Attention-based clustering

Rodrigo Maulen-Soto, Claire Boyer, Pierre Marion

September 2, 2025

Abstract

Transformers have emerged as a powerful neural network architecture capable of tackling a wide
range of learning tasks. In this work, we provide a theoretical analysis of their ability to automatically
extract structure from data in an unsupervised setting. In particular, we demonstrate their suitability
for clustering when the input data is generated from a Gaussian mixture model. To this end, we
study a simplified two-head attention layer and define a population risk whose minimization with
unlabeled data drives the head parameters to align with the true mixture centroids.

This phenomenon highlights the ability of attention-based layers to capture underlying distribu-
tional structure. We further examine an attention layer with key, query, and value matrices fixed
to the identity, and show that, even without any trainable parameters, it can perform in-context
quantization, revealing the surprising capacity of transformer-based methods to adapt dynamically to
input-specific distributions.

1 Introduction

Attention-based models (Bahdanau et al., |2015)), in particular Transformers (Vaswani et al., 2017), have
achieved state-of-the-art performance across a wide range of learning tasks. These include applications
in natural language processing (Devlin et al. |2018; Bubeck et al.l |2023; Luong et al., |2015; |Bahdanau
and computer vision (Dosovitskiy et al., 2020; [Liu et al. 2021} [Ramachandran et al. [2019).
The success of the attention mechanism has been linked to its ability to capture long-range relationships
in input sequences (Bahdanau et al., 2015; [Vaswani et al., |2017)). They do this by computing pairwise
dependencies between tokens based on learned projections, without regard to the tokens’ positions in the
sequence.

On the theoretical side, a full understanding of attention-based mechanisms has not yet been developed.
This is due to the complexity of the architectures and the diversity of relevant tasks they manage to achieve.
A promising research direction to bridge this gap involves identifying essential features from real-world
problems and constructing minimal yet representative tasks that retain the essential difficulty—paired
with provable models that solve them using attention-based mechanisms. Notable recent efforts in this
vein include |Ahn et al| (2023)); [von Oswald et al| (2023); [Yang et al. (2025); |Zhang et al.| (2024));
let al.| (2024} 2023). However, the existing literature mainly focuses on supervised learning aspects, and in
particular in-context learning (von Oswald et al., 2023} |Zhang et al., 2024} |Garg et al.l [2023} [Li et al.
[2023; [Furuya et al., [2024). The goal of in-context learning is to predict the output corresponding to a
new query, given a prompt consisting of input/output pairs.

Beyond the standard supervised setting, Transformer models are often (pre)trained in practice with
semi-supervised objectives such as masked language modeling (Phuong and Hutter} 2022). This raises
important questions about their statistical behavior and training dynamics in unsupervised regimes.
In this work, we examine Transformers through the lens of clustering, thereby revealing the inherent
capacity of attention mechanisms to perform unsupervised representation learning. To the best of our
knowledge, the only prior theoretical work that explicitly explores clustering with Transformers is
(2025)), who demonstrate that attention layers can mimic the EM algorithm 1982), albeit
assuming known cluster labels during training. In contrast, our analysis focuses on the fully unsupervised
setting and further provides insight into the functional roles of individual attention heads in the context
of model-based clustering.

Contributions. In this paper, we investigate the behavior of attention layers in an unsupervised
learning setting, where input data is drawn from mixture distributions. We focus on a two-component
mixture model, beginning with a simplified setup based on Dirac masses and extending to a more realistic



scenario involving Gaussian components. Within this classical clustering framework, we introduce a
two-headed linear attention layer designed to capture cluster membership through attention scores, while
remaining analytically and computationally tractable. To assess the quality of the embeddings produced
by the attention mechanism, we define a theoretical risk analogous to the classical quantization error
in unsupervised learning. We analyze the training dynamics of the proposed predictor under projected
gradient descent and prove that, with appropriate initialization, the algorithm can learn the true latent
centroids of the mixture components, despite the non-convexity of the loss landscape and without access
to cluster labels. To relax the initialization requirements in practice, we further propose a regularization
scheme that promotes disentanglement between attention heads. Our theoretical findings are supported
by numerical experiments under varying conditions, including different initialization regimes, mixture
separability levels, and problem dimensionalities. Overall, we show that attention-based predictors can
successfully adapt to mixture models by learning the underlying centroids through training. We also study
their quantization properties in the oracle regime, where parameters have converged to the true centroids.
Finally, we focus on a particular attention layer in which the key, query, and value parameters are fixed to
the identity matrix. Surprisingly, we show that this type of layer, despite having no trainable parameters,
can still perform in-context quantization, meaning it adapts to the case where the distribution of each
input sequence comes with its own mixing parameters. This further demonstrates the remarkable ability
of transformer-based methods to adapt on the fly to the underlying data distribution, even when no
attention parameters are trained.

Organization. Section [2]introduces the problem and outlines the proposed approach. Section[A]presents
an oversimplified version of the problem, using linear attention to solve a two-component Dirac mixture
model. In Section [3] we address the general problem with linear attention applied to a two-component
Gaussian mixture model. In Section[d we discuss the quantization properties of attention-based predictor
with oracle parameters. In Section [b] we explore an in-context clustering framework and examine the
quantization capabilities of a simple attention-based layer with no learned parameters. The proofs of all
the theoretical results can be found in the corresponding appendices.

2 A starter on attention-based layers and clustering

Data distribution in model-based clustering. In attention-based learning, the key idea is to map
a set of input tokens to a transformed set of output tokens. With this in mind, we consider an input
sequence X € RE*? composed of L tokens (X1,..., Xy), each token being a vector of R?, i.e.,

X/
X=1| : | eRF
XL
We assume that the tokens are i.i.d. drawn from a simple mixture model: for 1 < /¢ < L,

1 1
Xp~ 5-/\/'(/’66’ O-QId) + 5'/\/'(/’[”1(’ 0-2Id)a (PU)

with balanced components and where the centroids (uf, u3) € (S4=1H2 (ie., |uslla = |lpfll2 = 1) are
assumed to be orthogonal, i.e., such that (i, ) = 0. Therefore, for each token, there exists an associated
latent variable, denoted by Z,, corresponding to a Bernoulli random variable of parameter 1/2 and
encoding its corresponding cluster.

To initiate the mathematical analysis of Transformer-based layers in a clustering setting, we have
considered the degenerate case where 02 = 0, i.e., where samples are drawn from a mixture of Dirac
masses. We carried out a detailed analysis of the training dynamics for such a degenerate model. This
preliminary study proved insightful and helped guide our analysis of the non-degenerate mixture model.
For the reader’s interest, it is provided in Appendix [A]

Attention-based predictors. An attention head made of a self-attention layer can be written as
H**™(X) = softmax, (XQK 'X") XV

where the softmax of temperature A > 0 is applied row-wise, no skip connection is considered and the
matrices K,Q,V € R¥*P are usually referred to as keys, queries and values. We adopt the convention



that the values are identity matrices; thus, the attention head simply outputs combinations of the initial
tokens weighted by the attention scores. While this simplification is certainly convenient for facilitating
the mathematical analysis that follows, it is also supported by experimental studies showing comparable
performance when the value matrices are removed (He and Hofmann| [2024). Furthermore, assume that
the key and query matrices are equal to the same column matrix x4 € R4*!, we obtain

H*°fx 1 (X) = softmax, (Xpp'XT) X. (1)
With such an architecture, the ¢-th output vector is therefore given by

L
HSOftA’“(X)g = Z softmaxy (X;HHTXT)k Xy @
k=1

which corresponds to aggregating the Xj’s when X and X, are simultaneously aligned with p. This
suggests that attention heads may act as effective learners in a clustering framework.

The softmax nonlinearity used in the attention head introduces a coupling between tokens, which
undoubtedly complicates the mathematical analysis. To address this difficulty, we propose to look at a
simplified linear attention head, still parameterized by u € R%, and defined for 1 < ¢ < L, as

L
Hlmn( Z X, " X)) X (3)

h\l\?

This head uses a linear activation function instead of the traditional softmax found in practical architectures,
and has already received interest in several mathematical studies (see |Zhang et all 2024; [von Oswald
et al.l |2023; [Han et al.| [2023; [Katharopoulos et al., 2020)).

Note that when g is chosen to be g, then for tokens X, and X}, whose corresponding latent variables
Z; and Zj, are both equal to 0 (i.e., the samples belong to the same cluster centered at 4f), the vectors X/
and X}, are likely to be aligned with pf. In this case, we have (XJLLLLTXk)Xk ~ X}. Conversely, if X,
and X}, are associated with different latent variables (e.g., Z, = 0 and Zj = 1), then (le'—mﬂ—X;c)X;C ~ 0.
This behavior suggests that when setting p = pf5, and if X, belongs to the cluster centered at uf, the sum
Zle()\X J pit" X)Xy, effectively aggregates the X;’s from the same cluster, whose expected number
is L/2, motivating the renormalizing factor of 2/L. Overall, H'"#0(X), can be seen as producing an
empirical mean of the tokens belonging to the same cluster, serving as an estimator of the corresponding
centroid.

Therefore, assuming that the number of clusters in the data is known, it is natural to consider an
attention-based predictor composed of two attention heads, parameterized by po and p; € R?,

Tlin,/m,ul (X) _ Hlin,uo (X) 4 Hlin,ﬂl (X) (4)

Metric loss. As no label is available, we focus on minimizing the following theoretical loss:

)< — Z [1Xe = T(X)e13] (5)

e:

where T is an arbitrary attention-based predictor. The distinctive feature of this risk lies in the fact
that, if the predictor were able to return, for each token Xj, its associated centroid Wz, the risk would
exactly correspond to a quantization error, characteristic of a standard clustering task. Note that, due
to the independence of the tokens, we have £(T) = E||X; — T(X)1]|%, so we can confine the following
theoretical analysis on the minimization of the predictive error for the first token only.

PGD iterates. In this paper, we focus on the training dynamics of Transformer-based predictors when
minimizing the theoretical risk £. While we acknowledge that, in practice, an empirical version of this
risk is typically used, analyzing the optimization of the theoretical risk is already a non-trivial task, which
offers valuable insights into the behavior observed in practice.

For a given predictor T"™#0:#1 made of two linear attention heads parameterized respectively by 1
and g1, one can reinterpret the objective £ as a function R of the parameters (o, 1), defined by

Rlpo, pa) = L(TH#01), (6)



Note that the computation of the risk also depends on the choice of the underlying data distribution.
However, as is common practice in the literature, we do not explicitly indicate the dependence of the risk
on the data distribution. This should not hinder understanding, as the distributional assumptions and
context will always be made clear. As we rely on the theoretical analysis on an expression of this risk
restricted to the sphere, we consider as a gradient strategy, the Projected (Riemaniann) Gradient Descent
(PGD) algorithm (Boumal, [2023). Given an initialization (3, u9) € (S771)? and a step size v > 0, the
PGD iterates (uf, ut) € (S171)? are recursively defined by:

S gt — (g — 15 (15) ")V o R (15, 1)
16 = YT = 1 (1) T) Vi R, 13) |2
S i = Lo = pi () DV R(p, 1Y)
5 = v(a = p5 () TV R, 1) 12
In what follows, we analyze the convergence of these iterates to the oracle centroids, both theoretically,
progressing from simplified mixtures to more complex ones, and numerically.

(PGD)

3 Training dynamics: The centroids are learned as attention
parameters

We now turn our attention to a more standard and practically relevant setting, that of Gaussian mixtures,
as defined in . Specifically, we consider the case of i.i.d. tokens drawn as

1 1
Xf ~ §N(.u“63 GQId) =+ iN(.uIa O—QId)a

for 1 < ¢ < L, where (u, %) € (S?1)? are orthogonal unit vectors, i.e., (u§,u}) = 0. Our analysis
continues to rely on the risk R, now evaluated under this Gaussian mixture model.

3.1 Theoretical analysis

Preliminary computations. We start by introducing the following quantities:

ko = (g, po), K1 = (ulopn), mo = (i), m = (o pt), € (po ), (7)

and derive a closed-form expression for the risk w.r.t. this reparameterization. Although the full expression
is somewhat complex (see Appendix[C.1)), the following proposition highlights its key structural properties,
as being a polynomial in these five variables.

Proposition 3.1. Under the Gaussian mixture model , consider the attention-based predictor
Thinko:k1 composed of two linear heads parameterized by (po, p1) € (ST=1)2. Then, there exists a function
R=<:[-1,1]° = R such that R(po, 1) = R<(ko, 51,00, 71, &) and
R< (H07 K1,Mo, N1, 5) € span({fﬁé, 77617 ’{117 nilv ’@(2)77& "5%77%’ “377%7 ’%773; RoTok1M1,
ﬁ%a 7787 5%7 77%> "{'0{’7057 Klnlga 527 1}) .

(®)

We remark that when 79,7;, and £ are fixed to 0, most of the monomials vanish, yielding a fully
explicit formula for the risk (see Lemma in the appendices). Far from being a mere rewrite, this step
provides the algebraic foundation for all the exact calculations and insights that follow.

Optimality conditions. Given the complexity of the theoretical analysis, we focus on a simplified
setting by restricting our study to parameters (g, 1) lying on a specific manifoldﬂ

M = {(po, 1) € (8T 1)% + {1, o) = 0, (g, 1) = 0, (o, 1) = 0} 9)

In terms of notation, it is equivalent to assume that ng = 0,71 = 0,& = 0. Therefore on this manifold,
we adopt the shorthand notation R<(ko, k1) = R<(ko, k1,0, 0,0).

Lup to relabeling the head parameters, since a priori, uo (resp. u1) does not have to be automatically related to uy (resp.
i)



Lemma 3.2. Under the Gaussian mizture model , the risk R< restricted to M has the form
R=(ko, k1) = A + K1) + B(s§ + k1) + Crint + D, (10)
for A, B,C, D non-negatives constants, dependent on o and L, made explicit in Lemma[C_]

Proposition 3.3. Consider R<(kq, k1), there exists \*(o, L) > 0 such that the points (+1,+1) are global
minima of R<(ko, k1).

