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Abstract

Compressed sensing is a theory which guarantees the exact recovery of sparse signals from
a small number of linear projections. The sampling schemes suggested by current compressed
sensing theories are often of little practical relevance since they cannot be implemented on real
acquisition systems. In this paper, we study a new random sampling approach that consists
of projecting the signal over blocks of sensing vectors. A typical example is the case of blocks
made of horizontal lines in the 2D Fourier plane. We provide theoretical results on the number
of blocks that are sufficient for exact sparse signal reconstruction. This number depends on
two properties named intra and inter-support block coherence. We then show that our bounds
coincide with the best so far results in a series of examples including Gaussian measurements
or isolated measurements. We also show that the result is sharp when used with specific
blocks in time-frequency bases, in the sense that the minimum required amount of blocks to
reconstruct sparse signals cannot be improved up to a multiplicative logarithmic factor. The
proposed results provide a good insight on the possibilities and limits of block compressed
sensing in imaging devices such as magnetic resonance imaging, radio-interferometry or ultra-
sound imaging.

Key-words: Compressed Sensing, blocks of measurements, MRI, exact recovery, `1 minimiza-
tion.

1 Introduction

Compressive Sensing is a new sampling theory that guarantees accurate recovery of signals from
a small number of linear projections using three ingredients listed below:

• Sparsity: the signals to reconstruct should be sparse, meaning that they can be repre-
sented as a linear combination of a small number of atoms in a well-chosen basis. A vector
x ∈ Cn is said to be s-sparse if its number of non-zero entries is equal to s.

• Nonlinear reconstruction: a key feature ensuring recovery is the use of non linear
reconstruction algorithms. For instance, in the seminal papers [Don06, CRT06a], it is
suggested to reconstruct x via the following `1-minimization problem:

min
z∈Cn

‖z‖1 such that Az = y, (1)

where A ∈ Cq×n (q ≤ n) is a sensing matrix, y = Ax ∈ Cq represents the measurements
vector, and ‖z‖1 =

∑n
i=1 |zi| for all z = (z1, . . . , zn) ∈ Cn.
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Figure 1: An example of MRI sampling schemes in the k-space (the 2D Fourier plane
where low frequencies are centered) (a): Isolated measurements drawn from a probability
distribution with radial distribution. (b): Sampling scheme in the case of non-overlapping blocks
of measurements that correspond to horizontal lines in the 2D Fourier domain. (c): Sampling
scheme in the case of overlapping blocks of measurements that correspond to straight lines.

• Incoherence of the sensing matrix: the matrix A should satisfy an incoherence
property described later. If A is perfectly incoherent (e.g. random Gaussian measure-
ments or Fourier coefficients drawn uniformly at random) then it can be shown that only
q = O(s ln(n)) measurements are sufficient to perfectly reconstruct the s-sparse vector x.

The construction of good sensing matrices A is a keystone for the successful application of
compressed sensing. The use of matrices with independent random entries has been popularized
in the early papers [CRT06b, Can08]. Such sensing matrices have limited practical interest since
they can hardly be stored on computers or implemented on practical systems. More recently,
it has been shown that partial random circulant matrices [FR13, PVGW12, RRT12] may be
used in the compressed sensing context. With this structure, a matrix-vector product can be
efficiently implemented on a computer by convolving the signal x with a random pulse and
by subsampling the result. This technique can also be implemented on real systems such as
magnetic resonance imaging (MRI) or radio-interferometry [PMG+12]. However this demands
to modify the acquisition device physics, which is often uneasy and costly. Another way to
proceed consists in drawing q rows of an orthogonal matrix among n possible ones, see [CRT06a,
RV08]. This setting, which is the most widespread in applications, is a promising avenue to
implement compressed sensing strategies on nearly all existing devices. Its efficiency depends
on the incoherence between the acquisition and sparsity bases [DH01, CR07]. It is successfully
used in radio interferometry [WJP+09], digital holography [MAAOM10] or MRI [LDP07] where
the measurements are Fourier coefficients.

To the best of our knowledge, all current compressed sensing theories suggest that the mea-
surements should be drawn independently at random. This is impossible for most acquisition
devices which have specific acquisition constraints. A typical example is MRI, where the samples
should lie along continuous curves in the Fourier domain (see e.g. [Wri97, LKP08]). As a result,
most current implementations of compressed sensing do not comply with theory. For instance,
in the seminal work on MRI [LDP07], the authors propose to sample parallel lines of the Fourier
domain (see Figure 1 and 2).

Contributions In this paper, we aim at bridging the gap between theory and practice.
Our first contribution is to introduce a new class of sensing matrices in which a sensing

matrixA is constructed by stacking blocks of measurements and not just isolated measurements.
Our formalism, is based on and extends the work [CP11], in which only isolated measurements
are considered. For instance, this setting covers the case of blocks made of groups of rows
of a deterministic sensing matrix (e.g. lines in the Fourier domain) or blocks with random
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entries (e.g. Gaussian blocks). The notion of block of measurements allows to encompass
structured acquisition, well-spread in various application fields. We study the problem of exact
non-uniform recovery of s-sparse signals in a noise-free setting. This sampling strategy raises
various questions. How many blocks of measurements are needed to ensure exact reconstruction
of an s-sparse signal? Is the required number of blocks compatible with faster acquisition?

Our second contribution is to provide preliminary answers to these questions. We extend the
theorems proposed in [CP11] to the case of blocks of measurements for the recovery of s-sparse
signals, only when the degree s of sparsity is considered. We then show that our result is sharp
in a few practical examples and extends the best currently known results in compressed sensing.
This work provides some insight on many currently used sampling patterns in MRI, echography,
computed tomography scanners, ... by proposing theoretical foundations of block-constrained
acquisition.

Our third contribution is to emphasize the limitations of block-constrained acquisition strate-
gies for the recovery of any s-sparse signal: we prove that in many cases, imposing a block
structure has a dramatic effect on the recovery guarantees since it strongly impoverishes the
variety of admissible sampling patterns. This result highlights that the standard CS setting
focusing on s-sparse recovery is not appropriate when the acquisition is constrained: the degree
s of sparsity may not be the relevant feature to consider for the signal to reconstruct, when
block-structure is imposed in the acquisition.

Overall, we believe that the presented results give good theoretical foundations to the use
of blocks of measurements in compressed sensing and show the limitations of this setting for
s-sparse recovery.

Related work After submitting the first version of this paper, the authors of [PDG14] at-
tracted our attention to the fact that their work dealt with a very similar setting. We therefore
make a comparison between the results in Section 4.3.3.

Outline of the paper The remaining of the paper is organized as follows. In Section 2, we
first describe the notation and the main assumptions necessary to derive a general theory for the
acquisition of blocks of measurements. We present the main result of this paper about s-sparse
recovery with block-sampling acquisition in Section 3. In Section 4, we discuss the sharpness of
our results. First, we show that our approach provides the same guarantees that existing results
when using isolated measurements (either Gaussian or randomly extracted from deterministic
transforms). We conclude on a pathological example to show sharpness in the case of blocks
sampled from separable transforms.

2 Preliminaries

2.1 Notation

Let S = (S1, . . . , Ss) be a subset of {1, . . . , n} of cardinality |S| = s. We denote by PS ∈ Cn×s
the matrix with columns (ei)i∈S where ei denotes the i-th vector of the canonical basis of Cn.
For given M ∈ Cn×n and v ∈ Cn, we also define MS = MPS , and vS = P ∗Sv. We denote by
‖ · ‖p the `p-norm for p ∈ [0,∞]. We will also use ‖ · ‖p→q to denote the operator norm defined
by

‖M‖p→q = sup
‖v‖p≤1

‖Mv‖q.
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2.2 Main assumptions

Recall that we consider the following `1-minimization problem:

min
z∈Cn

‖z‖1 s.t. y = Az, (2)

whereA is the sensing matrix, y = Ax ∈ Cq is the measurements vector, x ∈ Cn is the unknown
vector to be recovered. In this paper, we assume that the sensing matrix A can be written as

A =
1√
m

B1
...
Bm

 , (3)

where B1, . . . ,Bm are independent copies of a random matrix B, meaning that B1, . . . ,Bm are
independently drawn from the same distribution, satisfying

E (B∗B) = Id, (4)

where Id is the n × n identity matrix. This condition is the extension of the isotropy property
described in [CP11] in a block-constrained acquisition setting.

