Remise à niveau - Statistique Réduction de dimension

Claire Boyer

High Dimension Geometry Curse

- Folks theorem: In high dimension, everyone is alone.
- ▶ Theorem: If $X_1, ..., X_n$ in the hypercube of dimension d such that their coordinates are i.i.d then

$$\begin{split} d^{-1/p} \left(\max \|X_i - X_j\|_p - \min \|X_i - X_j\|_p \right) &= 0 + O\left(\sqrt{\frac{\log n}{d}}\right) \\ \frac{\max \|X_i - X_j\|_p}{\min \|X_i - X_j\|_p} &= 1 + O\left(\sqrt{\frac{\log n}{d}}\right). \end{split}$$

- ▶ When d is large, all the points are almost equidistant...
- ► Nearest neighbors are meaningless!

- ► How to view a high-dimensional dataset?
- ► High-dimension: dimension larger than 2!
- Projection in a 2D space.

- ► How to view a high-dimensional dataset?
- ► High-dimension: dimension larger than 2!
- Projection in a 2D space.

- ► How to view a high-dimensional dataset?
- ► High-dimension: dimension larger than 2!
- Projection in a 2D space.

- ► How to view a high-dimensional dataset?
- ► High-dimension: dimension larger than 2!
- Projection in a 2D space.

Dimension reduction

- ▶ Training data $\mathcal{D} = \{x_1, \dots, x_n\} \in \mathcal{X}^n$ (i.i.d. $\sim \mathbb{P}$)
- ▶ Space \mathcal{X} of possibly high dimension.

Dimension Reduction Map

Construct a map Φ from the space $\mathcal X$ into a space $\mathcal X'$ of smaller dimension:

$$\Phi: \quad \mathcal{X} \to \mathcal{X}'$$
$$x \mapsto \Phi(x)$$

Criterion

- Reconstruction error focus here in these slides
- Distance preservation

Construct a map Φ from the space \mathcal{X} into a space \mathcal{X}' of smaller dimension:

$$\Phi: \quad \mathcal{X} \to \mathcal{X}'$$
$$x \mapsto \Phi(x)$$

- ightharpoonup Construct $\widetilde{\Phi}$ from \mathcal{X}' to \mathcal{X}
- ▶ Control the error between x and its reconstruction $\Phi(\Phi(x))$
- Canonical example for $x \in \mathbb{R}^d$: find Φ and $\widetilde{\Phi}$ in a parametric family that minimize

$$\frac{1}{n}\sum_{i=1}^n\|x_i-\widetilde{\Phi}(\Phi(x_i))\|^2$$

Inertia 6 / 23

- \triangleright $x_1, \ldots, x_n \in \mathbb{R}^d$

Two views on inertia

► Inertia:

$$I = \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_i - m\|^2$$
$$= \frac{1}{2n^2} \sum_{i,j} \|\mathbf{x}_i - \mathbf{x}_j\|^2$$

- ▶ 2 times the mean squared distance to the mean = Mean squared distance between individual
- ► Heuristic: a good representation is a representation with a large inertia
- ► Large dispersion ~ Large average separation!

Inertia and Projection

▶ What if we replace x by its projection $\tilde{x} = P(x - m) + m$?

Two views on inertia

► Inertia:

$$\widetilde{I} = \frac{1}{n} \sum_{i=1}^{n} \|\widetilde{\mathbf{x}}_i - m\|^2$$
$$= \frac{1}{2n^2} \sum_{i,i} \|\widetilde{\mathbf{x}}_i - \widetilde{\mathbf{x}}_j\|^2$$

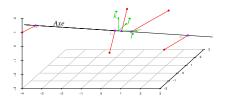
► Inertia:

$$\widetilde{I} = I - \frac{1}{n} \sum_{i=1}^{n} \|\widetilde{x}_{i} - x_{i}\|^{2}$$

$$= I - \frac{1}{2n^{2}} \sum_{i=1}^{n} (\|x_{i} - x_{j}\|^{2} - \|\widetilde{x}_{i} - \widetilde{x}_{j}\|^{2})$$

► Four different way to obtain a large inertia!

