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On the Generation of Sampling Schemes for Magnetic Resonance Imaging∗

Claire Boyer† , Nicolas Chauffert‡ , Philippe Ciuciu‡ , Jonas Kahn§ , and Pierre Weiss¶

Abstract. Magnetic resonance imaging (MRI) is probably one of the most successful application fields of com-
pressed sensing. Despite recent advances, there is still a large discrepancy between theories and most
actual implementations. Overall, many important questions related to sampling theory remain open.
In this paper, we attack one of them: given a set of sampling constraints (e.g., measuring Fourier
coefficients along physically plausible trajectories), how to optimally design a sampling pattern? We
first outline three aspects that should be carefully designed by inspecting the literature, namely
admissibility, limit of the empirical measure, and coverage speed. To address them jointly, we then
propose an original approach which consists of projecting a probability distribution onto a set of
admissible measures. The proposed algorithm permits handling arbitrary constraints and automat-
ically generates efficient sampling patterns for MRI as shown on realistic simulations. We achieve a
20-fold undersampling factor at very high 2D resolution (100 µm isotropic) on physically plausible
sampling trajectories with a gain in SNR of 2–3 dB on reconstructed MR images as compared to
more standard sampling patterns (e.g., radial, spiral).
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1. Introduction. Magnetic resonance imaging (MRI) is one of the flagship applications
of compressed sensing (CS). The combination of CS and MRI initially appeared in [34], very
shortly after the seminal CS papers [11, 10, 19]. However, the way CS was originally imple-
mented on real scanners strongly departed from theory. Despite having limited theoretical
foundations, empirical implementations turned out to be useful in practice and triggered a
massive interest both in the MRI and mathematics communities. Since then, many researchers
have tried improving the way CS-MRI is implemented. These attempts can be divided into
two distinct tracks:

• The first one consists of reducing the coherence of the sensing basis by using techniques
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termed phase scrambling [26] or spread spectrum [46]. This can be implemented using
specific radio-frequency pulses [26] or shim-coils [46]. A few available theories support
these techniques [52, 47].

• The second one consists of keeping the sensing basis unchanged: images are acquired
by collecting Fourier samples and assuming sparsity in a wavelet basis. The problem
then reformulates as the design of new sampling patterns either in two dimensions
or in three dimensions. Examples ranging in this second category include patterns
made of parallel lines [34], radial lines [65], spirals [43], noisy spirals [36], Poisson disc
sampling [64].

The second approach is adopted more widely, probably due to its ease of implementation
since collecting Fourier coefficients along lines, for instance, is practically feasible for the
magnetic field gradients. In addition, it is unclear that using totally incoherent bases is better
for structured signals, as illustrated by [51]. In this paper, we will therefore focus on the
second track too, especially in the context of two-dimensional (2D) sampling even though our
approach can extend to three-dimensional (3D) imaging.

Contributions. The sampling patterns proposed in the literature for 2D imaging1 may
seem somewhat arbitrary (horizontal parallel lines, radial lines, spirals) but they actually
match what the magnetic field gradients can easily play while satisfying the hardware con-
straints. For instance, although many existing theories recommend using completely random
sampling patterns, it is not clear that adding random perturbations to a spiral will improve
its practical efficiency. In three dimensions, the use of parallel lines in the orthogonal di-
rection (i.e., readout direction) to the slices of interest permits us to easily implement a 2D
variable density sampling (VDS) [34] within each slice and in this regard to stick to the VDS
theory [48, 1, 16, 31]. However, in a 3D perspective, this 2D VDS is likely suboptimal since
high frequencies along the readout direction are sampled too densely, hence increasing the
scanning time uselessly as compared to a pure 3D VDS. Moreover, the recent CS theory with
block-structured acquisition [5] predicts that the above mentioned parallel line strategy will
produce some artifacts in the readout direction.

The first contribution of this paper is to provide a review of existing theoretical CS results
in section 3. This review permits us to establish general principles for designing efficient
sampling patterns.

The second and most significant contribution is to show that our recent projection algo-
rithm [15] can be used to generate feasible sampling patterns complying with the proposed
principles. The main idea is to project a probability distribution onto a space of admissible
measures. The reader can look at the result on Figure 1 to get an idea of what the algorithm
does: given an initial distribution (here a piece of text), the algorithm finds a sampling pattern
complying with physical constraints that best fits the distribution. The core of this algorithm
was proposed by a subset of the authors of [15]. It is based on the use of fast projection
algorithms on the set of admissible curves for MRI proposed in [17]. We also analyze new
constraint sets relevant for applications, based on unions of segments of variable length.

The third and last contribution consists of a series of numerical experiments led on stan-
dard and high resolution 2D MR images. The results suggest that the proposed sampling

1Slice-by-slice acquisition.
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Figure 1. A glance at our contribution: our algorithm generates a sampling pattern complying with the
MRI scanner constraints in which sampling locations consist of a piece of text, namely How to sample me
efficiently?.

patterns significantly outperform more traditional approaches (radial and spiral trajectories).
Related works. A few works in the literature address the problem of optimizing the acqui-

sition space coverage using computational techniques.
The contributions [39, 58] propose an algorithm to cover the whole k-space as fast as pos-

sible by relying on techniques used for missile guidance. This idea departs from the proposed
one since the objective of these authors was to satisfy Shannon’s sampling theorem, meaning
that the samples should cover the space uniformly.

In [32, 18], the authors have proposed synthesizing random feasible trajectories using opti-
mization techniques. Their idea was to generate random control points uniformly distributed
over the surface of a sphere. They then searched for a feasible trajectory that passed close to
them using second order cone programming. Multiple random trajectories were then gener-
ated this way and a genetic algorithm was involved to select the most relevant ones so as to
ensure a uniform k-space coverage. This idea does not stem from a clear sampling theory and
is based on randomness in contrast to the proposed approach.

In [7], two of the authors of this paper proposed generating sampling schemes with ideas
quite similar to the ones exposed here. Given a set of blocks of measurements (e.g., segments),
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an efficient drawing distribution was constructed by solving an original convex program. Draw-
ing independently and identically distributed (i.i.d.) blocks usually leads to suboptimal image
reconstruction results since neighboring blocks can be sampled multiple times, hence local
clusters of samples can emerge at the expense of a complete coverage of the k-space.

Finally, a few authors [54, 49, 20] have borrowed ideas from statistical design for generating
efficient sampling trajectories. In [54], the key point is to fix a set of feasible trajectories (e.g.,
pieces of spirals) and to select them iteratively by picking the one that brings the largest
amount of information at each step. Hence, finding the most meaningful trajectory becomes
computationally intensive and hardly compatible with a real-time acquisition. The main con-
tribution of [49, 20] is to propose alternative approaches to reduce the computational burden
by working on training images. These adaptive approaches suffer from a few drawbacks. First,
the whole versatility of MRI scanners is not exploited since fixed trajectories are imposed. Our
formalism does not impose such a restriction. Second, even though adaptivity to the sampled
image may seem appealing at first glance, it still seems unclear whether this learning step is
really helpful [2]. Finally, these approaches strongly depart from existing sampling theories,
whereas our contribution is still motivated by solid and recently established theories.

Outline of this paper. We first recall in section 2 how data are collected in MRI and then
how MR images are reconstructed. We then propose a short review of theoretical compressed
sensing results in section 3. Section 4 describes the main idea of this paper: we explain how
the design of sampling patterns can be formulated as a measure projection problem. We then
develop a numerical algorithm to solve this projection problem in section 5. Finally, numerical
experiments in a retrospective CS framework are conducted in section 6 and conclusions are
drawn in section 7.