In most cases studied in this paper, the random matrix B is assumed to be of fixed size p×n
with p ∈ N∗. This assumption is however not necessary. The number of blocks of measurements
is denoted m, while the overall number of measurements is denoted q. When B has a fixed size
p× n, q = mp.

The following quantities will be shown to play a key role to ensure sparse recovery in the
sequel.

Definition 2.1. We let (µi)1≤i≤3 denote the smallest positive reals such that the following bounds
deterministically hold

µ1 = sup
|S|≤s

‖B∗SBS‖2→2 , µ2 = sup
|S|≤s

√
smax
i∈Sc
‖B∗SBei‖2 ,

µ3 = sup
|S|≤s

smax
i∈Sc
‖E [B∗S (Bei) (Bei)

∗BS ]‖2→2 , (5)

in which the supremum is taken over all subsets S ⊂ {1, . . . , n} of cardinality at most s. Define

γ(s) := max
1≤i≤3

µi.

The quantities introduced in Definition 2.1 can be interpreted as follows. The number µ1 can
be seen as an intra-support block coherence, whereas µ2 and µ3 are related to the inter-support
block coherence, that is the coherence between blocks restricted to the support of the signal and
blocks restricted to the complementary of this support. Note that the factors

√
s and s involved

in the definition of µ2 and µ3 ensure homogeneity between all of these quantities.

2.3 Application examples

The number of applications of the proposed setting is large. For instance, it encompasses those
proposed in [CP11]. Let us provide a few examples of new applications below.

2.3.1 Partition of orthogonal transforms

Let A0 ∈ Cn×n denote an orthogonal transform. Blocks can be constructed by partitioning the
rows (a∗i )1≤i≤n from A0:

Bj = (a∗i )i∈Ij for Ij ⊂ {1, . . . , n} s.t.

M⊔
j=1

Ij = {1, . . . , n},
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where
⊔

stands for the disjoint union. This case is the one studied in [PDG14].
Let Π = (π1, . . . , πM ) be a discrete probability distribution on the set of integers {1, . . . ,M}.

A random sensing matrix A can be constructed by stacking m i.i.d. copies of the random matrix
B defined by P(B = Bk/

√
πk) = πk for all k ∈ {1, . . . ,M}. Note that the normalization by

1/
√
πk ensures the isotropy condition E [B∗B] = Idn.

2.3.2 Overlapping blocks issued from orthogonal transforms

In the last example, we concentrated on partitions, i.e. non-overlapping blocks of measurements.
The case of overlapping blocks can be also handled. To do so, define the blocks (Bj)1≤j≤M as

follows: Bj =
(

1√
αi
a∗i

)
i∈Ij

, where
M⋃
j=1

Ij = {1, . . . , n}, and αi denotes the multiplicity of the

row a∗i , i.e. the number of appearances αi = |{j, i ∈ Ij}| of this row in different blocks. This
renormalization is sufficient to ensure E [B∗B] = Idn where Bk is defined similarly to the
previous example. See Appendix D for an illustration of this setting in the case of 2D Fourier
measurements.

2.3.3 Blocks issued from tight or continuous frames

Until now, we have concentrated on projections over a fixed set of n vectors. This is not
necessary and the projection set can be redundant and even infinite. A typical example is the
Fourier transform with a continuous frequency spectrum. This example is discussed in more
details in [FR13, CP11].

2.3.4 Blocks with random i.i.d. entries

In the previous examples, the blocks were predefined and extracted from deterministic matrices
or systems. The proposed theory also applies to random blocks. For instance, one could consider
blocks with i.i.d. Gaussian entries since these blocks satisfy the isotropy condition (4). In this
case, the bounds presented in Definition 2.1 should be adapted to hold with high probability.
This example is of little practical relevance since stacking random Gaussian matrices produces
a random Gaussian matrix that can be analyzed with standard compressed sensing approaches.
It however presents a theoretical interest in order to show the sharpness of our main result.
Another example with potential interest is that of blocks generated randomly using random
walks over the acquisition space [CCKW14].

3 Main result

Our main result reads as follows.

Theorem 3.1. Let S ⊂ {1, . . . , n} be a set of indices of cardinality s and suppose that x ∈ Cn
is an s-sparse vector supported on S. Fix ε ∈ (0, 1). Suppose that the sampling matrix A is
constructed as in (3), and that the isotropy condition (4) holds. Suppose that the bounds (5)
hold deterministically. If the number of blocks m satisfies the following inequality

m ≥ cγ(s)
(
2 ln (4n) ln

(
12ε−1

)
+ ln s ln

(
12e ln(s)ε−1

))
then x is the unique solution of (2) with probability at least 1− ε. The constant c can be taken
equal to 534.

The proof of Theorem 3.1 is detailed in Section C.1. It is based on the so-called golfing
scheme introduced in [Gro11] for matrix completion, and adapted by [CP11] for compressed
sensing from isolated measurements. Note that Theorem 3.1 is a non uniform result in the
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sense that reconstruction holds for a given support S of size s and not for all s-sparse signals.
It is likely that uniform results could be derived by using the so-called Restricted Isometry
Property. However, this strong property is usually harder to prove and leads to narrower classes
of admissible matrices and to a larger number of required measurements.

Remark 3.2 (Improvement of Theorem 3.1). By assuming that ln(s) ln(ln(s)) ≤ c′ ln(n), one
can simplify the previous bound in Theorem 3.1, by

m ≥ c′′γ(s) ln (4n) ln
(
12ε−1

)
, (6)

for some constants c′ and c′′. Note that this bound can be also obtained considering the trick
presented in [AH15, GKK]. In the sequel, for the sake of clarity, we will assume that the
condition ln(s) ln(ln(s)) ≤ c′ ln(n) is satisfied and therefore consider the inequality (6).

Remark 3.3 (The case of stochastic bounds). In Definition 2.1, we say that the bounds deter-
ministically hold if the inequalities (5) are satisfied almost surely. This assumption is convenient
to simplify the proof of Theorem 3.1. Obviously, it is not satisfied in the setting where the en-
tries of B are i.i.d. Gaussian variables. To encompass such cases, the bounds in Definition 2.1
could stochastically hold, meaning that the inequalities (5) are satisfied with large probability.
This extended setting was actually also proposed in the paper [CP11]. The proof of the main
result can be modified by conditioning the deviation inequalities in the Lemmas of Appendix C.1
to the event that the bounds in Definition 2.1 hold. Therefore, even though we do not provide
a detailed proof, the lower bound on the sufficient number of blocks in Theorem 3.1 remains
accurate. Hence, we will propose in Section 4.2 some estimates of the quantities (5) in the case
of Gaussian measurements.

In the usual compressed sensing framework, the matrix A is constructed by stacking realiza-
tions of a random vector a. The best known results state that O(sµ ln(n)) isolated measurements
are sufficient to reconstruct x with high probability. The coherence µ is the smallest number
such that ‖a‖2∞ ≤ µ. The quantity γ in Theorem 3.1 therefore replaces the standard factor sµ.
The coherence µ is usually much simpler to evaluate than γ which depends on three properties
of the random matrix B: the intra-support coherence µ1 and the inter-support coherences µ2
and µ3. As will be seen in Section 4, it is important to keep all those quantities in order to
obtain tight reconstruction results. Nevertheless, a rough upper bound of γ, reminiscent of the
coherence, can be used as shown in Proposition 3.4.

Proposition 3.4. Assume that the following inequality holds either deterministically or stochas-
tically

‖B∗B‖1→∞ ≤ µ4

with ‖B∗B‖1→∞ = sup
‖v‖1≤1

‖B∗Bv‖∞. Then

γ ≤ sµ4. (7)

The proof of Proposition 3.4 is given in Appendix C.2. The bound given in Proposition 3.4
is an upper bound on γ that should not be considered as optimal. For instance, for Gaussian
measurements, it is important to precisely evaluate the three quantities (µi)1≤i≤3.