First Component of the PCA



▶ 1D case: $\widetilde{\mathbf{x}} = m + \mathbf{a}^{\top}(\mathbf{x} - m)\mathbf{a}$ with $\|\mathbf{a}\| = 1$

8 / 23

Inertia: $\widetilde{I} = \frac{1}{n} \sum_{i=1}^{n} a^{\top} (x_i - m) (x_i - m)^{\top} a$

Principal Component Analysis : optimization of the projection

Maximization of

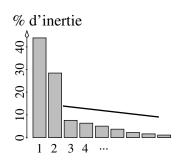
$$\widetilde{I} = \frac{1}{n} \sum_{i=1}^{n} a^{\top} (\mathsf{x}_i - m) (\mathsf{x}_i - m)^{\top} a = a^{\top} \Sigma a$$

with
$$\Sigma = \frac{1}{n} \sum_{i=1}^{n} (x_i - m)(x_i - m)^t$$
 the empirical covariance matrix.

ightharpoonup Explicit optimal choice given by the eigenvector of the largest eigenvalue of Σ .

Principal Component Analysis: optimization of the projection

- **Explicit** optimal solution obtain by the projection on the eigenvectors of the largest eigenvalues of Σ .
- Projected inertia given by the sum of those eigenvalues.



- Often fast decay of the eigenvalues: some dimensions are much more important than other.
- Not exactly the curse of dimensionality setting...
- Yet a lot of small dimension can drive the distance

Take-home message

- Principal components = Eigenvectors of the empirical covariance matrix
- Principal components = "New" variables obtained as linear combinations of the initial variables
 - less interpretable
 - but capture the dataset variance better

- $ightharpoonup \mathcal{X} \in \mathbb{R}^d$ and $\mathcal{X}' = \mathbb{R}^{d'}$
- ► Linear map with *V* orthonormal

$$\Phi(x) = V^{\top}(x - m)$$
 and $\widetilde{\Phi}(x') = m + Vx'$

Reconstruction error criterion:

$$\frac{1}{n}\sum_{i=1}^{n}\|x_{i}-(m+VV^{\top}(x_{i}-m))\|^{2}$$

- Explicit solution:
 - m is the empirical mean
 - ▶ V is any orthonormal basis of the space spanned by the d' first eigenvectors (the one with largest eigenvalues) of the empirical covariance matrix $\frac{1}{n}\sum_{i=1}^{n}(x_i-m)(x_i-m)^{\top}$.

PCA Algorithm

- ► Compute the empirical mean $m = \frac{1}{n} \sum_{i=1}^{n} x_i$
- ► Compute the empirical covariance matrix $\frac{1}{n} \sum_{i=1}^{n} (x_i m)(x_i m)^{\top}$.
- ▶ Compute the d' first eigenvectors of this matrix: $V^{(1)}, \ldots, V^{(d')}$
- $\blacktriangleright \ \mathsf{Set} \ \Phi(x) = V^\top(x-m)$

Remarks

- ► Complexity: $O(n(1+d^2)+d'd^2)$
- Interpretation:
 - $\Phi(x) = V^{\top}(x m)$: coordinates in the restricted space $V^{(i)}$: influence of each original coordinates in the ith new one.

Multiple Factor Analysis I

- ightharpoonup PCA assumes $\mathcal{X} = \mathbb{R}^d$
- ► How to deal with categorical values?
- ► MFA = PCA with clever coding strategy for categorical values.

