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An Algorithm for Variable Density Sampling with Block-Constrained Acquisition∗

Claire Boyer†, Pierre Weiss‡, and Jérémie Bigot§

Abstract. Reducing acquisition time is of fundamental importance in various imaging modalities. Variable
density sampling (VDS) provides an appealing framework for addressing this issue. It was justified
recently from a theoretical point of view in the compressed sensing (CS) literature. Unfortunately,
the sampling schemes suggested by current CS theories may not be relevant since they do not
take the acquisition constraints (for example, continuity of the acquisition trajectory in magnetic
resonance imaging (MRI)) into account. In this paper, we propose a numerical method to perform
variable density sampling with block constraints. Our main contribution is a new way to draw
the blocks in order to mimic CS strategies based on isolated measurements. The basic idea is to
minimize a tailored dissimilarity measure between a probability distribution defined on the set of
isolated measurements and a probability distribution defined on a set of blocks of measurements.
This problem turns out to be convex and solvable in high dimension. Our second contribution is
to define an efficient minimization algorithm based on Nesterov’s accelerated gradient descent in
metric spaces. We carefully study the choice of the metrics and of the prox-function. We show that
the optimal choice may depend on the type of blocks under consideration. Finally, we show that
we can obtain better MRI reconstruction results using our sampling schemes than with standard
strategies such as equiangularly distributed radial lines.
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1. Introduction. Compressive sensing (CS) is a recently developed sampling theory that
provides theoretical conditions for ensuring the exact recovery of signals from a small number
of linear measurements (below the Nyquist rate). CS is based on the assumption that the
signal to be reconstructed can be represented by a small number of atoms in a certain basis.
We say that the signal x ∈ Cn is s-sparse if

‖x‖�0 ≤ s,

where ‖·‖�0 denotes the �0 pseudonorm, counting the number of nonzero entries of x. Orig-
inal CS theorems [Don06, CRT06, CP11a] assert that a sparse signal x can be faithfully
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reconstructed via �1-minimization:

min
z∈Cn

‖z‖�1 such that AΩz = y,(1)

where AΩ ∈ Cp×n (p ≤ n) is a sensing matrix, y = AΩx ∈ Cp represents the vector of
linear projections, and ‖z‖�1 =

∑n
i=1 |zi| for all z = (z1, . . . , zn) ∈ Cn. More precisely, CS

results state that p = O(s ln(n)) measurements are enough to guarantee exact reconstruction,
provided that AΩ satisfies some incoherence property.

One way to construct AΩ is by randomly extracting rows from a full sensing matrix
A ∈ Cn×n that can be written as

A =

⎛
⎜⎝a∗

1
...
a∗
n

⎞
⎟⎠ ,(2)

where a∗
i denotes the ith row of A. In the context of magnetic resonance imaging (MRI), for

instance, the full sensing matrix A consists of the composition of a Fourier transform with an
inverse wavelet transform. This choice is due to the fact that the acquisition is done in the
Fourier domain, while the images to be reconstructed are assumed to be sparse in the wavelet
domain. In this setting, a fundamental issue is constructing AΩ by extracting appropriate
rows from the full sensing matrix A. A theoretically founded approach to building AΩ (i.e.,
constructing sampling schemes) consists of randomly extracting rows from A according to
a given density. This approach requires us to define a discrete probability distribution p =
(pi)1≤i≤n on the set of integers {1, . . . , n} that represents the indexes of the rows of A. We
call this procedure variable density sampling. This term appeared in the early MRI paper
[SPM95]. It was recently given a mathematical definition in [CCKW13]. One possibility for
constructing p is to choose its ith component pi to be proportional to ‖a∗

i ‖2�∞ (see [Rau10,
PVW11, BBW13, CCW13]); i.e.,

(3) pi =
‖a∗

i ‖2�∞∑n
k=1 ‖a∗

k‖2�∞
, i = 1, . . . , n.

In the MRI setting, another strategy ensuring good reconstruction is to choose p according
to a polynomial radial distribution [KW12] in the so-called k-space, i.e., the 2D Fourier plane
where low frequencies are centered. Other strategies are possible. For example, [AHPR13]
propose a multilevel uniformly random subsampling approach.

All these strategies lead to sampling schemes that are made of a few but isolated measure-
ments; see, e.g., Figure 1(a). However, in many applications, the number of measurements is
not of primary importance relative to the path the sensor must take to collect the measure-
ments. For instance, in MRI, sampling is done in the Fourier domain along continuous and
smooth curves [Wri97, LKP08]. Another example of the need to sample continuous trajecto-
ries can be found in mobile robots monitoring, where robots have to spatially sample their
environment under kinematic and energy-consumption constraints [HPH+11].

This paper focuses on the acquisition of linear measurements in applications where the
physics of the sensing device allows sampling of a signal from predefined blocks of measure-
ments. We define a block of measurements as an arbitrary set of isolated measurements, which
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(a) (b)

Figure 1. An example of MRI sampling schemes in the k-space (the 2D Fourier plane where low frequencies
are centered). (a) Isolated measurements drawn from a probability measure p having a radial distribution.
(b) Sampling scheme based on a dictionary of blocks of measurements: blocks consist of discrete lines of the
same size.

could be contiguous in the Fourier plane, for instance. As an illustrative example (which will
be used throughout the paper), one may consider sampling patterns generated by randomly
drawing a set of straight lines in the Fourier plane or k-space, as displayed in Figure 1(b).
This kind of sampling pattern is particularly relevant in the case of MRI acquisition with echo
planar sampling strategies; see, e.g., [LDSP08].

Acquiring data by blocks of measurements raises the issue of designing appropriate sam-
pling schemes. In this paper, we propose randomly extracting blocks of measurements that
are made up of several rows from the full sensing matrix A. The main question investigated is
how to choose an appropriate probability distribution from which to draw blocks of measure-
ments. A first step in this direction was recently proposed [BBW13, PDG12]. In [BBW13], we
derived a theoretical probability distribution in the case of blocks of measurements in order
to design a sensing matrix AΩ that guarantees an exact reconstruction of s-sparse signals
with high probability. Unfortunately, the probability distributions proposed in [BBW13] and
[PDG12] are difficult to compute numerically and seem suboptimal in practice.

In this paper, we propose an alternative strategy which is based on the numerical resolution
of an optimization problem. Our main idea is to construct a probability distribution π on
a dictionary of blocks. The blocks are drawn independently at random according to this
distribution. We propose choosing π in such a way that the resulting sampling patterns are
similar to those based on isolated measurements, such as those proposed in the CS literature.
For this purpose, we define a dissimilarity measure to compare a probability distribution π
on a dictionary of blocks and a target probability distribution p defined on a set of isolated
measurements. Then, we propose to choose an appropriate distribution π [p] by minimizing
its dissimilarity from a distribution p on isolated measurements that is known to lead to good
sensing matrices.

This paper is organized as follows. In section 2, we introduce the notation. In section 3, we
describe the problem setting. Then, we construct a dissimilarity measure between probability
distributions lying in different, but spatially related, domains. We then formulate the problem
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of finding a probability distribution π [p] on blocks of measurements as a convex optimization
problem. In section 4, we present an original and efficient way to solve this minimization
problem via a dual formulation and an algorithm based on the accelerated gradient descents
in metric spaces [Nes05]. We carefully study how the theoretical rates of convergence are
affected by the choice of norms and prox-functions on the primal and dual spaces. Finally, in
section 5, we propose a dictionary of blocks that is appropriate for MRI applications. Then,
we compare the quality of MRI image reconstructions obtained using the proposed sampling
schemes with those obtained via methods currently used in the context of MRI acquisition,
demonstrating the potential of the proposed approach on real scanners.

