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Setting

Gaussian regression with unknown variance:

> Y:=f +¢; with ¢; i N(0,02)
» f=(f,...,f)* and o2 are unknown

» we want to estimate f

Ex 1: sparse linear regression

» f = X[ with 3 "sparse” in some sense and X € R" P with
possibly p > n

Ex 2 : non-parametric regression

> fi = F(x;) with F: X - R



A plethora of estimators

Sparse linear regression

» Coordinate sparsity: Lasso, Dantzig, Elastic-Net,
Exponential-Weighting, Projection on subspaces { V) : A € A}
given by PCA, Random Forest, etc.

» Structured sparsity: Group-lasso, Fused-Lasso, Bayesian
estimators, etc

Non-parametric regression

» Spline smoothing, Nadaraya kernel smoothing, kernel ridge
estimators, nearest neighbors, L?-basis projection, Sparse
Additive Models, etc



Important practical issues

Which estimator should be used?

» Sparse regression : Lasso? Random-Forest?
Exponential-Weighting?

» Non-parametric regression: Kernel regression? (which
kernel?) Spline smoothing?

Which " tuning” parameter?

» which penalty level for the lasso?
» which bandwith for kernel regression?
> etc



The objective

Difficulties
» No procedure is universally better than the others
» A sensible choice of the tuning parameters depends on

» some unknown characteristics of f (sparsity, smoothness, etc)

» the unknown variance o2.

Ideal objective

> Select the "best” estimator among a collection {A, A € A}.

(alternative objective: combine at best the estimators)



Impact of not knowing the variance

o = = = = 9ac



Impact of the unknown variance?

Case of coordinate-sparse linear regression

—— 0 known or k known

—— o unknown and k unknown

Minimax risk

k
Ultra-high dimension
2klog(p/k) > n

Minimax prediction risk over k-sparse signal as a function of k




Ultra-high dimensional phenomenon

Theorem (N. Verzelen EJS 2012)

When o2 is unknown, there exist designs X of size n x p such that
for any estimator 3, we have either

sup E [HX(B\— Op)Hz} > Cino? or
a2>0

sup E [HX(B\— 50)”2} > (Goklog (%) exp [Cg,: log (i)} 0.

Bo k-sparse
a2 >0

Consequence
When o2 unknown, the best we can expect to have is

E [IX(3 ~ f0)|?] < C inf {IX(3~ fo)IB + 130 log(p)o?}

for any 02 > 0 and any 3, fulfilling 1 < ||Bollo < C'n/ log(p).



Some generic selection schemes



Cross-Validation

» Hold-out
» V-fold CV

» Leave-g-out

Penalized empirical lost

> Penalized log-likelihood (AIC, BIC, etc)
» Plug-in criteria (with Mallows'C,, etc)

» Slope heuristic

Approximation versus complexity penalization

» LinSelect



LinSelect (Y.Baraud, C.G. & S.Huet)

Ingredients

» A collection S of linear spaces (for approximation)

» A weight function A : & — R™ (measure of complexity)

Criterion: residuals 4+ approximation + complexity
~ _ ~ 1 -~ ~ R
Crit(fy) = S|n1:§ 1Y — Nshll? + Al Nsf|? + penp(S)o2
€

where
> SCS, possibly data-dependent,
» [1s orthogonal projector onto S,
> penp(S) =< dim(S) V 2A(S) when dim(S) V 2A(S) < 2n/3,

~2 _ |Y-NsY|3
> 05 = n—dim(S) -



Non-asymptotic risk bound

Assumptions

1. 1 <dim(S) V2A(S) <2n/3 forall S € S,
2. Ysese M <1

Theorem (Y. Baraud, C.G., S. Huet)
E|lIf - %] <

CE [inf {||f — A2+ inf {15 — Nsh? + [dim(S) v A(S)]aQ}H
AEN S€§

The bound also holds in deviation.



Sparse linear regression




Instantiation of LinSelect

Estimators R R

Linear regressor: {f,\ =XB\: A€ /\}.

(e.g. Lasso, Exponential-Weighting, etc)

Approximation and complexity
> S={rnge(Xs): T {L....p}, 1<1T] < n/(3logp)}
> A(S) = log (dinf(S)) + log(dim(S)) =~ dim(S) log(p).

Subcollection S
We set S = range (Xsupp(ﬂAA)> and define

‘SA':{/S\A, /\EK}, whereﬂ:{)\el\ : g,\ES}.



Case of the Lasso estimators

Lasso estimators

B = argmin {||Y = XBI* + 208}, A >0

Parameter tuning: theory
For X with columns normalized to 1

A=< o4/2log(p)

Parameter tuning: practice

» V-fold CV

» BIC criterion



Recent criterions pivotal with respect to the variance

» /1-penalized log-likelihood. (Stadler, Buhlmann, van de Geer)

1Y — X313 Hﬁ\ll]

5572 +A

BEL G .= argmin {n log(c’) +
BERP 6'>0

» /1-penalized Huber’s loss. (Belloni et al., Antoniadis)

~ . Y - X
BSR’ UfR = argmin [ ”2/5”2
BERP 0'>0

n Auﬁnl} |

Equivalent to Square-Root Lasso (introduced before)

BSR:armin[ Y — X8|2 + ==||B ]
3 e I 15 + \fH 1

Sun & Zhang : optimization with a single LARS-call



The compatibility constant

_ : 1/2
sl T = min {1712 Xula/lurs |

where C(&, T) = {u: |lure|1 < &llutli}-

Theorem for Square-Root Lasso (Sun & Zhang)
For A = 2,/2log(p), if we assume that

