
LIVING LA VIDA LOCA: LEARNING IN INTERPOLATION

REGIMES

CLAIRE BOYER

Laboratoire de Probabilités, Statistique et Modélisation
Sorbonne Université, INRIA Paris

2022, APRIL 6TH



Contents

1 Interpolation in parametric learning 2
1.1 Implicit bias of (S)GD in interpolation regimes . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Preliminary on optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Quadratic loss and linear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Interpolation in logistic regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.4 Implicit bias in neural network training . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Interpolation is no longer synonym of bad generalization . . . . . . . . . . . . . . . . . . . 12
1.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.2 Linear model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.3 Misspecified linear model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.4 A first non-linear model with random features . . . . . . . . . . . . . . . . . . . . . . 19
1.2.5 Analysis via Neuberger’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2.6 Overparametrization/interpolation in neural network . . . . . . . . . . . . . . . . . 25

2 Interpolation in non-parametric learning 28
2.1 The nearest neighbour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2 Interpolating kernel estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 What about random forests? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.2 Preliminary on random forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.3 Centered forests: watch the empty cells out . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.4 Kernel RF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.5 RF & exact interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.6 Breiman’s forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1



Chapter 1

Interpolation in parametric learning

Contents
1.1 Implicit bias of (S)GD in interpolation regimes . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Preliminary on optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Quadratic loss and linear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Interpolation in logistic regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.4 Implicit bias in neural network training . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Interpolation is no longer synonym of bad generalization . . . . . . . . . . . . . . . . 12

1.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.2 Linear model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.3 Misspecified linear model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.4 A first non-linear model with random features . . . . . . . . . . . . . . . . . . . . . 19

1.2.5 Analysis via Neuberger’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2.6 Overparametrization/interpolation in neural network . . . . . . . . . . . . . . . . 25

This chapter heavily relies on the articles Hastie et al. (2019), Bartlett et al. (2021) and the lec-
ture notes of our spiritual father Francis Bach (from which I have shamelessly extracted parts). The
reader may also find interesting developments in the lecture of Matus Telgarsky https://mjt.cs.
illinois.edu/dlt/.

The performance of deep learning is remarkable and surprising, especially since it seems to con-
tradict the statistical theory that has guarded against overfitting for decades: while being complex
models, NN seem to still provide excellent predictive accuracy.

The training of NN is usually performed via stochastic gradient strategies (SGD). The conjecture
is therefore that overparametrization allows gradient methods to find “good" interpolating solutions:
the overfitting would be then “benign" as not harmful for the optimization of NN nor for the general-
ization abilities of the found solution.

1.1 Implicit bias of (S)GD in interpolation regimes

Statistical wisdom suggests that a method that takes advantage of too many degrees of freedom by
perfectly interpolating noisy training data will be poor at predicting new outcomes. In deep learning,
training algorithms appear to induce a bias that breaks the equivalence among all the models that
interpolate the observed data.
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1.1.1 Preliminary on optimization

The goal of an optimization problem is generally to minimize a function F over some parameter space
Θ. If the global minimizer θ⋆ is unique, even if the initial goal is to minimize F , one should expect that
that the t-th iterate θt given by some optimization algorithm converges to that θ⋆. When there are
multiple minimizers (preventing the function to minimize to be strongly convex), one can only expect
that F (θt )− infθ∈ΘF (θ) is converging to zero (and only if a minimizer exists). Note that when F is a
convex function, the set of minimizers is a convex set.

With some extra assumptions, one can show that the algorithm is converging to one of the multiple
minimizers of F . But which one? This is what is referred to as the implicit regularization properties of
optimization algorithms, and here gradient descent and its variants.

Imagine now that, for a learning purpose, F stands for an empirical loss associated to n observa-
tions withΘ⊂Rp and p much larger than n. No regularization being used, there are multiple minimiz-
ers achieving a zero training error (usually referred as the overfitting regime). Therefore, an arbitrary
empirical risk minimizer is not expected to work well on unseen data. To reduce the complexity of the
model (embodied by p here), a classical way to prevent overfitting is to use explicit regularization (e.g.
ℓ2-norms - Ridge/Tikhonov penalties- or ℓ1-norms -Lasso penalties).

In this section, we show that optimization algorithms have a similar regularizing effect, without
appealing to explicit penalties. In a nutshell, gradient descent usually leads to particular solutions of
minimum ℓ2-norm, meaning that the chosen empirical risk minimizer is not arbitrary.

1.1.2 Quadratic loss and linear models

Setting. To better understand this phenomenon, we restrict ourselves in a first time to the case of
linear models. Choosing a quadratic loss for the empirical risk minimization boils down in building a
least-square estimator:

F (θ) = 1

2n

n∑
i=1

(yi −X ⊤
i θ)2 = 1

2n

∥∥y −Xθ∥∥2
2 (1.1)

whereX⊤X= (X1|X2| . . . |Xn)⊤ ∈Rn×p with n ≪ p. The (kernel) matrixXX⊤ is assumed to be invertible.
Therefore there is an infinity of minimizers of F corresponding to the solutions of the system y =Xθ:
the set of minimizers is actually an affine space (given a solution θ0 to y = Xθ, θ0 +null(X) is also
solution).

Running GD. Let’s do the thought experiment that you are not able to write a particular solution of
y =Xθ, one can use a gradient descent strategy instead to minimize F . F being convex, the GD is going
to converge to a global minimizer (and we know there exists since there is an infinity of solutions).

The gradient algorithm (GD) used to minimize F can be written as follows: for some initial param-
eter θ0, the iterates of GD are

θt+1 ←− θt −η∇F (θt ).

When the function F is assumed to be L-smooth (meaning that its gradient is assumed to be L-
Lipschitz), the gradient algorithm is a descent method provided that the step η is chosen such that
η≤ 1/L.

Therefore applying GD with θ0 = 0 (zero initialization) and η≤ 1/λmax(X⊤X/n) and considering a
solution θ of y =Xθ leads to

θt −θ =
(
I − η

n
X⊤X

)t
(θ0 −θ) =−

(
I − η

n
X⊤X

)t
θ
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and

θt =
[

I −
(
I − η

n
X⊤X

)t
]
θ (1.2)

Note that it is not entirely obvious that the formula above is independent of the choice of θ (but it is).

Proposition 1.1

The solution of y =Xθ with the minimal ℓ2-norm is

X† y =V diag(s−1)U T y

where

• X† is the pseudo-inverse of X , and

• X=U diag(s)V T is the SVD decomposition of X , so that

– U ∈Rn×n and V ∈Rp×p are orthonormal (U T U = In and V T V = Id ),

– diag(s) ∈Rn×p "with the singular values (si )1≤i≤n of X.
NB: diag(s−1) ∈Rp×n

Proof. Left in exercise.

Proposition 1.2

Considering the gradient descent initialized at 0 (1.2), one gets

∥∥θt −V diag(s−1)U T y
∥∥

2 ≤
(

1− mini s2
i

maxi s2
i

)t ∥∥V diag(s−1)U T y
∥∥

2 . (1.3)

Proof. Choosing θ =V diag(s−1)U T y in (1.2) leads to

θt =V diag

((
1−

(
1− ηs2

i

n

)t )
s−1

i

)
U⊤y. (1.4)

Since each si > 0 for i = 1, . . . ,n (X is assumed of full rank) and η ≤ 1/λmax(X⊤X/n) = n/maxi s2
i , one

gets

0 ≤
(

1−
(

1− ηs2
i

n

)t )
s−1

i ≤ s−1
i

(
1−

(
1− ηmini s2

i

n

)t )
.

This shows that

∥∥θt −V diag(s−1)U T y
∥∥

2 ≤
(

1− ηmini s2
i

n

)t ∥∥V diag(s−1)U T y
∥∥

2 . (1.5)

Fixing η to be the largest step size allowed, i.e. η= n/maxi s2
i gives the result.
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Note that
mini s2

i

maxi s2
i

can be seen as the inverse of the conditioning number of X.

! In the case of overparameterized linear regression, the gradient descent (with constant
step size, initialized at 0) linearly converges towards the solution of y = Xθ of minimal ℓ2-
norm.

K Question: how important is the initialization at zero?
K Exercise: http://fa.bianp.net/blog/2022/implicit-bias-regression/
Consider the optimization problem where the objective function is a generalized linear model with

a data matrix X= (X1| . . . |Xn)⊤ ∈Rn×p and a target vector y ∈Rn :

min
θ∈Rp

f (θ) =
n∑

i=1
ℓ(X ⊤

i θ, yi ) (1.6)

where ℓ(z, y) is a differentiable real-valued function verifying the "unique finite root condition", which
is that it has a unique minimizer at z = y . These losses are usually used for regression and includes the
quadratic loss or Huber functions. Assume that p > n and that X is of full-rank.

Problems of this form verify two key properties that make it easy to characterize the bias of gradient-
based methods. By gradient-based methods I mean any method in which the updates are given by a
linear combination of current and past gradients. This includes gradient descent, gradient descent
with momentum, stochastic gradient descent (SGD), SGD with momentum, Nesterov’s accelerated
gradient method. It does not include however quasi-Newton methods or diagonally preconditioned
methods such as Adagrad or Adam.

1. Show that iterates remain in the span of X. The gradient of the i -th sample ℓ(X ⊤
i θ, yi ) has the

same direction as its data sample Xi :

∇θ
[
ℓ(X ⊤

i θ, yi )
]= Xi︸︷︷︸

vector

ℓ′(X ⊤
i θ, yi )︸ ︷︷ ︸

scalar

This implies that any gradient-based method generates updates that stay in the span of the
vectors {X1, . . . , Xn}.

It’s no surprise then that the vector space generated by the samples X1, . . . , Xn plays a crucial
role here. For convenience we’ll denote this subspace by

X := span(X1, . . . , Xn) = Im(X⊤)

and its orthogonal complement X ⊥.

2. What can you say about minimizers of f ? Minimizers solve the linear system Xθ = y . By the
unique root condition of ℓ, the global minimizer is achieved when X ⊤

i θ = yi for all i . In other
words, the global minimizers are the solutions to the linear system Xθ = y , a set that is non-
empty by the under-specification assumption.

