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So do I gather strength and hope anew;
For well I know thy patient love perceives
Not what I did, but what I strove to do,–
And though the full, ripe ears be sadly few,
Thou wilt accept my sheaves.

Bringing Our Sheaves with Us (1858)
by Elizabeth Chase Allen
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CHAPTER 1

Introduction

Symplectic topology can be traced back to Poincaré’s last geometric theorem (see
[Poi12]) stated in 1912 and proved by Birkhoff in 1913 (see [Bir13]). This states

THEOREM 1.1. (Poincaré-Birkhoff) Let A be the annulus S1 × [0,1] and ϕ : A −→ A

a continuous area-preserving map rotating the two boundary curves in opposite direc-
tions. Then ϕ has at least two distinct fixed points.

We first explain the meaning of "rotating the two boundary curves in opposite
directions”. Indeed let π : R× [0,1] −→ S1 × [0,1] be the standard covering, induced
by the covering of S1 by R. Then π ◦ϕ : R× [0,1] −→ S1 × [0,1] has a lift to a map
ϕ̃ : R× [0,1] −→ R× [0,1] since R× [0,1] is simply connected. Then the rotating con-
ditions says that for i ∈ {0,1}, ϕ̃(t , i ) = ( fi (t ), i ) where f0(t ) < t < f1(t ). Note that the
proof of the theorem shows that there are at least two fixed points for ϕ̃ having differ-
ent projections on the annulus. One can use this to prove that ϕ has infinitely many
periodic points on the annulus. Note that both assumptions - area preservation or op-
posite rotation - are necessary. Indeed, if we do not assume area preservation, then the
map (t ,u) 7→ ( fu(t ), v(u)) where f0(t ) < t < f1(t ) and v(u) >U for u ∈]0,1[ has no fixed
points, while if we drop the opposite rotation condition the map (t ,u) 7→ (t + 1

2 ) is area
preserving with no fixed points.

What is the right generalization of this theorem to higher dimensions ? The obvi-
ous answer : replace area preserving by volume preserving is (un)fortunately wrong.
Indeed, this question was open for more than 50 years, until Arnold ([Arn65]), in the
russian edition of the complete works of Poincaré, proposed an extension that we now
partlially describe. First we have to define what is the extension of "area preserving".
Let H(t , q, p) be a smooth function of (t , q, p) ∈ [0,1]×Rn ×Rn) and consider the differ-
ential equation

q̇ j = ∂H

∂q j
(t , q(t ), p(t ) , ṗ j =− ∂H

∂p j
(t , q(t ), p(t ))

7
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FIGURE 1. A map of the annulus "rotating the two boundary curves in
opposite directions” and its fixed points

We call the mapϕ=ϕ1 a Hamiltonian map. A Hamiltonian map preserves the volume,
but more than that, it preserves the symplectic form

∑n
j=1 d p j ∧d q j , a fact more or less

known to Lagrange (see [Lag11]) and stated in modern form by Poincaré in [Poi90],
chapter II: “Théorie des invariants intégraux” (but the term “symplectic” had only ap-
peared in Hermann Weyl’s 1939 book [Wey39]). In other words, and as explained by
Lagrange, the sum of the projections of the algebraic areas of a surface is preserved by
the flow. Note that if H(t , q, p) is unchanged when we replace q j by q j+1 and p j by
p j+1, we obtain a map defined on the torus T 2n = R2n/Z2n , again called a Hamilton-
ian map. We may now state the conjecture due to Arnold and proved by Conley and
Zehnder in 1983 (see [CZ83])

THEOREM 1.2 (Arnold conjecture/Conley-Zehnder’s theorem). Any Hamiltonian
map of T 2n has at least 2n +1 fixed points.

There are generalization of the conjecture in various form as we shall see in the
lectures. But this together with Gromov’s introduction of holomorphic curves (see
[Gro85]) and then Floer’s invention of Floer Homology (see [Flo88a; Flo89]) was the
starting point of a new branch of mathematics: symplectic topology.

Why are fixed points or periodic points so important ? According to Poincaré: “Ce
qui nous rend ces solutions périodiques si précieuses, c’est qu’elles sont, pour ainsi
dire, la seule brèche par où nous puissions essayer de pénétrer dans une place jusqu’ici
réputée inabordable” ([Poi92], chap. 36)1.

As we shall see, time proved his statement was even more appropriate than he
thought. Indeed, the study of such periodic orbits ushered the way to symplectic

1What makes periodic orbits so valuable is that they are the only breach, so to speak, through which
we can try to enter a fortress up to now deemed unbreachable. (Translated by the author)
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topology, aiming to understand the topological properties of symplectic maps which
are not shared by mere volume preserving ones. Whether such properties exist at all
was a long standing conjecture- related to the Arnold conjectur-, the so-called “Rigid-
ity/Flexibility" alternative of Gromov. This claims that in higher dimensions, either
symplectic (or Hamiltonian) maps cannot be distinguished topologically from the vol-
ume preserving ones (i.e. any volume preserving map can be approximated in the C 0

topology by symplectic ones), or the only volume preserving maps that can be arbitrar-
ily approximated are the symplectic ones. It turns out that the latter is true as Gromov’s
non-squeezing theorem shows

THEOREM 1.3 (Gromov’s non-squeezing [Gro85]). Let D2k (r ) be the ball of radius r
in R2k . Then there is a symplectic embedding of the symplectic ball B 2n(r ) in B 2(r ′)×
R2n−2 if and only if r ≤ r ′.

We leave to the reader to prove that there is always a volume preserving embed-
ding of B 2n(r ) into B 2(r ′)×R2n−2 no matter the values of r,r ′. As a result, the Gromov
alternative is decided as follows

THEOREM 1.4. If a diffeomorphism is the C 0-limit if symplectic diffeomorphisms,
then the diffeomorphism is itself symplectic.

