
1 / 87

An introduction to deep learning

Claire Boyer

2 / 87Summary

1. Context

2. Vintage neural networks
A single neuron
Multi-layer perceptron
Performance evaluation

3. Convolutional NN

4. Recurrent NN

5. Transformers

3 / 87Learning scenarios

ML develops generic methods for solving different types of problems:
▶ Supervised learning

Goal: learn from examples
▶ Unsupervised learning

Goal: learn from data alone, extract structure in the data
▶ Reinforcement learning

Goal: learn by exploring the environment (e.g. games or autonomous
vehicle)

4 / 87Learning scenarios

source: fidle-cnrs

5 / 87Unsupervised learning

source: fidle-cnrs

6 / 87Supervised learning

source: fidle-cnrs

7 / 87Supervised learning, more formally

▶ Supervised learning: given a training sample (Xi ,Yi)1⩽i⩽n, the goal is
to “learn” a predictor fn such that

fn(Xi) ≃ Yi︸ ︷︷ ︸
prediction on training data

and above all fn(Xnew) ≃ Ynew︸ ︷︷ ︸
prediction on test (unseen) data

Often

▶ (classification) X ∈ Rd and Y ∈ {−1, 1}
▶ (regression) X ∈ Rd and Y ∈ R

8 / 87How to measure the performance of a predictor?

▶ Loss function in general: ℓ(Y , f (X)) measures the goodness of the
prediction of Y by f (X)

▶ Examples:
▶ (classification) Prediction loss: ℓ(Y , f (X)) = 1Y ̸=f (X)

▶ (regression) Quadratic loss: ℓ(Y , f (X)) = |Y − f (X)|2

▶ The performance of a predictor f in regression is usually measured
through the risk

Risk(f) = E
[
ℓ
(
Ynew, f (Xnew)

)]
▶ A minimizer f ⋆ of the risk is called a Bayes predictor

9 / 87Learning by minimizing the empirical risk

▶ We want to construct a predictor with a small risk
▶ The distribution of the data is in general unknown, so is the risk
▶ Instead, given some training samples (X1,Y1), . . . (Xn,Yn), find the

best predictor f that minimizes the empirical risk

R̂n(f) :=
1
n

n∑
i=1

ℓ(Yi , f (Xi)).

▶ Learning means retrieving information from training data by construct-
ing a predictor that should have good performance on new data

10 / 87Examples I

Spam detection (Text classification)

from here

▶ Data: email collection
▶ Input: email
▶ Output : Spam or No Spam

https://github.com/deepankarkotnala/Email-Spam-Ham-Classifier-NLP

11 / 87Examples II

Face Detection

▶ Data: Annotated database of images
▶ Input : Sub window in the image
▶ Output : Presence or no of a face...

12 / 87Examples III

Number Recognition

▶ Data: Annotated database of images (each image is represented by
a vector of 28× 28 = 784 pixel intensities)

▶ Input: Image
▶ Output: Corresponding number

13 / 87There exist plenty of learners

see https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

14 / 87Deep learning is a way to answer your question

15 / 87What is Deep Learning?

▶ In the past 10 years, machine learning
and artificial intelligence have shown
tremendous progress

▶ Much of the current excitement
concerns a subfield of it called “deep
learning".

▶ This recent success can be attributed
to:
▶ Explosion of data
▶ Cheap computing cost – CPUs and

GPUs
▶ Improvements of machine learning

models

16 / 87Summary

1. Context

2. Vintage neural networks
A single neuron
Multi-layer perceptron
Performance evaluation

3. Convolutional NN

4. Recurrent NN

5. Transformers

17 / 87A unit / an artificial neuron
Goal: estimate the function f that links the input X to the output Y , i.e.
Y = f (X).
How? Use a single neuron.

▶ Inputs: xj
▶ Weights: wj

▶ Bias: b

▶ Non-linear activation
function: σ

source: fidle.cnrs σ(x) =

{
1x>0 (perceptron)

1
1−exp(−x)

(logistic regression)

▶ Prediction:

ŷ = σ (w1x1 + . . .+ wdxd + b) = σ

 d∑
j=1

wjxj + b

 = σ
(
w⊤x + b

)

▶ A neuron ≡ a nonlinear function applied on a linear function
▶ Training a neuron ≡ finding the best w , b that fit the training data

17 / 87A unit / an artificial neuron
Goal: estimate the function f that links the input X to the output Y , i.e.
Y = f (X).
How? Use a single neuron.

▶ Inputs: xj
▶ Weights: wj

▶ Bias: b

▶ Non-linear activation
function: σ

source: fidle.cnrs σ(x) =

{
1x>0 (perceptron)

1
1−exp(−x)

(logistic regression)
▶ Prediction:

ŷ = σ (w1x1 + . . .+ wdxd + b) = σ

 d∑
j=1

wjxj + b

 = σ
(
w⊤x + b

)

▶ A neuron ≡ a nonlinear function applied on a linear function
▶ Training a neuron ≡ finding the best w , b that fit the training data

18 / 87What can you do with a single neuron?

source: fidle-cnrs

19 / 87How to find the best parameters?