This result demonstrates that, under a suitable condition on the temperature parameter—specifically,
when A = A*(o, L)—the points +uf and 4} are global minimizers of the risk. The explicit form of
A*(o, L) is provided in Proposition in the appendices. Moreover, it is worth noting that as the
variance o2 of the Gaussian components tends to zero, \* (o, L) approaches the value \§ = L+l which

+3>
coincides with the value previously identified in the degenerate case (Pgl). On the other hand, when o is
2
fixed and L grows large, A* (o, L) tends toward A%, = %, which will guide us to properly choose

A in our numerical experiments.

Convergence analysis. In what follows, we show that the (PGDJ iterates can indeed converge to
global minimizers, provided they are suitably initialized on the manifold M.

Theorem 3.4. Under the Gaussian mizture model , consider the attention-based predictor TH™Ho:#1
composed of two linear heads. Take A €]0,\*(c, L)], with \*(o, L) defined as in Proposition[3.3 Then
there exists 4 > 0 such that for any stepsize 0 < vy <7, and for a generic initialization (u3, u3) € M, the
iterates (uk, u¥) generated by converge to the centroids (up to a sign), i.e.

(16> 1) —— (45, £417)-
k—o0
Theorem [3.4) underlines the capabilities of linear attention-based predictors in a clustering framework.
With appropriate initialization, the attention heads align with the true underlying centroids even when
trained without access to labels. This result shows that attention layers can uncover and encode the
latent structure of the input distribution in a fully unsupervised setting through their parameters.

3.2 Experimental verification of the theoretical results

Setting. To better reflect practical algorithmic behavior, we implement Projected Stochastic Gradient
Descent (PSGD; see Appendix , which serves as an empirical counterpart to the iterates by
relying on sample-based estimations.

In what follows, we use the metric referred to as distance to the centroids (up to a sign), given by

/min {dist;, dists}, (11)

where

dist, = min{]|2o — pgl1%, 1o + pgll*} + min{|lfn — w711, 141 + w717},

disty = min{|o — pil1%, liio + pi 117} + min{|lfn — w5112, 141 + 1517},
and p§, pi denote the true centroids, respectively, while fig, {11 are the parameters returned by .
Note that this distance is invariant under relabeling and sign flips of the head parameters. More
implementation details related to the following experiments can be found in Appendix

It is worth noting that the assumption of orthogonality of the centroids on the unit sphere always results

in a constant distance between the centroids, namely ||u% — 152 = v/2. In this setting, to characterize
the separation between the two modes of the mixture, one can introduce a notion of interference that
depends solely on the variance level of each mode and which is defined as I(c) = P(X, > g), where
X, ~ N(0,0?%). Remark that this function is increasing with supremum 0.5. This motivates the choice of
two contrasting scenarios for the numerical experiments: a low-interference regime with ¢ = 0.3, where
1(0.3) ~ 0.01, and a high-interference regime with o = 1, where I(1) &~ 0.24. More implementation details
of the following numerical experiments can be found in Appendix [F.2]



Results. When initialization is done on the manifold,

) ‘
the training analysis depicted in Figure [[] demonstrates £ = 0%\ Sigma
linear convergence of the head parameters toward the cen- =l — |e=03
troids (up to a sign) during the first 103 iterations, which g ©107 o=1
is in line with the obtained theoretical results. The error g S
then plateaus at around 1072 in the low-interference set- %310‘2 w
ting (0 = 0.3), and around 10! in the high-interference &
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. . iterations for the minimization of R, with an
3.3 Generalizations initialization on the manifold M. 10 runs, 95%

We consider several generalizations of our theoretical percentile intervals are plotted.

setting, to give insight on the role of our assumptions.

Random initialization on the unit sphere (outside of the manifold). When the initialization is
performed outside the manifold, PGD iterates only partially align with the underlying centroids. A way
to handle arbitrary initializations (suggested by our analysis in the degenerate case, see Appendix , is
to introduce a regularized risk minimization problem:

min Rp(,LLOuul)? with Rp(ﬂ/(h/j/l) d:d R(MO»MI) + PT(HO,M1)7 <Pp)
1o, p1 €SE—T

for p > 0 and the regularization term defined by r(uo, 1) = E[{uo, X1)%(p1, X1)?]. The role of this
term is to encourage the orthogonality conditions on pg, p1, thereby compensating for initializations
that may fall outside the manifold M. Numerical results show that the centroids can be recovered with
an appropriate level of regularization (see Figure . Note that, as the strength of the regularization
increases, it gradually overrides the original objective and impairs the alignment of the head parameters
with the true centroids —an effect that becomes more pronounced at higher noise levels.

S i) 0] | .
S _ 10° 5_ 10 \ Sigma
JEI g E g — 0=0.3
8@ S0-1 o=1
o ©10 o ©
< o + o
o+ o+
e 51072 c 5107
[ M ~—
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u v
(@] (@]
0 1 2 3 0 2000 4000 6000 8000 10000
Regularization Iterations
(a) Distance to centroids after 5000 iterations vs regu-(b) Distance to centroids vs (PSGD) iterations for the
larization strength p for the minimization of R”. minimization of R”, with regularization p = 0.2.

Figure 2: Performance of (PSGD)), when initializing on the unit sphere and minimizing the regularized
risk (P,). 10 runs, 95% percentile intervals are plotted.

In Appendix [G.2] we present additional experiments in higher-dimensional settings, highlighting the
impact of dimensionality on the training dynamics.

Orthogonality of the clusters. The framework studied in this paper assumes that the centroids of
the clusters are orthogonal. Relaxing this assumption to allow for potential overlap between centroid
directions significantly complicates the theoretical analysis by introducing additional terms.

More clusters. A natural extension is to consider the case of K centroids and attention heads. We
perform an experiment in the case K = 3, which shows recovery of the centroids, see details in Appendix
[G4] The main difference with the case K = 2 is the regularization term which now writes

r(pos s p2) = Y (s X1)% (g, X1)°
0<i<j<2



to promote pairwise orthogonality between the parameters. This approach should further generalize to
the case of K orthonormal centroids with K < d.

4 Attention-based layers as approximate quantizers

We have seen that attention-based predictors can adapt to mixture models by learning the underlying
centroids through training. In this section, we investigate the quantization properties of an attention-based
predictor whose parameters have converged to the true centroids. To guide our analysis, we introduce the
optimal quantizer T* as a statistical benchmark within a standard clustering framework. This oracle
predictor returns the true centroid of each token, that is, for 1 < ¢ < L, T*(X), = Wz, where Zy is
encoding the latent cluster of the token X,. One can immediately note that the risk of the optimal
quantizer is given by

L(1*) =B [|[X1 = Iy = do®.

Returning to the attention-based predictor T%™#0:#1 with oracle parameters, the first key observation is
that it closely resembles an optimal quantizer: its /-th output aligns, on average, with the centroid of the
cluster to which the ¢-th token belongs, as shown by the next lemma.

Proposition 4.1. Under the Gaussian mixture model , it holds that
. A
E[T"H011 (X)1|Z) = ¢] = u;z[(L +1)+2(L +3)0?], for c=1{0,1}.

Therefore, choosing A = T leads to unbiased approximate quantization, i.e.,

L
T2(L13)0?
E[T"™H641 (X),| 2y = ¢] = p.
One can next characterize the asymptotic risk and variance of the oracle attention-based predictor.
Proposition 4.2. Under the Gaussian mimtur? m*odfl (Po)), fix the temperature A\ = %.
Then, the risk of the attention-based predictor T"™Ho-F1 with oracle parameters ugy and py satisfies

lim L(T"H01) = 62(d — 2).

L—oo

Moreover, for an arbitrary value of X\, when L — oo, we get

lim Var[T"™#001(X)]Zy = ¢] = 2X20%(1 + 20%)2.

L—oo

Strikingly, as the input sequence length L increases, we find that

) E(Tlinwé’uf) )
lim ————~=1—-—.
L—oo E(T*) d
This result shows that the attention-based predictor asymptotically achieves a lower risk than the optimal
quantizer. This phenomenon can be partly explained by the fact that the comparison is not entirely fair:
the predictors Th™#0-#1 and T* do not belong to the same class of functions. Indeed, the optimal quantizer
T™* is only allowed to return two fixed vectors and relies on a single input token to predict the associated
centroid (albeit with access to the latent label). On the other hand, the image of attention-based encoder
T'in#o:11 i not discrete, and moreover this estimator aggregates a growing sequence of random variables,
all drawn from the same mixture. The aggregation of multiple inputs can be seen as a variance reduction
mechanism, which lowers the risk (this is also evident in the proof of Proposition where the risk
is shown to decrease as L increases). Note that the gap vanishes in a high-dimensional setting d — oo.
Another insightful comparison between the predictors TU™#o-#1 and T* is through their conditional
variances Var[T'(X)1]|Z1 = ¢|. While the conditional variance of the optimal quantizer is null by definition,
it is positive for the linear attention layer, and asymptotically independent of d as shown in Proposition
[42] This once again highlights the fact that these two quantifiers belong to function classes of different
complexity.

These properties are illustrated in Figure [3;} we observe that the attention-based embeddings are
approximate projections of the inputs on the line between the two centroids. In particular, the variance
of the embedded point cloud is lower than the variance of the inputs (which precisely means that
L(T"m#15-11) < £(T*)), while remaining positive (i.e., Var[T'™#5:#1(X);|Z, = ¢] > 0).



o] O Input tokens

1.0
® Transformed tokens

0.5

0.0

PCA Component 2

-0.5

-1.0 O O

-2.0 -15 -1.0 -0.5 0.0 0.5 1.0 15
PCA Component 1

Figure 3: Comparison between inputs and attention-based embeddings (d = 5,0 = 0.3).

5 In-context clustering

5.1 Setting

So far, we have considered the traditional setting for model-based clustering, with a mixture of Gaussian
made of two components: each token was assumed to be distributed as follows

1 * 1 *
X~ 5/\/(#0’021) + 5'/\[(“170-21)

with fixed centroids p§ and p} of unit-norm and orthogonal.

We have shown that despite the non-convexity of the problem, attention-based predictors including
two heads could perform approximate quantization and discover the underlying centroids encoded in
their parameters. Note that for an input sequence of tokens X = (Xi|...|X)"T € RE*4 the first output
of the type of attention-based predictor considered in this paper, parameterized by po and pi1, can be
rewritten as

lin,pospa (X)1 —

R

L
D OMXT popg Xo) Xe + MXT ] Xe) Xo
=1

AXY (popo + papd ) Xe Xy

[
SN
M=

~
Il
N

Therefore, when we consider two linear heads parameterized by row vectors for the queries and keys, and
constrain them to be orthogonal, the setup can be interpreted as a single attention head with a query/key
matrix of rank 2. Interestingly, we are able to effectively train this rank-2 query/key head by leveraging
the non-convex optimization of two simple, row-structured heads.

Now imagine that we challenge the clustering setting, and we assume that each input sequence
is still drawn from a 2-component mixture but with its own centroids, i.e., for each input sequence
X; = (Xit|... | X)) € REXD i =1,... n, we assume the tokens (X;;); to be i.i.d., such that the ¢-th
token is distributed as 1 1

Xielpio, wiy ~ SN (i, 1) + SN iy o),

for some random orthogonal centroids p}, and p}; of unit-norm.

If the prior distribution over the centroids is concentrated along specific preferred directions, denoted
for instance by pug* and p7*, then it is highly likely that the predictor studied in this paper, Thmsroom1 - will
perform well. A more formal analysis would likely show that, after training, the Transformer’s parameters
align with these underlying preferred directions. Pushing this idea further, imagine now that the centroids
are instead distributed in an isotropic way. In such a case, one can anticipate that T"™*0:#1 will struggle
to adapt to the task of in-context clustering due to limited flexibility: only two parameters, pg, 1 € S71,
are used to perform the embedding task in which the centroids vary significantly from one input sequence
to another. To address this issue, one can think about increasing the degrees of freedom of the predictor.
By building upon previous developments, one could initially increase the number of linear attention
heads. Specifically, if we consider d attention heads whose parameters are constrained to be row vectors



(He)e=1,...d € (Rd)d, each of unit norm and mutually orthogonal, we obtain the following attention layer:
for an input sequence X = (X1,...,Xz) € RE*4 and for 1 </ < L,

d ) 2\ d L 2\ L d
T(K)e = Y H™ < (X)e = L DS (K] pen] X)X = 53 (X (X penl ) Xe) Xa
c=1 k=1 k=1 c=1
1d
so finally,
22 L
T (X =7 kz:: X, X Xk (12)

In a way that is both expected and somewhat surprising, using d simplified linear heads in parallel, while
enforcing orthogonality among their parameters, ultimately amounts to employing an attention layer with
no trainable parameters. In what follows, we discuss the properties of 7°** in an in-context clustering
framework.

More formally, we refer to as the in-context clustering as a setting in which the input consists of a
generic sequence of L tokens Xi,..., X, sampled from a Gaussian mixture model whose component
means (centroids) are randomly drawn on the unit sphere:

s~ USTY and wi| g arbitrarily distributed on S4=1 N (u)*
Xiooos Xelugs pi ~ N (4, 02 1a) + 5N (uf, 0 1)

Associated with each token X, we still consider a latent variable Z,, corresponding to a Bernoulli random
variable of parameter 1/2 and encoding its corresponding cluster, so that

XZ|/I“63 /u"{v VAR N(/L}[,O’z.[).

5.2 Linear attention layers can perform in-context approximate quantization

In what follows, we characterize the risk of the attention-based embedding T** defined in , when the
input sequence contains an infinite number of tokens.

Proposition 5.1. In the asymptotic regime where L — oo, one has that

3
lim £(T°*) = (1 4+ o%d) — 2A(1 + 402 + 2do?) + 4)\? (2 <02 + ;) +(d — 2)06> .

L—oo

1+40%42dc?

Choosing the temperature A = 4(2(02+%)3+(d_2)05) gives
1+ 20?
lim £(T°) =o*(d -2
A ) = ol = )y s T e

o?(d —2).