Remark 3.5 (Noisy setting). In this paper, we concentrate on a noiseless setting. Noise can
be taken into account quite easily by mimicking the proofs in [CP11]. We do not include such
results to clarify the presentation.
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4 Relevancy of the main result

In this section, we discuss the relevancy of the lower bound given by Theorem 3.1 for sparse
recovery when only the degree of sparsity s is known. First, we show that Theorem 3.1 allows
to recover the best known results in compressed sensing: (i) from isolated measurements of an
orthogonal transform and (ii) from Gaussian measurements, the results derived from Theorem
3.1 comply with the state-of-the-art results (up to logarithmic factors). Secondly, we study a
new setting of interest based on structured measurements drawn from a separable orthogonal
transform. We show that the bound on the sufficient number of blocks of measurements cannot
be improved modulo logarithmic factors. Finally, we compare our results to a related work
[PDG14]. In all these examples, we show that bounds on γ derived from Theorem 3.1 are not
too restrictive to ensure exact s-sparse recovery.

4.1 The case of isolated measurements

First, let us show that our result matches the standard setting where the blocks are made of
only one row, that is p = 1. This is the standard compressed sensing framework considered e.g.
by [CRT06a, FR13, CP11]. Consider that A0 = (a∗i )1≤i≤n is a deterministic matrix, and that
the sensing matrix A is constructed by drawing m rows of A0 according to some probability
distribution P = (p1, . . . , pn), i.e. one can write A as follows:

A =


a∗J1√
pJ1
...

a∗Jm√
pJm

 ,

where the (Jj)1≤j≤m’s are i.i.d. random variables taking their value in {1, . . . , n} with probability
P. According to Proposition 3.4, for a support S of cardinality s the following upper bound
holds:

γ ≤ s max
1≤j≤M

‖aja∗j‖1→∞
pj

.

Therefore, according to Theorem 3.1, it is sufficient that

q ≥ cs max
1≤j≤M

‖aja∗j‖1→∞
pj

ln (4n) ln
(
12ε−1

)
. (8)

to obtain perfect reconstruction with probability 1− ε. Noting that ‖aj‖2∞ = ‖aja∗j‖1→∞ , for
all j ∈ {1, . . . , n}, it follows that Condition (8) is the same (up to a multiplicative constant) to
that of [CP11].

In addition, choosing P? in order to minimize the right-hand side of (8) leads to

p?j =
‖aja∗j‖1→∞∑n
k=1 ‖aka∗k‖1→∞

, ∀k ∈ {1, . . . , n} ,

which in turn leads to the following sufficient condition on the number of measurements:

q ≥ cs
n∑
k=1

‖a∗k‖2∞ ln (4n) ln
(
12ε−1

)
. (9)

Contrarily to common belief, the probability distribution minimizing the sufficient number of
measurements is not the uniform one, but the one depending on the `∞-norm of the considered

row. Let us highlight this fact. Consider that A0 =

(
1 0
0 Fn−1

)
, where Fn−1 denotes the 1D

Fourier matrix of size (n − 1) × (n − 1). If a uniform drawing distribution is chosen, the right
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hand side of (8) is O(sn ln2(n)). This shows that uniform random sampling is not interesting
for this sensing matrix. Note that the coherence ‖A0‖21→∞ of A0 is equal to 1, which is the
worst possible case for orthogonal matrices. Nevertheless, if the optimal drawing distribution is
chosen, i.e.

p?j =

{ 1
2 if j = 1

1
2(n−1) otherwise

then, the right hand side of (8) becomes O(2s ln2(n)). Using this sampling strategy, compressed
sensing therefore remains relevant. Furthermore, note that the latter bound could be easily
reduced by a factor 2 by systematically sampling the location associated to the first row of
A0, and uniformly picking the q − 1 remaining isolated measurements. Similar remarks were
formulated in [KW14] which promote non-uniform sampling strategies in compressed sensing.

4.2 The case of Gaussian measurements

We suppose that the entries of B ∈ Rp×n are i.i.d. Gaussian random variables with zero-mean
and variance 1/p. This assumption on the variance ensures that the isotropy condition (4) is
satisfied. The bounds introduced in Definition 2.1 can be shown to hold with high probability,
see Section C.3. With a same argument as in [CP11], one can show that this stochastic control
is enough to derive recovery guarantees with high probability as in the following proposition.
The matrix A constructed by concatenating those blocks is also a Gaussian random matrix with
i.i.d. entries and does not differ from an acquisition setting based on isolated measurements.
Therefore, if Theorem 3.1 is sharp, one can expect that q = O(s ln(n)) measurements are enough
to perfectly reconstruct x. In what follows, we show that this is indeed the case.

Proposition 4.1. Assume that the entries of B ∈ Rp×n are i.i.d. Gaussian random variables

with zero-mean and variance 1/p. Then, γ = O
(
s ln(s)
p

)
. Therefore, O

(
s ln(s) ln(n)

p

)
Gaussian

blocks are sufficient to ensure perfect reconstruction with high probability.

This is similar to an acquisition based on isolated Gaussian measurements and this is optimal
up to a logarithmic factor, see [Don06]. A proof of this result is presented in Section C.3.

4.3 The case of separable transforms

In this section, we consider d-dimensional deterministic transforms obtained as Kronecker pro-
ducts of orthogonal one-dimensional transforms. This setting is widespread in applications. In-
deed, separable transforms include d-dimensional Fourier transforms met in astronomy [BSO08]
or products of Fourier and wavelet transforms met in MRI [LDSP08] or radio-interferometry
[WJP+09]. A specific scenario encountered in many settings is that of blocks made of lines in
the acquisition space. For instance, parallel lines in the 3D Fourier space are used in [LDP07].
The authors propose to undersample the 2D kx-ky plane and sample continuously along the
orthogonal direction kz (see Figure 2).

The remaining of this Section is as follows. We first introduce the notation. We then
provide theoretical results about the minimal amount of blocks necessary to reconstruct all s-
sparse vectors. Next, we show that Theorem 3.1 is sharp in this setting since the sufficient
amount of blocks to reconstruct s-sparse vectors coincides with the necessary minimal amount.
Finally, we perform a comparison with the results in [PDG14].
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(a) (b)

Figure 2: Example of sampling pattern used in MRI [LDP07]. (a) Visualization in the kx-ky
plane. (b) Visualization in 3D.

4.3.1 Preliminaries

Let Ψ ∈ C
√
n×
√
n denote an arbitrary orthogonal transform, with

√
n ∈ N. Let

A0 = Ψ⊗Ψ =


Ψ1,1Ψ . . . Ψ1,

√
nΨ

Ψ2,1Ψ . . . Ψ2,
√
nΨ

...
. . .

...
Ψ√n,1Ψ . . . Ψ√n,

√
nΨ

 ∈ Cn×n,

where ⊗ denote the Kronecker product. Note that A0 is also orthogonal. We define blocks of
measurements from A0 as follows:

Bk = Ψk,: ⊗Ψ (10)

=
[
Ψk,1Ψ, . . . ,Ψk,

√
nΨ
]
∈ C

√
n×n. (11)

For instance, if Ψ is the 1D discrete Fourier transform, this strategy consists in constructing√
n blocks as horizontal discrete lines of the discrete Fourier plane. This is similar to the blocks

used in [LDP07]. Similarly to Section 2.3.1, a sensing matrix A can be constructed by drawing
m i.i.d. blocks with distribution Π. Letting K = (k1, . . . , km) ∈ {1, . . . ,

√
n}m denote the drawn

blocks indexes, A reads:

A =
1√
m


Bk1√
πk1
...

Bkm√
πkm

 (12)

=

(
D(π)−1/2√

m
·ΨK,:

)
⊗Ψ

= Ψ̃K,: ⊗Ψ

(13)

where D(π) := diag(πk1 , . . . , πkm) and Ψ̃K,: := D(π)−1/2
√
m

· ΨK,:. By combining the results in

Theorem 3.1 and Proposition 3.4, we easily get the following reconstruction guarantees.

9



Proposition 4.2. Let S ⊂ {1, . . . , n} be the support of cardinality s of the signal x ∈ Cn to
reconstruct. Under the above hypotheses, if

m ≥ cs max
1≤j≤M

‖B∗jBj‖1→∞
πj

ln (4n) ln
(
12ε−1

)
, (14)

then the vector x is the unique solution of (2) with probability at least 1− ε.

Using the above result we also obtain the following Corollary.

