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Abstract. Attention-based models, such as Transformer, excel across various tasks but
lack a comprehensive theoretical understanding, especially regarding token-wise sparsity
and internal linear representations. To address this gap, we introduce the single-location
regression task, where only one token in a sequence determines the output, and its position
is a latent random variable, retrievable via a linear projection of the input. To solve
this task, we propose a dedicated predictor, which turns out to be a simplified version
of a non-linear self-attention layer. We study its theoretical properties, by showing its
asymptotic Bayes optimality and analyzing its training dynamics. In particular, despite
the non-convex nature of the problem, the predictor effectively learns the underlying
structure. This work highlights the capacity of attention mechanisms to handle sparse
token information and internal linear structures.

1. Introduction

Attention-based models (Bahdanau et al., 2015), such as Transformer (Vaswani et al.,
2017), have achieved unprecedented performance in various learning tasks, including natural
language processing (NLP), e.g., text generation (Bubeck et al., 2023), translation (Luong
et al., 2015), sentiment analysis (Song et al., 2019; Sun et al., 2019; Xu et al., 2019), and
audio/speech analysis (Bahdanau et al., 2016). These developments have led to many
architectural and algorithmic variants of attention-based models (see the review by Lin
et al., 2022). At a high level, the success of attention has been linked to its ability to
manage long-range dependencies in input sequences (Bahdanau et al., 2015; Vaswani et al.,
2017), since attention consists in computing pairwise dependence between input tokens
according to their projection in learned directions, independently of their location in the
sequence.

On the theoretical front, however, a deeper understanding of attention-based neural
networks is still in its infancy. This limited progress is due both to the complexity of the
architectures and to the disturbing diversity of relevant tasks. A common approach to
tackle these challenges is to introduce a simplified task that models certain features of
real-world tasks, followed by demonstrating a simplified version of the attention mechanism
capable of solving the task. Prominent examples of this pattern include studying in-context
learning with linearized attention (Ahn et al., 2023; von Oswald et al., 2023; Zhang et al.,
2024), topic understanding with a single-layer attention and alternate minimization scheme
(Li et al., 2023b), learning spatial structure with positional attention (Jelassi et al., 2022),
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and next-token prediction with certain bigram structures (Bietti et al., 2023; Tian et al.,
2023).

While these works shed light on some abilities of Transformer, they do not encompass
all the characteristics of tasks where Transformer performs well, in particular in NLP. Two
features of particular interest, which to our knowledge have not been addressed in previous
theoretical studies on Transformer, are token-wise sparsity, where relevant information is
contained in a limited number of tokens, and internal linear representations, which are
interpretable representations of the input constructed by the model.

Contributions. To understand why attention is a suitable architecture for addressing
these features, we introduce single-location regression, a novel statistical task where attention-
based predictors excel (Section 2). In a nutshell, this task is a regression problem with
a sequence of tokens as input. The key novelty is that only one token determines the
prediction, and the location of this token is a latent random variable that changes based on
the input sequence. Consequently, solving the task requires first identifying the location of
the relevant token, which can be done by learning a latent linear projection, followed by
performing regression on that token.

To tackle this problem, we propose a dedicated predictor, which turns out to be a
simplified version of a non-linear self-attention layer. We show that this attention-based
predictor is asymptotically Bayes optimal, whereas more standard linear regressors fail
to perform better than the null predictor. We then analyze the training dynamics of the
proposed predictor, when trained to minimize the theoretical risk by projected gradient
descent. Despite the non-convexity of the problem and the non-linearity of this transformer-
based method, we show that the learned predictor successfully retrieves the underlying
structure of the task and thus solves single-location regression.

Organization. Section 2 presents the mathematical framework of single-location re-
gression, followed by motivations from language processing. Section 3 is dedicated to
defining our predictor and explaining its connection with attention. We then move on to
the mathematical study, from both statistical (Section 4) and optimization (Section 5)
points of view. Section 6 presents the outline of the proof of our main mathematical result,
while Section 7 concludes the paper.

2. Single-location regression task

In this section, we describe our statistical task, and connect it to language processing
motivations.

2.1. Statistical setting. We consider a regression scenario where the inputs are sequences
of L independent random tokens1 (X1, . . . , XL) taking values in Rd. The output Y ∈ R is
assumed to be given by

Y = X>J0
v? + ξ, (Plearn)

where J0 is a latent discrete random variable on {1, . . . , L} and, conditionally on J0,{
XJ0 ∼ N

(√
d
2k

?, γ2Id

)
X` ∼ N (0, Id) for ` 6= J0 .

In the above formulation, N (µ,Σ) denotes the normal distribution with expectation µ and
covariance matrix Σ, and Id is the identity matrix of size d× d. All vectors are considered
as column matrices, and the noise term ξ is assumed to be a centered random variable

1For the sake of simplicity, we interchangeably use the terms “token” and “embedding”, although they
have different meanings in the NLP community.
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independent of X and J0, with finite second-order moment ε2. Conditionally on J0, the
tokens (Xj)16j6L are assumed to be independent.

The parameters of the regression problem (Plearn) are the unknown vectors k? and v?,
both assumed to be on the unit sphere Sd−1 in dimension d, i.e., ‖k?‖2 = ‖v?‖2 = 1. The
output is determined by a specific token in the sentence, indexed by the discrete random
variable J0 on {1, . . . , L}. This token can be detected via its mean, which is proportional
to k?, contrarily to the others which have zero mean. Once XJ0 is identified, the prediction
is formed as a linear projection in the direction v?. Therefore, the originality and difficulty
of this task lies in the fact that the response Y is linearly related to a single informative
token XJ0 , whose location varies from sequence to sequence—in this sense, the problem is
sparse, but with a random support.

A knee-jerk reaction would be to fit a linear model to the pair (X>1 , . . . , X
>
L , Y ). One

might also consider tackling the problem with classical statistical approaches dedicated
to sparsity, such as a Lasso estimator or a group-Lasso technique (Hastie et al., 2009).
However, as we will see (in Section 4), all linear predictors fail due to the unknown and
changing location of J0. We note in addition that E[‖X`‖22] = d when ` 6= J0, while
E[‖XJ0‖22] = d/2 + γ2d. Therefore, choosing γ2 = 1/2 implies that tokens are of the same
squared norm in expectation, whether they are discriminatory of not. This shows that
any approach based on comparing the magnitude of the tokens does not yield meaningful
results. Ultimately, it is necessary to implement a more sophisticated approach, capable of
taking into account the characteristics of the problem.

Finally, note that our task shares similarities with single-index models (McCullagh
and Nelder, 1983) and mixtures of linear regressions (De Veaux, 1989). However, in our
case, solving the task requires first learning k? in order to identify J0, followed by linear
regression. Thus, (Plearn) has a more structured nature, involving sequence-valued inputs
and incorporating a single-location pattern.

2.2. Language processing motivation. The structure of the task (Plearn) is motivated
by natural language processing (NLP), and more specifically by two features, token-wise
sparsity and internal linear representations, as we detail next.

Token-wise sparsity. In many NLP tasks, the most relevant information is contained
in a few tokens, where we recall that tokens correspond to small text units (typically, words
or subwords), which are embedded in Rd using a learnt dictionary. This sparsity structure
is revealed by the line of work on sparse attention (see, e.g., Martins and Astudillo, 2016;
Niculae and Blondel, 2017; Correia et al., 2019; Child et al., 2019; Jaszczur et al., 2021;
Kim et al., 2022; Farina et al., 2024), which obtains similar performance to full attention
despite attending to a small fraction of tokens at each step. To illustrate this, we consider
a simple sentiment analysis task in Figure 1a, and observe that changing one token flips
the output label. This is modeled in (Plearn) by having the output Y depend on a single
token J0, whose location furthermore varies depending on the input, as in NLP.

Internal linear representations. Linear projections of internal representations of
Transformer (a.k.a. linear probing) allows to retrieve interpretable information about the
input (see, e.g., Bolukbasi et al., 2021; Burns et al., 2023; Li et al., 2023a, and references
therein). Such a linear structure is also present in the learned token embeddings that are fed
as input to language models (Mikolov et al., 2013a,b; Bolukbasi et al., 2016; Nanda et al.,
2023; Wen-Yi and Mimno, 2023). In our task (Plearn), the two directions k? and v? have to be
learned by the model in order to solve the task. Figure 2 gives an example of such directions
for the toy task described above. Note that this illustration relies on initial embeddings,
but we emphasize that similar structures also appear in the intermediate representations of
Transformer. This is shown in Figure 1b, where we observe that pretrained Transformer
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Birds flying high, you know how I feel? 
And, I’m feeling awful.

What have I become my sweetest friend? 
Everyone I know goes ill in the end. 

Birds flying high, you know how I feel? 
And, I’m feeling good.

What have I become my sweetest friend? 
Everyone I know goes well in the end. 

(a) Examples of input-output pairs. The input
is a text containing two sentences (e.g., a ques-
tion and an answer), and the task is to perform
sentiment analysis only for the second sentence.
The Y label is symbolized here by shades of color,
where green (resp. red) corresponds to positive
(resp. negative) feelings. The relevant informa-
tion to determine the label is sparse, typically
concentrated in a single token (in grey): changing
this token flips the output label.
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(b) Accuracy of a logistic regression trained on
embeddings of [CLS] tokens in the hidden lay-
ers of a pretrained Transformer model. Initial
embeddings of [CLS] (at layer 0) are not context-
aware, so they have a pure-chance accuracy of
50%. In hidden layers, the [CLS] token contains a
representation of the sentence that is rich enough
to achieve high scores with a linear classifier, and
robust to out-of-distribution changes in token
distribution and sentence structure.

Figure 1. A simple sentiment analysis task with synthetic data, which
exemplifies (a) token-wise sparsity and (b) internal linear representations.
We refer to Appendix D for details on the experiment.

architectures indeed build internal representations that are sufficient to solve the toy NLP
task with a linear classifier.

We acknowledge that our modeling of NLP tasks presents limitations such as fixed
sequence length, independent tokens, and output depending only on a single token. More
complex and realistic models could be considered, but they require costly technical ad-
justments. Moreover, as we argue above, our problem (Plearn) still preserves interesting
aspects of NLP tasks, which makes it a relevant test bed for theoretical study of Trans-
former. Furthermore, from a statistical perspective, this is an original task that requires
the implementation of a customized estimation strategy. It is precisely in this context that
attention models prove their effectiveness, as we demonstrate next.

3. An attention-based predictor to solve the regression task

In this section, we propose a predictor adapted to the problem (Plearn) and discuss its
connection with attention. In order to make our point as clear as possible, the construction
is divided into three steps. We represent the input sequence in a matrix format X ∈ RL×d,
where X = (X1|X2| · · · |XL)>.

Step 1: An oracle non-differentiable predictor. If the vectors (k?, v?) ∈ (Sd−1)2

were known, then a natural procedure to solve the task (Plearn) would be to predict Y
from X via

T (X) = (Xv?)j0(X) = X>j0(X)v
? , where j0(X) = arg max

16`6L
(Xk?)` . (1)
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Figure 2. Modeling of an NLP task within our statistical setting (Plearn).
The token embeddingsX1, . . . , XL are constructed by adding the embeddings
of each word and a positional encoding. For illustration purposes, we assume
that each token corresponds to a word, and that the positional encoding
solely depends on the part of the sentence (before or after the question
mark), which differs from usual practice. Then, let the direction k? encode
both the notion of sentiment and the position in the second part of the
sentence. Thus only the last token of the sentence is aligned (positively)
with k?, and we have J0 = L. As for v?, it encodes whether the word is
associated with a positive or negative sentiment. Note that several tokens
are positively or negatively aligned with v?, but the output Y only depends
on the token J0. This illustrates the interest of having two latent directions
k? and v?, one that filters the informative token and one that aligns with
the output Y .

The arg max part detects the location J0 by exploiting the fact that all X` have zero mean
except XJ0 , while the Xv? part exploits the linear relationship Y = X>J0

v? + ξ. In a more
compact format, this ideal predictor can be rewritten as

T (X) =

L∑
`=1

1arg max(Xk?)=`(Xv?)` ,

which is a linear regression in the direction v? with non-differentiable weights depending
on k?.

Step 2: A trainable predictor. In practice, the vectors k? and v? are unknown and
must be estimated from the data. In addition, the non-differentiability of the arg max
function poses significant optimization challenges. To solve this problem, the most common
approach in machine learning is to replace arg max with a softmax function with inverse
temperature λ > 0, i.e., for z = (z1, . . . , zL) ∈ RL, [softmax(λz)]j = eλzj/

∑L
`=1 e

λz` . This
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leads us to the model

T
(soft,k,v)
λ (X) =

L∑
`=1

[softmax(λXk)]`(Xv)` = softmax
(
λ Xk︸︷︷︸
L×1

)> Xv︸︷︷︸
L×1

, (2)

where k, v ∈ Sd−1, and the superscript ‘soft’ is used to indicate the presence of the softmax
function.

