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Abstract
Physics-informed machine learning typically integrates physical priors into the learning process by
minimizing a loss function that includes both a data-driven term and a partial differential equation
(PDE) regularization. Building on the formulation of the problem as a kernel regression task, we
use Fourier methods to approximate the associated kernel, and propose a tractable estimator that
minimizes the physics-informed risk function. We refer to this approach as physics-informed kernel
learning (PIKL). This framework provides theoretical guarantees, enabling the quantification of the
physical prior’s impact on convergence speed. We demonstrate the numerical performance of the
PIKL estimator through simulations, both in the context of hybrid modeling and in solving PDEs.
In particular, we show that PIKL can outperform physics-informed neural networks in terms of both
accuracy and computation time. Additionally, we identify cases where PIKL surpasses traditional
PDE solvers, particularly in scenarios with noisy boundary conditions.
Keywords: Physics-informed machine learning, Kernel methods, Physics-informed neural net-
works, Rates of convergence, Physical regularization

1 Introduction

Physics-informed machine learning. Physics-informed machine learning (PIML), as described
by Raissi et al. (2019), is a promising framework that combines statistical and physical principles
to leverage the strengths of both fields. PIML can be applied to a variety of problems, such as
solving partial differential equations (PDEs) using machine learning techniques, leveraging PDEs
to accelerate the learning of unknown functions (hybrid modeling), and learning PDEs directly
from data (inverse problems). For an introduction to the field and a literature review, we refer to
Karniadakis et al. (2021) and Cuomo et al. (2022).

Hybrid modeling setting. We consider in this paper the classical regression model, which aims
at learning the unknown function f⋆ : Rd → R such that Y = f⋆(X) + ε, where Y ∈ R is
the output, X ∈ Ω are the features with Ω ⊆ [−L,L]d the input domain, and ε is a random
noise. Using n observations (X1, Y1), . . . , (Xn, Yn), independent copies of (X,Y ), the goal is to
construct an estimator f̂n of f⋆. What makes PIML special compared to other regression settings
is the prior knowledge that f⋆ approximately follows a PDE. Therefore, we assume that f⋆ is
weakly differentiable up to the order s > d

2 and that there exists a known differential operator D
such that D(f⋆) ≃ 0. This framework typically accounts for modeling error by recognizing that
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D(f⋆) may not be exactly zero, since most PDEs in physics are derived under ideal conditions
and may not hold exactly in practice. For example, if f⋆ is expected to satisfy the wave equation
∂2
t f(x, t) ≃ ∂2

xf(x, t), we define the operator D(f)(x, t) = ∂2
t f(x, t)− ∂2

xf(x, t) for (x, t) ∈ Ω.
To estimate f⋆, we consider the minimizer of the physics-informed empirical risk

Rn(f) =
1

n

n∑
i=1

|f(Xi)− Yi|2 + λn∥f∥2Hs(Ω) + µn∥D(f)∥2L2(Ω) (1)

over the class F = Hs(Ω) of candidate functions, where λn > 0 and µn ⩾ 0 are hyperparame-
ters that weight the relative importance of each term. Here, Hs(Ω) denotes the Sobolev space of
functions with weak derivatives up to order s. The empirical risk function Rn(f) is characteristic
of hybrid modeling, as it is composed of:

• A data fidelity term 1
n

∑n
i=1 |f(Xi) − Yi|2, which is standard in supervised learning and

measures the discrepancy between the predicted values f(Xi) and the observed targets Yi;

• A regularization term λn∥f∥2Hs(Ω), which penalizes the regularity of the estimator;

• A model error term µn∥D(f)∥2L2(Ω), which measures the deviation of f from the physical
prior encoded in the differential operator D . To put it simply, the lower this term, the more
closely the estimator aligns with the underlying physical principles.

Throughout the paper, we refer to f̂n as the unique minimizer of the empirical risk function, i.e.,

f̂n = argmin
f∈Hs(Ω)

Rn(f). (2)

Algorithms to solve the PIML problem. Various algorithms have been proposed to compute the
estimator f̂n, and physics-informed neural networks (PINNs) have emerged as a leading approach
(e.g., Raissi et al., 2019; Arzani et al., 2021; Karniadakis et al., 2021; Kurz et al., 2022; Agharafeie
et al., 2023). PINNs are usually trained by minimizing a discretized version of the risk over a class
of neural networks using gradient descent strategies. Leveraging the good approximation properties
of neural networks, as the size of the PINN grows, this type of estimator typically converges to
the unique minimizer over the entire space Hs(Ω) (Shin et al., 2020; Doumèche et al., 2024b;
Mishra and Molinaro, 2023; Shin et al., 2023; Bonito et al., 2024). However, apart from the fact
that optimizing PINNs by gradient descent is an art in itself, the theoretical understanding of the
estimators derived through this approach is far from complete (Bonfanti et al., 2024; Rathore et al.,
2024), and only a few initial studies have begun to outline their theoretical contours (Krishnapriyan
et al., 2021; Wang et al., 2022a; Doumèche et al., 2024b). Alternative algorithms for physics-
informed learning have since been developed, primarily based on kernel methods, and are seen as
promising candidates for bridging the gap between machine learning and PDEs. The connections
between PDEs and kernel methods are now well established (e.g., Schaback and Wendland, 2006;
Chen et al., 2021; Batlle et al., 2023). Recently, a kernel method has been adapted to perform
operator learning (Nelsen and Stuart, 2024). It consists of solving a PDE using samples of the initial
condition (with a purely data driven empirical risk). In the case of hybrid modeling, including noise
(ε ̸= 0) and modeling error (D(f⋆) ̸= 0), Doumèche et al. (2024a) show that the PIML problem
(2) can be reformulated as a kernel regression task. Provided the associated kernel K is made
explicit, this reformulation allows to obtain a closed-form estimator that converges at least at the
Sobolev minimax rate. However, the kernel K is highly dependent on the underlying PDE, and its
computation can be tedious even for the the most simple priors, such as D = d

dx in one dimension.
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Quantifying the impact of physics. Understanding how physics can enhance learning is of crit-
ical importance to the PIML community. Arnone et al. (2022) show that for second-order elliptic
PDEs in dimension d = 2, the PIML estimator converges at a rate of n−4/5, outperforming the
Sobolev minimax rate of n−2/3. For general linear PDEs in dimension d, Doumèche et al. (2024a)
adapt to PIML the notion of effective dimension, a central idea in kernel methods that quantify
their convergence rate. In particular, for d = 1, s = 1, Ω = [−L,L], and D = d

dx , these authors
show that the L2-error of the physics-informed kernel method is of the order of log(n)2/n when
D(f⋆) = 0, and achieves the Sobolev minimax rate n−2/3 otherwise. However, extending this type
of results to more complex differential operators D remains a challenge.

Contributions. Building on the characterization of the PIML problem as a kernel regression task,
we use Fourier methods to approximate the associated kernel K and, in turn, propose a tractable esti-
mator minimizing the physics-informed risk function. The approach involves developing the kernel
K along the Fourier modes with frequencies bounded my m, and then taking m as large as possible.
We refer to this approach as the physics-informed kernel learning (PIKL) method. Subsequently,
for general linear operators D , a numerical strategy is developed to estimate the effective dimension
of the kernel problem, allowing for the quantification of the expected statistical convergence rate
when incorporating the physics prior into the learning process. Finally, we demonstrate the numeri-
cal performance of the PIKL estimator through simulations, both in the context of hybrid modeling
and in solving partial differential equations. In short, the PIKL algorithm consistently outperforms
specialized PINNs from the literature, which were specifically designed for the applications under
consideration.

2 The PIKL estimator

In this section, we detail the construction of the PIKL estimator, our approximate kernel method for
physics-informed learning. We begin by observing that solving the PIML problem (2) is equivalent
to performing a kernel regression task, as shown by Doumèche et al. (2024a, Theorem 3.3). Thus,
leveraging the extensive literature on kernel methods, it follows that the estimator f̂n has the closed-
form expression

f̂n =
(
x 7→ (K(x,X1), . . . ,K(x,Xn))(K + nIn)

−1Y
)
,

where K : Ω2 → R is the PIML kernel associated with the problem, and K ∈ Mn(R) is the kernel
matrix defined by Ki,j = K(Xi, Xj).

A finite-element-method approach. The analysis of Doumèche et al. (2024a) reveals that the
kernel related to the PIML problem is uniquely characterized as the solution to a weak PDE. Indeed,
for all x ∈ Ω, the function y 7→ K(x, y) is the unique solution in Hs(Ω) to the weak formulation

∀ϕ ∈ Hs(Ω), λn

∫
Ω

[
K(x, ·) ϕ+

∑
|α|=d

∂αK(x, ·) ∂αϕ
]
+µn

∫
Ω

D(K(x, ·)) D(ϕ) = ϕ(x). (3)

A spontaneous idea is to approximate the kernel K using finite element methods (FEM). For illustra-
tive purposes, we have applied this approach in numerical experiments with d = 1, Ω = [0, 1], and
D(f) = d

dxf − f . Figure 1 (Left) depicts the associated kernel function K(0.4, ·) with λn = 10−2,
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Figure 1: Left: Kernel function K(0.4, ·) estimated by the FEM. Right: Kernel method f̂n com-
bined with the FEM.

µn = 0, and 100 nodes. Figure 1 (Right) shows that the PIML method (2) successfully recon-
structs f⋆(x) = exp(x) using n = 10 data points, ε ∼ N (0, 10−2), λn = 10−10, and µn = 1000.
However, solving the weak formulation (3) in full generality is quite challenging, particularly when
dealing with arbitrary domains Ω in dimension d > 1. In fact, FEM strategies need to be specifically
tailored to the PDE and the domain in question. Additionally, standard kernel methods combined
with FEM approaches come at a high computational cost, since storing the matrix K requires O(n2)
memory. This becomes prohibitive for large amounts of data, as n = 104 already requires several
gigabytes of RAM.

Fourier approximation. Our primary objective in this article is to develop a more agile, flexible,
and efficient method capable of handling arbitrary domains Ω. To achieve this, a natural approach
is to expand the kernel K as a truncated Fourier series, i.e., Km(x, y) =

∑
∥k∥∞⩽m akϕk(x)ϕk(y),

with (ϕk)∥k∥∞⩽m the Fourier basis, (ak)∥k∥∞⩽m the kernel coefficients in this basis, and m the
order of approximation. This idea is at the core of techniques such as random Fourier features
(RFF) (e.g., Rahimi and Recht, 2007; Yang et al., 2012). However, unlike RFF, the Fourier features
in our problem are not random quantities, as they systematically correspond to the low-frequency
modes. This low-frequency approximation is particularly well-suited to the Sobolev penalty, which
more strongly regularizes high frequencies (the analogous RFF algorithm would involve sampling
random frequencies k according to a density that is proportional to the Sobolev decay). In addition,
and more importantly, the use of such approximations bypasses the need to discretize the domain
into finite elements and requires only the knowledge of the (partial) Fourier transform of 1Ω, as will
be explained later.