2. MRI acquisition and reconstruction. In this section, we start by presenting how MRI
data are collected in a concise manner. This summary is motivated by the fact that in many
papers dealing with retrospective compressed sensing for 2D MRI, the authors assume that
the data are collected point-by-point. This strategy is feasible in practice but it dramatically
slows down the acquisition. In order to really accelerate acquisition, the data should be
acquired along continuous (e.g., lines), piecewise continuous (e.g., spokes) or more regular
trajectories (e.g., spirals). We then describe the `1 reconstruction framework we adopt in this
paper to get MR images.

2.1. MRI acquisition. In MRI, images are usually sampled in the so-called k-space, which
corresponds to the 2D or 3D Fourier domain [60]. The acquisition domain can be slightly
different (i) in the parallel MRI context, where spatial sensitivity encoding associated with the
multiple channel coil introduces a convolution in k-space [56, 45] or (ii) when shim coils (e.g.,
phase scrambling/spread spectrum) are involved [38, 26, 46]. In this paper, we focus on the
Fourier domain, but the proposed ideas could be extended to these other settings.

The samples lie along parameterized curves s : [0, T ] 7→ Rd, where d ∈ {2, 3} denotes
the image dimensions. The ith coordinate of s is denoted si. Let u : Rd → C denote a d-
dimensional image and let û be its Fourier transform. Given an image u, a curve s : [0, T ]→ Rd
and a sampling period ∆t (also termed dwell time in MRI), the image u shall be reconstructed
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from the following dataset:

(1) E =

{
û(s(j∆t)), 0 6 j 6

⌊
T

∆t

⌋}
.

In what follows, the scalar m =
⌊
T
∆t

⌋
+1 denotes the total number of collected samples. Hence,

vector y ∈ Cm with components yj = û(s(j∆t)) denotes the vector of measurements. In this
paper, we neglect typical distortions occurring in MRI such as noise, geometric distortions,
signal loss at tissue/air interfaces, or off-resonance effects which would affect the dataset
E in (1). We also neglect imprecisions in the trajectory due to Eddy currents that induce
gradient errors [9]. These are very important features that we plan to consider in forthcoming
works (see [62, 63] for details).

The gradient waveform associated with a curve s is defined by g(t) = γ−1ṡ(t), where γ
denotes the gyro-magnetic ratio [27]. The gradient waveform is obtained by supplying electric
power to gradient coils. This electric current has a bounded amplitude and cannot vary too
rapidly (slew rate). Mathematically, these constraints read

‖g‖ 6 Gmax and ‖ġ‖ 6 Smax,

where ‖ · ‖ denotes either the `∞-norm defined by

‖f‖∞ := max
1≤i≤d

sup
t∈[0,T ]

|fi(t)|,

or the `∞,2-norm defined by

‖f‖∞,2 := sup
t∈[0,T ]

(
d∑
i=1

|fi(t)|2
) 1

2

.

Additional affine constraints (e.g., k-space position at the echo time) could be added depending
on the targeted application (e.g., structural or functional imaging) and the chronogram of the
sequence (i.e., the interplay between the orthogonal gradients). For instance, s usually starts
from the k-space center, i.e., s(0) = 0. Multiple sampling trajectories (or interleaves) starting
from the origin can be used to improve the signal-to-noise (SNR) ratio: this typically leads
to additional linear constraints of type s(k · TR) = 0 for all k ∈ N, where TR is the time of
repetition, i.e., the time that separates the delivery of two successive radio-frequency pulses.
Overall these additional constraints can be summarized under the compact form A(s) = b
where A is a linear mapping and b is a fixed vector. We refer to [27, 17] for a more thorough
discussion on these issues.

A sampling trajectory s : [0, T ] → Rd will be said to be admissible if it belongs to the
convex set

ST : =
{
s ∈

(
C2([0, T ])

)d
, ‖ṡ‖ 6 α, ‖s̈‖ 6 β,A(s) = b

}
,(2)

with α = γGmax and β = γSmax .
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In addition to the above mentioned kinematics constraints, important considerations re-
garding the MR signal acquisition have to be taken into account. The first one is the ex-
ponential signal intensity decay due to transverse relaxation of spins. In this paper, we will
assume that the MR signal is available for 200 ms and therefore limit the trajectories to that
sampling time. The second supplementary constraint is the maximal number of samples that
can be stored in the buffer of the analog-to-digital converter. This buffer length may depend
on the imaging device but here we set this constraint to 8,192 samples per readout.

2.2. MRI reconstruction. Reconstruction of MRI images from k-space measurements E
is an involved problem that has been studied thoroughly. The main technical difficulties to
solve it are (i) the fact that k-space locations s(j∆t) do not lie on a Cartesian grid, (ii) the ill-
posedness of the problem, (iii) the large image dimensions, and (iv) an inaccurate knowledge
of the acquisition operator owing to magnetic field inhomogeneities, subject movements. In
the next paragraphs, we describe the methodology adopted to solve issues (i), (ii), and (iii).
Although of primary importance, problem (iv) is beyond the scope of this paper.

2.2.1. Modeling the observation operator. In order to define an inverse problem, we first
need to model the sampling operator S that maps u to its sampling set (û(s(j∆t)))0≤j≤m−1.

The mapping S should map a continuous space like L2(Rd) to Cm. For the purpose of practical
implementation, we consider instead a mapping S : Cn → Cm between two finite dimensional
spaces. By assuming that u = h ? v, where h is an interpolation kernel and

(3) v =
∑

0≤i1,...,id≤n1/d−1

vi1,...,id · δ (i1,...,id)

n1/d

,

the analytical expression of û is given by

û(ξ) = ĥ(ξ) ·

 ∑
0≤i1,...,id≤n1/d−1

vi · exp

(
− 2ıπ

n1/d
〈ξ, i〉

) ,(4)

where i = (i1, . . . , id). Computing the sums

(5)
∑

0≤i1,...,id≤n1/d−1

vi · exp

(
− 2ıπ

n1/d
〈ξ, i〉

)

for all ξ ∈ {s(j∆t), 0 ≤ j ≤ m − 1}, using the above expression directly is an O(nm) algo-
rithm. This complexity is prohibitive for large m and n. If the samples lie on a Cartesian grid,
the complexity can be decreased to O(n log(n)) using fast Fourier transforms (FFT). In this
paper, we depart from this simplifying assumption by considering non-Cartesian sampling
schemes. We therefore need to resort to more advanced techniques called nonuniform fast
Fourier transforms (NUFFT) [30]. They come with good parallel implementations on multi-
core or GPU architectures [29, 22]. All of the numerical experiments of this paper are based
on the NUFFT3 package on multicore architecture delivered by Chemnitz University [29]. In
all of the numerical experiments, we simply set h = δ. This is a reasonable choice, given that
we only work on simulations with discretized images.
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2.2.2. `1-norm reconstruction. A large set of reconstruction procedures have been de-
veloped over the past years. The simplest techniques are based on regridding [28, 44]. Lately,
techniques based on `1-regularization of wavelet, frame, or learned dictionary coefficients were
proven more efficient for large undersampling ratios [37, 24, 6, 50]. In this paper, we resort
to `1 regularization using an orthogonal wavelet transform. This setting comes with strong
theoretical guarantees of reconstruction, as will be seen in section 3.