Categorical value code for a single variable

Classical redundant dummy coding:

$$x \in \{1, ..., C\} \mapsto P(x) = (1_{x=1}, ..., 1_{x=C})^t$$

- Compute the mean (i.e. the empirical proportions): $\overline{P} = \frac{1}{n} \sum_{i=1}^{n} P(x_i)$
- Renormalize P(x) by $1/\sqrt{(C-1)\overline{P}}$:

$$P(\mathsf{x}) \mapsto P^r(\mathsf{x})$$
 $(1_{\mathsf{x}=1}, \dots 1_{\mathsf{x}=C}) \mapsto \left(\frac{1_{\mathsf{x}=1}}{\sqrt{(C-1)\overline{P}_1}}, \dots, \frac{1_{\mathsf{x}=C}}{\sqrt{(C-1)\overline{P}_V}} \right)$

PCA becomes the minimization of

$$\begin{split} &\frac{1}{n} \sum_{i=1}^{n} \|P^{r}(\mathsf{x}_{i}) - (m + VV^{t}(P^{r}(\mathsf{x}_{i}) - m))\|^{2} \\ &= \frac{1}{n} \sum_{i=1}^{n} \sum_{v=1}^{V} \frac{\left|1_{\mathsf{x}_{i}=v} - (m' + \sum_{l=1}^{d'} V^{(l)t}(P(\mathsf{x}_{i}) - m')V^{(l,v)})\right|^{2}}{(V - 1)\overline{P}_{v}} \end{split}$$

- Interpretation:
 - $ightharpoonup m' = \overline{P}$
 - $\Phi(x) = V^t(P^rx m)$: coordinates in the restricted space.
 - $V^{(l)}$ can be interpreted s as a probability profile.
- ► Complexity: $O(n(V + V^2) + d'V^2)$
- Link with Correspondence Analysis (CA)

MFA Algorithm

- Redundant dummy coding of each categorical variable.
- Renormalization of each block of dummy variable.
- Classical PCA algorithm on the resulting variables
- ▶ Interpretation as a reconstruction error with a rescaled/ χ^2 metric.
- Interpretation:
 - $\Phi(x) = V^t(P^r(x) m)$: coordinates in the restricted space.
 - $V^{(l)}$: influence of each modality/variable in the ith new coordinates.
- Scaling: This method is not invariant to a scaling of the continuous variables
 - \leadsto It is custom to normalize the variables (at least within groups) before applying PCA.

PCA Model

► PCA: Linear model assumption

$$x \simeq m + \sum_{l=1}^{d'} x'^{(l)} V^{(l)} = m + V x'$$

- with
 - $\triangleright V^{(l)}$ orthonormal
 - x',(I) without constrains.
- Two directions of extension:
 - Other constrains on V (or the coordinates in the restricted space): ICA, NMF, Dictionary approach
 - ▶ PCA on a non linear image of x: kernel-PCA
- Much more complex algorithm!

ICA (Independent Component Analysis)

Linear model assumption

$$x \simeq m + \sum_{l=1}^{d'} x'^{(l)} V^{(l)} = m + V x'$$

- with
 - V^(I) without constrains.
 - x',(1) independent

NMF (Non Negative Matrix Factorization)

► (Linear) Model assumption

$$x \simeq m + \sum_{l=1}^{d'} x'^{(l)} V^{(l)} = m + V x'$$

- with
 - ► V^(I) non negative
 - \triangleright $x'^{(l)}$ non negative.

Dictionary

► (Linear) Model assumption

$$x \simeq m + \sum_{l=1}^{d'} x'^{(l)} V^{(l)} = m + V x'$$

- with
 - $\triangleright V^{(l)}$ without constrains
 - x' sparse (with a lot of 0)

kernel PCA

► Linear model assumption

$$\Psi(x-m) \simeq \sum_{l=1}^{d'} x'^{(l)} V^{(l)} = V x'$$

- with
 - ► V^(I) orthonormal
 - x' without constrains.

Auto Encoder

Deep Auto Encoder

Construct a map Φ with a NN from the space \mathcal{X} into a space \mathcal{X}' of smaller dimension:

$$\Phi: \quad \mathcal{X} \to \mathcal{X}'$$
$$x \mapsto \Phi(x)$$

- ightharpoonup Construct $\widetilde{\Phi}$ with a NN from \mathcal{X}' to \mathcal{X}
- ▶ Control the error between x and its reconstruction $\Phi(\Phi(x))$:

$$\frac{1}{n}\sum_{i=1}^{n}\|\mathbf{x}_{i}-\widetilde{\Phi}(\Phi(\mathbf{x}_{i}))\|^{2}$$

- Optimization by gradient descent.
- ▶ NN can be replaced by another parametric function...