So, following Doumèche et al. (2024a), our PIKL algorithm first requires extending the learning
problem from Ω ⊆ [−L,L]d to the torus [−2L, 2L]d. This initial technical step allows us to use
approximations with the standard Fourier basis, given for k ∈ Zd and x ∈ [−2L, 2L]d by

ϕk(x) = (4L)−d/2e
iπ
2L

⟨k,x⟩,
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particularly adapted to periodic functions on [−2L, 2L]d. The minimization of the risk Rn from (1)
over Hs(Ω) can be then transferred into the minimization of the PIML risk

R̄n(f) =
1

n

n∑
i=1

|f(Xi)− Yi|2 + λn∥f∥2Hs
per([−2L,2L]d) + µn∥D(f)∥2L2(Ω) (4)

over the periodic Sobolev space Hs
per([−2L, 2L]d). The kernel underlying (4) is determined by the

RKHS norm
∥f∥2RKHS = λn∥f∥2Hs

per([−2L,2L]d) + µn∥D(f)∥2L2(Ω).

It is important to note that the estimators derived from the minimization of either Rn or R̄n share
the same statistical guarantees, as both kernel methods have been shown to converge to f⋆ at the
same rate (Doumèche et al., 2024a, Theorem 4.6).

Since the kernel K associated with problem (2) is most often intractable, a key milestone in
the development of our method is to minimize R̄n not over the entire space Hs

per([−2L, 2L]d), but
rather on the finite-dimensional Fourier subspace Hm = Span((ϕk)∥k∥∞⩽m). This leads to the
PIKL estimator, defined by

f̂PIKL = argmin
f∈Hm

R̄n(f). (5)

This naturally transforms the PIML problem into a finite-dimensional kernel regression task, where
the associated kernel Km corresponds to a Fourier expansion of K, as will be clarified in the follow-
ing paragraph. Of course, Hm provides better approximates of Hs

per([−2L, 2L]d) as m increases,
since for any function f ∈ Hs

per([−2L, 2L]d), limm→∞ming∈Hm ∥f − g∥Hs
per([−2L,2L]d) = 0. Re-

markably, the key advantage of using Fourier approximations in our PIKL algorithm lies in the fact
that both the Sobolev norm ∥f∥Hs

per([−2L,2L]d) and the PDE penalty ∥D(f)∥L2(Ω) are bilinear func-
tions of the Fourier coefficients of f . As shown below, these bilinear forms can be represented as
closed-form matrices, easing the computation of the estimator.

RKHS norm in Fourier space. Suppose that the differential operator D is linear with constant
coefficients, i.e., it can be expressed as D(f) =

∑
|α|⩽s aα∂

αf for some s ∈ N⋆ and aα ∈ R. If
f ∈ Hm, then f can be rewritten in terms of its Fourier coefficients as

f(x) = ⟨z,Φm(x)⟩
C(2m+1)d ,

where ⟨·, ·⟩
C(2m+1)d denotes the canonical inner product on C(2m+1)d , z is the vector of Fourier

coefficients of f , and

Φm(x) =
(
x 7→ (4L)−d/2e

iπ
2L

⟨k,x⟩
)
∥k∥∞⩽m

.

According to Parseval’s theorem, the L2-norm of the derivatives of f ∈ Hs
per([−2L, 2L]d) can be

expressed using the Fourier coefficients of f as follows: for r ⩽ s and 1 ⩽ i1, . . . , ir ⩽ d,

∥∂r
i1,...,irf∥

2
L2([−2L,2L]d) = (2L)−2k

∑
∥j∥∞⩽m

|zj |2
r∏

ℓ=1

j2iℓ .
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With this notation, the Sobolev norm reads

∥f∥2Hs
per([−2L,2L]d) =

∑
∥j∥∞⩽m,∥k∥∞⩽m

zj z̄k

(
1 +

( ∥k∥22
(2L)d

)s)
δj,k,

and, similarly,

∥D(f)∥2L2(Ω) =
∑

∥j∥∞⩽m,∥k∥∞⩽m

zj z̄k
P (j)P̄ (k)

(4L)d

∫
Ω
e

iπ
2L

⟨k−j,x⟩dx,

where P (k) =
∑

|α|⩽s aα(
−iπ
2L )|α|

∏d
ℓ=1(kℓ)

αℓ . Therefore, introducing Mm ∈ M(2m+1)d(C) the
matrix with coefficients indexed by j, k ∈ {−m, . . . ,m}d,

(Mm)j,k = λn

(
1 +

( ∥k∥22
(2L)d

)s)
δj,k + µn

P (j)P̄ (k)

(4L)d

∫
Ω
e

iπ
2L

⟨k−j,x⟩dx, (6)

we obtain that the RKHS norm of f is expressed as a bilinear form of its Fourier coefficients z, i.e.,

∥f∥2RKHS = ⟨z,Mmz⟩
C(2m+1)d .

It is important to note that Mm is Hermitian,1 positive,2 and definite.3 Therefore, the spectral
theorem (see Theorem B.6) ensures that Mm is invertible, and that its positive inverse square root
M

−1/2
m is unique and well-defined. We have now all the ingredients to define the PIKL algorithm.

Remark 2.1 (Linear PDEs with non-constant coefficients) This framework could be adapted to
PDEs with non-constant coefficients, i.e., to operators D(f) =

∑
|α|⩽s aα∂

αf for some s ∈ N⋆ and
aα ∈ C0(R). In this case, the polynomial P in (6) should be replaced by convolutions involving the
Fourier coefficients of the functions aα.

Computing the PIKL estimator. For a function f ∈ Hm, one can evaluate f at x by f(x) =

⟨M1/2
m z,M

−1/2
m Φm(x)⟩

C(2m+1)d . This reproducing property indicates that minimizing the risk R̄n

on Hm is a kernel method governed by the kernel

Km(x, y) = ⟨M−1/2
m Φm(x),M−1/2

m Φm(y)⟩
C(2m+1)d .

Define Y = (Y1, . . . , Yn)
⊤ and Km ∈ Mn(C) to be the matrix such that (Km)i,j = Km(Xi, Xj)

for all 1 ⩽ i, j ⩽ n. The PIKL estimator (5), minimizer of R̄n restricted to Hm, is therefore given
by

f̂PIKL(x) = (Km(x,X1), . . . ,Km(x,Xn))(Km + nIn)
−1Y

= Φm(x)⋆(Φ⋆Φ + nMm)−1Φ⋆Y, (7)

1. since M⋆
m = M̄⊤

m = Mm.
2. since ⟨z,Mmz⟩

C(2m+1)d = ∥f∥2RKHS ⩾ 0.
3. since ⟨z,Mmz⟩

C(2m+1)d = 0 implies ∥f∥Hs([−2L,2L]d) = 0, i.e., f = 0.

6



PHYSICS-INFORMED KERNEL LEARNING

where Φ =

Φm(X1)
⋆

...
Φm(Xn)

⋆

 ∈ Mn,(2m+1)d(C). The formula obtained in (7) is provided by the so-

called kernel trick. This step offers a significant advantage to the PIKL estimator as it reduces the
computational burden in large sample regimes: instead of storing and inverting the n × n matrix
Km + nIn, we only need to store and invert the (2m + 1)d × (2m + 1)d matrix Φ⋆Φ + nMm.
Moreover, the computation of Φ⋆Φ and Φ⋆Y can be performed online and in parallel as n grows. Of
course, this approach is subject to the curse of dimensionality. However, it is unreasonable to try
to learn more parameters than the sample complexity n. Therefore, in practice, (2m + 1)d ≪ n,
which justifies the preference of the (2m+ 1)2d storage complexity over the n2 storage complexity
of the FEM-based algorithm. In addition, similar to PINNs, the PIKL estimator has the advantage
that its training phase takes longer than its evaluation at certain points. In fact, once the (2m+ 1)d

Fourier modes of f̂n(x) (given by (Φ⋆Φ+nMm)−1Φ⋆Y ) are computed, the evaluation of Φ⋆
m(x) is

straightforward. This is in sharp contrast to the FEM-based strategy, which requires approximating
the kernel vector (K(x,X1), . . . ,K(x,Xn)) at each query point x.

We also emphasize that the PIKL predictor is characterized by low-frequency Fourier coef-
ficients, which, in turn, enhance its interpretability. This methodology differs significantly from
PINNs, which are less interpretable and rely on gradient descent for optimization (see, e.g., Wang
et al., 2022a).

Remark 2.2 (PIKL vs. spectral methods) In the PIML context, the RFF approach resembles a
well-known class of powerful tools for solving PDEs, known as spectral and pseudo-spectral meth-
ods (e.g., Canuto et al., 2007). These methods solve PDEs by selecting a basis of orthogonal
functions and computing the coefficients of the solution on that basis to satisfy both the boundary
conditions and the PDE itself. For example, the Fourier basis (x 7→ exp( iπ

2L⟨k, x⟩(2L)
−1))k∈Zd

already used in this paper is particularly well suited for solving linear PDEs on the square domain
[−2L, 2L]d with periodic boundary conditions. Spectral methods such as these have already been
used in the PIML community to integrate PDEs with machine learning techniques (e.g., Meuris
et al., 2023). However, the basis functions used in spectral and pseudo-spectral methods must be
specifically tailored to the domain Ω, the differential operator D , and the boundary conditions. For
more information on this topic, please refer to Appendix A.

Computing Mm for specific domains. Computing the matrix Mm requires the evaluation of the
integrals (j, k) 7→

∫
Ω e

iπ
2L

⟨k−j,x⟩dx. In general, these integrals can be approximated using numer-
ical integration schemes or Monte Carlo methods. However, it is possible to provide closed-form
expressions for specific domains Ω. To do so, for d ∈ N⋆, L > 0, and Ω ⊆ [−L,L]d, we define the
characteristic function FΩ of Ω by

FΩ(k) =
1

(4L)d

∫
Ω
e

iπ
2L

⟨k,x⟩dx.

Proposition 2.3 (Closed-form characteristic functions) The characteristic functions associated
with the cube and the Euclidean ball can be analytically obtained as follows.

• (Cube) Let Ω = [−L,L]d. Then, for k ∈ Zd,

FΩ(k) =
d∏

j=1

sin(πkj/2)

πkj
.

7
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• (Euclidean ball) Let d = 2 and Ω = {x ∈ [−L,L], ∥x∥2 ⩽ L}. Then, for k ∈ Zd,

FΩ(k) =
J1(π∥k∥2/2)

4∥k∥2
,

where J1 is the Bessel function of the first kind of parameter 1.

This proposition, along with similar analytical results for other domains, can be found in Bracewell
(2000, Table 13.4), noting that FΩ is the Fourier transform of the indicator function 1Ω and is also
the characteristic function of the uniform distribution on Ω evaluated at k

2L . We can extend these
computations further since, given the characteristic functions of elementary domains Ω, it is easy to
compute the characteristic functions of translation, dilation, disjoint unions, and Cartesian products
of such domains (see Proposition C.1 in Appendix C). For instance, it is straightforward to obtain the
characteristic function of the three-dimensional cylinder Ω = {x ∈ [−L,L], ∥x∥2 ⩽ L} × [−L,L]
as

FΩ(k1, k2, k3) =
J1(π(k

2
1 + k22)

1/2/2)

4(k21 + k22)
1/2

× sin(πk3/2)

πk3
.

