Remise à niveau - Statistique Introduction au ML / à la classification

Claire Boyer

Plan 2/31

1. Context

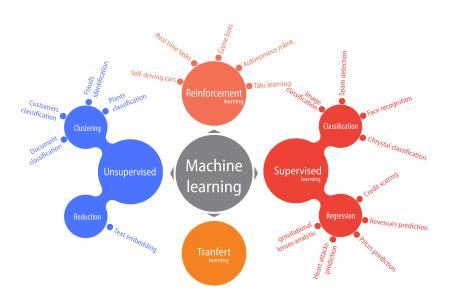
2. Discriminant analysis

3. Logistic regression

Learning scenarios

ML develops generic methods for solving different types of problems:

- Supervised learning Goal: learn from labeled examples
- Unsupervised learning
 Goal: learn from data alone, extract structure in the data
- Reinforcement learning
 Goal: learn by exploring the environment (e.g. games or autonomous vehicle)



source: fidle-cnrs

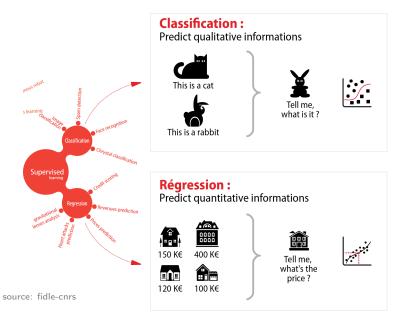
Clustering: Finding Common Relationships What is the relationship between these data?

Reduction: Reduce the number of dimensions

Simplify while keeping meaning

source: fidle-cnrs

Supervised learning



▶ Supervised learning: given a training sample $(X_i, Y_i)_{1 \leq i \leq n}$, the goal is to "learn" a predictor f_n such that

$$f_n(X_i) \simeq Y_i$$
 and above all $f_n(X_{\text{new}}) \simeq Y_{\text{new}}$ prediction on training data prediction on test (unseen) data

Often

- ▶ (classification) $X \in \mathbb{R}^d$ and $Y \in \{-1, 1\}$
- ▶ (regression) $X \in \mathbb{R}^d$ and $Y \in \mathbb{R}$

- Loss function in general: $\ell(Y, f(X))$ measures the goodness of the prediction of Y by f(X)
- Examples:

 - ► (classification) Prediction loss: $\ell(Y, f(X)) = 1_{Y \neq f(X)}$ ► (regression) Quadratic loss: $\ell(Y, f(X)) = |Y f(X)|^2$
- ▶ The performance of a predictor f in regression is usually measured through the risk

$$\mathsf{Risk}(f) = \mathbb{E}\Big[\ell\big(Y_{\mathsf{new}}, f(X_{\mathsf{new}})\big)\Big]$$

A minimizer f^* of the risk is called a Bayes predictor

- ► We want to construct a predictor with a small risk
- ► The distribution of the data is in general unknown, so is the risk
- ▶ Instead, given some training samples $(X_1, Y_1), ..., (X_n, Y_n)$, find the best predictor f that minimizes the empirical risk

$$\hat{\mathcal{R}}_n(f) := \frac{1}{n} \sum_{i=1}^n \ell(Y_i, f(X_i)).$$

Learning means retrieving information from training data by constructing a predictor that should have good performance on new data

In regression $(\mathcal{Y} = \mathbb{R})$, the quadratic cost is often used:

$$\ell : \mathbb{R} \times \mathbb{R} \to \mathbb{R}^+$$

 $(y, y') \mapsto (y - y')^2.$

so that the quadratic risk for a machine or regression function $m:\mathcal{X}\to\mathbb{R}$:

$$\mathcal{R}(f) := \mathbb{E}\left[(Y - f(X))^2 \right].$$

Its Bayes predictor f^* is $f^*(x) := \mathbb{E}[Y|X=x]$ Indeed, for any f, one has

$$\mathcal{R}(f^*) = \mathbb{E}\left[(Y - f^*(X))^2\right] \leqslant \mathbb{E}\left[(Y - f(X))^2\right] =: \mathcal{R}(f).$$

Problem f^* is generally unknown, so we have to find an estimate $\hat{f}_n(x)$ of f(x) such that $\hat{f}_n(x) \simeq f^*(x)$