3. Starting from θ0, characterize the limit iterate of a gradient-based method. The main argument
here is to show that the limit iterate belongs to the intersection of two affine spaces and then
compute their intersection.

By Property 2, the limit iterate must solve the linear system Xθ = y . A classical linear algebra
result states that all solutions of this problem are of the form θ+c, with θ any solution ofXθ = y
and c ∈X ⊤ = Ker(X). Let’s take θ =X† y so that

θ∞ =X† y + c, for some c ∈X ⊤

http://fa.bianp.net/blog/2022/implicit-bias-regression/
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Let P denote the orthogonal projection onto X . Then we can decompose the initialization as
θ0 = Pθ0 + (I −P )θ0. By the first property all updates are in X , so the limit iterate can be written
as

θ∞ = (I −P )θ0 +x for some x ∈X .

Combining the previous two equations, we have that c = (I −P )θ0 and x =X† y . Hence we have
arrived at the characterization

θ∞ =X† y + (I −P )θ0. (1.7)

4. Show that the limit iterate is actually the projection of θ0 on the set of solutions of Xθ = y . Let
θ⋆ denote the solution to

θ⋆ = argmin
θ∈Rd

∥θ−θ0∥2 such that Xθ = y.

θ⋆ is unique by strong convexity. We want to show that θ⋆ = θ∞. For any solution θ of Xθ = y ,
one has θ−θ∞ ∈X ⊥ and

∥θ−θ0∥2 = ∥θ−θ∞+θ∞−θ0∥2

= ∥θ−θ∞+X† y −Pθ0∥2

=
√
∥θ−θ∞∥2

2 +∥X† y −Pθ0∥2
2

where the last identity follows by orthogonality. Since θ⋆ minimizes the distance ∥θ−θ0∥2 on
the set of solutions of Xθ = y , we must have θ⋆ − θ∞=0, and so θ⋆ = θ∞. We have actually
shown the following result.

Theorem 1.1. Gradient-based methods started from θ0 converge to the solution with smallest
distance to θ0. More precisely, assume that the iterates of a gradient-based method converge to a
solution of (1.6), and let θ∞ := limt→+∞θt denote this limit. Then θ∞ solves

θ∞ = argmin
θ∈Rd

∥θ−θ0∥2 such that Xθ = y.

5. Conclude on the role of the initialization to converge towards the solution of minimal ℓ2-norm.
An immediate consequence of this Theorem is that when the initialization θ0 is in X , then its
projection onto X ⊥ is zero, and so from Eq. (1.7) we have θ∞ = X† y which corresponds to the
minimal norm solution.

Corollary 1.2. If θ0 ∈X , then the limit iterate θ∞ solves the minimal norm problem

θ∞ = argmin
θ

∥θ∥2 such that Xθ = y.

Alternative proof for convergence (in short). If started at θ0 = 0, gradient descent techniques (stochas-
tic or not) will always have iterates θt which are linear combinations of rows of X, that is, of the form
θt =X⊤αt for some αt ∈Rn . This is an alternative algorithmic version of the representer theorem.

If the method is converging, then we must haveXθt converging to y (because the standard squared
Euclidean norm is strongly-convex, and Xθ is unique while θ may not be), and thus XX⊤αt is con-
verging to y . If K =XX⊤ is invertible, this means that αt is converging to K −1 y , and thus θt = X ⊤αt is
converging to XT K −1 y .
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For the story to be complete, one should check that XT K −1 y is indeed the solution to y = Xθ of
minimal ℓ2-norm. By standard Lagrangian duality one gets

inf
θ∈Rd

1

2
∥θ∥2

2 such that y =Xθ = inf
θ∈Rd

sup
α∈Rn

1

2
∥θ∥2

2 +α⊤(y −Xθ)︸ ︷︷ ︸
Lagrangian function L(θ,α)

= sup
α∈Rn

α⊤y − 1

2

∥∥X⊤α
∥∥2

2 (with θ =X⊤α at the optimum)

= sup
α∈Rn

α⊤y − 1

2
α⊤Kα.

The last problem is exactly solved for α= K −1 y .

What about SGD? Note that in the overparameterized regime, SGD will also converge to the minimum-
norm interpolator, even with a fixed learning rate. In constrast, under-parameterized SGD with a fixed
learning rate does not converge at all (indeed the stochastic noise at the optimum is 0 only in the over-
parameterized setting).

1.1.3 Interpolation in logistic regression

Context. Consider now the setting of binary classification (for the output Y living in {−1,1}), based
on the model of logistic regression, i.e. the prior on the distribution of Y |X is

P (Y =+1|X = x) =σ(ϕ(x)⊤β)

where σ is the sigmoid function, ϕ is an encoding of the input variables X with ϕ(x) ∈ Rp , and the
model parameters are β ∈ Rp . Given a dataset Dn = {(X1,Y1), . . . , (Xn ,Yn)} i.i.d. copies of (X ,Y ), the
estimation of β is usually performed via MLE, resulting in solving the following problem:

min
β∈Rp

1

n

n∑
i=1

log
(
1+exp

(−Yiϕ(Xi )⊤β
))=: F (β).

Define the design matrix as Φ := (
ϕ(X1)| . . . |ϕ(Xn)

)⊤ ∈ Rn×p and consider the case where d > n, as-
suming in addition that ΦΦ⊤ is invertible.

Rewriting an SVM Since ΦΦ⊤ is invertible, there exists η ∈ Rp of unit-norm such that for all i ∈
{1, . . . ,n}, Yiϕ(Xi )⊤η > 0, meaning that the data is linearly separable1. The distance of any point
ϕ(x) ∈Rp to a hyperplane defined by {x ′ : η⊤ϕ(x ′)+b = 0} is given by

|〈η, x〉+b|∥∥η∥∥
Therefore, the distance of a separating hyperplane to the closest points in the dataset, which is called
the margin is given by

min
x∈{X1,...,Xn }

|η⊤x +b|∥∥η∥∥ = min
1≤i≤n

Yiϕ(Xi )⊤η,

when no intercept is considered. One can thus search for a direction η of unit ℓ2-norm that maximizes
the margin:

η⋆ ∈ argmax
∥η∥2≤1

min
1≤i≤n

Yiϕ(Xi )⊤η.
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Figure 1.1: The maximum-margin classifier (in black) vs. a classifier based on an arbitrary separating
hyperplane (in orange)

η⋆ corresponds to the max-margin classifier (SVM). By Lagrange duality,

sup
∥η∥2≤1

inf
i∈{1,...,n}

Yiϕ(Xi )⊤η= sup
∥η∥2≤1

t such that ∀i ∈ {1, . . . ,n},Yiϕ(Xi )⊤η≥ t ,

= inf
α∈Rn+

sup
∥η∥2≤1

t +
n∑

i=1
αi (Yiϕ(Xi )⊤η− t )

= inf
α∈Rn+

∥∥∥∥∥ n∑
i=1

αi Yiϕ(Xi )

∥∥∥∥∥
2

such that
n∑

i=1
αi = 1.

where in the last step we used:

1. (Lagrangian for the constrained sup) L(t ,η,µ,α) = t +∑
i αi (Yiϕ(Xi )⊤η− t )+µ(∥η∥2

2 −1)

2. (KKT 1) ∇t L = 0, i.e.
∑

i αi = 1

3. (KKT 2) ∇ηL = 0, i.e.
∑

i αi Yiϕ(Xi )+2µη= 0

4. (KKT 3: complementary slackness 1)µ= 0 or ∥η∥2
2 = 1

5. (KKT 4: complementary slackness 2) ∀i , αi = 0 or t = Yiϕ(Xi )⊤η

so that η ∝ ∑n
i=1αi Yiϕ(Xi ) at the optimum. Besides, by complementary slackness, non-negative

αi is non-zero only for i such that at the optimum t = Yiϕ(Xi )⊤η, i.e. for i attaining the minimum
min1≤i≤n Yiϕ(Xi )⊤η, corresponding to the so-called support vectors, see Figure 1.2.

Link with the traditional SVM Because of homogeneity, we want min1≤i≤n Yiϕ(Xi )⊤η to be large
and ∥η∥2 to be small. We can therefore constrain the former, and minimize the latter. In other words,

1the invertibility of Φ prevents F to admit a critical point and then a minimum (only an infimum).
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we can see η⋆ as the direction of β⋆, solution of

inf
β∈Rp

1

2
∥β∥2

2 such that diag((Yi )i )Φβ≥1n︸ ︷︷ ︸
perfect classifier

interpolating training data

= inf
β∈Rp

sup
α∈Rn+

1

2
∥β∥2

2 +α⊤ (
1n −diag((Yi )i )Φβ

)

= sup
α∈Rn+

α⊤1n − 1

2

∥∥Φ⊤diag((Yi )i )α
∥∥2

2

with β=Φ⊤diag((Yi )i )α at the optimum.
Note that above, diag((Yi )i )Φβ≥1n is the compact formulation of: for all i ∈ {1, . . . ,n},

Yiϕ(Xi )⊤β≥ 1.

This amounts to take the following convention: the margin hyperplanes are shifted by 1 and −1,
see Figure 1.3.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

xp texte f44 OL

x pThx 1

Yi 1

r Yi 1

MÉFIEMARGIN

À

Yi 1

Yi 1

Figure 1.3: A traditional SVM with the margin hyperplanes shifted by 1 and −1.
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Overall, the optimal β⋆ above is the solution of the separable SVM with vanishing regularization
parameter, that is, of 1

2∥β∥2 +C
∑n

i=1(1−Yiϕ(Xi )⊤β)+ for C large enough.

Divergence for the logistic regression with hands. The function F has an infimum equal to zero,
which is not attained. However, for any sequence βt such that all Yiϕ(Xi )⊤βt tend to infinity, we have
F (βt ) → infβ∈Rd F (β) = 0.

In such a situation, gradient descent cannot converge to a point, and, to achieve small values of F ,
it has to diverge. It turns out that it diverges along a direction, that is, ∥βt∥2 →+∞, with βt /∥βt∥2 → η

for some η ∈ Rd of unit ℓ2-norm. See Soudry et al. (2018) for a proof. Here, we just show what the
vector η is.