3 The PIKL algorithm in practice

3 2 1 0 1 2 3

4
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1

0

1

Data
Target f
OLS
PIKL

Figure 2: OLS and PIKL estimators for
the harmonic oscillator with
d = 1, sample size n = 10.

To enhance the reproducibility of our work, we provide
a Python package that implements the PIKL estima-
tor, designed to handle any linear PDE prior with con-
stant coefficients in dimensions d = 1 and d = 2.
This package is available at https://github.com/
NathanDoumeche/numerical_PIML_kernel.
Note that this package implements the matrix inversion
of the PIKL formula (7) by solving a linear system us-
ing the LU decomposition. Of course, any other efficient
method to avoid direct matrix inversion could be used in-
stead, such as solving a linear system with the conjugate
gradient method.

Through numerical experiments, we demonstrate the
performance of our approach in simulations for hybrid
modeling (Subsection 3.1), and derive experimental con-
vergence rates that quantify the benefits of incorporating PDE knowledge into a learning regression
task (Subsection 3.2).

3.1 Hybrid modeling

Perfect modeling with closed-form PDE solutions. We start by assessing the performance of the
PIKL estimator in a perfect modeling situation (i.e., D(f⋆) = 0), where the solutions of the PDE
D(f) = 0 can be decomposed on a basis (fk)k∈N of closed-form solution functions. In this ideal
case, the spectral method suggests an alternative estimator, which involves learning the coefficients
ak ∈ R of f⋆ =

∑
k∈N akfk in this basis. For example, consider the one-dimensional case (d = 1)
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with domain Ω = [−π, π], and the harmonic oscillator differential prior D(f) = d2f
dx2 + df

dx + f .
In this case, the solutions of D(f) = 0 are the linear combinations f = a1f1 + a2f2, where
(a1, a2) ∈ R2, f1(x) = exp(−x/2) cos(

√
3x/2), and f2(x) = exp(−x/2) sin(

√
3x/2). Thus,

the spectral method focuses on learning the vector (a1, a2) ∈ R2, instead of learning the Fourier
coefficients of f⋆, which is the approach taken by the PIKL algorithm.

A baseline that exactly leverages the particular structure of this problem, referred to as the
ordinary least squares (OLS) estimator, is therefore ĝn = â1f1 + â2f2, where

(â1, â2) = argmin
(a1,a2)∈R2

1

n

n∑
i=1

|a1f1(Xi) + a2f2(Xi)− Yi|2.

1 2 3 4

4

3

2

1

0

OLS
PIKL

Figure 3: L2-error (mean ± std over 5
runs) of the OLS and PIKL
estimators for the harmonic
oscillator with d = 1, w.r.t.
n in log10− log10 scale. The
dashed lines represent ad-
justed linear models w.r.t. n,
for both L2-errors.

To compare the PIKL and OLS estimators, we generate
data such that Y = f⋆(X) + ε, where X ∼ U(Ω),
ε ∼ N (0, σ2) with σ = 0.5, and the target function
is f⋆ = f1 (corresponding to (a1, a2) = (1, 0)). We
implement the PIKL algorithm with 601 Fourier modes
(m = 300) and s = 2. Figure 2 shows that even with
very few data points (n = 10) and high noise levels, both
the OLS and PIKL methods effectively reconstruct f⋆,
both incorporating physical knowledge in their own way.
In Figure 3, we display the L2-error of both estimators
for different sample sizes n. The two methods have an
experimental convergence rate of n−1.1, which is consis-
tent with the expected parametric rate of n−1. This sanity
check shows that under perfect modeling conditions, the
PIKL estimator with m = 300 performs as well as the
OLS estimator specifically designed to explore the space
of PDE solutions.

Combining the best of physics and data in imperfect
modeling. In this paragraph, we deal with an imper-
fect modeling scenario using the heat differential operator
D(f) = ∂1f − ∂2

2,2f in dimension d = 2 over the domain Ω = [−π, π]2. The data are generated
according to the model Y = f⋆(X) + ε, where ∥D(f⋆)∥L2(Ω) ̸= 0. We assume, however, that
the PDE serves as a good physical prior, meaning that ∥f⋆∥2L2(Ω) is significantly larger than the
modeling error ∥D(f⋆)∥2L2(Ω). The hybrid model is implemented using the PIKL estimator with

parameters s = 2, λn = n−2/3/10, and µn = 100/n. These hyperparameters are selected to ensure
that, when only a small amount of data is available, the model relies heavily on the PDE. Yet, as
more data become available, the model can use the data to correct the modeling error. The perfor-
mance of the PIKL estimator is compared with that of a purely data-driven estimator, referred to as
the Sobolev estimator, and a strongly PDE-penalized estimator, referred to as the PDE estimator.
The Sobolev estimator uses the same parameter s = 2 and λn = n−2/3/10, but sets µn = 0. This
configuration ensures that the estimator relies entirely on the data without considering the PDE as a
prior. On the other hand, the PDE estimator is configured with parameters s = 2, λn = 10−10, and
µn = 1010. These hyperparameters are set to ensure that the resulting PDE estimator effectively
satisfies the heat equation, making it highly dependent on the physical model.

9
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We perform an experiment where ε ∼ N (0, σ2) with σ = 0.5, and f⋆(t, x) = exp(−t) cos(x)+
0.5 sin(2x). This scenario is an example of imperfect modeling, since ∥D(f⋆)∥2L2(Ω) = π > 0.
However, the heat equation serves as a strong physical prior, since ∥D(f⋆)∥2L2(Ω)/∥f

⋆∥2L2(Ω) ≃
4× 10−3. Figure 4 illustrates the performance of the different estimators.

1 2 3 4 5

3

2

1

0

1

2

Norm of f
PDE error
PDE estimator
PIKL estimator
Sobolev estimator

Figure 4: L2-error (mean ± std over 5 runs) of
the PDE, PIKL, and Sobolev estima-
tors for imperfect modeling with the
heat equation, as a function of n in
log10− log10 scale. The PDE error is
the L2-norm between f⋆ and the PDE
solution that is closest to f⋆.

Clearly, the PDE estimator outperforms the
Sobolev estimator when the data set is small
(n ⩽ 102). As expected, the performance of
the Sobolev estimator improves as the sample
size increases (n ⩾ 103), but it remains consis-
tently inferior to that of the PIKL. When only a
small amount of data is available, the PDE pro-
vides significant benefits, and the L2-error de-
creases at the super-parametric rate of n−2 for
both the PIKL and the PDE estimators. How-
ever, in the context of imperfect modeling, the
PDE estimator cannot overcome the PDE er-
ror, resulting in no further improvement beyond
n ⩾ 100. In addition, when a large amount of
data is available, the data become more reliable
than the PDE. In this case, the errors for both
the PIKL and the Sobolev estimators decrease
at the Sobolev minimax rate of n−2/3. Over-
all, the PIKL estimator successfully combines
the strengths of both approaches, using the PDE
when data is scarce and relying more on data
when it becomes abundant.

3.2 Measuring the impact of physics with the effective dimension

The important question of measuring the impact of the differential operator D on the convergence
rate of the PIML estimator has not yet found a clear answer in the literature. In this subsection, we
propose an approach to experimentally compare the PIKL convergence rate to the Sobolev minimax
rate in Hs(Ω), which is n−2s/(2s+d) (e.g., Tsybakov, 2009, Theorem 2.1).

Theoretical backbone. According to Doumèche et al. (2024a, Theorem 4.3), if X has a bounded
density and the noise ε is sub-Gamma with parameters (σ,M), the L2-error of both estimators (2)
and (5) satisfies

E
∫
Ω
|f̂n − f⋆|2dPX

⩽ C4 log
2(n)

(
λn∥f⋆∥2Hs(Ω) + µn∥D(f⋆)∥2L2(Ω) +

M2

n2λn
+

σ2N (λn, µn)

n

)
, (8)

where PX is the distribution of X . The quantity N (λn, µn) on the right-hand side of (8) is referred
to as the effective dimension (see, e.g., Caponnetto and Vito, 2007). Since λn and µn can be
freely chosen by the practitioner, the effective dimension N (λn, µn) becomes a key consideration

10
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that help quantify the impact of the physics on the learning problem. Unfortunately, bounding
N (λn, µn) is not trivial. Doumèche et al. (2024a) have shown that

N (λn, µn) ⩽
∑

λ∈σ(COnC)

1

1 + λ−1
,

where On is the operator On = limm→∞M−1
m (where the limit is taken in the sense of the operator

norm—see Definition B.3) and C is the operator C(f) = 1Ωf . Therefore, a natural idea to assess
the effective dimension is to replace COnC by CmM−1

m Cm, where Cm : Hm → Hm is defined by

∀j, k ∈ {−m, . . . ,m}d, (Cm)j,k =
1

(4L)d

∫
Ω
e

iπ
2L

⟨k,x⟩dx.

The following theorem shows that this is a sound strategy, in the sense that computing the effective
dimension using the eigenvalues of CmM−1

m Cm becomes increasingly accurate as m grows.

Theorem 3.1 (Convergence of the effective dimension)

(i) One has

lim
m→∞

∑
λ∈σ(CmM−1

m Cm)

1

1 + λ−1
=

∑
λ∈σ(COnC)

1

1 + λ−1
.

(ii) Let σ↓
k(CmM−1

m Cm) be the k-th highest eigenvalue of CmM−1
m Cm. The spectrum of the

matrix CmM−1
m Cm converges to the spectrum of COnC in the following sense:

∀k ∈ N⋆, lim
m→∞

σ↓
k(CmM−1

m Cm) = σ↓
k(COnC).

The provided Python package4 includes numerical approximations of the effective dimension
in dimensions d = 1 and d = 2 for any linear operator D with constant coefficients, when Ω is
either a cube or a Euclidean ball. The code is available is designed to run on both CPU and GPU.
The convergence of the effective dimension as m grows is studied in greater detail in Appendix D.2.

Comparison to the closed-form case. We start by assessing the quality of the approximation
encapsulated in Theorem 3.1 in a scenario where the eigenvalues can be theoretically bounded.
When d = 1, s = 1, D = d

dx , and Ω = [−π, π], one has (Doumèche et al., 2024a, Proposition 5.2)

4

(λn + µn)(k + 4)2
⩽ σ↓

k(COnC) ⩽
4

(λn + µn)(k − 2)2
.

This shows that log σ↓
k(COnC) ∼k→∞ −2 log(k). Figure 5 (Left) represents the eigenvalues of

CmM−1
m Cm in decreasing order, for increasing values of m, with λn = 0.01 and µn = 1. For

any fixed m, two distinct regimes can be clearly distinguished: initially, the eigenvalues decrease
linearly on a log− log scale and align with the theoretical values of −2 log(k). Afterward, the
eigenvalues suddenly drop to zero. As m increases, the spectrum progressively approaches the
theoretical bound.