This answers a question but opens a new one:

Question 1.5. Describe the homeomorphims that are C 0-limits of symplectic dif-
feomorphisms.

In dimension two these are the are preserving homeomorphism, but not much is
known in higher dimensions (see [BHS21; HLS15], etc..), where the study of such maps
goes under the name of C 0-symplectic topology.

Our goal in these notes will be to reach a proof of the Arnold conjecture for tori. We
shall however explore different aspects of symplectic geometry and its many connec-
tions going from dynamical systems, to PDE and even number theory.

We shall not use the tools of Gromov and Floer, but instead use the so called “Gen-
erating function" approach extending the original approach of Conley and Zehnder
and developed by Chaperon, Laudenbach, Sikorav and the author (see [Cha84a][LS85]
[Sik87][Vit92]). Its main advantage is that, provided we restrict ourselves to the class
of cotangent bundles, this approach is much simpler technically and yields essentially
the same results (with very few exceptions) than the more technically involved ”holo-
morphic curves techniques". Moreover proofs using generating functions can often be
translated in a more general setting, in proofs using Floer theory.

Another justification t restricting ourselves to cotangent bundles, is that they are
privileged objects in symplectic geometry, since they appear as

(1) The phase space of classical mechanics and more generally for variational
problems in one dimension

(2) The space where Hamilton-Jacobi equations live
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(3) Where the singular supports of sheaves (see [KS90]) or of Fourier integral op-
erators (see [Hör71]) live

Moreover it is then only a technical step (but a steep one, see [AD14]) to use Floer
homology to extend the results obtained in cotangent bundles to general manifolds.
We shall conclude with an example in which symplectic topology shed light on two-
dimensional questions, that is also a great success for symplectic topology2 by men-
tioning the recent proof of an old conjecture (see [Fat80]) by D. Cristofaro-Gardiner, V.
Humilière and S. Seyfaddini

THEOREM 1.6. ([CHS20] The group of compact supported area preserving homeo-
morphisms of the 2-disc is not simple.

2Also as fitting to our search for periodic orbits by returning to the two dimensional case



CHAPTER 2

Symplectic linear algebra

Money, mechanization, algebra. The three monsters of
contemporary civilization.

Simone Weil, Gravity and Grace, 1947

1. Basic facts

Even though there is a point in studying infinite dimensional symplectic spaces,
and in particular Hilbert symplectic spaces (see [Kuk95; Bus19]) we shall in this book
restrict ourselves, unless otherwise stated, to finite dimensional vector spaces over the
fieldK. We shall also assume the fieldK is of characteristic different from 2.

DEFINITION 2.1. Let V be aK-vector space. A symplectic form on V is a bilinear form
with values inK, satisfying:

(1) It is skew-symmetric:

∀x, y ∈V , ω(x, y) =−ω(y, x)

(2) It is non-degenerate: ∀x ∈V \ {0},∃y ∈V such that ω(x, y) ̸= 0.

REMARKS 2.2.

(1) Sinceω(x, x) =−ω(x, x) and 2 is invertible inKwe have for all x in V ,ω(x, x) =
0. If ω(x, x) = 0 we say that ω is alternating . If ω is alternating, expanding
ω(x + y, x + y) = 0 we obtain that ω is skew-symmetric. When K has charac-
teristic 2, the notion of symmetric and skew-symmetric coincide (see Exer-
cise 35 for more on this) For example on Z/2Z the form (x, y) 7→ x y is (skew)-
symmetric, but not alternating. .

(2) The second condition can be rephrased as requiring that the ω-duality

ω♯ : V −→V ∗

given by x 7→ω(x,•) is an isomorphism. This is often considered an “isotropy”
condition1, i.e. there is no preferred direction. Indeed, vectors in the kernel of
the ω-duality map, denoted by Ker(ω) are special (we shall see a more precise
statement in Proposition 2.19, (3)).

1Not to be confused with isotropy in the sense of Definition 2.7.

11
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EXAMPLES 2.3.

(1) V =K2 with the symplectic form σ1((x, y), (x ′, y ′)) = x y ′−x ′y .
(2) If (V1,ω1), (V2,ω2) are symplectic spaces, V = V1 ⊕V2, ω = ω1 ⊕ω2 defined by

ω(v1 +v2, v ′
1 +v ′

2) =ω1(v1, v ′
1)+ω2(v2, v ′

2) for vi , v ′
i ∈Vi is also symplectic. It is

called the symplectic direct sum of the (Vi ,ωi ). In particular, combining the
above example, we get a symplectic structure σn =σ1 ⊕ ....⊕σ1 onK2n .

(3) If (V ,ω) is a symplectic space, then (V ,−ω) is a symplectic space.
(4) If L is a vector space, and L∗ its dual space, V = L⊕L∗ endowed with

σL((x, x∗), (y, y∗)) = x∗(y)− y∗(x)

is symplectic. Taking L = K we recover the symplectic form −σ1 on K2 and
taking L =Kn we get (K2n ,−σn). If (e1, ...,en) is the canonical basis of Kn then
( f1, ..., fn) corresponds to the dual basis in (Kn)∗ and we can write, using the
tensor notationσn =∑n

j=1 e∗
j ∧ f ∗

j , where (e∗
1 , ..,e∗

n , f ∗
1 , .., f ∗

n ) is the dual canon-

ical basis ofK2n .
(5) Let ω be a skew-symmetric form on W . Then ω induces a symplectic form on

W /Ker(ω), denoted ω.