2. Notation. We consider d-dimensional signals for any d ∈ N∗, of size n1×n2×· · ·×nd =
n. Let E and F denote finite-dimensional vector spaces endowed with their respective norms
‖.‖E and ‖.‖F . In the paper, E = Rm and F = Rn. We denote by E∗ and F ∗, respectively,
the dual spaces of E and F . For s ∈ E∗ and x ∈ E we denote by 〈s, x〉E∗×E the value of s at
x. The notation 〈·, ·〉 will denote the usual inner product in a Euclidean space. The norm of
the dual space E∗ is defined by

‖s‖E∗ = max
x∈E

‖x‖E=1

〈s, x〉E∗×E .

Let M : E → F ∗ denote some operator. When M is linear, we denote its adjoint operator by
M∗ : F → E∗. The subordinate operator norm is defined by

‖M‖E→F ∗ = sup
‖x‖E≤1

‖Mx‖F ∗ .

When the spaces E∗ and F are endowed with �q and �p norms, respectively, we will use the
following notation for the operator norm of M∗:

‖M∗‖F→E∗ = ‖M∗‖p→q.

We set Δm ⊂ E to be the simplex in E = Rm, and Δn ⊂ F to be the simplex in F = Rn. For
π ∈ Δm and an index j ∈ {1, . . . ,m} we denote by πj the jth component of π.

Let g : Rn → R∪{+∞} denote a closed convex function. Its Fenchel conjugate is denoted
g∗. The relative interior of a set X ⊆ Rn is denoted ri(X). Finally, the normal cone to X at
a point x on the boundary of X is denoted NX(x).

3. Variable density sampling with block constraints.

3.1. Problem setting. In this paper, we assume that the acquisition system is capable of
sensing a finite set {y1, . . . , yn} of linear measurements of a signal x ∈ Rns such that

yi = 〈a∗
i ,x〉 ∀i = 1, . . . , n,

where a∗
i denotes the ith row of the full sensing matrix A. Let us define a set I = {I1, . . . , Im},

where each Ik ⊆ {1, . . . , n} denotes a set of indexes. We assume that the acquisition system
has physical constraints that impose sensing the following sets of measurements:

Ek = {yi, i ∈ Ik} ∀k = 1, . . . ,m.
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In what follows, we refer to I as the blocks dictionary.
For example, in MRI, n = ns is the number of pixels or voxels of a 2D or 3D image,

and yi represents the ith discrete Fourier coefficient of this image. In this setting, the sets of
indexes Ik may represent straight lines in the discrete Fourier domain, as in Figure 1(b). In
section 5.1, we give further details on the construction of such a dictionary.

We propose to partially sense the signal using the following procedure:
(i) Construct a discrete probability distribution π ∈ Δm.
(ii) Draw i.i.d. (independent and identically distributed) indexes k1, . . . , kb from the prob-

ability distribution π on the set {1, . . . ,m}, with 1 ≤ b ≤ m.
(iii) Sense the signal x randomly by considering the random set of blocks of measurements

(Ekj)j∈{1,...,b}, which leads to the construction of the following sensing matrix:

AΩ = (a∗
i )i∈∪b

j=1Ikj
.

The main objective of this paper is to provide an algorithm for constructing the discrete
probability distribution π based on the knowledge of a target discrete probability distribution
p ∈ Δn on the set {y1, . . . , yn} of isolated measurements. The problem of choosing a distribu-
tion p that will lead to good image reconstruction is not addressed in this paper, since there
already exist various theoretical results and heuristic strategies in the CS literature on that
topic [LKP08, CCW13, AHPR13, KW12].

3.2. A variational formulation. In order to define π, we propose minimizing a dissimi-
larity measure between π ∈ Δm and p ∈ Δn. The difficulty lies in the fact that these two
probability distributions belong to different spaces. We propose constructing a dissimilarity
measure D(π,p,I) that depends on the blocks dictionary I. This dissimilarity measure will
be minimized over π ∈ Δm using numerical algorithms, with m being relatively large (typi-
cally 104 ≤ m ≤ 1010). Therefore, it must have appropriate properties, such as convexity, for
the problem to be solvable in an efficient way.

3.2.1. Mapping the m-dimensional simplex to the n-dimensional one. In order to
define a reasonable dissimilarity measure, we propose constructing an operator M , which
maps a probability distribution π ∈ Δm to some p′ ∈ Δn:

M : E −→ F ∗,
π 
−→ p′,

where for i ∈ {1, . . . , n}

p′
i =

∑m
k=1 πk i∈Ik∑n

j=1

∑m
k′=1 πk′ j∈Ik′

,(4)

where i∈Ik is equal to 1 if i ∈ Ik, and 0 otherwise. The ith element of p′ represents the proba-
bility of drawing the ith measurement yi by drawing blocks of measurements according to the
probability distribution π. The operator M satisfies the following property by construction:

MΔm ⊆ Δn.
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3.2.2. A sufficient condition for the mapping M to be a linear operator. Note that the
operatorM is generally nonlinear, due to the denominator in (4). This is usually an important
drawback for the design of numerical algorithms involving the operator M . However, if the
sets (Ik)k∈{1,...,m} all have the same cardinality (or length) equal to �, the denominator in (4)
is equal to �. In this case, M becomes a linear operator. In this paper, we will focus on this
setting, which is rich enough for many practical applications, as seen next.

Assumption 3.1. For k ∈ {1, . . . ,m}, Card (Ik) = �, where � is some positive integer.
Let us provide two important results for the remainder of the paper.
Proposition 3.2. For � > 1, MΔm � Δn; i.e., MΔm is a strict subset of Δn.
Proof. By definition of the convex envelope, MΔm = conv ({M:,i, i ∈ {1, . . . ,m}}), where

M:,i denotes the ith column of M . For � > 1, {M:,i, i ∈ {1, . . . ,m}} is a subset of Δn that
does not contain the extreme points of the simplex.

In practice, Proposition 3.2 means that it is impossible to reach an arbitrary distribution
p ∈ Δn exactly, except in the trivial case of isolated measurements.

Proposition 3.3. Suppose that Assumption 3.1 holds; then for p ∈ [1,∞],

‖M∗‖p→∞ = �−
1
p .

Proof. Under Assumption 3.1, all the columns of M have only � nonzero coefficients equal
to 1/�. With ‖ · ‖F = ‖ · ‖�p , we can thus derive that

‖M∗‖p→∞ = max
‖x‖p=1

‖M∗x‖�∞ = max
1≤i≤m

max
‖x‖p=1

〈M:,i, x〉

= max
1≤i≤m

‖M:,i‖F ∗ = max
1≤i≤m

‖M:,i‖q

= �−
1
p ,

where M:,i denotes the ith column of M and q is the conjugate of p satisfying 1/p + 1/q
= 1.

3.2.3. Measuring the dissimilarity between π and p through the operator M . Now that
we have introduced the mappingM , we propose to define a dissimilarity measure between π ∈
Δm and p ∈ Δn. To do so, we propose comparingMπ and p, which are both vectors belonging
to the simplex Δn. Owing to Proposition 3.2, it is impossible to find some π̃ ∈ Δm satisfying
Mπ̃ = p for an arbitrary target density p. Therefore, we can expect to get an approximate
solution only by minimizing a dissimilarity measureD(Mπ,p). For obvious numerical reasons,
D should be convex in π. Among statistical distances, the most natural ones are the total
variation distance, Kullback–Leibler, or more generally f-divergences. Among this family,
total variation presents the interesting feature of having a dual of bounded support. We will
exploit this property in designing efficient numerical algorithms in section 4. In the rest of
the paper, we will thus use D(Mπ,p) = ‖Mπ − p‖�1 to compare the distributions Mπ and
p.