4. https://github.com/NathanDoumeche/numerical_PIML_kernel
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Figure 5: The case of D = d
dx . Left: Spectrum of CmM−1

m Cm. Right: Estimation of the effective
dimension n 7→ N ( log(n)n , 1

log(n)).

In Appendix D.2, we show that m = 102 Fourier modes are sufficient to accurately approximate
the effective dimension when n ⩽ 104. It is evident from Figure 5 (Right) that the effective dimen-
sion exhibits a sub-linear behavior in the log− log scale, experimentally confirming the findings
of Doumèche et al. (2024a), which show that N ( log(n)n , 1

log(n)) = on→∞(nγ) for all γ > 0. So,
plugging this into (8) with λn = n−1 log(n) and µn = log(n)−1 leads to

E
∫
[−L,L]

|f̂n − f⋆|2dPX = (∥f⋆∥2H1(Ω) + σ2 +M2)On

(
n−1 log3(n)

)
when D(f⋆) = 0, i.e., when the modeling is perfect. The Sobolev minimax rate on H1(Ω) is n−2/3,
whereas the experimental bound in this context gives a rate of n−1. This indicates that when the
target f⋆ satisfies the underlying PDE, the gain in terms of speed from incorporating the physics
into the learning problem is n−1/3.

Harmonic oscillator equation. Here, we follow up on the example of Subsection 3.1, as pre-
sented in Figures 2 and 3. Thus, we set d = 1, s = 2, D(u) = d2

dx2u+ d
dxu+ u, and Ω = [−π, π].

Recall that in this perfect modeling experiment, we observed a parametric convergence rate of n−1,
which is not surprising since the regression problem essentially involves learning the two parame-
ters a1 and a2. Figure 6 (Left) shows the eigenvalues of CmM−1

M Cm, while Figure 6 (Right) shows
the effective dimension as a function of n. Similarly to the previous closed-form case, we observe
that N ( log(n)n , 1

log(n)) = on→∞(nγ) for all γ > 0. The same argument as in the paragraph above
shows that this results in a parametric convergence rate, provided D(f⋆) = 0.

Heat equation on the disk. Let us now consider the one-dimensional heat equation D = ∂
∂x−

∂2

∂y2
,

with d = 2, s = 2, and the disk Ω = {x ∈ R2, ∥x∥2 ≤ π}. Since the heat equation is known to have
C∞ solutions with bounded energy (see, e.g., Evans, 2010, Chapter 2.3, Theorem 8), we expect the
convergence rate to match that of H∞(Ω), which corresponds to the parametric rate of n−1. Once
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Figure 6: Harmonic oscillator. Left: Spectrum of CmM−1
m Cm. Right: Estimation of the effective

dimension n 7→ N ( log(n)n , 1
log(n)).
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again, we observe N ( log(n)n , 1
log(n)) = on→∞(nγ) for all γ > 0, and thus an improvement over the

n−2/3-Sobolev minimax rate on H2(Ω) when D(f⋆) = 0.

Quantifying the impact of physics. The three examples above show how incorporating physics
can enhance the learning process by reducing the effective dimension, leading to a faster conver-
gence rate. In all cases, the rate becomes parametric due to the PDE, achieving the fastest possible
speed, as predicted by the central limit theorem. Our package can be directly applied to any lin-
ear PDE with constant coefficients to compute the effective convergence rate given a scaling of λn

and µn. By identifying the optimal convergence rate, this approach can assist in determining the
best parameters λn and µn for use in other PIML techniques, such as PINNs.

4 PDE solving: Mitigating the difficulties of PINNs with PIKL

It turns out that our PIKL algorithm can be effectively used as a PDE solver. In this scenario,
there is no noise (i.e., ε = 0), no modeling error (i.e., D(f⋆) = 0), and the data consist of
samples of boundary and initial conditions, as is typical for PINNs. Assume for example that
the objective is to solve the Laplacian equation ∆(f⋆) = 0 on a domain Ω ⊆ [−1, 1]2 with
the Dirichlet boundary condition f⋆|∂Ω = g, where g is a known function. Then this prob-
lem can be addressed by implementing the PIKL estimator, which minimizes the risk R̄n(f) =
1
n

∑n
i=1 |f(Xi)−Yi|2+λn∥f∥2H2

per([−1,1]2)+µn∥∆(f)∥2L2(Ω), where the Xi are uniformly sampled
on ∂Ω and Yi = g(Xi). Of course, this example focuses on Dirichlet boundary conditions, but
PIKL is a highly flexible framework that can incorporate a wide variety of boundary conditions,
such as periodic and Neumann boundary conditions, as the next two examples will illustrate.

Comparison with PINNs for the convection equation. To begin, we compare the performance
of our PIKL algorithm with the PINN approach developed by Krishnapriyan et al. (2021) for solving
the one-dimensional convection equation D(f) = ∂tf + β∂xf on the domain Ω = [0, 1]× [0, 2π].
The problem is subject to the following periodic boundary conditions:{

∀x ∈ [0, 1], f(0, x) = sin(x),
∀t ∈ [0, 1], f(t, 0) = f(t, 2π) = 0.

The solution of this PDE is given by f⋆(t, x) = sin(x− βt). Krishnapriyan et al. (2021) show
that for high values of β, PINNs struggle to solve the PDE effectively. To address this challenge, we
train our PIML kernel method using n = 100 data points and 1681 Fourier modes (i.e., m = 20).
The training data set (Xi, Yi)1⩽i⩽n is constructed such that Xi = (0, Ui) and Yi = sin(Ui), where
(Ui)1⩽i⩽n are i.i.d. uniform random variables. To enforce the periodic boundary conditions, we
center Ω at Ω̃ = Ω − (0.5, π), extend it to [−1, 1] × [−π, π], and consider H̃m = Span((t, x) 7→
ei(

π
2
k1t+k2x))∥k∥∞≤m. Noting that for all (j1, k1), (j2, k2) ∈ Z2,∫

[−1,1]×[−π,π]
ei(

π
2
(k1−j1)t+(k2−j2)x)dx =

sin(π(k1 − j1)/2)

π
δk2,j2 ,

we let the matrix (Mm)j,k be as follows:

(Mm)j,k = λn

(
1 +

∥k∥22
(2L)2

)
δj,k + µn

P (j)P̄ (k)

(4L)2
sin(π(k1 − j1)/2)

π
δk2,j2 ,
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where P is the polynomial associated with the operator D . Notice that, although f⋆ is a sinusoidal
function, the frequency vector of f⋆ is (−β, 1), which does not belong to π

2Z ⊕ Z. As a result, f⋆

does not lie in H̃m for any m.
Table 1 compares the performance of various PIML methods using a sample of n = 100 initial

condition points. The performance of an estimator f̂n on a test set (Test) is evaluated based on
the L2 relative error (

∑
x∈Test ∥f̂n(x) − f⋆(x)∥22/

∑
y∈Test ∥f⋆(y)∥22)1/2. Standard deviations are

computed across 10 trials. The results show that the PIML kernel estimator clearly outperforms
PINNs in terms of accuracy.

Table 1: L2 relative error of the kernel method in solving the wave equation.
Vanilla PINNs⋄ Curriculum-trained PINNs⋄ PIKL estimator

β = 20 7.50× 10−1 9.84× 10−3 (1.56±3.46)× 10−8

β = 30 8.97× 10−1 2.02× 10−2 (0.91±2.20)× 10−7

β = 40 9.61× 10−1 5.33× 10−2 (7.31±6.44)× 10−9

⋄ Krishnapriyan et al. (2021, Table 1)

Comparison with PINNs for the 1d-wave equation. The performance of the PIKL algorithm
is compared to the PINN methodology of Wang et al. (2022a, Section 7.3) for solving the one-
dimensional wave equation D(f) = ∂2

t,tf −4∂2
x,xf on the square domain [0, 1]2, with the following

boundary conditions: 
∀x ∈ [0, 1], f(0, x) = sin(πx) + sin(4πx)/2,
∀x ∈ [0, 1], ∂tf(0, x) = 0,
∀t ∈ [0, 1], f(t, 0) = f(t, 1) = 0.

The solution of the PDE is f⋆(t, x) = sin(πx) cos(2πt) + sin(4πx) cos(8πt)/2. This solution
serves as an interesting benchmark since f⋆ exhibits significant variations, with ∥∂tf⋆∥22/∥f⋆∥22 =
16π2 (Figure 8, Left). Meanwhile, PINNs are known to have a spectral bias toward low frequen-
cies (e.g., Deshpande et al., 2022; Wang et al., 2022b). The optimization of the PINNs in Wang
et al. (2022b) is carried out using stochastic gradient descent with 80, 000 steps, each drawing 300
points at random, resulting in a sample size of n = 2.4 × 106. The architecture of the PINNs
these authors employ is a dense neural network with tanh activation functions and layers of sizes
(2, 500, 500, 500, 1), resulting in m = (2× 500+500)+2× (500× 500+500)+ (500× 1+1) =
503, 001 parameters. The training time for Vanilla PINNs is 7 minutes on an Nvidia L4 GPU (24
GB of RAM, 30.3 teraFLOPs for Float32). We obtain an L2 relative error of 4.21 × 10−1, which
is consistent with the results of Wang et al. (2022a), who report a L2 relative error of 4.52× 10−1.
Figure 8 (Middle) shows the Vanilla PINNs.

We train our PIKL method using n = 105 data points and 1681 Fourier modes (i.e., m =
20). Let (Ui)1⩽i⩽n be i.i.d. random variables uniformly distributed on [0, 1]. The training data set
(Xi, Yi)1⩽i⩽n is constructed such that

• if 1 ⩽ i ⩽ ⌊n/4⌋, then Xi = (0, Ui) and Yi = sin(πUi) + sin(4πUi)/2,

• if ⌊n/4⌋+ 1 ⩽ i ⩽ 2⌊n/4⌋, then Xi = (Ui, 0) and Yi = 0,
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Figure 8: Left: ground truth solution f⋆ to the wave equation (taken from Wang et al., 2022a,
Figure 6). Middle: Vanilla PINNs from Wang et al. (2022a). Right: PIKL estimator.

• if 2⌊n/4⌋+ 1 ⩽ i ⩽ 3⌊n/4⌋, then Xi = (Ui, 1) and Yi = 0,

• if 3⌊n/4⌋+ 1 ⩽ i ⩽ n, then Xi = (1/n, Ui) and

Yi = f(0, Ui) +
1

2n2
∂2
t,tf(0, Ui) = f(0, Ui) +

2

n2
∂2
x,xf(0, Ui)

=
(
1− 2π2

n2

)
sin(πUi) +

(1
2
− 16π2

n2

)
sin(4πUi).

The final requirement enforces the initial condition ∂tf = 0 in a manner similar to that of a second-
order numerical scheme.