Corollary 4.3. The drawing probability distribution Π? minimizing the right hand side of In-
equality (14) on the sufficient number of measurements is defined by

π?j =

∥∥∥B∗jBj

∥∥∥
1→∞∑M

k=1

∥∥B∗kBk

∥∥
1→∞

, ∀j ∈ {1, . . . ,M, } . (15)

For this particular choice of Π?, the right hand side of Inequality (14) can be written as follows

m ≥ cs
M∑
j=1

‖B∗jBj‖1→∞ ln (4n) ln
(
12ε−1

)
. (16)

The sharpness of the bounds on the sufficient number of measurements in Corollary 4.3 will
be discussed in the following paragraph.

4.3.2 The limits of separable transforms

Considering a 2D discrete Fourier transform and a dictionary of blocks made of horizontal lines
in the discrete Fourier domain, one could hope to only require m = O(s/p ln(n)) blocks of
measurements to perfectly recover all s-sparse vectors. Indeed, it is known since [CRT06a] that
O(s ln(n)) isolated measurements uniformly drawn at random are sufficient to achieve this. In
this paragraph, we show that this expectation cannot be satisfied since at least 2s blocks are
necessary to reconstruct any s-sparse vectors. It means that this specific block structure is
inadequate to obtain strong reconstruction guarantees. This result also shows that Corollary
4.3 is nearly optimal.

In order to prove those results, we first recall the following useful lemma. We define a decoder
as any mapping ∆ : Cq → Cn. Note that ∆ is not necessarily a linear mapping.

Lemma 4.4. [CDD09, Lemma 3.1] Set Σs to be the set of s-sparse vectors in Cn. If A is any
m× n matrix, then the following propositions are equivalent:

(i) There is a decoder ∆ such that ∆(Ax) = x, for all s-sparse x in Cn.

(ii) Σ2s ∩KerA = {0}.

(iii) For any set T ⊂ {1, . . . , n} of cardinality 2s, the matrix AT has rank 2s.

Looking at (iii) of Lemma 4.4, since the rank of AT is smaller than min(2s,m), we deduce
that m ≥ 2s is a necessary condition to have a decoder. Therefore, if the number of isolated
measurements is less than 2s with s the degree of sparsity of x, we cannot reconstruct x. This
property is an important step to prove Proposition 4.5.

Proposition 4.5. Assume that the sensing matrix A has the special block structure described in
(12). If m < min(2s,

√
n), then there exists no decoder ∆ such that ∆(Ax) = x for all s-sparse

vector x ∈ Cn. In other words, the minimal number m of distinct blocks required to identify
every s-sparse vectors is necessarily larger than min(2s,

√
n).

10



(a) (b)

Figure 3: A pathological case where n = 32 × 32 (a): The signal is s-sparse for s = 10 and
its support is concentrated on its first column. (b) Its 2D Fourier transform is constant along
horizontal lines in the Fourier plane.

Proposition 4.5 shows that there is no hope to reconstruct all s-sparse vectors with less
than m = O(s) blocks of measurements, using sensing matrices A made of blocks such as (10).

Moreover, since the blocks are of length p =
√
n, it follows that whenever s ≥

√
n
2 , the full

matrix A0 should be used to identify every s-sparse x. Let us illustrate this result on a practical
example. Set A0 to be the 2D Fourier matrix, i.e. the Kronecker product of two 1D Fourier
matrices. Consider that the dictionary of blocks is made of horizontal lines. Now consider a
vector x ∈ R32×32 to be 10-sparse in the spatial domain and only supported on the first column
as illustrated in Figure 3(a). Due to this specific signal structure, the Fourier coefficients of
x are constant along horizontal lines, see Figure 3(b). Therefore, for this type of signal, the
information captured by a block of measurements (i.e. a horizontal line) is as informative as
one isolated measurement. Clearly, at least O(s) blocks are therefore required to reconstruct all
s-sparse vectors supported on a vertical line of the 2D Fourier plane. Using Corollary 4.3, one
can derive the following result.

Proposition 4.6. Let A0 ∈ Cn×n denote the 2D discrete Fourier matrix and consider a partition
in M =

√
n blocks that consist of lines in the 2D Fourier domain. Assume that x ∈ Cn is s-

sparse. The drawing probability minimizing the right hand side of (14) is given by

π?j =
1√
n
, ∀j ∈

{
1, . . . ,

√
n
}

and for this particular choice, the number m of blocks of measurements sufficient to reconstruct
x with probability 1− ε is

m ≥ cs ln (4n) ln
(
12ε−1

)
.

This result is disappointing but optimal up to a logarithmic factor, due to Proposition 4.5.
We refer to Appendix C.5 for the proof. This Proposition indicates that O(s ln(n)) blocks are
sufficient to reconstruct x which is similar to the minimal number given in Proposition 4.5 up
to a logarithmic factor.

11



4.3.3 Relation to previous work

To the best of our knowledge, the only existing compressed sensing results based on blocks of
measurements appeared in [PDG14]. In this paragraph, we outline the differences between both
approaches.

First, in our work, no assumption on the sign pattern of the non-zero signal entries is
required. Furthermore, while the result in [PDG14] only covers the case described in Section
2.3.1 (i.e. partitions of orthogonal transforms), our work covers the case of overlapping blocks
of measurements (see Section 2.3.2), subsampled tight or continuous frames (see Section 2.3.3),
and it can also be extended to the case of randomly generated blocks (see Section 2.3.4). Last
but not least, the work [PDG14] only deals with uniform sampling densities which is well known
to be of little interest when dealing with partially coherent matrices (see e.g. end of Section 4.1
for an edifying example).

Apart from those contextual differences, the comparison between the results in [PDG14] and
the ones in this paper is not straightforward. The criterion in [PDG14] that controls the overall
number of measurements q depends on the following quantity:

Υ(A0, S,B) := ‖BS‖2→1,

where BS stands for the block restricted to the columns in S with renormalized rows. The total
number of measurements required in the approach [PDG14] is

qPDG ≥ CΥ(A0, S,B) max
i,j
|A0(i, j)|3n3/2 ln(n) (17)

which should be compared to our result

q ≥ cpγ ln (4n) ln
(
12ε−1

)
. (18)

As shown in the previous paragraphs, the bound (18) is tight in various settings of interest,
while (17) is usually hard to explicitly compute or too large in the case of partially incoherent
transforms. It therefore seems that our results should be preferred over those of [PDG14].

5 Outlook

We have introduced new sensing matrices that are constructed by stacking random blocks of
measurements. Such matrices play an important role in applications since they can be im-
plemented easily on many imaging devices. We have derived theorems that guarantee exact
reconstruction using these matrices via `1-minimization algorithms and outlined the crucial role
of two properties: the extra and intra support block-coherences introduced in Definition 2.1.
We have shown that our main result (Theorem 3.1) coincides with the best so far results for
isolated measurements and is tight for a few sampling schemes used in actual applications.

Apart from those positive results, this work also reveals some limits of block sampling ap-
proaches. First, it seems hard to evaluate the extra and intra support block-coherences - except
in a few particular cases - both analytically and numerically. This evaluation is however central
to derive optimal sampling approaches. More importantly, we have shown in Section 4.3.2 that
not much could be expected from this approach in the specific setting where separable trans-
forms and blocks consisting of lines of the acquisition space are used. Despite the peculiarity
of such a dictionary, we believe that this result might be an indicator of a more general weak-
ness of block sampling approaches. Since the best known compressed sensing strategies heavily
rely on randomness (e.g. Gaussian measurements or uniform drawings of Fourier atoms), one
may wonder whether the more rigid sampling patterns generated by block sampling approaches
have a chance to provide decent results. It is therefore legitimate to ask the following question:
is it reasonable to use variable density sampling with pre-defined blocks of measurements in
compressed sensing?

12



Numerical experiments indicate that the answer to this question is positive. For instance, it is
readily seen in Figure 4 (a,b,c) and (j,k,l), that block sampling strategies can produce comparable
results to acquisitions based on isolated measurements. The first potential explanation to this
phenomenon is that γ is low for the dictionaries chosen in those experiments. However, even
acquisitions based on horizontal lines in the Fourier domain (see Figure 4 (d,e,f)) produce rather
good reconstruction results while Proposition 4.6 seems to indicate that this strategy is doomed.