Step 3: The final predictor. The softmax nonlinearity, by inducing a coupling between
all tokens, significantly complicates the mathematical analysis. To alleviate this difficulty,
we replace it by the component-wise nonlinear function erf(z) = 2√

π

∫ z
0 e
−t2dt, which is

differentiable, increasing on R, and such that erf(−∞) = −1 and erf(∞) = 1. We are
therefore led to our operational model

T
(k,v)
λ (X) = erf

(
λXk

)>Xv =

L∑
`=1

erf
(
λX>` k

)
X>` v , (3)

where the erf function is applied component-wise. We emphasize that empirically, this
simplification of softmax using a component-wise nonlinearity has been shown not to
degrade performance in Transformer architectures (Hron et al., 2020; Shen et al., 2023;
Wortsman et al., 2023).

Connection to attention. It turns out that our estimation method finds a natural
interpretation in terms of attention models. To see this, consider a model consisting of a
single attention layer with a single head (Vaswani et al., 2017)

T
(Q,K,V,O)
λ (X) = softmax

(
λ XQ︸︷︷︸
L×p

K>X>︸ ︷︷ ︸
p×L

)
XV︸︷︷︸
L×p

O>︸︷︷︸
p×o

, (4)

where the dimensions p, o ∈ N∗ are hyperparameters of the model, the softmax function
is applied row by row, Q,K, V ∈ Rd×p and O ∈ Ro×p are the regular query, key, value,
and output matrices, and λ is usually taken to be 1/

√
p. In practice, the attention head is

added to X via a skip connection, which enforces o = d. In a nutshell, K detects which
tokens are relevant in the sentence, V encodes the regression coefficient, and Q encodes
where we store the information.

In a supervised context, it is classical in practice to concatenate in first position an
additional token [CLS] to the tokenized sentence X (see, e.g., Devlin et al., 2019). In this
context, only the first coordinate of the output is used for the prediction task. Thus, we
focus on the first row of (4), corresponding to the embedding of [CLS], namely

T
(Q,K,V,O)
λ (X)1 = softmax

(
λ aK>X>

)
XV O>, (5)

with a = X>[CLS]Q ∈ R1×p, where X[CLS] ∈ Rd denotes the embedding of the [CLS] token.
It is important to note that only considering the first output coordinate is a valid

simplification for a single attention layer, but not when multiple layers are stacked, as
all coordinates of the attention output contribute. Nevertheless, even in this latter more
realistic case, the [CLS] token—or the similar concepts of attention sinks and registers—has
been empirically shown to play a crucial role (Clark et al., 2019; Darcet et al., 2024; Xiao
et al., 2024). This is also confirmed by our experiment in Figure 1b, where we show that
the [CLS] token in pretrained Transformer architectures stores an internal representation
of the sentence that is sufficient to solve simple NLP tasks with a linear classifier. This
further motivates the need to understand how information is stored in this token.

It turns out that there is a direct connection between the model T (soft,k,v)
λ (X) defined

in (2) and the attention model T (Q,K,V,O)
λ (X)1 described in (5). To see this, take o = 1, to
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adapt the model (5) for univariate regression, and set p = 1, a reasonable assumption given
both empirical and theoretical evidence suggesting that Transformer parameter matrices
are low-rank (Aghajanyan et al., 2021; Kajitsuka and Sato, 2024). Then, let Q ∈ Rd×1 be
any vector with positive correlation with X[CLS] (for instance it suffices to take Q = X[CLS]),
and O = 1. We then deduce that

T
(Q,K,V,O)
λ (X)1 = T

(soft,K,V )

λX>[CLS]Q
(X) .

In other words, the attention layer (5) matches the considered predictor in (2) with a
softmax inverse temperature proportional to the scalar product between X[CLS] and Q.
Thus, our results, in particular the study of the training dynamics in Section 5, can be seen
as a model of how Transformer builds internal linear representations of the input during
training.

4. Risk of the oracle and of the linear predictors

Now that we have constructed our predictor T (k,v)
λ (see Eq. (3)), a first key question

is to assess its statistical performance. Recall that k, v ∈ Sd−1 are the two parameters of
the model, and their purpose is to approximate their theoretical counterparts k? and v?
defined in (1). This begs in particular the question of the performance of the oracle
predictor T (k?,v?)

λ . To answer these questions, we introduce the risk of the predictor, which
is measured by the mean squared error

Rλ(k, v) = E
[(
Y − T (k,v)

λ (X)
)2]

. (6)

To proceed with the analysis, we make the following assumption.

Assumption 1. The vectors k?, v? ∈ Sd−1 are orthogonal, i.e., k?>v? = 0.

This assumption is made everywhere in the paper, even though it is not reminded
explicitly at each result. This assumption is relatively mild in a high-dimensional setting
where any two independent vectors uniformly distributed on the sphere are close to being
orthogonal.

Oracle predictor. Our first result characterizes the risk of the proposed transformer
model (3) with oracle parameters (k?, v?). All the proofs of the paper are deferred to the
Appendix.

Theorem 1. There exists a function R<λ : R5 → R such that, for any (k, v) ∈ (Sd−1)2,

Rλ(k, v) = R<λ (κ, ν, θ, η, ρ) ,

where κ := k>k?, ν := v>v?, θ := v>k?, η := k>v?, and ρ := k>v. A closed-form expression
of R<λ is given in Appendix B. In particular,

Rλ(k?, v?) = R<λ (1, 1, 0, 0, 0)

= γ2 − 2γ2 erf

(
λ

√
d

2(1 + 2λ2γ2)

)
+ γ2ζ

(
λ

√
d

2
, λ2γ2

)
+ (L− 1)ζ(0, λ2) + ε2 ,

where, for t, γ ∈ R,

ζ(t, γ2) := E
[
erf2(t+G)

]
, G ∼ N (0, γ2) . (7)

This result is fundamental for the analysis of gradient descent studied in the next section
since it reduces the dimension of the dynamical system defined by the optimization dynamics.
Before delving into the optimization analysis, we study below the statistical optimality of
the estimator Rλ(k?, v?) and its comparison with linear regression.
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Asymptotic Bayes optimality. Let us start by observing that the Bayes risk associated
with problem (Plearn) is larger than ε2, which follows from elementary properties of the
conditional expectation (Le Gall, 2022, Chapter 11). Indeed, using the Pythagorean theorem,
one easily shows that

E[(Y − E[Y |X])2] > E[(Y − E[Y |X, J0])2] = E[ξ2] = ε2 . (8)

Then, the following corollary to Theorem 1 shows that the oracle predictor achieves the
Bayes-optimal risk in the asymptotic scaling L� 1/λ2 � d.

Corollary 2. Assume a joint asymptotic scaling where d→∞ and L = o(d). Taking λ
such that λ

√
d→∞ and λ

√
L→ 0, we have

Rλ(k?, v?) −→ ε2 .

Thus, in this asymptotic regime, the oracle predictor T (k?,v?)
λ is asymptotically Bayes optimal.

Note that Corollary 2 holds for any finite L ∈ N>0, but L may also tend to infinity, as
long as L = o(d). Let us give an intuition on why this result holds and where the scalings
of L and λ intervene. The oracle predictor can be decomposed as

T
(k?,v?)
λ (X) = X>J0

v?︸ ︷︷ ︸
=E[Y |X,J0]

erf(λX>J0
k?︸ ︷︷ ︸

=Θ(λ
√
d)

) +
∑
j 6=J0

X>j v
?︸ ︷︷ ︸

=Θ(1)

erf(λX>j k
?︸ ︷︷ ︸

=Θ(λ)

) (9)

With the scaling λ
√
d→∞, the argument of the first erf nonlinearity diverges to infinity

with d. Thus it reaches the saturating part of erf, so the first term in (9) converges to
E[Y |X, J0]. On the other hand, the argument of the erf nonlinearities inside the sum are
of order λ = o(1). Thus they are in the linear part of erf. Therefore, the sum consists of
L− 1 independent terms, each of magnitude λ. As a consequence, the whole sum is of order
Θ(λ
√
L), and we get

T
(k?,v?)
λ (X) ≈ E[Y |X, J0] + Θ(λ

√
L) .

Due to the scaling λ
√
L→ 0, we obtain that the second term decays to zero, and the oracle

predictor therefore implements the conditional expectation of Y given X and J0. This is
the best that we can hope for: the predictor succeeds in inferring the latent variable J0,
then gives the best possible prediction of Y given X and J0. We also see here the crucial
role played by the nonlinearity erf, whose linear part acts for j 6= J0 and saturating part
for j = J0. In particular, such a reasoning would not hold if we had simply taken a linear
function instead of erf.

Linear model. The asymptotic optimality of our oracle predictor is particularly striking
in comparison to the risk of the optimal linear predictor. More precisely, let

β? ∈ arg min
β∈RdL

E
[
(Y − (X>1 , . . . , X

>
L )β)2

]
be the optimal linear predictor for the regression task (Plearn). Its associated risk is
R(β?) = E

[
(Y − (X>1 , . . . , X

>
L )β?)2

]
. Both the optimal predictor and its risk can be

explicitly characterized as follows.

Proposition 3. Let pj = P(J0 = j) for j ∈ {1, . . . , L}. Then the optimal linear predictor
is parameterized by

β? =

b1v
?

...
bLv

?

 , bj =
γ2pj

1 + pj(γ2 − 1)
,
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and its risk is

R(β?) = ε2 + γ2 − γ4
L∑
j=1

p2
j

1 + pj(γ2 − 1)
.

In particular,
R(β?) > ε2 + γ2 − γ2(γ2 + 1) max

j=1,...,L
pj .

This result calls for a few comments. If the number of tokens is L = 1 or if J0 is a
constant location (meaning that one pj is equal to 1 while the others are equal to 0), then
the learning problem (Plearn) corresponds to a standard linear regression. In this case,
R(β?) = ε2, and the linear predictor (X1, . . . , XL) 7→ (X>1 , . . . , X

>
L )β? achieves the Bayes

risk. At the other end of the spectrum, in the case where J0 is uniform over {1, . . . , L}, the

0 200 400 600 800 1000
d

10−1

100

101

R
is

k

L = 5

L = 20

L = 50

Figure 3. Risk of the oracle predictor (Theorem 1, solid lines) and of
the best linear predictor (Proposition 3, dashed lines), depending on the
dimensions d and L. The oracle predictor outperforms the linear predictor
when scaling d. We take ε2 = 0, γ = 1/

√
2, λ = 1/d0.4, and all pj equal to

1/L.

formula for the risk of the linear predictor simplifies to R(β?) = ε2 + γ2 − γ4

γ2+L−1
. When

L→∞, this risk tends to ε2 + γ2, that is, the performance of the null predictor. In other
words, the optimal linear predictor performs no better than always predicting zero. More
generally, this conclusion is true in any limit where L→∞ and max pj → 0. This can be
explained by the fact that the location of the relevant token for prediction is random, varying
from sentence to sentence. Unable to leverage this latent information, the linear regressor
balances all its coefficients, resulting in uniformly poor prediction performance. This stands
in sharp contrast to Corollary 2, which shows that the oracle predictor T (k?,v?)

λ is able to
account for the complexity of the task, at least asymptotically. This is also illustrated by
Figure 3, which compares the value of the risks given by Theorem 1 and Proposition 3.
However, implementing the oracle predictor requires knowledge of the parameters k? and v?.
Our goal in the next section is therefore to show that gradient descent is able to recover
these parameters.

5. Gradient descent provably recovers the oracle predictor

This section is devoted to the analysis of the optimization dynamics in (k, v) ∈ (Sd−1)2

of the risk

Rλ(k, v) = E
[(
Y − T (k,v)

λ (X)
)2]

= E
[(
Y − erf

(
λXk

)>Xv)2]
.

We emphasize that Rλ(k, v) is a theoretical risk, which depends on the distribution of the
pair (X, Y ) (defined in Section 2). In practice, an empirical version of this risk is minimized.
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As we show experimentally (see Figure 5), the stochastic dynamics induced by the empirical
version of the risk are qualitatively similar to the deterministic dynamics of the theoretical
risk. Therefore, in the remainder of the article, we focus on the theoretical risk to avoid
overcomplicating the analysis. The transition to empirical risk is left for future research.

Our optimization method is the Projected (Riemannian) Gradient Descent (PGD),
described below.

Definition 1 (PGD). Given an initialization (k0, v0) ∈ (Sd−1)2, a step size α > 0, and
an inverse temperature sequence (λt)t>0, the sequence (kt, vt)t>0 ∈ (Sd−1)2 is recursively
defined by

kt+1 = ProjSd−1(kt − α(Id − ktk>t )∇kRλt(kt, vt)) =
kt − α(Id − ktk>t )∇kRλt(kt, vt)∥∥kt − α(Id − ktk>t )∇kRλt(kt, vt)

∥∥
2

,

vt+1 = ProjSd−1(vt − α(Id − vtv>t )∇vRλt(kt, vt)) =
vt − α(Id − vtv>t )∇vRλt(kt, vt)∥∥vt − α(Id − vtv>t )∇vRλt(kt, vt)

∥∥
2

,

(10)

where ProjSd−1 denotes the Euclidean projection on the unit sphere of Rd.