As in the fixed centoids setting (Proposition |4.2]), we retrieve that for a suitable choice of A, the loss

satisfies . )
i Z (422 1420 <(1-2).
Lo L(T*) d) 1460241204 + 4dob d

This result is all the more surprising given that it emerges in a more complex setting, yet with a simpler
mechanism. Unlike the attention-based predictor 71™#0-#1—which benefits from access to the true
centroids and a trainable architecture—the in-context encoder T°* achieves a smaller asymptotic risk
without any learned parameters. That such a non-parametric encoder can outmatch the performance
of oracle quantizers or more informed or optimized methods reveals the power of attention layers in
extracting meaningful representations purely through the attention mechanism.

In effect, the attention-based encoder T°™* performs an approximate in-context quantization of the
input distribution by aggregating sequences sampled from a Gaussian mixture. As formalized below, this
simple architecture effectively captures the underlying statistical structure of the data.




Proposition 5.2. For ¢ € {0,1}, one has

2 1

. _ L 1 . . . .
Choosing A = 5 Tr@r e H (LD (147 yields an unbiased encoding, i.e.,

E[T(X)1|p1, ugs Z1 = ] = pi-

Moreover, the conditional variance of the encoding satisfies

42
Var [T(X), |, 1, Z1 = ] =75 (1 +3(d+4)0? + 3(d + 2)(d + 4)o* + d(d + 2)(d + 4)0)

12)2 1

+ 2 (L—1) <+M02+3(d+2)04+d(d+2)06>
L 2 2
8AZ (L —1)(L —2) ,  1\° 6
S e P = )

+ 73 5 (0 +2> +(d—2)o
42

1 2
- 1 No?2+(L—-1)( =+ o> .
L2[+(d+ Yoo + ( )<2+o>}
When L — oo,

lim Var [T(X)q|uf, u§, Z1 = ] = 2X20%(1 + 40? + 2do™).

L—oo

we obtain an unbiased encoding with a conditional variance

In this asymptotic regime, choosing \ = Tl%z,

of
91+ 40? + 2do*

2
7 T 1+ 202)2

It is worth noting that for d > 2,

o1+ 40?2 + 2do*

< o?d.
1+2022 =7

20

Therefore, in the regime of infinite input sequences (L — oo) and A = ﬁ, the encoding becomes
unbiased and exhibits a variance reduction effect. However, unlike in Proposition [{.1} this variance
remains dimension-dependent in general.

6 Conclusion

This work offers a mathematically grounded, principled perspective on the unsupervised learning capabili-
ties of attention mechanisms within mixture models. By combining a classical clustering framework with
simplified yet non-trivial attention architectures, we present theoretical and empirical evidence showing
that, when properly trained, attention layers can effectively recover latent structure in data. Our analysis
provides insight into the training dynamics, quantization behavior, and practical design choices, such as
attention head regularization.

We further investigate an in-context setting, where attention-based models still perform efficient
approximate quantization, by achieving lower error than the optimal quantizer. Future directions include
exploring richer attention architectures, closer to that used in practice, which may further challenge the
theoretical analysis.
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A Training dynamics in the degenerate case

In this section, we discuss the training behavior of the Transformer-based predictor T1#0:#1 in the context
of clustering, assuming the data are drawn from the degenerate mixture model, where for 1 < ¢ < L,

1 1
Xy~ 55% + §5MI7 (Po)

(the orthogonal centroids pug and p7 still lie on the unit sphere). We emphasize that despite its apparent
simplicity, this study framework is already sufficient to reveal some of the complexity inherent in the
clustering task carried out by a self-attention layer.

A.1 Theoretical analysis

Since training is performed by minimizing the risk R, the first steps of our analysis focus on studying the
critical points and extrema of this risk.
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Critical points and minimizers. First, we reparameterize the problem using the quantities

Ko = (ug po)y w1 = (i), no = (un,pg),  m = (po, 7). (13)

The scalar products k¢ and k1 measure the alignment of the parameters pg and g1 with the true centroids
1y and pf, respectively, while the scalar products 1y and 7; capture their orthogonality with the inverted
centroids 7 and pfy. The theoretical risk w.r.t. ko, k1,10 and n; reads as follows. The proof of this result
and the following are given in Appendix [B]

Proposition A.1. Under the degenerate mizture model , considering the attention-based predictor
Thinskom1 composed of two linear heads parameterized by pg and p1, the theoretical risk R can be re-
expressed as a function R< : R* — R such that R(uo, 1) = R<(ko, K1, 70,71), where

L+1 L+3
R (o, 1,10, m) = 1= A=— (g + KT + 15 +07) + N == (55 + m]* + [ + 7]?)
,L—1 , (14)
+ A (kom1 + K17m0)°-

In addition, if (po, 1) € (S%=1)2 are prescribed to the unit sphere, then dom(R<) = [—1,1]*.

Remark A.2. After a direct computation, we note that the critical points of the risk R correspond to
those of its reparameterized version, R<, i.e.,

(1o, p1) € crit(R) <= (ko,%K1,m0,m) € crit(R<).

Proposition A.3 (Characterization of global minima). Consider R< : R* — R defined as in Proposition
with A = L1 then a point (ko, 51,m0,11) belongs to argmin(R<) if and only if

T3’
2 2 _ 2 2 _ _

kg+ng =1, ki+ni=1, and kem + ki =0. (15)

While the characterization can be made for any value of A, choosing A = f—ié simplifies the system by

setting the first two conditions equal to 1. Moreover, this specific value provides a critical upper bound
on the temperature parameter that guarantees recovery of the underlying centroids via risk minimization,
as highlighted in the theorem below, and discussed in Remark [B-§ in the appendices. The proof of this
result in Appendix [B] also characterizes all critical points, beyond global minima.

Convergence analysis. From the characterization of the minima of R given in Proposition we
observe that the points (ko, k1,70, 71) that saturate the first two equations (i.e., satisfy k3 = k2 = 1 and
né =n? = 0) correspond to global minimizers of the risk that also recover the centroids (up to a sign).
However, in general, other global minimizers may exist that do not exhibit this saturation behavior and
are therefore disconnected from centroid recovery. In the next result, we show that under appropriate
initialization conditions, the (PGD)) algorithm converges to the desired global minimum, which aligns

with the clustering objective. To this end, we introduce the following manifold

M = {(no, 1) € (81)% 1 (i, po) = 0, (uf, 1) = 0} (16)
Theorem A.4. Under the Dirac mixture model , consider the attention-based predictor T Ho:
composed of two linear heads. Take X\ €]0, f—j_é} Then there exists ¥ > 0 such that for any stepsize

0 < <%, and for a generic initialization (ug, p19) € M, the sequence of iterates (uk, 1Y), generated by
(PGDJ), converges to the centroids (up to a sign), i.e.,

(1 1) —— (g, 7).
— 00

This result demonstrates that, despite the non-convexity of the objective function, the key and query
row matrices of a linear attention layer trained via align with the centroids of the underlying Dirac
mixture. Although the setting is simplified, it already highlights the representational role of key and
query matrices in attention-based learning, and serves as a foundation for addressing the more general
case of Gaussian mixtures.

Note that the convergence is up to a sign, a consequence of the symmetry inherent in H'm#,
Nonetheless, this sign ambiguity does not affect the output of the attention layer. To resolve this
ambiguity and identify the true centroids, one could compare likelihoods or perform a hard assignment
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Figure 4: Distance to centroids vs (PSGD)) iterations for the minimization of R, with data drawn from
the degenerate case . 10 runs, 95% percentile intervals are plotted.

step, selecting the centroid that minimizes the total distance to all points within its assigned cluster.
Besides, by generic initialization, we mean that the set of initializations (uJ, u9) € M for which
fails to recover the centroids is of Lebesgue measure zero with respect to M.

Initialization on the manifold M relies on prior knowledge of the centroids, which may be impractical.
While a theoretical analysis under generic initialization on the unit sphere would be of interest, it remains
analytically intractable due to the complexity of the resulting dynamical system derived from (PGD)). In
the following, however, we present numerical experiments incorporating a regularization term that proves
effective in solving the problem without initialization constraints.

A.2 Numerical experiments

In this section, we study the empirical convergence of the (PGD)) iterates when the data follows the
degenerate mixture model (Pgl).

Results. Figure [al clearly illustrates that when initialized on the manifold M, the @ iterates,
over the objective function R, converge to the centroids, as established in Theorem [A-4]

The situation differs outside the manifold, where numerical evidence shows that the Transformer
parameters only partially align with the true centroids as shown in Figure bl In fact, we observe
empirically that each parameter learns a mixture of both centroids. This indicates that the
iterates may converge to optima that do not coincide with the underlying centroids. To mitigate this and
better guide the learning process, we propose using a specific form of regularization:

r(po, 1) = El(po, X1)* (p1, X1)?). (17)

Therefore, we train the attention-based predictor H''™#o:#1 now by minimizing the regularized risk

min  R(po,p1)  with  RP(uo, t1) = R(po, 1) + pr(po, i), (P,)
fo,p1 €841
where p > 0 denotes the strength of the regularization. It can be rigorously shown that as p approaches 0,
the minimizers of R” converge to those of R, exhibiting the saturation phenomenon, desirable to bolster
the interpretability of the attention heads. We refer to Appendix for more details.

In Figure we observe that a relatively small regularization parameter (of the order of 1071)
is sufficient to achieve centroid alignment, with numerical error below 10714, In Figure we fix
the regularization parameter and observe that over the course of 10* iterations, the attention head
parameters exhibit linear convergence towards the true centroids. This numerical experiment highlights
the effectiveness of this form of regularization in enhancing the interpretability of attention heads—Dby
promoting their disentanglement—in the context of mixture models.

B Proofs of Section [A| (degenerate case)

In this section, we present the postponed proofs that support and elaborate on the arguments developed
in the main text. We begin by characterizing the critical points of the Dirac mixture risk, then proceed
to a discussion on the effects of a regularization term in the Dirac setting. Finally, we outline the proofs
of Theorems [A-4] and [3-4] which constitute the main theoretical results of our work.
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B.1 Proof of Proposition (expression of the risk in the degenerate case)

To facilitate the analysis that follows, we introduce the notation ey (u) = AX| pupu' Xy, for 1 < k < L,
which allows us to write

R(:”’Ov /'Ll

L
2
HX1 f; er(po) + ex(p) XkH]

In what follows, we give an expression of the risk of an attention-based predictor, in the case where
the data is distributed according to the Dirac mixture model . Then, the risk of an attention-based
predictor T'™:#0:1 can be written as

L 2
R(po, ) = E ||| X1 - iz<ek<uo>+ek<u1>>kaQ]
k=
L
=EIX:07) ~ 5 SE[X (ex(i0) + ex (i) X))
k=1

4 = i
ot lH > (erlpo) + ek(ﬁ“))X’“H

k=
L L
= 1= 2 SB[ (enlo) + exl) Xi)] + 75 D Ellenuo) + ) Xil
k=1
+ o E [(en10) + ex (1)) e (10) + 5 (12)) (X X;)]

El(e1(1o) + €1 () IX111%) + 5 E [[I(ex (po) + ex(u1)) X1 [1%]

4
2
ZE[(el(MO) + e1(p))(ex(po) + ex(p1)) (X1, Xi)]

L

k
L
Z (X1, (en(po) + ex(p1))Xk)| + L42Z]E[H(@k(uo)Jrek(m))XkHQ}

k=2

d:ef(I) def(II)

% Y Ellen(po) + ex(pu))(ej (o) + e () (X, X;)]

1<k<j<L

_|_

dcf(III)

2
:1*/\L(’$0+"51+770 +771)JF>\2 ([”oJF??o] + [57 + n3]%)

2(L—1)

2
+A 2

(55 + 31> + [k + i) — (D) + (1) + (I11).
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We compute (I) by conditioning on Z3, Zy,

E[(ex(p0) + ex (1)) (X1, Xi)] = E[E[(ex(uo) + ex(p1)) (X1, Xi)| Z1, Zi]]
= AE[((uZ, , o) (17> o) + (1%, 1) (g, 1) (W, 17,)]
_ (oAt
7 )

This leads to (1) = AL (k3 + k3 4+ ng +n?).
Similarly for (IT), conditioning on Z1, Zy,

E [[I(ex(ro0) + ex(p1)) Xil|*] = E [E[l|(ex(1o) + ex (1)) Xll*| 21, Z4]]

= NE[[| (%, , 1o) (g, » o) + (i, 1) (i, 1))z, 1]

el R P Grom o )
4 2 '

Which gives (IT) = A2552 (k3 + ]2 + [53 + 1)) + A2 252 (kom + kamo)?.
Finally, to compute (I1I), note that

E[(ex(po) + er(pn))(ej(po) + €j(11))( Xk, X;)]
= E[E[(ex(1o) + ex(11))(ej (o) + €5 (1)) (X, X)| Z1, Zi, Z,]]
= NE[((1%,, 10) (W » 110) + (s 1) (0 s 1)) (0, o) (i, s o) + (g s ) (0, i)
(g bz,

)2 [k + nd]* + [5% + 7] g (Kom + K110)?
8 4 ’

leading to (111) = N2 E=DE=2 12 14212 4 (63 + n2]? + 2(kom + k170) ).

Putting everything together, we obtain that the risk can be written in terms of kg, k1,70, 71, i.€.,
R(po, 1) = R=(ko, k1,0, 1), where:

de 2 L-1
R 1o 2 B Gt

2 2(L-1) L-1 (L-1)(L-2)

+ A2 {LQ+ e )4 3 ! 2L(2 ]([%3+77312+[~?+n?]2)
L—1)(L—-2 2(L—1

+ A2 [( 2(2 )+ (L2 )](507714-%1770)2
L+1 L+3

= 1= A== (kg + AT+ g+ nd) + N == (65 + ) + [ + 2]%)

+ A2

(kom + fﬁ1770)2~

B.2 Proof of Proposition (critical points of the risk in the degenerate
case)

Proposition B.1. Consider R< : R* — R defined as in Proposition with A = f—ié, then we
characterize its critical points by

1. The point (0,0,0,0) is a local mazimum.

2. The points (Ko, 0,10, 0), where k3 +n3 = 1, and (0, k1,0,1m1), where k3 +n3 = 1, are strict saddle
points.

3. The points (ko, k1, K1, ko) and (Ko, K1, —K1, —Ko), where K3 + K3 = ﬁ, are strict saddle points.
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4. (Ko, K1,7M0,71) belongs to argmin(R<) if and only if:

G =1
ki+mny =1 (18)
Iioﬂl —+ Ii1770 = 0

Proof. Let us define (o = (k9,70),(1 = (71, k1), then there exists a function R<< : R? x R? — R, such

2 p—
that R<(ko, k1,M0,71) = Rf<((0,Cl) in fact, let us define A = LL(;{)?’),B = 2%&23),0 = (Lzr(lL)+(§)2 1),
then with the value of \ defined in the proposition, we obtain

R==(Co:¢1) = 1= A(lIGol* + ll6all*) + B(lIGolI* + lIGlI*) + Co, 61)*.