Note that for the above standard spaces we often omit the symplectic form. For
example K2n means (K2n ,σn), L ⊕ L∗ means (L ⊕ L∗,σL). We shall use the notation

V1
ω⊕V2 to denote (V1,ω1)⊕ (V2,ω2) and V 1 to denote (V1,−ω1).,

REMARK 2.4. Some people and books use different sign conventions, not necessar-
ily coherent. Note that with the standard identification of K2 to K⊕K∗ the symplectic
form σ1 corresponds to −σK. See Section 6 for a detailed discussion.

DEFINITION 2.5. For a general skew-symmetric form ω on a vector space, V , and W
a vector subspace of V we define

W ω = {x ∈V | ∀y ∈W ω(x, y) = 0}

and we denote by Ker(ω) the subspace V ω. The space W ω is called the ω-orthogonal2 of
W .

For ω a symplectic form, the second condition implies that Ker(ω) reduces to zero.
Notice that the skew-symmetric formω always induces a symplectic form on V /Ker(ω),
so we can often reduce questions about general skew-symmetric forms to questions
about symplectic forms. When (V ,ω) is symplectic, Grassmann’s formula applied to
the surjective duality mapω♯F : V → F∗ given byω♯F (v) =ω(v,•), implies that dim(Fω) =
dim(Ker(ω♯F )) = codim(F ) = dim(V )− dim(F ) proving the first statement of the next
Proposition. The proof of the following formulas in the Proposition is classical and left
to the reader (recall that dim(F ) <+∞).

2Or just the orthogonal if ω is implicit and there is no scalar product floating around that could fuel
confusion.
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PROPOSITION 2.6. Let F,G be subspaces of a symplectic space (V ,ω). Then we have

(1) dim(Fω) = codim(F )
(2) (Fω)ω = F
(3) (F +G)ω = Fω∩Gω

(4) (F ∩G)ω = Fω+Gω

In a symplectic vector space we have the following distinguished type of linear sub-
spaces:

DEFINITION 2.7. A subspace F of (V ,ω) is

• isotropic if F ⊂ Fω (⇐⇒ω|F = 0 or Ker(ω|F ) = F )
• coisotropic if Fω ⊂ F
• Lagrangian if Fω = F .

• symplectic if ker(ω|F ) = F ∩Fω = {0} or equivalently F
ω⊕Fω =V .

REMARK 2.8. Clearly the ω-orthogonal of a symplectic subspace is symplectic. The
ω-orthogonal of an isotropic (resp. coisotropic) subspace is coisotropic (resp. isotropic)
and this allows us to reduce many situations to one of this two cases (usually the
isotropic case is easier). We also notice that for an isotropic (resp. coisotropic) space F
we have 2dim(F ) ≤ dim(V ) (resp. 2dim(F ) ≥ dim(V )) and for a Lagrangian 2dim(F ) =
dim(V ). Thus to check a space is Lagrangian it is enough to verify that it is isotropic
and satisfies 2dim(L) = dim(V ).

This last remark implies that Lagrangian can only exist if dim(V ) is even (we shall
soon see that this is always the case).

EXAMPLE 2.9. (1) In L⊕L∗, the spaces L⊕0,0⊕L∗ are Lagrangian.
(2) Let N be a subspace of L. Then N ⊕0 is isotropic, N ⊕L∗ is coisotropic,

ν∗N = N ⊕N⊥ = {(x, p) | x ∈ N , p|N = 0} =
is Lagrangian where N⊥ denotes the set of p ∈ L∗ vanishing on N , then (N ⊕
L∗)ω = 0⊕N⊥ and (N ⊕0)ω =V ⊕N⊥.

(3) If M is a complement of N , then N ⊕M⊥ is symplectic. It is trivially isomor-
phic to N ⊕N∗ since the restriction of the duality map M⊥ −→ N∗ is an iso-
morphism.

EXERCISES 2.10. (1) Let S be a symplectic subspace of the symplectic space
(V ,ω). Prove that if F is isotropic (resp. coisotropic) then S ∩ F is isotropic
(resp. coisotropic) in (S,ω|S).

(2) Let S be a subspace of the symplectic vector space (V ,ω). If S +Sω =V then S
is symplectic.

We now define the morphisms between symplectic spaces
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DEFINITION 2.11. A mapϕ between the symplectic vector spaces (V1,ω1) and (V2,ω2)
is a symplectic map if ϕ∗(ω2) =ω1 that is

∀x, y ∈V1,ω2(ϕ(x),ϕ(y)) =ω1(x, y)

It is a symplectomorphism if and only if it is bijective- its inverse is then necessarily
symplectic. Finally we denote by Sp(V ,ω) the group of symplectic automorphisms of the
symplectic space (V ,ω).

REMARK 2.12. A symplectic map is necessarily injective, since an element x in
ker(ϕ) will also belong to ker(ϕ∗(ω2)) = ker(ω1).

EXAMPLE 2.13. (1) If ϕ : L1 −→ L2 is an isomophism, then ϕ⊕ (ϕ∗)−1 is a sym-
plectomorphism from L1 ⊕L∗

1 to L2 ⊕L∗
2 .

(2) The mapϕ : V1 −→V2 is symplectic if and only if its graph Γϕ ⊂V 1
ω⊕V2 defined

as Γϕ = {(x,ϕ(x)) | x ∈V1} is isotropic. It is a symplectomorphism if and only if
Γϕ is Lagrangian.

A useful tool in the sequel will be the following decomposition theorem

THEOREM 2.14 (Decomposition theorem). Let W be a subspace of the symplectic
space (V ,ω) and let K = (W ∩W ω) = Ker(ω|W ). Then for any complement S of K in W , S
is symplectic and we have a decomposition

W = K ⊕S

Moreover there is an isotropic subspace K ′ ⊂ Sω uniquely determined by S such that
(K ⊕K ′,ωK ′⊕K ) is symplectic, ω-orthogonal to S and symplectomorphic to (K ⊕K ∗,σK )
through the map (x, y) 7→ (x,ω(y,•)). Finally there is a symplectic space T , uniquely
defined by S, such that V can be decomposed as

V = T
ω⊕ (K ′⊕K )

ω⊕S = T ⊕K ′⊕W

We shall first prove the

LEMMA 2.15. Let C be a coisotropic (resp. I an isotropic ) subspace in the symplectic
space (V ,ω). Then there exists an isotropic subspace I (resp. a coisotropic subspace C )
such that C ⊕ I =V .