The operators (Id − ktk>t ) and (Id − vtv>t ) correspond to Riemannian gradient descent
(Boumal, 2023, Section 4.3), meaning that we compute the gradient of the risk on the
Riemannian manifold (Sd−1)2. In other words, the gradient step is performed on the tangent
space to the sphere at the current iterate. This is a precaution we are taking because, in
the analysis of the dynamics, we rely on an expression of the risk (6) that is valid only on
this manifold. In addition, this ensures that the subsequent projection on Sd−1 is always
well-defined, despite the fact that the sphere is a non-convex set, because iterates always
avoid the pathological cases k = 0 or v = 0.

Experimentally, we observe in Figure 4a that PGD is able to recover the oracle parame-
ters (k?, v?). Note that running the PGD iterates (10) involves computing the gradients
∇kRλt(kt, vt) and ∇vRλt(kt, vt), which is non-trivial a priori. A direct approach using
Monte Carlo simulations would require a large number of sample points to reduce variance,
which is computationally intractable in particular in high-dimension, and in any case gives
an approximate result. Instead, we leverage our closed form formula for R<λ from Theorem 1
to get (nearly) exact values for the gradients. Interestingly, we also observe in Figure 4a
that v aligns with v? much faster than k aligns with k?. This is typical of two-timescale
dynamics, which is a common framework in analysis of non-convex learning dynamics
(Heusel et al., 2017; Dagréou et al., 2022; Hong et al., 2023; Marion and Berthier, 2023;
Berthier et al., 2024; Marion et al., 2024).

Moving on to the mathematical study, even with the formula for R<λ , a full analysis
of the dynamics (10) is difficult. For instance, the dynamics (10) can be formulated in
terms of the five variables of R<λ , but then one needs to study a 5-dimensional highly
nonlinear dynamical system. In the following, we consider the case where the parameters
are initialized on the submanifold of (Sd−1)2

M = {(k, v) ∈ Sd−1 × Sd−1, k>v? = 0, v>k? = 0, k>v = 0} . (11)

We introduce this manifold on the one hand owing to the observation in Figure 4a(right)
that the dynamics converge to this manifold even when initialized on the sphere, and on the
other hand because this allows to reduce the problem to a lower-dimensional subspace and
to simplify the expression of the risk. Cleary, due to Assumption 1, the oracle parameters
(k?, v?) belong toM. A first key property of this manifold is invariance under the PGD
dynamics.

Lemma 4. The manifoldM is invariant under the PGD dynamics (10), in the sense that
if (kt, vt) ∈M, then (kt+1, vt+1) ∈M.
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(a) From a random initialization on (Sd−1)2.
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(b) From a random initialization onM (see Eq. (11)).

Figure 4. Convergence of PGD to the oracle parameters. Left: Excess risk
as a function of the number of steps. Middle left: Alignment |κ| = |k>k?|
and |ν| = |v>v?| with the oracle parameters. Middle right: Trajectories of
κ and ν in two repetitions of the experiments. Each repetition corresponds
to a color, the trajectory starts in the middle and ends at a corner of the
plot. Right: Distance to the invariant manifoldM. In all plots except the
middle right ones, the experiment is repeated 30 times with independent
random initializations, and 95% percentile intervals are plotted (but are not
visible when the variance is too small). Parameters are d = 400, L = 10,
γ =

√
1/2, and (a) λt = 1/(1 + 10−4t), (b) λt = 0.1. More details are given

in Appendix D.

This lemma shows that, if the initialization is taken on the manifold, then it is enough
to understand the dynamics on the manifold to conclude. Such analysis on the manifold is
tractable. This yields Theorem 5, our main result, which shows that the sequence (kt, vt)t>0

converges to the oracle values (k?, v?) (up to a sign) as t→∞, for any small enough step
size, and a constant inverse temperature.

Theorem 5. Take a constant inverse temperature λt ≡ λ > 0. Then there exists α > 0
such that, for any step size α 6 α, and for a generic initialization (k0, v0) ∈M,

(kt, vt) −−−→
t→∞

±(k?, v?).

This result shows that, despite the non-convexity of the risk, the attention layer trained
by PGD can recover the underlying structure of the problem. Convergence to (k?, v?) or
(−k?,−v?) is not at all problematic, since T (k?,v?)

λ = T
(−k?,−v?)
λ by symmetry of the erf

function. Furthermore, recovery is guaranteed for a generic initialization on M, in the
sense that the pathological pairs (k0, v0) ∈ M such that PGD fails to recover the oracle
parameters are of Lebesgue measure zero. The results of Theorem 5 are illustrated by
Figure 4b. We observe that, due to roundoff errors, the dynamics are not exactly on the
manifold but stay very close to the manifold.

We emphasize that the manifold M depends on the unknown parameters k? and v?,
making it impractical to initialize directly on the manifold. If the initialization is not onM,
more diverse phenomena are possible. As already pointed out in Figure 4a, it is possible to
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obtain recovery of (k?, v?) and convergence to the manifoldM from a general initialization
on the sphere. This suggests that our analysis on the manifold is relevant, and completing
the analysis for a general initialization is left for future work. However, we note that using
a decreasing inverse temperature sequence λt is crucial for the recovery of (k?, v?) when
initialized out ofM. Indeed, to the best of our experiments, an iteration-independent choice
of λ does not consistently lead to the recovery of k? and v? in this case (see Appendix D).
This contrasts with the behavior on the manifold proven in Theorem 5.

To investigate these behaviors, a fruitful direction would be to investigate the (local)
stability of the manifoldM for the PGD dynamics. If the manifold is indeed stable, one can
hope to transfer the analysis on the manifold to dynamics initialized close to the manifold.
Furthermore, recall that, in high dimension, random vectors on the sphere are close to
being orthogonal. Thus, with high probability, a uniform initialization in (Sd−1)2 falls in
the neighborhood of the manifoldM, so that the local analysis should allow to conclude.

The proof of the theorem relies on a detailed analysis of the dynamics of the PGD
algorithm on the invariant manifold M, in particular the properties of its stationary
points. These arguments, which lie at the intersection of dynamical systems and topology,
are of independent interest. A key idea is to reduce the problem to a two-dimensional
system depending only on |κ| = |k>k?| and |ν| = |v>v?|. The main steps of the proof
and intermediate results are given in the next section, while the core of the proofs is in
Appendix A.

0 100000 200000
Step

0

2

4

6

E
xc

es
s

ri
sk

0 100000 200000
Step

0.00

0.25

0.50

0.75

1.00

A
lig

n
m

en
t

w
it

h
or

ac
le

p
ar

am
et

er
s

|κ|
|ν|

−1 0 1
κ

−1.0

−0.5

0.0

0.5

1.0

ν

0 100000 200000
Step

10−8

10−6

10−4

10−2

100

D
is

ta
n

ce
to

th
e

m
an

if
ol

d
M

Figure 5. Convergence of stochastic PGD to the oracle parameters from
a random initialization on (Sd−1)2. Left: Excess risk as a function of the
number of steps. Middle left: Alignment |κ| = |k>k?| and |ν| = |v>v?|
with the oracle parameters. Middle right: Trajectories of κ and ν in two
repetitions of the experiment. Each repetition corresponds to a color, the
trajectory starts in the middle and ends at a corner of the plot. Right:
Distance to the invariant manifold M. In all plots except the middle
right one, the experiment is repeated 30 times with independent random
initializations, and 95% percentile intervals are plotted. Parameters are
d = 80, L = 10, γ =

√
1/2, λt = 2/(1 + 10−4t), and a batch size of 5. More

details are given in Appendix D.

6. Outline of the proof of Theorem 5

This section outlines the essential steps for the proof of Theorem 5. For clarity, the
proofs are to be found in Appendix A, except the proof of Proposition 10.

Notation. In this section, we consider a constant inverse temperature schedule λt ≡
λ > 0, as in Theorem 5. For this reason, it is not necessary to make explicit the dependence
of Rλ and R<λ on λ, and we use the lighter notations R and R< instead.
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Step 1: Invariant manifold & reparameterization. We first show that the risk
R(k, v) has a simpler expression when considered on the manifoldM.

Lemma 6. The risk R(k, v) restricted toM has the form

R(k, v) = γ2 − 2γ2v>v? erf

(
λ

√
d

2(1 + 2λ2γ2)
k>k?

)
+ γ2ζ

(
λ

√
d

2
k>k?, λ2γ2

)
+ (L− 1)ζ(0, λ2) + ε2,

where, for t, γ ∈ R,
ζ(t, γ2) := E

[
erf2(t+G)

]
, G ∼ N (0, γ2) .

This expression has two main consequences. First, we use it to prove that the manifoldM
is invariant by PGD, according to Lemma 4. Second, we observe that the risk on the
manifold depends on the variables (k, v) ∈ Sd−1×Sd−1 only through the two scalar quantities

κ = k>k? and ν = v>v? .

This suggests studying the dynamics in terms of the reduced variables (κ, ν) ∈ [−1, 1]2.
More precisely, in the following, we denote by R< the risk function R reparameterized as a
function of (κ, ν), i.e., we let

R<(κ, ν) = γ2−2γ2ν erf

(
λ

√
d

2(1 + 2λ2γ2)
κ

)
+γ2ζ

(
λ

√
d

2
κ, λ2γ2

)
+(L−1)ζ(0, λ2)+ε2 .

Note that, with a slight abuse of notation, we use R< to denote both the function of five
variables (κ, ν, θ, ρ, η) (as in Theorem 1) and the function of only the first two variables
(κ, ν). There should be no confusion, as both functions coincide on the manifoldM where
θ = ρ = η = 0. We also denote the corresponding PGD iterates using this reparameterization
by (κt, νt) := (k>t k

?, v>t v
?). With this notation, the following lemma reformulates the PGD

iterations as an autonomous discrete dynamical system in terms of (κt, νt).

Lemma 7. When initialized on the manifoldM, the PGD iterations (10) can be reformu-
lated in terms of the autonomous discrete dynamical system

(κt+1, νt+1) = g(κt, νt) , (12)

where the mapping g : [−1, 1]2 → [−1, 1]2 is given by

g(κ, ν) =

(
κ− α(∂κR<(κ, ν))(1− κ2)√
1 + α2(∂κR<(κ, ν))2(1− κ2)

,
ν − α(∂νR<(κ, ν))(1− ν2)√
1 + α2(∂νR<(κ, ν))2(1− ν2)

)
. (13)

Step 2: Analysis of the stationary points. Regarding the dynamics restricted to the
invariant manifoldM, we can characterize the limit points of the PGD iterates as follows.

Proposition 8. For a sufficiently small step size α and for any (k0, v0) ∈M, the risk R<
is decreasing along the PGD iterates. Furthermore, the distance between successive PGD
iterates tends to zero, and, if (κ, ν) is an accumulation point of the sequence of iterates
(κt, νt)t>0, then

(1− κ2)∂κR<(κ, ν) = 0 and (1− ν2)∂νR<(κ, ν) = 0 . (14)

We stress that the system (14) of equations corresponds to fixed points of the dynamics
(12)–(13). We next solve this system of equations.

Proposition 9. The points (κ, ν) ∈ [−1, 1]2 satisfying (14) are (κ, ν) = (±1,±1)2 and
(κ, ν) = (0, 0).

2This notation is used to designate any extreme point of the square [−1, 1]2, i.e., (κ, ν) = (1, 1), (1,−1),
(−1, 1), and (−1,−1).



14 ATTENTION LAYERS PROVABLY SOLVE SINGLE-LOCATION REGRESSION

κ

ν

•

•

•

•

•◦◦

◦ ◦

◦

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0.0

0.2

0.4

0.6

0.8

1.0

(a) (b)

Figure 6. Dynamics in (κ, ν) on the manifoldM. In (a), the fixed points
of the dynamics are represented; the minimizers, saddle point, and maxi-
mizers are respectively depicted in yellow, blue and red. In (b), the vector
field (κ, ν) 7→ −(∂κR<(κ, ν)(1− κ2), ∂νR<(κ, ν)(1− ν2)) is displayed (the
colormap corresponds to the magnitude of the vector field).

The identity (κ, ν) = (±1,±1) corresponds to the situation where the variables (k, v) are
aligned (up to sign) with the targets (k?, v?). As the next proposition shows, these are the
only global minima of R<.
Proposition 10. The fixed points of the dynamics can be classified as follows:

(i) The points (κ, ν) = (−1, 1) and (1,−1) are global maxima of R< on [−1, 1]2.
(ii) The points (κ, ν) = (1, 1) and (−1,−1) are global minima of R< on [−1, 1]2.

(iii) The point (κ, ν) = (0, 0) is a saddle point of R< on [−1, 1]2.

The fixed points of the dynamics as well as the vector field

(κ, ν) 7→ −(∂κR<(κ, ν)(1− κ2), ∂νR<(κ, ν)(1− ν2))

are displayed in Figure 6.

Step 3: Convergence to global minima. The convergence of the sequence of iterates
(κt, νt)t>0 to a global minimum is shown in two stages. First, we show that the iterates
converge to one of the five fixed points described in Proposition 10.