The idea is to decompose the image u in an orthogonal wavelet basis. Let Ψ ∈ Cn×n
denote the wavelet synthesis operator. Here, we simply assume that Ψ decomposes the real
and complex part of u separately using the same orthogonal basis. The wavelet coefficients
of a discrete image u are denoted x = Ψ∗u. If u describes a piecewise smooth image, it is
well known that its wavelet coefficients x are compressible. This observation motivated the
introduction of the basis pursuit algorithm that consists of solving

(6) min
x∈Rp,SΨx=y

‖x‖1.

The use of the `1-norm is often justified as a convex relaxation of the `0-counting function
that counts the number of nonzero components in x. When the data y is degraded by noise,
the exact constraint SΨx = y is relaxed and transformed into a penalized data consistency
term. Then, the following quadratic programming problem has to be solved instead:

(7) min
x∈Rp

‖x‖1 +
λ

2
‖SΨx− y‖22.

Scalar λ > 0 is a parameter that balances the quadratic data consistency term and the
regularization term. In all of this paper, Ψ is defined as an orthogonal wavelet transform with
Symlet wavelets and three vanishing moments.

Problem (7) can be solved by using various well documented techniques. In this paper we
will use an accelerated proximal gradient descent algorithm (a.k.a. FISTA) [41, 42, 3].

3. Theoretical foundations of variable density sampling. In this section, we briefly re-
view the existing theoretical CS results. The conclusions of this section motivate the main
contribution of this work: the design of undersampling patterns by projecting i.i.d. drawings
on measure sets.

3.1. The first compressed sensing results. Let us first describe the CS theory as it ap-
peared in the seminal paper [10] and more recently in [12]. The authors consider an orthogonal
matrix

A0 =

a∗1
...

a∗n

 .

They propose constructing a random sensing matrix as

A =

a∗J1
...

a∗Jm

 ,



2046 BOYER, CHAUFFERT, CIUCIU, KAHN, AND WEISS

where the integers Jk ∈ {1, . . . , n} are i.i.d. uniform random variables. Knowing that y = Ax
in the noise-free case, the authors propose recovering x by solving problem (6). Let

x̄ = arg min
x∈Rp,Ax=y

‖x‖1.(8)

In this context, their main result reads as follows.

Theorem 1. Assume that x is s-sparse, i.e., that it contains at most s nonzero components.
If the number of measurements m satisfies

m ≥ Cs
(
n max

1≤k≤n
‖ak‖2∞

)
log
(n
ε

)
,

where C is a universal constant, then x̄ = x with probability 1− ε.
Moreover, the authors show that if the measurements are noisy, i.e., y = Ax + b, where

b is a random perturbation, then the solution of the relaxed problem (7) also provides stable
reconstruction results.

The coherence κ(A0) = nmax1≤k≤n ‖ak‖2∞ belongs to the interval [1, n]. In particular,
κ(F) = 1 and κ(Id) = n. In the favorable case of a Fourier transform, this theorem indicates
that only s log

(
n
ε

)
measurements are enough to perfectly recover an arbitrary s-sparse signal.

Even though this type of theorem got a huge impact in the literature, it is not applicable
to MRI. The natural transform A0 in MRI reads A0 = F∗Ψ, i.e., the product of Fourier
and wavelet transforms. In that case, one can show that κ(A0) = O(n). Theorem 1 is thus
irrelevant in such a setting.

3.2. The emergence of variable density sampling. In most practical applications, the
transforms A0 are coherent. This is the case in MRI and more generally in Fourier or space
imaging [1]. A simple technique to break down the so-called “coherence barrier” consists of
drawing the coherent samples more often than incoherent ones [48, 31, 14]. Let us clarify this
idea. Let π ∈ ∆n denote the distribution of the i.i.d. random variables Jk, i.e., P (Jk = i) = πi.
The following theorem [14] justifies the use of variable density sampling.

Theorem 2. Assume that x is s-sparse. Set

πk =
‖ak‖2∞∑n
j=1 ‖aj‖2∞

.

If the number of measurements satisfies

m ≥ Cs

 n∑
j=1

‖aj‖2∞

 log
(n
ε

)
,

where C is a universal constant, then x̄ = x with probability 1− ε.
In the MRI case, one can show that

∑n
j=1 ‖aj‖2∞ = O(log(n)). Hence, it becomes possible

to perfectly reconstruct an s-sparse image with O(s log(n)2) measurements. Let us mention
that variable density sampling was the basis for the seminal paper on compressed sensing MRI
[34]. Theorem 2 is a first argument that supports that type of technique.
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3.3. Variable density sampling with structured sparsity. Theorem 2 is quite attractive
from a theoretical point of view. A simple analysis, however, suggests that it is still insufficient
to justify the use of CS in MRI. First, the constant appearing in the O is large. This may
only be an artifact of the proofs, but it is currently unknown how much it can be lowered.
More importantly, the term log(n)2 that appears when using the Fourier-wavelet pair cannot
be improved by using only variable density sampling arguments. Most often, the logarithmic
terms are disregarded and considered as negligible. It seems, however, important to look at
them carefully since, for instance, log(1, 024 × 1, 024)2 = 192. A method that needs 192s
samples to reconstruct a 1, 024× 1, 024 image is actually of limited practical interest.

A recent breakthrough that has been proposed in [1] consists of exploiting structured
sparsity to derive better reconstruction guarantees. In the case of imaging, structured sparsity
may mean that the wavelet subbands become sparser as the scale increases. Let us provide a
typical result from this active field of research, coming from our recent work [5].

Let (Ωj)0≤j≤J denote the wavelet subbands with J the number of decomposition levels.
Assume that x is supported on S ⊂ {1, . . . , n} with |S∩Ωj | = sj . This means that x restricted
to the subband Ωj is sj-sparse. This model is called sparsity by levels in [1]. In such a setting,
the following theorem holds.

Theorem 3. Assume that matrix A0 is the product of the Fourier and Haar wavelet ma-
trices. Let j(k) denote the scale of index k, i.e., j(k) = j if k ∈ Ωj. Set

πk =
2−j(k)

∑J
p=0 2−|j(k)−p|/2sp

γ
with γ =

J∑
j=0

J∑
p=0

2−|j−p|/2sp.

Set

(9) m ≥ Cγ log(s) log
(n
ε

)
,

where C is a universal constant. Under the previous sparsity-by-level hypothesis x̄ = x with
probability 1− ε.

Note that, contrary to previous results, the drawing probability π in Theorem 3 explicitly
depends on the sparsity structure. The number of measurements in Theorem 3 is always lower
than that in Theorem 2, but the gain once again depends on the signal support. Using the
oversampling trick proposed in [1], the term log(s) in (9) can also be discarded.

3.4. Variable density sampling with structured acquisition. Another feature that was
not considered in the seminal works on CS is structured acquisition. In practice, sampling
isolated measurements takes too much time to be appealing in practice. In MRI, radio-
interferometry, X-ray tomography, and many other systems, the samples are collected either
line by line or along more complex trajectories (e.g., spirals). In some cases (X-ray, PET
imaging), the readout shape is imposed by the physics of acquisition. The vast majority of
compressed sampling schemes are based on heuristic sampling patterns such as radial lines
[33, 65], spirals [57], noisy spirals [64] or other exotic shapes. Even though they often perform
well, until very recently, theoretical results that allow us to justify their use in practice were
missing.
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In the spirit of traditional Shannon’s sampling theorem, the papers [61, 23] propose theo-
retical guarantees for the reconstruction of bandlimited functions from sets of measurements
along lines or curves. These results usually lead to sampling patterns that span the acquisition
space uniformly.

