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ABSTRACT

We identify and analyze a surprising phenomenon of Latent Diffusion Models
(LDMs) where the final steps of the diffusion can degrade sample quality. In
contrast to conventional arguments that justify early stopping for numerical stability,
this phenomenon is intrinsic to the dimensionality reduction in LDMs. We provide
a principled explanation by analyzing the interaction between latent dimension
and stopping time. Under a Gaussian framework with linear autoencoders, we
characterize the conditions under which early stopping is needed to minimize the
distance between generated and target distributions. More precisely, we show
that lower-dimensional representations benefit from earlier termination, whereas
higher-dimensional latent spaces require later stopping time. We further establish
that the latent dimension interplays with other hyperparameters of the problem
such as constraints in the parameters of score matching. Experiments on synthetic
and real datasets illustrate these properties, underlining that early stopping can
improve generative quality. Together, our results offer a theoretical foundation
for understanding how the latent dimension influences the sample quality, and
highlight stopping time as a key hyperparameter in LDMs.

1 INTRODUCTION

A pivotal advancement in the evolution of diffusion models is the introduction of the Latent Diffusion
Model (LDM, Rombach et al., 2022). Instead of performing the computationally intensive diffusion
process in the high-dimensional pixel space, LDMs first compress the data into a lower-dimensional
latent space using a pretrained autoencoder (AE, Kingma & Welling, 2013). The diffusion steps
then occur within this more manageable latent representation, significantly reducing computational
requirements and training time without a meaningful loss of quality. Once the generative process is
complete, a decoder maps the resulting latent vector back into a full-resolution image.

Recent research has shown that classical diffusion models excel at learning the geometric structure
of low-dimensional data (see, for example, Li & Yan, 2024; Azangulov et al., 2024). In addition,
prior work shows that the final steps of the diffusion are essential to contract the probability mass
onto the data manifold (George et al., 2025). However, the fidelity of generated samples critically
depends on the numerical stability of the stochastic differential equation (SDE) solver used in the
backward diffusion process. One well-documented challenge in this method is the onset of numerical
instability as the timestep t approaches 0 (Song et al., 2021). This phenomenon is primarily caused by
a vanishing signal-to-noise ratio, which makes the corresponding score function difficult to accurately
estimate and causes the SDE to become stiff. To avoid this, in practice both the training objective and
the inference-time integration are restricted to the interval [0, T − δ] (Vahdat et al., 2021) for some
small, non-zero stopping time, δ > 0.
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By contrast, this suggests a key benefit of LDMs, which to our knowledge has not been explored in
the literature so far: by relying on the autoencoder to reduce the dimensionality, the LDM provides
an alternative mean to learn low-dimensional manifolds without relying on the last few steps. This
intuition motivates the following hypothesis:

In latent diffusion models, the last diffusion steps do not improve, or even degrade, sample quality.

We find empirical evidence of this hypothesis by comparing samples from a LDM with those of a
standard diffusion model directly trained in the pixel space, both trained on the dataset CelebA. In
the case of an LDM, degradation in the last sampling steps is evidenced by a rising FID score, as
illustrated in Figure 1. In contrast, this phenomenon, which happens much earlier in the diffusion
process than potential numerical instabilities close to T , is absent in standard diffusion models. Visual
inspection of the associated images confirms that their quality does not improve in the last steps of
the LDM, contrarily to standard diffusion (see Figure 2). Our main contribution in this work is to
provide a theoretical justification of this observation. To this aim, we analyze the phenomenon using
Gaussian data and a linear autoencoder. This choice is deliberate, as this simplified setting already
exhibits phenomena similar to the larger-scale evidence, while being analytically tractable, allowing
us to rigorously demonstrate the effect of early stopping and dimension reduction.
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Figure 1: (left) FID-30k score of latent diffusion model on CelebA-HQ, with latent shape 64×64×3.
(right) FID-30k score of standard diffusion model (trained in pixel space) on CelebA64 (64× 64× 3).
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Figure 2: Samples generated with a latent diffusion model (LDM) and a pixel-space diffusion. In the
LDM, the before-last sample is nearly denoised and indistinguishable from the final one, whereas in
the pixel-space model stronger noise remains at that timestep. See Appendix D for more examples.

Contributions and organization. Our contributions are as follows:

• We propose a theoretical framework to analyze the impact of the last steps of the LDM by
studying the evolution, along the backward diffusion, of the Wasserstein-2 distance between
the data distribution and the generated distribution for Gaussian data (Section 3).
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• We identify the optimal latent dimension as a function of the covariance matrix and the
stopping time, for the case of a diagonal data covariance matrix. In particular, when the data
lies on a linear subspace, we prove that the optimal strategy is to project the diffusion onto
this subspace, and we determine the corresponding optimal stopping time. This reveals a
time-dependent trade-off: distributions generated in the early stages of the backward process
are best approximated in lower-dimensional spaces, while higher dimensions are required to
faithfully reconstruct the data in the final sampling steps (Section 4).

• When the score is learned by a restricted class of parametrized models (i.e., when the weights
of the model are capped), we further establish the existence of an optimal latent projection
that optimizes the backward diffusion, and we investigate how its dimension depends on the
model class constraint and the data covariance (Section 5).

• We extend our analysis to general covariance matrices, showing that the interaction between
early stopping and latent dimensionality persists beyond the independent setting (Section 6).

2 RELATED WORK

Learning low-dimensional data with diffusion models. Riemannian Diffusion Models, introduced
by Huang et al. (2022); De Bortoli et al. (2022), generalize the diffusion process to operate on
Riemannian manifolds and preserve a known geometric structure by design. Subsequent theoretical
work has analyzed the behavior of standard Denoising Diffusion Probabilistic Models (DDPMs)
under the manifold hypothesis, demonstrating that they can implicitly adapt to the data’s intrinsic
dimension without explicit knowledge of the manifold (Tang & Yang, 2024; George et al., 2025).

Further improvements in computational and memory efficiency were introduced by LDMs (Rombach
et al., 2022) by first training a compression model to transform images into a lower-dimensional latent
space, from which the original data can be reconstructed at high fidelity. In practice, this approach is
implemented with a regularized VAE (Esser et al., 2021). The LDM is then trained in the latent space.
Building on this core concept, LDMs have been extended to new domains, such as the generation
of high-resolution videos (Blattmann et al., 2023). Furthermore, extensive research has focused on
improving LDM’s sampling quality, including methods like aligning encoded images with DINOv2
representations (Yu et al., 2024), and enhancing the robustness of the latent space through explicit or
implicit equivariance constraints (Kouzelis et al., 2025; Skorokhodov et al., 2025; Zhou et al., 2025).
In contrast to standard diffusion models, theoretical properties of LDMs have been little studied; in
this work, we investigate the connection of the latent dimension with diffusion stopping time and
score matching regularization.

Optimal stopping time of diffusion models. Focusing on a theoretical analysis of this phenomenon,
Achilli et al. (2025) investigate the optimal stopping time for diffusion models under the assumption
that the data is concentrated on a low-dimensional manifold, a concept formalized by the Hidden
Manifold Model (Goldt et al., 2020). Closer to our contribution is the work of Hurault et al. (2025).
They also investigate the scenario where the true data distribution is Gaussian. Their analysis focuses
on learning the score function using SGD, and allows them to determine an optimal stopping time.
However, the study of these authors is limited to the diffusion model and did not consider the
two-stage architecture of LDMs. Furthermore, the relationship between the data dimension and the
derived optimal stopping time remained unexplored in their findings. In contrast, our work directly
investigates the influence of the latent dimension on the optimal stopping time by incorporating an
autoencoder into the diffusion model framework. We also demonstrate the need of early stopping
without discretization of the backward diffusion process.

3 NOTATIONS AND PROBLEM SETUP

This section introduces the mathematical formalism of diffusion models in the considered setting.

Latent Diffusion Models. Let p0 be an unknown distribution in RD. With a slight abuse of
notation, we use in the following the same notation for a distribution and its density function.
The goal of diffusion models is to generate new observations following p0, given an i.i.d. sample
(X1, . . . , Xn) drawn from p0. The mechanism is as follows. Given a final diffusion time T > 0,
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a latent dimension d ≤ D, a matrix P ∈ Rd×D, and a scalar function w : [0, T ] → R, the latent
forward variance-preserving (VP) SDE (Song et al., 2020) is defined by

dP
−→
Xt = −w2

tP
−→
Xtdt+

√
2w2

t dP
−→
Wt, P

−→
X0 ∼ P#p0, (1)

where
−→
Wt is a standard D-dimensional Brownian motion. The role of the matrix P is to perform

linear dimension reduction. Two special cases are of interest: first, if d = D and P is the identity
matrix, we recover the standard formulation of diffusion models. Second, if P projects on the first
few principal components of the sample covariance matrix, this amounts to performing principal
component analysis (PCA, Jolliffe, 2002). This projection is equivalent to linear autoencoders (Plaut,
2018), and there exists a pseudo-inverse P+ ∈ RD×d which allows us to map sample back to RD.

Letting sP be the score function of P
−→
Xt, i.e., sP (x, t) = ∇ log pP (x, t) where pP (·, t) is the density

function of P
−→
Xt, the forward diffusion can be reversed in time using the backward process

dP
←−
X t = (w2

T−tP
←−
X t + 2w2

T−tsP (P
←−
X t, T − t))dt+

√
2w2

T−tdP
←−
Wt, P

←−
X 0 ∼ P#pT , (2)

where
←−
Wt is a standard D-dimensional Brownian motion. This means that the marginal distribution

of P
←−
XT−t matches the marginal distribution of P

−→
Xt (Anderson, 1982). Hence running the backward

diffusion allows to generate a sample from
←−
XT ∼ P#p0, and then the pseudo-inverse P+ can be

used to map the generated sample back to RD. Importantly, this procedure requires knowledge of sP ,
which can be estimated using the training sample.

Problem setup. In the following, we assume that p0 is a D-dimensional centered Gaussian distri-
bution with independent components, i.e.,

p0 = N (0,Σ), and Σ = diag(σ2
1 , . . . , σ

2
D), (3)

where σ1 ≥ . . . ≥ σD > 0. This specific setting simplifies our study but still provides important
insights for more general distributions.

