1/31

Remise a niveau - Statistique
Introduction au ML / a la classification

Claire Boyer

universite

PARIS-SACLAY



Plan 2/3

1. Context



Learning scenarios 3/

ML develops generic methods for solving different types of problems:
» Supervised learning
. learn from labeled examples
» Unsupervised learning
: learn from data alone, extract structure in the data
» Reinforcement learning

. learn by exploring the environment (e.g. games or autonomous
vehicle)
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Unsupervised learning 5/

Clustering :
Finding Common Relationships
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Supervised learning

Classification :
Predict qualitative informations
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Supervised learning, more formally 7/

> Supervised learning: given a training sample (X;, Y;)1<i<n, the goal is
to “learn” a predictor f, such that

(X)) ~=Y; and above all fo(Xnew) = Ynew
[ —_—
prediction on test (unseen) data
Often
> (classification) X € R? and Y € {~1,1}
» (regression) XeR?and Y €R



How to measure the performance of a predictor? o /3

> Loss function in general: ¢(Y, f(X)) measures the goodness of the
prediction of Y by f(X)
> Examples:
> Prediction loss: £(Y, f(X)) = 1ysx)
> Quadratic loss: (Y, f(X)) = |Y — f(X)|?
» The performance of a predictor f in regression is usually measured
through the risk

Risk(f) = E[e(Ynew, f (Xnew))] J

» A minimizer f* of the risk is called a Bayes predictor



Learning by minimizing the empirical risk °/

» We want to construct a predictor with a small risk
» The distribution of the data is in general , so is the risk

» Instead, given some training samples (X1, Y1),... (X, Ys), find the
best predictor f that minimizes the empirical risk

Ro(f) : ZE(Y,,f X))

» Learning means retrieving information from training data by construct-
ing a predictor that should have good performance on new data



Regression 10/

In regression () = R), the quadratic cost is often used:
{:RxR—RT
.y) e (v =y

so that the quadratic risk for a machine or regression function m: X —
R:

R(f) :=E[(Y — f(X))?].

Its Bayes predictor f* is *(x) := E[Y|X = x|
Indeed, for any f, one has

R(F) =E[(Y = F(X)?] SE[(Y = £(X))?] = R(f).

f* is generally unknown, so we have to find an estimate Fu(x)
of f(x) such that f,(x) ~ f*(x)
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Binary classification

> Setting: the output can only take 2 values (Y € {0,1})
> Note that the distribution of (X,Y) is entirely characterized by (ux, r)
with p the marginal distribution of X and r is the regression function
of Y on X. More precisely, for all A € B(R?), ux(A) = P(X € A),
and
r(x)=E[Y|X=x]=P(Y =1|X =x)
where the last equality comes from Y € {0,1}

> There is a classification error (or misclassification) as soon as the
prediction Y # Y

The error probability or the risk for a classification rule

For a prediction function/rule f : R? — {0, 1},

R(f) = E [Lrxyzv] = P(F(X) # Y).




Binary classification 12/ 3

Does an optimum exist?

The Bayes predictor * is

F(x) = 1 if P(Y=1X=x)>P(Y=0/X=x),
0 otherwise,

the equality favoring 0 by convention. Equivalently,

ﬁM:{l if r(x)>1/2,

0 otherwise,

Lemma

| A

For any classification rule f : R? — {0,1}, one has

R(*) < R(f).

Exercise: Prove it.



Binary classification 13/ 31

The Bayes risk

RO=R(F) = jnf  PFX) # V).

Exercise: Show that
L R* =1—E [Lyx)>1/2r(X) + Lix)<1/2(1 — r(X))],
2. R* =E[min(r(X),1—r(X))] = 3 — 3E|2r(X) — 1],
3. R* =0 <= Y = ¢(X) with probability one.

f* depends on the unknown distribution of (X, Y)
> We can use an n-sample, i.e. n i.i.d. copies of (X, Y) to estimte f*
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2. Discriminant analysis



Reminder: multivariate Gaussian distribution 15/ 31

Let 1 € R?, ¥ be a positive definite matrix. We write X ~ N (1, ¥)
when the Lebesgue density of X is

—1

x € RY »—>|27TZ|_%e_%(X_“)TZ (x=n)

_ + ~3 =) TE )
(2m)z|x|z

where |X| is the determinant of . In addition, we have

EX=pu, V(X)=L,

where V(X) is the covariance matrix of X.




Recall the Maximal Likelihood Estimators? 16 /31

Question: what are the MLEs for the expectation and the covariance
matrix of a Gaussian sample?

Proposition

Let u* € R4, ©* be a positive definite matrix and {Xy,...,X,} be a
sample i.i.d. according to N'(u*, X*).
Then

and

== (Xi—aXi—p)T"

i=1

are maximum likelihood estimators (MLEs) respectively of u* and T*.

o
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Discriminant analysis

> (X,Y)eR?x{1,...C} be a pair of r.v.
> Y is a label characterizing the class of X.