The gradient ∇F (β) is given by

∇F (β) =− 1

n

n∑
i=1

exp(−Yiϕ(Xi )⊤β)

1+exp(−Yiϕ(Xi )⊤β)
Yiϕ(Xi ).

Asymptotically, βt behaves as ∥βt∥2η with ∥βt∥2 tending to infinity. By the structure of the sum of
exponentials, the dominant term in ∇F (βt ) corresponds to the indices i for which −Yiϕ(Xi )⊤η is the
largest. Moreover, all of these values have to be negative (indeed we can only attain zero loss for well-
classified training data). We denote by I this set. Thus,

∇F (β) ∼− 1

n

∑
i∈I

Yi exp
(−∥βt∥2YIϕ(Xi )⊤η

)
ϕ(Xi ).

Moreover, we must have F (βt ) along −u to diverge in the direction u, thus u has to be proportional
to a vector

∑
i∈I αi Yiϕ(Xi ), whereα≥ 0 andαi = 0 as soon as i is not among the minimizers Yiϕ(Xi )⊤η.

This is exactly the optimality condition for η⋆ above. Thus η = η⋆. Overall, we obtain a classifier
corresponding to a minimum ℓ2-norm.

See Lyu and Li (2019) for an extension beyond the linear classification case.

1.1.4 Implicit bias in neural network training

In this section we consider one-hidden-layer neural networks of the form

f (x) = 1

K

K∑
k=1

akσ
(
x⊤bk

)= 1

K

K∑
k=1

ak
(
x⊤bk

)
+

with σ the ReLU activation function, K the number of neurons in the hidden layer, (ak )k the weights
between the hidden layer and the output layer, (bk )k the weights between the input layer and the
hidden layer.

Lifting the problem to the space of measures Setting ωk = (ak ,bk ) and Φ(ω) = aσ(·⊤b), the NN can
be rewritten,

f = 1

K

K∑
k=1

Φ(ωk ).

Therefore the neural network parameterized by
(
Rp+1

)K
can be represented by the discrete measure

µ= 1
K

∑K
k=1δωk = 1

K

∑K
k=1δ(ak ,bk ), so that we embed

(
Rp+1

)K
into the space of Radon measures, so that

f = fµ =
∫
Φ(ω)dµ(ω).
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What do we gain by doing so? Note that the mapping (a,b) 7→ f(a,b) is not linear, whereas µ 7→ fµ is
linear.

Therefore training a one-hidden-layer NN entails to find the best parameters (ak ,bk )k , and there-
fore to find the best measure µ. The key benefit is that the set of measures is convex and µ 7→ fµ =∫
Φ(ω)dµ(ω) is linear in the measure µ, so that the risk minimization problem has become convex:

min
µ

R

(∫
Φ(ω)dµ(ω)

)
.

Gradient descent on such a space? Now we weed to define what a gradient descent is on the space
of measure. To do so, we need a metrics: the Wasserstein metrics given by

W 2
2 (µ,ν) = inf

(X ,Y )
X∼µ Y ∼ν

E
[|X −Y |2] .

Usually a gradient descent with a discretization step h can be written as follows:

xh
t = xh

t−1 −h∇R(xh
t−1) (explicit)

xh
t = xh

t−1 −h∇R(xh
t ) (implicit)

The last version is equivalent in the smooth case to find

xh
t ∈ argmin

x
R(x)+ 1

2h
|x −xh

t−1|2.

In our case,

µh
t ∈ argmin

µ
R(µ)+ 1

2h
W 2

2 (µ,µh
t−1),

and let h go to 0 to obtain the Wasserstein gradient flow.
The squared 2-Wasserstein distance between two discrete measures with the same number of

atoms is obtained by minimizing the pairwise distance between Dirac masses over the set of all per-
mutations.

This can be extended to any pair of probability measures, and used within gradient flows, it has
a very natural decoupling property: if µ is fixed, and ν is within a small distance of µ in Wasserstein
distance, then the optimal permutation above will always be the same, that is, locally, the Wasserstein
distance is a sum of squared Euclidean distances. Then, the Wasserstein gradient flow will lead to K
independent local regular Euclidean gradient flows, which interact through the gradient term as:

·
ωk =−∇Φ(ωk )∇R

(∫
Φdµ

)
where

• ∇Φ is a linear operator from F to Rp+1

• ∇R is a the gradient operator of R from Rp+1 to F .

Main result Here we state the result of Chizat and Bach (2020) in a very informal way, and one can
refer to a related blog post of Francis Bach.
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Theorem 1.3. Assume that for some r > 0, the hidden weights (bk )k are initialized uniformly on the
sphere of radius r and the output weights (ak )k uniformly in {r,−r }. Let µt be the Wasserstein gradient
flow µt for the unregularized exponential loss and ft =

∫
Φ(ω)dµt (ω) be the corresponding dynamics in

predictor space. Under some technical assumptions, the normalized predictor ft
∥ ft ∥F1

converges to

max
∥ f ∥F1≤1

min
i

Yi f (Xi ),

where

∥ f ∥F1 := min
µ

1

2

∫
∥ω∥2

2dµ(ω) such that f =
∫
Φ(ω)dµ(ω).

1.2 Interpolation is no longer synonym of bad generalization

The aim of this section is to present recent developments on the generalisation capabilities of neural
networks, which in practice seem fantastic and which classical generalisation error bounds struggle
to explain.

1.2.1 Preliminaries

A first lecture on machine/statistical learning traditionally warns the reader to the evils of overfitting,
see Figure 1.4.

R
is
k

Training risk

Test risk

Capacity of H
sweet spot

under-fitting over-fitting

Figure 1.4: A typical learning curve about the bias-variance trade-off in the prediction when increasing
the predictor complexity.

Typically the “capacity" of the space of learners H is controlled either by the number of parame-
ters, or by some norms of its parameters. In particular, at the extreme right of the curve, when there is
zero training error, the testing error may be arbitrarily large (bad), and the classical theoretical bound,
such as Rademacher averages for H controlled by the ℓ2-norm of some parameters (with a bound D),
grows as D/

p
n, which can be typically quite large.

Proposition 1.4 (Estimation error). Assume a G-Lipschitz-continuous loss function ℓ, linear prediction
functions with F = { fθ(x) = θ⊤φ(x),∥θ∥2 ≤ D}, where E

[∥φ(x)∥2
2

]≤ R2. Let F̂ = fθ̂ ∈F be the minimizer
of the empirical risk, then

E
[
R( fθ̂)

]≤ inf
∥θ∥2≤D

R( fθ)+ 2GRDp
n

.
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Model Year Nb of layers Nb of param Error
Shallow <2012 - - > 25%
AlexNet 2012 8 61M 16.4%
VGG19 2014 19 144M 7.3%

GoogleNet 2014 22 7M 6.7%
ResNet-152 2015 152 60M 3.6%

Table 1.1: Performances of different architectures on the ImageNet dataset (n = 500000) in regard of
the learning complexity captured here through the number of parameters or layers.

Here is a table summarizing the performances of different learners on the ImageNet dataset (n =
500000).

When the model is over-parameterized (in other words, the capacity gets very large), that is, when
the number of parameters is large or the norm constraint allows for exact fitting, a new phenomenon
occurs, where after the test error explodes as the capacity grows, it goes down again: this is the so-
called double descent curve.

R
is
k

Training risk

Test risk

Capacity of H

under-parameterized

“modern”
interpolating regime

interpolation threshold

over-parameterized

“classical”
regime

Figure 1.5: From Belkin et al. (2019) The learning story: to be continued.

1.2.2 Linear model

This paradox has been resolved in the case of linear models by Hastie et al. (2019), relying on non-
asymptotic results for random matrices.

Consider a Gaussian random variable with mean 0 and covariance matrix identity, with n obser-
vations X1, . . . , Xn , and responses Yi = X ⊤

i θ
⋆+εi , with εi normal with zero mean and variance σ2I .

We know the exact expression of the empirical risk minimizer (for which we know that gradient
descent will converge to under proper initialization). Denote the design matrix X ∈ Rn×p , the non-
centered covariance matrix Σ̂=X⊤X/n, and the kernel matrix K =XX⊤.

The excess risk is

R(θ̂) = EX
[
(X ⊤θ̂−X ⊤θ⋆)2]= EX (θ̂−θ⋆)X X ⊤(θ̂−θ⋆) = (θ̂−θ⋆)Σ(θ̂−θ⋆)

= ∥θ̂−θ⋆∥2
2.

Underparameterized regime. In the underparameterized regime, then the minimum norm empiri-
cal risk minimizer is simply the ordinary least-squares estimator, which is unbiased, that is E

[
θ̂
]= θ⋆,

and we have an expected excess risk equal to

EDn

[
R(θ̂)

]= σ2

n
E
[
tr

(
ΣΣ̂−1)]
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Indeed,

EDn ,ε
[
R(θ̂)

]= EDn ,ε
[∥θ̂−θ⋆∥2

2,Σ

]
= EDn ,ε

[∥(X⊤X)−1X⊤Y −θ⋆∥2
2,Σ

]= EDn ,ε
[∥(X⊤X)−1X⊤ (

Xθ⋆+ε)−θ⋆∥2
2,Σ

]
= EDn ,ε

[∥(X⊤X)−1X⊤ε∥2
2,Σ

]= EDn ,ε
[
ε⊤X(X⊤X)−1Σ(X⊤X)−1X⊤ε

]
= EDn ,ε

[
tr

(
ε⊤X(X⊤X)−1Σ(X⊤X)−1X⊤ε

)]
=σ2EDn

[
tr

(
Σ(X⊤X)−1)]= σ2

n
E
[
tr

(
ΣΣ̂−1)] .

In our case, Σ= I , so that the expected risk boils down to

EDn ,ε
[
R(θ̂)

]=σ2EDn

[
tr (X⊤X)−1]

The matrix X ∈ Rn×p is Gaussian, so that the matrix X⊤X ∈ Rp×p has a Wishart distribution, with n
degrees of freedom:

• it is almost surely invertible if n > p,

• EDn

[
tr

(
(X⊤X)−1

)]= p
n−p−1 if n ≥ p +2. The expectation is infinite for n = p or n = p +1.