Concomitantly to these developments, we have proposed a few results in [4, 14, 5] to
explain the success of structured acquisitions by using sparsity assumptions on the signal
to be reconstructed. These results promoted variable density sampling strategies. In [4, 5],
theoretical guarantees were derived for block sampling strategies: instead of probing isolated
measurements, fixed groups of measurements are acquired, irrespective of the structured spar-
sity assumptions. Still, in these references it is shown that only specific sparsity patterns that
depend on the acquisition constraints can be recovered.

In [14], we have proposed sampling signals using generic stochastic processes. The con-
clusions of this work actually define the starting point of the present paper. We first gave a
mathematical definition of variable density samplers as sequences of stochastic processes with
a prescribed limit empirical measure, termed density. We have also shown through mathemat-
ical arguments and experimental validation that the key features characterizing the efficiency
of a variable density sampler are as follows:

(i) The density : the stochastic processes should cover the space nonuniformly according
to a certain density.

(ii) The coverage speed : a sampler will be efficient only if it covers the space quickly
enough. More precisely, we proved that the mixing time should be as low as possible.
The mixing time characterizes the speed at which the empirical measure converges to
its limit.

Since most readers may not be familiar with these concepts, we illustrate them in Figure
2. In this figure, we constructed three different variable density samplers with a density π
illustrated on Figure 2 (a). This density was defined as suggested by Theorem 2 by setting
πk ∝ ‖ak‖∞, where ak is the kth row of the Fourier-wavelet matrix A = F∗Ψ. The wavelet
transforms was defined using Symlet filters. The sampling schemes in Figure 2(b)–(d) all
cover the 256 × 256 grid nonuniformly with 20% measurements. For the sampling patterns
(b) and (d), the samples density in a given region of space looks like π. The same property
holds for (c) even though this does not seem obvious at the first glance. This property of
nonuniform coverage is captured by the sampler’s density (more precisely, the limit of the
empirical measure; see section 4), i.e., feature (i).

It is pretty intuitive when looking at Figure 2(b)–(d) that they are likely to have different
efficiencies. The samples in Figure 2(b) cover the space quite uniformly locally, while the
samplers in Figure 2(c)–(d) leave large portions of the space unexplored. Clearly, this lack of
information might result in poor reconstruction results. This feature is captured by the notion
of coverage speed, i.e., feature (ii). Let us mention that the so-called Poisson disc sampling
[8, 40], which is quite popular in CS MRI, is also based on the idea of covering the k-space as
fast as possible.

4. Generation of sampling schemes by projection. In this section, we describe the main
idea of this paper. We propose a general principle to construct samplers that comply with
the three following guidelines:
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(a) (b)

(c) (d)

Figure 2. A few variable density samplers. (a) density π. (b) π-variable density sampler with i.i.d.
drawings. (c) π-variable density sampler constructed using a Markov chain. (d) π-variable density sampler
with a traveling salesman problem solution.

• Admissibility : the sampler should be feasible. For instance, in the MRI case the
samples should belong to a set of segments or curves defined in (2).

• Density : as mentioned earlier, a sampler should approximate a given density π.
• Coverage speed : the sampler should cover the space as fast as possible.

This problem is probably more complex than it looks at first sight. Here, we first recall
the notion of pushforward measure that is crucial to establish our algorithm. We then present
its overall principle. Let us mention that this idea, the associated algorithm and some of its
theoretical guarantees were presented in more detail in [15] for a completely different purpose,
namely image stippling or continuous line drawing.

4.1. Pushforward measures. As shown in Figure 2, the density (a) is somehow similar to
the sampling schemes (b)–(d). To make this statement more accurate, we resort to measure
theory. Let us introduce a few definitions. Here, we work on the space Ω = [0, 1]d where
d = 2 denotes the space dimension. Extensions to other dimensions are straightforward. We
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equip Ω with the Borel algebra B. Let (X,Σ) be a measurable space, let f : X → Ω denote a
measurable mapping, and let µ : X → [0,+∞] denote a measure. The pushforward measure
of µ is denoted ν : B → R and defined by

ν(B) = f∗µ(B) = µ
(
f−1(B)

)
∀B ∈ B.

The function f is called parameterization of ν. Note that if µ is a probability measure, then ν
is also a probability measure. Let us now illustrate this concept with two concrete examples.

Example 1 (atomic measures). The set of m points in Figure 2 (b) can be ordered and
parameterized as a function f : {1, . . . ,m} → Ω, where f(i) = pi denotes the ith point. Set

µ as the normalized counting measure defined for any set I ⊆ {1, . . . ,m} by µ(I) = |I|
m . Let

B ∈ B, then f−1(B) is the set of indices of points in B. The pushforward of µ is therefore an
atomic measure defined by

ν = f∗µ =
1

m

m∑
i=1

δpi .

Example 2 (measures supported on curves). Let s : [0, T ] → Ω denote a parameterized
curve. Set µ as the normalized Lebesgue measure on [0, T ] defined for any interval I ⊆ [0, T ]

by µ(I) = |I|
T . Then ν(B) = s∗µ(B) measures the relative time spent by the curve s in the set

B.

4.2. Measure sets in the MRI context. Now, let P denote a set of admissible parame-
terizations. Let M(P) be the set of pushforward measures associated with elements of P:

M(P) = {ν = f∗µ, f ∈ P} .

Depending on the context, µ will be either the normalized counting measure or the normalized
Lebesgue measure. Hereafter, we will be particularly interested in exploring three different
sets P which are particularly relevant in MRI.
Isolated points. The set of sums of m Dirac delta functions is

M(Ωm) =

{
ν =

1

m

m∑
i=1

δpi , pi ∈ Ω

}
.(10)

This case is time-consuming and thus inefficient in MRI, but it is commonly used in
retrospective CS simulations. We will therefore use it as reference.

Segments of variable length. A more promising parameterization is the set of N segments
with variable lengths (or crossed with variable speed at constant time). To this end,
let

L = {λ : [0, 1]→ Ω, ∃(x1, x2) ∈ Ω2, λ(t) = (1− t)x1 + tx2 ∀t ∈ [0, 1]}.

The associated set of measures is defined by

(11) M(LN ) =

{
ν =

1

N

N∑
i=1

(λi)∗µ, λi ∈ L

}
,



GENERATION OF SAMPLING PATTERNS 2051

where µ is the Lebesgue measure on [0, 1]. In this description, we implicitly assume
that segments of different lengths are traversed at different speeds since the traversal
time is fixed to 1.

Admissible curves for MRI. It corresponds to M(ST ), where ST is defined by (2). This
case allows us to exploit the full sampling potential in MRI.

4.3. Measuring distances between measures. Pushforward measures allow us to map a
sampling pattern to the space of probability measures M∆ on Ω. The target distribution π
also belongs toM∆. This mapping therefore permits us to perform quantitative comparisons
by defining distances on M∆. Various distances exist to compare probability measures (e.g.,
total variation, Wasserstein distance). In this work, motivated by our previous results in [15],
we propose constructing a distance as follows. Let h : Ω → R denote a continuous function
with a Fourier series that does not vanish. The mapping

(12) dist(π, ν) = ‖h ? (π − ν)‖22

defines a distance (or metric) on M∆. Moreover, we showed in [15] that it metrizes the weak
convergence. Therefore, if π and ν are sufficiently weakly close, their distance will be small.

This measure is interesting numerically for at least two reasons. First, it has a simple
direct expression compared to more standard tools such as the Wasserstein distance. Second,
it is quadratic and this property will be exploited intensively in the numerical algorithms.