» Goal: computing the Bayes classifier when each class c € {1,...,C}
is normally distributed, i.e. there exists a positive definite matrix X

and a vector pi. € R? such that

X|Y = c~N(ue, Zc). J

For multiclasses

Vx eRY: f*(x) € argmax ¢ P(Y = ¢|X = x).
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Bayes classifier for normal distributions

Proposition

Let us assume that each class is normally distributed and let 7. = P(Y = ¢)
be class prior probabilities, for all ¢ € [C]. Then, a Bayes classifier f* is
defined by: Vx € RY

1 1 _
*(x) € argmaxceiq) log(me) — 5 log Tl = 5(x — ) T2 (x — ).

Proof: Compute the log-ratio of the conditional probabilities.



Linear discriminant analysis (LDA) 10/ 31

» In the case of C=2 classes
» LDA model
XY =c~N(pe,>), c¢=1,2

» With equal covariance

Let m. = P(Y = ¢) be class prior probabilities, for c € {1,2},
h: x €R? = (1 — p2) "= x
b= %(ugf‘luz — g T pua) + log (:—:) :
Then, a Bayes classifier is

1 ifh(x)+b>0

f*:xeRY— ]
2 otherwise.

> Note that the function h(x) + b is linear in x.
» This is a linear classifier!



LDA 20/ 31

What happens when 7; = 75

» if T = mo, we have:

F(x) = 1
= (x =) T x = ) < (x = p2) T Hx = p2),

» 71 = mp if and only if x is closer to p; than up with respect to the
Mahalanobis distance ruled by .




Quadratic discriminant analysis (QDA) 21/ n

» Each class is normally distributed

» But with different covariances

Let 7. = P(Y = ¢) be class prior probabilities, for all ¢ € {1,2}, and let
us denote

1
h:xERdHEXT(Zgl—Zl_l)X—i-(,uI LD ) X

1 _ | 1| 1
b= (uz X5 2 — iy Ty ul)——log<|z| +log (- ).

Then, a Bayes classifier is

f*ZXGRdl—) 1 Ifh(X)+b>O
2 otherwise.

Proof: Left as an exercise.
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Figure: Comparison of linear discrimant analysis (LDA) and quadratic
discriminant analysis (QDA) on different simulated datasets (Gaussian classes
with potentially different covariance matrices).
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3. Logistic regression



Going beyond: the logistic model 24 /3

» One of the most widely used classification algorithm.

> Logistic model is the "brother" of the linear model in the context of
binary classification (¥ = {—1,1}).

» We want to explain the label Y based on X, we want to "regress"
Y on X.

> It models the distribution of Y[X. For y € {—1,1}
P(Y=1X=x)=0(x"w+b)

where w € RY is a vector of model weights and b € R is the
intercept, and where o is the sigmoid function:




Some comments on the logistic model for classificatiémn =

> The sigmoid choice really is a choice. It is a modelling choice.
> |t's a way to map R — [0, 1] (we want to model a probability).
» We could also consider

P(Y=1X=x)=F (x"w+b)

for any distribution function F.
» Another popular choice is the Gaussian distribution function

F(z) = P(N(0,1) < 2),

which leads to another loss called



The logistic model 26/ 31
» In the case of the sigmoid, one has
exp(b+ w'x) 1
P(Y =1|X = x) = _
( | x) 1 +exp(b+ w'x) 1+ exp(—(b+ wT'x))
1

P(Y =-1X=x)=
( | x) 1+ exp(b+ w'x)

» However, the sigmoid choice has the following nice interpretation:
an easy computation leads to

o8 (PP((Y y: —1|1)|<x::X>)<)> — xTwb. J

» This quantity is called the log-odd ratio.



The logistic model 27/

» Therefore, this model makes the assumption that (the logit transfor-
mation of) the probability p(x) = P (Y = 1|X = x) is linear:

logit(p(x)) := log (l—p(—:()x)> =x"w+b.
> Note that

P(Y=1X=x)>P(Y=-1|X =x)

xTw+b>0.

This is a linear classification rule, linear w.r.t. the considered features
x|



The logistic "regression" 2/

Theorem

Let us consider that C = 2 and that the logit-transformation is linear
with parameters (b*, w*). Let f*: x € R? s b* + (w*) " x.

Then f* is a minimizer of the risk functional

f — E[log (1 + exp(—Yf(X)))] over all affine functions and

gixe RY s +1 iff*(x)>0
—1 otherwise

is a Bayes classifier.




The logistic regression in a nutshell /3

» This is a linear classifier chosen for the logistic loss!

5 T T T T I

= |ogistic
— -1

45} square

4t

35} 1

3} i

25} 1




Estimation of w and b 30/ 31

> We have a model for Y|X
» Data (X;, Y;) is assumed i.i.d with the same distribution as (X, Y)
» Compute estimators w and b by maximum likelihood estimation
» Or equivalently, minimize the minus log-likelihood.
» More generally, when a model is used

Goodness-of-fit = -log likelihood

log is used mainly since averages are easier to study (and compute)
than products



The logistic "regression" S

By introducing the logistic loss function

Uy,y') = log(1+ &™),
then
- . 1<
W, b € argmin ,cgd - ;E(yhX’TW + b).

beR

» |t is a convex and smooth problem
» Many ways to find an approximate minimizer
» Efficient convex optimization algorithms
Remark. Careful when , i.e., I(bg, wp) such that

Vi=1,...,n, Yi(wy X; + bo) > 0,

then there is no minimizer of the negative log-likelihood!
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