High-dimensional regression with unknown variance

Christophe Giraud

Ecole Polytechnique

march 2012

Setting

Gaussian regression with unknown variance:

- $Y_i = f_i + \varepsilon_i$ with $\varepsilon_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$
- $f = (f_1, \dots, f_n)^*$ and σ^2 are unknown
- we want to estimate f

Ex 1: sparse linear regression

▶ $f = X\beta$ with β "sparse" in some sense and $X \in \mathbb{R}^{n \times p}$ with possibly p > n

Ex 2: non-parametric regression

• $f_i = F(x_i)$ with $F: \mathcal{X} \to \mathbb{R}$

A plethora of estimators

Sparse linear regression

- ▶ Coordinate sparsity: Lasso, Dantzig, Elastic-Net, Exponential-Weighting, Projection on subspaces $\{V_{\lambda}: \lambda \in \Lambda\}$ given by PCA, Random Forest, etc.
- Structured sparsity: Group-lasso, Fused-Lasso, Bayesian estimators, etc

Non-parametric regression

► Spline smoothing, Nadaraya kernel smoothing, kernel ridge estimators, nearest neighbors, L²-basis projection, Sparse Additive Models, etc

Important practical issues

Which estimator should be used?

- ► **Sparse regression :** Lasso? Random-Forest? Exponential-Weighting?
- ► Non-parametric regression: Kernel regression? (which kernel?) Spline smoothing?

Which "tuning" parameter?

- which penalty level for the lasso?
- which bandwith for kernel regression?
- etc

The objective

Difficulties

- No procedure is universally better than the others
- ▶ A sensible choice of the tuning parameters depends on
 - \triangleright some unknown characteristics of f (sparsity, smoothness, etc)
 - the unknown variance σ^2 .

Ideal objective

▶ Select the "best" estimator among a collection $\{\hat{f}_{\lambda}, \lambda \in \Lambda\}$.

(alternative objective: combine at best the estimators)

Impact of not knowing the variance

Impact of the unknown variance?

Case of coordinate-sparse linear regression

Minimax prediction risk over k-sparse signal as a function of k

Ultra-high dimensional phenomenon

Theorem (N. Verzelen EJS 2012)

When σ^2 is unknown, there exist designs **X** of size $n \times p$ such that for any estimator $\widehat{\beta}$, we have either

$$\sup_{\substack{\sigma^2 > 0}} \mathbb{E}\left[\|\mathbf{X}(\widehat{\beta} - \mathbf{0}_p)\|^2 \right] > C_1 n \sigma^2 , \qquad \text{or}$$

$$\sup_{\substack{\beta_0 \text{ k-sparse} \\ \sigma^2 > 0}} \mathbb{E}\left[\|\mathbf{X}(\widehat{\beta} - \beta_0)\|^2 \right] > C_2 k \log\left(\frac{p}{k}\right) \exp\left[C_3 \frac{k}{n} \log\left(\frac{p}{k}\right)\right] \sigma^2 .$$

Consequence

When σ^2 unknown, the best we can expect to have is

$$\mathbb{E}\left[\|\mathbf{X}(\widehat{\beta} - \beta_0)\|^2\right] \leq C \inf_{\beta \neq 0} \left\{\|\mathbf{X}(\beta - \beta_0)\|_2^2 + \|\beta\|_0 \log(p)\sigma^2\right\}$$

for any $\sigma^2 > 0$ and any β_0 fulfilling $1 \le \|\beta_0\|_0 \le C' n / \log(p)$.

Some generic selection schemes

Cross-Validation

- ► Hold-out
- ▶ V-fold CV
- ► Leave-*q*-out

Penalized empirical lost

- ▶ Penalized log-likelihood (AIC, BIC, etc)
- ▶ Plug-in criteria (with Mallows' C_p , etc)
- Slope heuristic

Approximation versus complexity penalization

LinSelect

LinSelect (Y. Baraud, C. G. & S. Huet)

Ingredients

- \triangleright A collection $\mathcal S$ of linear spaces (for approximation)
- lacktriangle A weight function $\Delta:\mathcal{S} o \mathbb{R}^+$ (measure of complexity)