This last observation suggests that a key feature is missing in our study to fully understand
the potential of block sampling in applications. Recent papers [AHPR13, AHR14] highlight the
central role of structured sparsity to explain the practical success of compressed sensing. In
Figure 5, we aim at reconstructing 2D sparse signals in the spatial domain using a same and
unique sampling scheme based on horizontal lines in the Fourier domain and presented at the
top of the Figure. We consider three s-sparse signals with different kinds of sparsity: in (a) the
sparsity structure is supported on a column. This pattern is pathological for such a sampling
setting as Proposition 4.5 suggests; in (d), the sparsity is uniformly distributed in the spatial
domain; in (g), the sparsity structure is supported on a row and it is actually a rotated version
of (a). We run an `1-based reconstruction algorithm and the reconstructed signals are displayed
in (b,e,h).

• In (b), we do not reconstruct at all the signal with the “worst” support for such acquisition
constraints. This was predicted by Proposition 4.5: there are not enough sensed horizontal
lines in the Fourier domain to reconstruct a signal with such a sparsity structure.

• In (e), we are able to partially reconstruct the signal with an ”unstructured” sparsity. In
(f), we show the difference image between the reconstructed and the original images.

• In (h), we perfectly recover the original image: the structured sparsity presented in (g)
seems very adapted to these sampling modalities.

This short experiment highlights that the reconstruction quality does not only depend on the
structure in the acquisition but also on how the structured sparsity of the signal to reconstruct
is adapted to it.

A very promising perspective is therefore to couple the ideas of structured sparsity in
[AHPR13, AHR14] and the ideas of block sampling proposed in this paper to finely understand
the results in Figure 4 and perhaps design new optimal and applicable sampling strategies. We
have proposed new strategies to develop such a theory in [BBW15].
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(a) (b) PSNR = 40 dB (c)

(d) (e) PSNR = 32.79 dB (f)

(g) (h) PSNR = 36.34 dB (i)

(j) (k) PSNR = 38.99 dB (l)

Figure 4: Reconstruction results using different sampling strategies. Each sampling pattern
contains 10% of the total number of possible measurements. From top to bottom: measurements
drawn independently at random with a radial distribution - horizontal lines in the Fourier
domain - deterministic radial sampling - heuristic method proposed in [BWB14]. From left to
right: sampling scheme - corresponding reconstruction - difference with the reference (the same
colormap is used in every experiment).
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Sampling scheme in the Fourier domain

(a) Original (b) SNR = 0.09 dB (c) Error

(d) Original (e) SNR = 12.3 dB (f) Error

(g) Original (h) SNR = 98.6 dB (i) Error

Figure 5: Illustration of a possible missing key feature for structured acquisition: the structured
sparsity. In (a,d,g) we present 3 signals with the same degree of sparsity in the spatial domain,
but (a) corresponds to a pathological vector introduced in Section 4.3, (d) has an ”unstructured”
sparsity and (g) is the rotation of 90◦ of (a). The same sampling scheme, based on horizontal
lines in the Fourier domain, is used for all the reconstructions and it is presented at the top.
In (b)(e)(h), we display the corresponding reconstructions. In (c,f,i), we display the difference
images between reconstructed and original signals (on a same gray scale).

15



A Bernstein’s inequalities

Theorem A.1 (Scalar Bernstein Inequality). Let x1, . . . , xm be independent random variables
such that |x`| ≤ K almost surely for every ` ∈ {1, . . . ,m}. Assume that E|x`|2 ≤ σ2` for
` ∈ {1, . . . ,m}. Then for all t > 0,

P

(∣∣∣∣∣
m∑
`=1

x`

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− t2/2

σ2 +Kt/3

)
,

with σ2 ≥
∑m

`=1 σ
2
` .

Theorem A.2 (Rectangular Matrix Bernstein Inequality). [Tro12, Theorem 1.6]
Let (Zk)1≤k≤m be a finite sequence of rectangular independent random matrices of dimension

d1× d2. Suppose that Zk is such that EZk = 0 and ‖Zk‖2→2 ≤ K a.s. for some constant K > 0
that is independent of k. Define

σ2 ≥ max

(∥∥∥∥∥
m∑
k=1

EZkZ∗k

∥∥∥∥∥
2→2

,

∥∥∥∥∥
m∑
k=1

EZ∗kZk

∥∥∥∥∥
2→2

)
.

Then, for any t > 0, we have that

P

(∥∥∥∥∥
m∑
k=1

Zk

∥∥∥∥∥
2→2

≥ t

)
≤ (d1 + d2) exp

(
− t2/2

σ2 +Kt/3

)
Theorem A.3 (Vector Bernstein Inequality (V1)). [CP11, Theorem 2.6] Let (yk)1≤k≤m be
a finite sequence of independent and identically distributed random vectors of dimension n.
Suppose that Ey1 = 0 and ‖y1‖2 ≤ K a.s. for some constant K > 0 and set σ2 ≥

∑
k E‖yk‖22.

Let Z = ‖
∑m

k=1 yk‖2. Then, for any 0 < t ≤ σ2/K, we have that

P (Z ≥ t) ≤ exp

(
−(t/σ − 1)2

4

)
≤ exp

(
− t2

8σ2
+

1

4

)
,

where EZ2 =
∑m

k=1 E‖yk‖22 = mE‖y1‖22.

Theorem A.4 (Vector Bernstein Inequality (V2)). [FR13, Corollary 8.44] Let (yk)1≤k≤m be
a finite sequence of independent and indentically distributed random vectors of dimension n.
Suppose that Ey1 = 0 and ‖y1‖2 ≤ K a.s. for some constant K > 0. Let Z = ‖

∑m
k=1 yk‖2.

Then, for any t > 0, we have that

P
(
Z ≥

√
EZ2 + t

)
≤ exp

(
− t2/2

EZ2 + 2K
√
EZ2 +Kt/3

)
,

where EZ2 =
∑m

k=1 E‖yk‖22 = mE‖y1‖22. Note that the previous inequality still holds by replacing
EZ2 by σ2 where σ2 ≥ EZ2.

B Estimates: auxiliary results

Let S be the support of the signal to be reconstructed such that |S| = s. Note that the isotropy
condition (4) ensures that the following properties hold

(i) E (B∗B) = Idn and E (B∗SBS) = Ids.

(ii) for any vector w ∈ Cs, E [BSw]2 = ‖w‖22.
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(iii) for any i ∈ Sc, E (B∗SBei) = 0.

The above properties will be repeatedly used in the proof of the following lemmas.

Lemma B.1. Let S ⊂ {1, . . . , n} be of cardinality of s. Then, for any δ > 0, one has that

P (‖A∗SAS − Ids‖2→2 ≥ δ) ≤ 2s exp

(
− mδ2/2

µ1 + max(µ1 − 1, 1)δ/3)

)
. (E1)

Proof. We decompose the matrix A∗SAS − Ids as

A∗SAS − Ids =
1

m

m∑
k=1

(
B∗k,SBk,S − Ids

)
=

1

m

m∑
k=1

Xk,

where Xk :=
(
B∗k,SBk,S − Ids

)
. It is clear that EXk = 0, and since

∥∥∥B∗k,SBk,S

∥∥∥
2→2
≤ µ1, we

have that
‖Xk‖2→2 = max

(∥∥B∗k,SBk,S

∥∥
2→2
− 1, 1

)
≤ max(µ1 − 1, 1).

Lastly, we remark that

0 � EX2
k = E

[
B∗k,SBk,S

]2 − Ids � E
∥∥B∗k,SBk,S

∥∥
2
B∗k,SBk,S � µ1Ids.

Therefore,
∑m

k=1 EX2
k � mµ1Ids which implies that

∥∥∑m
k=1 EX2

k

∥∥
2
≤ mµ1. Hence, inequality

(E1) follows immediately from Bernstein’s inequality for random matrices (see Therorem A.2).
�

Lemma B.2. Let S ⊂ {1, . . . , n}, such that |S| = s. Let w be a vector in Cs. Then, for any
t > 0, one has that

P

(
‖(A∗SAS − Ids)w‖2 ≥

(√
µ1 − 1

m
+ t

)
‖w‖2

)
(E2)

≤ exp

− mt2/2

(µ1 − 1) + 2
√

µ1−1
m µ1 + µ1t/3

 .