Proof. Here is a simple way to derive the expectation of an inverse Wishart matrix W −1 where W =∑n
i=1Σ

1/2gi g T
i Σ

1/2 for a covarianceΣ ∈ Rp×p and i.i.d. standard vectors gi ∼ N (0, Ip ). The covarianceΣ
is assumed invertible. The point follows jlewk (https://math.stackexchange.com/users/484640/jlewk).

The first observation is that

E [W −1] =Σ−1/2E

[(
n∑

i=1
gi g T

i

)−1]
Σ−1/2

so that it is enough to treat the case Σ= Ip . Assume Σ= Ip here after.
Concerning the non-diagonal terms of E [W −1], note that with identity covariance,

∑
i gi g T

i and∑
i g̃i g̃ T

i with g̃i = Dgi have the same distribution where D = diag(1, ...,1,−1,1, ..1) (only one sign
changes). This implies that

E [W −1] = D−1E [W −1]D−1

so that E [W −1]i j = 0 for i ̸= j (outside of the diagonal).
Concerning the diagonal terms, by symmetry,

E [W −1]i i = 1

d
E [trace[W −1].

The trace is also the sum of the eigenvalues λi (W −1) of W −1, or the following Frobenius norm:

E
[

trace[W −1]
]= E

d∑
i=1

λi (W )−1 = E [∥G†∥2
F ]

where G ∈ Rn×p is the matrix with n rows g1, ..., gn , and † denotes the pseudo-inverse. At this point,
if c1, ...,cp are the columns of G†, the above display is

∑p
j=1 ∥c j ∥2

2. Furthermore by definition of the

pseudo-inverse, with z1, ..., zd the rows of G , we have cT
j z j = 1 and cT

j zk 0 for j ̸= k. This implies that c j

belongs to the orthogonal complement of {zk ,k ∈ {1, ..., p}\ j }. Since c j belongs to the span of z1, ..., zp ,
it must be that c j = θ j Q j z j with Q j ∈ Rn×n the orthogonal projection onto {zk ,k ∈ {1, ..., p}\ j }⊥ and θ j
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a scalar. The condition cT
j z j = 1 then reveals θ j = ∥Q j z j ∥−2

2 . Finally, ∥Q j z j ∥2
2 has χ2

n−p+1 distribution

as Q j and z j are independent thanks to G having i.i.d. N (0,1) entries, hence

E [trace[W −1]] = E
d∑

j=1
∥c j ∥2

2 = E
d∑

j=1
∥Q j z j ∥−2

2 = p

(n −p +1)−2
= p

n −p −1

provided that we already know that the expectation of an inverseχ2
ν distribution has expectation 1/(ν−

2) for ν> 2.

In conclusion, in the underparameterized regime when n ≥ p +2, the excess risk is equal to

E
[
R(θ̂)

]=σ2 p

n −p −1
.

Overparameterized regime. In the overparameterized regime, when n ≤ p, then the kernel matrix is
almost surely invertible, and the minimum ℓ2-norm interpolator θ̂ is equal to

θ̂ =X†Y =X⊤ (
XX⊤)−1

Y =X⊤ (
XX⊤)−1 (

Xθ⋆+ε)
The expected excess risk can be decomposed into a variance and a bias term:

(i) The variance term is equal to

E
[
ε⊤

(
XX⊤)−1

XΣX⊤ (
XX⊤)−1

ε
]
=σ2E

[
tr

(
X⊤)−1

XX⊤ (
XX⊤)−1

]
=σ2E

[
tr

(
XX⊤)−1

]
=σ2 n

p −n +1

when p ≥ n +2 since we recognize a similar Wishart matrix as before (with the role of n and p
reversed).

(ii) The bias term is equal to

E
[

(θ⋆)⊤
(
I −X⊤ (

XX⊤)−1
X

)
θ⋆

]
= E

[∥∥∥Projspan(X1,...,Xn )⊥
(
θ⋆

)∥∥∥2

2

]
= E

[∥∥∥Proj
Im(X⊤)⊥

(
θ⋆

)∥∥∥2

2

]
= E

[∥∥ProjKer(X)

(
θ⋆

)∥∥2
2

]
Indeed, the matrix X⊤ (

XX⊤)−1
X ∈ Rp×p is the projection matrix on the rowspace of X, which

is a random subspace of dimension n corresponding to the linear span of the p-dimensional
vectors {X1, . . . , Xn}. By rotational invariance of the Gaussian distribution, this random subspace
is uniformly distributed among all subspaces, and therefore, by rotational invariance, we can
replace θ⋆ by ∥θ⋆∥2e j , for any of the canonical basis vector e j in dimension p, that is

E
[

(θ⋆)⊤X⊤ (
X⊤X

)−1
Xθ⋆

]
= ∥θ⋆∥2

2E
[

e⊤j X
⊤ (
X⊤X

)−1
Xe j

]
and thus

E
[

(θ⋆)⊤X⊤ (
X⊤X

)−1
Xθ⋆

]
= ∥θ⋆∥2

2

p

p∑
j=1
E
[

e⊤j X
⊤ (
X⊤X

)−1
Xe j

]
= ∥θ⋆∥2

2

p
E
[

tr
(
X⊤ (

X⊤X
)−1

X
)]

= ∥θ⋆∥2
2

n

p
.
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Thus the bias term leads to

E
[

(θ⋆)⊤
(
I −X⊤ (

X⊤X
)−1

X
)
θ⋆

]
= ∥θ⋆∥2

2
p −n

p
.

Therefore, the overall expected risk is

E
[
R(θ̂)

]=σ2 n

p −n +1
+∥θ⋆∥2

2
p −n

p
.

Wrapping up One gets

{
if p ≤ n −2, E

[
R(θ̂)

]=σ2 p
n−p−1 ,

if p ≥ n +2 E
[
R(θ̂)

]=σ2 n
p−n+1 +∥θ⋆∥2

p−n
p ,

as illustrated on Figure 1.7. The interpretation of these bounds are taken from Hastie et al. (2019):

• The bias increases with p/n in the overparameterized regime, which is intuitive. When p > n,
the min-norm least squares estimate is constrained to lie the row space ofX, the training feature
matrix. This is a subspace of dimension n lying in a feature space of dimension p. Thus as p
increases, so does the bias, since this row space accounts for less and less of the ambient p-
dimensional feature space. Another way to see it is to note that the bias is nothing else than

E
[∥∥ProjKer(X)

(
θ⋆

)∥∥2
2

]
with dim(Ker(X)) = p −n. Therefore

min
θ∈Ker(X)

∥θ−θ⋆∥2 =
∥∥ProjKer(X)

(
θ⋆

)−θ⋆∥∥2
2

which ↘ when p ↗ (the minimum is least on a larger subspace), so that ProjKer(X) increases with
p.

• In the overparameterized regime, the variance decreases with p/n. This may seem counterin-
tuitive at first, because it says, in a sense, that the min-norm least squares estimator becomes
more regularized as p grows. However, this is explained as follows by the authors of Hastie et al.
(2019): as p grows, the minimum ℓ2-norm least squares solution—i.e., the minimum ℓ2-norm
solution to the linear systemXθ = Y , for a training feature matrixX and response vector Y —will
generally have decreasing ℓ2-norm. Why? Compare two such linear systems: in each, we are
asking for the min-norm solution to a linear system with the same Y , but in one instance we are
given more columns in X, so we can generally decrease the components of θ (by distributing
them over more columns), and achieve a smaller ℓ2-norm.

• Set the SNR= ∥θ⋆∥2
2/σ2. Note that the risk of the null estimator (i.e. θ̂ = 0) is ∥θ⋆∥2

2, which can
be called the null risk. In the overparameterized regime, with an infinite sample size, and with
p/n → γ,

– when SNR ≤ 1, the min-norm least squares risk is always worse than the null risk. More-
over, it is monotonically decreasing, and approaches the null risk (from above).

– When SNR> 1, the min-norm least squares risk beats the null risk if and only ifγ> SNR/(SNR−
1). It has a local minimum at γ=p

SNR/(
p

SN R−1), and approaches the null risk from be-
low when γ→+∞.
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0

Figure 1.6: Intuition for the double descent phenomenon in linear models. When p increases, Ker(X)
becomes larger, so there are more solutions to the system Y = Xθ, so that ∥θ̂∥2 decreases, the bias
increases with p/n and the variance decreases with p/n.

Strikingly, interpolating predictors such as those studied here have been historically overlooked,
at least for noisy data. Indeed, a classical prescription is to regularize the predictor by e.g., adding a
ridge penalty “λ∥ ·∥2

2" (which adds λI to XX⊤), and leads to non-interpolating predictors.
In conclusion, this simple setting misses the approximation/variance trade-off. But the results are

the best for γ = 0. Therefore, one can wonder if there exists linear settings for which there is a true
benefit to go in the over-parameterization regime? A partial answer is given in the misspecified case.

Figure 1.7: From Hastie et al. (2019), the double descent phenomenon in the linear case.
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Conclusion on linear/kernel models in overparameterization regimes

Based on the previous sections, one can notice there is alignment of optimization and gener-
alization in overparameterized linear (and kernel) models, since (S)GD converge to minimum
norm interpolators having good generalization properties.

Remark 1.5 (No phenomenom when using regularization). When an extra (ridge) regularizer is used,
then the double descent phenomenom is reduced (see Mei and Montanari (2019)). In particular, if the
regularization parameter λ is adapted for each number of observations, then the phenomenom totally
disappears (see Mei and Montanari (2019), for more details).

1.2.3 Misspecified linear model

Suppose that the model is now
Yi = X ⊤

i θ
⋆+ W ⊤

i︸︷︷︸
unobserved

i.i.d.

ζ⋆+εi ,

in which (Wi )i ’s are i.i.d. unobserved features that help to explain the outcome Y . In such a case, the
risk is going to compare X ⊤θ̂ to E [Y |X ,W ] = X ⊤θ⋆+W ⊤ζ⋆.