Table 2 compares the performance of the PINN approach from Wang et al. (2022a) with the
PIKL estimator. Across 10 trials, the PIKL method achieves an L2 relative error of (8.70± 0.08)×
10−4, which is 50% better than the performance of the PINNs. This demonstrates that the kernel
approach is more accurate, requiring fewer data points and parameters than the PINNs. The training
time for the PIKL estimator is 6 seconds on an Nvidia L4 GPU. Thus, the PIKL estimator can be
computed 70 times faster than the Vanilla PINNs. Figure 8 (Right) shows the PIKL estimator. Note
that in this case, the solution f⋆ can be represented by a sum of complex exponential functions
(f⋆ ∈ H16), which could have biased the result in favor of the PIKL estimator by canceling its
approximation error. However, the results remain unchanged when altering the frequencies in Hm

(e.g., taking L = 0.55 in (6) instead of L = 0.5 yields an L2 relative error of (9.6± 0.3)× 10−4).

Table 2: Performance of PINN/PIKL methods for solving the wave equation on Ω = [0, 1]2

.
Vanilla PINNs⋄ NTK-optimized PINNs⋄ PIKL estimator

L2 relative error 4.52× 10−1 1.73× 10−3 (8.70±0.08)× 10−4

Training data (n) 2.4× 106 2.4× 106 105

Number of parameters 5.03× 105 5.03× 105 1.68× 103

⋄ Wang et al. (2022a, Figure 6)
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5 Conclusion and future directions

Conclusion. In this article, we developed an efficient algorithm to solve the PIML hybrid problem
(2). The PIKL estimator can be computed exactly through matrix inversion and possesses strong
theoretical properties. Specifically, we demonstrated how to estimate its convergence rate based
on the PDE prior D . Moreover, through various examples, we showed that it outperforms PINNs
in terms of performance, stability, and training time in certain PDE-solving tasks where PINNs
struggle to escape local minima during optimization. Future work could focus on comparing PIKL
with the implementation of RFF and exploring its performance against PINNs in the case of PDEs
with non-constant coefficients. Another avenue for future research is to assess the effectiveness of
the kernel approach compared to traditional PDE solvers, as discussed below.

Comparison with traditional PDE solvers. PIML is a promising framework for solving PDEs,
particularly due to its adaptability to domains Ω with complex geometries, where most traditional
PDE solvers tend to be highly domain-dependent. However, its comparative performance against
traditional PDE solvers remains unclear in scenarios where both approaches can be easily imple-
mented. The meta-analysis by McGreivy and Hakim (2024) indicates that, in some cases, PINNs
may be faster than traditional PDE solvers, although they are often less accurate. In our study, solv-
ing the wave equation on a simple square domain represents a setting where traditional numerical
methods are straightforward to implement and are known to perform well. Table 3 summarizes
the performance of classical techniques, including the explicit Euler, Runge-Kutta 4 (RK4), and
Crank-Nicolson (CN) schemes (see Appendix D.3 for a brief presentation of these methods). These
methods clearly outperform both PINNs and the PIKL algorithm, even with fewer data points.

Table 3: Performance of traditional PDE solvers for the wave equation on Ω = [0, 1]2.

Euler explicit RK4 CN

L2 relative error 3.8× 10−6 6.8× 10−6 5.6× 10−3

Training data (n) 104 104 104

However, a more relevant setting for comparing the performance of these methods arises when
noise is introduced into the boundary conditions. This situation is common, for instance, when
the initial condition of the wave is measured by a noisy sensor. Such a setting aligns with hybrid
modeling, where ε ̸= 0, but there is no modeling error (i.e., D(f⋆) = 0). Table 4 compares the
performance of all methods with the same number n of training samples, with Gaussian noise of
variance of 10−2. In this case, the PIKL estimator outperforms all other approaches. Such PDEs

Table 4: Performance for the wave equation with noisy boundary conditions.

PINNs Euler explicit RK4 CN PIKL estimator

L2 relative error 4.61× 10−1 1.25× 10−1 6.05× 10−2 2.01× 10−2 1.87× 10−2

Training data (n) 2.4× 106 4× 104 4× 104 4× 104 4× 104

with noisy boundary conditions are special cases of the hybrid modeling framework, where the data
is located on the boundary of the domain. This situation arises, for example, in Cai et al. (2021)
which models the temperature in the core of a nuclear reactor.
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Appendix A. Spectral methods and PIKL

The Fourier approximation on which the PIKL algorithm relies resembles usual spectral methods.
Spectral methods are a class of numerical techniques used to solve PDEs by representing the solu-
tion as a sum of basis functions, typically trigonometric (Fourier series) or polynomial (Chebyshev
or Legendre polynomials). These methods are particularly powerful for problems with smooth so-
lutions and periodic or well-behaved boundary conditions (e.g., Canuto et al., 2007). However the
basis functions used in spectral and pseudo-spectral methods must be specifically tailored to the do-
main Ω, the differential operator D , and the boundary conditions. This customization ensures that
the method effectively captures the characteristics of the problem being solved. For example, the
Fourier basis is unable to accurately reconstruct non-periodic functions on a square domain, leading
to the Gibbs phenomenon at points of periodic discontinuity. A natural solution to this problem is to
extend the solution of the PDE from the domain Ω to a simpler domain that admits a known spectral
basis (e.g., Matthysen and Huybrechs, 2016, for Fourier basis extension). If the solution of the PDE
on Ω can be extended to a solution of the same PDE on the extended domain, it becomes possible to
apply a spectral method directly to the extended domain (e.g., Badea and Daripa, 2001; Lui, 2009).
However, the PDE must satisfy certain regularity conditions (e.g., ellipticity), and there must be a
method to implement the boundary conditions on ∂Ω instead of on the boundary of the extended
domain.

In this article, we take a slightly different approach. Although we extend Ω ⊆ [−L,L]d to
[−2L, 2L]d, we impose the PDE only on Ω and not on the entire extended domain [−2L, 2L]d.
Also, unlike spectral methods, we do not require that D(f̂PIKL) = 0. Instead, to ensure that the
problem is well-posed, we regularize the PIML problem using the Sobolev norm of the periodic
extension. This Tikhonov regularization is a conventional approach in kernel learning and is known
to resemble spectral methods because it acts as a low-pass filter (see, e.g., Caponnetto and Vito,
2007). However, given a kernel, it is non-trivial to identify the basis of orthogonal functions that
diagonalize it. The main contribution of this article is to establish an explicit connection between
the Fourier basis and the PIML kernel, leading to surprisingly simple formulas for the kernel matrix
Mm.

Appendix B. Fundamentals of functional analysis on complex Hilbert spaces

Let L > 0 and d ∈ N⋆. We define L2([−2L, 2L]d,C) as the space of complex-valued functions
f on the hypercube [−2L, 2L]d such that

∫
[−2L,2L]d |f |

2 < ∞. The real part of f is denoted by
ℜ(f), and the imaginary part by ℑ(f), such that f = ℜ(f) + iℑ(f). Throughout the appendix, for
the sake of clarity, we use the dot symbol · to represent functions. For example, ∥ · ∥ denotes the
function x 7→ ∥x∥, and ⟨·, ·⟩ stands for the function (x, y) 7→ ⟨x, y⟩.

Definition B.1 (L2-space and ∥ · ∥2-norm) The separable Hilbert space L2([−2L, 2L]d,C) is as-
sociated with the inner product ⟨f, g⟩ =

∫
[−2L,2L]d fḡ and the norm ∥f∥22 =

∫
[−2L,2L]d |f |

2.

Let s ∈ N.

Definition B.2 (Periodic Sobolev spaces) The periodic Sobolev space Hs
per([−2L, 2L]d,R) is the

space of real functions f(x) =
∑

k∈Zd zk exp(
iπ
2L⟨k, x⟩) such that the Fourier coefficients zk satisfy∑

k |zk|2(1 + ∥k∥2s) < ∞. The corresponding complex periodic Sobolev space is defined by

Hs
per([−2L, 2L]d,C) = Hs

per([−2L, 2L]d,R)⊕ i Hs
per([−2L, 2L]d,R).
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It is the space of complex-valued functions f(x) =
∑

k∈Zd zk exp(
iπ
2L⟨k, x⟩) such that

∑
k |zk|2(1+

∥k∥2s) < ∞.

We recall that, given two Hilbert spaces H1 and H2, an operator is a linear function from H1 to H2.

Definition B.3 (Operator norm) (e.g., Brezis, 2010, Section 2.6) Let O : L2([−2L, 2L]d,C) →
L2([−2L, 2L]d,C) be an operator. Its operator norm |||O|||2 is defined by

|||O|||2 = sup
g∈L2([−2L,2L]d,C)

∥g∥2=1

∥Og∥2 = sup
g∈L2([−2L,2L]d,C)

g ̸=0

∥g∥−1
2 ∥Og∥2.

The operator norm is sub-multiplicative, i.e., |||O1 ◦ O2|||2 ⩽ |||O1|||2 × |||O2|||2.

Definition B.4 (Adjoint) Let (H, ⟨·, ·⟩H) be an Hilbert space and O : H → H be an operator. The
adjoint O⋆ of O is the unique operator such that ∀f, g ∈ H, ⟨f,Og⟩H = ⟨O⋆f, g⟩H.

If H = Rd with the canonical scalar product, then O⋆ is the d × d matrix O⋆ = OT . If H = Cd

with the canonical sesquilinear inner product, then O⋆ is the d× d matrix O⋆ = ŌT .

Definition B.5 (Hermitian operator) Let H be an Hilbert space and O : H → H be an operator.
The operator O is said to be Hermitian if O = O⋆.

Theorem B.6 (Spectral theorem) (e.g. Rudin, 1991, Theorems 12.29 and 12.30) Let O be a pos-
itive Hermitian compact operator. Then O is diagonalizable on an Hilbert basis with positive
eigenvalues that tend to zero. We denote its eigenvalues, ordered in decreasing order, by σ(O) =

(σ↓
k(O))k∈N⋆ .

We emphasize that, given an invertible positive self-adjoint compact operator O and its inverse O−1,
the eigenvalues of O−1 can also be ordered in increasing order, i.e.,

σ(O−1) = (σ↑
k(O

−1))k∈N⋆ = (σ↓
k(O)−1)k∈N⋆ . (9)

Theorem B.7 (Courant-Fischer minmax theorem ) (Brezis, 2010, Problem 37) Let O : H → H
be a positive Hermitian compact operator. Then

σ↓
k(O) = max

H⊆H
dimH=k

min
g∈H

∥g∥2=1

⟨g,Og⟩H.

If O is injective, then
σ↑
k(O

−1) = min
H⊆O(H)

dimH=k

max
g∈H

∥g∥2=1

⟨g,O−1g⟩H.

Interestingly, if O is a positive Hermitian compact operator, then Theorem B.7 shows that |||O|||2
equals its largest eigenvalue.

Definition B.8 (Orthogonal projection on Hm) We let Πm : Hs
per([−2L, 2L]d,C) → Hm be the

orthogonal projection with respect to ⟨·, ·⟩, i.e., for all f ∈ Hs
per([−2L, 2L]d,C),

Πmf(y) =
∑

∥k∥∞⩽m

( 1

(4L)d

∫
[−2L,2L]d

exp
(
− iπ

2L
⟨k, x⟩

)
f(x)dx

)
exp

( iπ

2L
⟨k, y⟩

)
.

