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Remise à niveau - Statistique
Réduction de dimension

Claire Boyer
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High Dimension Geometry Curse
▶ Folks theorem: In high dimension, everyone is alone.
▶ Theorem: If X1, . . . ,Xn in the hypercube of dimension d such that

their coordinates are i.i.d then

d−1/p (max ∥Xi − Xj∥p −min ∥Xi − Xj∥p) = 0 + O

(√
log n

d

)
max ∥Xi − Xj∥p
min ∥Xi − Xj∥p

= 1 + O

(√
log n

d

)
.

▶ When d is large, all the points are almost equidistant...
▶ Nearest neighbors are meaningless!
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▶ How to view a high-dimensional dataset?
▶ High-dimension: dimension larger than 2!
▶ Projection in a 2D space.
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Dimension reduction
▶ Training data D = {x1, . . . , xn} ∈ X n (i.i.d. ∼ P)
▶ Space X of possibly high dimension.

Dimension Reduction Map
Construct a map Φ from the space X into a space X ′ of smaller dimen-
sion:

Φ : X → X ′

x 7→ Φ(x)

Criterion
▶ Reconstruction error focus here in these slides
▶ Distance preservation
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▶ Construct a map Φ from the space X into a space X ′ of smaller
dimension:

Φ : X → X ′

x 7→ Φ(x)

▶ Construct Φ̃ from X ′ to X
▶ Control the error between x and its reconstruction Φ̃(Φ(x))

▶ Canonical example for x ∈ Rd : find Φ and Φ̃ in a parametric family
that minimize

1
n

n∑
i=1

∥xi − Φ̃(Φ(xi ))∥2
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▶ x1, . . . , xn ∈ Rd

▶ m = 1
n

∑n
i=1 xi

Two views on inertia
▶ Inertia:

I =
1
n

n∑
i=1

∥xi −m∥2

=
1

2n2

∑
i,j

∥xi − xj∥2

▶ 2 times the mean squared distance to the mean = Mean squared
distance between individual

▶ Heuristic: a good representation is a representation with a large
inertia

▶ Large dispersion ∼ Large average separation!
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▶ What if we replace x by its projection x̃ = P(x −m) +m?

Two views on inertia
▶ Inertia:

Ĩ =
1
n

n∑
i=1

∥x̃i −m∥2

=
1

2n2

∑
i,j

∥x̃i − x̃j∥2

▶ Inertia:

Ĩ = I − 1
n

n∑
i=1

∥x̃i − xi∥2

= I − 1
2n2

∑
i,j

(
∥xi − xj∥2 − ∥x̃i − x̃j∥2)

▶ Four different way to obtain a large inertia!
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▶ 1D case: x̃ = m + a⊤(x −m)a
with ∥a∥ = 1

▶ Inertia:

Ĩ =
1
n

n∑
i=1

a⊤(xi −m)(xi −m)⊤a

Principal Component Analysis : optimization of the projection
▶ Maximization of

Ĩ =
1
n

n∑
i=1

a⊤(xi −m)(xi −m)⊤a = a⊤Σa

with Σ =
1
n

n∑
i=1

(xi −m)(xi −m)t the empirical covariance matrix.

▶ Explicit optimal choice given by the eigenvector of the largest
eigenvalue of Σ.
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Principal Component Analysis : optimization of the projection
▶ Explicit optimal solution obtain by the projection on the

eigenvectors of the largest eigenvalues of Σ.
▶ Projected inertia given by the sum of those eigenvalues.
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...1 2 3 4

% d’inertie
▶ Often fast decay of the eigenvalues:

some dimensions are much more
important than other.

▶ Not exactly the curse of dimensionality
setting...