Proof. Without loss of generality we may assume that ‖w‖2 = 1. We remark that

(A∗SAS − Ids)wS =
1

m

m∑
k=1

(
B∗k,SBk,S − Ids

)
w =

1

m

m∑
k=1

yk,

where yk =
(
B∗k,SBk,S − Ids

)
w is a random vector with zero mean. Simple calculations yield

that ∥∥∥∥ 1

m
yk

∥∥∥∥2
2

=
1

m2

(
w∗
(
B∗k,SBk,S

)2
w − 2w∗B∗k,SBk,Sw +w∗w

)
≤ 1

m2

(
µ1w

∗B∗k,SBk,Sw − 2w∗B∗k,SBk,Sw + 1
)

=
1

m2

(
(µ1 − 2)w∗B∗k,SBk,Sw + 1

)
≤ 1

m2

(
(µ1 − 2)µ1‖w‖22 + 1

)
=

1

m2
((µ1 − 2)µ1 + 1)

≤ 1

m2
(µ1 − 1)2 ≤ 1

m2
µ21.
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Now, let us define Z =
∥∥ 1
m

∑m
k=1 yk

∥∥
2
. By independence of the random vectors yk, it follows

that

E
[
Z2
]

=
1

m
E ‖y1‖22 =

1

m
E [〈B∗SBSw,B

∗
SBSw〉 − 2 〈B∗SBSw,w〉+ 〈w,w〉]

=
1

m
E
[〈

(B∗SBS)2w,w
〉
− 2 ‖BSw‖22 + 1

]
.

To bound the first term in the above equality, one can write

E
[〈

(B∗SBS)2w,w
〉]

=
〈
E
[
(B∗SBS)2

]
w,w

〉
≤ µ1 〈E [(B∗SBS)]w,w〉 ≤ µ1‖w‖22 = µ1.

One immediately has that E 〈BSw,BSw〉 = ‖w‖22 = 1. Therefore, one finally obtains that

E
[
Z2
]
≤ µ1 − 1

m
.

Using the above upper bounds, namely
∥∥ 1
myk

∥∥
2
≤ µ1

m and E
[
Z2
]
≤ µ1−1

m , the result of the
lemma is thus a consequence of the Bernstein’s inequality for random vectors (see Theorem
A.4), which completes the proof. �

Lemma B.3. Let S ⊂ {1, . . . , n}, such that |S| = s. Let v be a vector of Cs. Then we have

P (‖A∗ScASv‖∞ ≥ t‖v‖2) ≤ 4n exp

(
− mt2/4
µ3
s + µ2√

s
t/3

)
. (E3)

Proof. Suppose without loss of generality that ‖v‖2 = 1. Then,

‖A∗ScASv‖∞ = max
i∈Sc
〈ei,A∗ASv〉 = max

i∈Sc

1

m

m∑
k=1

〈ei,B∗kBk,Sv〉 .

Let us define Zk = 1
m 〈ei,B

∗
kBk,Sv〉. Note that EZk = 0. From the Cauchy-Schwarz inequality,

we get

|Zk| =
∣∣∣∣ 1

m
〈ei,B∗kBk,Sv〉

∣∣∣∣ =

∣∣∣∣ 1

m
v∗B∗k,S(Bkei)

∣∣∣∣ ≤ 1

m
‖v‖2‖B∗k,S(Bkei)‖2 ≤

1

m

µ2√
s
.

Furthermore,

E|Zk|2 =
1

m2
E 〈(Bkei),Bk,Sv〉2

≤ 1

m2
v∗E [B∗S (Bei) (Bei)

∗BS ]v

≤ 1

m2
max
i∈Sc
‖E [B∗S (Bei) (Bei)

∗BS ]‖2→2 =
1

m2

µ3
s
.

Using Bernstein’s inequality A.1 for complex random variables, we end to

P

(
1

m

∣∣∣∣∣
m∑
k=1

〈ei,B∗kBkv〉

∣∣∣∣∣ ≥ t
)

≤ P

(
1

m

∣∣∣∣∣
m∑
k=1

Re 〈ei,B∗kBkv〉

∣∣∣∣∣ ≥ t/√2

)
+ P

(
1

m

∣∣∣∣∣
m∑
k=1

Im 〈ei,B∗kBkv〉

∣∣∣∣∣ ≥ t/√2

)

≤ 4 exp

(
− mt2/4
µ3
s + µ2√

s
t/3

)
.

Taking the union bound over i ∈ Sc completes the proof. �
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Lemma B.4. Let S be a subset of {1, . . . , n}. Then, for any 0 < t < µ1
µ2

, one has that

P
(

max
i∈Sc
‖A∗SAei‖2 ≥ t

)
≤ n exp

−
(√

m/µ1t− 1
)2

4

 . (E4)

Proof. Let us fix some i ∈ Sc. For k = 1, . . . ,m, we define the random matrix

xk :=
1

m
B∗k,SBkei.

One has that Exk = 0. Then, we remark that

‖A∗SAei‖2 =

∥∥∥∥∥ 1

m

m∑
k=1

B∗k,SBkei

∥∥∥∥∥
2

=

∥∥∥∥∥
m∑
k=1

xk

∥∥∥∥∥
2

.

It follows that

‖xk‖2 =
1

m

∥∥B∗k,SBkei
∥∥
2
≤ 1

m

µ2√
s
.

Furthermore, using Cauchy-Schwarz inequality, one has that

E ‖x1‖22 =
1

m2
E‖B∗1,SB1ei‖22 ≤

1

m2
E‖B∗1,S‖22→2‖B1ei‖22 ≤

1

m2
µ1E‖B1ei‖22 =

1

m2
µ1‖ei‖2

≤ 1

m2
µ1.

Hence, using the above upper bounds, it follows from Bernstein’s inequality for random vectors
(see Theorem A.3) that

P (‖A∗SAei‖2 ≥ t) ≤ exp

−
(√

m/µ1t− 1
)2

4

 ,

Finally, Inequality (E4) follows from a union bound over i ∈ Sc, which completes the proof. �

C Proofs of the main results

C.1 Proof of Theorem 3.1

In this section, we recall an inexact duality formulation of the minimization problem (2) in the
form of sufficient conditions to guarantee that the vector x is the unique minimizer of (2), see
[CP11]. These conditions give the properties that an inexact dual vector must satisfy to ensure
the uniqueness of the solution of (2). In what follows, the notation M|R denotes the restriction
of a square matrix M to its range R, and we define

‖M−1
|R ‖2→2 = sup

x∈R; ‖x‖2=1
‖M−1

|R x‖2

as the operator norm of the inverse of M|R restricted to its range.

Lemma C.1 (Inexact duality [CP11]). Suppose that x ∈ Rn is supported on S ⊂ {1, . . . , n}.
Then, assume that

‖ (A∗SAS)−1|S ‖2→2 ≤ 2 and max
i∈Sc
‖A∗SAei‖2 ≤ 1. (19)

Morever, suppose that there exists v ∈ Rn in the row space of A obeying

‖vS − sign(xS)‖2 ≤ 1/4 and ‖vSc‖∞ ≤ 1/4, (20)

Then, the vector x is the unique solution of the minimization problem (2)
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For ease of reading, we will use the shorthand notation µi for i = 1, 2, 3 or γ instead of µi(s)
or γ(s). First, let us focus on Conditions (19). We can remark that

‖ (A∗SAS)−1|S ‖2→2 =

∥∥∥∥∥
∞∑
k=1

(A∗SAS − Ids)
k

∥∥∥∥∥
2→2

≤
∞∑
k=1

‖A∗SAS − Ids‖k2→2 .

Therefore, if the condition ‖A∗SAS − Ids‖2→2 ≤ 1/2 is satisfied, then ‖ (A∗SAS)−1|S ‖2→2 ≤ 2.

Hence, by Lemma B.1, it is clear that ‖ (A∗SAS)−1|S ‖2→2 ≤ 2 with probability at least 1 − ε,
provided that

m ≥ 8

(
µ1 +

1

6
max (µ1 − 1, 1)

)
ln

(
2s

ε

)
.

By definition of γ, the first inequality of Conditions (19) is ensured with probability larger than
1− ε if

m ≥ 8

(
γ +

1

6
max (γ − 1, 1)

)
ln

(
2s

ε

)
. (21)

Furthermore, using Lemma B.4, we obtain that

max
i∈Sc
‖A∗SAei‖2 ≤ 1

with probability larger than 1− ε if

m ≥ µ1
(

1 + 4

√
ln
(n
ε

)
+ 4ln

(n
ε

))
.