Note that Πm is Hermitian and that, for all f ∈ L2([−2L, 2L]d,C), limm→∞ ∥f −Πmf∥2 = 0.
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Appendix C. Theoretical results for PIKL

C.1 Proof of Proposition 2.3

We have

1

(4L)d

∫
[−L,L]d

e
iπ
2L

⟨k,x⟩dx =
1

(4L)d

d∏
j=1

∫
[−L,L]

e
iπ
2L

kjxdx =

d∏
j=1

[ 1

2iπ
e

iπ
2L

kjx
]L
x=−L

=

d∏
j=1

e
iπ
2
kj − e−

iπ
2
kj

2iπkj
=

d∏
j=1

sin(π2kj)

πkj
.

The characteristic function of the Euclidean ball is computed in Bracewell (2000, Table 13.4).

C.2 Operations on characteristic functions

Proposition C.1 (Operations on characteristic functions) Consider d ∈ N⋆, L > 0, and Ω ⊆
[−L,L]d.

• Let a ∈ [−1, 1]. Then a · Ω ⊆ [−L,L]d and

Fa·Ω(k) = |a|d × FΩ(a · k).

• Let Ω̃ ⊆ [−L,L]d be a domain such that Ω ∩ Ω̃ = ∅. Then Ω ⊔ Ω̃ ⊆ [−L,L]d and

FΩ⊔Ω̃(k) = FΩ(k) + FΩ̃(k).

• Assume that Ω ⊆ [−L/2, L/2]d, and let z ∈ Rd be such that ∥z∥∞ < L/2. Then Ω + z ⊆
[−L,L]d and

FΩ+z(k) = FΩ(k)× exp
( iπ

2L
⟨k, z⟩

)
.

• Assume that Ω = Ω1 × Ω2, where Ω1 ⊆ [−L,L]d1 , Ω2 ⊆ [−L,L]d2 , and d1 + d2 = d. Then

FΩ(k) = FΩ1(k1, . . . , kd1)× FΩ2(kd1+1, . . . , kd).

C.3 Operator extensions

Definition C.2 (Projection on Ω) We define the projection C : L2(Rd,C) → L2(Rd,C) on Ω by
C(f) = 1Ωf .

Definition C.3 (Operator extensions) The operators Cm : Hm → Hm, Mm : Hm → Hm, and
M−1

m : Hm → Hm can be extended to L2([−2L, 2L]d,C) by Cm = ΠmCΠm, Mm = ΠmMmΠm,
and M−1

m = ΠmM−1
m Πm.

From now on, we consider the extensions of these operators, allowing us to express equivalently

|||M−1
m |||2 = sup

g∈Hm

∥g∥2=1

∥M−1
m g∥2 = sup

g∈L2([−2L,2L]d)

∥g∥2=1

∥M−1
m g∥2.

It is important to note that the extended operator M−1
m is no longer the inverse of the extended

operator Mm.
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Proposition C.4 (Compact operator extension) Let O be a positive Hermitian compact operator
on L2([−2L, 2L]d,R). Then its unique extension Õ to L2([−2L, 2L]d,C) is a positive Hermitian
compact operator with the same real eigenfunctions and positive eigenvalues.

Proof Since Õ is C-linear, we necessarily have Õ(f) = O(ℜ(f)) + iO(ℑ(f)). Therefore, the
extension is unique. Since O is compact, Õ is also compact. According to Theorem B.6, the
operator O is diagonalizable in a Hermitian basis (fk)k∈N⋆ . Thus, for all f ∈ L2([−2L, 2L],R),

O(f) =
∑
k∈N⋆

σ↓
k(O)⟨f, fk⟩L2([−2L,2L],R)fk.

Thus, for all f ∈ L2([−2L, 2L],C)

Õ(f) =
∑
k∈N⋆

σ↓
k(O)(⟨ℜ(f), fk⟩L2([−2L,2L],R) + i⟨ℑ(f), fk⟩L2([−2L,2L],R))fk

=
∑
k∈N⋆

σ↓
k(O)⟨f, fk⟩L2([−2L,2L],C)fk.

This formula shows that Õ is Hermitian and diagonalizable with the same real eigenfunctions and
positive eigenvalues as O .

Recall that On is the operator On = limm→∞M−1
m , where the limit is taken in the sense of the

operator norm (see Proposition B.2 Doumèche et al., 2024a).

Definition C.5 (Operator M ) Proposition C.4 shows that the operator On can be extended to
L2([−2L, 2L],C). We denote the extension of On by M−1.

The uniqueness of the extension in Proposition C.4 implies that the extension of the operator
COnC : L2([−2L, 2L]d) → L2([−2L, 2L]d) to C is indeed CM−1C : L2([−2L, 2L]d,C) →
L2([−2L, 2L]d,C). Proposition C.4 shows that COnC has the same eigenvalues as CM−1C.

C.4 Convergence of M−1
m

Lemma C.6 (Bounding the spectrum of M−1
m ) Let m ∈ N⋆. Then, for all k ∈ N⋆,

σ↓
k(M

−1
m ) ⩽ σ↓

k(M
−1).

Proof Let f ∈ Hm. Then,

⟨f,Mmf⟩ = ⟨f,Mf⟩ = λn∥f∥2Hs
per([−2L,2L]d) + µn∥D(f)∥2L2(Ω).

Thus, using Theorem B.7, we deduce that

σ↑
k(Mm) = min

H⊆Hm

dimH=k

max
g∈H

∥g∥2=1

⟨g,Mmg⟩

= min
H⊆Hm

dimH=k

max
g∈H

∥g∥2=1

⟨g,Mg⟩

⩾ min
H⊆Hs

per([−2L,2L]d)

dimH=k

max
g∈H

∥g∥2=1

⟨g,Mg⟩

= σ↑
k(M).
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From (9), we deduce that σ↓
k(M

−1
m ) ⩽ σ↓

k(M
−1).

Lemma C.7 (Spectral convergence of Mm) Let m ∈ N⋆. Then, for all k ∈ N⋆, one has

lim
m→∞

σ↓
k(M

−1
m ) = σ↓

k(M
−1).

Proof By continuity of the RKHS norm f 7→ ⟨f,Mf⟩ on Hs
per([−2L, 2L]d,C) (Doumèche

et al., 2024a, Proposition B.1), we know that, for all function f ∈ Hs
per([−2L, 2L]d,C), the quan-

tity λn∥Πm(f)∥2
Hs

per([−2L,2L]d,C)
+ µn∥D(Πm(f))∥2L2(Ω,C) converges to λn∥f∥2Hs

per([−2L,2L]d,C)
+

µn∥D(f)∥2L2(Ω,C) as m goes to the infinity. Thus,

∀f ∈ Hs
per([−2L, 2L]d,C), lim

m→∞
⟨f, (M −Mm)f⟩ = 0.

Next, consider f1, . . . , fk to be the eigenfunctions of M associated with the ordered eigen-
value σ↑

1(M), . . . , σ↑
k(M). Since, for any 1 ⩽ j, ℓ ⩽ k, we have that limm→∞⟨fj + fℓ,Mm(fj +

fℓ)⟩ = ⟨fj + fℓ,M(fj + fℓ)⟩ and limm→∞⟨fj + fℓ,Mm(fj + fℓ)⟩ = limm→∞⟨fj ,Mmfj⟩ +
limm→∞⟨fℓ,Mmfℓ⟩ + 2 limm→∞ℜ(⟨fj ,Mmfℓ⟩), we deduce that limm→∞ ℜ(⟨fj ,Mmfℓ⟩) =
ℜ(⟨fj ,Mfℓ⟩). Using the same argument by developing ⟨fj + ifℓ,Mm(fj + ifℓ)⟩ shows that
limm→∞ℑ(⟨fj ,Mmfℓ⟩) = ℑ(⟨fj ,Mfℓ⟩). Overall,

∀1 ⩽ j, ℓ ⩽ k, lim
m→∞

⟨fj ,Mmfℓ⟩ = ⟨fj ,Mfℓ⟩. (10)

Now, observe that

(g ∈ Span(f1, . . . , fk) and ∥g∥2 = 1) ⇔ (∃(a1, . . . , ak) ∈ Ck, g =

k∑
j=1

ajfj and
k∑

j=1

|aj |2 = 1).

Thus,

max
g∈Span(f1,...,fk)

∥g∥2=1

|⟨g,Mmg⟩ − ⟨g,Mg⟩| ⩽ max
∥a∥2=1

k∑
i,j=1

|aiaj ||⟨fi, (Mm −M)fj⟩|

⩽ k max
1⩽i,j⩽k

|⟨fi, (Mm −M)fj⟩|
m→∞−−−−→ 0 according to (10).

So,

lim
m→∞

max
g∈Span(Πm(f1),...,Πm(fk))

∥g∥2=1

⟨g,Mmg⟩ = lim
m→∞

max
g∈Span(f1,...,fk)

∥g∥2=1

⟨g,Mmg⟩

= max
g∈Span(f1,...,fk)

∥g∥2=1

⟨g,Mg⟩

= σ↑
k(M). (11)
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Note that Span(Πm(f1), . . . ,Πm(fk)) ⊆ Hm. Moreover, for m large enough, we have that
dimSpan(Πm(f1), . . . ,Πm(fk)) = k. Therefore, according to Theorem B.7,

σ↑
k(Mm) = min

H⊆Hm

dimH=k

max
g∈H

∥g∥2=1

⟨g,Mmg⟩ ⩽ max
g∈Span(Πm(f1),...,Πm(fk))

∥g∥2=1

⟨g,Mmg⟩.

Combining this inequality with identity (11) shows that lim supm→∞ σ↑
k(Mm) ⩽ σ↑

k(M). Equiva-
lently,

lim inf
m→∞

σ↓
k(M

−1
m ) ⩾ σ↓

k(M
−1).

Finally, by Lemma C.6, we have σ↓
k(M

−1
m ) ⩽ σ↓

k(M
−1). We conclude that limm→∞ σ↓

k(M
−1
m ) =

σ↓
k(M

−1).

Lemma C.8 (Eigenfunctions convergence) Let (fj,m)j∈N⋆ be the eigenvectors of Mm associated
with the eigenvalues (σ↑

j (Mm))j∈N⋆ . Let Ej = ker(M − σ↑
j (M)Id). Then

∀j ∈ N⋆, lim
m→∞

min
y∈Ej

∥fj,m − y∥2 = 0.

Proof Let (fj)j∈N⋆ be the eigenvectors of M associated with the eigenvalues (σ↑
j (M))j∈N⋆ .

The proof proceeds by contradiction. Assume that the lemma is false, and consider the minimum
integer p ∈ N⋆ such that lim supm→∞miny∈Ep ∥fp,m − y∥2 > 0. Let k1 < p be the largest integer
such that σ↑

k1
(Mm) < σ↑

p(Mm), and let k2 > p be the smallest integer such that σ↑
k2
(Mm) >

σ↑
p(Mm). Observe that Ep = Span(fk1+1, . . . , fk2−1).