4.4. Design of sampling scheme as a projection problem. The distance on M∆ being
defined, we can construct a sampler by solving the following variational problem:

(13) min
ν∈M(P)

dist(π, ν),

where P is the set of admissible parameterizations. In other words, we are looking for the
admissible measure ν∗ that is the closest to the target measure π. This is, therefore, a
projection problem onto M(P).

Let us mention that the mapping ν 7→ dist(π, ν) is a nice convex and smooth function.
However, for most parameterization sets P, the associated measure set M(P) is highly non-
convex. This makes the resolution of problem (13) very involved. In fact, in the “simple case”
P = Ωm, problem (13) corresponds to Smale’s 7th problem to solve for the XXIst century [55].

5. Numerical implementation. In this section, we propose a numerical algorithm to solve
problem (13).

5.1. The attraction-repulsion formulation. To numerically solve the infinite dimensional
problem (13), we need to discretize it. It was shown in [15] that any measure set M(P) can
be approximated by a subset of p-point measures Np ⊆ M(Ωp) with an arbitrary precision.
More precisely, it is possible to control the Hausdorff distance, defined by

Hdist(Np,M(P)) = max

(
sup
π∈Np

inf
ν∈M(P)

dist(ν, π), sup
ν∈M(P)

inf
π∈Np

dist(ν, π)

)
.
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Moreover, the set Np can always be written as

Np =

{
ν =

1

p

p∑
i=1

δqi for q = (qi)1≤i≤p ∈ Qp

}
,

where the parameterization set Qp depends on P. The abstract definition of Qp proposed
in [15] is not constructive. Explicit constructions for the parameterizations given in section 4.2
are provided in the next part. Notice that the discretization step is very different from what
was done in many papers [7, 54, 49, 20] where the authors propose selecting samples among
fixed blocks of measurements.

Once an approximate space of parameterizations Qp has been constructed, problem (13)
can be replaced by its discrete approximation:

min
ν∈Np

1

2
‖h ? (ν − π)‖22 ,(14)

where Np =M(Qp) is a suitable approximation of M(P). Then, by expanding the L2-norm,
we may rewrite problem (14) as follows:

min
q∈Qp

1

2

p∑
i=1

p∑
j=1

H(qi − qj)︸ ︷︷ ︸
J1(q)

−
p∑
i=1

∫
Ω
H(x− qi)dπ(x)︸ ︷︷ ︸
J2(q)

,(15)

where H is defined in the Fourier domain by Ĥ(ξ) = |ĥ|2(ξ) for all ξ ∈ Zd. In this paper, we
consider a kernel H defined by H(x) = −‖x‖2. This choice ensures rotation and translation
invariance with respect to the input measure π. In addition, it is nonlocal: the forces between
particles is independent of the distance. This choice was initially introduced in [53].
Then, functional (15) can be decomposed in two terms:

• The first one J1 is a repulsion potential : it tends to maximize the distance between all
point pairs. It will guarantee that no cluster of points emerges and, therefore, ensures
a good space coverage.
• The second one J2 is an attraction potential : it attracts the particles qi in the high

density regions of π. This term ensures that the solution of problem (15) will match
the target density π.

Let us point out that the attraction-repulsion functional (15) was initially proposed in [53,
59] as an alternative to Poisson disk sampling [8, 64]. The proposed idea can, therefore,
be considered as a generalization of Poisson disk sampling, allowing us to handle arbitrary
additional constraints.

5.2. Projected gradient descents. The attraction-repulsion formulation (15) of the pro-
jection problem (13) is amenable to a numerical resolution. Similarly to [15], we propose
using a projected gradient descent. We only describe it briefly hereafter and refer to [15] for
its theoretical guarantees and more details. The algorithm reads as follows:
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Algorithm 1: Projected gradient descent to solve the projection problem (15).

Input:
An initial parameterization q(0) ∈ Qp
A number of iterations nit.
Output:
An approximation q̃ of the solution q∗ of (15)
for k = 1 to nit do

(16) q(k+1) ∈ ΠQp

(
q(k) − τ∇(J1 − J2)(q(k))

)
end

The step-size τ should be selected depending on the regularity of the kernel h. The projector
ΠQp can be expressed as an optimization problem and we will provide algorithms adapted
to specific choices of Qp in the next sections. Note that Qp has no reason to be convex, in
general, and the projection on Qp (ie, ΠQp) might, therefore, not be unique. This explains
the sign ∈ instead of = in (16). If τ is well chosen, this algorithm is shown to converge to
critical points of (15) in [15]. Let us finally mention that computing the gradients ∇J1 and
∇J2 is also a challenging issue that requires the use of tools developed for particle simulations
such as fast multipole methods. In this work, we used the parallelized nonuniform fast Fourier
transform [29, 59].

5.3. Discretization of the parameterization sets. In this section, we explicitly give the
expressions of Qp and ΠQp for the measure sets given in paragraph 4.1.

Isolated points. In the context of isolated points, Qp = Ωp, hence the projection ΠQp is the

identity on Ωp. The updating step 16 in Algorithm 1 is then q(k+1) = q(k)− τ∇(J1−J2)(q(k)).
Segments of variable length. In this case, the measures are supported by N segments.

Assuming that each segment is discretized into k points, the total number of discretization
points is p = kN and the set Qp reads

Qp(LN ) =

{
q ∈ Ωp×d qj = qi + j−i−1

k−1 (qi+k−1 − qi) ,
for i = 1 : k : kN and i ≤ j < i+ k

}
,

where 1 : k : kN denotes the set {1, k + 1, 2k + 1, . . . , (N − 1)k + 1}. The projection onto
this set can be computed via Algorithm 2. For the sake of clarity, Algorithm 2 describes the
projection onto the set of measures supported by only one segment (N = 1) in two dimensions.
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Algorithm 2: Projection on Qp(L1).

Input:
u : a vector of k points
Output:
q : a vector of Qp(L)

• Compute C = k(k2 − 3k + 2)/(6(k − 1)2)
• Compute D = k(2k2 − 3k + 1)/(6(k − 1)2)

• Compute x
(1)
i = (k − i)ui for 1 ≤ i ≤ k

• Compute x
(2)
i = (i− 1)ui for 1 ≤ i ≤ k

• Compute s(1) = 1
k−1

∑k
i=1 x

(1)
i

• Compute s(2) = 1
k−1

∑k
i=1 x

(2)
i

• Evaluation of the end points
– qk = C/(C2 −D2)

(
s(1) −D/Cs(2)

)
– q1 = 1/C(s(2) −Dqk)

• Place (qi)2≤i≤k−1 uniformly spaced on [q1, qk]

Proof. The set Qp
(
L1
)

can be rewritten as follows:

Qp
(
L1
)

=

{
p = (pi)1≤i≤k , pi =

i− 1

k − 1
pk +

k − i
k − 1

p1

}
.

To define a projector on Qp
(
L1
)
, one should solve the following optimization problem:

ΠQp(L1)(q) = arg min
p∈Qp(L1)

1

2
‖p− q‖22,

for some fixed q = (qi)1≤i≤k, where qi ∈ Rd for all 1 ≤ i ≤ k.
This problem can be reformulated by optimizing only the end points of the projected

segment, as follows:

min
(p1,pk)∈Rd×Rd

1

2

k∑
i=1

∥∥∥∥ i− 1

k − 1
pk +

k − i
k − 1

p1 − qi
∥∥∥∥2

2

.(17)

The optimality conditions of problem (17) read{ ∑k
i=1

k−i
k−1

(
i−1
k−1pk + k−i

k−1p1 − qi
)
=0,∑k

i=1
i−1
k−1

(
i−1
k−1pk + k−i

k−1p1 − qi
)
=0.