R(θ̂) := E
[(

X ⊤θ̂−E [Y |X ,W ]
)2∣∣∣X]

= E
[(

X ⊤θ̂−E [Y |X ]
)2∣∣∣X ]

+E
[(
E [Y |X ]−E [Y |X ,W ]

)2∣∣∣X ]
︸ ︷︷ ︸

=:Mζ⋆ approximation bias

(by Pythagore)

where Mζ⋆ is complex in general.
When all entries of X and W are i.i.d. and isotropic,

Mζ⋆ = E
[(

X ⊤θ⋆− (
X ⊤θ⋆+W ⊤ζ⋆

))2∣∣∣X]
= E

[(
W ⊤ζ⋆

)2
∣∣∣X]

= ∥∥ζ⋆∥∥2

= r 2 (1−κ)

with

• r 2 = ∥θ⋆∥2
2 +∥ζ⋆∥2

2 corresponds to the signal strength

• κ= ∥θ⋆∥2
2/r 2 is the fraction of the signal explained by the covariates X only.

Theorem 1.6. Assume the misspecified linear model, and assume that (X ,W ) has i.i.d. entries with zero
mean, unit variance, and a finite moment of order 8+η, for some η > 0. Also assume that for all n, p,
r 2 = ∥θ⋆∥2

2 +∥ζ⋆∥2
2 and κ = ∥θ⋆∥2

2/r 2. Then for the min-norm least squares estimator θ̂, as n, p →∞,
with p/n → γ , it holds almost surely that

E
[
R(θ̂)

]→{
r 2(1−κ)+ (

r 2(1−κ)+σ2
) γ

1−γ for γ< 1

r 2(1−κ)+ r 2κ(1− 1
γ )+ (

r 2(1−κ)+σ2
) 1
γ−1 for γ> 1

In the independence setting, the dimension of the unobserved feature space does not play any
role: we may equally well take it equal to ∞ for all n, p (i.e., infinitely many unobserved features).
Note that

1. The first term r 2(1−κ) is the misspecification bias (irreducible).
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2. The second term equal to 0 when γ< 1 or to r 2κ(1− 1
γ ) is the bias.

3. The third term is the misspecification variance.

4. The last term is the variance.

By considering a polynomial decay for the approximation bias, i.e.

1−κ(γ) = (1+γ)−a

for some a > 0, the global minimum of the risk is achieved in the overparameterized regime.

In such a case, linear over-parameterized predictors are sometimes preferable to any “classi-
cal" under-parameterized model.

1.2.4 A first non-linear model with random features

Consider now a one-hidden-layer neural network, in which we optimize only the output weights, see
Figure 1.8. The model is the following:
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Figure 1.8: A first non-linear model, in which we optimize only the output weights (in blue). The input
and the weights between the input layer and the hidden one are assumed to be Gaussian.

• assume the input vectors Xi ∈Rp with i.i.d. centered Gaussian entries, Xi ∼N (0, Ip );

• assume that the weights W ∈ Rq×p between the input layer and the hidden one are such that
each entry of W is a random N (0,1/d) variable;

• call ϕ the activation function used in the hidden layer, and assume it is purely non-linear, i.e.

E
[
ϕ(G)

]
= E

[
Gϕ(G)

]
= 0, for G ∼N (0,1).

The hypothesis if purely non-linear is not common, it is satisfied for instance for ϕ(t ) = a(|t |−b), for
a =p

π/
p
π−2 and b =p

2/
p
π.
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We optimize the weights θ of the output layer in terms of quadratic risk minimization penalized
by a ridge term:

θ̂λ ∈ argmin
θλ

1

n

n∑
i=1

(
Yi −ϕ(W Xi )⊤θ

)2 +λ∥θ∥2
2.

This amounts to penalized linear regression with transformed features (the ϕ(W Xi )’s instead of the
Xi ’s).

Theorem 1.7. Assume that |ϕ(x)| ≤ c0(1+|x|)c0 for a constant c0 > 0. Also, for G ∼ N (0,1), assume that
the standardization conditions hold: E[ϕ(G)] = 0 and E[ϕ(G)2] = 1, E[Gϕ(G)] = 0.

Then for γ := p/n > 1, the variance satisfies, almost surely,

lim
λ→0+

lim
n,p,q→∞ VX (θ̂λ;θ) = σ2

γ−1
,

which is precisely as in the case of linear isotropic features. Also, under a isotropic prior, namely E(θ) = 0,
Cov(θ) = r 2Iq /q, the Bayes bias BX (θ̂λ) := Eθ BX (θ̂λ;θ) satisfies, almost surely

lim
λ→0+

lim
n,p,d→∞

BX (θ̂λ) =
{

0 for γ< 1,

r 2(1−1/γ) for γ> 1,

which is again as in the case of linear isotropic features

Note that this result is asymptotic, and heavily relies on the purely non-linear feature of the ac-
tivation function that allows to retrieve standard asymptotics distribution got in the standard linear
case.

When considering standard linear features, the out-of-sample risk can be decomposed in a bias
and a variance terms:

RZ(θ̂) = E
[

(Z⊤θ−Z⊤θ⋆)2|Z
]
= E

[
∥θ̂−θ⋆∥2

Σ|Z
]

=
∥∥∥E[

θ̂|Z
]
−θ⋆

∥∥∥2

Σ︸ ︷︷ ︸
Bias

+ tr
[

Cov
[
θ̂|Z]]

︸ ︷︷ ︸
Variance

Ideas of proof for the variance. Focus on the variance term, for the regularized parameter:

VZ(θ̂λ) = σ2

n
tr

[
Σ
Z⊤Z

n

(
λI + Z

⊤Z
n

)−2 ]
for Z=

ϕ(W X1)⊤
...

ϕ(W Xn)⊤


= σ2

n
p

p∑
i=1

1

p

µi

(µi +λ)2 for (µi )i the singular values of Z

−→n,p→∞ σ2γ

∫
t

λ+ t 2 d MPγ(t )

where MPγ denotes the Marchenko-Pastur law of parameter γ. This is true by (Péché, 2019, Theorem
1.1), for purely non-linear activation functions (entailing θ2( f ) = 0 in Péché (2019)), and by using the

convergence of the spectral measure of X
⊤X
n towards the Marchenko-Pastur law.

We actually know an explicit form for the Stieltjes transform of this distribution, i.e.

m(−λ) =
∫

1

t −λd MPγ(t )
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so we can deduce

M(λ) =
∫

t

λ+ t 2 d MPγ(t )

= ∂

∂λ

∫ −t

λ+ t
d MPγ(t )

= ∂

∂λ

∫ −t −λ
λ+ t

d MPγ(t )︸ ︷︷ ︸
=−1

+
∫

λ

λ+ t
d MPγ(t )


= ∂

∂λ
(λm(−λ))

= ∂

∂λ

(
−(1−γ+λ)+

√
(1−γ+λ)2 +4γλ

2γ

)

=− 1

2γ
+ 1

2γ

(
(1−γ+λ)2 +4γλ

)−1/2
(1+γ+λ)

→λ→0+
1

γ(γ−1)
.

Finally, when γ> 1,

VX(θ̂λ) →λ→0+ γσ
2 1

γ(γ−1)
= σ2

γ−1
.

1.2.5 Analysis via Neuberger’s theorem

This section presents the work of Caron and Chrétien (2020), in the case of Ridge functions. Let Zi =
(Xi ,Yi ) ∈Rp+1 be observations drawn from the model

Yi = f ⋆(Xi )+εi , i = 1, . . . ,n.

The noise vector ε ∈Rn is assumed to be sub-Gaussian with parameter γε2.
The goal is to estimate f ⋆based on the observation Z1, . . . , Zn , restricting the search for a candidate

in a subset F of functions in a Banach space B.
To do so, we construct an empirical risk minimizer:

f̂ ERM ∈ argmin
f ∈F

R̂n( f ), with R̂n( f ) := 1

n

n∑
i=1

ℓ(Yi − f (Xi )), (1.8)

for some cost function ℓ such that ℓ′(0) = 0 and ℓ′′ is upper bounded by Lℓ′ (i.e. its derivative is Lℓ′-
Lipschitz).

Ridge type functions Consider a statistical model of the form

E [Yi |Xi ] =ϕ(X ⊤
i θ

⋆).

where

• ϕ :R→R is assumed to be an increasing function

2meaning that its ϕ2-norm is bounded by γε, ∥ϵ∥ϕ2 := inf
{

s > 0 : E
[

e−ε/s2 −1 ≤ 1
]}

≤ γε



CHAPTER 1. INTERPOLATION IN PARAMETRIC LEARNING 22

• the Xi ’s are assumed to be isotropic (i.e. E(Xi X ⊤
i ) = Id ), sub-Gaussian with parameter γX , and

of ℓ2-norm equal to
p

p (think about Rademacher vectors, or random vectors on the sphere).

Note that such assumptions ensure that

X=

X ⊤
1
...

X ⊤
n


is of full rank.

Theorem 1.8. For some α> 0, assume that p and n are such that

C 2
γX

n < (1−α)2p.

Let

r = 6
p

CCℓ′′Cϕ′γϵδ
−1

p
n

(1−α)
p

p −CKX

p
n

,

where C is a positive absolute constant. Assume, that ℓ and ϕ are such that,

|ℓ′′(Yi −ϕ(X ⊤
i z)) ϕ′(X ⊤

i z)2 −ℓ′(Yi −ϕ(X ⊤
i z)) ϕ′′(X ⊤

i z)| ≥ δ> 0 (1.9)

for all z in B2(θ⋆,r ). Then,

1. there exists a first order stationary point θ̂ to the optimisation problem (1.8) such that, with prob-
ability larger than or equal to

1−2exp(−cKX α
2p)−exp

(
− n

2

)
,

we have

∥θ̂−θ⋆∥2 ≤ r.