Criterion:

residuals + approximation + complexity

$$\operatorname{Crit}(\widehat{f}_{\lambda}) = \inf_{S \in \widehat{S}} \left[\|Y - \Pi_{S} \widehat{f}_{\lambda}\|^{2} + \frac{1}{2} \|\widehat{f}_{\lambda} - \Pi_{S} \widehat{f}_{\lambda}\|^{2} + \operatorname{pen}_{\Delta}(S) \widehat{\sigma}_{S}^{2} \right]$$

where

- $ightharpoonup \widehat{\mathcal{S}} \subset \mathcal{S}$, possibly data-dependent,
- ▶ Π_S orthogonal projector onto S,
- ▶ $pen_{\Delta}(S)$ $\asymp dim(S) \lor 2\Delta(S)$ when $dim(S) \lor 2\Delta(S) \le 2n/3$,
- $\widehat{\sigma}_S^2 = \frac{\|Y \Pi_S Y\|_2^2}{n \dim(S)}.$

Non-asymptotic risk bound

Assumptions

- 1. $1 \leq \dim(S) \vee 2\Delta(S) \leq 2n/3$ for all $S \in \mathcal{S}$,
- 2. $\sum_{S \in \mathcal{S}} e^{-\Delta(S)} \leq 1$.

Theorem (Y. Baraud, C.G., S. Huet)

$$\begin{split} \mathbb{E}\left[\|f-\widehat{f}_{\widehat{\lambda}}\|^{2}\right] &\leq \\ C &\mathbb{E}\left[\inf_{\lambda \in \Lambda}\left\{\|f-\widehat{f}_{\lambda}\|^{2} + \inf_{S \in \widehat{\mathcal{S}}}\left\{\|\widehat{f}_{\lambda} - \Pi_{S}\widehat{f}_{\lambda}\|^{2} + [\dim(S) \vee \Delta(S)]\sigma^{2}\right\}\right\}\right] \end{split}$$

The bound also holds in deviation.

Sparse linear regression

Instantiation of LinSelect

Estimators

Linear regressor: $\{\widehat{f}_{\lambda} = X\widehat{\beta}_{\lambda} : \lambda \in \Lambda\}$. (e.g. Lasso, Exponential-Weighting, etc)

Approximation and complexity

- $\blacktriangleright \ \mathcal{S} = \Big\{\mathsf{range}(\mathbf{X}_{\mathcal{J}}): \ \mathcal{J} \subset \{1, \dots, p\}\,, \ 1 \leq |\mathcal{J}| \leq n/(3\log p)\Big\}$

Subcollection $\widehat{\mathcal{S}}$

We set $\widehat{S}_{\lambda} = \mathsf{range}\left(\mathbf{X}_{\mathsf{supp}(\widehat{eta}_{\lambda})}\right)$ and define

$$\widehat{\mathcal{S}} = \left\{ \widehat{\mathcal{S}}_{\lambda}, \ \lambda \in \widehat{\Lambda} \right\}, \quad \text{where } \widehat{\Lambda} = \left\{ \lambda \in \Lambda \ : \ \widehat{\mathcal{S}}_{\lambda} \in \mathcal{S} \right\}.$$

Case of the Lasso estimators

Lasso estimators

$$\widehat{\boldsymbol{\beta}}_{\lambda} = \operatorname*{argmin}_{\boldsymbol{\beta}} \left\{ \|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}\|^2 + 2\lambda \|\boldsymbol{\beta}\|_1 \right\}, \quad \lambda > 0$$

Parameter tuning: theory

For X with columns normalized to 1

$$\lambda \asymp \sigma \sqrt{2\log(p)}$$

Parameter tuning: practice

- V-fold CV
- ▶ BIC criterion

Recent criterions pivotal with respect to the variance

▶ ℓ₁-penalized log-likelihood. (Stadler, Buhlmann, van de Geer)

$$\widehat{\beta}_{\lambda}^{LL}, \widehat{\sigma}_{\lambda}^{LL} := \operatorname*{argmin}_{\beta \in \mathbb{R}^p, \sigma' > 0} \left[n \log(\sigma') + \frac{\|Y - \mathbf{X}\beta\|_2^2}{2\sigma'^2} + \lambda \frac{\|\beta\|_1}{\sigma'} \right].$$