We consider a hierarchy of latent spaces with increasing dimension d from 1 to D. This corresponds
to taking the matrix P in the VP-SDE (1) as the orthogonal projection Pd onto the first d dimensions.
When p0 is a Gaussian distribution, Pd

←−
XT−t and Pd

−→
Xt also follow Gaussian distributions

Pd
←−
XT−t

D
= Pd

−→
Xt ∼ N (0, Pd(a

2
t ID + b2tΣ)P

⊤
d ) = N (0, a2t Id + b2tPdΣP

⊤
d ), (4)

where the covariance matrix of Pd
←−
XT−t effectively zeros out the last D − d dimensions and

at =
√

1− b2t while bt = e−
∫ t
0
w2

t dt. A typical choice is the Ornstein-Uhlenbeck process, where
wt ≡ 1, which implies at =

√
1− e−2t and bt = e−t.

When p0 is a Gaussian distribution, the score function ∇ log pt is completely determined by the
covariance matrix Σ. Indeed, in (4) we have

sPd
(x, t) = −(a2t Id + b2tPdΣP

⊤
d )−1x, x ∈ Rd.

Therefore, we may simplify the learning of the score function to the task of covariance matrix estima-
tion. Since we assumed that the components of p0 are independent, we consider a class of estimators
consisting of diagonal matrices Σ̂ = diag(σ̂2

1 , . . . , σ̂
2
D), where its diagonal elements are the estimated

variances given by 1
n

∑n
i=1 X

2
id for all d ∈ {1, . . . , D} where Xi = (Xi1, . . . , XiD) ∈ RD. Fur-

thermore, we assume σ̂1 ≥ . . . ≥ σ̂D > 0, which is satisfied with high probability when n is large
enough (up to permutations of the indices in case of equality of some of the variances).

Plugging the estimated covariance matrix in the final distribution of Pd
−→
XT and in the score function

sPd
, we can define the estimated sampling procedure

dPd
←−
X̂ t = (w2

T−tPd
←−
X̂ t + 2w2

T−tŝPd
(Pd
←−
X̂ t, T − t))dt+

√
2w2

T−tdPd
←−
Wt, Pd

←−
X̂ 0 ∼ (Pd)#p̂T ,

(5)
where

ŝPd
(x, t) = −(a2t Id + b2tPdΣ̂P

⊤
d )−1x and (Pd)#p̂T ∼ N (0, a2T Id + b2TPdΣ̂P

⊤
d ).
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By the same derivations as above, we have the following identity

Pd
←−
X̂ t ∼ N (0, a2t Id + b2tPdΣ̂P

⊤
d ).

In practical applications, some numerical scheme is used to solve the backward SDE (5). Typical
choices include replacing the initial distribution (Pd)#p̂T in the SDE (5) by a standard Gaussian
distribution N (0, ID), which is a valid approximation when T is large. In addition, for numerical
stability, the backward diffusion is early stopped at a preset time T − δ (see, e.g., Yang et al., 2023).

We quantify the distance between distributions by the Wasserstein-2 distance (Villani, 2008), which
is equivalent in the Gaussian case to the Fréchet distance (Heusel et al., 2017):

d2F (N (µ1,Σ1),N (µ2,Σ2)) = ∥µ1 − µ2∥22 + tr(Σ1 +Σ2 − 2(Σ
1/2
2 Σ1Σ

1/2
2 )1/2). (6)

With a small abuse of notation, we use dF (X,Y ) to denote the distance between the distributions of
the random variables X and Y .

4 OPTIMAL DIMENSION REDUCTION AND STOPPING TIME

In this section, we address the important question of how dimensionality reduction affects the
diffusion process with respect to the intrinsic geometric structure of the data. Our analysis focuses on
selecting the rank d of the projection matrix Pd and the stopping time of the diffusions (2) and (5).

4.1 AN ANALYSIS OF NON-MONOTONIC BEHAVIOR OF FRÉCHET DISTANCE

This subsection examines the non-monotonic behavior of the Fréchet distance as a function of
diffusion timesteps, challenging the intuitive expectation of monotonic evolution. The common
belief of monotonicity (Jayasumana et al., 2024) implies that a stopping time closer to T consistently
yields a smaller Fréchet distance. First, we derive a necessary and sufficient condition for this
non-monotonicity to occur in the scenario where the target distribution is Gaussian, as in (3). The
proof of this result, as well as those of the subsequent ones, can be found in the Appendix.

Proposition 1. Let Pd
←−
X t and Pd

←−
X̂ t be given as in (2) and (5), respectively. For d ∈ {1, . . . , D},

the Fréchet distance dF (P
⊤
d Pd
←−
X t,
−→
X 0) is non-increasing with respect to t. On the other hand,

dF (P
⊤
d Pd
←−
X̂ t,
−→
X 0) is non-increasing if and only if

d∑
d′=1

(1− σd′

σ̂d′
)(1− σ̂2

d′) ≥ 0. (7)

Roughly speaking, the variance of each backward diffusion component Pd
←−
X̂ t scales monotonically

from an initial value close to 1 (a2T + b2T σ̂
2
d′ ≈ 1) to the estimated variance σ̂2

d′ or any values

satisfying (7), e.g., when σ̂2
d′ are given by an oracle. The distance dF (P

⊤
d Pd
←−
X̂ t,
−→
X0) is therefore

minimized when the process variance is closest to the true set of variances (σ2
d′)1≤d′≤d, which

happens before time T under condition (7).

For a clearer understanding, consider the scenario where p0 is a distribution lying in a linear subspace
that is isomorphically equivalent to Rd0 . In other words, suppose that σD = . . . = σd0+1 = 0, and
also σ̂D = . . . = σ̂d0+1 = 0. Let us first consider the case where there is no projection, i.e., d = D.
Then, the left-hand side of (7) can be rewritten

D∑
d′=1

(1− σd′

σ̂d′
)(1− σ̂2

d′) =

d0∑
d′=1

(1− σd′

σ̂d′
)(1− σ̂2

d′) +D − d0.

For large enough n and with high probability, |σd′ − σ̂d′ | ≤ σ̂d′ for every d′ ∈ {1, . . . , d0}, thus

D∑
d′=1

(1− σd′

σ̂d′
)(1− σ̂2

d′) ≥
d0∑
d′=1

(
− 1− max

d′∈{1,...,d0}
σ̂2
d′
)
+D − d0 = D −

(
2 + max

d′∈{1,...,d0}
σ̂2
d′
)
d0.
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The last term is positive as long as the ambient dimension D is large enough. Therefore, in this

context, dF (
←−
X̂ t,
−→
X 0) is non-increasing. However, if projecting the diffusion onto the d0-dimensional

linear subspace in which the data distribution lies, the D−d0 term in the computation above vanishes,
and we are left with the sum up to d0. Then the behavior of the Fréchet distance is linked to how the
model estimates the variances of the data. If, for most d′, the sign of 1− σd′/σ̂d′ matches the sign of
1− σ̂2

d′ , the Fréchet distance exhibits monotonic behavior. Conversely, if most of the signs differ, the
Fréchet distance is non-monotonic.

This insight suggests that early stopping can improve the backward diffusion process, bringing the
generated distribution closer to the data distribution. We next ask the reverse question: given a
stopping time t, what is the optimal latent dimension?

4.2 OPTIMAL PROJECTION AT TIME t
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Figure 3: ā−2 in the Ornstein-
Uhlenbeck process.

In this subsection, we continue the study of the interaction of the
dimension of projection and the stopping time. In contrast to the
previous subsection, we show that for each fixed time t, there
exists an optimal projection Pd. We still consider Gaussian data
with independent components (3). Recall that a is defined in (4)
and that it is an increasing map from [0, T ] to [0, aT ]. We then
let ā−2 : R ∪ {∞} → [0, T ] be the extended inverse function
of a2 (see plot in Figure 3), meaning that

ā−2(x) =


0, for x < 0,

a−2(x), for x ∈ [0, a2T ],

T, for x ∈ (a2T ,∞].

(8)

In particular, for t ∈ [0, T ], ā−2(a2t ) = t. For d ∈ {2, . . . , D},
we then let

td = T − ā−2
( 3σ2

d

(1− σ2
d)+

)
and t̂d = T − ā−2

( 4σ2
d − σ̂2

d

(1− σ̂2
d)+

)
.

By convention, we let t̂1 = t1 = 0 and t̂D+1 = tD+1 = T . Observe that the times td are in increasing
order and between 0 and T . Given these time partitions, we can characterize the optimal projection
dimension, both for the exact backward process and the one incorporating score estimation, with the
aim of minimizing the distance between the generated and target distributions.

Proposition 2. Assume that 0 < σD < · · · < σ1. Then, for d ∈ {1, . . . , D} and t ∈ [td, td+1),

dF (P
⊤
d Pd
←−
X t,
−→
X0) = min

d′∈{1,...,D}
dF (P

⊤
d′Pd′

←−
X t,
−→
X0).

Furthermore, with high probability, the σ̂d and the t̂d are well-ordered. In this case, for t ∈ [t̂d, t̂d+1)

dF (P
⊤
d Pd
←−
X̂ t,
−→
X0) = min

d′∈{1,...,D}
dF (P

⊤
d′Pd′

←−
X̂ t,
−→
X0).

Proposition 2 quantifies a direct link between early stopping in the backward diffusion process and
dimensionality reduction. It reveals a time-dependent trade-off: distributions at early stages of the
backward process are best approximated in lower-dimensional spaces, while higher dimensions
become necessary to faithfully reconstruct the data as t→ T , as illustrated in Figure 4 (left). In other
words, at an early time step, projecting onto an unnecessarily high-dimensional space can introduce
more noise than signal, making a lower-dimensional representation more accurate. Notice that when
4σ2

d ≥ 1, both td and t̂d are equal to 0. This implies that a component whose variance is sufficiently
large should always be included in the projection, aligning with the intuition that major components
are essential for representation. These results hold for backward processes using scores based on
either the true or empirical variances.