3.2.4. Entropic regularization. In applications such as MRI, the number m of columns of
M is larger than the number n of its rows. Therefore, Ker(M) �= ∅, and there exist multiple
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Figure 2. Illustration of a target distribution concentrated on the central pixel of a 3× 3 image. The pixels
are numbered, and this order is kept in the design of M and π.

π ∈ Δm with the same dissimilarity measure D(Mπ,p). In this case, we propose to take,
among all these solutions, the one minimizing the neg-entropy E defined by

E : π ∈ Δm 
−→
m∑
j=1

πj log(πj),(5)

with the convention that 0 log(0) = 0. We recall that the entropy E(π) is proportional to
the Kullback–Leibler divergence between π and the uniform distribution πc in Δm (i.e., such
that πc

j = 1
m for all j). Therefore, among all the solutions minimizing D(Mπ,p), choosing

the distribution π(p) minimizing E(π) gives priority to entropic solutions, i.e., probability
distributions which maximize the covering of the sampling space if we proceed to several
drawings of blocks of measurements. Therefore, we can finally write the regularized problem
defined by

min
π∈Δm

Fα(π),(PP)

where
Fα(π) = ‖Mπ − p‖�1 + αE(π)

for some regularization parameter α > 0. Adding the neg-entropy has the effect of spreading
out the probability distribution π, which is a desirable property. Moreover, the neg-entropy
is strongly convex on the simplex Δm. This feature is of primary importance for the nu-
merical resolution of the above optimization problem. Note that an appropriate choice of
the regularization parameter α is also important, but this issue will not be addressed in this
paper.

3.2.5. A toy example. To illustrate the interest of problem (PP), we design a simple
example. Consider a 3× 3 image. Define the target distribution p as a Dirac mass supported
on the central pixel (numbered 5 in Figure 2). Consider a blocks dictionary composed of
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horizontal and vertical lines. In that setting, the operator M is given by

M =
1

3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 0
1 0 0 0 0 1 0
1 0 0 0 0 0 1
0 1 0 0 1 0 0
0 1 0 0 0 1 0
0 1 0 0 0 0 1
0 0 1 0 1 0 0
0 0 1 0 0 1 0
0 0 1 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For such a matrix, there are various distributions minimizing ‖Mπ − p‖�1 . For example,
one can choose π1 =

(
0 1 0 0 0 0

)∗
or π2 =

(
0 1/2 0 0 1/2 0

)∗
. The solution

maximizing the entropy is π2. In the case of image processing, this solution is preferable
since it leads to better covering of the acquisition space. Note that, among all the �p norms
(1 ≤ p < +∞), only the �1 norm is such that ‖Mπ1 − p‖�1 = ‖Mπ2 − p‖�1 . This property is
once again desirable since we want the regularizing term (and not the fidelity term) to force
choosing the proper solution.

4. Optimization. In this section, we propose a numerical algorithm for solving problem
(PP). Note that, despite being convex, this optimization problem has some particularities
that make it difficult to solve. First, the parameter π ∈ Δm lies in a very high-dimensional
space. In our experiments, n varies between 104 and 107, while m varies between 104 and
1010. Moreover, the function E is differentiable, but its gradient is not Lipschitz, and the total
variation distance ‖ · ‖�1 is nondifferentiable.

The numerical resolution of problem (PP) is thus a delicate issue. Below, we propose an
efficient strategy based on numerical optimization of the dual problem of (PP) and on the use
of Nesterov’s ideas [Nes05]. In contrast to most first-order methods proposed recently in the
literature [BC11, Nes13, CDV10], which are based on Hilbert space formalisms, Nesterov’s
algorithm is stated in a (finite-dimensional) normed space. We thus perform the minimization
of the dual problem on a metric space, and we carefully study the optimal choice of the norms
in the primal and dual spaces. We show that, depending on the block length �, the optimal
choice might well be different from the standard �2 norm. Such ideas go back to (at least)
[CT93] but have barely been used in the domain of image processing.

4.1. Dualization of the problem. Our algorithm consists of solving the problem dual
to (PP) in order to avoid the difficulties related to the nondifferentiability of the �1 norm.
Propositions 4.1 and 4.3 state that the dual of problem (PP) is differentiable. We will use
this feature to design an efficient first-order algorithm and use the primal-dual relationships
(Proposition 4.4) to retrieve the primal solution.

Proposition 4.1. Let Jα(q) := 〈p, q〉F ∗×F − α log
(∑m

�=1 exp
( − (M∗q)�

α

))
for q ∈ F . The

dual problem to (PP) is

− min
q∈B∞

Jα(q),(DP)
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in the sense that minπ∈Δm Fα(π) = maxq∈B∞ −Jα(q), where B∞ is the �∞-ball of unit radius
in F .

Proof. The proof is given in Appendix A.
In order to study the regularity properties of Jα, and so the solvability of (DP), we use

the strong convexity of the neg-entropy E w.r.t. ‖ · ‖E . First, let us recall one version of the
definition of the strong convexity in Banach spaces.

Definition 4.1. We say that f : F → R is σ-strongly convex w.r.t. ‖ · ‖F on F ′ ⊂ F if

∀x, y ∈ F ′, ∀t ∈ [0, 1], f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− σ

2
t(1− t)‖x− y‖2F .(6)

We define the convexity modulus σf of f as the largest positive real σ satisfying (6).
Proposition 4.2. For ‖ · ‖E = ‖ · ‖�p , p ∈ [1,+∞], the convexity modulus of the neg-entropy

on the simplex Δm is σE = 1.
Proof. The proof is given in Appendix B.
Proposition 4.3. The function Jα is convex, and its gradient is Lipschitz continuous; i.e.,

‖∇Jα(q1)−∇Jα(q2)‖F ∗ ≤ Lα‖q1 − q2‖F ∀(q1, q2) ∈ F 2,

with constant

Lα =
‖M∗‖2F→E∗

ασE
.(7)

Moreover, ∇Jα is locally Lipschitz around q ∈ F with constant

Lα(q) =
‖M∗‖2F→E∗

ασE(π(q))
,(8)

where σE(π) := inf‖h‖E=1〈E ′′
(π)h,h〉 is the local convexity modulus of E around π, and an

explicit expression for π(q) is given in (19).
Proof. The proof is given in Appendix C.

Note that a standard reasoning would rather lead to Lα =
‖M∗‖22→2

ασE , which is usually much
larger than the bound (7). Proposition 4.3 implies that problem (DP) is efficiently solvable by
Nesterov’s algorithm [Nes05]. Therefore, we will first solve the dual problem (DP). Then, we
use the relationships between the primal and dual solutions (as described in Proposition 4.4)
to finally compute a primal solution π� for problem (PP).

Proposition 4.4. The relationships between the primal and dual solutions

π� = argmin
π∈Δm

Fα(π) and q� = argmin
q∈B∞

Jα(q)

are given by

π�
j =

exp
(
− (M∗q�)j

α

)
∑m

k=1 exp
(
− (M∗q�)k

α

) ∀j ∈ {1, . . . ,m} .(9)
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Furthermore,

sign (Mπ� − p) = sign (q�) .(10)

Proof. Equation (9) is a direct consequence of (19). To derive the second equation, (10),
it suffices to write the optimality conditions of the problem maxq∈B∞ 〈Mπ� − p, q〉F ∗×F +
αE(π�). This leads to

Mπ� − p ∈ NB∞(q�) ⇔ sign (Mπ� − p) = sign (q�) .