To analyze its critical points, we take the partial derivatives,

Ve R<<(Co, 1) = —2ACo + 4B|¢o|*¢o + 2C (o, €1)¢a,
Ve R<(Co, 1) = —2A¢ + 4B GG+ 2C{Co, ¢1) o

And also, we compute its Hessian, we define

VE, R (¢, ¢1) = —2AI + 4B(2(0¢y + [1GolI*12) + 2CGi¢
VCD,Cl (€0, ¢1) = 2C(Go¢) + G Gula),

Ve aR™ (0, ) = 2C0(GGo + ¢ Gla),

Vaa R0, 1) = —2AL +4B2G ¢ + G P2) + 200G

Then the Hessian will be defined by

2 << _ VQO’COR<<(C(J)<1) VQO’C1R<<(<O7<1)>
VIR G4 = <V§17<0R<<(C1,(:0> v§17C1R<<(COaC1) (19)

To find the critical points, we solve the following system of equations:

—2A + 4B||¢o1*¢o + 2C (o, (1)¢1 = 0,

2 (20)
—2A¢ + 4B ]]7 ¢ 4 2C(Co, €1)6o = 0.

(0,0) is a local maximum. We see that a trivial solution to this system is ({p,¢1) = (0,0), and
replacing into the Hessian matrix, we see directly that this point is a local maximum.

(0,¢1), (Co,0) are strict saddle points. We check the case when (o = 0,{; # 0, then we need to solve
—2A¢ +4B|G*¢G = 0.
Since ¢; # 0, this forces —2A + 4B||¢1||?> = 0. Replacing (0, (;) into the Hessian matrix gives us

_ T
v2R<<(0,C1):( QAIQT)QCCIQ 8881@ )

And eig(V2R<<(0,(1)) = eig(—2AIz + 2C¢1 ¢ ) Ueig(8B(1¢{ ), where eig is the set of eigenvalues of a
matrix. We have that

eig(—2A4I +2C¢i () = {—24,2(C - A)},
cig(8BG1¢; ) = {0,8BI|¢1[I*}

where we have used that 8 B = 4A. We also note that C'— A < 0, then we conclude there are 2 negative
eigenvalues and 1 positive eigenvalue, concluding that these points are strict saddle points, due to
symmetry we conclude the same for the points of the form ((p, 0) for ||(o]|? = 1.
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Non-trivial critical points. We will first show that the critical points that are of the form ((y, (1) for
Co # 0,¢1 # 0 necessarily satisfy [|(o|| = [|C1]| # 0, multiplying the first equation of by (o and the
second by (1, then subtracting both resulting expressions we obtain 4B(||¢1[|* —[|¢o||*) = 2A(||¢1 112 =<0 I?),
and then

(ISoll® = G I*) (=1 + 1Gol* + Il ]I*) = o,

thus either [|o]| = [|¢1]| and we get the first claim, or ||(o||* + [|¢1]|> = 1, in this second case we divide in
two subcases:

e Let us assume that ((p, (1) = 0, then multiplying the first equation of by (o and the second
equation by (i, we get that [|(y]|? = ||¢1]|> = 1, which is a contradiction since we are in the case
where [[Gol|* + [|G1]]* = 1.

e Therefore (g, (1) # 0, we multiply the first equation of by ¢; and second by (y, after dividing
by 2((o, (1) we get that

—A+ Aol + C{¢o, ¢1) =0
—A+ AlG? + C{Co, 1) = 0.

Substracting both equations we get that ||(o] = ||<1]|-

So we get that necessarily ||(o|| = [|¢1|| = > 0. Then the equation becomes

A(r? = 1)¢o + C{Co, &1)G = 0,

2 (21)
A(r® = 1)1 + C{Co, €160 = 0.
Adding/substracting both equations we get
(Go £ CIA(r? = 1) £ C{¢, ()] = 0.
(o, £¢p) are strict saddle points. In the case where {y = +(3, by we get that
A(r® = 1) + Cr®¢y = 0,
then 72 = A-j?%c = ﬁ Replacing this point on the Hessian matrix V2R <<((y, +(o), where ||| = 7,
TER<<(Cor o) = 2A(r? = 1)1y 4+ 2(2A 4+ C) oGy 20(r? Iy + Co¢q )
0250 20(r I + Go¢q ) 24(r? = 1)1, + 2(2A+ 0) oGy )
VER<<(Co, —Co) = 2A(r? = 1)1 4+ 2(2A + C)CoCy —2C(r*Iz + ¢o¢y )
0750 —20(r*I> + Co¢y ) 24(r2 — 1)1 + 22A + C)oCd )

We can do a similar analysis as before and conclude that this matrix has positive and negative eigenvalues.

Characterization of global minima. If {y # +(; and ||(o|| = ||¢1]| = 7 > 0, then both vectors are
linearly independent, thus the first equation of is only possible when 72 = 1 and ({p,¢1) = 0, in
which case we have to analyze the points ((p, (1) such that ({p,¢1) = 0 and [|(p]|? = ||¢1]|> = 1, we replace
these points on the Hessian matrix and this gives us

_ [(4AL¢) +200¢ 2C¢o¢y
VAR<<(¢0,¢1) = ( QOC’CICJ ' 4AGC + QICCOCOT) '

A direct computation of the eigenvalues with eigenvectors ((1,¢p) and ({1, —Co) gives us that all the
eigenvalues are positive in this case, since R<< is coercive, these points are in fact global minima. [

B.3 Discussion on regularization

In order to solve the clustering problem in the degenerate case, we train the attention-based predictor
H'mro:k1 now by minimizing the regularized risk

min  Rf(po,p1)  with  R°(po, 1) = Rpo, 1) + prio, 1), (P,)
10,11 ESE—1L
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where 7(po, 111) = E[{10, X1)*(u1, X1)?], and p > 0 denotes the strength of the regularization.

It is direct to check that there exists 7< : R* — R, such that (o, 1) = r<(ko, 51, 70, 71) according to
the notation defined in (13), and r<(ko, 1,70,m) = & (k3n3 + xin?). We define the following optimization
problem

min R= (Ko, k1,70, M) + pr= (Ko, K1,70,71), (Pp<)
K0,K1,M0,m €[—1,1]

where R< is defined in Proposition Since R< and r< are coercive, we apply Attouch| (1996, Theorem
2.1) to conclude that if u, € [-1, 1]* is a solution of 1' then every limit point 4 of u,, when p — 0,
satisfies that:

r<(a) < r<(v), for every v € argmin R<,
4 € argmin R<.

Due to the geometry of 7< and the characterization of argmin R< we got in Proposition we obtain
that if 4 = (Iﬂ?o, K?l, Tfo, ﬁ1)7 then

{/%3:1,/%%:1,773:0,77%:0, or (22)

=1, = 1,42 = 0,i2 = 0.
Then the optimal solution for the regularized problem when p — 0 achieves a saturation effect, corre-
sponding to global minimizers that recover the centroids. However, due to the non-convex nature of
the problem, it is not guaranteed a priori that PGD on will converge to the desired solution. A
possible direction of analysis is to study the dynamics of PGD in the limit where p — 0. We know from
Proposition [B:I] that the only global minimizers of the unregularized problem lie on a manifold, so we
expect that PGD converges to this manifold, before evolving on the manifold due to the regularization
term, to converge to the minimizers given by . Technically, this dynamics could be studied by using
two-timescale tools, e.g. similar to |Marion and Berthier| (2023) and references therein. We leave this
analysis for future work.

B.4 Outline of the proof of Theorem

The results in this subsection lead to Theorem [A74] Their proofs are deferred to Subsection [C.4] where a
generalization of the same lemmas and propositions is established.

Lemma B.2. At a point (ko, k1,10,m) such that ng =m =0, we have 0,y R< = 9, R~ = 0.

Proof. We have that
R= (Ko, £1,70,11) = R= (Ko, K1, =10, =11, )-
Taking the partial derivative in 79, we get
O R= (Ko, 61,10, 11) = —0ng R™ (Ko, K1, —10, —11)-

At a point such that g = 7 = 0, this gives 9,,R<(ko,%1,0,0) = —0,,R<(ko, k1,0,0), therefore
OnoR= (Ko, k1,0,0) = 0, the proof for d,, R< is analogous. O

Lemma B.3. The manifold M s invariant under (PGD) dynamics, this is if (uf, u¥) € M, then
(W ) € A

Thus, if we initialize (PGD]) in M, then we saturate equations in the aforementioned sense, i.e.,
we retrieve the centroids (up to a sign), the following results will formalize this fact.

Lemma B.4. When initialized on the manifold M, the iterations generated by (PGD|) can be reformulated
as follows:

(ko w1 = (k. K1), (23)

where ¢ : [—1,1]2 = [~1,1]? is given by

G(ko, k1) = ( Ko = V(O R= (Ko, i1 ))(1 = K§) 1 — (9, R (K0, 1)) (1 — K7) >

\/1 + 72(amoR<("an "fl))2<1 - H(Q))’ \/1 + 72(8N1R< (Ko, /@1))2(1 — ,‘i%)

and R< (Ii()7 Iil) = R<(K)0, K1, O, O)
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We explicit that

L+1 3
R (0, ) = 1 = AN (8 4 8) + 02 02 et ), (24)
L 2L
In the following propositions, we consider R< : [-1,1]?> — R, defined as in with A €]0, f—ié]
Proposition B.5. Let (43, 1) € M, consider with initial conditions k8 = (ud, ug), 9 = (U9, u3).

Then there exists ¥ > 0 such that for every 0 < v < 7, the risk R< is decreasing along the iterates of
(23]). Besides, the distance between successive iterates tends to zero, and, if (%, kY) is an accumulation
point of the sequence of iterates (k&, k¥)ren, then

(1= (K§)*)0ug R (K5, K1) = 0, (1= (K])*)0, R< (5, K1) = 0. (25)
Proposition B.6. The points (ko, k1) € [—1, 1]2 satisfying belong to the set
£ < {(+1, 1] (0, £1), (+1,0), (0,0)}.
Proposition B.7. The fized points of the dynamic can be classified as follows:
1. The points (Ko, k1) = (£1,£1) are global minima of R< on [—1,1]%.
2. The points (ko, k1) = (0,£1) and (£1,0) are strict saddle points of R< on [—1,1]%.
3. The point (kg,r1) = (0,0) is a global mazima of R< on [—1,1]%.

Remark B.8. Note that the specific characterization of the global minima of R< was valid only for

A= f—ié However, when restricting the analysis to the manifold M and considering \ €]o, LE[ the

global minima lie outside the domain [—1,1]2. As a result, due to the structure of the update rule in
(PGD), the extreme points (£1,£1) of [~1,1]? become fized points of the algorithm and serve as global
minimizers of R<.

Proposition B.9. Consider the context of Proposition[B.5, then there exists ¥ > 0 such that for any
stepsize 0 < 7y < 7, the iterates (K&, k¥)ren generated by (23 . converge to an element ofcf

Proposition B.10. Consider the context of Proposition[B.5, then there exists ¥ > 0 such that for any
stepsize 0 < v < 7, the set of initializations such that the iterates (K&, k¥)ren generated by converge
0 (0,+£1),(£1,0) or (0,0) has Lebesque measure zero.

C Proofs of Section 3| (Gaussian mixture model)

C.1 Proof of Proposition (expression of the risk in the non-degenerate
case).

Recall the notation ey () = AX| pup” Xy, for 1 < k < L, which allows us to write

R(MO? Ml

HX1 -7 i(ek(uo) + ek(m))XkHj :

k:l

Under the Gaussian mixture model, we are going to show that the risk
Rpo, 1) = E [[| X1 — (H" + H")(X)[3]

admits a closed-form representation in terms of elementary functions. It holds that

R(MO7 /1/1

Hxl-i@k(uowekw»muj
k=1

E [||X1/°]

m»u

L
Z (X1, (ex M0)+6k(ﬂl))Xk>}

2This notation means (£1,41) € {(1,1), (1, -1), (=1,1), (=1, —1)}
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5 (entuo +ek<u1>>Xkﬂ .
k=1

L

= (1 do) — 1 SB[, (exlmo) + ex () X))
k=1

L
+ % Z]E[H(ek(,uo) + ex (1)) X ||?]
k=1

b S Eflenli) + enim))(es () + €5 ) (X X,)]

1<k<j<L

= (1+do%) — ZE[(es(1t0) + ex ()X [+ 75 [ea(o) + 1 (1)) X ]

(Io) (I1o)

L
2 S Ef(en (o) + o1 (m)ex (o) + exun)) (X1, X))
k=2

4 (1110)

L

L
- %Z (X, (eno) + ex () Xi)] + 75 S [lex (o) + ex(i) X ]

=) =

Y Ellentuo) + exm))es (o) +esm) (X, X;)]

1<k<j<L

_|_

el
= (1+do?) — (Io) + (IIy) + (I11y) — (I) + (II) + (I11).