2. in terms of generalization error, one has for θ̂◦ the solution of minimal ℓ2-norm of the system
Xθ̂◦ =Xθ̂, for any γ> 0,

E
[|ϕ(X ⊤

n+1θ̂
◦)−ϕ(X t

n+1θ
⋆)|2 | X

]≤C 2
ϕ′

(
1p
p

γp + (
p
γp +p

n)2

((1−α)
p

p −CKX

p
n)4

+ γp + (
p
γp +p

n)2

p
p

∥θ⋆∥2

+ 2
p
γpp
p

+p
γp

6
p

CCℓ′′Cϕ′Kϵn

δ((1−α)
p

p −CKX

p
n)

)2

(1.10)

with probability, at least

1−2exp(−cKX α
2p)−exp

(
− p

2

)
−(2+n)exp(−cKX p)−2exp(−γp) (1.11)

Remark that when the number p of features tends to infinity, the radius tends to zero.
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Ideas for the proof. We focus only on the first point of Theorem 1.8 (since the second point is a
consequence of the first one). To establish such results, one should exhibit a stationary point for
Problem (1.8), therefore one should exhibit a zero for the Jacobian associated to the ERM. This can be
given by Neuberger’s theorem.

Theorem 1.9 (Neuberger’s theorem for ERM). Suppose that r > 0, that θ⋆ ∈ Rp and that the Jacobian
DR̂n(·) is a continuous map on B(θ⋆,r ) such that for each θ ∈ B(θ⋆,r ), there exists a vector d ∈ B(0,r )
such that

lim
t↘0

DR̂n(θ+ td)− R̂n(θ)

t
=−DR̂n(θ⋆).

Then, there exists u ∈ B(θ⋆,r ) such that DR̂n(u) = 0.

Neuberger’s theorem assumes that there exists a direction d of norm less than r, such that for any
point θ in a ball B(θ⋆,r ), the directional derivative in θ w.r.t. d matches the gradient of −DR̂n(θ⋆)
evaluated in θ⋆. The question is then to find a radius r which is compatible with all these conditions.

Therefore, in order to use Neuberger’s theorem, one has to show that for a particular d

∇2R̂n(θ)d =−∇R̂n(θ⋆). (1.12)

1. (Gradient and Hessian) Since the loss is twice differentiable the empirical risk R̂n is itself twide
differentiable. The gradient is given by

∇R̂n(θ) =− 1

n

n∑
i=1

ℓ′(Yi −ϕ(X ⊤
i θ))ϕ′(X ⊤

i θ)Xi

=− 1

n
X⊤diag(ν)ℓ′(ε),

where ℓ′(ε) has to be understood componentwise, and νi :=ϕ′(X ⊤
i θ) for all i = 1, . . . ,n.

The Hessian matrix is given by

∇2R̂n(θ) = 1

n

n∑
i=1

(
ℓ′′(Yi −ϕ(X ⊤

i θ))ϕ′(X ⊤
i θ)2 −ℓ′(Yi −ϕ(X ⊤

i θ))ϕ′′(X ⊤
i θ)

)
Xi X ⊤

i

and can be actually rewritten as

∇2R̂n(θ) = 1

n
X⊤diag(µ)X (1.13)

where diag(µ) ∈Rn×n is a diagonal matrix, with diagonal entries

µi =
(
ℓ′′(Yi −ϕ(X ⊤

i θ))ϕ′(X ⊤
i θ)2 −ℓ′(Yi −ϕ(X ⊤

i θ))ϕ′′(X ⊤
i θ)

)
2. (Solving Neuberger’s equation) One has to solve the Neuberger’s equation

1

n
X⊤diag(µ)Xd = 1

n
X⊤diag(ν)ℓ′(ε),

which can be solved by finding the least norm solution of the interpolation sub-problem

diag(µ)Xd = diag(ν)ℓ′(ε),

i.e.
d =X†diag(µ)−1diag(ν)ℓ′(ε).
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3. (Bounding ∥d∥2) Then one should ensure that ∥d∥ ≤ r . Given the SVD of X=UΣV ⊤, one gets

d =V Σ−1U⊤diag(µ−1)diag(ν)ℓ′(ε),

so

∥d∥2 =
∥∥V Σ−1U⊤diag(µ−1)diag(ν)ℓ′(ε)

∥∥
2 ≤

∥∥U⊤diag(µ−1)diag(ν)ℓ′(ε)
∥∥

2

smin(X)
.

(a) (Bounding
∥∥U⊤diag(µ−1)diag(ν)ℓ′(ε)

∥∥
2). One can show that U⊤diag(µ−1)diag(ν)ℓ′(ε) is a

subGaussian vector with variance proxy

C max
1≤i≤n

∥∥∥∥νi

µi
ℓ′(εi )

∥∥∥∥2

ψ2

,

so that with probability higher than 1−e−u2/2,

∥∥U⊤diag(µ−1)diag(ν)ℓ′(ε)
∥∥

2 ≲ max
1≤i≤n

∥∥∥∥νi

µi
ℓ′(εi )

∥∥∥∥2

ψ2

(
p

p +u).

We then deduce that νi
µi
ℓ′(εi ) is a sugGaussian random variable with variance proxy

∥∥∥∥νi

µi
ℓ′(εi )

∥∥∥∥2

ψ2

≤ νi

µi
∥εi∥2

ψ2
(1.14)

≤Cℓ′′
maxi νi

maxi µi
Kε (1.15)

≤Cℓ′′
C ′
ϕ

δ
γε (1.16)

where we used the boundedness of ϕ′ in the last inequality.

Overall, ∥∥U⊤diag(µ−1)diag(ν)ℓ′(ε)
∥∥

2 ≲
Cℓ′′Cϕ′γε

δ
(
p

p +u),

with probability 1−
(
exp(−u2/2)+2n exp

(
− t 2

C 2
ℓ′′γ

2
ε

))
.

(b) (Bounding smin(X)). By sub-Gaussianity of the covariates, one has with probability larger
than 1−2exp(−cγX α

2n),

smin(X) ≥p
p − (α+CγX )

p
n)

p
n.

4. (Finishing) Putting all this together, one gets,

∥d∥2 ≳

p
n

(1−α)
p

p −CKX

p
n

(1.17)

with probability larger than 1−2exp(−cγX α
2n)−exp(−u2/2)−2n exp

(
− t 2

C 2
ℓ′′γ

2
ε

)
. Choosing t and

u of the order of
√

log(n) completes the proof.
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1.2.6 Overparametrization/interpolation in neural network

Why overparameterizing in neural networks? It is often observed that for neural networks, depth
efficiently helps to extract features in the dataset. Recent studies found that increasing both depth
and width of a shallow model leads to very nice continuous limits, where PDE tools can be put in
work. Besides, on the numerical side, one could argue that increasing the number of parameters
could make harder the optimization/training of such complex architectures. However, networks with
wide layers (larger than the sample size) can be shown to have no spurious minimizers Nguyen et al.
(2018); Nguyen (2019) (i.e. no local optima with bad generalization properties).

Bad consequences of overparametrizartion in neural networks? Beware, when training a NN with
layers not wide enough, overparametrization usually entails existence of many local minimizers with
potentially different statisticial performances. Common practice advises to run stochastic gradient
algorithm with random initialization and converges to parameters with very good practical prediction
accuracy.Why is this simple approach actually often working? The goal of current research is to resolve
these paradoxes.

Some empirical observations are reported in Huang et al. (2020) on the importance of “being flat".
Flat minimizers (with a bad conditioned Hessian, and therefore with a flat attraction basin) are easier
to reach and have better generalisation properties. Flatness seems to be nice for both generalization
properties, and convergence of the used algorithms.
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2.1 The nearest neighbour

The nearest neighbour (1-NN) rule Cover and Hart (1967) is the most simple classifier/regressor that
always interpolates the training data by definition. Its training error is indeed always 0.

Warming: a toy classification setting Let Dn = {(Xi ,Yi ) ∈ [0,1]d × {0,1}, i = 1, . . . ,n} be a training set
and assume that the Xi are uniformly distributed on [0,1]d and that for all x ∈ [0,1]d ,

η(x) =P(Y = 1|X = x) =α> 1/2.

1. In all generality, the Bayes classifier f ⋆ is defined as

f ⋆(x) =
{

0 if η(x) ≤ 1/2
1 if η(x) > 1/2

In the particular case described above, give the expression of Bayes classifier.

Answer: In this case, the Bayes classifier is given by f ⋆(x) = 1 for all x ∈ [0,1]d .

28
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2. Consider any classifier fn : [0,1]d → {0,1}. Prove that its error in x satisfies

P[ fn(X ) ̸= Y |X = x] =α− (2α−1)E[ fn(X )|X = x].

What is the value of the previous quantity for the Bayes classifier f ⋆?

Answer: We have

P[ fn(X ) ̸= Y |X = x] =P[ fn(X ) = 1,Y = 0|X = x]+P[ fn(X ) = 0,Y = 1|X = x]

=P[ fn(X ) = 1|X = x]P[Y = 0|X = x]

+P[ fn(X ) = 0|X = x]P[Y = 1|X = x]

=E[ fn(X )|X = x](1−α)+ (1−E[ fn(X )|X = x])α

=α− (2α−1)E[ fn(X )|X = x].

For the Bayes classifier f ⋆, according to the previous question

P[ f ⋆(X ) ̸= Y |X = x] =α− (2α−1) = 1−α.

3. Now consider the 1 nearest neighbor estimate f1,n . Let Bi (x) be a Bernoulli variable equal to 1
if the i -th observation is the nearest neighbor of x and 0 otherwise. Write f1,n(x) as a sum of
random variables. What is the value of

∑n
i=1 Bi (x)?

Answer: By definition, f1,n(x) takes value 1 if the label of the nearest neighbor of x is 1 and zero
otherwise. Thus,

f1,n(x) =
n∑

i=1
Bi (x)Yi ,

where, in the sum, only one term is nonzero. Note that exactly one Bi (x) is nonzero and equal
to one. Therefore

∑n
i=1 Bi (x) = 1.

4. ComputeE[ f1,n(x)] andP[ f1,n(x) ̸= Y ].

Answer: According to the previous question, we have

E[ f1,n(x)] =
n∑

i=1
E[Bi (x)Yi ]

=
n∑

i=1
E[E[Bi (x)Yi |Xi ]]

=
n∑

i=1
E[E[Bi (x)|Xi ]E[Yi |Xi ]︸ ︷︷ ︸

=α
]

=α
n∑

i=1
E[Bi (x)]

=αE[
n∑

i=1
Bi (x)]︸ ︷︷ ︸

=1

=α.

