)Ty".
Theorem (Gaucher, Carpentier, Giraud, 2022)
FAIR PHASED ELIMINATION algorithm fulfills
d AV ALV
Ry < C + al 7 7) log(T),  for T > kv edlmn
Amin A;g

where e = (k. log( T)/T)l/s-

Comments

@ Some matching lower bounds;
° ‘“ZLm(inT) is the (worst gap-dependent) regret of the classical linear bandit;

) ”(—A)A'g is the price for debiasing the rewards.

v
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Take home message

In biased linear bandit problems

@ In the worst case, the regret can be ©(T?%/3) instead of O(v/T).
The geometric dependence is captured by the largest d-separation.

@ In gap-depend worst case:

(A) lgg( T)
£,

an additional £ term shows up

H(A)Alzg(T) < dlog(T)

min

can be as easy as classical bandit if
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