Set

C :=
k∑
i=1

(k − i)(i− 1)

(k − 1)2
=
k3 − 3k2 + 2k

6(k − 1)2
and D :=

k∑
i=1

(i− 1)2

(k − 1)2
=

2k3 − 3k2 + k

6(k − 1)2
.
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The system can be rewritten as follows:{
Cpk +Dp1 −

∑k
i=1

k−i
k−1qi=0,

Dpk + Cp1 −
∑k

i=1
i−1
k−1qi=0.

This 2× 2 system can be easily inverted leading to Algorithm 2.

Admissible curves for MRI. The projection ontoM(ST ) is the topic of [17]. The discretiza-
tion of an element of ST is a vector of Rp·d where d is the space dimension and p is the number
of points. Let s(i) denote the curve location at time (i − 1)δt with δt = T

p−1 . We define the
first-order derivative by

ṡ(i) =

{
0 if i = 1,
(s(i)− s(i− 1))/δt if i ∈ {2, . . . , p}.

In the discrete setting, the first-order differential operator can be represented by a matrix
Ṁ ∈ Rp·d×p·d, i.e., ṡ = Ṁs. We define the discrete second-order differential operator by
M̈ = −Ṁ∗Ṁ ∈ Rp·d×p·d. In a discrete setting, the projection problem reads

ΠQp(c) = arg min
‖Ṁs‖6α
‖M̈s‖6β

‖s− c‖22.

This problem can be solved using an accelerated proximal gradient descent algorithm by
resorting to the dual formulation of the problem [17].

5.4. Implementation details. Solving the projection problem (15) is computationally de-
manding. Hopefully, the design of sampling patterns is performed off-line and large computing
times are therefore acceptable. In practice, we used a workstation with 192 GB of RAM, 32
cores at 2.4 GHz, and all codes were multithreaded.

The computing times varied from two hours to generate the sampling schemes for low
resolution images proposed in Figure 5 up to 48 hours for the schemes adapted to very high
resolution images in Figure 12. In practice, we used 4,000 iterations to generate the sampling
schemes with isolated measurements. For the sampling schemes composed of lines or curves,
we used a multiresolution strategy: we first optimize an undersampled curve and progressively
interpolate it, thus reducing the number of iterations as the resolution increases. We observed
that this strategy provides improved results and speeds up convergence. As detailed in the
next section, our trajectories based on lines or curves are not made by a connected path but
instead by several disconnected pieces. In that case, the optimization of (15) is performed
over multiple curves simultaneously. The set of independent curves with kinematic constraints
is still a convex set and projections onto this set can be performed efficiently using specific
convex programming approaches [17].

6. Results. In this section, we test the proposed ideas for reconstructing a 2D image (i.e.,
a slice) of a brain phantom at two different resolutions on a field of view of 20 cm. In all
experiments, we used the analytical phantoms provided in [25].

The first image is of size 256 × 256, which approximately corresponds to an isotropic
resolution of 780×780µm. This is a pretty standard resolution for actual MRI scanners (e.g.,
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3 Tesla machine). The second image size is 2, 048× 2, 048, which corresponds to an isotropic
resolution of 98 × 98µm. The latter is really uncommon in the literature and is actually an
important challenge since it might permit us to uncover the meso-scale brain architecture at
ultrahigh magnetic field (7 T and above). For instance, [21] reported ex-vivo experiments
on brains at a resolution of 78 × 78 × 500µm allowing us to much better understand the
cytoarchitecture of the human cortex. However, such spatial resolution cannot be achieved
during in-vivo experiments owing to the very long scanning times. For instance, the images
used in [21] took more than 14 scanning hours. CS may, therefore, play a key role in the
future to pushforward such resolutions, especially with the emergence of ultrahigh field MRI
at 7T or even 11.7T in the near future. Moreover, recent theoretical results [51] suggest that
CS should be used as a resolution enhancer rather than a time saver.

6.1. Constraints used in our experiments. To apply our projection algorithm, the kine-
matic constraints have to be specified. To this end, we used typical constraints met on real MRI
scanners, namely the same as the ones specified in [35]. The kinematic constraints imposed by
MRI acquisition are the gradient magnitude and slew-rate: here, we set Gmax = 40 mT.m−1

and Smax = 150 mT.m−1.ms−1. For proton imaging, γ = 42.576 MHz.T−1, which allows us to
compute α = γGmax and β = γSmax in (2). In addition to those constraints, we imposed our
trajectories to last less than 200 ms2 to keep a sufficient amount of signal.

6.2. Empirical choice of the target density π. The theorems in section 3 provide some
general guidelines to design a reasonable density. However, finding the best target density π
is still an open issue depending on the number of measurements, the sparsity basis, and the
signal structure.

In this paper, we therefore used an empirical method. The basic idea was to optimize π
experimentally in the family of polynomially decaying densities of type 1/(|k| + 1)η. Those
simple parametric densities have been used a lot in recent articles [1, 31] and have proved
their efficiency in practice. Note, however, that they increase rapidly at the origin, leading
to high samples concentrations. For Cartesian sampling, it was proved in references [1, 31]
that the density should not exceed some threshold. Here, we are considering non-Cartesian
sampling and there is no formal proof of this fact. We still observed that high concentrations
were deleterious. The basic reason is that they bring more information than necessary for low
frequencies, which in turn reduces the number of samples available for higher frequencies.

Given an initial discrete distribution πη with a profile proportional to 1/(|k| + 1)η, we
therefore constructed a truncated version π̃η of πη defined by

(18) π̃η = min(λπη, τ),

where λ is chosen in such a way that ‖π̃η‖1 = 1. The distribution π̃η has all components less
than τ , and approximates πη.

In all our experiments, the threshold τ was chosen in such a way that the expectation of
the number of samples in each pixel does not exceed 4 with an i.i.d. drawing. Assuming that
πη ∈ Rn where n is the number of pixels in the image, this means that mτ = 4, where m is
the number of drawn samples. An illustration of density (18) is given in Figure 3.

2Beyond this limit, the T ∗2 relaxation decay makes the noise predominant.
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Figure 3. Action of the thresholding algorithm. The initial density πη in dashed line and its thresholded
version π̃η defined in (18) in solid line.

6.3. New sampling patterns. We designed sampling schemes with the proposed algorithm
and compared them to the state-of-the-art on the reconstructed brain phantom images. We
compared six sampling patterns identified by letters:

• Standard patterns:
– (a) Independent and identically distributed drawings according to a

prescribed density πη. This is the pattern considered in most CS theories.
This pattern is not feasible in two dimensions in reasonable acquisition times,
but serves as a reference.

– (b) Equispaced radial lines. This is another commonly used sampling pat-
tern in MRI [65]. We assume that a spoke is a segment composed of

√
n/2

samples. Samples are equispaced along a line and the distance between two
samples depends on the segment length.

– (c) Spiral sampling. We consider a spiral with the chosen target density
πη (see [13]), and reparameterize it to be admissible [35]. We replicate and
rotate it a few times to obtain a pattern made of interleaved spirals.

• Measure projection patterns:
– (d) Projection of πη on the set of isolated measurements defined in (10).

The initial parameterization q(0) in Algorithm 1 is defined as an independent
point process with distribution π.

