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Dimensionality Curse B/

High Dimension Geometry Curse

» Folks theorem: In high dimension, everyone is alone.

» Theorem: If Xi,..., X, in the hypercube of dimension d such that
their coordinates are i.i.d then

I
d /P (max [|X; = Xjll, — min | X; = X;l|,) = 0+ O (\/ %)
max [1X; = X flogn
= e g == .
min X% — X[, C\Vd

> When d is large, all the points are almost equidistant...

» Nearest neighbors are meaningless!



Dimension Reduction 3/

» How to view a high-dimensional dataset?
» High-dimension: dimension larger than 2!

» Projection in a 2D space.
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Dimension reduction 4/

Dimension reduction
» Training data D = {x1,...,x,} € X" (i.i.d. ~P)
» Space X of possibly high dimension.

Dimension Reduction Map
Construct a map ® from the space X into a space X’ of smaller dimen-
sion:
d: X=X
x = ®(x)

Criterion
» Reconstruction error

> Distance preservation



Reconstruction Error Approach =/

» Construct a map ® from the space X into a space X’ of smaller
dimension:
d: X - X
x = ®(x)

> Construct ® from X’ to X
> Control the error between x and its reconstruction ®(®(x))

> Canonical example for x € RY: find ® and ® in a parametric family
that minimize

3 I = B((x)



Inertia 6/23

> Xq1,...,%, € R?
1 n
> om= )X

Two views on inertia

» Inertia:

1 n
I=2"|Ixi — m|?
n 4
i=1
1 2
ﬁZfo — x|
1)

» 2 times the mean squared distance to the mean = Mean squared
distance between individual

> Heuristic: a good representation is a representation with a large
inertia

> Large dispersion ~ Large average separation!



Inertia and Projection 7/

> What if we replace x by its projection X = P(x — m) + m?

Two views on inertia

» Inertia:
~ 1<
T=23 G- ml?
i=1
1l = 2
= ﬁZ”Xi =Xl
ij
» Inertia:

~ 1<
I=1—— i — xil?
2 I =l

1 2 o o2
— 1= 5 > (i =%l = 1% - %)

]

» Four different way to obtain a large inertia!



First Component of the PCA 8 /2

» 1D case: X=m+a' (x—m)a
with [laf = 1
> Inertia:

P 1= 7 T
I—;;a (xi—m)(x;—m) "' a

Principal Component Analysis : optimization of the projection

» Maximization of
~ 1<
= ;aT(x; —m)(x; —m)Ta=a'%a

n
with ¥ = = Z(x,- — m)(x; — m)* the empirical covariance matrix.
n
i=1
» Explicit optimal choice given by the eigenvector of the largest
eigenvalue of X.




PCA 0/ 25

Principal Component Analysis : optimization of the projection

» Explicit optimal solution obtain by the projection on the
eigenvectors of the largest eigenvalues of .

» Projected inertia given by the sum of those eigenvalues.

% d’inertie .
- » Often fast decay of the eigenvalues:
some dimensions are much more

important than other.

» Not exactly the curse of dimensionality
setting...

10 20 30 40

» Yet a lot of small dimension can drive

DDDD\::: the distance
2 34

0
= |



10 / 23

PCA

Take-home message

» Principal components = Eigenvectors of the empirical covariance
matrix

» Principal components = "New" variables obtained as linear
combinations of the initial variables

> |ess interpretable
» but capture the dataset variance better
v




PCA as a reconstruction error approach | u/=

» X cRYand &' =R?

» Linear map with V orthonormal
O(x)=V'(x—m) and O(x')=m+ W

» Reconstruction error criterion:
1 n
- D llxi = (m+ W (x5 — m)|?
i=1

» Explicit solution:
» m is the empirical mean
> V is any orthonormal basis of the space spanned by the d’ first
eigenvectors (the one with largest eigenvalues) of the empirical
covariance matrix X 3°7  (x; — m)(x; — m)".



PCA as a reconstruction error approach |l 12/

PCA Algorithm

> Compute the empirical mean m =137 | x;

> Compute the empirical covariance matrix £ "7 (x; — m)(x; — m)T.
» Compute the d’ first eigenvectors of this matrix: V1) ... V()
> Set d(x) = VT (x —m)

Remarks
» Complexity: O(n(1 + d?)+ d'd?)
» Interpretation:

®(x) = V' (x — m): coordinates in the restricted space
V(: influence of each original coordinates in the ith new one.

» Not invariant to a scaling of the variables
~ It is custom to normalize the variables before applying PCA.



Multiple Factor Analysis | 13/23
» PCA assumes X = R?

» How to deal with categorical values?
» MFA = PCA with clever coding strategy for categorical values.

Categorical value code for a single variable

» Classical redundant dummy coding:
x€{l,...,C} = P(x) = (Luet, - - -, Lec)f

» Compute the mean (i.e. the empirical proportions):
P = %27:1 P(xi)

» Renormalize P(x) by 1/4/(C — 1)P:

P(x) — P"(x)

1=t li=c
Li—c) — \/m,...,\/m

(L, ...