Thus, using question 2, we get

P[ f1,n(X ) ̸= Y |X = x] =α− (2α−1)α= 2α(1−α).
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5. We say that a classifier fn is consistent if its risk R( fn) = P[ fn(X ) ̸= Y ] tends to the risk of the
Bayes classifier R( f ⋆) =P[ f ⋆(X ) ̸= Y ]. Prove that the nearest neighbor estimate is not consis-
tent.

Answer: Since 2α> 1,

P[ f1,n(X ) ̸= Y |X = x]−P[ f ⋆(X ) ̸= Y |X = x] =α(1−α) > 0.

Taking the expectation of the previous inequality with respect to x leads to

R( f1,n)−R( f ⋆) ≥α(1−α) > 0.

If 1/2 < α < 1, the 1 nearest neighbor estimate is not consistent since there is a gap of α(1−α)
between its risk and the risk of the Bayes classifier. This gap collapses only when α = 1, i.e. in
the noiseless case, showing the consistency of the 1-NN neighbour in such a case.

Regression Assume that the model is given by

Yi = f ⋆(Xi )+εi ,

with E[Y 2
i ] < ∞ so that the regression function f ⋆(x) = E [Y |X = x] achieves the minimal quadratic

risk over all Borel measurable functions g :Rp →R, that is

E
[∣∣Y − f ⋆(X )

∣∣2
]
= inf

f
E
[∣∣Y − f (X )

∣∣2
]

The nearest neighbour estimate is defined by

f̂ 1NN
n (x) = Y(1)(x)

where (X(1)(x),Y(1)(x)), . . . , (X(n)(x),Y(n)(x)) is a reordering of the data according to the increasing val-
ues of ∥Xi −x∥2.

Theorem 2.1 (Biau and Devroye (2015), Theorem 9.1). Assume that E[Y 2] < ∞. Then, the 1-nearest
neighbour f̂ 1NN

n predictor satisfies

E
[∣∣ f̂ 1NN

n (X )− f ⋆(X )
∣∣2

]
−→n→+∞ E

[∣∣Y − f ⋆(X )
∣∣2

]
︸ ︷︷ ︸

residual variance

.

The proof can be found in Chapter 9 of Biau and Devroye (2015).
This convergence is universal, in the sense that it happens for any distribution of (X ,Y ) with

E
[
Y 2

]<∞.

When considering the nearest neigbour estimate, the mean integrated squared error E
[∣∣ f̂ 1NN

n (X )− f ⋆(X )
∣∣2

]
converges to the residual variance

E
[∣∣Y − f ⋆(X )

∣∣2
]
= E[

Y 2]−E[(
f ⋆(X )

)2
]

.

This residual variance is zero if and only if Y = f ⋆(X ) with probability one, i.e. in the noiseless case.

Therefore, the 1-NN predictor is inconsistent, apart from the noiseless setting. The 1-NN is
indeed very sensitive to noise.
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2.2 Interpolating kernel estimates

The 1-NN neighbour estimate is a particular local-means estimate, that can be rewritten as

f̂n(x) =
n∑

i=1
Wi nYi

given the training data points {(X1,Y1), . . . , (Xn ,Yn)}.
More general local-means (Nadaraya-Watson) estimators can be constructed with the form

f̂n(x) =
∑n

i=1 K
(

x−Xi
h

)
Yi∑n

i=1 K
(

x−Xi
h

) .

K is the kernel function (not to be confused with kernel machines),and h > 0 can be called the band-
width. In Devroye et al. (1998), the authors choose the so-called "Hilbert" kernel:

K (x) = 1

∥x∥p

with p the input dimension. Remark that K (u) −−−−−→
∥u∥→0+

+∞ so that f̂n(x) −−−−→
x→Xi

Yi , so that there is

interpolation of the training data. Note that there is no usual window parameter needed it cancels
out in the numerator and denominator. They show in particular that for almost all point x such that
ϕX (x) > 0 with ϕX the density of the input X and for bounded output Y ,

f̂n(x) −−−−−→
n→+∞ f ⋆(x)

so that this predictor is universally consistent, concluding that the interpolation "introduces unnec-
essary noise, but at the same time, except for immediate regions around the data points, the estimate
feels and behaves like a true kernel smoother" (1998).

In Belkin et al. (2019), the authors choose a singular kernel such as

K (x) = 1

∥x∥α1∥x∥≤1, with α to be chosen,

and manage to obtain convergence rates in this flavour: if 0 < α < p/2 and h ∼ ( 1
n

) 1
2β+p when f ⋆ is a

β-Hölder regular function

∀x, E
[(

f̂n(x)− f ⋆(x)
)2

]
≲

(
1

n

) 2β
2β+d

.

By tuning the kernel bandwidth, the influence of the interpolation can be very limited and very local-
ized around the training points. Anywhere else, the estimated function remains “smooth", see Figure
2.1. Indeed, the NW estimator with a singular kernel can be seen as a general smooth estimate that is
given by averaging the data in a neighbourhood of size h, to which we add small “spikes” at the data
points, allowing interpolation. As pointed in Bartlett et al. (2021), any estimator f̂ could be turned into
an interpolating one f̂ int = f̂ +∆, where∆(Xi ) = Yi − f̂ (Xi ) but ∥∆∥L2(P) = o(1). This has been observed
empirically by Wyner et al. (2017), in what they called “spiked-smooth" estimates.

2.3 What about random forests?

In this section, we discuss about recent results in a joint work with Ludovic Arnould (Sorbonne Uni-
versité) and Erwan Scornet (Ecole Polytechnique).
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Figure 2.1: From Belkin et al. (2019), choosing α = 0.49. The influence of interpolation remains very
localized around the training points.

2.3.1 Setting

We assume to be given a training set Dn := ((X1,Y1), ..., (Xn ,Yn)), composed of i.i.d. copies of the
generic random variable (X ,Y ), where X ∈ [0,1]d is the input and Y ∈ R is the output. The under-
lying model is assumed to satisfy Y = f ⋆(X )+ε, where f ⋆(x) = E[Y |X = x

]
is the regression function

and ε is a random centered noise of variance σ2 < ∞. Given an input vector x, the goal is then to
predict the associated square integrable random response by estimating f ⋆(x).

2.3.2 Preliminary on random forests

RF predictor A Random Forest (RF) is a predictor consisting of a collection of M randomized trees
(see Breiman et al., 1984, for details about decision trees) that can be seen weak learners.

Trees are predictors

(a) that are built by partitioning the feature space into hyperrectangles (along the features axes);

(b) which, for a data point x, predict by “averaging" the labels (Yi )i of the training points (Xi )s falling
in the same partition cell as x.

Note that a fully-grown tree is “spiky", in the sense that there is no smoothing mechanism: every-
where in space, the prediction relies only on one data point.

RF aggregates the prediction of several trees. To improve prediction with aggregation, the con-
structed trees need to be as uncorrelated as possible. To this end, in RF,

1. trees are usually trained on different bootstrap samples from the original training sample.
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Figure 2.2: A partition made of hyperrectangles can always be coded by a binary tree. The prediction
of a tree for a new data point is made by a majority vote in a classification setting, or by averaging in a
regression setting, so that here, the prediction will be 85.

2. each time that a tree creates new partition cells, it will only cut over a random subset of features
for splits.

Non-adaptive RF To build a forest, we generate M ∈N⋆ independent random variables (θ1, . . . ,θM ),
distributed as a generic random variable Θ, independent of Dn . In our setting, θm actually represents
the successive random splitting directions and the resampling data mechanism in the m-th tree. The
predicted value at the query point x given by the m-th tree is defined as

fn(x,θ j ) =
n∑

i=1

1Xi∈An (x,θ j )Yi

Nn(x,θ j )
1Nn (x,θ j )>0

where An(x,θ j ) is the cell containing x and Nn(x,θ j ) is the number of points falling into An(x,θ j ). The
(finite) forest estimate then results from the aggregation of M trees:

fM ,n(x,ΘM ) = 1

M

M∑
m=1

fn(x,θm),

where ΘM := (θ1, ...,θM ). By making the number M of trees grows towards infinity, we can consider
instead the infinite forest estimate, which has also played an important role in the theoretical under-
standing of forests:

f∞,n(x) =Eθ[ fn(x,θ)],

whereEθ denotes the expectation w.r.t. θ, conditional on Dn .

Centered RF Centered Random Forests (Biau (2012)) are ensemble methods that are said to be non-
adaptive since trees are built independently of the data: at each step of a centered tree construction,
a feature is uniformly chosen among all possible d features and the split along the chosen feature is
made at the center of the current cell. Then trees are aggregated to produce a CRF.

Choosing the depth of the order of log2(n) characterizes another type of interpolation regime. To
see this, consider a centered tree of depth k, whose leaves are denoted L1, . . . ,L2k . The number of
points falling into the leaf Li is denoted Nn(Li ). If X is uniformly distributed over [0,1]d , then by
construction, for a given leaf Li ,

P (X ∈ Li ) = 1

2k
and E (Nn(Li )) = n

2k
. (2.1)
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Definition 2.2 (Mean interpolation regime). A CRF f CRF
M ,n satisfies the mean interpolation regime when

each tree of f CRF
M ,n has at least n leaves (k ≥ log2(n)).

2.3.3 Centered forests: watch the empty cells out

Proposition 2.3. Suppose that E
[

f ⋆(X )2
]> 0. Then the infinite Centered Random Forest of depth kn ≥

⌊log2 n⌋ is inconsistent.

The non-consistency of the CRF stems from the fact that the probability for a random point X to
fall in an empty cell does not converge to zero, i.e. for a random tree θ,

P (Nn(X ,θ) = 0|X ) ̸−−−−→
n→∞ 0.