We now proceed to compute each of the six terms. To compute (1), we can use Lemma since

E[((X1, 1o)* + (X1, 11)*) | X1 %]
(E[(X1, o)1 X1 1?1 21 = 0] + E[({( X1, o) | X1 |1 21 = 1])

(ELX1, p1)?[1X1 )21 21 = 0] + E[(X1, 1) X1 [%] 21 = 1))

_|_
wm—nw\r—kw\.a

(k5 +m5 + 65 + 1) (14 0°(d+4) +20°(1 4 0*(d+2)) (|| uoll* + [l ]1*)]
Then, (Ip) = 2* [(k3 + 03 + £3 + n})(1 4+ 0*(d +4)) + 202 (1 + 02(d + 2)) (|| oll* + [l [1?)]-

To compute (I1y), by defining po(uo, i1, #*) as in Lemma we get
E[((X1, po)? + (X1, 1)) 21 X1 ||?]
= ~E[((X1, po)* + 2(X1, p0)* (X1, 1) + (X1, p1) M| X1 [1*1 Z1 = 0]

"‘l\D»—l

+ SE[((X1, po)* + 2(X1, po)* (X1, p1)? + (X1, p) ) 1Xq 1121 = 1]

)—Al\D

= = (po(po, po, 115) + 2P0 (ko pi1, 11g) + Polpns 1, 145))

’—‘I\D

7(p0(:u’07,u07:u){) + 2p0(:“’07,“17/~ﬂ1() +p0(,U1, M1, /J{))

[\)

Then,

4N

12

_2N?
B

(I1p) = = E[((X1, po)® 4 (X1, 11)?)? | X1 |1?]

(po(1t0, pos 115 + 2P0 (f0s fo1, 115) + Po(pers pi1, 15))
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>\2 * * *
+ 73 Polko, Ho, 1) + 2po(po, pra, 1) + po(pn, pa, 1)) -
To compute (/11y), by defining p1 (pio, p1, p7, , 7, ) as in Lemma we get

E[((X1, po)? + (X1, 1)) (X1, po) (X2, po) + (X1, p1) (X2, 1)) (X1, X))
:i Yo Tilaz),

(21,22)€{0,1}2
where

T1(z1,22) = E[((X1, po)® + (X1, 11)*) (X1, o) (X2, o) + (X1, 1) (X2, 1))
(X1, Xo)|Z) = 21, Z2 = 2).

And then
1
Z Z Tl(zh 22)

(#1,22)€{0,1}2

= —(p1(po, o, 155 116) + D1 (fos H1, 155 116) + D1 (p1s Hoy 155 110) + D1 (s 115 1G5 145))
+ ~ (1 (1o, o, 175 115) + P1(pos 1, 135 15) + P1(ps pos 175 o) + 1, pas 13, 145))

(p1 (1o, po, 1gs 11) + P1(pos a1, pg, 1) + P1(pe, pos 1gs 141) + P1(pas i1, 1G5 (7))

+
[ e N - B N [

(p1(Ho, po, 175 11) + p1(pos a1, 175 1) + pr(pen, po, 7, 11) + p1(pns i, 135 1))

+

Consequently,

(I11p) = 8)? E[((X1, to)® + (X1, 1)) (X1, o) (X2, pto) + (X1, ) (X2, pa) ) (X1, Xo)]

(L—-1)
L2

= 2/\2 (L_ 1) Z Tl(zl,zg).

12
(21,22)€{0,1}?
To compute (I), we can use Lemma[E.5| to obtain:

E[({(X1, po) (X2, po) + (X1, ) (X, 1)) (X1, Xo)]
1

= EE[(<X17MO><X2M0> + <X1,u1><X2,u1>)<X1,X2>|Zl =0,22 = 0}

+ EE[(<X1,#0><X27M0> + (X1, ) (X2, 1)) (X1, X2)[Z1 = 0, Z = 1]

+ EE[(<X1,N0><X27/¢L0> + (X1, ) (X, 1)) (X1, Xo)| Z1 = 1, Z2 = (]
1

+ ZEl((X 1, 10} (Xa, po) + (X1, 1) (Ko, 1) (X0, X2)| 21 = 1, 22 = 1]

1+ 402
4

(kg +m5 +r1+m3) + o (luoll® + I %)

Thus, (1) = AT (83 + 16 + w7+ nf) (1+ 40%) + 4o ([|o]® + 1 [*)] -
To compute (I1), by defining pa(p0, g1, %, , f17,) as in Lemma we obtain:
E[((X1, o) (X2, p10) + (X1, pn ) (Xa, 1)) ? (| X2 ]
= % Z To(z1,22),

(21,22)€{0,1}2
where

Yo (21, 22) = E[((X1, po) (X, po) + (X1, )} (Xo, 1)) | Xa || 21 = 21, Z2 = 23]
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And then

1
1 z Ta(21,22)
(21,22)€{0,1}2
1

= z(m(uo, 105 10> 140) + 202 (105 11, 105 110) + D2(f1s 11, 1G5 145))

1
+ Z(pz(/m’uo’/ia, 13) + 2p2(pos p1, pos 141) + D2(pns i1, (g5 147))

1
+ Z(pz(uowo,ui, 10) + 2p2(po, pe1, 175 p10) + D2(pns pi1, 135 145))

1

+ i(pz(uoyuo,ui, p1) + 2p2 (o, pe1y gy, 1) + p2(pen, pias 115 147))-

So we obtain,
4N2(L —1)
1.2

M (L -1
CRUD g
(z1,22)€{0,1}2

(1) = E[((X1, po) (X2, pto) + (X1, p1)( Xz, p1))? (| X2 %]

Finally, to compute (/11), by defining p3(po, p11, iy, s iz, s 117,) as in Lemma we get

E[({(X1, po) (X2, po) + (X1, pa)(Xa, 1)) ((X1, 10) (X3, pro) + (X1, p1) (X3, p1)) (X2, X3)]
=2 Y Tmw)

(#1,22,23)€{0,1}3

where

T3 (21, 22, 23) = B[((X1, po) (X2, o) + (X1, p1)(Xo, 1))
(X1, o) (X3, pro) + (X1, 1) (X3, 1))
: <X2aX3> |Zl = 21,29 = 29,23 = 23].

Observing that

> Yslenzmez) = > pa(thay o 5 185 187,
(21,22,23)€{0,1}3 (a,b,c,d,e)€{0,1}°
we get
SAN(L—-1)(L—-2) 1
(IIT) = 573 '3 T3(z1, 22, 23)

(21,22,23)€{0,1}3

MN(L-1)(L -2 .
— ( 2L)2( ) Z D3 (ta, by oy s 105
(a,b,c,d,e)€{0,1}5

Finally, putting everything together, recalling the notation introduced in , and inspecting the
formulas given by Lemmas from [E-2] to [E.7] allows to conclude.

C.2 Proof of Lemma (expression of the risk on the manifold, non-
degenerate case)

We provide in Lemma [C.I] a more precise version of Lemma [3.2] with explicit constants.

Lemma C.1. Define ci(n) = 1+ no? and ca(n) = 1+ 0?(d +n), then the risk R<(ko, 1) restricted to
M has the form

R=(ko, k1) = A(kg + K1) + B(kg + k1) + Crkgki + D,

23



where

22 222(L — 1) A2(L—1) (L —1)(L—-2)
A = ﬁCQ (8) + L2 C1 (5) + L2 Co (4) + 2L2 C1 (4)
B=-Peyy+ o6+ T o) - A

4)\202L(£: - 1)@(3) N \202(L ;21)(L -2) ¢1(6).
o 4)\202[(15 - 1).
D= e(d)— 8\o? 6(2) + 322’204 () + 64/\20;(2L —1)
B 8)\04(5 —1) N 8)\204L(2L - 1)62(2) N 8\205(L 221)(L -2)

Proof of Lemma[C.1} Using the decomposition obtained in the proof of Proposition after simple
algebraic manipulation we get that on this manifold:

o (In) = 22[(K3 + K3)(1 + 02(d + 4)) + 40%(1 + 02(d + 2))].

o (ITy) = 2 [(kd + k1)1 + 02(d + 8)) + 802(kZ + £2)(1 + 02(d + 6)) + 160*(1 + 0%(d + 4))].

(IT1y) = 222 LD (k2 4 k4) (1 4 502) + 40%(kE + £2)(1 + 602) + 202k2K3 + 3209).

o (I) =ML (k4 K3)(1 + 40?) + 801).

(I1) = XD [(kd + k1) (1 + 02(d + 4)) + 402 (k3 + £3) (1 + 02(d + 3)) + 80 (1 + 02(d + 2))].
o (I17) = N2E=DEZ2(d 4 k) (1 + 402) + 202(k2 + £3)(1 4 602) + 160°).

We conclude by noting that the risk restricted to this manifold is

R (ko, 1) = (1 +do®) — (Io) + (I1o) + (I11o) — (I) + (II) + (I11),

and properly factorizing the terms. O

C.3 Proof of Proposition (global minima of the risk, non-degenerate
case).

In what follows we provide an extended version of Proposition [3.3] with explicit constant, together with
its proof.

Proposition C.2. Let us define

def

c3(o, L) = 160%¢2(6) + 80%(L — 1)c1(6) + 40 (L — 1)c2(3) + 0*(L — 1)(L — 2)¢1(6) 4 4co(8)
+4(L = 1)e1(5) +2(L — 1)ea(4) + (L — 1)(L — 2)e1 (4) + 40*(L — 1),

and consider R<(ko, k1) with the following A:

2Lcy(4) + L(L — 1)ey(4)

Aoy L) = c3(0, L)

Then the points (+1,+1) are global minimum of R<(kg, k1).

Proof. ITmposing first order conditions on R<(kq, k1) from Lemma we obtain an explicit form of its
critical points. From this expression, we note that the global minimum are the points (+1,+1) if and
only if 44 + 2B + 2C = 0. The function A — 2A(X) + B(\) + C()) is a quadratic which is negative for
0 < A < A (o, L), and vanishes at A = A*(o, L). O
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C.4 Proof of Theorem [3.4

The proof of this result is built upon a series of intermediate results that progressively lead to the desired
conclusion.

Lemma C.3. At a point (ko, k1,M0,M,&) such that ng = m = & = 0, we have 0, R~ = 0,, R~ =
JeR< = 0.

Proof. According to Proposition [3.1] we can directly obtain that
R< (’%07 K1,Mo, M1, 5) = R<(K‘Oa K1, —"No, —11, _§>

Taking the partial derivative in 79, we get

8710R<(K:07 K170, M1, f) = _8710R<(K:07 K1, —=To, =", _E)

At a point such that o = n = &£ = 0, this gives 9,,, R<(ko, k1,0,0,0) = —0,, R<(ko, k1,0, 0, 0), therefore
OnoR< (Ko, £1,0,0,0) = 0, the proof for 9,, R<,0¢R*< is analogous. O
Lemma C.4. The manifold M is invariant under ) dynamics, this is if (&, ut) € M, then
(uo ™) e M.
Proof. We apply the chain rule and Lemma to get:

Vo R = 0rg R4 + O RS pT + O R 1 = 9 R™ 11, (26)

ViuR = 0, REpT + Opg R4 + O R pio = 9, R™ 47 (27)

We then follow the same ideas as in [Marion et al.| (2024, Lemma 4), where our Lemma takes the role
of Marion et al.| (2024 Lemma 14).
More concretely, let us consider co = |lpb — v(Ia — pf(pE) ")V R(uE, 1f)|2, and

= ||k —y(Za — p5 (uF) ")V 4, R(1f, 125) |12, then recalling (PGD) updates, we have that if (uf, uf) € M,
then

*

()Tt = (1) "ps = (1) T (Ja — lct(’?(uo) V0o R (56, s)itb _
0
()T = (16) "t = () " (L = i (1) )0y R (5, 1)1t _
1 - Yy
a
And
(5 Tugt?
_ (ed) "
CoC1
V(0 R (K6, 55)) (Ta — p5 (W) ")) Ty — 7 (Oieo R= (65, 68)) (T — gy () ") T i
CoC1
+7 72 (Org R (1565, 1)) Oy R= (6, 55)) (e — oy (165) ")) " (Ta — pi () " ed -0
CoC1

where the last term is zero since
((La = p () ") T (Ig — b () "t = 0.
Then (uf™, bty e M. O

Lemma C.5. When initialized on the manifold M, the iterations generated by (PGD|) can be reformulated
as follows:

(K§+1 ]1€+1) @(’ig»’f]f)» (28)
where ¢ : [=1,1]* — [=1,1]* is given by
(P(Iio fil) _ Ko — ’Y(amo'R,<(HZO, Hl))(l — K(Q)) (8K1R<(/€0, Hl))(l _ K%)
y \/1+'}/2(8,§0R<(/£0,/£1)) (1 —/{0 \/1—|—fy 8K1R<(K/O,K/1))2(1 —H%) )

and R<(ko, k1) = R<(ko, k1,0,0,0) as in Lemma .
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Proof. By definition of the iterates and ,, we have

K6 = V0o R (K0, K1) (1) " (Ta — p15 (1
V14720 R (ko 51))2 (| (Ta — uy (1
_ b — V0r R= (0, 1) (1 — (r§)?)
V149200, R< (0, 1) (1 — (kf)2)’

H]f+1 (le+1) 1 o ’43]1c - 7an1R<("30a ’il)((UT)T(Id — Uy (H’f) ),U )

1+ 720 R= (10, 51)2[[(Ta — pf () D13

_ K =0 R (0, 1) (1 — (K1)?)
V147206, R<(ko, 1) (1 — (kF)2)

ro = (up ) g =

Zllo=
4|
—
=
=
~—

O

In the following propositions, we consider R< : [~1,1]> — R, defined as in Lemma with
A €]0, \*(o, L)], where A*(o, L) is defined in Proposition

Proposition C.6. Let (u, u{) € M, consider with initial conditions k8 = (ud, &), k9 = (U, ur).
Then there exists 7 > 0 such that for every 0 < v < 7, the risk R< is decreasing along the iterates of
(28)). Besides, the distance between successive iterates tends to zero, and, if (%, kY) is an accumulation
point of the sequence of iterates (k&, k¥)ren, then

(1= (55)2) Oy R (5, 11) = 0, (1= (k1)2)0, R (15, 51) = 0. (29)
Proof. The proof is identical to that of Marion et al.| (2024, Proposition 8) and is therefore omitted. [
Proposition C.7. The points (ko,x1) € [—1,1]? satisfying belong to the set
¢ = {(£1,£1), (0, £1), (£1,0), (0,0)}.
Proof. We recall that by Lemma the risk R< restricted to the manifold M, has the following form
R<(ko, k1) = A(kg + K1) + B(kZ + K3) + Ck2k3 + D.
Then

Oro R~ (Ko, k1) = 4AK3 + 2Bk + 2Ckok3,
Oy R< (Ko, 1) = 4AK} + 2Bk + 2Ck1 k3.