We next characterize the behavior of the optimal latent dimension and stopping time when data lies
on a d0-dimensional subspace, providing a similar result to Proposition 2. This analysis allows us to
precisely determine these two key parameters, as shown next.
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Figure 4: Plots of d2F (P
⊤
d Pd
←−
X̂ t,
−→
X0) as a function of the diffusion time t, for two sets of variances

(σ1, . . . , σD). (left) All the σi are nonzero. As expected from Proposition 2, the d-dimensional
projection is optimal in [td, td+1). (right) The data is supported on a linear subspace of dimension
d0 = 4 with D = 6. As expected from Proposition 3, we observe that the minimum distance is
achieved in dimension d0 and with early stopping. LogSNR in the x-axis is a remapping of time t,
defined as log(b2t/a

2
t ), which we use to increase readability. Experimental details are in Appendix D.

Proposition 3. Assume that Σ = diag(σ2, . . . , σ2, 0, . . . , 0) with the last D − d0 entries equal to 0.
Let ε ∈ (0, 1). Then, there exists δ̂d0 ∈ [0, T ] such that with probability 1− 2d0e

−n
8 ,

dF (P
⊤
d0Pd0

←−
X̂T−δ̂d0

,
−→
X0) = min

t∈[0,T ]
d′∈{1,...,D}

dF (P
⊤
d′Pd′

←−
X̂ t,
−→
X0).

The proposition shows that the optimal generation strategy for data with a low-rank structure involves
both early stopping and projection (see Figure 4 (right) for an illustration). The proof indicates that,
under the non-monotonicity condition of Proposition 1, the optimal early stopping time T − δ̂d0
is strictly before T . Beyond preventing numerical instability as t → T (e.g., Yang et al., 2023),
Proposition 3 thus offers a new justification for early stopping. In other words, stopping at a specific
time δ̂d0 is not merely a practical fix, but an optimal strategy to improve generation quality by
minimizing the distance between the generated and true data distributions.

Furthermore, this result confirms the intuition that confining the generative process to the dataset’s
intrinsic dimensionality is the most effective approach for low-rank data. This strategy is not only
computationally more efficient than running the diffusion in the ambient space, but also enhances
generation quality by avoiding the noise introduced by superfluous dimensions. This suggests a
principled guideline for practitioners: identifying and restricting the diffusion process to the data’s
intrinsic dimensionality leads to more accurate and robust generative models.

5 PERFORMANCE OF THE SCORE MATCHING ERM

In the previous section, we analyzed the properties of diffusion processes with a score tailored
to independent Gaussian distributions involving either exact or plugged-in estimated variances.
In practice, the score is rather learned by solving a regression problem called score matching.
Specifically, given a training sample (X1, . . . , Xn) independently drawn from the data distribution
p0, the empirical score matching objective writes

R(s) = 1

n

n∑
i=1

Et∼T ,ε∼N (0,ID)

∥∥∥∥s(btXi + atε, t) +
ε

at

∥∥∥∥2 , (9)

for some absolutely continuous distribution T with positive mass over [0, T ], and where the predictor
s : RD × R→ R belongs to some hypothesis class FC , typically a neural network architecture. In
our context, recall that the score function of a Gaussian distribution with diagonal covariance Σ is

∇ log pt(x) = −(a2t ID + b2tΣ)
−1x, (10)
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which takes the form of a time-dependent diagonal matrix multiplied by x. Thus a natural choice of
hypothesis class given the form of the true score function (10) is, for C > 1,

FC =
{
sM : Rd × R+ → Rd :sM (x, t) = −M(t)x, M(t) = diag(m1(t), . . . ,mD(t)),

mi ∈ L2(R+,R), ∥mi∥∞ < C} .
The assumption of C > 1 is essential since we start the backward diffusion from a standard Gaussian
distribution whose score function is the identity function. We introduce the norm constraint on the
weights to account for two phenomena. First, the norm of the true score function (10) blows up
for times close to 0 (in particular if the covariance matrix is singular or close to singular), which
is known to create numerical instabilities (Lu et al., 2023; Yang et al., 2023). This is mitigated in
practice for instance by early stopping the diffusion. Here, we implement this mitigation by capping
the weight norm. Second, it is known that gradient descent has an implicit bias towards learning
low-norm solutions. Although quantifying this effect is beyond the scope of this paper, the explicit
weight constraint provides an analytically tractable analogue. More precisely, one can easily derive
the following explicit formula for the minimizer of the score matching over FC .
Proposition 4. Let σ̂2

d = 1
n

∑n
i=1 X

2
id be the empirical variance for the d-th component of the

training data. Then the minimizer of the score matching objective (9) over FC is given by M̂(t) =
diag(m̂1(t), . . . , m̂D(t)) where, for d ∈ {1, . . . , D},

m̂d(t) = min

(
C,

1

a2t + b2t σ̂
2
d

)
.

Our goal in the following is to characterize the optimal latent dimension when using the score defined
by Proposition 4. For this purpose, as before, we quantify the distance between the data distribution
and the distribution generated by the backward process for d ∈ {1, . . . , D}. We do not consider early
stopping here, to focus on the influence of the regularization parameter C on the choice of the latent
dimensionality. For simplicity, we keep the data distribution p0 to be a Gaussian distribution with
independent component, and specialize to the Ornstein-Uhlenbeck process. In this case, the sample
←−̃
X t are generated by the backward SDE for t ∈ [0, T ]

d
←−̃
X t = (

←−̃
X t + 2sM̂ (

←−̃
X t, T − t))dt+

√
2d
←−
Wt,

←−̃
X 0 ∼ N (0, ID).

Note that we consider the standard setting in which the backward process starts from a standard
Gaussian. We can then characterize the optimal projection for the latent diffusion, as shown next.
Proposition 5. Define 1 ≤ d1 ≤ d2 ≤ D as follows:

d1 = max{d′ ∈ {1, . . . , D} : 1/C ≤ σ̂2
d′} and d2 = min

{
d′ ∈ {1, . . . , D} : 1

2C − 1
≥ 4σ2

d′

}
.

(If the corresponding set in their definition is empty, we let d1 = 1 and d2 = D, respectively.) Then,
with high probability, there exists an optimal projection dimension d1 ≤ dmin ≤ d2 such that

dF (P
⊤
dmin

Pdmin

←−̃
XT ,

−→
X0) = min

d′∈{1,...,D}

{
dF (P

⊤
d′Pd′

←−̃
XT ,

−→
X0)

}
.

To gain intuition into Proposition 5, let us consider some illustrative cases depending on the weight
constraint C (for the full derivation of these cases, see Appendix A.6). First, when C = ∞ and
the data covariance is non-singular, we get d1 = d2 = D, thus Proposition 5 suggests to take the
projection matrix ID, which is expected since FC is then large enough to contain the true empirical
score function. Second, consider the scenario when the data distribution lies on a linear subspace
of dimension d0. If C is large enough, we obtain d1 = d2 = d0, meaning that the projection onto
the data subspace is the optimal sampling strategy, which is in line with Proposition 3. Finally, the
optimal projection can also be made explicit for exponentially-decaying covariance spectrum.
Corollary 1. Let λ > 16. Assume that Σ = diag(λ−1, . . . , λ−D) and λ ≤ C ≤ λD. Let d ∈
{1, . . . , D} be such that σ̂2

d+1 ≤ 1/C ≤ σ̂2
d. Then, with n large enough and high probability,

dmin ∈ {d, d+ 1}.

Interestingly, when the covariance structure decays exponentially, the capacity of the score-function
class—captured here by the parameter C—is directly tied to the optimal projection dimension. The
latter scales logarithmically in the parameter C since σ̂2

dmin
= λ−dmin ≈ 1/C. An analogous result

can be derived for covariance structures with power-law decay.

8
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6 GENERALIZATION TO ARBITRARY GAUSSIAN DISTRIBUTIONS

We now explain how to generalize some of our preceding analysis from Gaussian distributions
with diagonal covariance matrices to the more general case p0 = N (0,Σ) for arbitrary Σ, and the

backward processes
←−
X t and

←−
X̂ t given as in (2) and (5) with the new general data distribution p0.

Our goal is to establish a result analogous to Proposition 2, that is, to characterize the optimal latent
dimension given a stopping time of the diffusion process.

To this end, let Σ = OΛO⊤ be the eigen decomposition of Σ, where O is an orthogonal matrix and Λ
is the diagonal matrix of eigenvalues, which we assume are distinct and ordered σ2

1 > . . . > σ2
D > 0.

As in Section 4, we define a time partition by setting t1 = 0 and tD+1 = T , and defining the
intermediate timesteps for d ∈ {2, . . . , D} as:

td = T − ā−2

(
3σ2

d

(1− σ2
d)+

)
,

where ā−2 is given in (8). This definition, combined with the ordering of the eigenvalues, yields a
sequence 0 = t1 ≤ t2 ≤ · · · ≤ tD ≤ tD+1 = T . We show next that for this general Gaussian case,
PCA projection onto d components is optimal precisely within the interval [td, td+1).

Proposition 6. For 2 ≤ d ≤ D and t ∈ [td, td+1), we have

dF (OP⊤
d PdO

⊤←−X t,
−→
X0) = min

d′∈{1,...,D}
dF (OP⊤

d′Pd′O
⊤←−X t,

−→
X0).

However, in practical applications, one rarely has access to the true underlying covariance matrix Σ
or its eigenbasis O. Instead, one must rely on estimations derived from observed data, where PCA
is commonly used. Denote Σ̂ = 1

n

∑n
i=1 XiX

⊤
i to be the empirical covariance matrix. Applying a

spectral decomposition yields Σ̂ = Ôdiag(σ̂2
1 , . . . , σ̂

2
D)Ô

⊤, where Ô contains the orthonormal eigen-
vectors and σ̂2

D < . . . < σ̂2
1 are the corresponding eigenvalues. Denote S(Σ) =

∑D
d′=1 max(σd, σ

2
d).

For u ≥ 0 and d ∈ {2, . . . , D}, we let T̂d(u) and t̂d(u) be

T̂d(u) = T − ā−2

(
σ̂2
d − 4S(Σ)εu + 2σ̂d

√
σ̂2
d − 4S(Σ)εu

(1− σ̂2
d)+

)
,

t̂d(u) = T − ā−2

(
σ̂2
d + 4S(Σ)εu + 2σ̂d

√
σ̂2
d + 4S(Σ)εu

(1− σ̂2
d)+

)
,

where εu = 8C
3 (
√

D+u
n + D+u

n ). We assume that εu is sufficiently small (i.e., n large enough) so
that the square root in the definition above is well-defined and the argument of ā−2 is positive. By
convention, we set T̂1(u) = 0 and t̂D+1(u) = T . Thus, for small εu, these timesteps are ordered as

0 = T̂1(u) < t̂2(u) < T̂2(u) < · · · < t̂D(u) < T̂D(u) < t̂D+1(u) = T.