▶ Goal: minimize the loss function evaluated on training data

1
n

n∑
i=1

lossw ,b (yi , ŷi)

▶ Problem: there is no explicit minimizer
▶ Need to reach a minimizer by an iterative procedure

20 / 87Minimization by gradient descent

▶ By changing w from ∂w we im-
prove the loss by ∂loss

▶ The gradient ∇loss(w) is the di-
rection of greatest growth of the
loss function locally in w

▶ We follow the "slope" of
−∇loss(w) to make the func-
tion decrease

w ← w − η∇loss(w)

equivalently

wj ← wj − η
∂loss
∂wj

(w)

▶ Iterate to minimize the loss func-
tion ⇝ gradient descent

21 / 87Necessary to compute the whole gradient?

▶ Note that to update the weights w , one needs to compute n
gradients for all the training points: too expensive!

1
n

n∑
i=1

∂loss
∂w

(yi , ŷi (w))

▶ Instead pick a single training point and backpropagate only the
gradient associated to its error

w → w − η

�
�
��1

n

n∑
i=1

∂loss
∂w

(yi , ŷi (w))

▶ or pick several training points (batch) and backpropagate the
gradient associated to their error:

w → w − η
1

batch size

∑
i∈batch

∂loss
∂w

(yi , ŷi (w))

▶ Convergence to a minimizer is preserved

22 / 87Training a single neuron: the big picture

▶ Training of a (slightly more complicated) logistic regression
https://www.youtube.com/watch?v=kWvwR4ER_UE&ab_channel=TLDRu

https://www.youtube.com/watch?v=kWvwR4ER_UE&ab_channel=TLDRu

23 / 87Towards more complex decision function

from https://playground.tensorflow.org/

A single neuron is not sufficient to classify this data

https://playground.tensorflow.org/

24 / 87Towards more complex decision function

Idea: stack several neurons and combine their outputs

from https://playground.tensorflow.org/

https://playground.tensorflow.org/

25 / 87Multi-Layer Perceptron (MLP)

source: fidle-cnrs

▶ Cascade of linear and nonlinear functions
▶ Formally

ŷ = σ (WLσ (WL−1σ (. . . σ (W1x))))

26 / 87Training MLPs

i

i
i i

__ÊÉÊÎX la i Ha

waai
i i

i

UNE main

me

source: fidle-cnrs

Remarks:
1. with a single neuron, backpropagation allows in general to find a

global minimizer (if it exists)
2. with MLPs, backpropagation finds only local minimizers (but this is

fine in practice)

27 / 87Zoology of activation functions

from https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-deep-learning

▶ Most of the time people use the ReLU function (to prevent costly
computation, saturation, vanishing gradient, etc.) in MLP

▶ Sigmoid and tanh are mostly used for recurrent neural networks (see
later)

https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-deep-learning

28 / 87Zoology of output/loss functions

▶ The output layer depends on the learning task
▶ The loss metrics depends on the learning task

Task Nb of neurons Output function Loss
in the output layer

Regression 1 (or d ′) Linear RMSE ℓ(y , y ′) =
√

(y − y ′))2

MAE ℓ(y , y ′) = |y − y ′|
Binary 1 Sigmoid Cross-entropy

classification
Multiclass nb K of classes Softmax Cross-entropy

classification softmax(z) =

p1
...
pK

 = 1∑K
k=1 ezk

ez1

...
ezK

 ∑K
k=1 1y=k log(pk)

For an exhaustive list, see https://scikit-learn.org/stable/modules/model_evaluation.
html#regression-metics

For visualization in classification, use confusion matrices!

https://scikit-learn.org/stable/modules/model_evaluation.html#regression-metics
https://scikit-learn.org/stable/modules/model_evaluation.html#regression-metics

28 / 87Zoology of output/loss functions

▶ The output layer depends on the learning task
▶ The loss metrics depends on the learning task

Task Nb of neurons Output function Loss
in the output layer

Regression 1 (or d ′) Linear RMSE ℓ(y , y ′) =
√

(y − y ′))2

MAE ℓ(y , y ′) = |y − y ′|
Binary 1 Sigmoid Cross-entropy

classification
Multiclass nb K of classes Softmax Cross-entropy

classification softmax(z) =

p1
...
pK

 = 1∑K
k=1 ezk

ez1

...
ezK

 ∑K
k=1 1y=k log(pk)

For an exhaustive list, see https://scikit-learn.org/stable/modules/model_evaluation.
html#regression-metics

For visualization in classification, use confusion matrices!

https://scikit-learn.org/stable/modules/model_evaluation.html#regression-metics
https://scikit-learn.org/stable/modules/model_evaluation.html#regression-metics

29 / 87Zoology of optimizers

▶ Training a neural network is very challenging
▶ A key ingredient is the optimizer you use to find a local optimum
▶ They are all based on stochastic gradient descent (SGD)

▶ with adaptive learning rates: try to retrieve second-order information
(Hessian) only based on first-order information (gradient)

▶ with momentum: gradient memory
https://distill.pub/2017/momentum/

SGD ⩽ Adagrad/RMSProp︸ ︷︷ ︸
adaptive learning rates

⩽ ADAM︸ ︷︷ ︸
with momentum

https://distill.pub/2017/momentum/

30 / 87Bias-variance tradeoff

▶ Usually the constructed predictor fn is constrained to live in a class
F of functions

▶ Complexity of the model ≡ Size of F
▶ Learning always implies to tune hyper-parameters (NN architecture,

etc.)
▶ How to tune them?