Proposition 11. For a sufficiently small step size α, the sequence of iterates (κt, νt)t>0

converges to one of the five fixed points {(±1,±1), (0, 0)}.
Proof. According to Proposition 8, the distance between successive iterates (κt, νt) tends
to zero. Therefore, the set of accumulation points of the sequence (κt, νt)t>0 is connected
(Lange, 2013, Proposition 12.4.1). Since there is a finite number of possible accumulation
points (by Proposition 9), we deduce that the sequence has a unique accumulation point.
Furthermore, the sequence belongs to a compact. Thus, it converges, and its limit is one of
the five fixed points. �

It remains to precisely characterize the limit of the sequence (κt, νt)t>0. To this aim, we
begin by showing key properties of the gradient mapping g.
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Proposition 12. For a sufficiently small step size α, the mapping g is a local diffeomorphism
around (0, 0), whose Jacobian matrix has one eigenvalue in (0, 1) and one eigenvalue in
(1,∞). Furthermore, it is injective on [−1, 1]2, differentiable, and its Jacobian is non-
degenerate.

These properties enable us to apply the Center-Stable Manifold theorem (Shub, 1987,
Theorem III.7) to deduce the next proposition.

Proposition 13. For a sufficiently small step size α, the set of initializations such that the
sequence (κt, νt)t>0 converges to (−1, 1), (1,−1), or (0, 0) has Lebesgue measure zero (with
respect to the Lebesgue measure on the manifoldM).

Combining Proposition 11 and Proposition 13, we conclude that, provided the step
size α is chosen small enough, the sequence (κt, νt)t>0 almost surely converges to one of
the minimizers, (1, 1) or (−1,−1). This convergence is almost sure with respect to the
Lebesgue measure on the manifoldM. Indeed, Proposition 13 ensures that the pathological
initializations converging towards a maximizer or a saddle point are of Lebesgue measure
zero. This concludes the proof of Theorem 5.

7. Conclusion

This paper introduced single-location regression, a novel statistical task where the
relevant information in the input sequence is supported by a single token. We analyzed
the statistical properties and optimization dynamics of a natural estimator for this task,
which simplifies to a basic attention layer. We hope this work encourages further research
into how Transformer architectures address sparsity and long-range dependencies, while
simultaneously constructing internal linear representations of their input—–an aspect with
significant implications for interpretability. Beyond NLP, potential applications include
problems connected to sparse sequential modeling such as anomaly detection in time series.
A natural extension of our framework is when relevant information is spread across a
few input tokens rather than just one, which relates to multi-head attention. Future
mathematical analyses should consider extensions to general initialization schemes and
stochastic dynamics. Our numerical experiments (Figures 4a and 5) yield encouraging
results in both of these directions.
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Appendix

Organization of the Appendix. The intermediate results of the proof of Theorem 5
in Section 6, as well as the other statements of the main text, are proven in Section A.
Section B provides an expression of the risk R beyond the manifoldM that extends the
one provided in Lemma 6 onM. Section C gives some useful technical lemmas. Finally,
experimental details and additional results are in Section D.

Notation. In the whole Appendix, we consider a constant inverse temperature schedule
λt ≡ λ > 0, as in Theorem 5. For this reason, it is not necessary to make explicit the
dependence of Rλ and R<λ on λ, and we use the lighter notations R and R< instead.

Appendix A. Proofs of the main results

A.1. Proof of Lemma 6 and Theorem 1. We recall the formula for the risk

R(k, v) = E
[(
Y −

L∑
`=1

erf(λX>` k)X>` v
)2]

and the data model

Y = X>J0
v? + ξ,

where

J0 ∼ U({1, . . . , L}) and

{
XJ0 ∼ N

(√
d
2k

?, γ2Id

)
X` ∼ N (0, Id) for ` 6= J0.

In the above expression for the risk, we can condition on the value of J0. Actually, the
conditioned risk is independent of J0. Thus in this section, we assume without loss of
generality that J0 = 1 a.s.:

R(k, v) = E
[(
X>1 v

? + ξ − erf(λX>1 k)X>1 v −
L∑
`=2

erf(λX>` k)X>` v
)2]

, (15)

where {
X1 ∼ N

(√
d
2k

?, γ2Id

)
X` ∼ N (0, Id) for ` > 2.

We rewrite this quantity in terms of multivariate standard Gaussian random variables.
Using Assumption 1, we get

R(k, v) = E
[(
γX̃>1 v

? + ξ − erf
(
λ
(√d

2
k>∗ k + γX̃>1 k

))(√d

2
k>∗ v + γX̃>1 v

)
−

L∑
`=2

erf(λX>` k)X>` v
)2]

,

where X̃1, X2, . . . , XL ∼ N (0, Id). This can be formulated in terms of the five scalar
quantities κ = k>k?, ν = v>v?, θ = v>k?, η = k>v?, and ρ = k>v. Indeed, we have

R(k, v) = R<(κ, ν, θ, η, ρ)

:= E
[(
γGv

?

1 + ξ −
(√d

2
θ + γGv1

)
erf
(
λ
(√d

2
κ+ γGk1

))
−

L∑
`=2

Gv`erf(λGk` )
)2]

,
(16)
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where Gv?1

Gv1
Gk1

 , . . . ,

Gv?LGvL
GkL

 ∼
i.i.d.
N

0,

1 ν η
ν 1 ρ
η ρ 1

 . (17)

This last expression only involves the five parameters κ, ν, θ, η, ρ, which play a role either
explicitly in the function or as parameters of the covariance of the random variables. This
proves the first statement of Theorem 1. A computation of a closed-form formula for this
expectation is given in Appendix B.

On the manifoldM defined by θ = η = ρ = 0, we can simplify the expressions (16)–(17)

R<(κ, ν, 0, 0, 0) = E
[(
γGv

?

1 + ξ − γGv1erf
(
λ
(√d

2
κ+ γGk1

))
−

L∑
`=2

Gv`erf(λGk` )
)2]

where
(
Gv

?

1

Gv1

)
, . . . ,

(
Gv

?

L
GvL

)
∼

i.i.d.
N
(

0,

(
1 ν
ν 1

))
, Gk1, . . . , GkL ∼i.i.d.

N (0, 1), and ξ ∼ N (0, ε2)

are independent.
We first expand in ξ and obtain

R<(κ, ν, 0, 0, 0) = ε2 + E
[(
γGv

?

1 − γGv1erf
(
λ
(√d

2
κ+ γGk1

))
−

L∑
`=2

Gv`erf(λGk` )
)2]

.

We now expand the square, as follows:

R<(κ, ν, 0, 0, 0) = ε2 + γ2E
[
(Gv

?

1 )2
]
− 2γ2E

[
Gv

?

1 G
v
1erf

(
λ
(√d

2
κ+ γGk1

))]
+ γ2E

[
(Gv1)2erf2

(
λ
(√d

2
κ+ γGk1

))]
− 2

L∑
`=2

γE
[(
Gv

?

1 −Gv1erf
(
λ
(√d

2
κ+ γGk1

)))
Gv`erf(λGk` )

]

+

L∑
`,m=2

E[Gv`erf(λGk` )G
v
merf(λGkm)] .

We address each term in this sum separately.
• Since Gv?1 ∼ N (0, 1), γ2E

[
(Gv

?

1 )2
]

= γ2.

• Since
(
Gv

?

1

Gv1

)
∼ N

(
0,

(
1 ν
ν 1

))
is independent from Gk1 ∼ N (0, 1), we have

−2γ2E
[
Gv

?

1 G
v
1erf

(
λ
(√d

2
κ+ γGk1

))]
= −2γ2E

[
Gv

?

1 G
v
1

]
E
[
erf
(
λ
(√d

2
κ+ γGk1

))]
= −2γ2νE

[
erf
(
λ
(√d

2
κ+ γGk1

))]
.

Finally, using Lemma 18(ii), we obtain

−2γ2E
[
Gv

?

1 G
v
1erf

(
λ
(√d

2
κ+ γGk1

))]
= −2γ2νerf

(
λ

√
d

2

κ√
1 + 2λ2γ2

)
.

• Since Gv1, Gk1 ∼i.i.d. N (0, 1), we have

γ2E
[
(Gv1)2erf2

(
λ
(√d

2
κ+ γGk1

))]
= γ2E

[
(Gv1)2

]
E
[
erf2

(
λ
(√d

2
κ+ γGk1

))]
= γ2E

[
erf2

(
λ
(√d

2
κ+ γGk1

))]
.
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Using the definition of ζ in Eq. (7), we have

γ2E
[
(Gv1)2erf2

(
λ
(√d

2
κ+ γGk1

))]
= γ2E

[
(Gv1)2

]
E
[
erf2

(
λ
(√d

2
κ+ γGk1

))]
= γ2ζ

(
λ

√
d

2
κ, λ2γ2

)
.

• For ` = 2, . . . , L, (Gv
?

1 , G
v
1, G

k
1), Gv` , and G

k
` are independent. Thus

E
[(
Gv

?

1 −Gv1erf
(
λ
(√d

2
κ+ γGk1

)))
Gv`erf(λGk` )

]
= E

[(
Gv

?

1 −Gv1erf
(
λ
(√d

2
κ+ γGk1

)))]
E
[
Gv`

]
E
[
erf(λGk` )

]
= 0 ,

where in the last step we use E[Gv` ] = 0.
• Finally, to tackle the last term, we address the cases ` 6= m and ` = m separately.
If ` 6= m, as Gv` , G

k
` , G

v
m, and Gkm are independent, we have

E[Gv`erf(λGk` )G
v
merf(λGkm)] = E[Gv` ]E[erf(λGk` )]E[Gvm]E[erf(λGkm)] = 0 .

If ` = m, as Gv` , G
k
` ∼i.i.d. N (0, 1), we have

E[(Gv` )
2erf2(λGk` )] = E[(Gv` )

2]E[erf2(λGk` )] = ζ(0, λ2) .

Putting together these computations, we obtain

R<(κ, ν, 0, 0, 0) = ε2 + γ2 − 2γ2νerf
(
λ

√
d

2

κ√
1 + 2λ2γ2

)
+ γ2ζ

(
λ

√
d

2
κ, λ2γ2

)
+ (L− 1)ζ(0, λ2) .

This proves Lemma 6. Taking κ = ν = 1 proves Theorem 1.

A.2. Proof of Corollary 2. Recall that, according to Theorem 1,

Rλ(k?, v?) = γ2 − 2γ2 erf

(
λ

√
d

2(1 + 2λ2γ2)

)
+ γ2ζ

(
λ

√
d

2
, λ2γ2

)
+ (L− 1)ζ(0, λ2) + ε2 ,

where, for t, γ ∈ R,
ζ(t, γ2) := E

[
erf2(t+ γG)

]
, G ∼ N (0, 1) .

We compute the limit of each term separately. First, we have

λ

√
d

2(1 + 2λ2γ2)
∼ λ
√
d√

2

d→∞−−−→∞ . (18)

Therefore, the second term of Rλ(k?, v?) tends to −2γ2. To handle the third term, note by
Jensen’s inequality that

1 > ζ
(
λ

√
d

2
, λ2γ2

)
= E

[
erf2

(
λ

√
d

2
+ λγG

)]
> E

[
erf
(
λ

√
d

2
+ λγG

)]2

.

Thus, by Lemma 18(ii),

1 > ζ
(
λ

√
d

2
, λ2γ2

)
> erf2

(
λ

√
d

2(1 + 2λ2γ2)

)
→ 1 ,

where we used (18). Thus the third term of Rλ(k?, v?) converges to γ2. As for the fourth
term, observe by Lemma 17 that

erf2(u) 6
4

π
u2 ,
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hence
0 6 ζ(0, λ2) 6

4

π
λ2E[G2] =

4

π
λ2 .

Since λ
√
L→ 0, we get

(L− 1)ζ(0, λ2) = O(λ2L) = o(1) .

Putting everything together, we obtain

Rλ(k?, v?)
d→∞−−−→ γ2 − 2γ2 + γ2 + 0 + ε2 = ε2 .

Since we already know by (8) that the Bayes risk is lower-bounded by ε2, this proves that
the Bayes risk is asymptotically equal to ε2, and that the oracle predictor is asymptotically
Bayes optimal.

A.3. Proof of Proposition 3. Let us first introduce a useful notation for the proof. If M
is a block matrix, we denote by M[ij] its (i, j)-th block, and likewise, if u is a block vector,
we denote by u[j] its j-th block. Next, note that

E[Y 2] = ε2 + E
[
((v?)>XJ0)2

]
= ε2 + γ2‖v?‖22
= ε2 + γ2,

since ‖v?‖22 = 1. Recall that

β? ∈ arg min
β∈RdL

E
[
(Y − (X>1 , . . . , X

>
L )β)2

]
is the optimal linear predictor. The classical formula for linear regression shows that

β? =

E


X1

...
XL

 (X>1 , . . . , X
>
L )



−1

E

((v?)>XJ0 + ξ)

X1
...
XL


 .

On the one hand, let

M =

X1
...
XL

 (X>1 , . . . , X
>
L ) .

Then E[M ] = E[E[M |J0]], and E[M |J0] is a block-diagonal matrix, where, for j, j′ ∈
{1, . . . , L},

E[M |J0 = j][j′,j′] = δj 6=j′Id + δj=j′(γ
2Id +

d

2
k?(k?)>) .

Thus

E[M ][j′,j′] = (1− pj′)Id + pj′(γ
2Id +

d

2
k?(k?)>) = Id + pj′(γ

2 − 1)Id + pj′
d

2
k?(k?)> .

On the other hand, let

u = ((v?)>XJ0 + ξ)

X1
...
XL

 .