We are now in a position to describe the optimal projection strategy at each stopping time.

Proposition 7. For d ∈ {1, . . . , D} and any t ∈ [T̂d(u), t̂d+1(u)], with probability 1− 2e−u,

dF (ÔP⊤
d PdÔ

⊤
←−
X̂ t,
−→
X0) = min

d′∈{1,...,D}
dF (ÔP⊤

d′Pd′Ô
⊤
←−
X̂ t,
−→
X0).

This proposition generalizes the result of Proposition 2 to the case of a general Gaussian data
distribution. The analysis reveals that, for any latent dimension d, there exists a time interval where
a d-dimensional projected diffusion process minimizes the distance to the target distribution with
high probability. Notably, this result is consistent with our previous conclusions. In the idealized
scenario where the variance estimation error is zero (i.e., εu = 0, implying Σ̂ = Σ,) the formula for
the optimal time t̂d = T̂d simplifies precisely to the one derived in Proposition 6.

9
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7 CONCLUSION

This paper provides a theoretical analysis of optimal stopping time in latent diffusion models, showing
its critical dependence on latent space dimensionality and its interaction with other hyperparameters
of the diffusion process, such as weight regularization in the score matching phase. Our results focus
on Gaussian distributions, given their tractability and prominence in prior theoretical works (Pierret
& Galerne, 2024; Hurault et al., 2025). Taken together, these insights open compelling research
directions, for deepening the theoretical properties of latent diffusion models and assessing when
they can match or surpass the sampling quality of standard diffusion models.
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Appendix

A PROOFS OF RESULTS

A.1 PROOF OF PROPOSITION 1

We show the equivalent statement: t ∈ [0, T ] 7→ d2F (P
⊤
d Pd
←−
X̂T−t,

−→
X0) is non-decreasing if and only

if (7) holds. We start by calculating the Fréchet distance d2F (P
⊤
d Pd
←−
X̂T−t,

−→
X0) by using (6):

d2F (P
⊤
d Pd
←−
X̂T−t,

−→
X 0) =

D∑
d′=d+1

σ2
d′ +

d∑
d′=1

(
b2t σ̂

2
d′ + a2t + σ2

d′ − 2σd′
√
a2t + b2t σ̂

2
d′

)

=

D∑
d′=d+1

σ2
d′ +

d∑
d′=1

(√
a2t + (1− a2t )σ̂

2
d′ − σd′

)2
.

Since t 7→ a2t is strictly increasing with a0 = 0, the monotonicity of d2F (P
⊤
d Pd
←−
X̂T−t,

−→
X0) with

respect to t is equivalent to the monotonicity with respect to a2t . By considering the function
f : [0, a2T ]→ R defined by

f(x) =

d∑
d′=1

(√
x+ (1− x)σ̂2

d′ − σd′
)2

,

we see that d2F (P
⊤
d Pd
←−
X̂T−t,

−→
X0) is non-decreasing if and only if f is non-decreasing. Additionally,

f ′(x) =

d∑
d′=1

(
√
x+ (1− x)σ̂2

d′−σd′)
1− σ̂2

j√
x+ (1− x)σ̂2

d′

=

d∑
d′=1

(
1− σd′√

x+ (1− x)σ̂2
d′

)
(1−σ̂2

d′),

and

f ′′(x) =

d∑
d′=1

σd′(1− σ̂2
d′)

2

2(x+ (1− x)σ̂2
d′)

3/2
> 0.

Hence, f is convex so it is non-decreasing if and only if f ′(0) ≥ 0. Therefore,

d2F (P
⊤
d Pd
←−
X̂T−t,

−→
X0) = f(a2t ) +

D∑
d′=d+1

σ2
d′

is non-decreasing if and only if f ′(0) ≥ 0, i.e., if and only if
∑d
d′=1(1−

σd′
σ̂d′

)(1− σ̂2
d′) ≥ 0. This

shows the second statement of the proposition. The monotonicity of dF (P⊤
d Pd
←−
XT−t,

−→
X0) can be

shown by replacing σ̂d′ with σd′ in the derivative f ′, which is 0 when at = 0.

A.2 PROOF OF PROPOSITION 2

The first part of Proposition 2 concerns the minimization of dF (P⊤
d Pd
←−
X t,
−→
X0). Recall that td =

T − ā−2
(

3σ2
d

1−σ2
d

)
. To prove that Pd

←−
X t achieves the minimal distance to the target for t ∈ [td, td+1)

(where the time interval is fixed), we will demonstrate how the distance dF (P⊤
d Pd
←−
X t,
−→
X0) behaves as

a function of the projection dimension d. Specifically, we aim to show that, for any d ∈ {2, . . . , D},

dF (P
⊤
d Pd
←−
X t,
−→
X0) ≤ dF (P

⊤
d−1Pd−1

←−
X t,
−→
X0) iff t ≥ td. (11)

This inequality in turn implies that for a given t in a fixed interval [td, td+1), the minimum distance
dF (P

⊤
d Pd
−→
Xt,
−→
X0) is attained by the projected process Pd

−→
Xt in dimension d.

To establish them, we first explicitly compute the Fréchet distance dF (P
⊤
d Pd
−→
Xt,
−→
X0). Recall that

the Fréchet distance between two zero-mean Gaussian distributions N (0,Σ1) and N (0,Σ2) is

13
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given by Tr(Σ1 + Σ2 − 2(Σ
1/2
1 Σ2Σ

1/2
1 )1/2), and that the covariance matrix of Pd

←−
X t is equal to

Pd(a
2
T−tId + b2T−tΣ)Pd. Therefore, it is possible to calculate the Fréchet distance to the target for

the projected processes directly, as, for any d ∈ {1, . . . , D},

d2F (P
⊤
d Pd
←−
X t,
−→
X 0) =

D∑
j=1

σ2
j +

d∑
j=1

(a2T−t + b2T−tσ
2
j )− 2

d∑
j=1

σj

√
a2T−t + b2T−tσ

2
j ,

so that

∆d,t := d2F (P
⊤
d Pd
←−
X t,
−→
X 0)− d2F (P

⊤
d−1Pd−1

←−
X t,
−→
X 0)

= b2T−tσ
2
d + a2T−t − 2σd

√
a2T−t + b2T−tσ

2
d,

=
√

b2T−tσ
2
d + a2T−t

(√
b2T−tσ

2
d + a2T−t − 2σd

)
,

=
√

(1− a2T−t)σ
2
d + a2T−t

(√
(1− a2T−t)σ

2
d + a2T−t − 2σd

)
,

=
√
σ2
d + a2T−t(1− σ2

d)
(√

a2T−t(1− σ2
d) + σ2

d − 2σd

)
.

We see that ∆d,t has the same sign as the term in the parenthesis on the last line, which itself has the
same sign as a2T−t(1− σ2

d)− 3σ2
d. Then,

• if σd ≥ 1 or 3σ2
d

1−σ2
d
≥ a2T , ∆d,t is non-positive for all t ∈ [0, T ], while td = 0 by definition;

• otherwise, ∆d,t is non-positive if and only if a2T−t ≤
3σ2

d

1−σ2
d

which is equivalent to

T − t ≤ a−2
( 3σ2

d

1− σ2
d

)
= T − td.

Putting things together, we obtain that d2F (P
⊤
d Pd
←−
X t,
−→
X 0)− d2F (P

⊤
d−1Pd−1

←−
X t,
−→
X 0) is non-positive

iff t ≥ td, which is exactly (11).

The proof in the case of estimated variances can be derived in a similar fashion as long as the
estimated variances σ̂i and times t̂i are well-ordered, which happens with high probability for a
sufficiently large sample.

A.3 PROOF OF PROPOSITION 3

We first state the full proposition.

Proposition 8. Assume that Σ = diag(σ2, . . . , σ2, 0, . . . , 0) with the last D − d0 entries equal to 0,
and the estimated variances are ordered as σ̂2

1 ≥ σ̂2
2 ≥ . . . ≥ σ̂2

d0
. Let ε ∈ (0, 1). For

t ∈
[
T − ā−2

(3− ε

1 + ε

σ̂2
1

1− σ̂2
1

)
, T

)
,

with probability 1− 2d0e
− ε2n

8 , we have

dF (P
⊤
d0Pd0

←−
X̂ t,
−→
X0) = min

d′∈{1,...,D}
dF (P

⊤
d′Pd′

←−
X̂ t,
−→
X0).

If, in addition,
d0∑
d′=1

(1− σ

σ̂d′
)(1− σ̂2

d′) < 0, (12)

then
d0∑
d′=1

(1− σ√
σ̂2
d′ + (1− σ̂2

d′)a
2
t

)(1− σ̂2
d′) = 0,
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has a unique solution which we denote by δ̂d0 . By convention, if the condition (12) is not satisfied, we

set δ̂d0 = 0. Then, with probability 1− 2d0e
− ε2n

8 ,

dF (P
⊤
d0Pd0

←−
X̂T−δ̂d0

,
−→
X0) = min

t∈[0,T ]
d′∈{1,...,D}

dF (P
⊤
d′Pd′

←−
X̂ t,
−→
X0).

Let ε ∈ (0, 1). We first note that according to Proposition 9, by the union bound, with probability

1− 2d0e
− ϵ2n

4(1+ϵ) ≥ 1− 2d0e
− ϵ2n

8 we have |σ2 − σ̂2
d| ≤ εσ2 for all d ∈ {1, . . . , d0}. We work under

this event in the remainder of the proof. In particular, for all d ∈ {1, . . . , d0}, σ2
d = σ2 ≥ σ̂2

1/(1+ ε).
Thus, by separating cases depending on whether 4σ2

d ≤ 1, a short calculation gives that

min
(
1,

4
1+ε σ̂

2
1 − σ̂2

1

1− σ̂2
1

)
≤ min

(
1,

4σ2
d − σ̂2

1

1− σ̂2
1

)
≤ 4σ2

d − σ̂2
d

1− σ̂2
d

.