Statistical wisdom: take care of the so-called bias-variance tradeoff

Bias: systematic error, the pre-
dictor model is too simple to
grasp data complexity

Variance: how much the pre-
dictions for a given point vary
between different realizations
of the model

31 / 87Bias-variance tradeoff

from here

https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-machine-learning-tips-and-tricks

32 / 87Going beyond the traditional bias-variance tradeoff

New insights in the parametric world: adding another billion parameters
to a neural network improves the predictive performances

[OpenAI, Deep Double Descent, Nakkiran et al. 2021]

Double descent phenomenon at least well-understood in linear models
[Hastie et al. 2019]

33 / 87Over-parametrization in neural networks

The risk can be always decomposed as follows

Risk = approximation error + estimation error + optimisation error

Why does not overparametrization hurt NN training ?
▶ approximation error: more parameters, better approx capacities
▶ optimisation error: more parameters, nicer optimisation space

[NGuyen et al. 2019, Nguyen 2020]

▶ estimation error: more parameters, implicit regularisation
[Deep learning: a statistical viewpoint, Bartlett, Montanari, Rakhlin, 21]

34 / 87Evaluation strategies
▶ Idea: always monitor the generalization of the trained algorithm
▶ Train/test splitting

source: fidle-cnrs

▶ Problem: we adapt our model according to the test data! ⇝ Bias

35 / 87Hold-out validation

source: fidle-cnrs

▶ OK for large datasets
otherwise val and test sets too small =⇒ unstable evaluation

36 / 87K -fold cross-validation

source: fidle-cnrs

▶ Probably the best strategy for datasets of reasonable size
▶ Choose K = 5 or 10

37 / 87Summary

1. Context

2. Vintage neural networks
A single neuron
Multi-layer perceptron
Performance evaluation

3. Convolutional NN

4. Recurrent NN

5. Transformers

38 / 87Image representation

▶ Represented as 2D (grayscale)
or 3D (color) arrays (tensors)

▶ Integers between 0 and 255

▶ Difficulty: semantic gap be-
tween representation and its con-
tent

▶ Reminder: when designing a net-
work, one should inject prior
knowledge about intrinsic reg-
ularities of the data

▶ A same feature/object can be
localized anywhere in the image,
it should be detected regardless
of its position

38 / 87Image representation

▶ Represented as 2D (grayscale)
or 3D (color) arrays (tensors)

▶ Integers between 0 and 255

▶ Difficulty: semantic gap be-
tween representation and its con-
tent

▶ Reminder: when designing a net-
work, one should inject prior
knowledge about intrinsic reg-
ularities of the data

▶ A same feature/object can be
localized anywhere in the image,
it should be detected regardless
of its position

38 / 87Image representation

▶ Represented as 2D (grayscale)
or 3D (color) arrays (tensors)

▶ Integers between 0 and 255

▶ Difficulty: semantic gap be-
tween representation and its con-
tent

▶ Reminder: when designing a net-
work, one should inject prior
knowledge about intrinsic reg-
ularities of the data

▶ A same feature/object can be
localized anywhere in the image,
it should be detected regardless
of its position

39 / 87Convolutional neural networks
Classical networks for images?
▶ Computational cost!

Ex: a 400x400 pixel RGB image as input, followed by 1000 hidden neurons,
for 10-class classification
Number of trainable parameters ≃ 500 million

▶ Loss of context: MLP do not take into account the spatial organization
of pixels
▶ Non robust to image shifting
▶ If the pixels are permuted, the output of the network would be the

same, whereas the image would change drastically
▶ Confounding features: in MNIST, only one object per image, this is

not the case in real images

Idea
▶ Apply local transformation to a set of nearby pixels (spatial nature

of image is used)
▶ Repeat this transformation over the whole image (resulting in a

shift-invariant output).

Convolutional neural networks
▶ Replace the standard matrix products by a convolution

39 / 87Convolutional neural networks
Classical networks for images?
▶ Computational cost!

Ex: a 400x400 pixel RGB image as input, followed by 1000 hidden neurons,
for 10-class classification
Number of trainable parameters ≃ 500 million

▶ Loss of context: MLP do not take into account the spatial organization
of pixels
▶ Non robust to image shifting
▶ If the pixels are permuted, the output of the network would be the

same, whereas the image would change drastically
▶ Confounding features: in MNIST, only one object per image, this is

not the case in real images

Idea
▶ Apply local transformation to a set of nearby pixels (spatial nature

of image is used)
▶ Repeat this transformation over the whole image (resulting in a

shift-invariant output).

Convolutional neural networks
▶ Replace the standard matrix products by a convolution

39 / 87Convolutional neural networks
Classical networks for images?
▶ Computational cost!

Ex: a 400x400 pixel RGB image as input, followed by 1000 hidden neurons,
for 10-class classification
Number of trainable parameters ≃ 500 million

▶ Loss of context: MLP do not take into account the spatial organization
of pixels
▶ Non robust to image shifting
▶ If the pixels are permuted, the output of the network would be the

same, whereas the image would change drastically
▶ Confounding features: in MNIST, only one object per image, this is

not the case in real images

Idea
▶ Apply local transformation to a set of nearby pixels (spatial nature

of image is used)
▶ Repeat this transformation over the whole image (resulting in a

shift-invariant output).