Again by definition of γ, the second part of Conditions (20) is ensured if

m ≥ 9γ ln
(n
ε

)
. (22)

Conditions (20) remain to be verified. The rest of the proof of Theorem 3.1 relies on the
construction of a vector v satisfying the conditions described in Lemma C.1 with high probability.
To do so, we adapt the so-called golfing scheme introduced by Gross [Gro11] and adapted by
[CP11] to `1-reconstruction, to our setting. More precisely, we will iteratively construct a vector
that converges to a vector v satisfying (20) with high probability. The main differences with
the work in [CP11] are

• we catch the block-structured acquisition in the estimates of Section B,

• we modify the golfing scheme by partitioning the sensing matrix A into blocks of blocks
of measurements. By doing so, we can deduce conditions on a sufficient number of blocks
of measurements to ensure exact recovery.

Let us first partition the sensing matrix A into blocks of blocks so that, from now on, we
denote by A(1) the first m1 blocks of A, A(2) the next m2 blocks, and so on. The L random
matrices

{
A(`)

}
`=1,...,L

are independently distributed, and we have that m = m1+m2+. . .+mL.

As explained before, A
(`)
S denotes the matrix A(`)PS . The golfing scheme starts by defining

v(0) = 0, and then it inductively defines

v(`) =
m

m`
A(`)∗A

(`)
S

(
e− v(`−1)S

)
+ v(`−1), (23)

for ` = 1, . . . , L. In the rest of the proof, we set v = v(L). By construction, v is in the row
space of A. The main idea of the golfing scheme is then to combine the results from the various
Lemmas in Section B with an appropriate choice of L and the number m of measurements, to
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show that the random vector v will satisfy the assumptions of Lemma C.1 with large probability.

Using the shorthand notation v
(`)
S = P ∗Sv

(`), let us define

w(`) = e− v(`)S , ` = 1, . . . , L,

where e = sign(xS), and x ∈ Rn is an s-sparse vector supported on S.

From the definition of v
(`)
S , it follows that, for any 1 ≤ ` ≤ L,

w(`) =

(
Ids −

m

m`
A

(`)∗
S A

(`)
S

)
w(`−1) =

∏̀
j=1

(
Ids −

m

mj
A

(j)∗
S A

(j)
S

)
e, (24)

and

v =
L∑
`=1

m

m`
A(`)∗A

(`)
S w

(`−1). (25)

Note that in particular, w(0) = e and w(L) = e − vS . In what follows, it will be shown that

the matrices Ids− m
m`
A

(`)∗
S A

(`)
S are contractions, and that the norm of the vector w(`) decreases

geometrically fast as ` increases. Therefore, v
(`)
S becomes close to e as ` tends to L. In particular,

we will prove that ‖w(L)‖2 ≤ 1/4 for a suitable choice of L. In addition, we also show that v
satisfies the condition ‖vSc‖∞ ≤ 1/4. All these conditions will be shown to be satisfied with a
large probability (depending on ε).

For all 1 ≤ ` ≤ L, we assume that with high probability

∥∥∥w(`)
∥∥∥
2
≤
(√

µ1 − 1

m`
+ r`

)
︸ ︷︷ ︸

r′`

∥∥∥w(`−1)
∥∥∥
2

(26)

∥∥∥∥ mm`

(
A

(`)
Sc

)∗
A

(`)
S w

(`−1)
∥∥∥∥
∞
≤ t`‖w(`−1)‖2. (27)

The values of the quantities t` and r`, introduced in the above equations, will be specified later
in the proof. Note that using (26), we can write that

‖e− vS‖2 = ‖w(L)‖2 ≤ ‖e‖2
L∏
`=1

r′` ≤
√
s

L∏
`=1

r′`. (28)

Furthermore, Equation (27) implies that

‖vSc‖∞ =

∥∥∥∥∥
L∑
`=1

m

m`

(
A

(`)
Sc

)∗
A

(`)
S w

(`−1)

∥∥∥∥∥
∞

≤
L∑
`=1

∥∥∥∥ mm`

(
A

(`)
Sc

)∗
A

(`)
S w

(`−1)
∥∥∥∥
∞

≤
L∑
`=1

t`

∥∥∥w(`−1)
∥∥∥
∞

≤
√
s

L∑
`=1

t`

`−1∏
j=1

r′j . (29)

We denote by p1(`) and p2(`) the respective probability that the upper bounds (26) and (27)
do not hold. Now, let us set the number of blocks of blocks L, the number of blocks m` in each
A(`) and the values of the parameters t` and r` that have been introduced above. We propose
to make the following choices :
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(i) L = 2 +
⌈
ln(s)
2 ln 2

⌉
,

(ii) m1,m2 ≥ cγ ln (4n) ln
(
2ε−1

)
m` ≥ cγ ln

(
2Lε−1

)
, for ` = 3, . . . , L, for some sufficiently large c ≥ 1,

(iii) r1, r2 = 1
4
√
ln 4n

,

r` = 1
4 , for ` = 3, . . . , L,

(iv) t1, t2 = 1
8
√
s
,

t` = ln(4n)
8
√
s
, for ` = 3, . . . , L.

With such choices, we obtain that

r′1, r
′
2 =

√
µ1 − 1

m`
+

1

4
√

lnn
≤ 1

2
√

lnn
≤ 1

2
,

and

r′` =

√
µ1 − 1

m`
+

1

4
≤ 1

2

Furthermore, using (28), we obtain that

‖e− vS‖2 ≤
√
s

L∏
`=1

r′` ≤
√
s

2L
≤ 1

4
, (30)

where the last inequality follows from the previously specified choice on L. Moreover, using
(29), we have that

‖vSc‖∞ ≤
√
s

L∑
`=1

t`

`−1∏
j=1

r′j =
√
s
(
t1 + t2r

′
1 + t3r

′
1r
′
2 + ...

)
≤
(

1

8
+

1

16
√

lnn
+

1

32
+ ...

)
≤ 1

4
. (31)

For such a choice of parameters, and by Lemmas B.2 and B.3, if we fix ε ∈ (0, 1/6), the bound
c ≥ 534 ensures p1(1), p1(2), p2(1), p2(2) ≤ ε/2 and p1(`), p2(`) ≤ ε/2L for ` = 3, . . . , L.
Therefore,

∑L
`=1 p1(`) ≤ 2ε and

∑L
`=1 p2(`) ≤ 2ε. From the above calculation, and by Lemmas

B.2 and B.3 we finally obtain that if the overall number m of blocks samples obeys the condition

m =
L∑
`=1

m` ≥ cγ
(
2 ln (4n) ln

(
2ε−1

)
+ (L− 2) ln

(
2Lε−1

))
,

which can be simplified into

m ≥ cγ
(
2 ln (4n) ln

(
2ε−1

)
+ ln s ln

(
2e ln(s)ε−1

))
, (32)

then the random vector v, defined by (25), satisfies Assumptions 20 of Lemma C.1 with proba-
bility larger than 1− 4ε.

Hence, we have thus shown that if m satisfies the conditions (21), (22) and (32), then the
Assumptions 19 and 20 of Lemma C.1 simultaneously hold with probability larger than 1− 6ε.
Note that the bound (32) is stronger than (21) and (22). We complete the proof of Theorem 3.1
by replacing ε by ε/6. The final result on the sufficient number of blocks measurements reads
as follows

m ≥ cγ(s)
(
2 ln (4n) ln

(
12ε−1

)
+ ln s ln

(
12e ln(s)ε−1

))
,

for c = 534, but in the statement we simplify the expression to improve the readability. Moreover,
note that in our proof, for the sake of concision, there is no attempt to strenghten the previous
result. Yet, we could have used the clever trick used in [AH15], and reused in [GKK].
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C.2 Proof of Proposition 3.4

By Definition 2.1, it suffices to show that setting µi = sµ4 for i ∈ {1, 2, 3} is sufficient to ensure
the inequalities (5).

The first inequality in (5) can be shown as follows:

‖BS
∗BS‖2→2 ≤ ‖BS

∗BS‖∞→∞ ≤ s‖B
∗B‖1→∞ ≤ sµ4.