- ▶ Setting: the output can only take 2 values $(Y \in \{0,1\})$
- Note that the distribution of (X,Y) is entirely characterized by (μ_X,r) with μ the marginal distribution of X and r is the regression function of Y on X. More precisely, for all $A \in \mathcal{B}(\mathbb{R}^d)$, $\mu_X(A) = \mathbb{P}(X \in A)$, and

$$r(x) = \mathbb{E}[Y|X = x] = \mathbb{P}(Y = 1|X = x)$$

where the last equality comes from $Y \in \{0,1\}$

There is a classification error (or misclassification) as soon as the prediction $\hat{Y} \neq Y$

The error probability or the risk for a classification rule

For a prediction function/rule $f: \mathbb{R}^d o \{0,1\}$,

$$\mathcal{R}(f) = \mathbb{E}\left[\mathbb{1}_{f(X)\neq Y}\right] = \mathbb{P}(f(X)\neq Y).$$

Does an optimum exist?

The Bayes predictor f^* is

$$f^{\star}(x) = \begin{cases} 1 & \text{if} \quad \mathbb{P}(Y = 1 | X = x) > \mathbb{P}(Y = 0 | X = x), \\ 0 & \text{otherwise,} \end{cases}$$

the equality favoring 0 by convention. Equivalently,

$$f^*(x) = \begin{cases} 1 & \text{if } r(x) > 1/2, \\ 0 & \text{otherwise,} \end{cases}$$

Lemma

For any classification rule $f: \mathbb{R}^d \to \{0,1\}$, one has

$$\mathcal{R}(f^{\star}) \leqslant \mathcal{R}(f).$$

Exercise: Prove it.

The Bayes risk

$$\mathcal{R}^{\star} := \mathcal{R}(f^{\star}) = \inf_{f:\mathbb{R}^d \to \{0,1\}} \mathbb{P}(f(X) \neq Y).$$

Exercise: Show that

- 1. $\mathcal{R}^* = 1 \mathbb{E}\left[\mathbb{1}_{r(X)>1/2}r(X) + \mathbb{1}_{r(X)\leqslant 1/2}(1-r(X))\right]$,
- 2. $\mathcal{R}^* = \mathbb{E}\left[\min(r(X), 1 r(X))\right] = \frac{1}{2} \frac{1}{2}\mathbb{E}\left[2r(X) 1\right],$
- 3. $\mathcal{R}^* = 0 \iff Y = \varphi(X)$ with probability one.

Problem

- f^* depends on the unknown distribution of (X, Y)
- We can use an *n*-sample, i.e. *n* i.i.d. copies of (X, Y) to estimte f^*

Plan 14/31

1. Context

2. Discriminant analysis

3. Logistic regression

Definition

Let $\mu \in \mathbb{R}^d$, Σ be a positive definite matrix. We write $X \sim \mathcal{N}(\mu, \Sigma)$ when the Lebesgue density of X is

$$\begin{split} x \in \mathbb{R}^d \mapsto & |2\pi\Sigma|^{-\frac{1}{2}} e^{-\frac{1}{2}(x-\mu)^{\top}\Sigma^{-1}(x-\mu)} \\ &= \frac{1}{(2\pi)^{\frac{d}{2}}|\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(x-\mu)^{\top}\Sigma^{-1}(x-\mu)}, \end{split}$$

where $|\Sigma|$ is the determinant of Σ . In addition, we have

$$\mathbb{E}X = \mu$$
, $\mathbb{V}(X) = \Sigma$,

where $\mathbb{V}(X)$ is the covariance matrix of X.

<u>Question:</u> what are the MLEs for the expectation and the covariance matrix of a Gaussian sample?

Proposition

Let $\mu^* \in \mathbb{R}^d$, Σ^* be a positive definite matrix and $\{X_1, \dots, X_n\}$ be a sample i.i.d. according to $\mathcal{N}(\mu^*, \Sigma^*)$.

Then

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

and

$$\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \hat{\mu})(X_i - \hat{\mu})^{\top}$$

are maximum likelihood estimators (MLEs) respectively of μ^* and Σ^* .

- ▶ $(X, Y) \in \mathbb{R}^d \times \{1, \dots C\}$ be a pair of r.v.
- \triangleright Y is a label characterizing the class of X.
- ▶ **Goal:** computing the Bayes classifier when each class $c \in \{1, \dots, C\}$ is normally distributed, i.e. there exists a positive definite matrix Σ_c and a vector $\mu_c \in \mathbb{R}^d$ such that

$$X|Y = c \sim \mathcal{N}(\mu_c, \Sigma_c).$$

Recall: a Bayes classifier

For multiclasses

$$\forall x \in \mathbb{R}^d$$
: $f^*(x) \in \operatorname{argmax}_{c \in [C]} \mathbb{P}(Y = c | X = x)$.