Convolutional neural networks
▶ Replace the standard matrix products by a convolution

40 / 87A 2D convolution

source: fidle-cnrs

41 / 87A 2D convolution

source: fidle-cnrs

42 / 87A convolution layer

source: fidle-cnrs

▶ Number of parameters in a convolution layer : kx × ky + 1
▶ Parameter sharing instead of full connection

▶ improved memory
▶ statistical efficiency
▶ faster computations

▶ The kernel will be learned (as the weights in fully connected layers)

43 / 87Parameters of a convolution layer

1. Size of the kernel (K)
2. Zero-padding (P)

Valid convolution: no padding
Here the size is preserved

3. Stride (S): how many pixels the filter is moved horizontally and
vertically

▶ Relation between these hyperparameters

output size =

⌊
2P + input size− K

S

⌋
+ 1

43 / 87Parameters of a convolution layer

1. Size of the kernel (K)
2. Zero-padding (P)

Valid convolution: no padding
Here the size is preserved

3. Stride (S): how many pixels the filter is moved horizontally and
vertically

▶ Relation between these hyperparameters

output size =

⌊
2P + input size− K

S

⌋
+ 1

44 / 87Convolutional neural networks

▶ Use several convolution kernels in parallel to get different structures
in the image

45 / 87Max pooling

▶ The pooling layer operates inde-
pendently on every depth slice of
the input and resizes it spatially,
using the max function

▶ Replaces the outut at a certain
location by a summary statistics
of neighbouring outputs

▶ Helps the representation to be
approximately invariant to small
translation in the input

Input is shifted by
1, only half of the
pooling output is
changed

46 / 87Some famous ConvNets

▶ LeNet [LeCun, Bottou, Bengio, Haffner, 1998]

▶ AlexNet (2012), like LeNet with more layers
▶ VGGNet (2014), similar , bigger
▶ GoogleNet (2014), "all-convolutional network" (no fully connected

layers anywhere, except the final classification)
▶ After 2015, residual blocks: use the layers to model differences. In

some sense, each successive layer would predict “new information” that
was not already previously extracted

hℓ+1 = hℓ + σ(Wℓhℓ)

⇝ represented by skip connections

47 / 87Summary

1. Context

2. Vintage neural networks
A single neuron
Multi-layer perceptron
Performance evaluation

3. Convolutional NN

4. Recurrent NN

5. Transformers

48 / 87Recurrent neural networks

▶ Recurrent Neural Networks (RNNs) are Artificial Neural Networks
that can deal with sequences of variable size.

49 / 87Different uses of recurrent neural networks

▶ Vanilla Neural Networks
▶ Image classification (one-to-one)
▶ Image Captioning (one-to-many): image/sequence of words
▶ Sentiment classification (many-to-one): sequence of

words/sentiment
▶ Translation (many-to-many): sequence of words/sequence of words
▶ Video classification on frame level (many-to-many): sequence of

image/sequence of label

50 / 87Language generating NN: training
from Charles Deledalle’s lectures

How to learn “The cat is in the kitchen drinking milk.”?
▶ Word: a 1-to-K code (large dictionaries of K words)
▶ Learn: P (next word|current word and past)
▶ Represent the past as a feature vector

50 / 87Language generating NN: training
from Charles Deledalle’s lectures

How to learn “The cat is in the kitchen drinking milk.”?
▶ Word: a 1-to-K code (large dictionaries of K words)
▶ Learn: P (next word|current word and past)
▶ Represent the past as a feature vector

51 / 87Language generating NN: training

from Charles Deledalle’s lectures

How to learn “The cat is in the kitchen drinking milk.”?
▶ Word: a 1-to-K code (large dictionaries of K words)
▶ Learn: P (next word|current word and past)
▶ Represent the past as a feature vector

▶ Learn also how to represent the current sentence
▶ Repeat for the next word

51 / 87Language generating NN: training

from Charles Deledalle’s lectures

How to learn “The cat is in the kitchen drinking milk.”?
▶ Word: a 1-to-K code (large dictionaries of K words)
▶ Learn: P (next word|current word and past)
▶ Represent the past as a feature vector

▶ Learn also how to represent the current sentence
▶ Repeat for the next word

52 / 87Language generating NN: training
from Charles Deledalle’s lectures

▶ Add two words: START and STOP to delimitate the sentence
▶ Learn everything end-to-end on a large corpus of sentences
▶ Minimize the sum of the cross-entropy of each word (maximum

likelihood)
▶ Intermediate feature will learn how to memorize the

past/context/state

▶ How should the network architecture and size of intermediate
features evolve with the location in the sequence?

53 / 87Language generating NN: training

from Charles Deledalle’s lectures

▶ Use the same networks and the same feature dimension
▶ The past is always embedded in a fix-sized feature
▶ Set the first feature as a zero tensor

▶ Allows you to learn from arbitrarily long sequences
▶ Sharing the architecture ⇒ fewer parameters ⇒ training requires

less data and the final prediction can be expected to be more
accurate

54 / 87A simple shallow RNN for sentence generation

▶ This is an unfolded representation of an RNN

ht = g (Whxxt +Whhht−1 + bh)

yt = softmax (Wyhht + by)

▶ Folded representation: RNN ≡ ANN
with loops

54 / 87A simple shallow RNN for sentence generation

▶ This is an unfolded representation of an RNN

ht = g (Whxxt +Whhht−1 + bh)

yt = softmax (Wyhht + by)

▶ Folded representation: RNN ≡ ANN
with loops

55 / 87Generate a sentence in practice

▶ Provide START, get all the probabilities
P (next word|current word = START)

▶ Select one of these words according to their probabilities, let say ‘A’,
▶ Provide ‘A’ and the past, and get P (next word|current word = A)
▶ Repeat while generating the sentence ‘A dog plays with a ball’
▶ Stop as soon as you have picked STOP.

