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Remise à niveau - Statistique
Introduction au ML / à la classification

Claire Boyer
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3 / 31Learning scenarios

ML develops generic methods for solving different types of problems:
▶ Supervised learning

Goal: learn from labeled examples
▶ Unsupervised learning

Goal: learn from data alone, extract structure in the data
▶ Reinforcement learning

Goal: learn by exploring the environment (e.g. games or autonomous
vehicle)
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source: fidle-cnrs



7 / 31Supervised learning, more formally

▶ Supervised learning: given a training sample (Xi ,Yi )1⩽i⩽n, the goal is
to “learn” a predictor fn such that

fn(Xi ) ≃ Yi︸ ︷︷ ︸
prediction on training data

and above all fn(Xnew) ≃ Ynew︸ ︷︷ ︸
prediction on test (unseen) data

Often

▶ (classification) X ∈ Rd and Y ∈ {−1, 1}
▶ (regression) X ∈ Rd and Y ∈ R



8 / 31How to measure the performance of a predictor?

▶ Loss function in general: ℓ(Y , f (X)) measures the goodness of the
prediction of Y by f (X)

▶ Examples:
▶ (classification) Prediction loss: ℓ(Y , f (X)) = 1Y ̸=f (X)

▶ (regression) Quadratic loss: ℓ(Y , f (X)) = |Y − f (X)|2

▶ The performance of a predictor f in regression is usually measured
through the risk

Risk(f ) = E
[
ℓ
(
Ynew, f (Xnew)

)]
▶ A minimizer f ⋆ of the risk is called a Bayes predictor



9 / 31Learning by minimizing the empirical risk

▶ We want to construct a predictor with a small risk
▶ The distribution of the data is in general unknown, so is the risk
▶ Instead, given some training samples (X1,Y1), . . . (Xn,Yn), find the

best predictor f that minimizes the empirical risk

R̂n(f ) :=
1
n

n∑
i=1

ℓ(Yi , f (Xi )).

▶ Learning means retrieving information from training data by construct-
ing a predictor that should have good performance on new data
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In regression (Y = R), the quadratic cost is often used:

ℓ :R × R → R+

(y , y ′) 7→ (y − y ′)2.

so that the quadratic risk for a machine or regression function m : X →
R:

R(f ) := E
[
(Y − f (X ))2

]
.

Its Bayes predictor f ⋆ is f ⋆(x) := E [Y |X = x ]
Indeed, for any f , one has

R(f ⋆) = E
[
(Y − f ⋆(X ))2

]
⩽ E

[
(Y − f (X ))2

]
=: R(f ).

Problem f ⋆ is generally unknown, so we have to find an estimate f̂n(x)
of f (x) such that f̂n(x) ≃ f ⋆(x)
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▶ Setting: the output can only take 2 values (Y ∈ {0, 1})
▶ Note that the distribution of (X,Y) is entirely characterized by (µX , r)

with µ the marginal distribution of X and r is the regression function
of Y on X . More precisely, for all A ∈ B(Rd), µX (A) = P(X ∈ A),
and

r(x) = E [Y |X = x ] = P (Y = 1|X = x)

where the last equality comes from Y ∈ {0, 1}
▶ There is a classification error (or misclassification) as soon as the

prediction Ŷ ̸= Y

The error probability or the risk for a classification rule
For a prediction function/rule f : Rd → {0, 1},

R(f ) = E
[
1f (X )̸=Y

]
= P(f (X ) ̸= Y ).
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Does an optimum exist?
The Bayes predictor f ⋆ is

f ⋆(x) =

{
1 if P (Y = 1|X = x) > P (Y = 0|X = x) ,

0 otherwise,

the equality favoring 0 by convention. Equivalently,

f ⋆(x) =

{
1 if r(x) > 1/2,
0 otherwise,

Lemma
For any classification rule f : Rd → {0, 1}, one has

R(f ⋆) ⩽ R(f ).

Exercise: Prove it.
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The Bayes risk

R⋆ := R(f ⋆) = inf
f :Rd→{0,1}

P(f (X ) ̸= Y ).