The last inequality is derived as follows: if 4σ2
d ≤ 1, then we use the fact that x 7→ a−x

1−x is non-

increasing if a < 1. On the other hand, if 4σ2
d ≥ 1, then 4σ2

d−σ̂
2
d

1−σ̂2
d
≥ 1. Hence, by the monotonic

increase of ā−2,

t̂d = T − ā−2
(4σ2

d − σ̂2
d

1− σ̂2
d

)
= T − ā−2

(
min

(
1,

4
1+ε σ̂

2
1 − σ̂2

1

1− σ̂2
1

))
≥ T −min

(
T, ā−2

(3− ε

1 + ε

σ̂2
1

1− σ̂2
1

))
= max

(
0, T − ā−2

(3− ε

1 + ε

σ̂2
1

1− σ̂2
1

))
= T − ā−2

(3− ε

1 + ε

σ̂2
1

1− σ̂2
1

)
.

Thus, t ≥ T − ā−2
(

3−ε
1+ε

σ̂2
1

1−σ̂2
1

)
implies t ≥ t̂d for every d ∈ {1, . . . , d0}. On the other hand,

t < T = t̂d for all d ∈ {d0 + 1, . . . , D} since σd = σ̂d = 0. From here we deduce the desired result
applying Proposition 2.

In this second part, we study under the event where |σ2 − σ̂2
d| ≤ σ2 for every d ∈ {1, . . . , d0},

which holds with probability 1 − 2d0e
−n/8 by Proposition 9. To prove the desired result, we first

show that the minimum of the distance dF (P
⊤
d0
Pd0
←−
X̂ t,
−→
X0) is attained at t = T − δ̂d0 , as per

its definition. We consider two cases depending on whether condition (12) is satisfied. First, if
condition (12) holds, the proof of Proposition 1 establishes that a2

T−δ̂d0
is the unique zero of the

derivative d
da2t

d2F (P
⊤
d0
Pd0
←−
X̂ t,
−→
X0). This confirms that T − δ̂d0 is the unique minimizer of the distance.

Conversely, if condition (12) is not satisfied, then δ̂d0 = 0. In this scenario, the squared distance

d2F (P
⊤
d0
Pd0
←−
X̂ t,
−→
X0) is a non-increasing function of t and thus attains its minimum at the endpoint

t = T . This result is consistent, as t = T = T − δ̂d0 .

We remark by Proposition 2 that, since t̂d = T for every d ∈ {d0 + 1, . . . , D}, for every t ∈ [0, T ],

dF (P
⊤
d0Pd0

←−
X̂T−δ̂d0

,
−→
X0) ≤ dF (P

⊤
d0Pd0

←−
X̂ t,
−→
X0) ≤ dF (P

⊤
d Pd
←−
X̂ t,
−→
X0).

Observe that t̂1 = maxd∈{1,...,d0} t̂d, which is in the same order of σ̂d. This is due to the fact that
x 7→ a−x

1−x is non-increasing if a < 1. Then from the proof of Proposition 2 we deduce that, for t ≥ t̂1
and d ∈ {1, . . . , d0}, that

dF (P
⊤
d0Pd0

←−
X̂T−δ̂d0

,
−→
X0) ≤ dF (P

⊤
d0Pd0

←−
X̂ t,
−→
X0) < dF (P

⊤
d Pd
←−
X̂ t,
−→
X0).
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If t̂1 = 0, the proof is finished. Note that this is the case if σ2 ≥ 1/4, since 4σ2−σ̂2
1

(1−σ̂2
1)+
≥ 1. We study

from now the case where t̂1 > 0 and σ2 ≤ 1/4, with t ≤ t̂1 and d ∈ {1, . . . , d0}. We do this by

showing for every dimension d ∈ {1, . . . , d0}, dF (P⊤
d Pd
←−
X̂ t,
−→
X0) is non-increasing on [0, t̂1]. This

implies

dF (P
⊤
d0Pd0

←−
X̂T−δ̂d0

,
−→
X0) ≤ dF (P

⊤
d0Pd0

←−
X̂ t̂d0

,
−→
X0) ≤ dF (P

⊤
d Pd
←−
X̂ t̂d0

,
−→
X0) ≤ dF (P

⊤
d Pd
←−
X̂ t,
−→
X0).

In the remainder of the proof, we show, for d ∈ {1, . . . , d0}, that dF (P⊤
d Pd
←−
X̂ t,
−→
X0) is non-increasing

on [0, t̂1]. This is equivalent to proving that dF (P⊤
d Pd
←−
X̂T−t,

−→
X0) is non-decreasing on [T − t̂1, T ].

Recall that, as in the proof as Proposition 1,

d2F (P
⊤
d Pd
←−
X̂T−t,

−→
X0) =

d0∑
d′=d+1

σ2 +

d∑
d′=1

(√
a2t + (1− a2t )σ̂

2
d′ − σ

)2
.

Consider fd given by

fd(x) =

d∑
d′=1

(√
x+ (1− x)σ̂2

d′ − σ
)2
.

What we want to show is equivalent to f being non-decreasing on [a2
T−t̂1

, a2T ]. Since fd is convex
as proven in Proposition 1, it is sufficient to show that f ′ is positive at a2

T−t̂1
. All in all, since the

derivative of fd is

f ′
d(x) =

d∑
d′=1

(
1− σ√

σ̂2
d′ + (1− σ̂2

d′)x

)
(1− σ̂2

d′),

if we are able to show that for any d′ ≤ d0,

(1− σ√
σ̂2
d′ + (1− σ̂2

d′)a
2
T−t̂1

)(1− σ̂2
d′) ≥ 0, (13)

then

f ′
d(a

2
T−t̂) =

d∑
d′=1

(
1− σ√

σ̂2
d′ + (1− σ̂2

d′)a
2
T−t̂1

)
(1− σ̂2

d′) ≥ 0.

The result above is twofold. First, we get that dF (P
⊤
d Pd
←−
X̂T−t,

−→
X0) is increasing on the in-

terval of interest. This also interestingly shows that the minimum of the Frobenius distance

t 7→ dF (P
⊤
d0
Pd0
←−
X̂ t,
−→
X0) is reached after t̂1. Since by definition the minium is reached at T − δ̂d0 ,

we get that T − δ̂d0 ≥ t̂.

The only thing remaining is to show (13). Recall that t̂1 = T − ā−2
(

4σ2−σ̂2
1

1−σ̂2
1

)
, and that we assumed

t̂1 > 0, which implies 4σ2−σ̂2
1

1−σ̂2
1

< a2T . On the other hand, recall that we work under the event that

|σ2 − σ̂2
1 | ≤ σ2. Hence, σ̂2

1 ≤ 2σ2 < 1 and 4σ2−σ̂2
1

1−σ̂2
1

> 0. Therefore, by definition of t̂1, we have

a2
T−t̂1 =

4σ2 − σ̂2
1

1− σ̂2
1

.

From here, we prove (13). We rewrite (13) as

1− σ√
σ̂2
d′ + (1− σ̂2

d′)a
2
T−t̂

≥ 0.

⇔ σ2 ≤ σ̂2
d′ + (1− σ̂2

d′)
4σ2 − σ̂2

1

1− σ̂2
1
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⇔ σ2 ≤ σ̂2
d′ + (1− σ̂2

d′)
(
1− 1− 4σ2

1− σ̂2
1

)
⇔ σ2 ≤ 1− (1− σ̂2

d′)
1− 4σ2

1− σ̂2
1

⇔ (1− σ̂2
d′)

1− 4σ2

1− σ̂2
1

≤ 1− σ2.

Therefore, since σ̂d′ < 1,we deduce that (13) is equivalent to showing:

1− 4σ2

1− σ̂2
1

≤ 1− σ2

1− σ̂2
d′
.

To show this, recall the bound σ̂2
1 ≤ 2σ2 < 1. Thus,

1− 4σ2

1− σ̂2
1

≤ 1− 4σ2

1− 2σ2
= 1− σ2 2

1− 2σ2
≤ 1− σ2 ≤ 1− σ2

1− σ̂2
d′
,

which derives the desired inequality and we conclude the proof.

A.4 PROOF OF PROPOSITION 4

We begin by rewriting the expression of the score matching objective in the following form:

R(sM ) =
1

n

n∑
i=1

Et∼T ,ε∼N (0,ID)

∥∥∥∥sM (btXi + atε, t) +
ε

at

∥∥∥∥2
=

1

n

n∑
i=1

Et∼T ,ε

∥∥∥∥−M(t)(btXi + atε) +
ε

at

∥∥∥∥2 (since sM (x, t) = −M(t)x)

=
1

n

n∑
i=1

D∑
d=1

Et∼T ,εd

[(
md(t)(btXik + atεd)−

εd
at

)2]
.

To find the optimal M(t), we note that the objective and the constraint are separable across the time
interval [0, T ]. The objective is also separable across the dimensions d ∈ {1, . . . , D}. Hence it
suffices to minimize the quantity

r(md(t)) :=
1

n

n∑
i=1

Eεd
[(

md(t)(btXik + atεd)−
εd
at

)2]
separately over md(t) ∈ [−C,C] for each t ∈ [0, T ] and d ∈ {1, . . . , D}. Observe that the function
r : [−C,C]→ R is a quadratic function. Its derivative is

r′(m) =
1

n

n∑
i=1

Eεd
[
2

(
m(btXid + atεd)−

εd
at

)
(btXid + atεd)

]
,

=
2

n

n∑
i=1

(
m(b2tX

2
id + a2t )− 1

)
(since E[εd] = 0,E[ε2d] = 1),

= m

(
a2t + b2t

1

n

n∑
i=1

X2
id

)
− 1.