▶ ℓ_1 -penalized Huber's loss. (Belloni *et al.*, Antoniadis)

$$\widehat{\beta}_{\lambda}^{SR}, \widehat{\sigma}_{\lambda}^{SR} := \operatorname*{argmin}_{\beta \in \mathbb{R}^p, \sigma' > 0} \left[\frac{n\sigma'}{2} + \frac{\|Y - \mathbf{X}\beta\|_2^2}{2\sigma'} + \lambda \|\beta\|_1 \right].$$

Equivalent to Square-Root Lasso (introduced before)

$$\widehat{\beta}_{\lambda}^{\mathit{SR}} = \operatorname*{argmin}_{\boldsymbol{\beta} \in \mathbb{R}^p} \left[\sqrt{\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|_2^2} + \frac{\lambda}{\sqrt{n}} \|\boldsymbol{\beta}\|_1 \right].$$

Sun & Zhang: optimization with a single LARS-call

The compatibility constant

$$\kappa[\xi, T] = \min_{u \in \mathcal{C}(\xi, T)} \left\{ |T|^{1/2} \|\mathbf{X}u\|_2 / \|u_T\|_1 \right\},$$

where $C(\xi, T) = \{u : \|u_{T^c}\|_1 < \xi \|u_T\|_1\}.$

Restricted eigenvalue

For $k^* = n/(3\log(p))$ we set $\phi_* = \sup\{\|Xu\|_2/\|u\|_2 : u \ k^*$ -sparse $\}$

Theorem for Square-Root Lasso (Sun & Zhang)

For $\lambda = 2\sqrt{2\log(p)}$, if we assume that

then, with high probability,

$$\|\mathbf{X}(\widehat{\beta} - \beta_0)\|_2^2 \leq \inf_{\beta \neq 0} \left\{ \|\mathbf{X}(\beta_0 - \beta)\|_2^2 + C_2 \frac{\|\beta\|_0 \log(p)}{\kappa^2 [4, \operatorname{supp}(\beta)]} \sigma^2 \right\}.$$

The compatibility constant

$$\kappa[\xi, T] = \min_{u \in \mathcal{C}(\xi, T)} \left\{ |T|^{1/2} \|\mathbf{X}u\|_2 / \|u_T\|_1 \right\},$$

where $C(\xi, T) = \{u : \|u_{T^c}\|_1 < \xi \|u_T\|_1\}.$

Restricted eigenvalue

For $k^* = n/(3 \log(p))$ we set $\phi_* = \sup \{ \|Xu\|_2 / \|u\|_2 : u \ k^*$ -sparse $\}$

Theorem for LinSelect Lasso

If we assume that

▶
$$\|\beta_0\|_0 \le C_1 \kappa^2 [4, \operatorname{supp}(\beta_0)] \times \frac{n}{\phi_* \log(p)}$$
,

then, with high probability,

$$\|\mathbf{X}(\widehat{\beta} - \beta_0)\|_2^2 \leq C \inf_{\beta \neq 0} \left\{ \|\mathbf{X}(\beta_0 - \beta)\|_2^2 + C_2 \frac{\|\beta\|_0 \log(p)}{\phi_* \kappa^2 [4, \operatorname{supp}(\beta)]} \sigma^2 \right\}.$$

Numerical experiments (1/2)

Tuning the Lasso

- ▶ 165 examples extracted from the literature
- each example e is evaluated on the basis of 400 runs

Comparison to the oracle $\widehat{\beta}_{\lambda^*}$

procedure	quantiles				
	0%	50%	75%	90%	95%
			1.15		1.24
Lasso LinSelect	0.97	1.03	1.06	1.19	2.52
Square-Root Lasso	1.32	2.61	3.37	11.2	17

For each procedure ℓ , quantiles of $\mathcal{R}\left[\widehat{\beta}_{\hat{\lambda}_{\ell}};\beta_{0}\right]/\mathcal{R}\left[\widehat{\beta}_{\lambda^{*}};\beta_{0}\right]$, for $e=1,\ldots,165$.