▶ Yet a lot of small dimension can drive
the distance
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Take-home message
▶ Principal components = Eigenvectors of the empirical covariance

matrix
▶ Principal components = "New" variables obtained as linear

combinations of the initial variables
▶ less interpretable
▶ but capture the dataset variance better
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▶ X ∈ Rd and X ′ = Rd′

▶ Linear map with V orthonormal

Φ(x) = V⊤(x −m) and Φ̃(x ′) = m + Vx ′

▶ Reconstruction error criterion:

1
n

n∑
i=1

∥xi − (m + VV⊤(xi −m)∥2

▶ Explicit solution:
▶ m is the empirical mean
▶ V is any orthonormal basis of the space spanned by the d ′ first

eigenvectors (the one with largest eigenvalues) of the empirical
covariance matrix 1

n

∑n
i=1(xi −m)(xi −m)⊤.
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PCA Algorithm
▶ Compute the empirical mean m = 1

n

∑n
i=1 xi

▶ Compute the empirical covariance matrix 1
n

∑n
i=1(xi −m)(xi −m)⊤.

▶ Compute the d ′ first eigenvectors of this matrix: V (1), . . . ,V (d′)

▶ Set Φ(x) = V⊤(x −m)

Remarks
▶ Complexity: O(n(1 + d2) + d ′d2)

▶ Interpretation:
Φ(x) = V⊤(x −m): coordinates in the restricted space
V (i): influence of each original coordinates in the ith new one.

▶ Not invariant to a scaling of the variables
⇝ It is custom to normalize the variables before applying PCA.
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▶ PCA assumes X = Rd

▶ How to deal with categorical values?
▶ MFA = PCA with clever coding strategy for categorical values.

Categorical value code for a single variable
▶ Classical redundant dummy coding:

x ∈ {1, . . . ,C} 7→ P(x) = (1x=1, . . . , 1x=C )
t

▶ Compute the mean (i.e. the empirical proportions):
P = 1

n

∑n
i=1 P(xi )

▶ Renormalize P(x) by 1/
√
(C − 1)P:

P(x) 7→ P r (x)

(1x=1, . . . 1x=C ) 7→

 1x=1√
(C − 1)P1

, . . . ,
1x=C√

(C − 1)PV


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▶ PCA becomes the minimization of

1
n

n∑
i=1

∥P r (xi )− (m + VV t(P r (xi )−m))∥2

=
1
n

n∑
i=1

V∑
v=1

∣∣∣1xi=v − (m′ +
∑d′

l=1 V
(l)t(P(xi )−m′)V (l,v))

∣∣∣2
(V − 1)Pv

▶ Interpretation:
▶ m′ = P
▶ Φ(x) = V t(P rx −m): coordinates in the restricted space.
▶ V (l) can be interpreted s as a probability profile.

▶ Complexity: O(n(V + V 2) + d ′V 2)

▶ Link with Correspondence Analysis (CA)
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MFA Algorithm
▶ Redundant dummy coding of each categorical variable.
▶ Renormalization of each block of dummy variable.
▶ Classical PCA algorithm on the resulting variables

▶ Interpretation as a reconstruction error with a rescaled/χ2 metric.
▶ Interpretation:

▶ Φ(x) = V t(P r (x)−m): coordinates in the restricted space.
▶ V (l): influence of each modality/variable in the ith new coordinates.

▶ Scaling: This method is not invariant to a scaling of the continuous
variables
⇝ It is custom to normalize the variables (at least within groups)
before applying PCA.
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PCA Model
▶ PCA: Linear model assumption

x ≃ m +
d′∑
l=1

x′,(l)V (l) = m + V x′

▶ with
▶ V (l) orthonormal
▶ x′,(l) without constrains.