The second inequality in (5) can be shown as follows:

√
smax
i∈Sc
‖BS

∗Bei‖2 ≤
√
s
√
s‖B∗B‖1→∞ ≤ sµ4.

Finally, fix i ∈ Sc. One can write

sEBS
∗ (Bei) (Bei)

∗BS � s‖ (Bei) (Bei)
∗ ‖2→2EBS

∗BS

� smax
i
‖Bei‖22Id

� s ‖B∗B‖1→∞ Id

� sµ4Id.

C.3 Proof of Proposition 4.1

Let us evaluate the quantities (µi)1≤i≤3 introduced in Definition 2.1 to upper bound γ with high
probability. For this purpose, using Theorem 2 in [LR10], we get that for any 0 < t < 1

P

(
‖B∗SBS‖2→2 ≥

(
1 +

√
s

p

)2

(1 + t)

)
≤ C exp

(
−√pst3/2

(
1√
t
∧
(
s

p

)1/4
)
/C

)
, (33)

for C a universal constant, under the assumption that s > p. We could also treat the case where
p > s by inverting the role of s and p in the above deviation inequality. We restrict our study
to the case s > p for simplicity.

By Inequality (33), we can consider that µ1 . s
p with large probability (provided that s is

sufficiently large). For evaluating µ2, we use the following upper bound,

max
i∈Sc
‖B∗SBei‖2 ≤ max

i∈Sc
‖B∗S‖2→2‖Bei‖2 ≤

√
‖B∗SBS‖2→2 max

i∈Sc

√
‖Bei‖22.

We already know that the first term
√
‖B∗SBS‖2→2 in the above inequality is bounded by

√
s
p

(up to a constant) with high probability, thanks to the previous discussion on µ1. As for the
second term, we use a union bound and the sub-gamma property of the chi-squared distribution,
see [BLM13, p.29], to derive that

P
(

max
i∈Sc
‖Bei‖22 ≥ 2

(√
t

p
+
t

p

))
≤ (n− s) exp(−t) ≤ n exp(−t).

Let δ > 1. Using the above deviation inequality, we get that

max
i∈Sc

√
‖Bei‖22 .

√
δ ln(s)

p
,

with probability larger than 1− ns−δ. Thus, we get the following upper bound for µ2:

µ2 .
s
√
δ ln(s)

p
,
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that holds with high probability provided that s is sufficiently large. Finally, by conditioning
with respect to BS and using the independence of BS and Bei for i ∈ Sc, we have that

smax
i∈Sc
‖E (B∗S (Bei) (Bei)

∗BS)‖2→2 = smax
i∈Sc
‖E [E (B∗S (Bei) (Bei)

∗BS |BS)]‖2→2 ,

= smax
i∈Sc
‖E [B∗SE ((Bei) (Bei)

∗)BS ]‖2→2 = smax
i∈Sc

∥∥∥∥E [B∗S 1

p
IdBS

]∥∥∥∥
2→2

=
s

p
.

Hence, one can take µ3 = s
p . Combining all these estimates we get that γ . s

p

√
δ ln(s). There-

fore, assuming that the lower bound on m in Theorem 3.1 still holds in the case of acquisition

by blocks made of Gaussian entries, we need m = O
(
s
p ln(s) ln(n)

)
blocks of measurements to

ensure exact recovery, that is an overall number of measurements q = O(s ln(s) ln(n)).

C.4 Proof of Proposition 4.5

The proof is divided in two parts. First we show the result for 1 ≤ s ≤
√
n and then we show it

for
√
n < s ≤ n. We let ei denote the i-th element of the canonical basis.

Part 1: Fix s ∈ {1, . . . ,
√
n}. Let Cs denote the class of vectors of kind x = α ⊗ e1, where

α ∈ R
√
n is s-sparse. Note that every x ∈ Cs is s-sparse and that

Ax = (Ψ̃K,: ⊗Ψ) · (α⊗ e1)

=
(
Ψ̃K,:α

)
⊗Ψe1.

In order to identify every s-sparse x knowing y = Ax, there should not exist two distinct
s-sparse vectors α(1) and α(2) in C

√
n such that Ψ̃K,:α

(1) = Ψ̃K,:α
(2). The vector α(1) − α(2)

is min(2s,
√
n)-sparse. Therefore, a necessary condition for recovering all s-sparse vectors with

1 ≤ s ≤
√
n is that Ψ̃K,:α 6= 0 for all non-zero min(2s,

√
n)-sparse vectors α. To finish the

first part of the proof it suffices to remark that a necessary condition for a set of min(2s,
√
n)

columns of Ψ̃K,: to be linearly independent is that m = |K| ≥ min(2s,
√
n), see Lemma 4.4.

Part 2: Assume that
√
n < s ≤ n. Consider the class Cs of s-sparse vectors of kind

x =

√
n∑

l=1

α(l) ⊗ el, where supp(α(1)) = {1, . . . ,
√
n}. For x ∈ Cs

Ax =

√
n∑

l=1

(
Ψ̃K,:α

(l)
)
⊗Ψel.

Similarly to the first part of the proof, in order to identify every s-sparse vectors, there should
not exist α(1) and α(1)′ with support equal to {1, . . . ,

√
n} such that Ψ̃K,:α

(1) = Ψ̃K,:α
(1)′ . We

showed in the previous section that a necessary condition for this condition to hold is m =
√
n.

C.5 Proof of Proposition 4.6

We consider blocks that consist of discrete lines in the 2D Fourier space as in Figure 1(b). We
assume that

√
n ∈ N and that A0 is the 2D Fourier matrix applicable on

√
n×
√
n images. For

all p1 ∈ {1, . . . ,
√
n},

Bp1 =

[
1√
n

exp

(
2iπ

(
p1`1 + p2`2√

n

))]
(p1, p2)(`1, `2)

(34)

with 1 ≤ p2 ≤
√
n, 1 ≤ `1, `2 ≤

√
n. Let S ⊂ {1, . . . ,

√
n} × {1, . . . ,

√
n} denote the support of

x, with |S| = s. By definition of the 2D Fourier matrix of size n× n, ‖B∗kBk‖1→∞ = 1/
√
n, for

all k ∈ {1, . . . ,
√
n}. Thus, Theorem 3.1 leads to

m ≥ cs 1√
n

max
1≤k≤M

1

πk
ln (4n) ln

(
12ε−1

)
.
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Therefore, the choice of an optimal drawing probability, regarding the number of measurements,
is given by

π?k =
1√
n
, ∀k ∈

{
1, . . . ,

√
n
}

and the number of measurements can be written as follows

m ≥ Cs ln (4n) ln
(
12ε−1

)
,

which ends the proof of Proposition 4.6.

D An example with overlapping blocks

Let us illustrate the overlapping setting, in the case of blocks that consist in rows and columns
in the 2D Fourier domain. Matrix A0 ∈ Cn×n is the 2D Fourier transform matrix. We set

Irowk =
{
i ∈ {1, . . . , n} , (k − 1)

√
n ≤ i ≤ k

√
n
}

Icolk =
{
k,
√
n+ k, . . . , (

√
n− 1)

√
n+ k

}
the sets of indexes of (a∗i )i∈{1,...,n} that respectively correspond to the k-th row and the k-column
in the 2D Fourier plane. Then, we can write the blocks as follows:

Bk =


(

1√
2
a∗i

)
i∈Irowk

if k ∈ {1, . . . ,
√
n}(

1√
2
a∗i

)
i∈Icol

k−
√
n

if k ∈ {
√
n+ 1, . . . , 2

√
n} .

We have chosen the normalization factor equal to 1/
√

2, as suggested, since each pixel of the
image belongs to two blocks: one row and one column. According to Corollary 4.3, we conclude
that the number of blocks of measurements must satisfy

m ≥ cs 1

2
√
n

max
1≤k≤M

1

πk

(
2 ln (4n) ln

(
12ε−1

)
+ ln s ln

(
12e ln(s)ε−1

))
. (35)

Choosing the uniform probability for Π?, i.e. π?k = 1
2
√
n

for all k ∈ {1, . . . , 2
√
n} leads to the

following number of blocks of measurements

m ≥ cs
(
2 ln (4n) ln

(
12ε−1

)
+ ln s ln

(
12e ln(s)ε−1

))
, (36)

which is the same requirement in the 2D Fourier domain without overlapping, see Proposition
4.6.
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