Proposition

Let us assume that each class is normally distributed and let $\pi_c = \mathbb{P}(Y = c)$ be class prior probabilities, for all $c \in [C]$. Then, a Bayes classifier f^* is defined by: $\forall x \in \mathbb{R}^d$

$$f^{\star}(x) \in \operatorname{argmax}_{c \in [C]} \log(\pi_c) - \frac{1}{2} \log |\Sigma_c| - \frac{1}{2} (x - \mu_c)^{\top} \Sigma_c^{-1} (x - \mu_c).$$

Proof: Compute the log-ratio of the conditional probabilities.

Linear discriminant analysis (LDA)

- ► In the case of C=2 classes
- ► LDA model

$$X|Y=c \sim \mathcal{N}(\mu_c, \Sigma), \quad c=1,2$$

With equal covariance

Proposition

Let $\pi_c = \mathbb{P}(Y = c)$ be class prior probabilities, for $c \in \{1, 2\}$,

$$h: x \in \mathbb{R}^d \mapsto (\mu_1 - \mu_2)^{\top} \Sigma^{-1} x$$
$$b = \frac{1}{2} (\mu_2^{\top} \Sigma^{-1} \mu_2 - \mu_1^{\top} \Sigma^{-1} \mu_1) + \log \left(\frac{\pi_1}{\pi_2}\right).$$

Then, a Bayes classifier is

$$f^* \colon x \in \mathbb{R}^d \mapsto \left\{ \begin{array}{ll} 1 & \textit{if } h(x) + b > 0 \\ 2 & \textit{otherwise.} \end{array} \right.$$

- Note that the function h(x) + b is linear in x.
- ► This is a linear classifier!

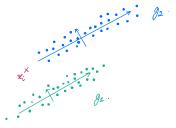
What happens when $\pi_1 = \pi_2$

 \blacktriangleright if $\pi_1 = \pi_2$, we have:

$$f^*(x) = 1$$

 $\iff (x - \mu_1)^\top \Sigma^{-1}(x - \mu_1) < (x - \mu_2)^\top \Sigma^{-1}(x - \mu_2),$

 $\pi_1 = \pi_2$ if and only if x is closer to μ_1 than μ_2 with respect to the Mahalanobis distance ruled by Σ.



Quadratic discriminant analysis (QDA)

- Each class is normally distributed
- ► But with different covariances

Proposition

Let $\pi_c = \mathbb{P}(Y = c)$ be class prior probabilities, for all $c \in \{1, 2\}$, and let us denote

$$h: x \in \mathbb{R}^d \mapsto \frac{1}{2} x^\top (\Sigma_2^{-1} - \Sigma_1^{-1}) x + (\mu_1^\top \Sigma_1^{-1} - \mu_2^\top \Sigma_2^{-1}) x$$

$$b = \frac{1}{2} (\mu_2^\top \Sigma_2^{-1} \mu_2 - \mu_1^\top \Sigma_1^{-1} \mu_1) - \frac{1}{2} \log \left(\frac{|\Sigma_1|}{|\Sigma_2|} \right) + \log \left(\frac{\pi_1}{\pi_2} \right).$$

Then, a Bayes classifier is

$$f^* \colon x \in \mathbb{R}^d \mapsto \left\{ \begin{array}{ll} 1 & \textit{if } h(x) + b > 0 \\ 2 & \textit{otherwise}. \end{array} \right.$$

Proof: Left as an exercise.

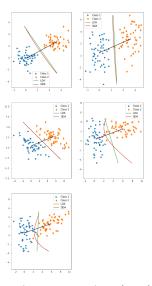


Figure: Comparison of linear discrimant analysis (LDA) and quadratic discriminant analysis (QDA) on different simulated datasets (Gaussian classes with potentially different covariance matrices).