– (e) Projection of πη on the set of segments with varying lengths.
It is denoted M(LN ) and defined in (11). Each segment contains the same
number of samples

√
n/2 as a radial spoke. The initial parameterization q(0)

in Algorithm 1 is defined as a set of equispaced radial segments.
– (f) Projection of πη on the set of admissible curves ST , defined in (2).
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Figure 4. Axial slice of the phantom used in the experiments of size 256× 256. The left brain hemisphere
is shown on the right: left is right.

The initial parameterization q(0) in Algorithm 1 is defined as a set of equispaced
radial segments.

6.3.1. Standard resolution imaging. In this section, we focus on the reconstruction of
256× 256 images.

Parameters setting. In this experiment, 25% of the k-space is sampled, corresponding to
m = 16, 384 samples. The sampling period (or dwell time) was fixed to 20 µs, which would
correspond to a high SNR in a clinical setting. The total sampling time for each pattern is
therefore 16, 384 ∗ 20µs = 327.68 ms. The minimal amount of time for a full acquisition (i.e.,
time necessary to probe each of the 256×256 discrete Fourier coefficients) is 256×256×20 µs
= 1.31s. This time is too long given the scanning constraints (MR signal decay, etc.), but will
serve as reference to measure the acceleration provided by each undersampling strategy. For
this resolution, we found out that the best decay η defined in section 6.2 was η = 1.5. This
number was optimized by reconstructing images from i.i.d. drawings and keeping the decay
corresponding to the best reconstruction.

To collect m Fourier coefficients, we used specific parameters to each sampling scheme as
detailed below:

(b) 128 equispaced radial segments made of 128 samples;
(c) two spirals made of 8, 192 samples each (more details are given in section 6.3);
(e) 128 segments made of 128 samples;
(f) two curves made of 8, 192 samples each (this corresponds to a typical buffer size).
Image and reconstruction. Data were simulated using the phantom depicted in Figure 4.

The inverse problem used to reconstruct an image from simulated k-space data is problem (7).
Parameter λ was selected by hand once for all (λ = 10−5) so as to nearly reach the equality
constraint SΨx = y and to provide a visually satisfactory solution in less than 1,000 iterations.
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(a) (b) (c)

(d) (e) (f)

Figure 5. Classical sampling schemes (a–c) and sampling schemes obtained with the proposed projection
algorithm (d–f). Top row: (a): independent drawing; (b): radial lines; (c): spiral trajectory. Second row:
zooms in the k-space centers. Third row: (d): isolated points; (e): segments of variable length; (f): admissible
curves for MRI. Bottom row: zooms in the k-space center. Corresponding reconstruction results are provided
in Figure 6.
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(a) SNR=17.7 dB (b) SNR=15.4 dB (c) SNR=13.2 dB

(d) SNR=18.3 dB (e) SNR=18.0 dB (f) SNR=18.0 dB

Figure 6. Reconstruction results for the sampling patterns proposed in Figure 5 on the phantom (Figure 4).

Results. In Figure 6, we show the reconstruction results for the different sampling schemes
depicted in Figure 5. Hereafter, we summarize our main findings.

• First, we noticed that the two schemes composed of isolated measurements provided
rather satisfactory reconstruction results despite a few artifacts (17.7 and 18.3 dB in
(a) and (d), respectively) with one fourth of the measurements. This is an appealing
result, but unfortunately the schemes cannot be implemented on a scanner, at least
in a time efficient manner.
• The repulsion between isolated samples in (d) improved the reconstruction result

slightly by 0.6 dB. This result tends to validate the interest for this strategy as it
provides improved coverage of the sampling space.
• Classical sampling patterns were feasible and yield a four-fold acceleration of scan-

ning time but delivered images that cannot be considered as good enough by clin-
icians (15.4 dB for radial in (b) and 13.2 dB for spirals in (c)). The reconstruction
based on radial lines induced many small artifacts whereas the reconstruction based
on spirals suffered from ringing effects.
• In this experiment, the new sampling patterns generated by our algorithm yielded

improved reconstruction results as compared to i.i.d. drawings. This may be surprising
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Figure 7. Axial slice of the brain phantom used in our 2, 048× 2, 048 images (left) with a magnification on
the left frontal area where the text has been superimposed (right).

since our sampling schemes are constrained to satisfy additional kinematic constraints.
The basic reason for this phenomenon is that i.i.d. sampling tends to produce clusters
in some regions of space, while the repulsion term J2 in (15) avoids this deleterious
effect.
This result shows that adding complicated but realistic sampling constraints can still
permit us getting competitive reconstruction results. In particular, the sampling pat-
tern in Figure 6(f) took only one fourth of the reference scanning time and yielded
satisfactory reconstructed images.

6.3.2. Very high resolution imaging. Here, we focused on the reconstruction of very high
resolution (2, 048× 2, 048) images.

Parameters setting. We used the same constraints as before including the maximum sam-
pling time ts = 200 ms per trajectory. Hence, we decreased the sampling period down to
its minimal value for a clinical scanner: ∆t = 8µs. We no longer managed the buffer size
constraint and performed experiments with 100,000 and 200,000 measurements. This corre-
sponds to 2.4% and 4.8% of the total number of pixels in the image, respectively. This also
corresponds to a total acquisition duration of 0.8 s or 1.6 s, respectively.

The parameters specific to each sampling scheme are provided below:
(b) For the radial lines, we used 98 equispaced radial segments made of 1, 024 samples each

for the experiment with 100, 000 samples experiment. We used 176 segments made of
1, 024 samples for the experiment with 200, 000 samples.

(c) For the spirals, we used four (resp., eight) rotated versions of spirals made of 25, 000
samples each for the 100, 000 (resp., 200, 000) experiment.

(e) For the repulsed segments, we used 196 (resp., 391) segments made of 512 samples for
the 100, 000 (resp., 200, 000) experiment.



2062 BOYER, CHAUFFERT, CIUCIU, KAHN, AND WEISS
zo

om

?

(a) (b) (c)

Figure 8. Standard sampling schemes composed of 100, 000 samples. (a): i.i.d. drawings. (b): Radial lines.
(c): 4 interleaved spirals.



GENERATION OF SAMPLING PATTERNS 2063

(f) For the projected curves, we used four (resp., eight) curves made of 25, 000 samples
each.

Similar to the previous section, the sampling density was optimized experimentally in the
family of truncated, polynomially decaying densities of type 1/(|k|+ 1)η. For this resolution,
the best decay was achieved for η = 2.

Image and reconstruction. We aimed at reconstructing the very high resolution phantom
depicted in [25]. We modified it slightly by superimposing the high resolution text COGITO

ERGO SUM to white matter in the left frontal region (see Figure 7).
Results. The resulting patterns are shown at different resolutions in Figures 8–9 for 100,000

measurements and Figures 11–12 for 200,000 measurements. For each scheme we reconstructed
a 2, 048×2, 048 image by solving problem (7). Hereafter, we summarize our main observations.