Then

E [u] = E


X1

...
XL

X>J0

 v? = E

E

X1

...
XL

X>J0


∣∣∣∣∣∣∣J0

 v?
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=

p1(γ2Id + d
2k

?(k?)>)
...

pL(γ2Id + d
2k

?(k?)>)

 v? = γ2

p1v
?

...
pLv

?

 ,

since, by Assumption 1, k?>v? = 0.
Since E[M ] is a block-diagonal matrix and E[u] is a block vector, we get by standard

computation rules for block matrices

β?[j] = (E[M ]−1E[u])[j] = E[M ]−1
[j,j]E[u][j] =

(
Id + pj(γ

2 − 1)Id + pj
d

2
k?(k?)>

)−1
γ2pjv

? .

Recall the Sherman-Morrison formula (Press et al., 2007, Section 2.7.1), which states that
for any vectors u, v ∈ Rd, (Id + uu>)−1v =

(
Id − uu>/(1 + u>u)

)
v. Applying this formula

with orthogonal vectors, we obtain

β?[j] =
(
1 + pj(γ

2 − 1)
)−1

γ2pjv
? =

γ2pj
1 + pj(γ2 − 1)

v? ,

which shows the first formula of the proposition. Finally, the risk associated with the
optimal linear predictor (X>1 , . . . , X

>
L ) 7→ (X>1 , . . . , X

>
L )β? is given by

R(β?) = E[Y 2]− E[Y (X>1 . . . X>L )β?]

= ε2 + γ2 − γ2 ·
(
p1(v?)>, . . . , pL(v?)>

)β
?
[1]
...
β?[L]


= ε2 + γ2 − γ4

L∑
j=1

p2
j

1 + pj(γ2 − 1)
. (19)

This shows the formula for the risk given in the Proposition. To obtain the last bound,
observe that, if γ2 > 1, we have 1 + pj(γ

2 − 1) > 1. If γ2 6 1, since pj 6 1, we have
1 + pj(γ

2 − 1) > 1 + (γ2 − 1) = γ2. Thus we obtain 1 + pj(γ
2 − 1) > min(1, γ2). Therefore,

R(β?) > ε2 + γ2 −max(γ4, γ2)

L∑
j=1

p2
j

> ε2 + γ2 −max(γ4, γ2)
L∑
j=1

pj · max
j=1,...,L

pj

> ε2 + γ2 − (γ4 + γ2) max
j=1,...,L

pj

> ε2 + γ2 − γ2(γ2 + 1) max
j=1,...,L

pj .

When all pj are equal to 1/L, all terms in the sum are equal, and Eq. (19) simplifies to

R(β?) = ε2 + γ2 − Lγ4
1
L2

1 + 1
L(γ2 − 1)

= ε2 + γ2 − γ4

L+ γ2 − 1
.

A.4. Proof of Lemma 4. As a first step in the proof, we prove the next lemma, which is
the key towards the invariance property we are aiming at, in that it shows that, for a point
on the manifoldM (defined by θ = η = ρ = 0), the gradient of the risk does not “push” the
point outside of the manifold. Its proof leverages the expression of the risk as a function of
five parameters derived in the previous section

Lemma 14. At any point (κ, ν, θ, η, ρ) such that θ = η = ρ = 0, we have ∂θR< = ∂ηR< =
∂ρR< = 0.
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Proof. We use Eq. (16)–(17) and change signs in the square function:

R<(κ, ν, θ, η, ρ)

= E
[(
γGv

?

1 + ξ −
(√d

2
θ + γGv1

)
erf
(
λ
(√d

2
κ+ γGk1

))
−

L∑
`=2

Gv`erf(λGk` )
)2]

= E
[(
γ(−Gv?1 )− ξ −

(√d

2
(−θ) + γ(−Gv1)

)
erf
(
λ
(√d

2
κ+ γGk1

))
−

L∑
`=2

(−Gv` )erf(λGk` )
)2]

,

where Gv?1

Gv1
Gk1

 , . . . ,

Gv?LGvL
GkL

 ∼
i.i.d.
N

0,

1 ν η
ν 1 ρ
η ρ 1

 , ξ ∼ N (0, ε2) .

Thus −Gv?1

−Gv1
Gk1

 , . . . ,

−Gv?L−GvL
GkL

 ∼
i.i.d.
N

0,

 1 ν −η
ν 1 −ρ
−η −ρ 1

 , −ξ ∼ N (0, ε2) .

As a consequence,

R<(κ, ν, θ, η, ρ) = R<(κ, ν,−θ,−η,−ρ) .

Taking the partial derivative in θ, we are led to

∂θR<(κ, ν, θ, η, ρ) = −R<(κ, ν,−θ,−η,−ρ) .

At a point such that θ = η = ρ = 0, this gives ∂θR<(κ, ν, 0, 0, 0) = −∂θR<(κ, ν, 0, 0, 0)
and thus ∂θR<(κ, ν, 0, 0, 0) = 0. The proof for the other two derivatives ∂ηR, ∂ρR is
identical. �

We now complete the proof of Lemma 4. By the chain rule for total derivatives applied
to R(k, v) = R<(κ, ν, θ, η, ρ), and then by Lemma 14, on the manifoldM, we have

∇kR = (∂κR<)k? + (∂ηR<)v? + (∂ρR<)v = (∂κR<)k? , (20)

and, similarly,

∇vR = (∂νR<)v? + (∂θR<)k? + (∂ρR)k = (∂νR<)v? . (21)

Recall the formulas for the PGD updates

kt+1 = ProjSd−1(kt − α(I − ktk>t )∇kR(kt, vt)) =
kt − α(I − ktk>t )∇kR(kt, vt)∥∥kt − α(I − ktk>t )∇kR(kt, vt)

∥∥
2

,

vt+1 = ProjSd−1(vt − α(I − vtv>t )∇vR(kt, vt)) =
vt − α(I − vtv>t )∇vR(kt, vt)∥∥vt − α(I − vtv>t )∇vR(kt, vt)

∥∥
2

.

Let ck =
∥∥kt − α(I − ktk>t )∇kR(kt, vt)

∥∥
2
and cv =

∥∥vt − α(I − vtv>t )∇vR(kt, vt)
∥∥

2
. Then,

if (kt, vt) ∈M,

(v?)>kt+1 =
(v?)>kt − α(v?)>(I − ktk>t )(∂κR<(κt, νt))k

?

ck
= 0,

(k?)>vt+1 =
(k?)>vt − α(k?)>(I − vtv>t )(∂νR<(κt, νt))v

?

cv
= 0,
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and

v>t+1kt+1 =
v>t kt − α(∂νR<)((I − vtv>t )v?)>kt − α(∂κR<)((I − ktk>t )k?)>vt

cvck

+
α2(∂κR<)(∂νR<)((I − ktk>t )k?)>(I − vtv>t )v?

cvck
= 0 ,

where we have omitted the dependence of (∂κR<) and (∂νR<) in (κt, νt) in the last
expression for the ease of readability. Note that the last term is equal to zero since

((I − ktk>t )k?)>(I − vtv>t )v? = (k? − κtkt)>(v? − νtvt) = 0 .

This shows that (kt+1, vt+1) ∈M.

A.5. Proof of Lemma 7. By definition of the PGD iterates and by (20)–(21), one has

κt+1 = k>t+1k
? =

κt − α∂κR<(κt, νt)(k
?)>(I − ktk>t )k?√

1 + α2(∂κR<)2‖(I − ktk>t )k?‖22
=

κt − α(∂κR<)(1− κ2
t )√

1 + α2(∂κR<)2(1− κ2
t )
,

νt+1 = v>t+1v
? =

νt − α∂νR<(κt, νt)(v
?)>(I − vtv>t )v?√

1 + α2(∂νR<)2‖(I − vtv>t )v?‖22
=

νt − α(∂νR<)(1− ν2
t )√

1 + α2(∂νR<)2(1− ν2
t )
,

where we have used the Pythagorean theorem and the idempotent property of projection
matrices for the denominator.

A.6. Proof of Proposition 8. In this proof, C denotes a constant that does not depend
on the step t nor on the step size α, and which may vary from line to line. First note that
the risk R< is C∞ on the compact set [−1, 1]2. In particular, it is a Λ-smooth function for
some Λ > 0, in the sense that its gradient is Λ-Lipschitz continuous. Thus

R<(κt+1, νt+1) 6 R<(κt, νt) + (∇R<(κt, νt))
>
(
κt+1 − κt
νt+1 − νt

)
+

Λ

2

∥∥∥∥(κt+1 − κt
νt+1 − νt

)∥∥∥∥2

2

,

i.e.,

R<(κt+1, νt+1)−R<(κt, νt)

6 (∂κR<)(κt+1 − κt) + (∂νR<)(νt+1 − νt) +
Λ

2

[
(κt+1 − κt)2 + (νt+1 − νt)2

]
. (22)

Our goal in the following computations is to derive an inequality of the form

R<(κt+1, νt+1)−R<(κt, νt) 6 −α(∂κR<)2(1− κ2
t )− α(∂νR<)2(1− ν2

t )

+ Cα2(∂κR<)2(1− κ2
t ) + Cα2(∂νR<)2(1− ν2

t ) ,

which shall give us a descent lemma for α small enough. To this aim, observe that, by
definition of the iterates (κt, νt) given by (12)–(13), one has

κt+1 − κt =

[
1√

1 + α2(∂κR<)2(1− κ2
t )
− 1

]
κt −

α(∂κR<)(1− κ2
t )√

1 + α2(∂κR<)2(1− κ2
t )

(23)

= −α(∂κR<)(1− κ2
t )

+

[
1√

1 + α2(∂κR<)2(1− κ2
t )
− 1

]
(κt − α(∂κR<)(1− κ2

t )) .

As a consequence,

|κt+1 − κt + α(∂κR<)(1− κ2
t )| 6

∣∣∣ 1√
1 + α2(∂κR<)2(1− κ2

t )
− 1
∣∣∣|κt − α(∂κR<)(1− κ2

t )|

6 α2(∂κR<)2(1− κ2
t )|κt − α(∂κR<)(1− κ2

t )|



ATTENTION LAYERS PROVABLY SOLVE SINGLE-LOCATION REGRESSION 27

6 Cα2(∂κR<)2(1− κ2
t ) , (24)

where the second inequality holds by Lemma 16 and the last bound holds since the function
(κ, ν) 7→ |κ− α(∂κR<(κ, ν))(1− κ2)| is uniformly bounded for all α 6 1. This bound has
two implications. First,

(∂κR<)(κt+1 − κt) + α(∂κR<)2(1− κ2
t ) = (∂κR<)((κt+1 − κt) + α(∂κR<)(1− κ2

t ))

6 |∂κR<||κt+1 − κt + α(∂κR<)(1− κ2
t )|

6 Cα2(∂κR<)2(1− κ2
t ) , (25)

where we use the fact that |∂κR<| is bounded, and the bound (24). Second, since the
square function is Lipschitz on compact sets, we have

|(κt+1 − κt)2 − (α(∂κR<)(1− κ2
t ))

2| 6 Cα2(∂κR<)2(1− κ2
t ) .

Thus

(κt+1 − κt)2 6 α2(∂κR<)2(1− κ2
t )

2 + Cα2(∂κR<)2(1− κ2
t )

6 Cα2(∂κR<)2(1− κ2
t ) . (26)

We also obtain analogous bounds to (25)–(26) for ν, namely

(∂νR<)(νt+1 − νt) + α(∂νR<)(1− ν2
t ) 6 Cα2(∂νR<)2(1− ν2

t ) , (27)

and

(νt+1 − νt)2 6 Cα2(∂νR<)2(1− ν2
t ) . (28)

Plugging the bounds (25)–(28) into Eq. (22), we obtain the desired inequality

R<(κt+1, νt+1)−R<(κt, νt) 6 −α(∂κR<)2(1− κ2
t )− α(∂νR<)2(1− ν2

t )

+ Cα2(∂κR<)2(1− κ2
t ) + Cα2(∂νR<)2(1− ν2

t ) .

By choosing the step size α 6 1
2C , this ensures that

R<(κt+1, νt+1)−R<(κt, νt) 6 −
α

2
(∂κR<)2(1− κ2

t )−
α

2
(∂νR<)2(1− ν2

t ).

This shows that the risk is decreasing along the PGD iterates. Next, introducing R<min =
min(κ,ν)∈[0,1]2 R<(κ, ν) and using a telescopic sum, we have, for all T > 0,

R<(κ0, ν0)−R<min > R<(κ0, ν0)−R<(κT , νT )

>
α

2

T−1∑
t=0

[
(∂κR<)2(1− κ2

t ) + (∂νR<)2(1− ν2
t )
]
.

Since the left-hand side is finite, and the terms of the sum are nonnegative, we conclude
that the series converges as T → ∞. In particular, the generic term (∂κR<)2(1 − κ2

t ) +
(∂νR<)2(1− ν2

t ) of the series converges to 0 as t→∞. Therefore, the accumulation points
(κ∞, ν∞) satisfy {

∂κR<(κ∞, ν∞) = 0 or κ2
∞ = 1

∂νR<(κ∞, ν∞) = 0 or ν2
∞ = 1.

Inspecting identity (23), we observe that the convergence of the general term also implies
κt+1 − κt → 0. We obtain similarly that νt+1 − νt → 0.