Plan 23 / 31

1. Context

2. Discriminant analysis

3. Logistic regression

Going beyond: the logistic model

- One of the most widely used classification algorithm.
- Logistic model is the "brother" of the linear model in the context of binary classification ($\mathcal{Y} = \{-1, 1\}$).
- We want to explain the label Y based on X, we want to "regress" Y on X.
- ▶ It models the distribution of Y|X. For $y \in \{-1,1\}$

$$\mathbb{P}\left(Y=1|X=x\right)=\sigma\left(x^Tw+b\right)$$

where $w \in \mathbb{R}^d$ is a vector of model weights and $b \in \mathbb{R}$ is the intercept, and where σ is the sigmoid function:

$$\sigma(z) = \frac{1}{1 + e^{-z}}.$$

Some comments on the logistic model for classification 31

- ▶ The sigmoid choice really is a choice. It is a modelling choice.
- lt's a way to map $\mathbb{R} \to [0,1]$ (we want to model a probability).
- ► We could also consider

$$\mathbb{P}\left(Y=1|X=x\right)=F\left(x^{T}w+b\right)$$

for any distribution function F.

► Another popular choice is the Gaussian distribution function

$$F(z) = \mathbb{P}(\mathcal{N}(0,1) \leqslant z),$$

which leads to another loss called probit.

The logistic model

▶ In the case of the sigmoid, one has

$$\mathbb{P}(Y = 1 | X = x) = \frac{\exp(b + w^T x)}{1 + \exp(b + w^T x)} = \frac{1}{1 + \exp(-(b + w^T x))}$$

$$\mathbb{P}(Y = -1 | X = x) = \frac{1}{1 + \exp(b + w^T x)}$$

► However, the sigmoid choice has the following nice interpretation: an easy computation leads to

$$\log\left(\frac{\mathbb{P}(Y=1|X=x)}{\mathbb{P}(Y=-1|X=x)}\right) = x^T w + b.$$

This quantity is called the log-odd ratio.

▶ Therefore, this model makes the assumption that (the logit transformation of) the probability $p(x) = \mathbb{P}(Y = 1|X = x)$ is linear:

$$\operatorname{logit}(p(x)) := \log\left(\frac{p(x)}{1 - p(x)}\right) = x^T w + b.$$

Note that

$$\mathbb{P}\left(Y=1|X=x\right)\geqslant\mathbb{P}\left(Y=-1|X=x\right)$$

iff

$$x^T w + b \geqslant 0.$$

This is a linear classification rule, linear w.r.t. the considered features x!

Theorem

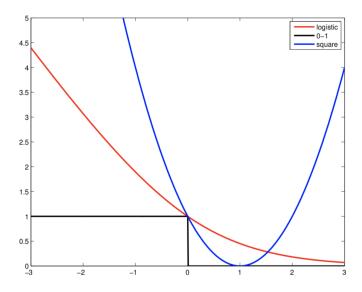
Let us consider that C=2 and that the logit-transformation is linear with parameters (b^*, w^*) . Let $f^*: x \in \mathbb{R}^d \mapsto b^* + (w^*)^\top x$. Then f^* is a minimizer of the risk functional $f \mapsto \mathbb{E}\left[\log\left(1 + \exp(-Yf(X))\right)\right]$ over all affine functions and

$$g^*: x \in \mathbb{R}^d \mapsto \left\{ egin{array}{ll} +1 & \textit{if } f^*(x) > 0 \\ -1 & \textit{otherwise} \end{array} \right.$$

is a Bayes classifier.

The logistic regression in a nutshell

▶ This is a linear classifier chosen for the logistic loss!



- ightharpoonup We have a model for Y|X
- ▶ Data (X_i, Y_i) is assumed i.i.d with the same distribution as (X, Y)
- ightharpoonup Compute estimators \hat{w} and \hat{b} by maximum likelihood estimation
- Or equivalently, minimize the minus log-likelihood.
- ► More generally, when a model is used

Goodness-of-fit = -log likelihood

log is used mainly since averages are easier to study (and compute) than products

The logistic "regression"

By introducing the logistic loss function

$$\ell(y,y') = \log(1 + e^{-yy'}),$$

then

$$\hat{w}, \hat{b} \in \operatorname{argmin}_{\substack{w \in \mathbb{R}^d \\ b \in \mathbb{R}}} \frac{1}{n} \sum_{i=1}^n \ell(y_i, x_i^T w + b).$$

- It is a convex and smooth problem
- Many ways to find an approximate minimizer
- Efficient convex optimization algorithms

Remark. Careful when separable data, i.e., $\exists (b_0, w_0)$ such that

$$\forall i = 1, ..., n,$$
 $Y_i(w_0^T X_i + b_0) > 0,$

then there is no minimizer of the negative log-likelihood!