Another of approach via distance preservation

Pairwise distances

- ▶ Different point of view: input is distances between feature vectors
- ▶ Use only distances $d(x_i, x_j)$.

Distance Preservation. Construct a map Φ from the space \mathcal{X} into a space \mathcal{X}' of smaller dimension:

$$\Phi: \quad \mathcal{X} \to \mathcal{X}'$$

$$x \mapsto \Phi(x) = x'$$

$$d(x_i, x_j) \approx d'(x'_i, x'_i)$$

such that

A natural criterion is

$$\frac{1}{n^2}\sum_{i=1}^n\sum_{j=1}^n |d(x_i,x_j)-d'(x_i',x_j')|^2$$

Random Projections

- Distance preserving transform
- Random transform
- Data-independent!
- ▶ Dimension-independent!

Theorem (Johnson-Lindenstrauss Lemma)

Let $S \subseteq \mathbb{R}^d$ be a finite set of vectors with cardinality $n \geq 2$ and $W \in \mathbb{R}^{p \times d}$ be a random matrix such that its entries $\{W_{k\ell}\}_{\substack{1 \leq k \leq p \\ 1 \leq \ell \leq d}}$ are i.i.d. and distributed according to $\mathcal{N}\left(0,\frac{1}{p}\right)$. For any $(\varepsilon,\delta) \in (0,1)^2$, if

$$p \ge 16\varepsilon^{-2} \log(n/\sqrt{\delta}),$$

then with probability at least $1-\delta$ on the random matrix W,

$$\forall (x_i, x_j) \in \mathcal{S}^2: \quad (1-\varepsilon) \|x_i - x_j\|^2 \leq \|Wx_i - Wx_j\|^2 \leq (1+\varepsilon) \|x_i - x_j\|^2.$$

The mapping $x \in \mathbb{R}^d \mapsto Wx \in \mathbb{R}^p$ is called an ε -isometry on S.

The underlying idea of this approach is that the reduction mapping $x \in \mathbb{R}^d \mapsto Wx \in \mathbb{R}^p$ is an exact isometry "in expectation":

$$\forall x \in \mathbb{R}^d : \mathbb{E}\left(\|Wx\|^2\right) = \|x\|^2.$$

Indeed, since for all $x \in \mathbb{R}^d$ such that $x \neq 0$, $\frac{p||Wx||^2}{||x||^2} \sim \chi_p^2$, one has

$$\mathbb{E}\left(\|Wx\|^{2}\right) = \frac{\|x\|^{2}}{p} \mathbb{E}\left(\frac{p\|Wx\|^{2}}{\|x\|^{2}}\right) = \frac{\|x\|^{2}}{p} p = \|x\|^{2}.$$

Let us remark that it is enough for $\{W_{ij}\}_{\substack{1 \leq i \leq p \\ 1 \leq j \leq d}}$ to be independent with $\mathbb{E}W_{ij} = 0$ and $\mathbb{V}(W_{ij}) = \frac{1}{p}$ (for all $i \in [p]$ and $j \in [d]$) in order to get an exact isometry "in expectation":

$$\mathbb{E}\left(\left\|Wx\right\|^{2}\right) = \sum_{i=1}^{p} \mathbb{E}\left[\left(\sum_{j=1}^{d} W_{ij}x_{j}\right)^{2}\right] = \sum_{i=1}^{p} \left(\sum_{j=1}^{d} x_{j}^{2}\mathbb{V}(W_{ij}) + \left(\sum_{j=1}^{d} x_{j}\mathbb{E}W_{ij}\right)^{2}\right)$$

Remark. Note that $p \geq 8\varepsilon^{-2} \log(n^2/\delta)$ does not depend on the original dimension d This means that we could consider data in infinite-dimensional Hilbert space...!

Remark. In practice, Multi-Dimensional Scaling (MDS) techniques such as Isomap are more used.