Therefore, the minimum of r over [−C,C] is attained at

m̂d(t) = min

(
C,

1

a2t + b2t σ̂
2
d

)
,

which concludes the proof.
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A.5 PROOF OF PROPOSITION 5

Since the Fréchet distance is determined by the variance for centered random variables, the first step

of the proof is to deduce the variance of Pd
←−̃
X 0 for all d. Denote for 1 ≤ d ≤ D, the variance of

←−̃
X t,d by Vt,dd. It is known (see, for instance, Särkkä & Solin, 2019, Section 5.5) that Vt,dd follows
the following ODE:

dVt,dd
dt

= 2(1− 2m̂d(T − t))Vt,dd + 2, V0,dd = 1. (14)

An important intermediate step in this proof is to show the following:

(
√
Vt,dd − σd)

2 ≤ σ2
d , if d ≤ d1, (15)

(
√
Vt,dd − σd)

2 ≥ σ2
d , if d ≥ d2. (16)

To do so, we first develop an explicit expression for Vt,dd:

Vt,dd = exp

(∫ t

0

2(1− 2m̂d(T − τ))dτ

)
+ 2

∫ t

0

exp

(∫ t

s

2(1− 2m̂d(T − τ))dτ

)
ds. (17)

If C < 1
a20+b

2
0σ̂

2
d
= 1

σ̂2
d

, let t′d be the unique solution in [0, T ] of the equation C = m̂d(T − t′d) =
1

a2
T−t′

d
+b2

T−t′
d
σ̂2
d

. Otherwise, we set t′d = T , which is always the case for d ≤ d1. Remark that if

σ̂d ≥ 1, then 1
a2t+b

2
t σ̂

2
d
≤ 1 ≤ C. Thus, for such dimension d, we always have t′d = T and d ≤ d1.

We derive an explicit expression for the term VT,dd. We first calculate the first part by plugging in
the exact form of m̂d. To do so, we recall that at =

√
1− e−2t and bt = e−t. Also note that m̂d

is decreasing on [0, T ], more precisely it is equal to C on [0, T − t′d] and equal to 1/(a2t + b2t σ̂
2
d)

for t ∈ [T − t′d, T ]. With these keys facts in mind, we begin by calculating the following integrand,
which for s = 0 gives the first term in (17) and is the integrand of the second term.

exp

(∫ T

s

2(1− 2m̂d(T − τ))dτ

)

= exp

(∫ T−s

0

2(1− 2m̂d(τ))dτ

)

= e2(T−s) exp

(
−4
∫ T−s∨t′d

0

m̂d(τ)dτ

)
exp

(
−4
∫ T−s

T−s∨t′d
m̂d(τ)dτ

)

= e2(T−s)e−4C(T−s∨t′d)e−4(s∨t′d−s)

(
1− (1− σ̂2

d)e
−2(T−s∨t′d)

1− (1− σ̂2
d)e

−2(T−s)

)2

, (18)

where, in the last line, we use the following:∫
m̂d(τ)dτ =

∫ (
1 +

e−2τ (1− σ̂2
d)

1− (1− σ̂2
d)e

−2τ

)
dτ = τ +

1

2
log
(
1− (1− σ̂2

d)e
−2τ
)
.

By substituting s = 0, we see that the first term in (17) is equal to

exp

(∫ T

0

2(1− 2m̂d(T − τ))dτ

)
= e−2T e−4(C−1)(T−t′d)

(
1− (1− σ̂2

d)e
−2(T−t′d)

1− (1− σ̂2
d)e

−2T

)2

. (19)

Next, we focus on deriving an explicit expression of the second term in (17). We plug in the term
(18) and deduce that

2

∫ T

0

exp

(∫ T

s

2(1− 2m̂d(T − τ))dτ

)
ds

18
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= 2(

∫ T

t′d

+

∫ t′d

0

)e2(T−s)e−4C(T−s∨t′d)e−4(s∨t′d−s)

(
1− (1− σ̂2

d)e
−2(T−s∨t′d)

1− (1− σ̂2
d)e

−2(T−s)

)2

ds

= 2

∫ T

t′d

e2(T−s)e−4C(T−s)ds

+ 2

∫ t′d

0

e2(T−s)e−4C(T−t′d)e−4(t′d−s)

(
1− (1− σ̂2

d)e
−2(T−t′d)

1− (1− σ̂2
d)e

−2(T−s)

)2

ds

=
1

2C − 1
(1− e(2−4C)(T−t′d))

+ (1− (1− σ̂2
d)e

−2(T−t′d))2e−4(C−1)(T−t′d)
∫ t′d

0

2e−2(T−s)

(1− (1− σ̂2
d)e

−2(T−s))2
ds

=
1

2C − 1
(1− e(2−4C)(T−t′d))

+
(1− (1− σ̂2

d)e
−2(T−t′d))2e−4(C−1)(T−t′d)

1− σ̂2
d

[
1

1− (1− σ̂2
d)e

−2(T−s)

]t′d
0

.

We see that the last term can be rewritten in the following form[
1

1− (1− σ̂2
d)e

−2(T−s)

]t′d
0

=
1

1− (1− σ̂2
d)e

−2(T−t′d)
− 1

1− (1− σ̂2
d)e

−2T

=
(1− σ̂2

d)(e
−2(T−t′d) − e−2T )

(1− (1− σ̂2
d)e

−2T )(1− (1− σ̂2
d)e

−2(T−t′d))
.

Thus, we derive that

2

∫ T

0

exp

(∫ T

s

2(1− 2m̂d(T − τ))dτ

)
ds

=
1

2C − 1
(1− e(2−4C)(T−t′d))

+
(1− (1− σ̂2

d)e
−2(T−t′d))e−4(C−1)(T−t′d)

1− (1− σ̂2
d)e

−2T
(e−2(T−t′d) − e−2T ) . (20)

Therefore, by summing up the two terms (19) and (20), we deduce that

VT,dd =
1

2C − 1
(1− e(2−4C)(T−t′d))

+
(1− (1− σ̂2

d)e
−2(T−t′d))e−4(C−1)(T−t′d)

1− (1− σ̂2
d)e

−2T
(e−2(T−t′d) − e−2T )

+ e−2T e−4(C−1)(T−t′d)

(
1− (1− σ̂2

d)e
−2(T−t′d)

1− (1− σ̂2
d)e

−2T

)2

=
1

2C − 1
(1− e(2−4C)(T−t′d))

+ e−4(C−1)(T−t′d) 1− (1− σ̂2
d)e

−2(T−t′d)

1− (1− σ̂2
d)e

−2T

×

(
e−2(T−t′d) − e−2T + e−2T 1− (1− σ̂2

d)e
−2(T−t′d)

1− (1− σ̂2
d)e

−2T

)

=
1

2C − 1
(1− e(2−4C)(T−t′d))

+ e−4(C−1)(T−t′d) 1− (1− σ̂2
d)e

−2(T−t′d)

1− (1− σ̂2
d)e

−2T

19
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× e−2(T−t′d) − 2(1− σ̂2
d)e

−2(2T−t′d) + (1− σ̂2
d)e

−4T

1− (1− σ̂2
d)e

−2T

=
1

2C − 1
(1− e(2−4C)(T−t′d))

+ e(2−4C)(T−t′d) 1− (1− σ̂2
d)e

−2(T−t′d)

1− (1− σ̂2
d)e

−2T

1− 2(1− σ̂2
d)e

−2T + (1− σ̂2
d)e

−2(T+t′d)

1− (1− σ̂2
d)e

−2T
.

We remark that, for d ≤ d1 we have t′d = T and we may simplify the expression of VT,dd to

VT,dd = σ̂2
d

1− 2(1− σ̂2
d)e

−2T + (1− σ̂2
d)e

−4T

1− 2(1− σ̂2
d)e

−2T + (1− σ̂2
d)

2e−4T
. (21)

Before we prove (15) and (16), we categorize the behavior of Vt,dd according to the value of σ̂d and
we summarize the result in the following lemma, the proof of which we delay to the end of this proof.
Lemma 1. For d ∈ {1, . . . , D}. If σ̂d ≥ 1, then Vt,dd ≥ 1 for every t ∈ [0, T ]. If σ̂d ≤ 1, then
Vt,dd ≤ 1 for every t ∈ [0, T ].

Let us deduce from (21), for d ≤ d1, (
√
VT,dd − σd)

2 ≤ σ2
d. We work under the high probability

event that |σ2
d − σ̂2

d| ≤ σ2
d for every d ∈ {1, . . . , D}, we split the proof into three cases:

• If σd > 1 then σ̂d ≥ 1, from (21), we see that VT,dd < σ̂2
d ≤ 4σ2

d, with high probability.
Thus, (

√
VT,dd − σd)

2 ≤ max((0− σd)
2, (2σd − σd)

2) ≤ σ2
d.

• If σd ∈ [ 12 , 1) which implies that σ̂d < 1, then VT,dd ≤ 1, we then have (
√
VT,dd − σd)

2 ≤
max((0− σd)

2, (1− σd)
2) ≤ σ2

d.
• If σd = 1, we again split cases depending on whether σ̂d ≥ 1. We get the same bounds as in

the two previous cases.
• Finally, if σd ≤ 1

2 , with high probability, |σ2
d− σ̂2

d| ≤ σ2
d. Hence, σ̂2

d ≤ 2σ2
d ≤ 1

2 . Observing
that the fraction in (21) is bounded by 1/(1− σ̂2

d), we deduce that

VT,dd ≤
σ̂2
d

1− σ̂2
d

≤ 2σ̂2
d ≤ 4σ2

d, ∀d ≤ d1,

which gives the desired bound.

Next, for d ≥ d2, remark by definition of t′d that 1

1−(1−σ̂2
d)e

−2(T−t′
d
)
= C. Also note that the definition

of d2 and the fact that C > 1 implies that σ̂2
d < 1. Hence,

VT,dd =
1

2C − 1
+ e(2−4C)(T−t′d)

(
(1− 2(1− σ̂2

d)e
−2T + (1− σ̂2

d)e
−2(T+t′d))

C(1− (1− σ̂2
d)e

−2T )2
− 1

2C − 1

)

≥ 1

2C − 1
+ e(2−4C)(T−t′d)

(
1

C
− 1

2C − 1

)
≥ 1

2C − 1
.

Therefore, for d ≥ d2 we deduce that

VT,dd ≥
1

2C − 1
≥ 4σ2

d.

To summarize, we derived the following bounds

(
√

VT,dd − σd)
2 ≤ σ2

d, ∀d ≤ d1,

and
(
√

VT,dd − σd)
2 ≥ σ2

d, ∀d > d2.