56 / 87Bidirectional RNN

▶ Output at time t may not only depend on the previous elements,
but also on future elements

ht = g
(
Whxxt +W forward

hh ht−1 +W backward
hh ht+1bh

)
yt = softmax (Wyhht + by)

57 / 87Deep RNN

▶ Multiple layers per time step (a feature hierarchy)
▶ Higher learning capacity
▶ Requires a lot more training data

58 / 87Learning phase for RNN

▶ Similar to standard backprop for training a traditional NN
▶ Take into account that parameters are shared by all steps in the

network
▶ Forward through the entire sequence to compute the loss
▶ Backward through the entire sequence to compute gradients

59 / 87What I left under the carpet: word embedding

▶ How to represent words as input?

▶ Naive way: one-hot encoding
no similarity information

▶ Improved way: word-embedding as word2vec
takes into account words similarity

60 / 87Language generating RNN: limitations
▶ Vanilla RNN have difficulties learning long-term dependencies

I grew up in France ... I speak fluent ???
(we need the context of France from further back)

▶ Vanishing/exploding gradient problem∥∥∥∥ ∂ht
∂ht−1

∥∥∥∥︸ ︷︷ ︸
∥W⊤

hh diag(σ′(Whhht−1+Wxhxt))∥

∼ η =⇒

∥∥∥∥∥
T∏

t=k+1

∂ht
∂ht−1

∥∥∥∥∥ ∼ ηT−k

▶ As T − k increases, the contribution of the k-th term to the gradient
decreases exponentially fast

▶ Certain types of RNNs are specifically designed to get around them

61 / 87GRU (Gated Recurrent Unit)
▶ By interpretring the state as the memory of a recurrent unit, we would

like to decide whether certain units are worth memorizing (in which
case the state is updated), and others are worth forgetting (in which
case the state is reset)

▶ Define two gating operations, called "reset" and "update":

rt = σ (Wrxxt +Wrhht−1) zt = σ (Wzxxt +Wzhht−1)

▶ Instead of ht = σ (Whxxt +Whhht−1), consider

h̃t = σ (Whxxt +Whh (ht−1 ⊙ rt))

▶ If the reset gate ≃ 1, then this looks like a regular RNN unit (i.e., we
retain memory)

▶ If the reset gate ≃ 0, then this looks like a regular perceptron/dense
layer (i.e., we forget)

▶ the update gate tells us how much memory retention versus forgetting
needs to happen

ht = ht−1 ⊙ zt + h̃t ⊙ (1− zt)

61 / 87GRU (Gated Recurrent Unit)
▶ By interpretring the state as the memory of a recurrent unit, we would

like to decide whether certain units are worth memorizing (in which
case the state is updated), and others are worth forgetting (in which
case the state is reset)

▶ Define two gating operations, called "reset" and "update":

rt = σ (Wrxxt +Wrhht−1) zt = σ (Wzxxt +Wzhht−1)

▶ Instead of ht = σ (Whxxt +Whhht−1), consider

h̃t = σ (Whxxt +Whh (ht−1 ⊙ rt))

▶ If the reset gate ≃ 1, then this looks like a regular RNN unit (i.e., we
retain memory)

▶ If the reset gate ≃ 0, then this looks like a regular perceptron/dense
layer (i.e., we forget)

▶ the update gate tells us how much memory retention versus forgetting
needs to happen

ht = ht−1 ⊙ zt + h̃t ⊙ (1− zt)

61 / 87GRU (Gated Recurrent Unit)
▶ By interpretring the state as the memory of a recurrent unit, we would

like to decide whether certain units are worth memorizing (in which
case the state is updated), and others are worth forgetting (in which
case the state is reset)

▶ Define two gating operations, called "reset" and "update":

rt = σ (Wrxxt +Wrhht−1) zt = σ (Wzxxt +Wzhht−1)

▶ Instead of ht = σ (Whxxt +Whhht−1), consider

h̃t = σ (Whxxt +Whh (ht−1 ⊙ rt))

▶ If the reset gate ≃ 1, then this looks like a regular RNN unit (i.e., we
retain memory)

▶ If the reset gate ≃ 0, then this looks like a regular perceptron/dense
layer (i.e., we forget)

▶ the update gate tells us how much memory retention versus forgetting
needs to happen

ht = ht−1 ⊙ zt + h̃t ⊙ (1− zt)

62 / 87Long-Short Term Memory

ht = g (Whxxt +Whhht−1 + bh) (memory)
yt = softmax (Wyhht + by) (used as feature for prediction)

62 / 87Long-Short Term Memory

gt = g (Wcxxt +Wchht−1 + bc) (input modulation gate)
ct = gt (place memory in a cell unit c)
ht = ct

yt = softmax (Wyhht + by) (use ht for prediction)

62 / 87Long-Short Term Memory

gt = g (Wcxxt +Wchht−1 + bc) (input modulation gate)
ct = ct−1 + gt (the cell keeps track of long term)
ht = ct

yt = softmax (Wyhht + by)

62 / 87Long-Short Term Memory

ft = sigm (Wfxxt +Wfhht−1 + bf) (forget gate)
gt = g (Wcxxt +Wchht−1 + bc) (input modulation gate)
ct = ft ⊗ ct−1 + gt (but can forget some of its memories)
ht = ct

yt = softmax (Wyhht + by)