4.2. Numerical optimization of the dual problem. Now that the dual problem (DP)
is fully characterized, we propose to solve it using Nesterov’s optimal accelerated projected
gradient descent [Nes05] for smooth convex optimization.

4.2.1. The algorithm. Nesterov’s algorithm is based on the choice of a prox-function d
of the set B∞, i.e., a continuous function that is strongly convex on B∞ w.r.t. ‖ · ‖F . Letting
σd denote the convexity modulus of d, we further assume that d(qc) = 0, so that

d(q) ≥ σd
2
‖q − qc‖2F ∀q ∈ B∞,

where qc = argminq∈B∞ d(q). Nesterov’s algorithm is described in Algorithm 1.

Algorithm 1 Resolution scheme for smooth optimization proposed by [Nes05].

1 Initialization: choose q0 ∈ B∞.
2 for k = 0, . . . ,K do
3 Compute Jα(qk) and ∇Jα(qk).
4 Find yk ∈ argminy∈B∞ 〈∇Jα(qk),y − qk〉+ 1

2Lα‖y − qk‖2F .
5 Find zk ∈ argminq∈B∞

Lα
σd

d(q) +
∑k

i=0
i+1
2 [Jα(qi) + 〈∇Jα(qi), q − qi〉].

6 Set qk+1 =
2

k+3zk +
k+1
k+3yk.

7 end for
8 Set the primal solution to

πj =
exp

(
− (M∗yK)j

α

)
∑m

k=1 exp
(
− (M∗yK)k

α

) ∀j ∈ {1, . . . ,m} .

Theorem 4.5 summarizes the theoretical guarantees of Algorithm 1.
Theorem 4.5 (see [Nes05, Theorem 2]). Algorithm 1 ensures that

Jα(yk)− Jα(q
�) ≤ 4Lαd(q

�)

σd(k + 1)(k + 2)

≤ 4‖M∗‖2F→E∗d(q�)

ασEσd(k + 1)(k + 2)
,(11)

where q� is an optimal solution of problem (DP).
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Since d(q�) is generally unknown, we can bound (11) by

4‖M∗‖2F→E∗D

ασEσd(k + 1)(k + 2)
,(12)

where D = maxq∈B∞ d(q). Note that, until now, we got theoretical guarantees in the dual
space but not in the primal. What matters to us is rather to obtain guarantees on the primal
iterates, which can be summarized by the following theorem.

Theorem 4.6. Define

πk =
exp

(
− (M∗yk)

α

)
∣∣∣∣∣∣exp(− (M∗yk)

α

)∣∣∣∣∣∣
�1

,

where yk is defined in Algorithm 1. The following inequality holds:

‖πk − π�‖2E ≤ 8‖M∗‖2F→E∗D

α2σ2
Eσd(k + 1)(k + 2)

.

The proof is given in Appendix D. It is a direct consequence of a more general result of
independent interest.

4.2.2. Choosing the prox-function and the metrics. Algorithm 1 depends on the choice
of ‖ · ‖E , ‖ · ‖F , and d. The usual accelerated projected gradient descents consist of setting
‖ · ‖E = ‖ · ‖�2 , ‖ · ‖F = ‖ · ‖�2 , and d(·) = 1

2‖ · ‖2�2 . However, we will see that it is possible to
change the algorithm’s speed of convergence by making a different choice. In this paper we
concentrate on the usual �p norms, p ∈ [1,+∞].

Choosing a norm on E. The following proposition shows an optimal choice for ‖ · ‖E∗ .
Proposition 4.7. The norm ‖ · ‖E∗ that minimizes (12) among all �p norms, p ∈ [1,+∞],

is ‖ · ‖�∞. Note, however, that the minimum local Lipschitz constant Lα(q) for q ∈ F might
be reached for another choice of ‖ · ‖E∗.

Proof. From Proposition 4.2, we get that σE remains unchanged no matter how ‖ · ‖E is
chosen among �p norms. The choice of ‖·‖E is thus driven by the minimization of ‖M∗‖F→E∗.
From the operator norm definition, it is clear that the best choice consists of setting ‖ · ‖E∗ =
‖ · ‖�∞ , since the �∞ norm is the smallest of all �p norms.

According to Proposition 4.7, choosing ‖ · ‖E∗ to be ‖ · ‖�∞ leads to considering ‖ · ‖E to
be ‖ · ‖�1 . As shown by Proposition 3.3, it is clear that the norm ‖M∗‖F→E∗ may vary a lot
w.r.t. ‖ · ‖F for the particular operator M considered in this paper.

Choosing a norm on F and a prox-function d. By Proposition 4.7, the norm ‖ · ‖F and

the prox-function d should be chosen in order to minimize
‖M∗‖2F→∞D

σd
. We are unaware of a

general theory for making an optimal choice, despite recent progress in that direction. The
recent paper [dJ13] proposes a systematic way of selecting ‖ · ‖F and d in order to make the
algorithm complexity invariant to change of coordinates for a general optimization problem.
The general idea in [dJ13] is to choose ‖ · ‖F to be the Minkowski gauge of the constraints
set (of the optimization problem), and d to be a strongly convex approximation of 1

2‖ · ‖2F .
However, this strategy has not been shown to be optimal. In our setting, since the constraints
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set is B∞, this would lead to choosing ‖·‖F = ‖·‖�∞ . Unfortunately, there is no good strongly
convex approximation of 1

2‖ · ‖2�∞ .
In this paper, we thus study the influence of ‖ · ‖F and d both theoretically and experi-

mentally, with ‖ · ‖F ∈ {‖ · ‖�1 , ‖ · ‖�2 , ‖ · ‖�∞}. Propositions 4.8, 4.9, and 4.10 summarize the
theoretical algorithmic complexity in different regimes.

Proposition 4.8. Let p′ ∈ ]1, 2]. Define dp′(x) =
1
2‖x‖2p′ . Then the following hold:

• For p ∈ [p′,∞], dp′ is (p′ − 1)-strongly convex w.r.t. ‖ · ‖p.
• For p ∈ [1, p′], dp′ is (p′ − 1)n(1/p′−1/p)-strongly convex w.r.t. ‖ · ‖p.

Proof. The proof is a direct consequence of [JN08, Proposition 3.6] and of the fact that,
for p′ ≥ p,

‖x‖p′ ≤ ‖x‖p ≤ n(1/p−1/p′)‖x‖p′ .
Proposition 4.9. Suppose that Assumption 3.1 holds. Set ‖ · ‖F = ‖ · ‖p and d = dp′

with p ∈ [1,∞] and p′ ∈ ]1, 2]. For all this family of norms and prox-functions, the choice
minimizing the complexity bound (12) is

• p′ = 2 and p ∈ [1, 2] if �2 = n. For this choice, we get

Jα(yk)− Jα(q
�) ≤ 2

√
n

α(k + 1)(k + 2)
.(13)

• p = p′ = 2 if �2 < n. For this choice, we get

Jα(yk)− Jα(q
�) ≤ 2n

α�(k + 1)(k + 2)
.(14)

• p = 1 and p′ = 2 if �2 > n. For this choice, we get

Jα(yk)− Jα(q
�) ≤ 2n3/2

α�2(k + 1)(k + 2)
.(15)

Proof. The result is a direct consequence of Proposition 4.8.
Unfortunately, the bounds in (13), (14), and (15) are dimension dependent. Moreover, the

optimal choice suggested by Proposition 4.9 is different from the Minkowski gauge approach
suggested in [dJ13]. Indeed, in all the cases described in Proposition 4.5, the optimal choice
‖ · ‖F differs from ‖ · ‖�∞ . The difficulty in applying this approach is in finding a function d �
1/2‖·‖2�∞ -strongly convex w.r.t. ‖·‖�∞ . A simple choice consists of setting dε =

1
2‖·‖2�∞+ ε

2‖·‖2�2 .
This function is ε-strongly convex w.r.t. ‖ · ‖�∞ . We thus get the following proposition.