28 ATTENTION LAYERS PROVABLY SOLVE SINGLE-LOCATION REGRESSION

A.7. Proof of Proposition 9. Recall that the risk in terms of (κ, ν) is given by

R<(κ, ν) = γ2 − 2γ2ν erf

(
λ
√
d/2κ√

1 + 2λ2γ2

)
+ γ2ζ

(
λ

√
d

2
κ, λ2γ2

)
+ (L− 1)ζ(0, λ2) + ε2 .

Then the gradients of R< are given by

∂κR<(κ, ν)

= −2γ2λ

√
d

2(1 + 2λ2γ2)
erf ′
(

λ
√
d/2κ√

1 + 2λ2γ2

)(
ν − erf

(
λ
√
d/2κ√

(1 + 2λ2γ2)(1 + 4λ2γ2)

))
and

∂νR<(κ, ν) = −2γ2erf

(
λ
√
d/2κ√

1 + 2λ2γ2

)
.

Therefore, the solutions of the system (14) satisfy{
−ν + erf(c1κ) = 0 or κ = ±1

κ = 0 or ν = ±1 ,

with c1 = λ√
4λ2γ2+1

√
d

2(1+2λ2γ2)
. The solutions of this system are

(κ, ν) = (0, 0) or (κ, ν) = (±1,±1) .

A.8. Proof of Proposition 10. Since R< is a smooth function, the extrema of this
function on [−1, 1]2 are either critical points (admitting null derivatives) or points on the
boundary of the square [−1, 1]2. Starting with critical points, the only critical point is
(0, 0), and it is a saddle point. Indeed, the Hessian of R< at (0,0) is

HR<(0, 0) = − 4√
π
γ2λ

√
d

2(1 + 2λ2γ2)

(
c 1
1 0

)
︸ ︷︷ ︸

:=M

where c = − 2λ√
π(4λ2γ2+1)

√
d

2(1+2λ2γ2)
< 0. Then, as det(M) = −1, the two eigenvalues

of HR<(0, 0) have opposite signs, (0, 0) is thus a saddle point. The extrema of R< must
therefore be on the boundary of the square, which we examine next.

For any (κ, ν) ∈ (−1, 1)2, one has, by inspecting the signs of the gradients given in the
proof of Proposition 9,

R<(1, 1) < R<(κ, 1) < R<(−1, 1) and R<(1, 1) < R<(1, ν) < R<(1,−1) .

This shows that the minimum of R< on {(κ, 1), κ ∈ [−1, 1]}∪{(1, ν), ν ∈ [−1, 1]} is reached
at (1, 1), and the maximum is reached both at (1,−1) and (−1, 1), since R< is even. Using
again evenness of R<, we conclude that the extrema of R< on the whole boundary of the
square, and thus on the whole square, are the minimizers (1, 1) and (−1,−1), and the
maximizers (1,−1) and (−1, 1).

A.9. Proof of Proposition 12. We prove the statements of the proposition one by one.

The mapping g is a local diffeomorphism around (0, 0), whose Jacobian matrix
has one eigenvalue in (0, 1) and one eigenvalue in (1,∞). Consider the Taylor
expansion of the first component g(κ, ν)1 of g(κ, ν). Since ∂κR<(0, 0) = 0, and R< is
smooth, letting x = (κ, ν), we have (∂κR<(κ, ν))2 = O(‖x‖2). Thus,

g(κ, ν)1 =
κ− α(∂κR<(κ, ν))(1− κ2)√
1 + α2(∂κR<(κ, ν))2(1− κ2)
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=
κ− α(∂κR<(κ, ν))(1− κ2)√

1 +O(‖x‖2)

= (κ− α(∂κR<(κ, ν))(1− κ2))
(
1 +O(‖x‖2)

)
= κ− α∂κR<(κ, ν) +O(‖x‖2) .

Proceeding similarly with the second component of g, we obtain that the Jacobian of g at
(0, 0) is given by

Jg(0, 0) = I2 − αHR<(0, 0) = I2 + α · 4√
π
γ2λ

√
d

2(1 + 2λ2γ2)

(
c 1
1 0

)
︸ ︷︷ ︸

=:M

,

where c = − 2λ√
π(4λ2γ2+1)

√
d

2(1+2λ2γ2)
< 0. Since det(M) = −1, one can choose α small

enough so that one eigenvalue of Jg(0, 0) is strictly between 0 and 1 and the other one is
strictly larger than 1. Therefore, Jg(0, 0) is invertible, showing that g is a local diffeomor-
phism around (0, 0).

The mapping g is differentiable on [−1, 1]2, and its Jacobian is not degenerate.
The mapping g is clearly differentiable as a composition of differentiable function. The more
delicate part is to show that its Jacobian cannot be degenerate. To show this statement,
observe first that, for x ∈ [−1, 1]2, we may write g(x) = x+αh(x), where the first component
of h is given by

h(κ, ν)1 =
1

α
(g(κ, ν)1 − κ)

=
1

α

( κ− α(∂κR<(κ, ν))(1− κ2)√
1 + α2(∂κR<(κ, ν))2(1− κ2)

− κ
)

=
κ

α

( 1√
1 + α2(∂κR<(κ, ν))2(1− κ2)

− 1
)

︸ ︷︷ ︸
=:f

(1)
α (κ,ν)

− (∂κR<(κ, ν))(1− κ2)√
1 + α2(∂κR<(κ, ν))2(1− κ2)︸ ︷︷ ︸

=:f
(2)
α (κ,ν)

.

Let us prove that the gradient of h(κ, ν)1 is bounded uniformly over α 6 1. The uniform
boundedness is clear for the gradient of f (2)

α , which writes as a composition of functions
with uniformly bounded gradients for α 6 1. Moving on to f (1)

α and letting

g :

{
[−1, 1]× [0, B] → R
(a, b) 7→ a

α

(
1√

1+α2b
− 1
) , B = sup

(κ,ν)∈[−1,1]2
(∂κR<(κ, ν))2(1− κ2) ,

we observe that f (1)
α is the composition of g with a smooth function independent of α. In

particular, it suffices to show the uniform boundedness of ∇g to deduce the one of ∇f (1)
α .

We further have, by Lemma 16, and for α 6 1,∣∣∂ag(a, b)
∣∣ =

1

α

∣∣∣ 1√
1 + α2b

− 1
∣∣∣ 6 αb 6 B

and ∣∣∂bg(a, b)
∣∣ =

∣∣∣− αa

2(1 + α2b)3/2

∣∣∣ 6 α

2
6

1

2
.

Therefore, the gradient of h(κ, ν)1 is bounded uniformly over α 6 1. Proceeding similarly
with the gradient of h(κ, ν)2, we obtain that the Jacobian of h(κ, ν) is uniformly bounded
over α 6 1. Recall now that Jg(κ, ν) = I2 + αJh(κ, ν). Therefore, taking α small enough,
we obtain that the eigenvalues of Jg have to be bounded away from zero.
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The mapping g is injective. The computation above shows that h is β-Lipschitz
continuous with β independent of α (for α small enough). In particular we can choose α
such that α < 1/β. Now, let x 6= y ∈ [−1, 1]2 be such that g(x) = g(y). Then

‖x− y‖ 6 α‖h(x)− h(y)‖ 6 αβ‖x− y‖ < ‖x− y‖ .
This is a contradiction, showing that g is injective.

A.10. Proof of Proposition 13. Recall that (1,−1) and (−1, 1) are maxima of the
risk R< on [−1, 1]2 by Proposition 10, and that the value of the risk decreases along the
iterates of PGD by Proposition 8. Thus the only possible way to converge to these points
is to start the dynamics from them.

The case of the point (0, 0) is more delicate. We apply the Center-Stable Manifold
theorem (Shub, 1987, Theorem III.7) to g, which is a local diffeomorphism around (0, 0) by
Proposition 12. This guarantees the existence of a local center-stable manifold W cs

loc, which
verifies the following properties. First, its codimension is equal to the number of eigenvalues
of Jg(0, 0) of magnitude larger than 1, that is, 1, by Proposition 12. Hence it has Lebesgue
measure zero. Second, there exists a neighborhood B of 0 such that

⋂∞
t=0 g

−t(B) ⊂W cs
loc.

Then, let W s be the set of all x which converge to (0, 0) under the gradient map g, and
take x ∈ W s. Then there exists a T such that gt(x) ∈ B for all t > T . This means that
gT (x) ∈ ⋂∞s=0 g

−s(B), and thus gT (x) ∈ W cs
loc. So, x ∈ g−T (W cs

loc). We have just shown
that

W s ⊂
⋃
T>0

g−T (W cs
loc) .

Finally, we prove that the pre-image of sets of measure zero by gT has measure zero for any
T > 0. This shall conclude the proof of the result since countable unions of sets of measure
zero have measure zero. To show this, note that g is injective by Proposition 12, and
therefore gT is injective too. This allows to define an inverse g−T of gT defined on the image
of gT , and the pre-image by gT of W cs

loc is exactly the image by g−T of W cs
loc (intersected

with the domain of definition of g−T ). Furthermore, by Proposition 12, the Jacobian of gT
is invertible. This guarantees that g−T is differentiable by the inverse function theorem.
The conclusion follows by recalling that differentiable functions map sets of measure zero
to sets of measure zero.

Appendix B. Expression of the risk beyond the invariant manifold

In this appendix, we provide an expression of the risk R beyond the manifoldM that
extends the one provided in Lemma 6. This result is not needed to prove Theorem 5, and
its proof is more involved that the one of Lemma 6. However, we provide it since it might
be relevant to follow-up works that would study the dynamics if not initialized on the
invariant manifoldM. It is also useful for the numerical simulations (see Appendix D).

Proposition 15. We have the closed-form expression

R<λ (κ, ν, θ, η, ρ) = ε2 + γ2

− 2γ2νerf

(
λ
√
d/2κ√

1 + 2λ2γ2

)
− 2λγ2

√
d

2
ηθ

1√
1 + 2λ2γ2

erf ′
(

λ
√
d/2κ√

1 + 2λ2γ2

)
− 2λ2γ4ηρ

1 + 2λ2γ2
erf ′′

(
λ
√
d/2κ√

1 + 2λ2γ2

)
+ (

d

2
θ2 + γ2)ζ

(
λ

√
d

2
κ, λ2γ2

)
+

√
d

2

(
θρ− λ2γ2ρ2κ

1 + 2λ2γ2

)
4λγ2√

1 + 2λ2γ2
erf

(
λ
√
d/2κ√

(1 + 4λ2γ2)(1 + 2λ2γ2)

)
erf ′
(

λ
√
d/2κ√

1 + 2λ2γ2

)
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+
4λ2γ4ρ2

√
π
√

1 + 4λ2γ2(1 + 2λ2γ2)
erf ′
(
− λ

√
dκ√

1 + 4λ2γ2

)
+ (L− 1)

[
ζ(0, λ2) +

8λ2

π
√

1 + 4λ2(1 + 2λ2)
ρ2

]
+

4λ2

(1 + 2λ2)π
(L− 1)(L− 2)ρ2

+
4λ(L− 1)ρ√

(1 + 2λ2)π

(√
d

2
θ erf

(
λ
√
d/2κ√

1 + 2λ2γ2

)
+

λγ2ρ√
1 + 2λ2γ2

erf ′
(

λ
√
d/2κ√

1 + 2λ2γ2

))
.

Proof. We first recall the notations for the five scalar products that are used throughout
this proof.

ν = v>v? , κ = k>k? , θ = v>k? , η = k>v? , ρ = k>v .

A first decomposition. We start back from the expression (15) obtained for the risk.
By expanding in ξ, then expanding the square, we obtain

R(k, v) = E
((
X>1 v

? −
L∑
`=1

X>` v erf(λX>` k)
)2)

+ ε2

= E
((
X>1 v

? −X>1 v erf(λX>1 k)−
L∑
`=2

X>` v erf(λX>` k)
)2)

+ ε2

= E
((
X>1 v

? −X>1 v erf(λX>1 k)
)2)

︸ ︷︷ ︸
=:R1

+
L∑
`=2

E
((
X>` v erf(λX>` k)

)2)
︸ ︷︷ ︸

=:R2

+
L∑

` 6=j>2

E
(
X>` v erf(λX>` k)X>j v erf(λX>j k)

)
︸ ︷︷ ︸

=:R3

−2

L∑
`=2

E
((
X>1 v

? −X>1 v erf(λX>1 k)
)
X>` v erf(λX>` k)

)
︸ ︷︷ ︸

=:R4

+ ε2 .

Computation of R1. By expanding the square,

E
((
X>1 v

? −X>1 v erf(λX>1 k)
)2)

= E
((
X>1 v

?
)2)− 2E

(
X>1 v

?X>1 v erf(λX>1 k)
)

+ E
((
X>1 v erf(λX>1 k)

)2)
.

These three terms are computed hereafter. First we have

E
((
X>1 v

?
)2)

=
(
E
(
X>1 v

?
))2

+ Var
(
X>1 v

?
)

= (

√
d

2
(k?)>v?)2 + γ2 = γ2 .