Numerical experiments (2/2)

Computation time

n	p	10-fold CV	LinSelect	Square-Root
100	100	4 s	0.21 s	0.18 s
100	500	4.8 s	0.43 s	0.4 s
500	500	300 s	11 s	6.3 s

Packages:

- enet for 10-fold CV and LinSelect
- ▶ lars for Square-Root Lasso (procedure of Sun & Zhang)

Non-parametric regression

An important class of estimators

Linear estimators: $\widehat{f}_{\lambda} = A_{\lambda} Y$ with $A_{\lambda} \in \mathbb{R}^{n \times n}$

- \blacktriangleright spline smoothing or kernel ridge estimators with smoothing parameter $\lambda \in \mathbb{R}^+$
- ▶ Nadaraya estimators A_{λ} with smoothing parameter $\lambda \in \mathbb{R}^+$
- ▶ λ -nearest neighbors, $\lambda \in \{1, ..., k\}$
- ▶ L^2 -basis projection (on the λ first elements)
- etc

Selection criterions (with σ^2 unknown)

- Cross-Validation schemes (including GCV)
- ightharpoonup Mallows' C_L + plug-in / slope heuristic
- ▶ LinSelect

An important class of estimators

Linear estimators: $\widehat{f}_{\lambda} = A_{\lambda} Y$ with $A_{\lambda} \in \mathbb{R}^{n \times n}$

- \blacktriangleright spline smoothing or kernel ridge estimators with smoothing parameter $\lambda \in \mathbb{R}^+$
- lacktriangle Nadaraya estimators A_λ with smoothing parameter $\lambda \in \mathbb{R}^+$
- ▶ λ -nearest neighbors, $\lambda \in \{1, ..., k\}$
- ▶ L^2 -basis projection (on the λ first elements)
- etc

Selection criterions (with σ^2 unknown)

- Cross-Validation schemes (including GCV)
- ▶ Mallows' C_L + plug-in / slope heuristic
- ▶ LinSelect

Slope heuristic (Arlot & Bach)

Procedure for $\widehat{f}_{\lambda} = A_{\lambda} Y$

- 1. compute $\widehat{\lambda}_0(\sigma') = \operatorname{argmin}_{\lambda} \left\{ \|Y \widehat{f}_{\lambda}\|^2 + \sigma' \operatorname{Tr}(2A_{\lambda} A_{\lambda}^* A_{\lambda}) \right\}$
- 2. select $\widehat{\sigma}$ such that $\text{Tr}(A_{\widehat{\lambda}_0(\widehat{\sigma})}) \in [n/10, n/3]$
- $\text{3. select } \widehat{\lambda} = \operatorname{argmin}_{\lambda} \Big\{ \| Y \widehat{f}_{\lambda} \|^2 + 2 \, \widehat{\sigma}^2 \, \mathrm{Tr}(A_{\lambda}) \Big\}.$

Main assumptions

- $lacktriangleright A_{\lambda}pprox$ shrinkage or "averaging" matrix (covers all classics)
- ▶ Bias assumption : $\exists \lambda_1$, $\text{Tr}(A_{\lambda_1}) \leq \sqrt{n}$ and $\|(I A_{\lambda_1})f\|^2 \leq \sigma^2 \sqrt{n \log(n)}$

Theorem (Arlot & Bach)

With high proba: $\|\widehat{f}_{\hat{\lambda}} - f\|^2 \le (1 + \varepsilon) \inf_{\lambda} \|\widehat{f}_{\lambda} - f\|^2 + C \varepsilon^{-1} \log(n) \sigma^2$

Approximation spaces

 $\widehat{\mathcal{S}} = \bigcup_{\lambda} \left\{ S_{\lambda}^{1}, \dots, S_{\lambda}^{n/2} \right\}$ where S_{λ}^{k} is spanned by "the k last" right-singular vectors of $A_{\lambda}^{+} - \bar{\Pi}_{\lambda}$: range $(A_{\lambda}) \to \text{range}(A_{\lambda}^{*})$, where

- $lacksquare A_\lambda^+$ is the inverse of the of A_λ to $\mathsf{range}(A_\lambda^*) o \mathsf{range}(A_\lambda)$
- ▶ $\bar{\Pi}_{\lambda}$ is induced by the projection onto range (A_{λ}^*)

Weight

$$\Delta(S) = \beta(1 + \dim(S))$$
 with $\beta > 0$ such that $\sum_{S} e^{-\Delta(S)} \le 1$.