Proposition 4.10. Suppose that Assumption 3.1 holds, with � =
√
n. Set ‖ · ‖F = ‖ · ‖�∞,

dε(·) = 1
2‖ · ‖2�∞ + ε

2‖ · ‖2�2 . Then

Jα(yk)− Jα(q
�) ≤ 2 (1/ε + n)

α(k + 1)(k + 2)
.

In particular, for ε ∝ 1
n , Jα(yk)− Jα(q

�) = O
(

n
αk2

)
.

Note that this complexity bound is worse than that of Proposition 4.9 in the case where
� =

√
n. In the next section, we intend to illustrate and to confirm in practice the different

rates of convergence predicted by the theoretical results of Proposition 4.9.
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Figure 3. Convergence curves in a semilogarithmic scale for Algorithm 1 (α = 10−2); number of iterations
is on the x-axis. Green: the case where ‖.‖E = ‖.‖�2 , ‖.‖F = ‖.‖�2 , d = 1

2
‖.‖2�2 ; red: the case where ‖.‖E = ‖.‖�1 ,

‖.‖F = ‖.‖�2 , d = 1
2
‖.‖2�2 ; blue: the case where ‖.‖E = ‖.‖�1 , ‖.‖F = ‖.‖�∞ , d = 1

2
‖.‖2�2 ; and black: the case

where ‖.‖E = ‖.‖�1 , ‖.‖F = ‖.‖�2 , d = 1
2
‖.‖2�2 with a restricted Lipschitz constant L′

α = Lα/100.

4.3. Numerical experiments on convergence. In this section, we illustrate the improve-
ment achieved by appropriately choosing the norms ‖.‖E , ‖.‖F , and the prox-function d. To
do so, we run experiments on a dictionary of blocks of measurements all having the same
size, � = 256, described in section 5.1, for 2D images of size 256 × 256. At first, we choose
‖.‖E = ‖.‖�1 , ‖.‖F = ‖.‖�2 , and d = 1

2‖.‖2�2 , and we execute Algorithm 1 for this dictionary.
In fact, this first case (where the norm on E differs from the usual ‖ · ‖�2) nearly corresponds
to a standard accelerated gradient descent [NN04]. A second time, we set ‖.‖E = ‖.‖�1 ,
‖.‖F = ‖.‖�∞ , and d = 1

2‖.‖2�2 . In Figure 3, we display the decrease of the objective function
in both settings. The figure makes clear that a judicious selection of norms on E and F can
significantly speed up the convergence: for 29,000 iterations, the standard accelerated pro-
jected gradient descent reaches a precision of 10−5, whereas Algorithm 1 with ‖.‖E = ‖.‖�1
and ‖.‖F = ‖.‖�∞—i.e., a “modified” gradient descent—reaches a precision of 10−3. The
conclusions for this numerical experiment appear to be faithful to what was predicted by the
theory; see Proposition 4.5. For the sake of completeness, we add in Figure 3 (in green) the
case where ‖.‖E = ‖.‖�2 , ‖.‖F = ‖.‖�2 , and d = 1

2‖.‖2�2 , which is a usual choice in practice.
Clearly, this is the slowest rate of convergence observed.

Finally, we execute the algorithm for ‖.‖E = ‖.‖�1 , ‖.‖F = ‖.‖�2 , and d = 1
2‖.‖2�2 by

changing the value of Lα. The value of Lα provided by Proposition 4.3 is tight uniformly
on B∞. However, the local Lipschitz constant of ∇Jα varies rapidly inside the domain. In
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practice, the Lipschitz constant around the minimizer may be much smaller than Lα (note that
π� ∈ ri(Δm) for all α > 0). In this last heuristic approach, we will decrease Lα by substantial
factors without losing practical convergence. This result is presented in Figure 3, where the
black curve denotes the convergence result when the Lipschitz constant Lα has been divided by
100. We can observe that in this case 1500 iterations suffice to reach the precision obtained by
the case ‖.‖E = ‖.‖�1 , ‖.‖F = ‖.‖�2 , and d = 1

2‖.‖2�2 (in red) after 29,000 iterations. Let us give
an intuitive explanation for this positive behavior. To simplify the reasoning, let us assume
that π� is the uniform probability distribution. First notice that the choice of ‖ ·‖E influences
only the Lipschitz constant of ∇Jα but does not change the algorithm, so we can play with
the norm on E to decrease the local Lipschitz constant. Furthermore, the choice of ‖ · ‖E for
minimizing the global Lipschitz constant may be different from that for minimizing the local

Lipschitz constant. Considering that ‖ · ‖E = ‖ · ‖�2 , from (8) we get that Lα(q
�) =

‖M∗‖22→2
ασE (π�) .

Using the Perron–Frobenius theorem, it can be shown that ‖M∗‖22→2 = O(1) for our choice
of dictionary, and σE(π�) = m for ‖ ·‖E = ‖ ·‖�2 . From this simple reasoning, we can conclude
that the local Lipschitz constant around π� is no greater than O(1/m). This means that if
the minimizer is sufficiently far away from the simplex boundary, we can decrease Lα by a
significant factor without losing convergence.

5. Numerical results. In this section, we assess the reconstruction performance of the
sampling patterns using the approach described in section 4.2 with α = 10−2. We compare
it to that of standard approaches used in the context of MRI. We call π [p] the probability
distribution π� resulting from the minimization problem (PP) for a given target distribution
p on isolated measurements.

5.1. The choice of a particular dictionary of blocks. From a numerical point of view,
we study a particular system of blocks of measurements. The dictionary used in all numerical
experiments in this article is composed of discrete lines of length �, joining any pixel on the
edge of the image to any pixel on the opposite edge, as in Figure 1(b). Note that the number of
blocks in this dictionary is n2

1+n2
2 for an image of size n1×n2. The choice of such a dictionary

is particularly relevant in MRI, since the gradient waveforms that define the acquisition paths
are subject to bounded-gradient and slew-rate constraints; see, e.g., [LKP08]. Moreover, the
practical implementation on a scanner of straight lines is straightforward, since this approach
is already in use in standard echo-planar imaging strategies.

Note that, in such a setting, the mapping M , defined in (4), is a linear mapping that can
be represented by a matrix of size n ×m with Mi,j = 1/� when the ith pixel belongs to the
jth block, for i = 1, . . . , n and j = 1, . . . ,m.

One may argue that in MRI, dealing with samples lying on continuous lines (and not
discrete grids) is more realistic in the design of the magnetic resonance sequences. To deal
with this issue, one could resort to the use of the nonuniform fast Fourier transform. That
technique is, however, much more computationally intensive. In this paper we thus stick to
values of the Fourier transform located on the Euclidean grid. This is commonly used in MRI
with regridding techniques.

5.2. The reconstructed probability distribution. We illustrate the fidelity of π [p], the
solution of problem (PP), to a given target p. In the setting of 2D MR sensing, with the
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dictionary of lines in dimension n1 = n2 = 256 described in the previous subsection, we set the
target probability distribution to p = popt, the one suggested by current CS theories on the set
of isolated measurements. This is proportional to ‖a∗

k‖2�∞ ; see [PVW11, CCW13, BBW13].
To give an idea of what the resulting probability distribution π [popt] looks like, we draw
100,000 independent blocks of measurements according to π [popt] and count the number of
measurements for each discrete Fourier coefficient. The result is displayed in Figure 4. This
experiment underlines that our strategy manages to catch the overall structure of the target
probability distribution.