62 / 87Long-Short Term Memory

it = sigm (Wixxt +Wihht−1 + bi) (input gate)
ft = sigm (Wfxxt +Wfhht−1 + bf) (forget gate)
gt = g (Wcxxt +Wchht−1 + bc) (input modulation gate)
ct = ft ⊗ ct−1 + gt (but can forget some of its memories)
ht = ct

yt = softmax (Wyhht + by)

62 / 87Long-Short Term Memory

ot = sigm (Woxxt +Wohht−1 + bo) (output gate)
it = sigm (Wixxt +Wihht−1 + bi) (input gate)
ft = sigm (Wfxxt +Wfhht−1 + bf) (forget gate)
gt = g (Wcxxt +Wchht−1 + bc) (input modulation gate)
ct = ft ⊗ ct−1 + gt (but can forget some of its memories)
ht = ot ⊗ ct (weight memory for generating feature)
yt = softmax (Wyhht + by)

▶ There are many variants, but this is the general idea

63 / 87Long-Short Term Memory (LSTM)

LSTM being a generalization of GRU

▶ The LSTM units give the network memory cells with read, write and reset
operations. During training, the network can learn when it should remember
data and when it should throw it away

▶ Well-suited to learn from experience to classify, process and predict time
series when there are very long time lags of unknown size between important
events

64 / 87Preparation of sequence data

▶ Can you predict the past with the future? Beware of splitting time
series!

source: fidle-cnrs

64 / 87Preparation of sequence data

▶ Can you predict the past with the future? Beware of splitting time
series!

source: fidle-cnrs

65 / 87Cross-validation for time series

66 / 87Summary

1. Context

2. Vintage neural networks
A single neuron
Multi-layer perceptron
Performance evaluation

3. Convolutional NN

4. Recurrent NN

5. Transformers

67 / 87Self-attention for what?

So far
▶ Convnets maps an image to a single output

▶ RNN maps a sequence to a single output or a sequence

▶ Self-attention maps a set of inputs {x1, . . . , xN} to a set of outputs
{y1, . . . , yN}

▶ This is an embedding

68 / 87A preliminary version of self-attention

yi =
N∑
j=1

wijxj

▶ Each output is a weighted average of all inputs where the weights
Wij are row-normalized such that they sum to 1

▶ The weights are directly derived from the inputs, e.g.

w ′
ij = x⊤i xj wij =

exp(w ′
ij)∑

j′ exp(w
′
ij′)

}
softmax

(
(w ′

ij)j
)

▶ Here, everything is deterministic, for now nothing is learned
▶ The operation is permutation-invariant (but this can be fixed, see

later)

69 / 87A preliminary version of self-attention

from http://peterbloem.nl/blog/transformers

▶ A few other ingredients are needed for a complete transformer
▶ But this is the only operation in the whole architecture that

propagates information between vectors
▶ Every other operation in the transformer is applied to each vector in

the input sequence without interactions between vectors

http://peterbloem.nl/blog/transformers

70 / 87A preliminary version of self-attention

What’s the point?
▶ Restriction of self-attention to linear models
▶ Example of Neural Machine Translation (NMT)
▶ Task: translate "the dog sat on the couch" from English to

French
▶ A lot of redundancy in natural languages
▶ ’the’ ’on’ are common, not informative, not correlated
▶ ’dog’ ’couch’ are similar, both nouns, can be grouped according to

subject-object relationships or subject-predicate relationships
▶ It would be useful if the model automatically “grouped” similar

words together
▶ Possible by the scalar products

71 / 87A preliminary version of self-attention

Another example: movie recommendation
1. create manual features for movies and for users

▶ how much romance there is in the movie, and how much action,
▶ how much they enjoy romantic movies and how much they enjoy

action-based movies

2. The dot product between the two feature vectors gives a score for
how well the attributes of the movie match what the user enjoys

Dot product ≡ relations between objects

71 / 87A preliminary version of self-attention

Another example: movie recommendation
1. create manual features for movies and for users

▶ how much romance there is in the movie, and how much action,
▶ how much they enjoy romantic movies and how much they enjoy

action-based movies

2. The dot product between the two feature vectors gives a score for
how well the attributes of the movie match what the user enjoys

Dot product ≡ relations between objects

72 / 87A step further

▶ This is the basic principle at work in the self-attention
Going back to the NMT example:

▶ Input: a sequence of words x1, . . . xN

▶ Embedding layer: apply to each word xi an embedding vi (the
values that we will learn)
⇝ Learning the values vi is learning how "related" two words are
⇝ Entirely determined by the learning task

Ex: "The dog sleeps on the couch"
▶ ’The’: not very relevant to the interpretation of the other words in

the sentence
▶ Desire 1: the embedding vThe should have a zero or negative scalar

product with the other words
▶ Helpful to interpret who sleeps
▶ Desire 2: for nouns like ’dog’ and verbs like ’sleeps’, learn an

embedding vdog and vsleeps that have a high, positive dot product

72 / 87A step further

▶ This is the basic principle at work in the self-attention
Going back to the NMT example:

▶ Input: a sequence of words x1, . . . xN
▶ Embedding layer: apply to each word xi an embedding vi (the

values that we will learn)
⇝ Learning the values vi is learning how "related" two words are
⇝ Entirely determined by the learning task