PROOF. Let I be a maximal isotropic subspace such that C ∩ I = {0} so by duality
Cω+ Iω =V . Assume C ⊕ I ̸=V and consider an element x = u+c in V \ (C ⊕ I ) = (Cω+
Iω) \ (C ⊕ I ), with u ∈ Iω,c ∈Cω ⊂C . Then u ∈ Iω \ (C ⊕ I ) otherwise, since c ∈C ⊂C ⊕ I
we would have x = u+c ∈C ⊕ I , so I ⊕Ku is isotropic and (I ⊕Ku)∩C = {0} since y ∈C
and y = v + t ·u with v ∈ I implies tu = y − v ∈ C ⊕ I , so t = 0, y = 0, v = 0. This would
contradict the maximality of I . □

PROOF OF THE PROPOSITION. Indeed let S be any complement of K in W . Then
(S,ω|S) ≃ (W /K ,ω) which is symplectic, so S is symplectic and Sω∩S = {0}.
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Now Sω is a complement of S in V , is also symplectic and Kω∩Sω is coisotropic in
Sω, because the orthogonal of Kω∩Sω in Sω is (K +S)∩Sω = W ∩Sω = K is isotropic.
Let K ′ be given by the above Lemma applied to the coisotropic Kω∩Sω in Sω. Then K ′
is isotropic and K ′⊕(Kω∩Sω) = Sω. Now clearly K ,K ′ are contained in Sω and the map
ϕ from (K ⊕K ′,ωK⊕K ′) to (K ⊕K ∗,σK ) given by ϕ(x, x ′) = (x,ω(x ′,•)) is

• symplectic, since for all (x, x ′), (y, y ′) ∈ K ×K ′ we have

σK ((x,ω(x ′,•), (y,ω(y ′,•))) =ω(x ′, y)−ω(y ′, x) =ω(x +x ′, y + y ′)

using that ω(x, y) =ω(x ′, y ′) = 0 because K ,K ′ are isotropic, .
• onto because the duality map from Sω to K ∗ is onto and vanishes on (Kω∩Sω)

so is onto on its complement, K ′.
Therefore ϕ is a symplectomorphism.

□

LEMMA 2.16. Any symplectic space has even dimension. Let (V1,ω1), (V2,ω2) be two
symplectic spaces. Then there is a symplectic map from (V1,ω1) to (V2,ω2) if and only if
dim(V1) ≤ dim(V2).

PROOF. We argue by induction. Let (V1,ω1) be a symplectic space. Let x, y ∈V1 such
that ω(x1, y1) ̸= 0. Dividing y by ω(x, y) we can assume ω(x1, y1) = 1. Then

V1 = (Kx1 ⊕Ky1)⊕ (Kx1 ⊕Ky1)ω

so dim(V1) = 2+dim[(Kx1 ⊕Ky1)ω] and (Kx1 ⊕Ky1)ω is obviously symplectic. By the
induction assumption it has even dimension, and then so does V1. Now for the sec-
ond statement, we argue again by induction on dim(V1), the Lemma being obvious for
dim(V1) = 0. Let x, y ∈ V1 such that ω(x1, y1) = 1. Similarly choose x2, y2 ∈ V2 such that
ω(x2, y2) = 1. Then

V1 = (Kx1 ⊕Ky1)
ω⊕ (Kx1 ⊕Ky1)ω

and

V2 = (Kx2 ⊕Ky2)
ω⊕ (Kx2 ⊕Ky2)ω

The map ϕ : (Kx1 ⊕Ky1) −→ (Kx2 ⊕Ky2) sending x1 to x2 and y1 to y2 is symplectic,
and by the induction assumption, there is a symplectic mapψ : (Kx1⊕Ky1)ω −→ (Kx2⊕
Ky2)ω. Then ϕ⊕ψ is the required map. A symplectic map is injective, the condition
dim(V1) ≤ dim(V2) is clearly necessary. □

The Lemma is a special case of the next result, which is fundamental in linear sym-
plectic geometry.

THEOREM 2.17 (Witt’s theorem). Let (V1,ω1), (V2,ω2) be symplectic spaces such that
dim(V1) ≤ dim(V2), W1,W2 be subspaces in V1,V2 respectively and ϕ : W1 −→ W2 a lin-
ear isomorphism such that ϕ∗(ω2|W2 ) = ω1|W1 . Then ϕ extends to a symplectic map
ϕ̃ : (V1,ω1),−→ (V2,ω2).
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PROOF. Let us write down the decomposition from Proposition 2.14, W1 = K1 ⊕S1.
Since ϕ∗(ω|W2 ) =ω|W1 , ϕ must preserve kernels, we have ϕ(K1) = K2 = ker(ω|W2 . Since
we may choose for S2 any complement of K2, we may choose S2 =ϕ(S1). Then we get
from the decomposition theorem that K ′

1,K ′
2 which are identified by duality to K ∗

1 ,K ∗
2

and we may define ϕ̃ : K ′
1 −→ K ′

2 as the map corresponding to (ϕ∗
K1

)−1 : K ∗
1 −→ K ∗

2 . It

is easy to check that ϕ|K1 ⊕ (ϕ|K1 )∗)−1 : K1 ⊕K ∗
1 −→ K2 ⊕K ∗

2 yields a symplectic map

from X1 = (K ′
1 ⊕K1)