By definition of the Fréchet distance, we have

d2F (P
⊤
d Pd
←−̃
XT ,

−→
X0) =

d∑
j=1

(
√

VT,jj − σj)
2 +

D∑
j=d+1

σ2
j ,

20
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we deduce that, for any d < d1 ≤ d2 < d′,

dF (P
⊤
d1Pd1

←−̃
XT ,

−→
X0) =

d1∑
j=1

(
√
VT,jj − σj)

2 +

D∑
j=d1+1

σ2
j

=

d∑
j=1

(
√
VT,jj − σj)

2 +

d1∑
j=d+1

(
√
VT,jj − σj)

2 +

D∑
j=d1+1

σ2
j

≤
d∑
j=1

(
√
VT,jj − σj)

2 +

D∑
j=d+1

σ2
j

= dF (P
⊤
d Pd
←−̃
XT ,

−→
X0),

and

dF (P
⊤
d2Pd2

←−̃
XT ,

−→
X0) =

d2∑
j=1

(
√
VT,jj − σj)

2 +

D∑
j=d2+1

σ2
j

=

d2∑
j=1

(
√
VT,jj − σj)

2 +

d′∑
j=d2+1

σ2
j +

D∑
j=d′+1

σ2
j

≤
d′∑
j=1

(
√
VT,jj − σj)

2 +

D∑
j=d′+1

σ2
j

= dF (P
⊤
d′Pd′

←−̃
XT ,

−→
X0).

Therefore, the minimum of dF (P⊤
d Pd
←−̃
XT ,

−→
X0) must occur between d1 and d2.

Proof of Lemma 1. Recall that Vt,dd satisfies the ODE (14)

dVt,dd
dt

= 2(1− 2m̂d(T − t))Vt,dd + 2, V0,dd = 1.

Assume that σ̂d > 1 and by contradiction that Vt,dd < 1 for some t ∈ [0, T ]. Let t0 = inf{t : Vt,dd <
1}, by continuity, we have Vt0,dd = 1. Then we have[dVt,dd

dt

]
t=t0

= 2(1− 2m̂d(T − t0))Vt0,dd + 2 = 2
(
1− 2

1− e−2t + e−2tσ̂2
d

)
+ 2,

where we use the fact that Vt0,dd = 1. The last term can be rewritten as

4(σ̂2
d − 1)e−2t

1− e−2t + e−2tσ̂2
d

.

Hence we have [
dVt,dd

dt ]t=t0 > 0 which contradicts the definition of t0. Hence Vt,dd ≥ 1 for all
t ∈ [0, T ]. The case for σ̂d < 1 can be derived similarly.

A.6 DERIVATION OF SPECIAL CASES OF PROPOSITION 5

First, consider the scenario where the learning capacity is unconstrained, effectively setting C =∞,
while the data covariance matrix is nonsingular. In this case, the condition on d1 becomes 0 ≤ σ̂2

d,
which is trivially satisfied for all d ∈ {1, . . . , D}, implying d1 = D. The condition for d2 becomes
0 > 4σ2

d, which holds for none of d, thus implying d2 = D. Therefore, when C =∞, Proposition 5
entails that dmin = D. This result is somewhat expected: if the score function is learned perfectly,
the diffusion process can be reversed in the full ambient space, enabling sampling from the target
distribution without any need for dimensionality reduction.

Second, consider the scenario addressed in Proposition 3 where the true data distribution lies within a
d0-dimensional linear subspace, i.e., σd0+1 = · · · = σD = 0 and σ1 = · · · = σd0 = σ. Assume that
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C is sufficiently large to ensure that 1/C ≤ min(σ2,mind′∈{1,...,d0} σ̂
2
d′). Therefore, for d ≤ d0,

one has 1
C ≤ σ̂2

d (which is not satisfied anymore for d beyond d0), leading to d1 = d0. On the other
hand, for d > d0 we have 1

2C−1 ≥ 0 = 4σd. Hence d0 = d1 ≤ d2 ≤ d0, which implies d2 = d0.
Thus, Proposition 5 predicts dmin = d0. This suggests that the projection onto the subspace in which
the data distribution lies is the optimal sampling strategy, which is in line with the recommendation
of Proposition 3.

Proof of Corollary 1. By the definition of d, we have d1 = d. It remains to prove that d2 ≤ d+ 1.
With n large enough and high probability, we have σ̂d+1 ≥ σ2

d+1/2. Therefore,

1

4(2C − 1)
≥ 1

8C
≥

σ̂2
d+1

8
≥

σ2
d+1

16
=

λ−(d+1)

16
≥ λ−(d+2),

where we use the fact that λ ≥ 16. This shows that d2 < d+ 2. Hence d2 ≤ d+ 1.

A.7 PROOF OF PROPOSITION 6

The proof follows by observing that the covariance matrix of OPdO
⊤←−X t is given by

cov[OP⊤
d PdO

⊤←−X t] = Odiag(a2T−t + b2T−tσ
2
1 , . . . , a

2
T−t + b2T−tσ

2
d, 0, . . . , 0)O

⊤.

Therefore, we have the following explicit form of the Fréchet distance between OP⊤
d PdO

⊤←−X t and
−→
X0:

dF (OP⊤
d PdO

⊤←−X t,
−→
X0) =

D∑
j=1

σ2
j +

d∑
j=1

(a2T−t + b2T−tσ
2
j )− 2

d∑
j=1

σj

√
a2T−t + b2T−tσ

2
j .

The proof is concluded by using the same argument as in the proof of Proposition 2.

A.8 PROOF OF PROPOSITION 7

Recall that Λ̂ = diag(σ̂2
1 , . . . σ̂

2
D) the matrix of eigenvalues of the estimated covariance matrix

Σ̂ = 1
n

∑n
i=1 XiX

⊤
i . We first remark that

cov[ÔP⊤
d PdÔ

⊤
←−
X̂ t] = Ôdiag(a2T−t + b2T−tσ̂

2
1 , . . . , a

2
T−t + b2T−tσ̂

2
d, 0, . . . , 0)Ô

⊤

= Ô(a2T−tP
⊤
d Pd + b2T−tP

⊤
d PdΛ̂)Ô

⊤.

Denote the covariance matrix of ÔP⊤
d PdÔ

⊤←−X t by Σ̂d(t). Recall that the Fréchet distance between
two centered Gaussian distributions is

d2F (N (0,Σ1),N (0,Σ2)) = tr(Σ1 +Σ2 − 2(Σ
1/2
2 Σ1Σ

1/2
2 )1/2).

In the case of interest for us, we get

d2F (ÔP⊤
d PdÔ

⊤
←−
X̂ t,
−→
Xt) =

D∑
d′=1

σ2
d′ +

d∑
d′=1

(a2T−t + b2T−tσ̂
2
d′)− 2tr((Σ̂1/2

d (t)ΣΣ̂
1/2
d (t))1/2).

We now argue that tr((Σ̂1/2
d (t)ΣΣ̂

1/2
d (t))1/2) is approximately

∑d
d′=1 σ̂d′

√
a2T−t + b2T−tσ̂

2
d′ . Ob-

serve that the two quantities are equal when Σ and Σ̂ commute, which was the case in the previous
sections where we assumed that both matrices were diagonal. By Proposition 10, with probability
1 − 2e−u, we have Σ ⪯ 1

1−εu Σ̂, where ⪯ denotes the Loewner order (see, for instance, Horn &
Johnson, 2012, Definition 7.7.1). Hence,

Σ̂
1/2
d (t)ΣΣ̂

1/2
d (t) ⪯ 1

1− εu
Σ̂

1/2
d (t)Σ̂Σ̂

1/2
d (t),

by Lemma 2 (i). Since square root is a matrix monotonic function (see Lemma 2 (ii)), we derive that

tr((Σ̂1/2
d (t)ΣΣ̂

1/2
d (t))1/2) ≤

√
1

1− εu
tr((Σ̂1/2

d (t)Σ̂Σ̂
1/2
d (t))1/2)
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≤ (1 + εu)tr((Σ̂
1/2
d (t)Σ̂Σ̂

1/2
d (t))1/2),

where we use εu ≤ 1/2 in the last inequality. Then, by the commutativity of Σ̂d(t) and Σ̂,

tr((Σ̂1/2
d (t)Σ̂Σ̂

1/2
d (t))1/2)

= tr(Ô(a2T−tP
⊤
d Pd + b2T−tP

⊤
d PdΛ̂)

1/4Λ̂1/2(a2T−tP
⊤
d Pd + b2T−tP

⊤
d PdΛ̂)

1/4Ô⊤)

= tr(ÔΛ̂1/2(a2T−tP
⊤
d Pd + b2T−tP

⊤
d PdΛ̂)

1/2Ô⊤)

=

d∑
d′=1

σ̂d′
√

a2T−t + b2T−tσ̂
2
d′ .

By combining the results, we obtain

tr((Σ̂1/2
d (t)ΣΣ̂

1/2
d (t))1/2) ≤ (1 + εu)

d∑
d′=1

σ̂d′
√
a2T−t + b2T−tσ̂

2
d′ .

We may use the same argument to derive a similar lower bound, and thus deduce that∣∣∣tr((Σ̂1/2
d (t)ΣΣ̂

1/2
d (t))1/2)1/2)−

d∑
d′=1

σ̂d′
√
a2T−t + b2T−tσ̂

2
d′

∣∣∣ ≤ εu

d∑
d′=1

σ̂d′
√

a2T−t + b2T−tσ̂
2
d′ .

Note that if σ̂d′ ≥ 1, then
√
a2T−t + b2T−tσ̂

2
d′ ≤ σ̂d′ . Hence σ̂d′

√
a2T−t + b2T−tσ̂

2
d′ ≤ σ̂2

d′ . On the

other hand, if σ̂d < 1, then
√
a2T−t + b2T−tσ̂

2
d′ ≤ 1 and σ̂d′

√
a2T−t + b2T−tσ̂

2
d′ ≤ σ̂d′ . Therefore, by

recalling that S(Σ) =
∑D
d′=1 max(σ̂d′ , σ̂

2
d′), we deduce that∣∣∣tr((Σ̂1/2

d (t)ΣΣ̂
1/2
d (t))1/2)1/2)−

d∑
d′=1

σ̂d′
√

a2T−t + b2T−tσ̂
2
d′

∣∣∣ ≤ S(Σ)εu.