Ex: "The dog sleeps on the couch"
▶ ’The’: not very relevant to the interpretation of the other words in

the sentence
▶ Desire 1: the embedding vThe should have a zero or negative scalar

product with the other words
▶ Helpful to interpret who sleeps
▶ Desire 2: for nouns like ’dog’ and verbs like ’sleeps’, learn an

embedding vdog and vsleeps that have a high, positive dot product

72 / 87A step further

▶ This is the basic principle at work in the self-attention
Going back to the NMT example:

▶ Input: a sequence of words x1, . . . xN
▶ Embedding layer: apply to each word xi an embedding vi (the

values that we will learn)
⇝ Learning the values vi is learning how "related" two words are
⇝ Entirely determined by the learning task

Ex: "The dog sleeps on the couch"
▶ ’The’: not very relevant to the interpretation of the other words in

the sentence
▶ Desire 1: the embedding vThe should have a zero or negative scalar

product with the other words
▶ Helpful to interpret who sleeps
▶ Desire 2: for nouns like ’dog’ and verbs like ’sleeps’, learn an

embedding vdog and vsleeps that have a high, positive dot product

73 / 87Learning the embedding: attention weights

▶ Showing the scalar products between the learned embedding v

▶ As we are encoding the word "it", part of the attention mechanism
was focusing on "the animal"

74 / 87Towards a real self-attention layer

In the toy self-attention version, every input vector xi is used in three
different ways in the self attention operation

▶ (Query) xi is compared to every other vector to establish the
weights for its own output yi

▶ (Key) xi is compared to every other vector to establish the weights
for the output of the j-th vector yj

▶ (Value) xi is used as part of the weighted sum to compute each
output vector once the weights have been established.

These three roles are called the query, key, and value.

75 / 87Towards a real self-attention layer
Make these roles distinct by adding a few dummy variables:

qi = xi (Query)
ki = xi (Key)
vi = xi (Value)

and then write out the output as:

w ′
ij = q⊤i kj wij = softmax((w ′

ij)) yi =
N∑
j=1

wijvj

Then, we can learnable parameters for each of these roles, for instance:

qi = Wqxi (Query)
ki = Wkxi (Key)
vi = Wvxi (Value)

where Wq, Wk , Wv are learnable projection matrices that defines the
roles of each data point

75 / 87Towards a real self-attention layer
Make these roles distinct by adding a few dummy variables:

qi = xi (Query)
ki = xi (Key)
vi = xi (Value)

and then write out the output as:

w ′
ij = q⊤i kj wij = softmax((w ′

ij)) yi =
N∑
j=1

wijvj

Then, we can learnable parameters for each of these roles, for instance:

qi = Wqxi (Query)
ki = Wkxi (Key)
vi = Wvxi (Value)

where Wq, Wk , Wv are learnable projection matrices that defines the
roles of each data point

76 / 87An attention head

from http://peterbloem.nl/blog/transformers

Fig.: Illustration of the self-attention with key, query and value transformations

http://peterbloem.nl/blog/transformers

77 / 87Scaling the dot product

▶ The dot product in attention weights is usually scaled

w ′
ij =

1√
dimension of the embedding

q⊤i kj

where dimension of the embedding = size of qi , ki , vi

▶ The softmax function can be sensitive to very large input values

⇝ vanishing gradient / slow training

▶ The average value of the dot product grows with the embedding
dimension

78 / 87Multi-head self attention layer

▶ Concatenate different self-attention mechanisms to give it more flexi-
bility

▶ Same analogy as choosing multiple filters in a convnet layer
Index each head with r = 1, 2, . . .

qri = W r
q xi k r

i = W r
k xi v r

i = W r
v xi

(w ′)rij = (qri)
⊤k r

j w r
ij = softmax((w ′)rij)) y r

i =
N∑
j=1

w r
ijv

r
j

yi = Wyconcat
(
y1
i , y

2
i , . . .

)

(y1, . . . , yN) = Attn (x1, . . . , xN)

79 / 87On the vocabulary

▶ ‘key’, ‘query’, ‘value’ come from a key-value data structure (search
engine)
If we give a query key and match it to a database of available keys, then
the data structure returns the corresponding matched value

▶ Similar here
▶ matching done by scalar products
▶ softmax ensures a soft-matching
▶ keys are matched to queries in some extent

▶ "Self-attention"? The self-attention mechanism allows the inputs
1. to interact with each other (“self”)
2. to find out who they should pay more attention to (“attention”)

The outputs are aggregates of these interactions and attention scores.

79 / 87On the vocabulary

▶ ‘key’, ‘query’, ‘value’ come from a key-value data structure (search
engine)
If we give a query key and match it to a database of available keys, then
the data structure returns the corresponding matched value

▶ Similar here
▶ matching done by scalar products
▶ softmax ensures a soft-matching
▶ keys are matched to queries in some extent

▶ "Self-attention"? The self-attention mechanism allows the inputs
1. to interact with each other (“self”)
2. to find out who they should pay more attention to (“attention”)

The outputs are aggregates of these interactions and attention scores.

80 / 87Transformer?