ω⊕S1 to X2 = (K ′
2 ⊕K2)

ω⊕S2 extending ϕ. Since (X1,ω1) and (X2,ω2)

are symplectic, we have (V1,ω1) = (Xω1
1 ,ω1)

ω⊕ (X1,ω1), (V2,ω2) = (Xω2
2 ,ω2)

ω⊕ (X2,ω2),
we have a symplectomorphism from (X1,ω1) to (X2,ω2), and according to Lemma 2.16
a symplectic map from (Xω1

1 ,ω1) to (Xω2
2 ,ω2), since dim(Xω1

1 ) = dim(V1)−dim(X1) ≤
dim(V2)−dim(X2). Taking theω-orthogonal direct sum of these maps we obtain a sym-
plectic map from (V1,ω1) to (V2,ω2) extending ϕ. □

EXERCISE 2.18. Use exterior calculus to prove that a symplectic map has determi-
nant 1.

Let us state some easy consequences of the above results

PROPOSITION 2.19.

(1) If (V1,ω1), (V2,ω2) are symplectic vector spaces of the same dimension, they are
symplectomorphic (and therefore symplectomorphic to (K2n ,σn) or (L⊕L∗,σL)
where 2n = dim(V1) = 2dim(L)).

(2) Any isotropic subspace is contained in a Lagrangian subspace and any coisotropic
subspace contains a Lagrangian subspace.

(3) If (V1,ω1), (V2,ω2) are symplectic vector spaces with dim(V1) ≤ dim(V2)
• if x j ∈V j \ {0} there is a symplectic map from V1 to V2 sending x1 to x2

• If the I j are isotropic subspaces in V j and dim(I1) ≤ dim(I2), then there is a
symplectic map sending I1 in I2

• if Ci are coisotropic subspaces in Vi , with dim(V1) ≤ dim(V2) and dim(C1)−
codim(C1) ≤ dim(C2)−codim(C2) then there is a symplectic map from V1

to V2 sending C1 to C2.
• if dim(V1) = dim(V2) and Li are Lagrangian subspaces in Vi , then there is

a symplectomorphism from V1 to V2 sending L1 to L2.

PROOF. Statement (1) follows from Lemma 2.16, since for dim(V1) = dim(V2), a
symplectic map is an isomorphism. For (2), we may assume, according to (1) that we
are in (L ⊕L∗,σL). Let I be isotropic and let J ⊂ L be a subspace with dim(J ) = dim(I )
(this is possible since dim(I ) ≤ dim(L), see Remark 2.8). An isomorphism from J to
I pulls-back ω|I to ω|J , since both vanish, hence by Witt’s Theorem this map can be
extended to a symplectomorphism from L ⊕L∗ to itself. Then the image of L ⊕ 0 is a
Lagrangian containing I . For (3) the first statement is just Witt’s theorem applied to
the isomorphismϕ fromKx1 toKx2 sending x1 to x2. The second statement to an em-
bedding of I1 to I2, the pull-back condition being obvious since the ωi vanish on Ii .
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For the third statement set dim(Vi ) = 2ni ,dim(Ci ) = ni + ci so that codim(Ci ) = ni − ci .
We assume n1 ≤ n2 and c1 ≤ c2. Then Ci decomposes as Cωi

i ⊕ Si , and dim(Si ) = 2ci

so we have a symplectic map ϕ from S1 to S2. Set S2 = ϕ(S1)
ω⊕T2 where T2 is sym-

plectic of dimension 2(c2 − c − 1). Let I2 be a Lagrangian subspace in T2. Then the
map Cω1

1 can be sent by an isomorphism to Cω2
2 ⊕ I2 since both are isotropic and

n1 − c1 ≤ n2 − c2 + (c2 − c1) = n2 − c1. Since ϕ(S1) is orthognal to Cω2
2 ⊕ I2, ϕ extends

to a symplectic map from Cω1
1 ⊕ S1 to Cω2

2 ⊕ϕ(S1)⊕ I2, hence, by Witt’s theorem to a
symplectic map from V1 to V2.

The last statement is obtained by applying Witt’s theorem to any isomorphism
L1 −→ L2. In both cases the pull-back condition is obvious since ωi vanishes on all
these spaces. Its symplectic extension ϕ̃ : V1 −→V2 is then the required symplectomor-
phism.

□

EXERCISE 2.20. Prove that if there is a symplectic map from V1 to V2 sending the
coisotropic C1 to the coisotropic C2 we must have dim(V1) ≤ dim(V2) and dim(C1)−
codim(C1) ≤ dim(C2)−codim(C2).

Let us remind the reader that ifα,β are linear forms thenα∧β is the skew-symmetric
form defined by α∧β(u, v) =α(u)β(v)−α(v)β(u).

COROLLARY 2.21. Any vector space endowed with a skew-symmetric form ω has the
decomposition W = S ⊕K with (S,ω|S) symplectic and K = Ker(ω). The rank of ω is by
definition the dimension of S. Then we can write

ω=
r∑

j=1
α j ∧β j

where the α1, ...αr ,β1, ...βr are linearly independent one forms.

PROOF. The proof is identical to that of the first part of Proposition 2.14 (there was
no need for an ambient symplectic space): if S is a complement of K , then (W /K ,ω) ≃
(S,ω|S). This shows that the decomposition holds . According to Proposition 2.19, (S,ω)
is then isomorphic to (K2r ,σr ), and if the α̃ j , β̃ j are the images of the canonical basis of
K2r , e∗

j , f ∗
j , we get thatω|S =∑r

j=1 α̃ j ∧β̃ j . Denoting byα j ,β j the extension of the α̃ j β̃ j

vanishing on K , we get the above formula. The linear independence ofα1, ...αr ,β1, ...βr

follows from the linear independence of the e∗
1 , ...,e∗

r , f ∗
1 , ..., f ∗

r . □

COROLLARY 2.22. A skew-symmetric form, ω, is symplectic if and only if rank(ω) =
dim(E). IfK has characteristic zero, then a skew-symmetric form on a vector space E has
rank 2r if and only if ωr ̸= 0 and ωr+1 = 0.