Let k1 < j < k2. We know that ⟨fj ,Mmfj⟩ =
∑

ℓ∈N⋆ σ
↑
j (Mm)|⟨fℓ,m, fj⟩|2 from diagonalizing

Mm. The minimality assumption on j ensures that, for all ℓ ⩽ k1, limm→∞miny∈Eℓ
∥fℓ,m−y∥2 =

0. Since Ej ⊆ Span(f1, . . . , fk1), we deduce that ∀ℓ ⩽ k1, limm→∞⟨fℓ,m, fj⟩ = 0. Thus,∑
ℓ⩾k1

|⟨fℓ,m, fj⟩|2 = 1 + om→∞(1), (12)

and ∑
k1⩽ℓ<k2

σ↑
j (Mm)|⟨fℓ,m, fj⟩|2 = om→∞(1). (13)

By Lemma C.7, using |⟨fℓ,m, fj⟩|2 ⩽ 1, we have∑
k1⩽ℓ⩽k2

σ↑
j (Mm)|⟨fℓ,m, fj⟩|2 = σ↑

j (M)
∑

k1⩽ℓ<k2

|⟨fℓ,m, fj⟩|2 + om→∞(1). (14)

Combining (13) and (14), we deduce that

⟨fj ,Mmfj⟩ = om→∞(1) + σ↑
j (M)

∑
k1⩽ℓ<k2

|⟨fℓ,m, fj⟩|2 +
∑
ℓ⩾k2

σ↑
j (Mm)|⟨fℓ,m, fj⟩|2.
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Moreover, identity (10) ensures that ⟨fj ,Mmfj⟩ = σ↑
j (M) + om→∞(1). Thus,

σ↑
j (M)(1−

∑
k1⩽ℓ<k2

|⟨fℓ,m, fj⟩|2) = om→∞(1) +
∑
ℓ⩾k2

σ↑
j (Mm)|⟨fℓ,m, fj⟩|2.

However, according to Lemma C.7, there is ε > 0 such that, for m large enough,

∀ℓ ⩾ k2, σ↑
j (Mm) ⩾ σ↑

k(M) + ε.

Hence,

σ↑
j (M)(1−

∑
k1⩽ℓ<k2

|⟨fℓ,m, fj⟩|2) ⩾ om→∞(1) + (σ↑
j (M) + ε)

∑
ℓ⩾k2

|⟨fℓ,m, fj⟩|2.

Combining this inequality with (12), this means that

0 ⩾ om→∞(1) + ε
∑
ℓ⩾k2

|⟨fℓ,m, fj⟩|2.

Thus, limm→∞
∑

ℓ⩾k2
|⟨fℓ,m, fj⟩|2 = 0 and limm→∞

∑
k1⩽ℓ<k2

|⟨fℓ,m, fj⟩|2 = 1.
We deduce that, for all k1 < j < k2, limm→∞miny∈Span(fk1+1,m,...,fk2−1,m) ∥fj − y∥2 = 0.

By symmetry of the ℓ2-distance between two spaces of the same dimension k2 − k1 − 1, for all
k1 < j < k2, limm→∞miny∈Span(fk1+1,...,fk2−1) ∥fj,m − y∥2 = 0. This contradicts the fact that
lim supm→∞miny∈Ep ∥fp,m − y∥2 > 0.

Lemma C.9 (Convergence of M−1
m ) One has

lim
m→∞

|||M−1 −M−1
m |||2 = 0.

Proof Let (fj,m)j∈N⋆ be the eigenvectors of Mm, each associated with the corresponding eigenval-
ues (σ↑

j (Mm))j∈N⋆ . Let (fj)j∈N⋆ be the eigenvectors of M , each associated with the eigenvalues

(σ↑
j (M))j∈N⋆ . By Lemma C.6, σ↓

j (M
−1
m ) ⩽ σ↓

j (M
−1); by Lemma C.7, limm→∞ σ↓

j (M
−1
m ) =

σ↓
j (M

−1); and by Lemma C.8 limm→∞miny∈Ej ∥fj,m − y∥2 = 0.

Notice that M−1
m =

∑
ℓ∈N σ↓

j (M
−1
m )⟨fj,m, ·⟩fj,m and that M−1 =

∑
ℓ∈N σ↓

j (M
−1)⟨fj , ·⟩fj .

Let g ∈ L2([−2L, 2L]d,C) be such that ∥g∥2 = 1. Then,

∥(M−1 −M−1
m )g∥2 ⩽

∑
j∈N⋆

∥σ↓
j (M

−1
m )⟨fj,m, g⟩fj,m − σ↓

j (M
−1)⟨fj , g⟩fj∥2

⩽
∑
j∈N⋆

(σ↓
j (M

−1
m )− σ↓

j (M
−1))∥⟨fj,m, g⟩fj,m∥2

+
∑
j∈N⋆

σ↓
j (M

−1)∥⟨fj,m − fj , g⟩fj,m∥2

+
∑
j∈N⋆

σ↓
j (M

−1)∥⟨fj , g⟩(fj,m − fj)∥2.
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Since ∥fj,m∥2 = ∥fj∥2 = 1, it follows that |⟨fj,m, g⟩| ⩽ 1. Additionally, by the Cauchy-Schwarz
inequality, |⟨fj , g⟩| ⩽ 1 and |⟨fj,m − fj , g⟩| ⩽ ∥(fj,m − fj)∥2. Thus, the above inequality can be
simplified as

∥(M−1 −M−1
m )g∥2 ⩽

∑
j∈N⋆

(σ↓
j (M

−1
m )− σ↓

j (M
−1) + 2σ↓

j (M
−1)∥fj,m − fj∥2).

Thus,

|||M−1 −M−1
m |||2 ⩽

∑
j∈N⋆

(σ↓
j (M

−1
m )− σ↓

j (M
−1) + 2σ↓

j (M
−1)∥fj,m − fj∥2).

Clearly, since |σ↓
j (M

−1
m )− σ↓

j (M
−1)| ⩽ 2σ↓

j (M
−1) and ∥fj,m − fj∥2 ⩽ 2,

|σ↓
j (M

−1
m )− σ↓

j (M
−1) + 2σ↓

j (M
−1)∥fj,m − fj∥2| ⩽ 4σ↓

j (M
−1).

Moreover,
∑

j∈N⋆ σ
↓
j (M

−1) < ∞ (Doumèche et al., 2024a, Proposition B.6). Thus, since we have

that limm→∞ |σ↓
j (M

−1
m )− σ↓

j (M
−1)| = limm→∞ ∥(fj,m − fj)∥2 = 0, we conclude with the dom-

inated convergence theorem that limm→∞ |||M−1 −M−1
m |||2 = 0, as desired.

C.5 Operator norms of Cm and C

Lemma C.10 One has |||C|||2 ⩽ 1 and |||Cm|||2 ⩽ 1, for all m ∈ N⋆.

Proof Let g ∈ L2([−2L, 2L]d,C). Then, by definition, Cg = 1Ωg, and ∥Cg∥2 = ∥1Ωg∥2 ⩽ ∥g∥2.
Therefore, |||C|||2 ⩽ 1.

Let m ∈ N⋆. Then, since Cm : L2([−2L, 2L]d,C) → L2([−2L, 2L]d,C) is a positive Hermi-
tian compact operator, Theorem B.7 states that

σ↓
1(Cm) = max

h∈L2([−2L,2L]d,C)

∥h∥2=1

⟨h,Cmh⟩ = max
h∈L2([−2L,2L]d,C)

∥h∥2=1

∥Πmh∥22 ⩽ max
h∈L2([−2L,2L]d,C)

∥h∥2=1

∥h∥22 = 1.

Since σ↓
1(C

2
m) = σ↓

1(Cm)2 ⩽ 1, we deduce that

1 ⩾ σ↓
1(Cm)2 = max

h∈L2([−2L,2L]d,C)

∥h∥2=1

⟨h,C2
mh⟩ = max

h∈L2([−2L,2L]d,C)

∥h∥2=1

∥Cmh∥22.

This shows that |||Cm|||2 ⩽ 1.
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DOUMÈCHE, BACH, BIAU, AND BOYER

C.6 Proof of Theorem 3.1

Note that if H is a linear subspace of Hm, then CmH is also a subspace of Hm, and dimH ⩾
dimCmH . Therefore,

σ↓
k(CmM−1

m Cm) = max
H⊆Hm

dimH=k

min
g∈H

∥g∥2=1

⟨g, CmM−1
m Cmg⟩

= max
H⊆Hm

dimH=k

min
g∈H

∥g∥2=1

⟨(Cmg),M−1
m (Cmg)⟩

⩽ max
H⊆Hm

dimH=k

min
g∈H

∥g∥2=1

⟨g,M−1
m g⟩

= σ↓
k(M

−1
m )

⩽ σ↓
k(M

−1). (15)

Moreover, according to Lemma C.9, one has |||M−1
m −M−1|||2 → 0. Thus, sup∥g∥2=1 ||(M−1

m −
M−1)(g)||2 → 0. Using Lemma C.10, we see that

∥CmM−1
m Cmg − CM−1Cg∥2

⩽ ∥(Cm − C)M−1Cg∥2 + ∥Cm(M−1
m Cm −M−1C)g∥2

⩽ |||(Cm − C)M−1|||2 + ∥(M−1
m Cm −M−1C)g∥2

⩽ |||(Cm − C)M−1|||2 + ∥(M−1
m −M−1)Cmg∥2 + ∥M−1(Cm − C)g∥2

⩽ |||(Cm − C)M−1|||2 + |||M−1
m −M−1|||2 + |||M−1(Cm − C)|||2.

Thus,

|||CmM−1
m Cm−CM−1C|||2 ⩽ |||(Cm−C)M−1|||2+ |||M−1

m −M−1|||2+ |||M−1(Cm−C)|||2.

By diagonalizing M−1 and using the facts that
∑

ℓ∈N⋆ σ
↓
ℓ (M

−1) < ∞ and that limm→∞ ∥(Cm −
C)f∥2 = 0 ∀f ∈ L2([−2L, 2L]d), it is easy to see that

lim
m→∞

|||(Cm − C)M−1|||2 = lim
m→∞

|||M−1(Cm − C)|||2 = 0.

Applying Lemma C.9, we deduce that

lim
m→∞

|||CmM−1
m Cm − CM−1C|||2 = 0.

But, by Theorem B.7,

σ↓
k(CmM−1

m Cm) = max
H⊆L2([−2L,2L]d,C)

dimH=k

min
g∈H

∥g∥2=1

⟨g, CmM−1
m Cmg⟩,

and
σ↓
k(CM−1C) = max

H⊆L2([−2L,2L]d,C)

dimH=k

min
g∈H

∥g∥2=1

⟨g, CM−1Cg⟩.
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Clearly, for all g ∈ L2([−2L, 2L]d,C),

|⟨g, CM−1Cg⟩ − ⟨g, CmM−1
m Cmg⟩| = |⟨g, (CM−1C − CmM−1

m Cm)g⟩|
⩽ |||CmM−1

m Cm − CM−1C|||2.

Therefore,

|σ↓
k(CmM−1

m Cm)− σ↓
k(CM−1C)| ⩽ |||CmM−1

m Cm − CM−1C|||2,

and, in turn, limm→∞ σ↓
k(CmM−1

m Cm) = σ↓
k(CM−1C).