Corollary

When
$$\sigma_{n/2}(A_{\lambda}^+ - \bar{\Pi}_{\lambda}) \ge 1/2$$
 for all $\lambda \in \Lambda$, we have

$$\mathbb{E}\left[\|\widehat{f} - f\|^2\right] \le C \inf_{\lambda \in \Lambda} \mathbb{E}\left[\|\widehat{f}_{\lambda} - f\|^2\right]$$

Approximation spaces

$$\widehat{\mathcal{S}} = \bigcup_{\lambda} \left\{ S_{\lambda}^{1}, \dots, S_{\lambda}^{n/2} \right\} \text{ where } S_{\lambda}^{k} \text{ is spanned by "the k last"}$$
 right-singular vectors of $A_{\lambda}^{+} - \bar{\Pi}_{\lambda} : \operatorname{range}(A_{\lambda}) \to \operatorname{range}(A_{\lambda}^{*}),$

Remark: when A_{λ} is symmetric positive definite, S_{λ}^{k} is spanned by "the k first" eigenvectors of A_{λ} .

Weight

$$\Delta(S) = etaig(1+\dim(S)ig)$$
 with $eta>0$ such that $\sum_S e^{-\Delta(S)} \le 1$.

Corollary

When
$$\sigma_{n/2}(A_{\lambda}^{+} - \bar{\Pi}_{\lambda}) \geq 1/2$$
 for all $\lambda \in \Lambda$, we have

$$\mathbb{E}\left[\|\widehat{f} - f\|^2\right] \le C \inf_{\lambda \in \Lambda} \mathbb{E}\left[\|\widehat{f}_{\lambda} - f\|^2\right]$$

Approximation spaces

$$\widehat{\mathcal{S}} = \bigcup_{\lambda} \left\{ S_{\lambda}^{1}, \dots, S_{\lambda}^{n/2} \right\} \text{ where } S_{\lambda}^{k} \text{ is spanned by "the k last"}$$
 right-singular vectors of $A_{\lambda}^{+} - \bar{\Pi}_{\lambda} : \operatorname{range}(A_{\lambda}) \to \operatorname{range}(A_{\lambda}^{*}),$

Remark: when A_{λ} is symmetric positive definite, S_{λ}^{k} is spanned by "the k first" eigenvectors of A_{λ} .

Weight

$$\Delta(S) = \beta \big(1 + \dim(S)\big)$$
 with $\beta > 0$ such that $\sum_S e^{-\Delta(S)} \le 1$.

Corollary

When
$$\sigma_{n/2}(A_{\lambda}^{+} - \bar{\Pi}_{\lambda}) \geq 1/2$$
 for all $\lambda \in \Lambda$, we have
$$\mathbb{E}\left[\|\widehat{f} - f\|^{2}\right] \leq C\inf_{\lambda \in \Lambda} \mathbb{E}\left[\|\widehat{f}_{\lambda} - f\|^{2}\right]$$

Approximation spaces

 $\widehat{\mathcal{S}} = \bigcup_{\lambda} \left\{ S_{\lambda}^{1}, \dots, S_{\lambda}^{n/2} \right\}$ where S_{λ}^{k} is spanned by "the k last" right-singular vectors of $A_{\lambda}^{+} - \overline{\Pi}_{\lambda}$: range $(A_{\lambda}) \to \text{range}(A_{\lambda}^{*})$,

Remark: when A_{λ} is symmetric positive definite, S_{λ}^{k} is spanned by "the k first" eigenvectors of A_{λ} .

Weight

$$\Delta(S) = \beta \big(1 + \dim(S)\big)$$
 with $\beta > 0$ such that $\sum_S e^{-\Delta(S)} \le 1$.

Corollary

When $\sigma_{n/2}(A_{\lambda}^+ - \bar{\Pi}_{\lambda}) \ge 1/2$ for all $\lambda \in \Lambda$, we have with high proba $\|\widehat{f} - f\|^2 \le C\inf_{\lambda \in \Lambda} \|\widehat{f}_{\lambda} - f\|^2 + \log(n)\sigma^2$

A review

High-dimensional regression with unknown variance

C.G., S. Huet & N. Verzelen arXiv:1109.5587

(including coordinate-sparsity, group-sparsity, variation-sparsity and multivariate regression)