Indeed, denoting E the event “Nn(X ,θ) = 0" (or equivalently, “X falls into a non-empty leaf"), in such
a case the infinite CRF outputs 0. Setting m̄n,∞(X ) =E[

mn,∞(X )|X , X1, ..., Xn
]
,

R( f CRF
n,∞ (X )) =E

[(
f CRF

n,∞ (X )− f ⋆(X )
)2

)
]

(2.2)

= EX ,Dn

[(
n∑

i=1
W ∞

n,i (X ) f ⋆(Xi )+W ∞
n,i (X )εi − f ⋆(X )

)2]
(2.3)

≥ EX ,Dn

[(
n∑

i=1
W ∞

n,i (X ) f ⋆(Xi )− f ⋆(X )

)2]
(2.4)

≥ EX ,Dn

[(
n∑

i=1
Eθ

[
1Xi∈An (x,θ)

Nn(x,θ)
1Nn (x,θ)>0

]
f ⋆(Xi )− f ⋆(X )

)2]
(2.5)

= EX ,Dn

[(
n∑

i=1
Eθ

[
1Xi∈An (X ,θ)

Nn(X ,θ)

(
f ⋆(Xi )− f ⋆(X )

)
1Nn (X ,θ)>0

])2]
+E[

( f ⋆)2(X )1Nn (X ,θ)>0
]

(2.6)

≥ E[
( f ⋆)2(X )1Nn (X ,θ)>0

]= EX
[
( f ⋆)2(X )PDn ,θ (Nn(X ,θ) = 0|X )

]
(2.7)

When the tree contains αnn leaves with αn ≥ 1

PDn ,θ (Nn(X ,θ) = 0|X ) =
(
1− 1

αnn

)n

̸−−−−→
n→∞ 0.

This emphasizes the poor generalisation capacities of the interpolating CRF (under any interpo-
lating regime). Since controlling empty cells seems crucial for the consistency, this motivates the in-
troduction of a modified version of a CRF that does not take into account the empty cells to make the
final prediction:

Wiser CRF: aggregating only non-empty cells A finite CRF aggregating only non-empty cells is given
by

f wCRF
M ,n (x,ΘM ) = 1

Λn(x,ΘM )

M∑
m=1

fn(x,θm)1Nn (x,θm )>0.

with Λn(x,ΘM ) := |{m : Nn(x,θm) > 0}|.
An infinite version of a centered CRF that would only aggregate non-empty cells is given by

f wCRF
∞,n (x) = Eθ

[
fn(x,θ)|Nn(x,θ) > 0

]
(2.8)

= Eθ
[

fn(x,θ)1Nn (x,θ)>0

Pθ (Nn(x,θ) > 0)

]
. (2.9)
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Theorem 2.4. Suppose that f ⋆ is bounded and has bounded partial derivatives. Then, the infinite
wiser-CRF of depth k = log2 n is consistent in a noiseless setting. More precisely, if σ= 0,

E
[(

f wCRF
∞,n (X )−m(X )

)2
]
≤ 2d

d∑
j=1

||∂m j ||2∞nlog2

(
1− 1

2d

)
+2n− 1

log(2)

The risk of the wiser-CRF estimator can be decomposed as the sum of bias and variance. In a
noiseless setting, only the bias need to be controlled. To do so, one should control what happens on
the event where the wCRF arbitrarily outputs 0, this corresponds to the case where “Pθ [Nn(X ,θ) > 0] =
0", i.e. when “Pθ [Nn(X ,θ) = 0] = 1". In such a case, we manage to prove that

PX ,Dn

(
Pθ

(
Nn(X ,θ) = 0

)= 1
)
−−−−→
n→∞ 0

i.e.
PX ,Dn

(
∀θ(ω), Nn(X ,θ(ω)) = 0

)
−−−−→
n→∞ 0.

Even though we proved consistency in a noiseless framework, we firmly believe that it holds in a
noisy setting and that we could not demonstrate the result because of difficulties in the proof.

2.3.4 Kernel RF

In order to reach consistency in a noisy scenario, we now focus on the Kernel RF. Instead of averaging
the predictions of all centered trees, the construction of a kernel RF (KeRF) is performed by growing
all centered trees and then averaging along all points contained in the leaves in which x falls, i.e.

f KeRF
M ,n (x,ΘM ) :=

∑n
i=1 Yi

∑M
m=11Xi∈An (x,θm )∑n

i=1

∑M
m=11Xi∈An (x,θm )

.

Letting KM ,n be the connection function of the finite forest with M trees defined by

KM ,n(x, z) := 1

M

M∑
m=1

1z∈An (x,θm ),

Scornet (2016) shows that the KeRF can be rewritten as

f KeRF
M ,n (x,ΘM ) =

∑n
i=1 Yi KM ,n(x, Xi )∑n

i=1 KM ,n(x, Xi )
,

hence the name of kernel RF. In addition, it is shown that

lim
M→∞

KM ,n(x, z) := Kn(x, z),

where Kn(x, z) = Pθ [z ∈ An(x,θ)] which can be seen as the empirical probability for x and z to be in
the same cell w.r.t. a tree built according to θ. Consequently, for all x ∈ [0,1]d , the infinite KeRF reads
as

f KeRF
∞,n (x) =

∑n
i=1 Yi Kn(x, Xi )∑n

i=1 Kn(x, Xi )
.

Note that the mean interpolation regime is met for centered trees, and therefore for KeRF, as soon
as kn ≥ log2 n.
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Theorem 2.5. Assume that f ⋆ is Lipschitz continuous and that the additive noise ε is a centered Gaus-
sian variable with a finite variance σ2. Then, the risk of the infinite centered KeRF of depth kn =
⌊log2(n)⌋ verifies, for all n ≥ 2,

R( f KeRF
∞,n ) ≤Cd log(n)−(d−11)/6,

with Cd > 0 a constant depending on σ,d ,∥ f ⋆∥∞.

If a “mean" overfitting regime is benign for the consistency of KeRF, it seems to be nonetheless
malignant for the convergence rate.

2.3.5 RF & exact interpolation

Definition of AdaCRF Since consistency has been analyzed so far in the mean interpolation regime,
we introduce a new adaptive tree which reaches the strict interpolation regime. This so-called adap-
tive centered tree is a modified version of a centered tree, built by taking into account the positions of
the Xi ’s, and thereby reduces the number of empty leaves. It is recursively grown:

1. (splitting direction) at each node, a feature is uniformly chosen among the set of all separable d
features (a feature is separable if cutting this feature produces two non-empty cells).

Note that if there are more than one point in the current node and none of the feature sepa-
rates them, the splitting direction is uniformly chosen among all the separable features of the
previous cut.

2. (split) the split is made in the middle of the current node along the chosen feature.

3. (stop) The construction stops when all leaves contain 0 or 1 observation.

The Adaptive Centered RF (AdaCRF) results from a specific aggregation of such trees: for a given point
x, the final prediction of the RF is given by averaging along all the trees for which x falls into a non-
empty leaf.

Interpolation

Lemma 2.6 (Depth of an adaptive centered tree). For all α ∈ [0,1),

kn(X ) ∈ [log(n)± log1−α(n)] −−−−→
n→∞ 1.

Lemma 2.6 states that the asymptotic behavior of kn(X ) is equivalent to logn up to a negligible
factor. The log(n) equivalent matches the condition for the mean interpolation regime in the case of
CRF. Therefore, while AdaCRF has a depth of the same order as that of a classical CRF, its adaptivity
nature ensures its interpolation.

Interpolation volume We start by studying the interpolation area of the RF.

Definition 2.7. The interpolation area is the subspace of [0,1]d where the prediction of the forest de-
pends on one training point only. For a given forest mM ,n(.,ΘM ), the interpolation area is denoted by

A (mM ,n(.,ΘM )) =
{

x ∈ [0,1]d ,∃!Xi ∈Dn , Xi ∈
M⋂

m=1
An(x,θm)

}
.
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Note that the partition of the RF consists in the intersection of the tree partitions.
The interpolation zone heavily depends on both the geometry of the training points Xi ’s and the

construction of the trees. Analyzing the interpolation area for a finite AdaCRF turns out to be quite a
challenging task. Therefore, we focus our study on the core interpolation area Ami n written as

Ami n = ⋂
M∈N,ΘM

A ( fM ,n(.,ΘM )).

The area Ami n is nothing but the intersection of the interpolation zones of all possible forests, or
equivalently of a forest containing all the possible trees (and therefore all possible cuts). As an example
note that in the case of centered trees, every cut may occur with a positive probability. Therefore, Ami n

matches the volume of the interpolation area of an infinite centered AdaCRF.

Proposition 2.8. For all n ≥ 2, for all d ≥ 2, consider an infinite AdaCRF f AdaCRF∞,n . Then,

EDn

[
µ(Ami n)

]≤ (
2

log2

)d (1−2−n)d

nd−1
.

This highlights the predominant self-averaging property of such forest architectures, and hence
underpins the idea of good capabilities of AdaCRF in interpolation regimes apart from the empty cells.
As we prove in the next section, the exact interpolation regime still produces too many empty cells that
hinder the consistency property of AdaCRF.

Non-consistency

Proposition 2.9. When E
[

f ⋆(X )2
]> 0, the infinite AdaCRF f AdaCRF∞,n is inconsistent in an exact interpo-

lation regime (grown til pure leaves).

The adaptiveness of AdaCRF is not sufficient to ensure consistency while reaching exact interpo-
lation: it produces too many empty cells. In order to maintain both interpolation and consistency
properties, it seems necessary to chose the threshold to split over between two points (for instance in
the case of Breiman RF or Median RF) which produces a forest without empty leaves.

2.3.6 Breiman’s forest

The widely-used Breiman RF is composed of several trees, built with CART methodology, each one
trained on bootstrap samples, and for which the successive splitting directions and thresholds are
chosen at each step (among a random subset of directions) in order to minimize the CART criterion
(empirical variance for instance). Breiman forests are among the state-of-the-art ensemble methods
in terms of predictive performance even if their adaptivity to the data remains a real hurdle to their
theoretical analysis.

Proposition 2.10. Consider an infinite Breiman forest constructed without bootstrap. Suppose that for
a given configuration of the training data, all cuts have a probability strictly greater than 0 to appear.
Then, the volume of the minimal interpolation zone verifies

E
[
µ(Ami n)

]≤ 1

nd−1

(
1−2−n)d .

2.3.7 Conclusion

In particular, we show that simple models such as the vanilla CRF can still reach consistency within the
mean interpolation regime if the aggregation rule does not take the empty cells into account. However,
preserving both exact interpolation and consistency comes at the cost of a greater adaptivity of the RF.
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