• The use of 200, 000 measurements yielded significantly better reconstruction results
than 100, 000 samples. However, the relative differences between the sampling schemes
did not vary between the two sampling ratios. In what follows, we therefore draw
conclusions that are valid for both.
• Similar to the standard resolution experiment, sampling schemes made of i.i.d. draw-

ings significantly outperformed radial lines and spirals sampling.
• Radial lines performed particularly poorly. This was probably due to the fact that

for this resolution, the best sampling decay was η = 2, whereas we found η = 1.5 for
the standard resolution experiment. Note that radial lines have a slow decay of order
1/|k|, which might explain the observed discrepancy. Also note that the embedded
text for radial reconstruction was readable, whereas it was not for spiral sampling.
Once again, this is very likely a consequence of the slower decay for the sampling
density. In contrast, the cortex was not correctly recovered by radial lines, whereas
the reconstruction was acceptable for spirals. This experiment thus suggests that the
sampling density should depend on the relative importance of low and high resolution
details.
• The repulsed isolated measurements scheme performed slightly better than i.i.d. draw-

ings, but not significantly so.
• Similar to the previous section, the sampling schemes generated by our algorithm

performed significantly better than spiral and radial patterns. The gain ranged from
1.7 dB to 3.6 dB, which is significant since they require the same scanning time.
• In contrast to the previous section, we observed that the feasible sampling schemes

performed significantly worse than i.i.d. drawings in terms of SNR. A reason that
might explain this behavior was that ∆t = 8µs for this resolution while we used ∆t =
20µs in the previous experiment. This means that the distance between consecutive
samples was more than twice smaller (harder constraint). It is also important to realize
that, although the differences between reconstructions were strong in terms of SNR,
the visual perceptual differences mainly rely on small artifacts which do not severely
degrade image analysis.
• The results obtained with 200, 000 samples were of a high quality, despite the re-

alistic sampling constraints added. This very positive result suggests that obtaining
2, 048×2, 048 images might be feasible in 1.6 s by using a segmented acquisition (eight
segments) scheme. This should be definitely deemed as a major advance for MRI. Of
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Figure 9. Sampling schemes yielded by our algorithm and composed of 100, 000 samples. (d): Isolated
measurements. (e): Segments of variable length. (f): 4 feasible curves in MRI.
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(a) SNR=23.0 dB (b) SNR=16.1 dB (c) SNR=19.0 dB

(d) SNR=23.2 dB (e) SNR=19.7 dB (f) SNR=20.7 dB

Figure 10. Very high resolution reconstructions using 100, 000 samples (2.4% of the number of pixels) and
different sampling schemes. Letters correspond to Figures 8–9.
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Figure 11. Standard sampling schemes composed of 200, 000 samples. (a): i.i.d. drawings. (b): Radial
lines. (c): 8 interleaved spirals.
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Figure 12. Sampling schemes yielded by our algorithm and composed of 200, 000 samples. (d): Isolated
measurements. (e): Segments of variable length. (f): 8 feasible curves in MRI.
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(a) SNR=26.7 dB (b) SNR=20.6 dB (c) SNR=21.0 dB

(d) SNR=27.0 dB (e) SNR=22.9 dB (f) SNR=23.5 dB

Figure 13. Very high resolution reconstructions using 200, 000 samples (4.8% of the pixels number) and
different sampling schemes. Letters correspond to Figures 11–12.
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course, these results were preliminary since we did not manage all degradations ap-
pearing on actual scanners such as noise, Eddy currents, off-resonance effects.
• Last, it is possible to infer the gain in terms of scanning times using the proposed

approach by comparing Figures 10 and 13. The SNR of the reconstructed image
with four admissible curves and 0.8 s is 20.7 dB (see Figure 10 (f)). To reach the
same quality, radial lines and spirals need roughly twice longer acquisition times, i.e.,
1.6 s (see Figure 13(b)–(c)). This result shows that the proposed ideas may reduce
the actual scanning times by a factor 2 compared to existing compressed sensing
approaches.

7. Conclusion. This paper has provided an overview of existing compressed sensing results
for MRI, both from theoretical and practical points of view. We also proposed an original
approach to design efficient sampling schemes complying with physical constraints of MRI
scanners. Even though we focused on standard anatomical MRI, the proposed ideas could be
used, with some adaptations, in nearly all MRI fields (functional imaging, diffusion-weighted
imaging, perfusion imaging, etc.) and might have applications well beyond.

The numerical procedure we proposed for generating sampling schemes was based on
a projection of sampling distributions onto a set of admissible measures using a tailored
dissimilarity measure. Even though computationally intensive, this algorithm was able to solve
very large scale problems and could be extended to three dimensions quite easily. Probably
the most promising result of this paper is practical: we showed through simulations that 1.6 s
using a multishot acquisition (eight segments) might be enough to reconstruct a very high
resolution slice of size 2, 048 × 2, 048. The validity of this result will be tested quite soon
on the 7T scanner of NeuroSpin to check whether this constitutes a major improvement over
existing sampling strategies which currently need a dozen of hours to reconstruct a hundred
slices at this spatial resolution.
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Gabriel Peyré for reviewing a first draft of this work for Nicolas Chauffert’s Ph.D. defense.

REFERENCES

[1] B. Adcock, A. Hansen, C. Poon, and B. Roman, Breaking the coherence barrier: asymptotic inco-
herence and asymptotic sparsity in compressed sensing, 2013.

[2] E. Arias-Castro, E. J. Candes, and M. Davenport, On the fundamental limits of adaptive sensing,
IEEE Trans. Inf. Theory, 59 (2013), pp. 472–481.

[3] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems,
SIAM J. Imaging Sci., 2 (2009), pp. 183–202, https://doi.org/10.1137/080716542.

[4] J. Bigot, C. Boyer, and P. Weiss, An analysis of block sampling strategies in compressed sensing,
IEEE Trans. Inf. Theory, 62 (2016), pp. 2125–2139.

[5] C. Boyer, J. Bigot, and P. Weiss, Compressed sensing with structured sparsity and structured acqui-
sition, preprint, https://arxiv.org/abs/1505.01619, 2015.

https://doi.org/10.1137/080716542
https://arxiv.org/abs/1505.01619


2070 BOYER, CHAUFFERT, CIUCIU, KAHN, AND WEISS

[6] C. Boyer, P. Ciuciu, P. Weiss, and S. Mériaux, HYR2PICS: Hybrid regularized reconstruction for
combined parallel imaging and compressive sensing in MRI, in Proceedings of the 9th IEEE ISBI
Conference, Barcelona, Spain, 2012, pp. 66–69, https://doi.org/10.1109/ISBI.2012.6235485.

[7] C. Boyer, P. Weiss, and J. Bigot, An algorithm for variable density sampling with block-constrained
acquisition, SIAM J. Imaging Sci., 7 (2014), pp. 1080–1107, https://doi.org/10.1137/130941560.

[8] R. Bridson, Fast poisson disk sampling in arbitrary dimensions, in ACM SIGGRAPH 2007, ACM New
York, 2007, 22.

[9] E. K. Brodsky, A. A. Samsonov, and W. F. Block, Characterizing and correcting gradient errors
in non-Cartesian imaging: Are gradient errors linear time-invariant (LTI)?, Magn. Reson. Med., 62
(2009), pp. 1466–1476, https://doi.org/10.1002/mrm.22100.

[10] E. Candès, J. Romberg, and T. Tao, Stable signal recovery from incomplete and inaccurate measure-
ments, Comm. Pure Appl. Math., 59 (2006), pp. 1207–1223, https://doi.org/10.1002/cpa.20124.

[11] E. Candès and T. Tao, Near optimal signal recovery from random projections: universal encoding
strategies, IEEE Trans. Inf. Theory, 52 (2006), pp. 5406–5425.

[12] E. J. Candès and Y. Plan, A probabilistic and RIPless theory of compressed sensing, IEEE Trans. Inf.
Theory, 57 (2011), pp. 7235–7254.

[13] N. Chauffert, Compressed sensing along physicaly plausible sampling trajectories, Ph.D. thesis, Univer-
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