▶ Two directions of extension:
▶ Other constrains on V (or the coordinates in the restricted space):

ICA, NMF, Dictionary approach
▶ PCA on a non linear image of x: kernel-PCA

▶ Much more complex algorithm!
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ICA (Independent Component Analysis)
▶ Linear model assumption

x ≃ m +
d′∑
l=1

x′,(l)V (l) = m + V x′

▶ with
▶ V (l) without constrains.
▶ x′,(l) independent

NMF (Non Negative Matrix Factorization)
▶ (Linear) Model assumption

x ≃ m +
d′∑
l=1

x′,(l)V (l) = m + V x′

▶ with
▶ V (l) non negative
▶ x′,(l) non negative.
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Dictionary
▶ (Linear) Model assumption

x ≃ m +
d′∑
l=1

x′,(l)V (l) = m + V x′

▶ with
▶ V (l) without constrains
▶ x′ sparse (with a lot of 0)

kernel PCA
▶ Linear model assumption

Ψ(x −m) ≃
d′∑
l=1

x′,(l)V (l) = V x′

▶ with
▶ V (l) orthonormal
▶ x′l without constrains.
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Deep Auto Encoder
▶ Construct a map Φ with a NN from the space X into a space X ′ of

smaller dimension:

Φ : X → X ′

x 7→ Φ(x)

▶ Construct Φ̃ with a NN from X ′ to X
▶ Control the error between x and its reconstruction Φ̃(Φ(x)):

1
n

n∑
i=1

∥xi − Φ̃(Φ(xi ))∥2

▶ Optimization by gradient descent.
▶ NN can be replaced by another parametric function...



20 / 23Another of approach via distance preservation

Pairwise distances
▶ Different point of view: input is distances between feature vectors
▶ Use only distances d(xi , xj).

Distance Preservation. Construct a map Φ from the space X into a
space X ′ of smaller dimension:

Φ : X → X ′

x 7→ Φ(x) = x ′

such that
d(xi , xj) ≈ d ′(x ′i , x

′
j )

A natural criterion is

1
n2

n∑
i=1

n∑
j=1

∣∣d(xi , xj)− d ′(x ′i , x
′
j )
∣∣2
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▶ Distance preserving transform
▶ Random transform
▶ Data-independent!
▶ Dimension-independent!

Theorem (Johnson-Lindenstrauss Lemma)
Let S ⊆ Rd be a finite set of vectors with cardinality n ≥ 2 and
W ∈ Rp×d be a random matrix such that its entries {Wkℓ} 1≤k≤p

1≤ℓ≤d
are

i.i.d. and distributed according to N
(
0, 1

p

)
. For any (ε, δ) ∈ (0, 1)2, if

p ≥ 16ε−2 log(n/
√
δ),

then with probability at least 1 − δ on the random matrix W ,

∀(xi , xj) ∈ S2 : (1−ε) ∥xi − xj∥2 ≤ ∥Wxi −Wxj∥2 ≤ (1+ε) ∥xi − xj∥2
.

The mapping x ∈ Rd 7→ Wx ∈ Rp is called an ε-isometry on S.
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The underlying idea of this approach is that the reduction mapping x ∈
Rd 7→ Wx ∈ Rp is an exact isometry “in expectation”:

∀x ∈ Rd : E
(
∥Wx∥2

)
= ∥x∥2

.

Indeed, since for all x ∈ Rd such that x ̸= 0, p∥Wx∥2

∥x∥2 ∼ χ2
p, one has

E
(
∥Wx∥2

)
=

∥x∥2

p
E

(
p ∥Wx∥2

∥x∥2

)
=

∥x∥2

p
p = ∥x∥2

.
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Let us remark that it is enough for {Wij} 1≤i≤p
1≤j≤d

to be independent with

EWij = 0 and V(Wij) =
1
p (for all i ∈ [p] and j ∈ [d ]) in order to get an

exact isometry “in expectation”:

E
(
∥Wx∥2

)
=

p∑
i=1

E


 d∑

j=1

Wijxj

2
 =

p∑
i=1

 d∑
j=1

x2
j V(Wij) +

 d∑
j=1

xjEWij

2
 = ∥x∥2

.

Remark. Note that p ≥ 8ε−2 log(n2/δ) does not depend on the orig-
inal dimension d This means that we could consider data in infinite-
dimensional Hilbert space...!

Remark. In practice, Multi-Dimensional Scaling (MDS) techniques such
as Isomap are more used.
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