(a) (b)

Figure 4. Illustration of the fidelity of π [popt] to popt. (a) The target probability distribution popt. (b) The
results of 100, 000 i.i.d. drawings, performed according to π [popt], of blocks from the blocks dictionary; we count
the number of times that a point is sampled at each location. The gray level is proportional to the probability
distribution p in (a), and to the number of points drawn on each location in (b).

5.3. Reconstruction results. In this section, we compare the reconstruction quality of MR
images for different acquisition schemes. The comparison is always performed for schemes with
an equivalent number of isolated measurements. We recall that in the case of MR images,
the acquisition is done in the Fourier domain, and MR images are supposed to be sparse in
the wavelet domain. Therefore, the full sensing matrix A = (a1|a2| . . . |an)

∗, which models
the acquisition process, is the composition of a Fourier transform with an inverse wavelet
transform. The reconstruction is done via �1-minimization, as presented in (1), using the
Douglas–Rachford algorithm [CP11b]. It was proven in various papers [CCW13, CCKW13,
AHPR13] that MRI image quality can be greatly improved by fully acquiring the center of
the Fourier domain via a mask defined by the support of the mother wavelet; see Figure 5.
Therefore, for every type of scheme used in our reconstruction test, we first fully acquire this
mask.

The various schemes considered in this paper are based on blocks of measurements and
on heuristic schemes that are widely used in the context of MRI. They are described below.

• Equiangularly distributed radial lines: the scheme is made of lines always intersecting
the center of the acquisition domain and distributed uniformly [LDSP08].

• Golden angle scheme: the scheme is made of radial lines separated by the golden
angle, i.e., 111.246◦ . This technique is used often in MRI sequences, and it gives good
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(a) (b)

Figure 5. Different schemes based on (a) the golden angle pattern, and (b) the dictionary proposed in
section 5.1. Both schemes are combined with a mask which fully samples the center of the Fourier domain. In
both cases, the total measurements represent 10% of the full image, while the mask defined by the support of
the mother wavelet represents 3% of the full image.

(a) (b)

Figure 6. Target probabilities on pixels: in red, high values, and in dark blue, values close to 0. (a) The
distribution proportional to ‖a∗

i ‖2�∞ defined in [CCW13]. (b) A radial distribution, as presented in [KW12].
The center has been set to zero, since it will be sampled by the mask in a deterministic way.

reconstruction results in practice [WSK+07].
• Random radial scheme: radial lines are drawn uniformly at random [CRCP12].
• Scheme based on the dictionary described in section 5.1:

– Blocks are drawn according to π [prad], which is the probability distribution ob-
tained by minimizing problem (PP) for p = prad. The distribution prad is a radial
distribution that decreases as O( 1

k2x+k2y

)
. This choice was justified recently in

[KW12] and used extensively in practice. Note that prad is set to 0 on the k-space
center since it is already sampled deterministically; see Figure 6(b).

– Blocks are drawn according to π [popt], where popt is defined by (3), which is
the probability distribution obtained by minimizing problem (PP) for p = popt

defined in [CCW13, BBW13]. Once again, popt is set to 0 on the k-space center;
see Figure 6(a).
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(a) Brain. (b) Baboon.

Figure 7. Reference images to be reconstructed for the settings 256× 256 and 512 × 512.

Setting 256 × 256. The numerical experiment is run for images of size n0 × n0 with
n0 = 256. The full dictionary described in section 5.1 contains lines of length � = n0 pixels
connecting every point on the edge of the image to every point on the opposite side. For each
proportion of measurements (10%, 15%, 20%, 25%, 30%, 40%, 50%) we proceed to 100 drawings
of schemes when the considered scheme is random. Reconstruction results, for the reference
images shown in Figure 7 and for various sampling schemes, are displayed in terms of means
of peak signal-to-noise ratio (PSNR) in Figure 8(a) and (c).

Figure 8 shows that the schemes based on the approach presented in this article give better
results than do random radial schemes, for any proportion of measurements. The improvement
in terms of PSNR is generally between 1 and 2 dB. The schemes based on π [popt] and π [prad]
are competitive with those based on the golden angle or equiangularly distributed schemes in
the case where the proportion of measurements is low (less than 20% of measurements). We
observe that for 10% measurements, schemes based on our dictionary and drawn according
to π [prad] outperform the standard sampling strategies by more than 1 dB. Increasing the
PSNR by 1 dB is significant and can be qualitatively observed in the reconstructed image.

In Figures 8(a) and (c), it can be seen that block-constrained acquisition never outperforms
acquisitions based on independent measurements. This was to be expected since adding
constraints reduces the space of possible sampling patterns. Once again, note that independent
drawings are, however, not conceivable in many contexts such as MRI. In a nutshell, we can
say that the proposed sampling approach always produces results comparable to those of the
standard sampling schemes and tends to produce better results for low sampling ratios.

Finally, in Figure 9, we illustrate that block-constrained acquisition does not allow us
to reach an arbitrary target distribution by showing the difference between prad and the
probability distribution M (π [prad]), which is defined on the set of isolated measurements.
This confirms Proposition 3.2 experimentally.

Setting 512× 512. Given that in CS the quality of the reconstruction can be resolution
dependent, as described in [AHPR13], we decided to run the same numerical experiment on
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(a) Brain in 256× 256. (b) Brain in 512× 512.

(c) Baboon in 256× 256. (d) Baboon in 512× 512.

Figure 8. PSNR means of the reconstructed images (brain, baboon) w.r.t. the proportion of measurements
chosen in the scheme (10%, 15%, 20%, 25%, 30%, 40%, 50%). The undersampling ratio for all schemes is the
ratio between the number of sampled distinct frequencies and the total number of possible measurements. This
means that duplicated frequencies are accounted for only once.
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(a) (b)

Figure 9. Difference between the target probabilities p and Mπ(p) relative to the magnitude of p; i.e., we

show the quantity
(M(π(p)))i−pi

pi
for the ith sampling location. (a) For the radial distribution prad, we see that

we “subdraw” by a factor of 50% around the mask, and we “overdraw” by a factor of 150%S at the center of the
edges. (b) For the CS optimal distribution popt, we see that we “subdraw” by a factor of 40% around the mask.
Note that the subdrawing effect cannot be avoided: indeed, we cannot reach any target probability distribution
via M ; see Proposition 3.2.

512×512 images. The numerical experiment was run for images of size n0×n0 with n0 = 512.
The full dictionary described in section 5.1 contains lines of length � = n0 connecting every
point on the edge of the image to every point on the opposite side. For each proportion of
measurements (10%, 15%, 20%, 25%, 30%, 40%, 50%), and for each random sampling scheme,
we test image reconstruction from 10 drawn sampling schemes. The reference images to be
reconstructed are the same as were used in the setting 256× 256; see Figure 7.

Quality of reconstructions is compared in Figure 8(b) and (d) for the golden or equiangu-
larly distributed lines and our proposed method based on π(popt) and π(prad). This experi-
ment shows that the PSNR of the reconstructed images is significantly improved by using the
proposed method, until 30% of measurements for the brain image and 40% of measurements
for the baboon image. We can remark that for both images, for the same proportion of mea-
surements, the PSNR of the reconstructed images increases as the resolution increases. This
numerical experiment suggests that the proposed sampling approach might be significantly
better than traditional ones in the MRI context for high resolution images. In Figure 10(a),
we present the brain image reconstructed from 15% of measurements in the case of a golden
angle scheme. In Figure 10(b), we present the brain image reconstructed from 15% of mea-
surements in the case of a realization of a scheme based on π(prad). The latter’s PSNR is
41.88 dB, whereas in the golden scheme case, the PSNR reaches only 40.13 dB. In Figure 10(c)
and (d), we display the corresponding difference images relative to the reference image, which
underlines the improvement of 1.7 dB in our method.
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(a) PSNR = 40.1364 dB. (b) PSNR = 41.8854 dB.