▶ This is an architecture

from http://peterbloem.nl/blog/transformers

▶ Combining self-attention, residual connections, layer normalizations
and standard MLPs

▶ Normalization and residual connections are standard tricks used to
help deep neural networks train faster and more accurately

▶ The layer normalization is applied over the embedding dimension
only

http://peterbloem.nl/blog/transformers

81 / 87Positional encoding

▶ Unlike sequence models (such as RNNs or LSTMs), self-attention
layers are permutation-equivariant

▶ Meaning that {
‘The dog chases the cat’
‘The cat chases the dog’

will learn the same features

▶ Solution: positional embedding/encoding
▶ One-hot encoding
▶ Sinusoidal encoding

position t → (sin(ω1t), sin(ω2t), . . . , sin(ωd t))

with ωk = 1
10000k/d

(float continuous counterparts of binary values)

The 128-dimensional positional encoding
for a sentence with a maximum length
of 50. Each row represents the encoding
vector.

81 / 87Positional encoding

▶ Unlike sequence models (such as RNNs or LSTMs), self-attention
layers are permutation-equivariant

▶ Meaning that {
‘The dog chases the cat’
‘The cat chases the dog’

will learn the same features
▶ Solution: positional embedding/encoding

▶ One-hot encoding
▶ Sinusoidal encoding

position t → (sin(ω1t), sin(ω2t), . . . , sin(ωd t))

with ωk = 1
10000k/d

(float continuous counterparts of binary values)

The 128-dimensional positional encoding
for a sentence with a maximum length
of 50. Each row represents the encoding
vector.

82 / 87Simple sequence classification transformer

▶ Goal: build a sequence classifier for sentiment analysis
▶ IMDb sentiment classification dataset

▶ (input) movie reviews (sequences of words)
▶ (output) classification labels: positive or negative

from http://peterbloem.nl/blog/transformers

http://peterbloem.nl/blog/transformers

82 / 87Simple sequence classification transformer

▶ Goal: build a sequence classifier for sentiment analysis
▶ IMDb sentiment classification dataset

▶ (input) movie reviews (sequences of words)
▶ (output) classification labels: positive or negative

from http://peterbloem.nl/blog/transformers

http://peterbloem.nl/blog/transformers

83 / 87The original transformer

▶ "Attention is all you need" by Vaswani et al. (2017)

▶ A sequence-to-sequence structure by encoder-decoder architecture
with teacher forcing
▶ encoder: takes the input sequence and maps it to a latent

representation
▶ decoder: unpacks it to the desired target sequence (for instance,

language translation)
▶ teacher forcing: the decoder also has access to the input sequence

84 / 87Focus on the decoder

▶ The decoder also has access to the input sequence

▶ In an autoregressive manner

from http://peterbloem.nl/blog/transformers

Masking the self-attention scores to ensure that elements can only attend
to input elements that precede them in the sequence

▶ The decoder can use
▶ word-for-word sampling to take care of the low-level structure like

syntax and grammar
▶ the latent vector to capture more high-level semantic structure

http://peterbloem.nl/blog/transformers

85 / 87Modern transformers

▶ BERT (Bidirectional Encoder Representations from Transformers):
reaches human-level performance on a variety of language based
tasks: question answering, sentiment classification or classifying
whether two sentences naturally follow one another
▶ simple stack of transformer blocks
▶ pre-trained on a large general-domain corpus (English books and

wikipedia)
▶ pre-training possible through masking or next-sequence classification

▶ GPT-2: prediction of the next word
▶ Transformer-XL: for long sequence of text
▶ Sparse transformers: uses sparse attention matrices

86 / 87Wrapping up

▶ 4 different NN architectures
▶ for different purposes
▶ for different inputs
▶ Back-propagation in all of them: this is the learning phase

There are a lot of things we did not talk about
▶ NLP
▶ GAN reproducing "realistic" data
▶ Auto-encoder (unsupervised ML) learning a low-dimensional

representation of data

87 / 87Further reading

Some cheat sheets / online lectures / book
▶ https://stanford.edu/~shervine/teaching/cs-230/
▶ https://stanford.edu/~shervine/teaching/cs-229/

cheatsheet-deep-learning
▶ https://chinmayhegde.github.io/dl-notes/
▶ https://cloud.univ-grenoble-alpes.fr/index.php/s/

wxCztjYBbQ6zwd6
▶ https://www.deeplearningbook.org/

Thank you!

https://stanford.edu/~shervine/teaching/cs-230/
https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-deep-learning
https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-deep-learning
https://chinmayhegde.github.io/dl-notes/
https://cloud.univ-grenoble-alpes.fr/index.php/s/wxCztjYBbQ6zwd6
https://cloud.univ-grenoble-alpes.fr/index.php/s/wxCztjYBbQ6zwd6
https://www.deeplearningbook.org/

87 / 87Further reading

Some cheat sheets / online lectures / book
▶ https://stanford.edu/~shervine/teaching/cs-230/
▶ https://stanford.edu/~shervine/teaching/cs-229/

cheatsheet-deep-learning
▶ https://chinmayhegde.github.io/dl-notes/
▶ https://cloud.univ-grenoble-alpes.fr/index.php/s/

wxCztjYBbQ6zwd6
▶ https://www.deeplearningbook.org/

Thank you!

https://stanford.edu/~shervine/teaching/cs-230/
https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-deep-learning
https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-deep-learning
https://chinmayhegde.github.io/dl-notes/
https://cloud.univ-grenoble-alpes.fr/index.php/s/wxCztjYBbQ6zwd6
https://cloud.univ-grenoble-alpes.fr/index.php/s/wxCztjYBbQ6zwd6
https://www.deeplearningbook.org/

	Context
	Vintage neural networks
	A single neuron
	Multi-layer perceptron
	Performance evaluation

	Convolutional NN
	Recurrent NN
	Transformers