To conclude the proof, observe that, on the one hand,

1

1 + σ↓
k(CmM−1

m Cm)−1
=

σ↓
k(CmM−1

m Cm)

1 + σ↓
k(CmM−1

m Cm)
⩽ σ↓

k(CmM−1
m Cm) ⩽ σ↓

k(M
−1),

with
∑

k∈N⋆ σ
↓
k(M

−1) < ∞. On the other hand,

lim
m→∞

1

1 + σ↓
k(CmM−1

m Cm)−1
=

1

1 + σ↓
k(CM−1C)−1

,

by continuity on R+ of the function x 7→ x
1+x . Thus, applying the dominated convergence theorem,

we are led to
lim

m→∞

∑
λ∈σ(CmM−1

m Cm)

1

1 + λ−1
=

∑
λ∈σ(CM−1C)

1

1 + λ−1
.

Appendix D. Experiments

D.1 Numerical precision

Enabling high numerical precision is crucial for efficient kernel inversion. Setting the default pre-
cision to Float32 and Complex64 can lead to significant numerical errors when approximating the
kernel. For example, consider the harmonic oscillator case with d = 1, s = 2, and the opera-
tor D = d2

dx2u + d
dxu + u, with λn = 0.01 and µn = 1. Figure 9 (left) shows the spectrum of

CmM−1
m Cm using Float32 precision, while Figure 9 (right) shows the same spectrum with Float64

precision. It is evident that with Float32, the diagonalization results in lower eigenvalues compared
to Float64. In more physical terms, some energy of the matrix is lost when the last digits of the
matrix coefficients are ignored. This leads to a problematic interpretation of the situation, as the
Float64 estimation of the eigenvalues shows a clear convergence of the spectrum of CmM−1

m Cm,
whereas the Float32 estimation appears to indicate divergence.

D.2 Convergence of the effective dimension approximation

The PIKL algorithm relies on a Fourier approximation of the PIML kernel, as developed in Sec-
tion 2. The precision of this approximation is determined by the number m of Fourier modes
used to compute the kernel. However, determining an optimal value of m for a specific regression
problem is challenging. There is a trade-off between the accuracy of the kernel estimation, which
improves with higher values of m, and the computational complexity of the algorithm, which also
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Figure 9: Spectrum of CmM−1
m Cm. Left: Float32 precision. Right: Float64 precision.
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Figure 10: Convergence of the effective dimension as m grows for D = d
dx .

increases with m. There is a trade-off between the accuracy of the kernel approximation, which
improves with higher values of m, and the computational complexity of the algorithm, which also
increases with m.

An interesting tool to leverage here is the effective dimension, as it captures the underlying de-
grees of freedom of the PIML problem and, consequently, the precision of the method. Theorem 3.1
states that the estimation of the effective dimension on Hm converges to the effective dimension on
Hs(Ω) as m increases to infinity. Therefore, the smallest value m⋆ at which the effective dimension
stabilizes is a strong candidate for balancing accuracy and computational complexity.

Figures 10, 11, and 12 illustrate the convergence of the effective dimension estimation, using
the eigenvalues of CmM−1

M Cm, as m increases, for different values of n. These figures provide
insights into the PIK algorithm. As expected, the Fourier approximations converge more slowly as
the dimension d increases. Specifically, Figures 10 and 11 show that in dimension d = 1, m⋆ ≃ 102

for n ⩽ 104, while Figure 12 indicates that in dimension d = 2, m⋆ ≃ 102 for n ⩽ 103.
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D.3 Numerical schemes

We detail below the numerical schemes used as benchmarks in Section 4 for solving the wave
equation. All these numerical schemes are constructed by discretizing the domain Ω = [0, 1]2

into the grid (ℓ−1
1 Z/ℓ1Z)× (ℓ−1

2 Z/ℓ2Z). The initial and boundary conditions are then enforced on
n = 2ℓ1 + ℓ2 points, with the approximation f̂n defined accordingly as

• for all 0 ⩽ ℓ ⩽ ℓ2, f̂n(0, ℓ/ℓ2) = sin(πℓ/ℓ2) + sin(4πℓ/ℓ2)/2,

• for all 0 ⩽ ℓ ⩽ ℓ1, f̂n(ℓ/ℓ1, 0) = 0,

• for all 0 ⩽ ℓ ⩽ ℓ1, f̂n(ℓ/ℓ1, 1) = 0.

Let the discrete Laplacian ∆(ℓ1,ℓ2) be defined for all (a, b) ∈ Z/ℓ1Z × Z/ℓ2Z by

(∆(ℓ1,ℓ2)f̂n)(a/ℓ1, b/ℓ2) = ℓ22(f̂n(a/ℓ1, (b+ 1)/ℓ2)− 2f̂n(a/ℓ1, b/ℓ2) + f̂n(a/ℓ1, (b− 1)/ℓ2)).

If f⋆ ∈ C2([0, 1]2), its Taylor expansion leads to (∆(ℓ1,ℓ2)f
⋆)(a/ℓ1, b/ℓ2) = ∂2

x,xf
⋆(a/ℓ1, b/ℓ2) +

oℓ2→0(1). Similarly, let the second-order time partial derivative operative ∂2
t,t,(ℓ1,ℓ2)

be defined for
all (a, b) ∈ Z/ℓ1Z × Z/ℓ2Z by

(∂2
t,t,(ℓ1,ℓ2)

f̂n)(a/ℓ1, b/ℓ2) = ℓ22(f̂n((a+ 1)/ℓ1, b/ℓ2)− 2f̂n(a/ℓ1, b/ℓ2) + f̂n((a− 1)/ℓ1, b/ℓ2)).

Euler explicit. The Euler explicit scheme is initialized using the Taylor expansion f(t, x) =
f(0, x) + t∂tf(0, x) + t2∂2

t,tf(0, x)/2+ ot→0(t
2). With the initial condition ∂tf(0, x) = 0 and the

wave equation ∂2
t,tf(0, x) = 4∂2

x,xf(0, x), this simplifies to f(t, x) = f(0, x) + 2t2∂2
x,xf(0, x) +

ot→0(t
2). This leads to the initialization

∀0 ⩽ b ⩽ ℓ2, f̂n(1/ℓ1, b/ℓ2) = f̂n(0, b/ℓ2) + 2ℓ−2
1 (∆(ℓ1,ℓ2)f̂n)(0, b/ℓ2).

The wave equation ∂2
t,tf

⋆ = 4∂2
x,xf

⋆ can then be discretized as ∂2
t,t,(ℓ1,ℓ2)

f̂n = 4∆(ℓ1,ℓ2)f̂n. This
leads to the explicit Euler recursive formula

f̂n((a+ 1)/ℓ1, b/ℓ2) = 2f̂n(a/ℓ1, b/ℓ2)− f̂n((a− 1)/ℓ1, b/ℓ2) + 4ℓ−2
1 (∆(ℓ1,ℓ2)f̂n)(a/ℓ1, b/ℓ2).

This formula allows to compute f̂n((a+ 1)/ℓ1, ·) given the values of f̂n(0, ·), . . . , f̂n(a/ℓ1, ·).

Runge-Kutta 4. The RK4 scheme is a numerical scheme applied on both f⋆ and its derivative
∂tf

⋆. Here, ĝn represents the approximation of ∂tf⋆. The initial condition ∂tf(0, ·) = 0 translates
into

∀0 ⩽ b ⩽ ℓ2, ĝn(0, b/ℓ2) = 0.

To infer f̂n((a + 1)/ℓ1, ·) and ĝn((a + 1)/ℓ1, ·) given the values of f̂n(0, ·), . . . , f̂n(a/ℓ1, ·) and
ĝn(0, ·), . . . , ĝn(a/ℓ1, ·), the RK4 scheme introduces intermediate estimates as follows:

• f̃1 = ĝn(a/ℓ1, ·)/ℓ1,

• g̃1 = 4(∆(ℓ1,ℓ2)f̂n)(a/ℓ1, ·)/ℓ1,

• f̃2 = (ĝn(a/ℓ1, ·) + 0.5f̃1)/ℓ1,
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• g̃2 = 4(0.5g̃1 + (∆(ℓ1,ℓ2)f̂n)(a/ℓ1, ·))/ℓ1,

• f̃3 = (ĝn(a/ℓ1, ·) + 0.5f̃2)/ℓ1,

• g̃3 = 4(0.5g̃2 + (∆(ℓ1,ℓ2)f̂n)(a/ℓ1, ·))/ℓ1,

• f̃4 = (ĝn(a/ℓ1, ·) + f̃3)/ℓ1,

• g̃4 = 4(g̃3 + (∆(ℓ1,ℓ2)f̂n)(a/ℓ1, ·))/ℓ1,

• f̂n((a+ 1)/ℓ1, ·) = f̂n(a/ℓ1, ·) + (f̃1 + 2f̃2 + 2f̃3 + f̃4)/6,

• ĝn((a+ 1)/ℓ1, ·) = ĝn(a/ℓ1, ·) + (g̃1 + 2g̃2 + 2g̃3 + g̃4)/6.

Similarly to the Euler explicit scheme, the RK4 relies on a recursive formulas to compute f̂n.

Crank-Nicolson . The CN scheme is an implicit scheme defined as follows. Similar to the Euler
explicit scheme, the ∂tf(0, ·) = 0 initial condition is implemented as

∀0 ⩽ ℓ ⩽ ℓ2, f̂n(1/ℓ1, ℓ/ℓ2) = f̂n(0, ℓ/ℓ2) + 2ℓ−2
1 (∆(ℓ1,ℓ2)f̂n)(0, ℓ/ℓ2).

Then, the recursive formula of this scheme takes the form

∂2
t,t,(ℓ1,ℓ2)

f̂n(a/ℓ1, ·) = 2((∆(ℓ1,ℓ2)f̂n)(a/ℓ1, ·) + (∆(ℓ1,ℓ2)f̂n)((a+ 1)/ℓ1, ·)).

This leads to the recursion

f̂n((a+ 1)/ℓ1, ·) = (Id + 2ℓ22ℓ
−2
1 ∆)−1(3f̂n(a/ℓ1, ·)− f̂n((a− 1)/ℓ1, ·))− f̂n((a− 1)/ℓ1, ·),

where ∆ =



2 −1 0 . . . 0

−1 2 −1
. . .

...

0 −1 2
. . . 0

...
. . . . . . . . . −1

0 . . . 0 −1 2


is the discrete Laplacian matrix.

D.4 PINN training

Figures 13 and 14 illustrates the performance of the PINNs during training while solving the 1d
wave equation with noisy boundary conditions.

References

R. Agharafeie, J. R. C. Ramos, J. M. Mendes, and R. Oliveira. From shallow to deep bioprocess
hybrid modeling: Advances and future perspectives. Fermentation, 9, 2023.

E. Arnone, A. Kneip, F. Nobile, and L. M. Sangalli. Some first results on the consistency of spatial
regression with partial differential equation regularization. Statistica Sinica, 32:209–238, 2022.

A. Arzani, J.-X. Wang, and R. M. D’Souza. Uncovering near-wall blood flow from sparse data with
physics-informed neural networks. Physics of Fluids, 33:071905, 2021.

31
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