Exercise: Show that
1. R⋆ = 1 − E

[
1r(X )>1/2r(X ) + 1r(X )⩽1/2(1 − r(X ))

]
,

2. R⋆ = E [min(r(X ), 1 − r(X ))] = 1
2 − 1

2E |2r(X )− 1|,
3. R⋆ = 0 ⇐⇒ Y = φ(X ) with probability one.

Problem
f ⋆ depends on the unknown distribution of (X ,Y )

▶ We can use an n-sample, i.e. n i.i.d. copies of (X ,Y ) to estimte f ⋆
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15 / 31Reminder: multivariate Gaussian distribution

Definition
Let µ ∈ Rd , Σ be a positive definite matrix. We write X ∼ N (µ,Σ)
when the Lebesgue density of X is

x ∈ Rd 7→|2πΣ|− 1
2 e−

1
2 (x−µ)⊤Σ−1(x−µ)

=
1

(2π)
d
2 |Σ| 1

2
e−

1
2 (x−µ)⊤Σ−1(x−µ),

where |Σ| is the determinant of Σ. In addition, we have

EX = µ, V(X ) = Σ,

where V(X ) is the covariance matrix of X .



16 / 31Recall the Maximal Likelihood Estimators?

Question: what are the MLEs for the expectation and the covariance
matrix of a Gaussian sample?

Proposition
Let µ⋆ ∈ Rd , Σ⋆ be a positive definite matrix and {X1, . . . ,Xn} be a
sample i.i.d. according to N (µ⋆,Σ⋆).
Then

µ̂ =
1
n

n∑
i=1

Xi

and

Σ̂ =
1
n

n∑
i=1

(Xi − µ̂)(Xi − µ̂)⊤

are maximum likelihood estimators (MLEs) respectively of µ⋆ and Σ⋆.



17 / 31Discriminant analysis

▶ (X ,Y ) ∈ Rd × {1, . . .C} be a pair of r.v.
▶ Y is a label characterizing the class of X .
▶ Goal: computing the Bayes classifier when each class c ∈ {1, . . . ,C}

is normally distributed, i.e. there exists a positive definite matrix Σc

and a vector µc ∈ Rd such that

X |Y = c ∼ N (µc ,Σc).

Recall: a Bayes classifier
For multiclasses

∀x ∈ Rd : f ⋆(x) ∈ argmaxc∈[C ] P(Y = c |X = x).



18 / 31Bayes classifier for normal distributions

Proposition
Let us assume that each class is normally distributed and let πc = P(Y = c)
be class prior probabilities, for all c ∈ [C ]. Then, a Bayes classifier f ⋆ is
defined by: ∀x ∈ Rd

f ⋆(x) ∈ argmaxc∈[C ] log(πc)−
1
2
log |Σc | −

1
2
(x − µc)

⊤Σ−1
c (x − µc).

Proof: Compute the log-ratio of the conditional probabilities.



19 / 31Linear discriminant analysis (LDA)
▶ In the case of C=2 classes
▶ LDA model

X |Y = c ∼ N (µc ,Σ), c = 1, 2
▶ With equal covariance

Proposition
Let πc = P(Y = c) be class prior probabilities, for c ∈ {1, 2},

h : x ∈ Rd 7→ (µ1 − µ2)
⊤Σ−1x

b =
1
2
(µ⊤

2 Σ
−1µ2 − µ⊤

1 Σ
−1µ1) + log

(
π1

π2

)
.

Then, a Bayes classifier is

f ⋆ : x ∈ Rd 7→

{
1 if h(x) + b > 0
2 otherwise.

▶ Note that the function h(x) + b is linear in x .
▶ This is a linear classifier!
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What happens when π1 = π2

▶ if π1 = π2, we have:

f ⋆(x) = 1

⇐⇒ (x − µ1)
⊤Σ−1(x − µ1) < (x − µ2)

⊤Σ−1(x − µ2),

▶ π1 = π2 if and only if x is closer to µ1 than µ2 with respect to the
Mahalanobis distance ruled by Σ.

 

Xi

Ï ga



21 / 31Quadratic discriminant analysis (QDA)

▶ Each class is normally distributed
▶ But with different covariances

Proposition
Let πc = P(Y = c) be class prior probabilities, for all c ∈ {1, 2}, and let
us denote

h : x ∈ Rd 7→ 1
2
x⊤(Σ−1

2 − Σ−1
1 )x + (µ⊤

1 Σ
−1
1 − µ⊤

2 Σ
−1
2 )x

b =
1
2
(µ⊤

2 Σ
−1
2 µ2 − µ⊤

1 Σ
−1
1 µ1)−

1
2
log

(
|Σ1|
|Σ2|

)
+ log

(
π1

π2

)
.