> 1Bollo < Ci #2[4, 5upp(50)] X Tty
then, with high probability,

XG- )l < ot {IX(0 - B)E +

18]l0 log(p)
H2 [47 Supp(ﬁ

)1"2}'



The compatibility constant

_ . 1/2
sl T = min {IT1V21Xula/lurs |

where C(&, T) = {u: |lure|1 < &llutli}-

Restricted eigenvalue
For k* = n/(3log(p)) we set ¢, = sup {||Xul|2/||ull2 : u k*-sparse}

Theorem for LinSelect Lasso
If we assume that

> [|Bollo < C1 k2[4, 5upDP(Bo)] X 5ioeay
then, with high probability,

e e s o lBlolos(e)
G- IE < €t {IXGo B + o gt R




Numerical experiments (1/2)

Tuning the Lasso

» 165 examples extracted from the literature

» each example e is evaluated on the basis of 400 runs

Comparison to the oracle (-

procedure quantiles
0% 50% 75% 90% 95%
Lasso 10-fold CV | 1.03 1.11 1.15 119 1.24
Lasso LinSelect 097 103 106 119 252
Square-Root Lasso | 1.32 261 3.37 11.2 17

For each procedure ¢, quantiles of R [B:\Z; ﬂo} /R [ﬁ,\*;ﬁo], for
e=1,...,165.



Numerical experiments (2/2)

Computation time

n p | 10-fold CV LinSelect Square-Root
100 100 4s 0.21s 0.18 s
100 500 48s 0.43 s 0.4s
500 500 300 s 11s 6.3s

Packages:

» enet for 10-fold CV and LinSelect

» lars for Square-Root Lasso (procedure of Sun & Zhang)



Non-parametric regression




An important class of estimators

Linear estimators: ?,\ =AY with Ay, € R™"
» spline smoothing or kernel ridge estimators with smoothing
parameter A\ € R
» Nadaraya estimators A, with smoothing parameter A € R™
» A-nearest neighbors, A\ € {1,... k}
» L2-basis projection (on the A first elements)

> etc

Selection criterions (with o unknown)

» Cross-Validation schemes (including GCV)



An important class of estimators

Linear estimators: ?,\ =AY with Ay, € R™"
» spline smoothing or kernel ridge estimators with smoothing
parameter A\ € R
» Nadaraya estimators A, with smoothing parameter A € R™
» A-nearest neighbors, A\ € {1,... k}
» L2-basis projection (on the A first elements)

> etc

Selection criterions (with o unknown)

» Cross-Validation schemes (including GCV)
» Mallows' C; + plug-in / slope heuristic
> LinSelect



Slope heuristic (Arlot & Bach)

Procedure for /fA =AY
1. compute Ao(0”) = argmin,, {H Y — A2 + o' Tr(2Ay — AjA,\)}
2. select o such that Tr(AXO(&)) € [n/10,n/3]
3. select A = argmin, {H Y — K2 +252 Tr(AA)}.

Main assumptions
» Ay ~ shrinkage or "averaging” matrix (covers all classics)

» Bias assumption :

1, Tr(Ay) < v/n and (I — Ay, 1% < 02y/nlog(n)

Theorem (Arlot & Bach)
With high proba: ||fs — f||2 < (1 +¢)infy || — f||2 + Ce L log(n)o?



LinSelect

Approximation spaces

S = U {5/{, .. .,S;/Z} where 5/’{ is spanned by "the k last”

right-singular vectors of AT — I : range(A,) — range(A}), where
> AY is the inverse of the of Ay to range(A%) — range(A)

» [Ty is induced by the projection onto range(A%)



LinSelect

Approximation spaces
S = U {5/{, .. .,5;/2} where Sf is spanned by "the k last”
right-singular vectors of AT — M, : range(A,) — range(A3}),

Remark: when A, is symmetric positive definite, S¥ is spanned by "the
k first” eigenvectors of Aj.



LinSelect

Approximation spaces
S = U {5/{, .. .,5;/2} where 5/‘{ is spanned by "the k last”

right-singular vectors of AT — M, : range(A,) — range(A3}),

Remark: when A, is symmetric positive definite, S¥ is spanned by "the
k first” eigenvectors of Aj.

Weight
A(S) = B(1 + dim(S)) with 3 > 0 such that Y g e 2() < 1.

Corollary
When o,/5(Af — Mx) > 1/2 for all A € A, we have

E[I7 - fI2] < € inf E [y £I1]



LinSelect

Approximation spaces
S = U {5/{, .. .,S;/Z} where 5/’{ is spanned by "the k last”

right-singular vectors of AT — M, : range(A,) — range(A3}),

Remark: when A, is symmetric positive definite, S¥ is spanned by "the
k first” eigenvectors of Aj.

Weight
A(S) = B(1 + dim(S)) with 3 > 0 such that Y g e 2() < 1.

Corollary
When o,/5(Af — M)) > 1/2 for all A € A, we have with high proba

f—fl? < Cinf [|f — f2+1 2
If = £ < C inf [[fx = f[|* + log(n)o



A review

High-dimensional regression with unknown variance

C.G., S.Huet & N. Verzelen
arXiv:1109.5587

(including coordinate-sparsity, group-sparsity, variation-sparsity and

multivariate regression)