Multiple Factor Analysis I 14/2
» PCA becomes the minimization of
*ZHF”(X (m+ VP (x;) — m))|]?
nov o1 / d e p NV 2
g [l R VOB V)
L —) (V-1)P,

» Interpretation:
>» m =P

> d(x) = V(P"x — m): coordinates in the restricted space.

> V() can be interpreted s as a probability profile.
> Complexity: O(n(V + V?) +d'V?)
» Link with Correspondence Analysis (CA)



Multiple Factor Analysis Ill 18/2

MFA Algorithm

» Redundant dummy coding of each categorical variable.
» Renormalization of each block of dummy variable.
» Classical PCA algorithm on the resulting variables

> Interpretation as a reconstruction error with a rescaled/x? metric.
» Interpretation:
> &(x) = V(P"(x) — m): coordinates in the restricted space.
> V. influence of each modality/variable in the ith new coordinates.
» Scaling: This method is not invariant to a scaling of the continuous
variables
~ It is custom to normalize the variables (at least within groups)
before applying PCA.



Non Linear PCA | 16/ 23

PCA Model

» PCA: Linear model assumption
dl
X~ m+ Zx"(’) VD = m+ vx
I=1
> with

» V) orthonormal
> () without constrains.

» Two directions of extension:

» Other constrains on V (or the coordinates in the restricted space):
ICA, NMF, Dictionary approach
»> PCA on a non linear image of x: kernel-PCA

» Much more complex algorithm!



Non Linear PCA I 17/ 23

ICA (Independent Component Analysis)

» Linear model assumption
d/
X~ m+ Zx/’(’)v(l) =m+ VX
> with =1

> V) without constrains.
» x"() independent

NMF (Non Negative Matrix Factorization)

» (Linear) Model assumption
d/
x>~ m+ Zx”(’)V(') =m+ VX
> with =1

> V) non negative
> x() non negative.




Non Linear PCA IlI 18/ 23

» (Linear) Model assumption
d/
X~ m-+ Zx”(’)V(') =m+ VX
> with =1

> V) without constrains
> x’ sparse (with a lot of 0)

v

kernel PCA

» Linear model assumption

d/
V(x — m) ~ Zx”(l) v = vy
> with =1

> V) orthonormal
> x; without constrains.




Auto Encoder 19/ 2

Deep Auto Encoder

» Construct a map ® with a NN from the space X into a space X’ of
smaller dimension:

d: XX
X = P(x)

» Construct ® with a N\ from &’ to X

> Control the error between x and its reconstruction ®(d(x)):

13" I S@G)I
i=1

» Optimization by gradient descent.
» NN can be replaced by another parametric function...



Another of approach via distance preservation 20/ 2

Pairwise distances
» Different point of view: input is distances between feature vectors

» Use only distances d(x;, x;).

Distance Preservation. Construct a map ® from the space X into a
space X’ of smaller dimension:
d: X=X
x = O(x) =X

such that d(x, %) = d'(x;, J)

A natural criterion is

,,QZZW Xi, Xj) X”XJ)|2

i=1 j=1



Random Projections 2t /23

» Distance preserving transform
» Random transform
» Data-independent!

» Dimension-independent!

Theorem (Johnson-Lindenstrauss Lemma)

Let S C RY be a finite set of vectors with cardinality n > 2 and
W € RP*? be a random matrix such that its entries { Wi} 1<v<, are
126<d

i.i.d. and distributed according to N' (0, I%) For any (&,6) € (0,1)?, if
p > 16c 2 log(n/V/5),
then with probability at least 1 — & on the random matrix W,

2 2 2
V(xi,x) € 8% (=) llxi — x| < [[Wxi — Wigl|* < (1+e) [l — xlI°

The mapping x € RY — Wx € RP is called an e-isometry on S.
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Random projections |

The underlying idea of this approach is that the reduction mapping x €
R? — Wx € RP is an exact isometry “in expectation:

VxeRY: E (||WX||2) = Ix|I?.

Indeed, since for all x € RY such that x # 0, p”‘ P u va one has

2 2 2
2\ _ IxIP g (pIwsP _ lx .
E (W) = E( - | ==
P\ I p

N



Random projections |l

Let us remark that it is enough for {Wj}1<i<, to be independent with
15/<d

EW; =0and V(W;) = % (for all i € [p] and j € [d]) in order to get an

exact isometry “in expectation:

2
p

d P d d
E(IWxl?) =SB | [ Do Wi | | =D | Dospviwy) + | D xEW;
Jj=1 j=1

i=1 i=1 \ j=1

Remark. Note that p > 8c72log(n?/6)
This means that we could consider data in infinite-
dimensional Hilbert space...!

Remark. In practice, Multi-Dimensional Scaling (MDS) techniques such
as Isomap are more used.
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