PROOF. The first claim is obvious since thenω is isomorphic toσn It is is enough to
check this for ω = ∑r

j=1α j ∧β j where the α1, ....,αr ,β1, ...βr are linearly independent.

But ωr = (r !)α1 ∧β1 ∧ ...∧αrβr and ωr+1 = 0.
□
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DEFINITION 2.23. We denote by Λ(V ,ω) the Lagrangian Grassmannian, that is the
set of Lagrange subspaces in (V ,ω).

Since any symplectic vector space is isomorphic to (K2n ,σn), the group of sym-
plectic automorphisms of (V ,ω), Sp(V ,ω) is isomorphic to Sp(2n) = Sp(K2n ,σn) and
the Lagrangian Grassmannian is isomorphic to Λ(n) =Λ(K2n ,σn).

We now give a better description of the set of Lagrangian subspaces of (V ,ω).

PROPOSITION 2.24. Let L be a Lagrangian subspace in (V ,ω). Recall that two vector
subspaces V ,W in E are said to be transverse if V +W = E.

(1) The space

ΛL(V ,ω) = {
T | T is Lagrangian and T ∩L = {0}

}
is isomorphic to the space of quadratic forms on L∗. When K = R, ΛL(V ,ω) is
contractible, and Λ(V ,ω) is a smooth manifold of dimension n(n+1)

2 .
(2) The action of Sp(V ,ω) on the set of pairs of transverse Lagrangians is transitive.

Moreover given L1,L2 and L′
1,L′

2 two pairs of transverse Lagrangians and an
isomorphism ϕ : L1 −→ L′

1 there is a unique symplectic map extending ϕ and
sending L2 to L′

2.
(3) The set of Lagrangians transverse to both L1 and L2, where L1,L2 are a fixed pair

of transverse Lagrangians in V , can be identified to the set of non-degenerate
quadratic forms on L∗. If K = R this space has exactly n +1 connected compo-
nents.

PROOF. First notice that V is symplectomorphic to L⊕L∗ with the symplectic form
σL and that L ⊕ 0 is a Lagrangian subspace. According to Proposition 2.19 there is a
symplectic map ψ : V −→ L ⊕L∗ such that ψ(L) = L ⊕0, so we can work in L ⊕L∗ and
identify L with L⊕0.

Let T be a Lagrangian in L⊕L∗ with T ∩L = {0}. Then T is the graph of a linear map
AT : L∗ → L, more precisely

T = {(AT y∗, y∗)|y∗ ∈ L∗}.

The subspace T is Lagrangian if and only if

σ((AT y∗
1 , y∗

1 ), (AT y∗
2 , y∗

2 )) = 0, for all y∗
1 , y∗

2 ∈ L∗

i.e. if and only if
〈y∗

1 , AT y∗
2 〉 = 〈y∗

2 , AT y∗
1 〉

that is if 〈·, AT ·〉 is a bilinear symmetric form on L∗. But bilinear forms are in 1-1 cor-
respondence with quadratic forms3. The second part of the statement immediately
follows from the fact that the set of quadratic forms on an n-dimensional vector space
is a vector space of dimension n(n+1)

2 , and the fact that to any Lagrangian L0 we may as-
sociate a transverse Lagrangian L′

0, and L0 is contained in the open set of Lagrangians

3We again need thatK has characteristic ̸= 2.
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transverse to L′
0 (Well we still have to check the change of charts maps are smooth, this

is left as an exercise). This proves 1.
To prove (2) let (L1,L2) and (L′

1,L′
2) be two pairs of transverse Lagrangians. By the

transitivity of Sp(V ,ω) on Λ(V ,ω) we may assume V = (L⊕L∗,σL) and L1 = L′
1 = L. It is

enough to findϕ ∈ Sp(V ,ω) such thatϕ|L = IdL ,ϕ(L2) = L∗. The map x+ y 7→ (x,ω(y,•))
where x ∈ L, y ∈ L∗ is the required map. Uniqueness follows from the fact that the only
symplectic map (x, x∗) 7→ (x,T x∗) is obtained for T = id.

Finally for (3), we may assume by (2) that two of three Lagrangians are L ⊕ 0 and
0⊕L∗ and the third T being transverse to L, is the graph of the quadratic form AR on
L∗. Then T ∩L∗ can be identified to the set of y∗ ∈ L∗ such that AT y∗ = 0, that is the
kernel of AT . Thus T is transverse to L∗ if and only if AT is non-degenerate. But the
set of non-degenerate quadratic form has n+1 connected components defined by the
index (that is the number of negative eigenvalues). □

REMARKS 2.25. (1) We refer to Corollary 2.46 for a more precise statement of
(3).

(2) We shall see in Exercise 13 that the quadratic forms associated to two pairs of
triples of Lagrangians are conjugate if and only if the triple of Lagrangians are
in the same Sp(V ,ω)-orbit.

EXERCISES 2.26.

(1) Prove that if L0,L1 are transverse Lagrangian subspaces in (V ,ω), then ω in-
duces a well-defined isomorphism L1 −→ (L0)∗ through the map ω♯ : x 7→
ω(x,•) and this extends to a symplectic map from (V ,ω) to (L0⊕L∗

0 ,σL) sending
L0 to itself and L1 to L∗

0 .
(2) Compute the dimension of the space of Lagrangians containing a given isotropic

subspace, I . Hint: show that it is the space of Lagrangians in Iω/I .
(3) Prove that Sp(2n) acts transitively on the set of isotropic subspaces (resp.

coisotropic subspaces) of given dimension.