And we can rewrite equations (29) as
ko(1 — k2)[24K2 + B+ CK3] =0,
k1(1 — K324k + B+ Crl] = 0,

Since each equation is a product of 3 terms, the general solution to this system occurs when at least in
each equation is zero. By considering only the first two terms in each equation, we obtain the solution set
{(#£1,41), (0, £1), (£1,0), (0,0)}. Now we consider the case when 2Ax3 + B + Ck? = 0, this implies that:

o If Ky =0, then k3 = — 5.
o If k2 =1, then k% = —ZtC.

o If 24x%2 + B+ Cr3=0, then 2Am0 + le = 2A:‘€0 + O3, thus (24 — C) (k2 — k2) = 0. By inspection,
C < 24, hence we get k3 = k? and k3 =

2A+C

We note the following relation
_B+C B B

54 " 2A+C " 24
Further remark by inspecting the proof of Proposition that for A €]0, \*(o, L)], we have

<_B+C'.
- 24
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Thus the only possible solution when 2A4x% + B + Ck? = 0 is k2 = 1 and k3 = ﬂ = 1 Putting

everything together, the solution set is precisely

{(£1,£1), (0, £1), (+1,0), (0,0)}.

Proposition C.8. The fixed points of the dynamic can be classified as follows:
1. The points (ko, 1) = (£1,+1) are global minima of R< on [—1,1]%.
2. The points (ko, k1) = (0,£1) and (£1,0) are strict saddle points of R< on [—1,1]%.
3. The point (ko, k1) = (0,0) is a global mazima of R< on [—1,1]%.
Proof. The claim is trivial, as R< on [—1, 1]? is a simple quartic function and can be verified directly. [

Proposition C.9. Consider the context of Proposition[C.6, then there exists ¥ > 0 such that for any
stepsize 0 < vy < 7, the iterates (k&, k¥)ren generated by converge to an element of €.

Proof. By Proposition the distance between successive iterates (k§, £%)ren, then the set of accumula-
tion points of the sequence is connected (Langel |2013, Proposition 12.4.1). Since we have a finite number
of accumulation points by Proposition [C.7 the sequence has a unique accumulation point. Besides, the
sequence belongs to the compact set [—1,1]2, then it converges and its limit is one of the nine fixed
points. O]

Proposition C.10. Consider the context of Proposition [C.0, then there exists ¥ > 0 such that for
any stepsize 0 < v < 7, the set of initializations such that the iterates (k§,k¥)ren generated by

converge to (0,+£1), (£1,0) or (0,0) has Lebesgue measure zero (with respect to the Lebesque measure on
the manifold M).

Proof. The point (0,0) is a maxima of the risk R< on [—1,1]? and the value of the risk decreases along
the iterates of by Proposition We follow the ideas presented in the proof of |Marion et al.
(2024, Proposition 12), we can conclude that ¢ is differentiable on [—1,1]2, and that its Jacobian is not
degenerate, besides ¢ is a local diffeomorphism around (0, 41) and (+1,0), whose Jacobian matrix in each
point has one eigenvalue in [0, 1] and one eigenvalue in |1, co[. The result follows from the Center-Stable
Manifold Theorem (Shubj, 1987, Theorem III.7), we refer to [Marion et al. (2024, Proposition 13) for a
detailed and analogous proof. O

D Proofs of Section [

D.1 Proof of Proposition
We provide hereafter the proof of Proposition which proof follows.

Proposition D.1. Consider (X;)1<i<r i.i.d. drawn from , Consider also Z; € {0,1} the latent
variable of Xy, i.e. X¢|Zy NN(M*ZZ,UQId), and

L
TG )y = £ 3 w0+ en() X
where ey (1) = MX1, )Xy, p). Then
E[T1#641 (X)1| Zy = ] = Nc 52 [(L+1)+2(L+3)0?], c={0,1}.
B[ 0 (X)), ] = KO ;r pA FI(L+1) +2(L +3)0%].

Moreover, when X\ = 0 then the encoding is unbiased, this is

L
L+1)+2(L+3)02’

E[Tlin,ua,uf (X)1|Z1 = C] = MZa c= {07 1}.
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Proof. We decompose the following term as follows,

L

L
Z Xl?.uo Xk‘a/u’O>Xk - <X17Iu’0 Xl + Z X171u’0><Xk7:uO>X
k=1 k=2

Due to the independence of the variables,

22 B0, ) + (X, 1)) X0]

+ (L = DE[((X1, uo) (X2, ug) + (X, p1) (X, 47) Xz))-

E[Tnn,uam(x)ﬂ

On the one hand we have

E((X1, 16)2 X1|Z1) = (i, 16) 105, + 0 (1, + 200, 1) 15)-
On the other hand,

E[(X1, ug){(Xo, 1) Xo| Z1, Zo) = (1, 16) (1, 1) 1, + 02 15)-

Therefore,

E[T"™#544 (X)1| 21, Zo) = %[(Wzl,m*ﬁ2 + (i, 17) ), + 201,
+ 207 (s )15 + (s 1) 1T)
+ (L = 1)k, 10) By 16) + (B2 11) (W BI)) 1,
+ (L= 1)z, mo) g + (i, 11)07))-
And then,
E[T""#0:41 (X),] Z1]

N L
= T 100 10)* + (o i)Wz, + 201, + 20 (W, 15) 15 + (g, 7))

1 * * * *
2= 1) (50 (i + i)
Which let us conclude that for ¢ € {0, 1},
lin, s, pf A 2
B[40 (K01 Z1 = o = P2((L+1) + 2(L + 8)0%),

E[Tlin,uéﬁui (X),] = W((L + 1)+ 2(L + 3)0?).

O

Proposition D.2. Consider (X;)1<¢<r 4.3.d. drawn from (P)). Consider also Z, € {0,1} the latent
variable of Xy, i.e. Xy|Z; NN(M}Z,O'Qld), and

Tlin7“'67ﬂl

b«\w

L
> (en(pd) + ex(p) X,
k=1

where e (1) = MX1, p)(Xg, ). Then for ¢ € {0,1},

E[[[ T+ (X)1][*| 21 = ]

4N

=4

(L-1)

+ 2’\2T[3 + 02(d + 28) + 40*(d + 16) + 405(d + 10)]

(L—1)(L—-2)
L2

[1+0%(d+16) + 80" (d + 7) + 80°(d + 4)]

+ A2 [14 602 + 120 4 809).
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And

Var[Ti#0:41 (X), | Z) = ¢
4N

3 [1+0%(d+16) +8c*(d +7) + 805 (d + 4)]

(LL; b [3 4 0(d + 28) + 40™*(d + 16) + 46°(d + 10)]

(L-1)(L-2)
L2

[1+60% + 120" + 857

)‘2 212
- UL+ 1) +2(L+3)0%)

When \ = m, the encoding is unbiased, with variance

Var[TH45 45 (X)1 |21 = ]
R §(L T3l H oA+ 16) +80%(d+T) + 80°(d + 4)
2(L—1)
[(L+1)+2(L +3)0?]
(L - 1)(L~2)
[(L+1)+2(L+3)0?2

+ 5[3+0”(d+ 28) + 40" (d + 16) + 46°(d + 10)]

[1 4602 + 120" 4 805 — 1.

Besides, when L — oo we get that,

1

lin,pl, 1y _ 2
Var[T Koot (X)1|Z1 = C] ~ 20 y A~ m

In general, if A is not fixred and L — oo, we get
Var[T'"#0:41 (X), | Zy = ] ~ 20202 (1 + 26°)2.
Remark D.3. We recall that
Var[X; | Z1 = ] = o?d.

Notably, by selecting A to ensure an unbiased encoding, the variance becomes independent of the dimension
d and equals 202. This shows a variance reduction effect whenever the dimension d is bigger than 2. More
generally, \ can be chosen independently of d such that

20%(1 4+ 20%)? < d.

In this regime, the encoding also asymptotically reduces the variance of X1, conditioned on its cluster
assignment, as the number of components L — oo.

Proof. We note that the needed computations were already stated in the proof of Proposition we
follow as in the proof of Lemma [C.1] without loss of generality, we assume Z; = 0, then we get that for
Ho, g1 € M:

| (), %2, = O

= %[lﬂg(lﬁ-(ﬂ(d—i—@) +802k2(1 + 02(d + 6)) + 80*(1 + o2(d + 4))]

+4)2

I [kg(1+507) + 402K3(1 + 602) + 0*Kk3KT + 1609]

Lo (LL; D 181 4 02(d 4+ 4)) + 40262(1 + 02(d + 3)) + 404 (1 + 0%(d + 2))]

e (L — 11)/(2[, —2)

[kg(1 4 40?) 4 202K (1 + 602) 4 809).

Recalling that ro = (o, p§), k1 = (i1, p%), in order to compute E[[|T1™#0:#1 (X)1||?|Z1 = 0], we just need
to replace kg and k1 by 1 in the previous expression, as follows

R[5 (), 2] 7, = 0]
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4 02(d4 8) + 8021+ 02 (d 4 6) + 80 (1 + 0%(d + 4))]

L2
2 (L—1)
+AN

(L-1)
L2

[1+ 502 +40%(1 4 602) + 0% + 160°]

+2)2 [1+02(d+4) +40*(1 + 0*(d + 3)) + 40* (1 + o (d + 2))]

L—-1)(L-2
+ A2(2#[1 +40? 4+ 202(1 + 607) + 809]
4>‘2 2 4 6
=77 [1+0%(d+16) + 8c*(d + 7) + 85°(d + 4)]

L-1
+ 2/\2( 73 )[3 + 0%(d + 28) + 4o*(d + 16) + 40°(d + 10))

L2 (L— 11)/(2L —2)

[1+ 602 + 120" + 809].

The expression of the variance comes from subtracting to this term the square of the conditional

expectation given in Proposition [I.I] The asymptotic expressions are then straightforward to derive.
O

D.2 Proof of Proposition 4.2

Proof. Assume that the tokens are i.i.d., such that for any ¢, X; ~ 2N (g, 02I) + 3N (i, 021). The risk
of the oracle predictor T"™#5:#i can be decomposed as follows

L(TH6H) = (14 do®) — (To) + (ITo) + (I1To) — (1) + (IT) + (I11), (30)
where, from the proof of Lemma by taking kg = k1 = 1,
o (In) =2 [(1+0(d+4)) +20%(1 + 02(d +2))].

o (I1)) = X [1+02(d+16) + 80*(d + 7) + 80°(d + 4))].

o (I11Iy) = 4N*L5L[1 4 1002 + 240* + 160°].
o (I) =2ME1[1 + 402 + 404).
o (IT) = 222111 4 62(d + 8) + 40*(d + 7) + 405 (d + 2)].
o (I17) = N2E=UE=2 4 662 41207 + 85°].
When L tends to co, only the first term together with (I) and (I1I) contribute. Therefore, we obtain that

L(T"™HR) (14 do?) — A2 + 802 + 80 + A2[1 + 602 + 120™ + 80°].

L—oo
Choosing A = % (its value being independent of L) minimizes the equivalent bound obtained
above. With such a choice, the equivalent becomes

(1+40? + 40)?

L(Tror) o~ (14 do?)

Looo 14602+ 1201 + 806
1+20%)%

~ (14do?) - L2

1 1) = )

~ (14do%) —1-20>

L—oo

2
~ —2).
L~>ooo-(d )

Remark D.4. In the case of the degenerate case (0 =0), similar computations lead to

L AN N2 L—-1 L—-1 L—1 (L—-1)(L-2)
Thoko iy =1 — 2 4 42 4 4)\2 -2 2\2 2
L( ) L+ L2+ A I A T + 2 2 +A 2
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L+1 (L+3)
=1-2)\ 2
L + L
Optimizing this quantity w.r.t. X leads to choose A = f—ié, plugging this value for A gives
L L+1)?
L(TmroHT) =1 — (L+1)° .
( ) L(L+3)

In the degenerate case, we observe that as the sequence length tends to infinity, the risk of the attention-
based predictor with oracle parameters converges to zero, matching that of the optimal quantizer.

E Technical results

This section gathers a series of technical results about Gaussian random variables, used to derive expression
of the risk in the rest of the document.

Lemma E.1. Consider G ~ N(0,0%14) and po, i1, 12 € R%, then
1. E[||G|]?] = o?d.