(c) (d)

Figure 10. Comparison of the reconstructed images from 15% of measurements for a 512×512 image for a
golden angle scheme (a) and a scheme based on our dictionary and π(prad) (b). We plot the absolute difference
between the reference and the reconstructed image for the reconstruction using a golden angle scheme (c) or a
scheme based on π(prad) (d). Note that in (c) and (d), the gray levels are in the same scale.

As a side note, let us mention that in MRI, sampling diagonal or horizontal lines actually
takes the same scanning time (even though the diagonals are longer), since gradient coils
work independently in each direction. In the MRI example, the length of the path is thus
less meaningful than the number of scanned lines. In Figure 11, we show different sampling
schemes based on the golden angle pattern or on our method with the same number of lines,
and we show the corresponding reconstructions of brain images.
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(a) Golden angle scheme (9.2%). (b) π(prad)-based scheme (10%).

(c) PSNR = 36.34 dB. (d) PSNR = 38.99 dB.

(e) Golden angle. (f) π(prad)-based scheme.

Figure 11. Reconstruction examples. We plot schemes made of 37 lines based on the golden angle pattern
(a) or our method with π(prad) (b). Drawing 37 lines in both cases leads to a cover of the sampling space by 9.2%
in the case of the golden angle scheme, and by 10% for the π(prad)-based scheme. Note that, despite a difference
of 0.8% in the covering of the k-space, the scanning time is the same for both schemes. In (c) and (d) we display
the corresponding reconstructions via �1-minimization. We can see that we improve the reconstruction by more
than 2 dB with our method. At the bottom, we show the corresponding absolute difference with the reference
image. Note that the gray levels have the same scaling in (e) and (f).
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Remark. In both settings, for the brain image, schemes based on π [prad] lead to better
reconstruction results in terms of PSNR than do schemes from π [popt]. This can be explained
by the fact that popt is the probability density given by CS theory, which provides guarantees
to reconstruct any s-sparse signal. However, brain images or natural images have a structured
sparsity in the wavelet domain: indeed, their wavelet transform is not uniformly s-sparse; the
approximation part contains more nonzero coefficients than do the rest of the detailed parts.
We can infer that prad manages to catch the sparsity structure of the wavelet coefficients of
the considered images.

6. Conclusion. In this paper, we have focused on constrained acquisition by blocks of
measurements. Sampling schemes are constructed by drawing blocks of measurements from a
given dictionary of blocks according to a probability distribution π that needs to be chosen in
an appropriate way. We have presented a novel approach to computing π in order to imitate
existing sampling schemes in CS that are based on the drawing of isolated measurements.
For this purpose, we have defined a notion of the dissimilarity measure between a probabil-
ity distribution on a dictionary of blocks and a probability distribution on a set of isolated
measurements. This setting leads to a convex minimization problem in high dimension. In
order to compute a solution to this optimization problem, we proposed an efficient numerical
approach based on the work of [Nes05]. Our numerical study highlights the fact that per-
forming minimization on a metric space rather than a Hilbert space might lead to significant
acceleration. Finally, we have presented reconstruction results using this new approach in the
case of MRI acquisition. Our method seems to provide better reconstruction results than do
standard strategies used in this domain. We believe that this last point brings interesting
perspectives for 3D MRI reconstruction.

In future work, we plan to extend the proposed numerical method to a wider setting and
to provide better theoretical guarantees for cases where the Lipschitz constant of the gradient
may vary across the domain. A first step in this direction was proposed recently in [GK13]. We
also plan to accelerate the matrix-vector product involving M by using fast Radon transforms.
This step is unavoidable in applying our algorithm to 3D or 3D+t problems, for which we
expect important benefits compared to the small images we have tested thus far. Finally,
we are currently collaborating with physicists at Neurospin, CEA and plan to implement the
proposed sampling schemes on real MRI scanners.

Appendix A. Proof of Proposition 4.1. First, we express the Fenchel–Rockafellar dual
problem [Roc97]:

min
π∈Δm

‖p−Mπ‖�1 + αE(π)
= min

π∈Δm

max
q∈B∞

〈Mπ − p, q〉F ∗×F + αE(π)
= max

q∈B∞
min
π∈Δm

〈M∗q,π〉E∗×E − 〈p, q〉F ∗×F + αE(π)
= max

q∈B∞
−Jα(q),

where B∞ stands for the �∞-ball of unit radius and

(16) Jα(q) = − min
π∈Δm

〈M∗q,π〉E∗×E − 〈p, q〉F ∗×F + αE(π).
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The solution π(q) of the minimization problem (16) satisfies

M∗q + α (log(π(q)) + 1) ∈ −NΔm(π(q)) if π(q) ∈ ri (Δm) ,(17)

where NΔm(π(q)) denotes the normal cone to the set Δm at the point π(q), and ri (Δm)
denotes the relative interior of Δm. Equation (17) can be rewritten in the following way:

M∗q + α log(π(q)) = (−λ− α) , with λ ∈ R+ and π(q) ∈ Δm.(18)

By choosing λ = α log
(∑m

k=1 exp
(− (M∗q)k

α

))− α and plugging this into (18), we get that

(π(q))j =
exp

(
− (M∗q)j

α

)
∑m

k=1 exp
(
− (M∗q)k

α

) ∀j ∈ {1, . . . ,m} .(19)

It remains to plug (19) into (16) to obtain (DP) with

Jα(q) = 〈p, q〉F ∗×F − α log

(
m∑
k=1

exp

(
−(M∗q)k

α

))
.

Appendix B. Proof of Proposition 4.2. The neg-entropy is continuous and twice contin-
uously differentiable on ri (Δm). Then, in order to prove its strong convexity, it is sufficient
to bound from below its positive diagonal Hessian w.r.t. ‖ · ‖E . We have〈

E ′′
(π)h,h

〉
=

m∑
i=1

(hi)
2

πi
for π ∈ ri (Δm) and h ∈ Rm.(20)

Using the Cauchy–Schwarz inequality,

‖h‖2�1 =

(
m∑
i=1

|hi|√
πi

√
πi

)2

≤
(

m∑
i=1

h2i
πi

)(
m∑
i=1

πi

)

≤ ‖π‖�1︸ ︷︷ ︸
=1

〈
E ′′

(π)h,h
〉
.

Therefore, E is 1-strongly convex on the simplex w.r.t. ‖.‖�1 . Since for all p ∈ [1,∞], ‖.‖�1 ≥
‖.‖p, we get

‖h‖2�p ≤
〈
E ′′

(π)h,h
〉

∀h ∈ Rm, π ∈ ri (Δm) .

Moreover, if (πn)n∈N denotes a sequence of ri(Δm) pointwise converging to the first element
of the canonical basis e1 and h = e1, then

lim
n→+∞〈E ′′

(πn)h, h〉 = ‖h‖2�p = 1,

so that the inequality is tight.