Second,

E
(
X>1 v

?X>1 v erf(λX>1 k)
)

= E

[(√
d

2
(k?)>v? + Z1

)(√
d

2
(k?)>v + Z2

)
erf

(
λ

√
d

2
(k?)>k + λZ3

)]
,
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= E

[
Z1

(√
d

2
θ + Z2

)
erf

(
λ

√
d

2
κ+ λZ3

)]
,

with Z1

Z2

Z3

 ∼ N
0, γ2

 1 v>v? k>v?

v>v? 1 v>k
k>v? v>k 1

 = N

0, γ2

1 ν η
ν 1 ρ
η ρ 1

 .

Recall the multivariate version of Stein’s lemma (Stein, 1981), which states that, when
Z,G1, . . . , Gp are centered and jointly Gaussian, and σ : Rp → R,

E [Zσ(G1, . . . , Gp)] =

p∑
i=1

Cov(Z,Gi)E [∂iσ(G1, . . . , Gp)] .

Therefore,

E
(
X>1 v

?X>1 verf(λX>1 k)
)

= γ2νE

[
erf

(
λ

√
d

2
κ+ λZ3

)]
+ λγ2ηE

[(√
d

2
θ + Z2

)
erf ′

(
λ

√
d

2
κ+ λZ3

)]

= γ2νE

[
erf

(
λ

√
d

2
κ+ λZ3

)]
+ λγ2

√
d

2
ηθE

[
erf ′

(
λ

√
d

2
κ+ λZ3

)]

+ λ2γ4ηρE

[
erf ′′

(
λ

√
d

2
κ+ λZ3

)]

= γ2νerf

(
λ
√
d/2κ√

1 + 2λ2γ2

)
+

√
d

2

λγ2ηθ√
1 + 2λ2γ2

erf ′

(
λ
√
d/2κ√

1 + 2λ2γ2

)

+
λ2γ4ηρ

1 + 2γ2λ2
erf ′′

(
λ
√
d/2κ√

1 + 2λ2γ2

)
by using Lemma 18(i)− (iii). Finally, using again Stein’s lemma and Lemma 18(iv)− (vi),
the computation of the last term is as follows:

E
[(
X>1 v erf(λX>1 k)

)2]
= E

[(√
d

2
(k?)>v + Z2

)2

erf

(
λ

√
d

2
k>k? + λZ3

)2
]

= E

[
d

2
θ2 erf2

(
λ

√
d

2
κ+ λZ3

)]
+ 2E

[√
d

2
θZ2 erf2

(
λ

√
d

2
κ+ λZ3

)]

+ E

[
Z2

2 erf2

(
λ

√
d

2
κ+ λZ3

)]

=
d

2
θ2E

[
erf2

(
λ

√
d

2
κ+ λZ3

)]

+ 4λγ2

√
d

2
θρE

[
erf

(
λ

√
d

2
κ+ λZ3

)
erf ′
(
λ

√
d

2
κ+ λZ3

)]
+ γ2E

[
erf2

(
λ

√
d

2
κ+ λZ3

)]

+ 2λγ2ρE

[
Z2 erf

(
λ

√
d

2
κ+ λZ3

)
erf ′
(
λ

√
d

2
κ+ λZ3

)]



ATTENTION LAYERS PROVABLY SOLVE SINGLE-LOCATION REGRESSION 33

= (
d

2
θ2 + γ2)E

[
erf2

(
λ

√
d

2
κ+ λZ3

)]

+ 4λγ2

√
d

2
θρE

[
erf

(
λ

√
d

2
κ+ λZ3

)
erf ′
(
λ

√
d

2
κ+ λZ3

)]

+ 2λ2γ4ρ2

(
E

[
erf

(
λ

√
d

2
κ+ λZ3

)
erf ′′

(
λ

√
d

2
κ+ λZ3
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+ E

[
(erf ′)2

(
λ

√
d

2
κ+ λZ3

)])
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d

2
θ2 + γ2)ζ

(
λ

√
d

2
κ, λ2γ2

)
+ 4λγ2

√
d

2
θρE

[
erf

(
λ

√
d

2
κ+ λZ3

)
erf ′

(
λ

√
d

2
κ+ λZ3

)]

+
2λ2γ4ρ2

1 + 2λ2γ2

(
−2λ

√
d

2
κE

[
erf

(
λ

√
d

2
κ+ λZ3

)
erf ′

(
λ

√
d

2
κ+ λZ3

)]

+E

[
(erf ′)2

(
λ

√
d

2
κ+ λZ3

)])

= (
d

2
θ2 + γ2)ζ

(
λ

√
d

2
κ, λ2γ2

)
+ 4λγ2

√
d

2

(
θρ− λ2γ2ρ2κ

1 + 2λ2γ2

)
E

[
erf

(
λ

√
d

2
κ+ λZ3

)
erf ′

(
λ

√
d

2
κ+ λZ3

)]

+
2λ2γ4ρ2

1 + 2λ2γ2
E

[
(erf ′)2

(
λ

√
d

2
κ+ λZ3

)]

= (
d

2
θ2 + γ2)ζ

(
λ

√
d

2
κ, λ2γ2

)
+

√
d

2

(
θρ− λ2γ2ρ2κ

1 + 2λ2γ2

)
4λγ2√

1 + 2λ2γ2
erf

(
λ
√
d/2κ√

(1 + 4λ2γ2)(1 + 2λ2γ2)

)
erf ′
(

λ
√
d/2κ√

1 + 2λ2γ2

)

+
2λ2γ4ρ2

1 + 2λ2γ2

(
2

√
π
√

1 + 4λ2γ2
erf ′
(
− λ

√
dκ√

1 + 4λ2γ2

))

by Lemma 18(iv)− (vi).

Computation of R2. We have

R2 =
L∑
`=2

E
((
X>` v erf(λX>` k)

)2)
= (L− 1)E

((
X>2 v erf(λX>2 k)

)2)
.

Thus, using previous calculations with γ2 = 1, θ = 0, and κ = 0, we obtain

R2 = (L− 1)

[
ζ(0, λ2) +

4λ2

√
π
√

4λ2 + 1(1 + 2λ2)
ρ2erf ′ (0)

]
= (L− 1)

[
ζ(0, λ2) +

8λ2

π
√

4λ2 + 1(1 + 2λ2)
ρ2

]
.
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Computation of R3. Regarding the cross-product terms, by independence of the (X`)’s
and Stein’s lemma, one gets

E
(
X>` v erf(λX>` k)X>j v erf(λX>j k)

)
= E

(
X>` v erf(λX>` k)

)
E
(
X>j v erf(λX>j k)

)
= C2ρ2 ,

with C := λE(erf ′(λX>` k)) = 2λ/
√

(1 + 2λ2)π by Lemma 18(i). This leads to

R3 =
4λ2

(1 + 2λ2)π
(L− 1)(L− 2)ρ2.

Computation of R4. We have, again by independence and Stein’s lemma,

E
((
X>1 v

? −X>1 v erf(λX>1 k)
)
X>` v erf(λX>` k)

)
= E

(
X>1 v

? −X>1 v erf(λX>1 k)
)
E
(
X>` v erf(λX>` k)

)
=
(√d

2
(k?)>v? − E(X>1 v erf(λX>1 k))

)
E
(
X>` v erf(λX>` k)

)
= −E(X>1 v erf(λX>1 k)) · Cρ

= − 2λρ√
(1 + 2λ2)π

E(X>1 v erf(λX>1 k)) .

Note that, still using Stein’s lemma,

−E(X>1 v erf(λX>1 k))

= −E(

√
d

2
(k?)>v erf(λX>1 k))− E((X>1 v −

√
d

2
(k?)>v) erf(λX>1 k))

= −E(

√
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2
θ erf(λX>1 k))− Cov

(
X>1 v, erf(λX>1 k)

)
= −

√
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2
θE(erf(λX>1 k))− λCov

(
X>1 v,X

>
1 k
)
E
(

erf ′(λX>1 k)
)
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√
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θ erf

(
λ
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)
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1√
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erf ′

(
λ
√
d/2κ√

1 + 2λ2γ2

)
,

where we used that λX>1 k
L
= λ

√
d/2κ + G with G ∼ N (0, λ2γ2), in combination with

Lemma 18(i)− (ii). Thus

R4 =
4λ(L− 1)ρ√

(1 + 2λ2)π

(√
d

2
θ erf

( λ
√
d/2κ√

1 + 2λ2γ2

)
+

λγ2ρ√
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( λ

√
d/2κ√

1 + 2λ2γ2

))
.

All in all. Putting everything together, we obtain

R(k, v) = ε2

+ γ2 − 2γ2νerf
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λ
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d/2κ√
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)
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1√
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λ
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)
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+

√
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λ
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)
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+
4λ2γ4ρ2

√
π
√

1 + 4λ2γ2(1 + 2λ2γ2)
erf ′
(
− λ

√
dκ√

1 + 4λ2γ2

)
+ (L− 1)

[
ζ(0, λ2) +

8λ2

π
√

1 + 4λ2(1 + 2λ2)
ρ2

]
+

4λ2

(1 + 2λ2)π
(L− 1)(L− 2)ρ2

+
4λ(L− 1)ρ√

(1 + 2λ2)π

(√
d

2
θ erf

(
λ
√
d/2κ√

1 + 2λ2γ2

)
+

λγ2ρ√
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(

λ
√
d/2κ√
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)
.

This concludes the proof. �

Appendix C. Technical results

This section gathers formulas that are useful in the proofs, in particular regarding
expectation of functions of Gaussian random variables involving erf.

Lemma 16. For u > 0, ∣∣∣ 1√
1 + u

− 1
∣∣∣ 6 u .

Proof. The argument of the absolute value is non-positive for u > 0, hence we need to show
that

f(u) := 1− 1√
1 + u

− u

is non-positive for u > 0. Just note that

f(0) = 0 and f ′(u) =
1

(1 + u)3+2
− 1 6 0 .

�

Recall that the erf function is defined on R as

erf(u) =
2√
π

∫ u

0
e−t

2
dt .

Lemma 17 (Properties of the erf function). We have

erf ′(u) =
2√
π
e−u

2
,

erf ′′(u) = − 4√
π
ue−u

2
= −2uerf ′(u) ,

|erf(u)| 6 2√
π
|u| .

Proof. The first two statements are clear by usual differentiation rules. Regarding the last
statement, since erf is an odd function, it is sufficient to prove the statement for u > 0.
Moreover, erf is concave on [0,∞), so we get, for u > 0,

|erf(u)| = |erf(u)− erf(0)| 6 erf ′(0)u =
2√
π
u ,

which concludes the proof. �

Lemma 18. Let G ∼ N (0, γ2). For t ∈ R,

(i) E
[
erf ′(t+G)

]
= 1√

1+2γ2
erf ′
(

t√
1+2γ2

)
.

(ii) E [erf(t+G)] = erf
(

t√
1+2γ2

)
.

(iii) E
[
erf ′′(t+G)

]
= 1

1+2γ2 erf ′′
(

t√
1+2γ2

)
.
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(iv) E
[
(erf ′)2(t+G)

]
= 2√

π
√

1+4γ2
erf ′
(
−

√
2t√

1+4γ2

)
.

(v) (1+2γ2)E[erf(t+G)erf ′′(t+G)] = −2tE[erf(t+G)erf ′(t+G)]−2γ2E[(erf ′(t+G))2].
(vi) E

[
erf(t+G)erf ′(t+G)

]
= 1√

1+2γ2
erf
(

t√
(1+4γ2)(1+2γ2)

)
erf ′
(

t√
1+2γ2

)
.

Proof. (i) By Lemma 17,

E
[
erf ′(t+G)

]
=

√
2

πγ

∫
e−(t+g)2

e
− g2

2γ2 dg

=

√
2

πγ

∫
e−

g2

c e−2gte−t
2
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2γ2

1 + 2γ2

=

√
2

πγ

∫
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(g+ct)2

c
+ct2−t2dg

=

√
2

πγ
e−t

2(1−c)
∫
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(g+ct)2

c dg︸ ︷︷ ︸
=
√
πc

=
2√

π(1 + 2γ2)
exp

(
−t2

(
1− 2γ2

1 + 2γ2

))
=

2
√
π
√

1 + 2γ2
exp

(
− t2

1 + 2γ2

)
.

(ii) By (i),

E [erf(t+G)] =

∫ t

−∞
E
[
erf ′(s+G)

]
ds

=

∫ t

−∞

2
√
π
√

1 + 2γ2
exp

(
− s2

1 + 2γ2

)
ds

=

∫ t/
√

1+2γ2

−∞

2√
π
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(
−u2

)
ds

= erf
( t√

1 + 2γ2

)
.

(iii) By Lemma 17, and following the same steps as in (i),

E
[
erf ′′(t+G)

]
= − 2

√
2√
πγ

∫
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e
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√
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√
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t
√
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√
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2
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2c√
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e−t
2(1−c) 1

1 + 2γ2
t

= − 4t√
π(1 + 2γ2)3/2

exp

(
− t2

1 + 2γ2

)
.
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(iv) By Lemma 17,

E
[
(erf ′)2(t+G)

]
=

1√
2πγ

∫
(erf ′)2(t+ g)e

− g2

2γ2 dg

=
2
√

2

γπ3/2

∫
e−2(t+g)2

e
− g2

2γ2 dg

=
2
√

2

γπ3/2

∫
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g2

2Γ2 e−4gte−2t2 dg with Γ2 := γ2/(1 + 4γ2)

=
2
√

2

γπ3/2

∫
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(g+4Γ2t)2
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2
√
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γπ3/2
e−2t2(1−4Γ2)
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=
2
√

2
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√
2πΓ

=
4

π
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1 + 4γ2
exp

(
− 2t2
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)
.