2. (o, G)] =

3. E((uo, G)G) =

4. El(po, GY{1, G)] = o*{po, 1)

5. E[{uo, G)*(u1, G)?] = o* (| kol [l |1* + 2{0, 11)?).-

6. El[(o, G){u1, G)* (a2, G)] = o* ([ > (o, ) + 2{pao, 1) (pa s pr2))-
7. El(po, G) (1, G)|GI]?] = o*(d + 2){po, p11).-

8. E[{no, G)*(u1, G)?||GI”] = o°(d + 4) (o * |1 [1* + 2(k0, 1)? ).

Lemma E.2. Consider X ~ N (u*,0%1,) where ||p*|| = 1 and pg € RY, then

E[(X, )2 XIP] = (1%, o) (L + 0*(d + 4)) + 00l (1 + 0>(d + 2))-

Lemma E.3. Let X ~ N (u*,0%1,), where ||p*|| =1 and uo, p1 € RE, then

polpo, s ") = E((X, o) (X, 1) X|1%)

can be expressed as

po(uo,uhu*) = (M*7M0>2<M*7M1>2
o ({u*, 1)l ol + 4™, o) (™, ) (o, pra) + (1 o) [l |1?)
o?(d + 8){(u*, po)*(u*, )
ot (ol Ml + 20, 1) + (d+ 6) ([lpol 1 (1, 11)® + [l > (™, 10)?))
+ 40 (d + 6)(1*, po) (1", 1) (o, 1) + o (d + ) ([luol* | a1 + 2{uo, 1))

Lemma E.4. Let Z; and Z € {0,1} be fizred. Consider two independent R%—valued random variables
X1 and Xo, such that
Xi|Z; ~ N (uly,,0%14),  for each i = {1,2},

where the unit vectors ug, ut (i-e., ||ugll = |pill = 1) are orthogonal. For g, p1, 2 € RY, define

P1,0(tos 1, iy, > ) EE[(X1, po) (X1, p1) (X1, p2)| Z1).
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This quantity satisfies

Pro(Ro, s 11,5 p2) = (s 10)* (i, s ) (i, s pi2)
+ 07 [llpoll* (s, o) (W, s m2) + 2(u, o) (1, w2) (pos 1) + (W, s 1) (o, p2))]
+ 0 [(w, s o) (pa, pi2)]
+ ot (moll® (k1 p2) + 2{po, 1) (o, p12))-

Moreover, we define

prltos i, 1y, s 1) = BI(X0, o) (X1, pa ) (Xo, ) (X1, Xo)| 21, Za),

which satisfies

P10, 1, 1, ) = (1, 111)D1.0(Bos s 15,5 15,) + 02pro(po, 1, 1, )

Lemma E.5. Let Zy, 7, € {0,1} be fizred. Consider two independent R%—valued random variables X,
and Xs, such that
Xi|Z; ~ N(uly,,0%14),  for each i = {1,2},

where the unit vectors ug, ui (i-e., ||ugl = |pill = 1) are orthogonal. For g, 1 € R, we get that

E[((X1, po) (X2, po) + (X1, p1)(Xa, 1)) (X1, X2)|Z1, Zo]
= (g 15 ) (1,5 10) (1 7y 5 10) + (1 1) (B s 1))
+ 0% ((no, 17,)* + (p0s 1,)? + (s 15,)° + (s piz,)?)
+ 0t (lloll® + [l 1)

Lemma E.6. Let Zy,Z, € {0,1} be fired. Consider two independent R%—valued random variables X,
and X, such that
Xi|Z; ~ N (uly,,0%14),  for each i = {1,2},

where the unit vectors ug, ut (i-e., ||usll = |pill = 1) are orthogonal. For pg, py € R, define also:

o

ef

p2,0(kos s ) = E[(X1, po) (X1, p1)| Z1]

e

po,1 (o, 1, 1y,) = E[( X2, po)(Xo, p1)]| X2|?| Z].

a
o

These quantities satisfy

p2,0(po, s 1) = (W, o) (g, 1) + 0% (o, 1),
p2.1(tos 1, 1,) = (s o) (s 1) + 02 ((d 4 4) (1, s o) (1, 1) + (ptos pa))
+ 0t (d + 2) o, ).

Moreover, we define

P2 (pos b1, 13, 10,) = E(X1, po)(Xo, po) (X1, 1) (Xo, )| Xa||?| Z1, Zo],

which satisfies

p2(fto, 1, 1z, 5 Wz,) = P2,0(H0s 11, Wz, )P2,1 (Hos H1, 1,
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Lemma E.7. Let 7y, 75,73 € {0,1} be fized. Consider three independent R?—valued random variables
X1, X5, X3, where
Xi|Z; ~ ./\/(u*zi,UQId), for each i ={1,2,3},

such that ug, ut unit vectors (i.e., ||ugll = ||uf|| = 1) are orthogonal. For ug, u; € R%, define also:

def

p3,0(ko, s p1g,) = EU(Xq, po) (X, p1)| Z1],
P31 (tho, 11, Wy 11,) S BI(X o, o) (Xs, 2 )(Xa, X3)| Z2, Zs].
These quantities satisfy
p3,0(ko, s 1,) = (W, o), pa) + 0% (o, 1),
P31 (k0,115 Ways Wz,) = gy, 10) Wz, b)) (g, 1)
+ 0 (i, o) (i, 1) + (W, s p0) (W s 112))
+ o g, ).

Moreover, we define

3o, 1y 1%, 1y 115,) = BI(X1, o) (X, p0) (X1, p1) (X, 1) (Xa, X3)| Z1, Za, Zs),

which satisfies

p3(M07M17M}1aM*ZZ7H*ZB) = p3,0(M0,M1,M*Zl )ps,l(M07M1,M}27M}3)~

F Experimental details

This section provides algorithmic details, choices of parameters, and settings used for the plots displayed
in Sections [A] and Bl

F.1 Projected Stochastic Gradient Descent

We formally define the method Projected Stochastic Gradient Descent (PSGD), which we run for our
numerical experiments.

PSGD iterates for linear attention heads. Given the objective function R” : (S971)2 — R defined
in (P))), we define h : (S971)2 x REX4 as

L
2 2
h(po, pa, X) = HXl -7 > " AXT (oo +N1M1T)Xk]XkH2 + p(po, X1)% (1, X1)?,

where X; is the i—th row of the matrix X'. Consequently we can write

RP (1o, 1) = Ex~p[h(po, 11, X)],

where D is the distribution over R“*? where each row is i.i.d. according to
1 1
§N(H6a o?14) + 5/\/(#1, o?14).

Then, given and an initialization (13, 1) € (S9=1)2, a stepsize v, we define (uf, u¥) € (S4=1)? recursively
by:

M
1
g(l)C = M Zvuoh(u(lg>ull€a€§)7

M
1
k k  k ¢k
91 = 7Zvﬂ1h(/10hula€i)7
M= (PSGD)

et = 16 =7 Ua 5 (16) )gb
1 = v(La — w5 (1) )96 |l
S it =y (Ta = p (i) Dot
I = v(Ia = 1§ (15) ) gt |2
where M is called the batch size, and for each k£ € N, (fk)i:{l,“.,M} are M independents samples of D.

(2
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PSGD iterates for softmax attention heads. Given the objective function R°ft:70 : (S971)2 x R2 —
R defined in ([P,,)), for simplicity, we note that for an appropriate ho, we can write

RSOft’pO (,Uan M1, T;Z)a A) = EXND[hO (NOv M1, 1/17 >‘, X)L
where D is the distribution over R“*? where each row is i.i.d. according to
1 1
§N(H6, o?1y) + 5/\/(#1, o?14).
Then, given and an initialization (3, ud) € (ST1)2, (¥°, \%) = (2, 3), a stepsize v, we define (uf, u¥) €

(S%=12 and (%, A\*) € R? recursively by:

M
1
96 = 37 2_ Vioho(u, uf, v A%, €1),
i=1

M
1
o = 17 30 Vi 5 ),

et =8 == () g
O b = AUa = u§ ) Mgt N2
s pi —vLa — pi (i) gt

P e = U s () et

(PSGDsoft)

M
1 N
W = b =y > T Ouho (g, iy, 8 AN €F),

i=1

M
1
A= N =y > Oaho(uf, i, ¥ A €1),

i=1

where M is called the batch size, and for each k € N, ({k)i:{l)w amy are M independents samples of D.

7

Remark F.1. Gradient computations in the numerical experiments were carried out using JAX (Bradbury
et all, [2018).

F.2 Experimental details

In the following, we provide the experimental setup corresponding to Sections [A] and

We use input sequences of length L = 30 of 5-dimensional tokens (d = 5), and define the true centroids
as uy = (0,0,0,0,1) and pf = (—1,0,0,0,0). We recall that the metric used to quantify the distance to
the centroids (up to a sign) is defined in (1))

Experimental details of Section [Al Regarding the experiment on the manifold, i.e., Figure [fa] we
perform 104 iterations without regularization (p = 0) with a learning rate of v = 0.01, A = 0.6,
batch size M = 256. The experiment is repeated across 10 independent runs, each initialized randomly
on the manifold M.

For the rest of the experiments of this section, we adopt the same setup as before, with the exception
that each run is randomly initialized on the unit sphere. In Figure we perform 10% iterations to
observe that without adding a regularization term, we only get partial alignment of the Transformer
parameters towards the true centroids.

Then, in Figure we perform 5 x 10? iterations of to minimize the regularized risk R’
for 15 values of the regularization strength p, linearly spaced in [0, 0.3]. Finally, in Figure [5b| we choose

p = 0.1 and perform 10* (PSGD) iterations.

Experimental details of Section Regarding the experiment on the manifold, i.e., Figure [, we run
the algorithm for 10* iterations without regularization (p = 0), with a learning rate of v = 0.01, batch
size M = 256, and choosing A = 0.6 for 0 = 0.3, and A = 0.2 for ¢ = 1. The experiment is repeated
across 10 independent runs, each initialized randomly on the manifold M.

For the rest of the experiments of this section, we adopt the same setup as before, with the exception
that each run is randomly initialized on the unit sphere. In Figure [6a] we perform 5 x 10? iterations of
to minimize the regularized risk R? for 30 values of the regularization strength p, linearly spaced
in [0, 3]. Finally, in Figure [6b| we choose p = 0.2 and perform 10* iterations.
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Remark F.2. All experiments in Section[4] and[3 can be run on a standard laptop. Most complete within
a few minutes, with the exception of those in Figures and [6d, which require approzimately 20 minutes
and up to an hour, respectively, due to repeated problem-solving across a grid of regularization strengths.

G Additional numerical experiments

G.1 Regularizing the risk to handle arbitrary initialization

Consider the experimental setting described in Section [3] i.e., the GMM model has 2 components with
orthogonal centroids, and o can take the values 0.3 or 1.

When initialization is performed outside the manifold, a small regularization term (of the order of
10~1) substantially improves the accuracy of the recovered centroids, reducing the error below 1072, as
shown in Figure [fa] However, as the strength of the regularization increases, it gradually overrides the
original objective and impairs the alignment of the head parameters with the true centroids —an effect
that becomes more pronounced at higher noise levels. In Figure [6b] we fix the regularization strength
and observe linear convergence towards the centroids over the course of 4 x 103 iterations. The error
eventually plateaus near 1072 for ¢ = 0.3 and near 10~! for ¢ = 1. This shows that the regularization
strategy inspired by the analysis of the simplified Dirac mixture case remains effective in the more realistic
setting of Gaussian mixtures. In this context as well, it enhances the interpretability of the attention
parameters by encouraging their alignment with the unknown components of the underlying mixture.

© © |
S 100 5. 107 Sigma
€5 T 5 N —— 0=03
Sa. Svo-1 o=1
o ©10 o®
+ @) + [©]
Qo + o+
c S10-2 g 21072
O© — © —
o )
) (m)
0 1 2 3 0 2000 4000 6000 8000 10000
Regularization Iterations

(a) Distance to centroids after 5000 (PSGD)) iterations (b) Distance to centroids vs (PSGD) iterations for the

vs regularization strength p for the minimization of R”, minimization of R”, with an initialization on the unit
with an initialization on the unit sphere. sphere and regularization p = 0.2.

Figure 6: Performance of (PSGDJ), with data drawn from (P,]). 10 runs, 95% percentile intervals are
plotted.

In what follows, we first present numerical experiments in dimension 100. We then vary the dimension
from 4 to 200. Results are shown only for the linear approach, as the softmax variant exhibits numerical
instability in higher dimensions.

G.2 Influence of the dimension

Experiments in R'%°, We use input sequences of length L = 30 in R'%°, where we define two centroids:
uy = (0,...,0,1) and py = (—1,0,...,0). The model is trained using (PSGD) with an online batch
—— ——
99 times 99 times
sampling strategy, with a batch size of 256, and a learning rate of 0.01. Due to the big dimensionality of
the problem, we modify the concept introduced as distance to the centroid up to a sign by the concept of
minimal root mean squared error, which is nothing but the distance to the centroid (up to a sign) divided
by the square root of the dimension, i.e.,

\/min {diStl, diStQ}

Minimal RMSE = )
Vid

where
dist; = minf||0 — p5l1% 10 + pl1*} + min{||aa — w3l |40 + w7117},

distz = min{||o — 7 11% lfi0 + pilI*} + min{|lan — pgl1%, A + w51},
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Figure 7: Minimal RMSE vs Iterations, Initialization on the manifold in dimension 100.
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Figure 8: Minimal RMSE vs Iterations in dimension 100, Regularization p = 0.1 for ¢ =0, p = 0.2 for
o > 0, Initialization on the unit sphere.

and p§, p7 are the true centroids, and fip, 11 are the returned parameters from . In Figures
we can observe the behavior of the RMSE over the iterations for different levels of noise o. We remark
that in Figure [7| we initialize on the manifold M, and there is no regularization term (i.e. p = 0), in
Figure [§ we initialize randomly over the unit sphere and we set p = 0.2. In both experiments we set
A = 0.6 for the case 0 = 0 and o = 0.3, and A = 0.2 for the case 0 = 1.

In each experiment, the RMSE is of the order 1072, which can be interpreted as, on average per
coordinate, the estimators fig, /i1 are missing the true parameters g, uf by 1072, suggesting a high level
of accuracy in the estimation procedure.

Making d vary. We repeat the same experiment as before, just varying the dimension of the problem,
the two centroids in R? are defined by u§ = (0,...,0,1) and uf = (—1,0,...,0). For d ranging between

—— ——

d-1 times d-1 times
4 and 200, we show in Figures [J] and on the x-axis the dimension of the problem and on the y-axis the
minimal RMSE after 5000 iterations.

Regardless of the initialization regime, in the noiseless case (¢ = 0) the minimal RMSE decreases as
the problem dimension d grows. By contrast, for any strictly positive noise level, the minimal RMSE
increases slowly with d— for o = 0.3 it remains of order 1072, and for o = 1 of order 10~2. This reflects
the growing difficulty of the problem as both dimensionality and noise increase. We recall that the
minimal RMSE can be interpreted as the average discrepancy per coordinate between the estimated
parameters and the true centroids, suggesting a high level of accuracy in each experiment.

Regarding running times, the experiments run in Figures [7] and [§] take approximately two hours on a
standard laptop, while that of Figures [J] and [I0] may require up to 12 hours, to cover the dimension grid.

10-8 _ I
- = // S - - \\/
TR a i #
s T = =
o / \ o« =4
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10 = SN / 10-3 10-2
0 50 . 100 | 150 200 0 50 . 100 150 200 0 50 100 150 200
Dimension Dimension Dimension
(a) o =0. (b) o =0.3. (¢)o=1.