2. Symplectic reduction

Let (V ,ω) be a symplectic vector space and C a coisotropic subspace. Thenω natu-
rally induces a symplectic form on C /Cω. We denote it by ωC or simply ω if there is no
ambiguity.

DEFINITION 2.27. The space (C /Cω,ωC ) is a symplectic vector space of dimension
2dim(C )−dim(V ). It is called the symplectic reduction of V by C . Let X be a vector space
such that

(1) X +C =V or equivalently Xω∩Cω = {0}
(2) X ∩Cω = {0}

Then XC = X ∩C /Cω is called the symplectic reduction of X by C
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The dimension count is left to the reader. Note that it is often convenient to write
dim(C ) = 1

2 dim(V )+ c = n + c where dim(V ) = 2n. Then C /Cω has dimension 2c.
Symplectic reduction is an important operation in symplectic geometry. We shall

establish some of its basic properties. The main point of symplectic reduction is that
certain maps and submanifolds in V can be "reduced" to (C /Cω,ωC ). We start with

LEMMA 2.28 (Orthogonality commutes with reduction). Let X and C satisfy prop-
erties (1) and (2) of Definition 2.27. Then we have (XC )ωC = (Xω)C .

PROOF. First of all we have an inclusion (Xω)C ⊂ (XC )ωC . Indeed, an element in
(Xω)C is just the projection of an element in Xω∩C , hence is orthogonal to any ele-
ment of X ∩C . But two orthogonal subspaces in C are still orthogonal after projection
on C /Cω. Now dim XC = dim(X )− codim(C ) and we notice that taking orthogonals,
we also have Xω +C = V and Xω ∩Cω = {0}. Now the above argument proves that
dim(Xω)C = dim(Xω)− codim(C ) = codim(X )− codim(C ) = dim(C )−dim(X ). On the
other hand dim(XωC

C ) = dim(C /Cω)−dim(XC )(dim(C )−codim(C ))−(dim(X )−codim(C )) =
dim(C )−dim(X ) hence by dimension count we must have (Xω)C = (XC )ω. □

EXERCISE 2.29. Prove directly that (XC )ωC ⊂ (Xω)C .

The next lemma shows that for some special spaces, only one of the two properties
( 1), ( 2) from Definition 2.27 needs to be checked.

LEMMA 2.30 (Automatic transversality). Let I be isotropic (resp. K be coisotropic), C
be coisotropic in the symplectic vector space (V ,ω). Then I +C = V (resp. K ∩Cω = {0})
implies Iω∩Cω = {0} (resp. K +C =V ). Moroever if I is isotropic (resp. K is coisotropic)
and satisfies the transversality conditions ( 1), ( 2) from Definition 2.27 then so does Iω

(resp. Kω).

PROOF. This is obvious by taking orthogonals, since I +C =V implies I ∩Cω ⊂ Iω∩
Cω = {0} in the isotropic case, and V = Kω+C ⊂ K +C in the coisotropic case. For the
second statement it follows immediately (in the isotropic case) because we just proved
that conditions ( 1), ( 2) are equivalent to I+C =V which obviously implies Iω∩Cω = {0}
which is in turn equivalent to Iω satisfying ( 1), ( 2). The coisotropic case follows by the
same argument. □

From this we may prove

PROPOSITION 2.31. Let I be isotropic, C be coisotropic in (V ,ω) and assume I+C =V .
Then IC = (I ∩C )/Cω is isotropic. Similarly if K is coisotropic and K ∩Cω = {0} then KC

is coisotropic. As a result if L is Lagrangian, so is LC .

PROOF. Indeed, using Lemma 2.28 we have

(IC )ωC = (Iω)C ⊃ IC

so IC is isotropic. The coisotropic case follows from the same argument:

(KC )ωC = (Kω)C ⊂ KC
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so KC is coisotropic. Since a Lagrangian is just a space both isotropic and coisotropic,
the last claim clearly follows. □

EXERCISE 2.32. Let S be a symplectic subspace of (V ,ω). Assume S +C = V and
S ∩Cω = {0}. Is SC symplectic ?

There is a converse operation. Given L ⊂ C /Cω we can construct a Lagrangian
in V as follows. Remember from Lemma 2.15 that a coisotropic space always has an
isotropic complement. For a subspace X of C /Cω by a lift of X we mean a space Y ⊂C
such that the projection of Y on C /Cω is an isomorphism onto X .

PROPOSITION 2.33. Let J be an isotropic complement to C . Then if I is isotropic
in C /Cω, there is a unique lift I J of I to C such that I J ⊕ J is isotropic in V . The same
holds for K coisotropic in C /Cω. In particular if L is Lagrangian in C /Cω then L J ⊕ J is
Lagrangian in V .

PROOF. According to the Decomposition Theorem (Proposition 2.14) we can write
C =Cω⊕S with S, symplectic being any complement of Cω. Let us choose S such that
S ⊂ Jω, by taking S = (J⊕Cω)ω = Jω∩C . Clearly S ⊂C and S∩Cω = Jω∩Cω = {0} because
J ⊕C =V . So S is a complement of Cω and is thus symplectic.

Now since S −→ C /Cω is a symplectic isomorphism, we have a unique lift of I J to
S J . Then I J ⊕ J is isotropic, since I J ⊂ S ⊂ Jω and both J and I J are isotropic. In the
Lagrangian case, we only have to check dimensions.