The Fréchet distance dF (ÔP⊤
d PdÔ

⊤
←−
X̂ t,
−→
Xt) may now be bounded by∣∣∣d2F (ÔP⊤

d PdÔ
⊤
←−
X̂ t,
−→
Xt)−

( D∑
d′=1

σ2
d′ +

d∑
d′=1

(a2T−t + b2T−tσ̂
2
d′)− 2

d∑
d′=1

σ̂d′
√
a2T−t + b2T−tσ̂

2
d′

)∣∣∣
≤ 2S(Σ)εu.

Hence, for d ∈ {2, . . . , D},∣∣∣d2F (ÔP⊤
d PdÔ

⊤
←−
X̂ t,
−→
Xt)− d2F (ÔP⊤

d−1Pd−1Ô
⊤
←−
X̂ t,
−→
Xt)

−
√
a2T−t + b2T−tσ̂

2
d(
√

a2T−t + b2T−tσ̂
2
d − 2σ̂d)

∣∣∣ ≤ 4S(Σ)εu.

We show in the following that if t ≥ T̂d(u), then

d2F (ÔP⊤
d PdÔ

⊤
←−
X̂ t,
−→
Xt) ≤ d2F (ÔP⊤

d−1Pd−1Ô
⊤
←−
X̂ t,
−→
Xt).

Observe that,

d2F (ÔP⊤
d PdÔ

⊤
←−
X̂ t,
−→
Xt) ≤ d2F (ÔP⊤

d−1Pd−1Ô
⊤
←−
X̂ t,
−→
Xt)

+ b2T−tσ̂
2
d + a2T−t − 2σ̂d

√
b2T−tσ̂

2
d + a2T−t + 4S(Σ)εu

= d2F (ÔP⊤
d−1Pd−1Ô

⊤
←−
X̂ t,
−→
Xt)

+ (
√

a2T−t(1− σ̂2
d) + σ̂2

d − σ̂d)
2 − σ̂2

d + 4S(Σ)εu. (22)
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Hence, for t such that the last term (22) is non-positive, we have d2F (ÔP⊤
d PdÔ

⊤
←−
X̂ t,
−→
Xt) ≤

d2F (ÔP⊤
d−1Pd−1Ô

⊤
←−
X̂ t,
−→
Xt). We now show that this is true when t ≥ T̂d(u). To do so, we

split our argument in two cases. We first consider the scenario where σ̂d ≥ 1. In this case, by
definition, T̂d(u) = 0 and therefore we prove the result holds for all t ∈ [0, T ]. Observe that√
a2T−t(1− σ̂2

d) + σ̂2
d ∈ [1, σ̂d], therefore

(22) ≤ (1− σ̂d)
2 − σ̂2

d + 4S(Σ)εu = 1− 2σ̂d + 4S(Σ)εu ≤ 1− 2σ̂d + σ̂d ≤ 0,

where the last inequality holds for sufficiently small εu.

Now we consider the case where σ̂d < 1, and hence
√

a2T−t(1− σ̂2
d) + σ̂2

d ≥ σ̂d. Therefore,

(22) ≤ 0⇔
√
a2T−t(1− σ̂2

d) + σ̂2
d ≤ σ̂d +

√
σ̂2
d − 4S(Σ)εu.

By squaring both sides and rearranging the terms, we deduce that

(22) ≤ 0⇔ a2T−t ≤
σ̂2
d − 4S(Σ)εu + 2σ̂d

√
σ̂2
d − 4S(Σ)εu

1− σ̂2
d

,

and we conclude by observing that the last inequality is equivalent to t ≥ T̂d(u). We derive with a
similar argument that if t ≤ t̂d(u) then

d2F (ÔP⊤
d PdÔ

⊤
←−
X̂ t,
−→
Xt) ≥ d2F (ÔP⊤

d−1Pd−1Ô
⊤
←−
X̂ t,
−→
Xt),

and we conclude the proof.

Remark. We can again in this case consider the same scenario as in Proposition 3 where the
eigenvalues of the covariance matrix are equal. This can be an interesting direction for future work,
as to generalize the previous results to this more general setup.

B BOUNDS ON GAUSSIAN ESTIMATION

In this section, we give some bounds for the estimation error for Gaussian distributions.

Proposition 9. Let (X1, . . . , Xn) be sample drawn independently from N (0, σ2). Then, for ε > 0,
we have

P
[∣∣ 1
n

n∑
i=1

X2
i − σ2

d

∣∣ ≤ εσ2
d

]
≥ 1− 2 exp

(
− ε2n

4(ε+ 1)

)
.

Proof. By Ghosh (2021), if Z ∼ χ2(p) and u > 0,

P[|Z − p| ≥ u] ≤ 2 exp
(
− u2

4(p+ u)

)
.

The result then unfolds from standard manipulations after observing that 1
σ2

∑n
i=1 X

2
i follows a

χ2(n).

Proposition 10. Let Σ be a semi-definite positive D×D matrix, and assume the sample (X1, . . . , Xn)
is drawn independently fromN (0,Σ). Then, there is a universal constant C such that, with probability
1− 2e−u, the empirical covariance matrix Σ̂ = 1

n

∑n
i=1 XiX

⊤
i satisfies:

−8C

3
(

√
D + u

n
+

D + u

n
)Σ ⪯ Σ̂− Σ ⪯ 8C

3

(√D + u

n
+

D + u

n

)
Σ,

where ⪯ denotes the Loewner order.
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Proof. It is shown in Vershynin (2018, Theorem 4.6.1) that, with probability 1− 2e−u,

∥Σ−1/2Σ̂Σ−1/2 − ID∥op ≤ K2C(

√
D + u

n
+

D + u

n
),

where ∥ · ∥op denotes the operator norm and K is a constant satisfying

∥X⊤x∥ψ2
≤ K∥X⊤x∥L2

,∀x ∈ RD,

where ∥X∥ψ2 = inf{K > 0 : E[eX2/K2

] ≤ 2}. It is shown in Vershynin (2018, Section 2.6.1) that,
if X follows a centered Gaussian distribution with standard deviation σ, then ∥X∥ψ2

= σ
√

8/3 and
∥X∥L2

= σ. Hence, K =
√
8/3 in our case and we have

−8C

3
(

√
D + u

n
+

D + u

n
)ID ⪯ Σ−1/2Σ̂Σ−1/2 − Id ⪯

8C

3
(

√
D + u

n
+

D + u

n
)ID.

By multiplying Σ1/2 from left and right for both side, we derive that

−8C

3
(

√
D + u

n
+

D + u

n
)Σ ⪯ Σ̂− Σ ⪯ 8C

3
(

√
D + u

n
+

D + u

n
)Σ.

C USEFUL LEMMA

In this section we provide some lemma that will be useful throughout the whole paper (see also, Horn
& Johnson, 2012, Section 7.7).
Lemma 2. Let A,B be two symmetric D × D real matrices, and S be an arbitrary D × D real
matrix. The following statements hold:

(i) If A ⪯ B, then S⊤AS ⪯ S⊤BS.

(ii) If A2 ⪯ B2, then A ⪯ B. In particular if A and B are semi-definite positive, then
A ⪯ B ⇒

√
A ⪯

√
B.

D EXPERIMENT DETAILS

D.1 NATURAL IMAGE EXPERIMENT

Common details. We use the dataset CelebA and CelebA-HQ (Liu et al., 2015). We use a U-Net
model (Ronneberger et al., 2015) and an Adam optimizer (Kingma, 2014). The diffusion model uses
rectified flow noise schedule (Liu et al., 2022). The code was implemented in JAX (Bradbury et al.,
2018).

Training of AE. We train an VQ-VAE using the VQ-GAN loss (Esser et al., 2021) for 1.95 million
step on 20 TPUv2. The VQ-VAE encodes the images to a latent space of shape 64 × 64 × 3 and
reaches an 2k-rFID score of 2.44. Other hyperparameters for training is summarized in Table 1.

Training of LDM. We train an LDM on the images encoded by the AE we described above. We
train for 5.25 million steps on 8 TPUv6. We summarize the hyperparameters used in Table 2.

Training pixel diffusion model on CelebA. We train a diffusion model on CelebA. We train for 1
million steps on 12 TPUv2. We summarize the hyperparameters in Table 3.

Results. We previously introduced some results in Section 1. Here, we present additional evidence
regarding the quality of the generated images. We observe (Figure 5) that in the final few steps, the
sample of LDM does not change visibly. On the contrary, the images generated in pixel space (Figure
6) are still denoised even in the last steps.
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Name Value
Coefficient of the adversarial loss 0.1
Coefficient of the generator loss 100

Coefficient of the LPIPS loss 1.0
Coefficient of the discriminator loss 0.01

Number of embeddings of the vector quantizer 8192
Optimizer Adam with standard hyperparameters

EMA decay 0.9999
Learning rate 10−5

Batch size 16

Table 1: Hyperparameters for training VQ-VAE on CelebA-HQ.

Name Value
Noise schedule Rectified Flow

Number of sampling steps 250
Optimizer Adam with standard hyperparameters

EMA decay 0.9999
Learning rate 10−4

Batch size 16

Table 2: Hyperparameters for training LDM on encoded images of CelebA-HQ.

Synthetic Gaussian data. In the experiment of Figure 4, we generate data using Gaussian dis-
tribution with covariance matrices equal to diag(1, 0.6, 0.62, . . . , 0.66, 10−10, 10−10) (left) and
diag(10, 0.2, 0.2, 0.2, 0, 0) (right). We then generate sample by first estimating the variances with
the data with 1k sample, then solving the SDE (5) separately for each projection. We generate new
sample using the Ornstein-Uhlenbeck process with T = 2 and 1000 discretization steps.
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Figure 5: The final steps of LDM do not improve image quality.
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Name Value
Noise schedule Rectified Flow

Number of sampling steps 250
Optimizer Adam with standard hyperparameters

EMA decay 0.9999
Learning rate 10−4

Batch size 128

Table 3: Hyperparameters for training diffusion model on CelebA.
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Figure 6: The quality of sample in diffusion on pixel space is still increasing in the final few steps.
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