Figure 9: Minimal RMSE vs Dimensionality, Initialization on the manifold M.problem on the y-axis: we

do not know the scale
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Figure 11: Minimal RMSE vs Iterations in dimension 500, Random initialization on the unit sphere of
the centroids and of initial guesses, Regularization p = 0.2, 10 runs, 95% percentile intervals are plotted.

G.3 Relaxing the orthogonality assumption

We replicate the experiments and parameter-selection procedure from Section[G.2] but this time initializing
the centroids and the initial points uniformly at random on the sphere S~! in each run. Figure
illustrates the algorithm’s convergence behavior over 10000 iterations in the case d = 50. In contrast,
Figure [12| shows the minimal RMSE of after 5000 iterations for dimensions d ranging from 4 to
100.

We observed the expected behavior: as the dimension increases, randomly initializing centroids on
the sphere makes them more likely to be orthogonal, and thus yields better results at higher dimensions.
This effect is stronger at lower noise levels and becomes noticeably clearer beyond 40 dimensions.

Regarding running times, the experiments run in Figure[l1|take approximately one hour on a standard
laptop, while that of Figures [12| may require up to 7 hours, to cover the dimension grid.

G.4 Extension to Gaussian mixture model with three components

We propose an extension of our work to the case where the mixture counts three orthonormal centroids.
We believe that the approach described below would further generalize to the case of K orthonormal
centroids with K < d. Specifically, we assume that the tokens are i.i.d. drawn from the mixture model

1 * 1 * 1 *
X~ gN(p’Oa 021(1) =+ g-/\/'(ﬂla O'de) + gN(:u% UQId)’ (PU)
Sigma

1071 — 0.3
% 1.0
=
o

1072

0 20 40 60 80 100
Dimension

Figure 12: Minimal RMSE vs Dimensionality, Random initialization on the unit sphere of the centroids
and of initial guesses, Regularization p = 0.2, 10 runs, 95% percentile intervals are plotted.
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where pu), 117, p5 are orthonormal vectors. It is natural to consider an attention-based predictor composed
of three attention heads, parameterized by juq, jt1, 2 € RY,

U, o, 15 2 (X) — Hlinpo (X) + Flinpa (X) + Flinp2 (X) (31)

The associated risk is R(jo, g1, pt2) = E[|| X1 — T"™Ho-#1:42(X) ||3]. There are two natural generalizations
of the regularization term to this case:

r (o, ) = Y (s X1)? (g, X1)%,

0<i<j<2

w

r® (o, s pa) = [ (i, X1)*
i=1

The first one promotes pairwise orthogonality while the second one promotes mutual orthogonality.

We use input sequences of length L = 30 in R®, where we define the three centroids uf =
(1,0,0,0,0,0), 7 = (0,0,0,1,0,0),u5 = (0,0,0,0,0,1). The model is trained with an online batch
sampling strategy (similar to changing the data distribution and the regularization term), with a
batch size of 256, and a learning rate of 0.01. We take A = 0.6 for 0 = 0.3, and A = 0.2 for 0 = 1. Since
any parameter could learn any centroid up to a sign, we introduce the following distance to the centroid
(up to a sign):

3
- -
L P ;Hﬂwm sintf |2,

where S3 is the symmetric group of order 3 and fig, fi1, jlo are the parameters returned by the algorithm.
We present the results in Figure We observe that the regularization (") outperforms r(?), since it
explicitly includes all pairwise terms to enforce orthogonality. However, we note that the number of
regularization terms grows quadratically with the number of centroids.

Regarding running times, the experiments run in Figure [I3] take approximately 15 minutes on a
standard laptop.

H Softmax attention layers and clustering

In this section, we assess the abilities of attention-based predictors involving a softmax activation in a
clustering context.

H.1 Problem setting

An attention-based learner with softmax activation. We recall that an attention head made of a
self-attention layer can be written as follows:

H*™ (X) = softmax, (XQK 'X") XV
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where the softmax of temperature A > 0 is applied row-wise, and the matrices K, Q,V € R¥*P are usually
referred to as keys, queries and values. As in Section [2| we assume that the values are taken as identity,
meaning that the attention head simply outputs combinations of the initial tokens weighted by attention
scores. Furthermore, we assume that the key and query matrices are equal to the same row matrix
pu' € R4 we obtain

H*f1(X) = softmaxy (Xup X)X (32)

With such an architecture, the ¢-th output vector is therefore given by

L
Hsoftx,,u(X)é = Zsoftmax,\ (XZTHMTXT)k Xk, (33)
k=1

which corresponds to aggregating the Xj’s when X}, and X, are simultaneously aligned with p. This head
should be a good candidate to estimate a centroid of a mixture model. In the case where the mixture
involves two components, one could train two attention heads:

(fio, fi1) € argminm)wegdflRSOft(,ug,,u1), (34)
where
1
RSO&(,UO,,IM) — EE [HX _ (Hsoftx,,uo 4 HSOft)\-,P'l)(X)Hi‘}
1 = £t £t 2 (35)
= — _ SOItX, Mo SOItA, 1
= LIE ;,1 | Xe—(H +H )(X)e|5

Remark H.1 (The attention heads are biased). As the tokens (X;)¢ are independent, we have that
R (g, ) = E[[| Xy — (H#0 4 70 )(5), 2],

We note that H**(X); = softmaxy ((X1, u)v)X, where the vector v is L-dimensional with components
ve = (Xo, ). In the idealized case where o = 0, then each token X, is sampled according to a mizture of
Dirac masses given by %5% + %%I' Therefore, if we evaluate H**" " (X); on p = uf, we observe the
following:

e Conditionally to X1 = p7, then

« 1 1
HeM (X)) = ((—,...,— | X
= (17
This implies that even in a completely misaligned set-up (i.e., p = pi, X1 = pi), the proposed
attention head will return, as the transformation of the first token X1, the empirical mean of the
sequence tokens. This highlight the bias introduced by such an attention head, which should be
handled through the use of centering techniques.

o Conditionally to X1 = ug, then

exp(A)pg + 41

H*f16 (X)) = soft X~
(X)1 = softmax (v) exp(0) 71

This suggests that in the perfectly aligned case (i.e., = u, X1 = g, selecting a sufficiently large
softmax temperature A will cause the model to assign negligible weight to the misaligned components
—a desirable property.

Debiasing and disentangling heads. To handle the bias introduced by the attention heads, discussed
in Remark we propose to consider centered heads instead, leading to the following modified version
of the risk
v |
softx, soft y, hd
Xy — (H™" k0 + | *’“)(X)ngLI;Xk (36)

L

; 1
R (o, pr, A w0) = 7B | Y
(=1 2
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Considering such a risk is equivalent to using heads where a term proportional to % Zﬁzl X, is substracted.
This type of head is known as shaped attention (Noci et al., 2023} He and Hofmann, [2024). For instance,
initializing v = 2 debiases both attention heads independently, without considering their interaction.
Using heads with oracle parameters, one would expect that a single head provides all the necessary
information, making it sufficient to debias only that head (i.e. ¢ = 1). In that case, one should obtain:

RM (h, puf, A, 1) & min R, (37)

However, when using non-oracle parameters py and p; within the debiased heads, the risk function
may admit global minima where the heads align with zero, one, or both centroids, which is undesirable
for the clustering purpose. Therefore, we must enforce a constraint ensuring that each head aligns with
exactly one centroid. To achieve this, we introduce the regularization term:

ro(po, 1) = E[((po, X1) — 1) ({1, X1) = 1)*] + (po, p11),

leading to the following regularized optimization problem

o ;Illérgld—l RSOft7p0 (,LL[), M1, )‘7 w) d:Cf RSO& (/1'07 M1, >\a 1/}) + pOTO(IU/Oa IU/1)> (PPO)

where py > 0.

H.2 Numerical experiments

We run Projected Stochastic Gradient Descent (see Appendix to learn the centroids p§ and pj as
well as the weights ¢ and .

In this experiment, we use input sequences of length L = 30 of 5-dimensional tokens (d = 5), drawn
from a 2-component Gaussian mixture of centroids p§ = (0,0,0,0,1) and p7 = (—1,0,0,0,0). The
variance of each component is either set to o = 0.3 (low interference) or to o = 1 (high interference).

The model based on two softmax attention heads parameterized by po and pq is trained using
(IPSGDgoft)) with an online batch sampling strategy, with a batch size of 256, a learning rate of v = 0.01,
and running for a total of 3000 iterations. Additionally, we initialize with A set to 3 and a centering value
1) of 2. Here we use the metric distance to the centroids, given by

/min {dist;, dists}, (38)

where

disty = [0 — I + i — i P,

dists = [l20 — 3 11* + [l — g%,
and gy, 17 denote the true centroids, respectively, while fig, fi; are the parameters returned by .
We remark that this distance is finer than the one defined in as it does not disregard sign flips. The
results are visualized in Figure we observe that a regularization term substantially improves the
accuracy of the recovered solutions. However, as the strength of the regularization increases, it gradually
overrides the original objective and impairs the alignment of the head parameters with the true centroids
—an effect that becomes more pronounced at higher noise level, an effect also noticed in Section [3]

In Figure we set the regularization parameter pg to 0.5, and run for 10* iterations.
We observe that the model yields accurate solutions under low interference (o = 0.3); however, as the
interference increases (o = 1), the ability of the softmax attention heads to align with the underlying
centroids is progressively impaired. A similar loss in alignment accuracy is observed as the dimensionality
increases.

The experiments in Figure run in a few minutes on a standard laptop, whereas those in Figure
may take up to two hours to cover the grid in the regularization hyperparameter.

I Proofs of Section [5l
Proof of Proposition[5.1, We have

L
2\ 2
HX1 - fZ<X17XZ>XZH

E

R MS]
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8A2 &

* * 8A2 * *
S RN X Pt )+ D B, X)X, Xe)(Xe, Xl i)

=2 2<0<k<L
Furthermore we have the following,

E[|| X111 |w}, 5] = 1+ 0°d,

1
E [(X1, Xo)? |, puf] = 5 + 202 + do,
2
L. 1 d+s
E[(X1, X2) Xo|?|u}, uf] = = + ——0° + 3(d + 2)o™ + d(d + 2)0°

2 2
E[ X [*|u7, u5) = 1+ 2(d +2)0® + d(d + 2)0

E[| X1 [1°[1, 5] = 1+ 3(d + 4)0? +3(d+2)(d+4)a4+d(d+2)(d—|—4)06,

BI(Xa. Xab (X0, Xa) (e, Xtk ] =2 (o2 + )

Since no expression depends on uj, uf, we have

[ 2\ & 2 2\ & 2|
EWPL;mmmHz M_L;&MWHWM-
And
2\ & 2
E ‘XI—LZ<X1,X4)X,3H]
=1
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When L — oo, we obtain

E MX1 - QLAzL: (X1, X X@H ] (1 + 02d) — 2X(1 + 402 + 2do?)
/=1

+ 422 (2 (0—2 + ;)3 + (d— 2)0—6> .

2 4
1+40“+2do o get

And we can choose A = 4(2(02+%)3+(d72)06) t

L
22 2 1+ 402 + 2do*)>
el oo = o - e
= 1(2(02+ 3)" + (d—2)0%)
1+ 202
=0o%(d—2
a )1+602+1204+4d06
<o?(d-2).

Proof of Proposition[5.2 For ¢ € {0,1}, one has

L
2\ 2\
fz X17Xf X /1'17M07Z1 =C| = 7E[”X1|| Xl‘:uh/J'OﬂZl = C}
(=1
2AM(L -1
P = Di(x,, x0) ol s 21 = o
2\ 1
== {(1 +(d+2)0%) + (L —1) (2 +02)] .
We remark that choosing A = é1+(d+2)02+(1L_1)(%+02) we get that the encoding is unbiased.
And
L 2 2
2\ 472 1 9
lL[z_; (X1, Xo) Xo|pi s piss Z1 = ¢ ‘ Iz {1+(d—|—2)0 + (L - )(2—1—0)] .
Besides,
2\ & A ) 1N\, . .
E |7 X0 X)X i | = 7 |1+ (d+2)0” +(L—1) (5 +07 )| (45 +pi)
=1
Also,
L 2
2\ 2)\2 9 1,
2| 2 X0 ul,%] H — T [rr e (Fr07))

On the other hand,

2

= 4N2
ZXhXe of| [t b 20 = | = S EIXN w5, 21 = o]
=
12A2 20, % %
+ 5 (L = DE[|(Xy, Xo) Xal P17, 15, Z1 =

82 (L - 1)(L—2)

72 > E[(X1, Xo)(X1, X5)(Xo2, X3) |, pg, Z1 = cl.
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Recalling the expressions stated at the beginning of the proof of Proposition for moments of Gaussian

r.v. , we conclude that

2

L
2) «
fZ X1, Xo) Xo| |pi, 15,21 = c
4N A 6
= 5 (14+3(d +4)0” +3(d +2)(d + D)o* +d(d +2)(d + 4)0°)
12)2 1 (d+8
+ 5 (L—1) <2 + %02 +3(d+2)o* +d(d + 2)06>

3
LUy (e ),

And
2\ &
Var | == Z;<X1,X2>Xz WG, 21 = c
L 2 L 2
le,xe o | nh 2 =cf - ZXhXe Xo|pi, 1, Z1 = ¢
=1 =
)‘2 4 6
= 5 (143(d + 4)0” + 3(d +2)(d +4)0* +d(d +2)(d + 4)0°)
12)2 1 (d+8
+ 5 (L= 1) (2+( ;r )02+3(d+2)a4+d(d+2)a6>
8AZ (L —1)(L — 2) ,  1\* 6
+?f 2|0 +§ +(d-2)0’
4 1 2
1+ d+2)*+(L—-1)(=+0*)] .
el 2
When L — oo,
L
Var le,xg Xo|uh,ps, Z1 = ¢
=2

1\° 1\°
~ 4N? (2 o? + 2) + (d — 2)06> —4)\? (02 + 2)
=2\202(1 + 40” + 2do?).

Choosing the A = ﬁ, we have an unbiased encoding with variance

9 21-1—40 + 2do*
(14 202)2
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