Appendix C. Proof of Proposition 4.3. The proof is based on arguments similar to those
of [Nes05, Theorem 1]. First, notice that
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〈∇E (π(q2))−∇E (π(q1)) ,π(q2)− π(q1)〉

=

〈∫ 1

t=0
E ′′

(π1 + t(π2 − π1))(π2 − π1)dt,π(q2)− π(q1)

〉
≥ σE [π1,π2] ‖π2 − π1‖2E ,(21)

where
σE [π1,π2] = inf

t∈[0,1]
σE(tπ1 + (1− t)π2)

is the local convexity modulus of E on the segment [π(q1),π(q2)].
Next, recall that

Jα(q) = max
π∈Δm

〈−M∗q,π〉E∗×E + 〈p, q〉F ∗×F − αE(π).

The optimality conditions of the previous maximization problem for Jα(q1) and Jα(q1),
q1, q2 ∈ F , lead to

〈−M∗q1 − α∇E (π(q1)) ,π(q2)− π(q1)〉 ≤ 0,

〈−M∗q2 − α∇E (π(q2)) ,π(q1)− π(q2)〉 ≤ 0.

Combining the two previous inequalities, we can write that for q1, q2 ∈ F

〈M∗(q1 − q2),π(q1)− π(q2)〉 ≥ α 〈∇E (π(q2))−∇E (π(q1)) ,π(q2)− π(q1)〉

=⇒ ‖M∗(q1 − q2)‖E∗ ‖π(q1)− π(q2)‖E
(21)

≥ ασE [π(q1),π(q2)] ‖π(q1)− π(q2)‖2E
=⇒ ‖M∗‖F→E∗ ‖q1 − q2‖F ‖π(q1)− π(q2)‖E ≥ ασE [π(q1),π(q2)] ‖π(q1)− π(q2)‖2E .

Therefore, we can write that

‖π(q1)− π(q2)‖E ≤ ‖M∗‖F→E∗ ‖q1 − q2‖F
ασE [π(q1),π(q2)]

.

Noting that ∇Jα(q) = −Mπ(q) + p, we can conclude that

‖∇Jα(q1)−∇Jα(q2)‖F ∗ = ‖M (π(q1)− π(q2)) ‖F ∗

≤ ‖M∗‖F→E∗‖π(q1)− π(q2)‖E

≤ ‖M∗‖2F→E∗

ασE [π(q1),π(q2)]
‖q1 − q2‖F .

Let us consider a sequence (qn)n∈N converging uniformly towards q ∈ B∞ ⊂ F . Since
π : q ∈ B∞ 
−→ π(q) ∈ Δm is a continuous mapping, πn := π (qn) converges uniformly
towards π(q). Thus,

σE [π(qn),π(q)] −→
n→+∞ σE(π(q)).

Appendix D. Proof of Theorem 4.6. Theorem 4.6 is a direct consequence of Lemma D.1
below. A similar proof was proposed in [FP11] but not extended to a general setting.

Lemma D.1. Let f : Rm → R ∪ {+∞} and g : Rn → R ∪ {+∞} denote closed convex
functions such that A · ri (dom(f)) ∩ ri (dom(g)) �= ∅. Assume further that g is σ-strongly
convex w.r.t. an arbitrary norm ‖ · ‖. Then we have the following:
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(i) Function g∗ satisfies dom(g∗) = Rn and is differentiable on Rn.
(ii) Define

(22) p(x) = f(Ax) + g(x),

(23) d(y) = −g∗(−A∗y)− f∗(y),

and

x(y) = ∇g∗(−A∗y).

Let x∗ denote the minimizer of (22) and y∗ denote any minimizer of (23). Then for
any y ∈ Rm we have

(24) ‖x(y)− x∗‖2 ≤ 2

σ
(d(y)− d(y∗)) .

Proof. Point (i) is a standard result in convex analysis. See, e.g., [HUL96]. We did not
find the result (ii) in standard textbooks, and to our knowledge it is new. We assume for
simplicity that g, g∗, f , and f∗ are differentiable. This hypothesis is not necessary and can
be avoided at the expense of longer proofs. First note that

inf
x∈Rn

p(x) = sup
y∈Rm

−g∗(−A∗y)− f∗(y),

by the Fenchel–Rockafellar duality. Since g is strongly convex, ∇g is a one-to-one mapping
and

(25) ∇g(∇g∗(x)) = x ∀x ∈ Rn.

The primal-dual relationships read{
A∗y∗ +∇g(x∗) = 0,
Ax∗ −∇f∗(y∗) = 0,

so that

x∗ = (∇g)−1(−A∗y∗)
= (∇g∗)(−A∗y∗).

Let us define the following Bregman divergence quantities:

D1(y) := f∗(y)− f∗(y∗)− 〈A∇g∗(−A∗y∗), y − y∗〉,
D2(y) := g∗(−A∗y)− g∗(−A∗y∗) + 〈A∇g∗(−A∗y∗), y − y∗〉.

By construction,

D1(y) +D2(y) = d(y)− d(y∗).
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Moreover, since y∗ is the minimizer of d, it satisfies A∇g∗(−A∗y∗) = ∇f∗(y∗). By replacing
this expression in D1 and using the fact that f∗ is convex, we get that

D1(y) ≥ 0 ∀y ∈ Rn.

Using identity (25), we get

D2(y) = g∗(∇g(x(y))) − g∗(∇g(x∗)) + 〈x∗,∇g(x∗)−∇g(x(y))〉.(26)

Moreover, since (see, e.g., [HUL96])

g(x) + g∗(x∗) = 〈x, x∗〉 ⇔ x∗ = ∇g(x),

we get that

g∗(∇g(x(y))) = 〈∇g(x(y)), x(y)〉 − g(x(y))

and

g∗(∇g(x∗)) = 〈∇g(x∗), x∗〉 − g(x∗).

Replacing these expressions in (26), we obtain

D2(y) = g(x∗)− g(x(y)) + 〈∇g(x(y)), x(y) − x∗〉
≥ σ

2
‖x(y)− x∗‖2,

since g is σ strongly convex w.r.t. ‖ · ‖. To sum up, we have

d(y)− d(y∗) = D1(y) +D2(y)

≥ D2(y)

≥ σ

2
‖x(y)− x∗‖2,

which is the desired inequality.
We now have all the ingredients for proving Theorem 4.6.
Proof of Theorem 4.6. The proof is a direct consequence of Lemma D.1. It can be obtained

by setting A ≡ M , f(y) ≡ ‖y − p‖1, and g(x) ≡ αE(x) + χΔm(π), with χΔm the indicator
function of the set Δm. Thus p(x) = f(Ax)+g(x) = Fα(x) and d(y) = Jα(y). Then note that
πk defined in Theorem 4.6 satisfies πk = ∇g∗(−A∗yk). By Proposition 4.2, we get that g is
ασE -strongly convex w.r.t. ‖ · ‖�p for all p ∈ [1;∞]. It then suffices to use bound (12) together
with Lemma D.1 to conclude.
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REFERENCES

[AHPR13] B. Adcock, A. C. Hansen, C. Poon, and B. Roman, Breaking the coherence barrier: Asymp-
totic incoherence and asymptotic sparsity in compressed sensing, arXiv:1302.0561, 2013.

[BBW13] J. Bigot, C. Boyer, and P. Weiss, An analysis of block sampling strategies in compressed
sensing, arXiv:1310.4393, 2013.

[BC11] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in
Hilbert Spaces, Springer, New York, 2011.

[CCKW13] N. Chauffert, P. Ciuciu, J. Kahn, and P. Weiss, Variable density sampling with continuous
sampling trajectories, arXiv:1311.6039, 2013.

[CCW13] N. Chauffert, P. Ciuciu, and P. Weiss, Variable density compressed sensing in MRI. Theo-
retical vs. heuristic sampling strategies, in Proceedings of the IEEE International Symposium
on Biomedical Imaging, IEEE Press, Piscataway, NJ, 2013.
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