Then, a Bayes classifier is

f ⋆ : x ∈ Rd 7→

{
1 if h(x) + b > 0
2 otherwise.

Proof: Left as an exercise.
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Figure: Comparison of linear discrimant analysis (LDA) and quadratic
discriminant analysis (QDA) on different simulated datasets (Gaussian classes
with potentially different covariance matrices).
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24 / 31Going beyond: the logistic model

▶ One of the most widely used classification algorithm.
▶ Logistic model is the "brother" of the linear model in the context of

binary classification (Y = {−1, 1}).
▶ We want to explain the label Y based on X , we want to "regress"

Y on X .
▶ It models the distribution of Y |X . For y ∈ {−1, 1}

P (Y = 1|X = x) = σ
(
xTw + b

)
where w ∈ Rd is a vector of model weights and b ∈ R is the
intercept, and where σ is the sigmoid function:

σ(z) =
1

1 + e−z
.



25 / 31Some comments on the logistic model for classification

▶ The sigmoid choice really is a choice. It is a modelling choice.
▶ It’s a way to map R → [0, 1] (we want to model a probability).
▶ We could also consider

P (Y = 1|X = x) = F
(
xTw + b

)
for any distribution function F .

▶ Another popular choice is the Gaussian distribution function

F (z) = P(N (0, 1) ⩽ z),

which leads to another loss called probit.
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▶ In the case of the sigmoid, one has

P (Y = 1|X = x) =
exp(b + wT x)

1 + exp(b + wT x)
=

1
1 + exp(−(b + wT x))

P (Y = −1|X = x) =
1

1 + exp(b + wT x)

▶ However, the sigmoid choice has the following nice interpretation:
an easy computation leads to

log

(
P (Y = 1|X = x)

P (Y = −1|X = x)

)
= xTw + b.

▶ This quantity is called the log-odd ratio.



27 / 31The logistic model

▶ Therefore, this model makes the assumption that (the logit transfor-
mation of) the probability p(x) = P (Y = 1|X = x) is linear:

logit(p(x)) := log

(
p(x)

1 − p(x)

)
= xTw + b.

▶ Note that

P (Y = 1|X = x) ⩾ P (Y = −1|X = x)

iff
xTw + b ⩾ 0.

This is a linear classification rule, linear w.r.t. the considered features
x!



28 / 31The logistic "regression"

Theorem
Let us consider that C = 2 and that the logit-transformation is linear
with parameters (b⋆,w⋆). Let f ⋆ : x ∈ Rd 7→ b⋆ + (w⋆)⊤x .
Then f ⋆ is a minimizer of the risk functional
f 7→ E [log (1 + exp(−Yf (X )))] over all affine functions and

g⋆ : x ∈ Rd 7→

{
+1 if f ⋆(x) > 0
−1 otherwise

is a Bayes classifier.



29 / 31The logistic regression in a nutshell

▶ This is a linear classifier chosen for the logistic loss!



30 / 31Estimation of w and b

▶ We have a model for Y |X
▶ Data (Xi ,Yi ) is assumed i.i.d with the same distribution as (X ,Y )

▶ Compute estimators ŵ and b̂ by maximum likelihood estimation
▶ Or equivalently, minimize the minus log-likelihood.
▶ More generally, when a model is used

Goodness-of-fit = -log likelihood
log is used mainly since averages are easier to study (and compute)
than products



31 / 31The logistic "regression"

By introducing the logistic loss function

ℓ(y , y ′) = log(1 + e−yy ′
),

then

ŵ , b̂ ∈ argmin w∈Rd

b∈R

1
n

n∑
i=1

ℓ(yi , x
T
i w + b).

▶ It is a convex and smooth problem
▶ Many ways to find an approximate minimizer
▶ Efficient convex optimization algorithms

Remark. Careful when separable data, i.e., ∃(b0,w0) such that

∀i = 1, . . . , n, Yi (w
T
0 Xi + b0) > 0,

then there is no minimizer of the negative log-likelihood!
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