(v) We use Lemma 17 and then Stein’s lemma:

E[erf(t+G)erf ′′(t+G)]

= −2E
[
(t+G)erf(t+G)erf ′(t+G)

]
= −2tE

[
erf(t+G)erf ′(t+G)

]
− 2E
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]
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]
− 2γ2

(
E
[
erf ′(t+G)2

]
+ E

[
erf(t+G)erf ′′(t+G)

])
.

Reordering terms, this gives the desired equation.
(vi) We define the function

f(t) = E
[
erf(t+G)erf ′(t+G)

]
.

Then, using Lemma 18(v), we have

f ′(t) = E
[
erf ′(t+G)2

]
+ E

[
erf(t+G)erf ′′(t+G)

]
= E

[
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(erf ′(t+G))2

]
=

1

1 + 2γ2
E
[
(erf ′(t+G))2

]
− 2t

1 + 2γ2
f(t) .

We solve this differential equation by the method of variation of parameters: we
have

d

dt

(
f(t)et

2/(1+2γ2)
)

=
1

1 + 2γ2
E
[
(erf ′(t+G))2

]
et
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We use Lemmas 17 and 18(iv):

d
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)
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1
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√
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)
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=
4

π

1

(1 + 2γ2)
√

1 + 4γ2
exp

(
− t2

(1 + 2γ2)(1 + 4γ2)

)

=
2√
π

1

(1 + 2γ2)
√

1 + 4γ2
erf ′

(
t√

(1 + 2γ2)(1 + 4γ2)

)
.

As the distribution of G is symmetric and erf is an odd function, we have that
f(0) = E

[
erf(G)erf ′(G)

]
= 0. Thus integrating the above derivative, we obtain

f(t)et
2/(1+2γ2) =

2√
π

1

(1 + 2γ2)
√

1 + 4γ2

∫ t

0
ds erf ′

(
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)
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2√
π

1√
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(
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.

Using again Lemma 17, we obtain the claimed result:

f(t) =
1√

1 + 2γ2
erf ′

(
t√

1 + 2γ2

)
erf

(
t√

(1 + 2γ2)(1 + 4γ2)

)
.

�

Appendix D. Experimental details and additional results

Our code is available at
https://github.com/PierreMarion23/single-location-regression.
We use the Transformers (Wolf et al., 2020) and scikit-learn (Pedregosa et al., 2011)

libraries for the experiment of Section 2, and JAX (Bradbury et al., 2018) for the experiment
of Section 5. All experiments run in a short time (less than one hour) on a standard laptop.

D.1. Experiment of Section 2 (NLP motivations). Data generation. We use
synthetically-generated data for this experiment. To create our train set, we generate
sentences according to the patterns

The city is [SENTIMENT ADJ]. [PRONOUN] [COLOR ADJ] [ANIMAL] is [ADV]
[SENTIMENT ADJ].

and
The city is [SENTIMENT ADJ]. [PRONOUN] [SENTIMENT ADJ] [ANIMAL] is [ADV]

[COLOR ADJ].
where ADJ stands for adjective and ADV for adverb. Note that the difference between the
two patterns is that the locations of the sentiment and of the color adjectives are swapped.
Each element between brackets corresponds to a word, which can take a few different
values that are chosen manually. For instance, some possible sentiment adjectives are nice,
clean, cute, delightful, mean, dirty, or nasty. A possible value for some words is ∅,
meaning that we remove the word from the sentence, which creates more variety in sentence
length. By doing the Cartesian product over the possible values of each word in brackets,
we generate in this way a large number of examples. Then, the label associated to each
example depends solely on the sentiment adjective appearing in the second sentence. For
instance, the words nice, clean, cute, or delightful are associated to a label +1, while
the words delightful, mean, and dirty are associated to a label −1.

We now explain how the test sets are generated. We generate four test sets in order to
assess the robustness of the model to various out-of-distribution changes. The baseline test
set uses the same sentence patterns and the same sentiment adjectives as in the training set,
but other words in the example (e.g., animals, adverb) are different. In particular, a given
sentence cannot appear both in the train set and in the test set. Then, we generate another

https://github.com/PierreMarion23/single-location-regression
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test set by using sentiment adjectives that are not present in the training set. We emphasize
that the sentiment adjective fully determines the label, so using unseen adjectives at test
time makes the task significantly harder. The third test set uses the same adjectives as in
the train set, but another sentence pattern, namely
Hello, how are you? Good evening, [PRONOUN] [COLOR ADJ] [ANIMAL] is [ADV]

[SENTIMENT ADJ].
Finally, the fourth test set combines a different sentence pattern and unseen adjectives.
The size of the datasets is given in Table 1. All datasets have the same number of +1 and
−1 labels.

Name Number of examples

Train set 15552
Test set 4608

Test w. OOD tokens 3072
Test w. OOD structure 144

Test w. OOD structure+tokens 96

Table 1. Size of the generated datasets.

Model. We recall that there exists several families of Transformer architectures, which
in particular are not all best suited for sequence classification. An appropriate family is
called encoder-only Transformer, and a foremost example is BERT (Devlin et al., 2019).
We refer to Phuong and Hutter (2022) for an introductory discussion of Transformer
architectures and associated algorithms. Here, we use a pretrained BERT model from
the Hugging Face Transformers library (Wolf et al., 2020), with the default configuration,
namely bert-base-uncased. The model has 110M parameters, 12 layers, the tokens have
dimension d = 768, and each attention layer has 12 heads. It was pretrained by masked
language modeling, namely some tokens in the input are hidden, and the model learns to
predict the missing tokens. We refer to Devlin et al. (2019) for details on the architecture
and pretraining procedure. We do not perform any fine-tuning on the model.

Experiment design. Our experiment consists in performing logistic regression on
embeddings of [CLS] tokens in the hidden layers of the pretrained BERT model, where we
recall that the [CLS] token is a special token added to the beginning of each input sequence.
This is a particular case of the so-called linear probing, which is a common technique in
the field of LLMs interpretability. More precisely, let ` denote a layer index between 0
and 12, where the index 0 corresponds to the input to the model (after tokenization and
embedding in Rd). Then, for each value of ` ∈ {0, . . . , 12}, we train a logistic regression
classifier, where, for each example, the input to the classifier is the embedding of the [CLS]
token at layer ` (that is, a d-dimensional vector), and the label is simply the label of the
sentence as described above.

Results. For ` = 0 (blue bar in Figure 1b), the embedding of [CLS] is a fixed vector that
does not depend on the rest of the sequence, so the classifier has a pure-chance accuracy
of 50%. However, as soon as ` > 0, thanks to the attention mechanism, the [CLS] token
contains information about the sequence. We report in Figure 1b the average accuracy over
` ∈ {1, . . . , 12} for the train set (in orange) and the test sets (in green). We observe that
the information contained in the [CLS] token is actually very rich, since logistic regression
achieves a perfect accuracy of 100% in the train set. In other words, the data fed to the
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classifier is linearly separable. We emphasize that the size of the train set is significantly
larger than the ambient dimension d, so it is far from trivial that this procedure would yield
a linearly-separable dataset. Therefore, obtaining linearly-separable data demonstrates that
the model constructs a linear representations of the input inside the [CLS] token. Moving
on to the test sets, the accuracy on the baseline test set is very good (95%), which suggests
some generalization abilities of the model. The accuracy on the out-of-distribution test sets
degrades (between 64% and 75%), but remains largely superior to pure-chance performance.
This suggests that the internal representation built by the Transformer model is to some
extent universal, in the sense that it is robust to the specifics of the sentence structure and
of the word choice.

D.2. Experiment of Section 5 (Gradient descent recovers the oracle predictor).
We begin by providing additional results before giving experimental details.

PGD with an initialization on the sphere and constant inverse temperature
schedule. As emphasized in Section 5, the dynamics of PGD with a general initialization
on (Sd−1)2 depend on the choice of the inverse temperature schedule λt. The experiment
presented in the main text in Figure 4a is for a decreasing schedule λt = 1/(1 + 10−4t). We
report in Figure 7 results when taking a constant inverse temperature. We observe distinct
patterns depending on the value of this parameter. With a large inverse temperature
(Figure 7a), we observe that the dynamics in (κ, ν) always escape the neighborhood of 0.
Furthermore, the direction v? is almost perfectly recovered, i.e., ν ≈ 1. However, the value
of k? is only partially recovered: the dynamics stabilize around κ ≈ 0.3. Moreover, the
excess risk plateaus at a high value, while the dynamics stay far away from the manifoldM.
In the case of a smaller inverse temperature (Figure 7b), the situation is different. We
observe that some initializations lead to a convergence to the point (κ, ν) = (0, 0), in which
case the dynamics stay far from the manifoldM. In other words, there is no recovery of k?
and v?. Other initializations lead to perfect recovery of k? and v?. In all cases, the final
excess risk is low. Theoretical study of these observations is left for future work.

Implementation details. The implementation of the PGD algorithm (10) requires
to compute the gradient of the risk. To this aim, we use the formula for the risk given
by Proposition 15. Note that all quantities appearing in this expression have explicit
derivatives. The only quantity for which this is not directly clear is the function ζ, which
needs to be differentiated with respect to its first variable to compute the derivative of
the risk with respect to κ. However, recall that ζ(t, γ2) := E

[
erf2(t+G)

]
. Then, by

Lemma (18),

∂tζ(t, γ2) = 2E
[
(erf erf ′)(t+G)

]
=

2√
1 + 2γ2

erf

(
t√

(1 + 4γ2)(1 + 2γ2)

)
erf ′

(
t√

1 + 2γ2

)
.

Evaluating ζ itself (and not its derivative) is not required to simulate the dynamics, but is
useful for reporting the value of the risk. For this, we also use the formula above, and use
numerical quadrature to compute the value of

ζ(t, γ2) =

∫ t

−∞
∂sζ(s, γ2)ds .

We report in the figures the value of the excess risk, i.e., the risk Rλ(k, v)− ε2. To compute
the distance to the manifoldM, recall that it is defined by

M = {(k, v) ∈ Sd−1 × Sd−1, k>v? = 0, v>k? = 0, k>v = 0} .
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(a) For λt = 0.9.
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(b) For λt = 0.1.

Figure 7. Dynamics of PGD from a random initialization on (Sd−1)2, for
two iteration-independent values of λt. Left: Excess risk as a function of
the number of steps. Middle left: Alignment |κ| = |k>k?| and |ν| = |v>v?|
with the oracle parameters. Middle right: Trajectories of κ and ν in a few
repetitions of the experiments. Each repetition corresponds to a color, the
end point of each trajectory is in blue. Right: Distance to the invariant
manifoldM. In all plots except the middle right ones, the experiment is
repeated 30 times with independent random initializations, and either 95%
percentile intervals are plotted or all the curves are plotted. Parameters are
d = 400, L = 10, and γ =

√
1/2.

For a point (k, v) ∈ Sd−1 × Sd−1, its distance toM is therefore computed as

dM((k, v)) =
√

(k>v?)2 + (v>k?)2 + (k>v)2 .

Parameter values. The following table summarizes the value of the parameters in our
experiments.

Name Figure 4a Figure 4b Figure 5 Figure 7a Figure 7b

d 400 400 80 400 400
L 10 10 10 10 10

γ 1/
√

2 1/
√

2 1/
√

2 1/
√

2 1/
√

2
λt 1/(1 + 10−4t) 0.1 2/(1 + 10−4t) 0.9 0.1
α 4 · 10−3 4 · 10−3 10−3 10−3 4 · 10−3

Number of steps 120k 20k 200k 120k 20k
N. of repetitions 30 30 30 30 30

Batch size - - 5 - -
ε 0 0 0.1 0 0

Table 2. Parameter values for the experiments on recovery of the oracle
predictor by gradient descent.


	1. Introduction
	2. Single-location regression task
	2.1. Statistical setting
	2.2. Language processing motivation

	3. An attention-based predictor to solve the regression task
	4. Risk of the oracle and of the linear predictors
	5. Gradient descent provably recovers the oracle predictor
	6. Outline of the proof of Theorem 5
	7. Conclusion
	References
	Appendix A. Proofs of the main results
	A.1. Proof of Lemma 6 and Theorem 1
	A.2. Proof of Corollary 2
	A.3. Proof of Proposition 3
	A.4. Proof of Lemma 4
	A.5. Proof of Lemma 7
	A.6. Proof of Proposition 8
	A.7. Proof of Proposition 9
	A.8. Proof of Proposition 10
	A.9. Proof of Proposition 12
	A.10. Proof of Proposition 13

	Appendix B. Expression of the risk beyond the invariant manifold
	Appendix C. Technical results
	Appendix D. Experimental details and additional results
	D.1. Experiment of Section 2 (NLP motivations)
	D.2. Experiment of Section 5 (Gradient descent recovers the oracle predictor)