In the coisotropic case, we just apply the above to KωC , we get an isotropic space
I J ⊕ J and set K = (I J ⊕ J )ω. Then J ⊂ (I J ⊕ I J )ω = IωJ ∩ Jω since J ⊂ Jω and J ⊂ Sω ⊂ IωJ
since I J ⊂ S. So we can write K = K J ⊕ J . □

Note that choosing J determines S as (Jω∩C ). We shall equivalently write I J or IS

for the lift of I to S. We may now describe the reduction on Lagrangians.

PROPOSITION 2.34. Let C be coisotropic and ΛC (V ) be the set of Lagrangians trans-
verse to C . Then the map ΛC (V ) −→ Λ(C /Cω) obtained by symplectic reduction is a
fibration with fibre the product L (LC ,Cω)×ΛCK (K /Kω) where L (LC ,Cω) is an affine
space with underlying vector space the set of linear maps from LC to Cω, K = L +Cω,
CK = (C ∩K )/Kω. ForK=R the fibre is contractible.

PROOF. Let L,L′ have the same reduction. Note that L +C = L′+C =V so L ∩Cω =
L′ ∩Cω = {0}. Our assumption means that (L ∩C ) ⊕Cω = (L′ ∩C ) ⊕Cω, so L′ ∩C is
the graph of a map from L ∩C to Cω. Conversely any such graph yields an isotropic
subspace of C , since for I = L∩C and A : I −→Cω, any two elements x, y ∈ I we have

ω(x + Ax, y + Ay) =ω(x, y)+ω(x,Ly)+ω(Lx, y)+ω(Lx,Ly)

But ω(x, y) vanishes by assumption and since I ⊂ C ∩Cω the terms ω(x,Ly),ω(Lx, y)
and ω(Lx,Ly) vanish. Then the set of L ∩C with fixed reduction is an affine space and
its underlying vector space is the set of linear maps L (LC ,Cω).
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Now if we fix I = L ∩C isotropic, then L is defined by a subspace X in Iω = K such
that L = X ⊕ (L ∩C ) well defined modulo L ∩C = I . So we need only to keep track of
the image of X in Iω/I , that is XK in Λ(K /Kω). Moreover X must satisfy the condition
X ∩C = {0} and since I ⊂ C , this is equivalent to XK ∩CK = {0}. But C ∩K = C ∩ Iω =
C ∩ (L +Cω) = (C ∩L)+Cω = I +Cω = (Iω∩C )ω. As a result CK is Lagrangian, and so
XK ∈ΛCK (K /Kω). It is easy to see that given such a pair (I ,Y ) where I is isotropic such
that I ∩Cω = {0} and Y ∈ ΛCK (K /Kω) wherer K = Iω, and for any lift X of Y to Iω we
have I ⊕X = L is in ΛC (V ), and L does not depend on the choice of the lift X of Y .

The last property follows from the fact that both L (LC ,Cω) and ΛCK (K /Kω) are
contractible, so their fibre product is contractible. □

Finally notice that symplectic reduction is a transitive operation :

PROPOSITION 2.35. Let K ⊂C be two coisotropic spaces. Let us denote by K = K /Cω ⊂
C /Cω Then for any subspace X for which XC and (XC )K are defined, we have that XK is
defined and

XK = (XC )K

PROOF. Note that K is not the reduction of K since K does not satisfy the transver-
sality condition. By assumption XC satisfies the transversality assumption for K C that
is XC ∩K

ωC = XωC
C ∩K

ωC = {0}. First

XC ∩K
ωC = ((X ∩C )∩Kω)/Cω = XC ∩ (Kω/Cω) = (X ∩Kω)/Cω

because C ⊃ Kω ⊃Cω. Then since we assume X satisfies the transversality assumption
for C we have X∩Cω = {0}. So we may conclude X∩Kω = {0}. Similarly for XωC

C = (Xω)C ,

we prove from XωC
C ∩K

ωC = {0} that Xω∩Kω = {0} and thus XK is well defined. Finally

(XC )K = [
(X ∩C )/Cω))∩ (K /Cω)

]
/Kω = ((X ∩C )∩K )/Kω = (X ∩K )/Kω = XK

□

3. Complex structures

In this section we assumeK=R.

DEFINITION 2.36. Let V be a complex vector space. A complex valued map h : V ×
V −→C is a sesquilinear form4 if:

(1) h(z, z ′) = h(z ′, z);
(2) h(λz, z ′) =λh(z, z ′) for λ ∈C;
(3) h(z,λz ′) = λ̄h(z, z ′) for λ ∈C (note that (1) and (2 ) imply 3))

4This is latin for "one and a half" linear by which we mean linear in the first variable and antilinear
in the second one. Physicists usually take different conventions: they impose linearity on the left and
antilinearity on the right.
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We say that h is hermitian if moreover h(z, z) > 0 for all z ̸= 0. We write

h(z, z ′) = g (z, z ′)− iω(z, z ′),

where g is a (real-valued) scalar product and ω is (real valued) symplectic5.

Note thatω is skew symmetric since h(z, z) is real according to (1) and non-degenerate
since ω(i z, z) = g (z, z) > 0 .

EXAMPLE 2.37. On Cn , define

h((z1, · · · , zn), (z ′
1, · · · , z ′

n)) =
n∑

j=1
ε j z j z̄ ′

j ∈C.

where ε j ∈ {0,−1,1}. This is a sesquilinear form and is hermitian if all the ε j equal +1.
If there are p positive and q negative ε j , we say that h has signature (p, q). This is
invariant by a complex change of variable and it is well known that any sesquilinear
form is isomorphic to such a form.

When h is hermitian, (i.e. all the ε j = +1) the symmetric part is the usual scalar
product on Cn =R2n given by

g ((z1, ..., zn), (z1, .., zn)) =
n∑

j=1
|z j |2

while ω is the standard symplectic form

ω((z1, ..., zn), (z ′
1, .., z ′

n)) =
n∑

j=1
(x j y ′

j −x ′
j y j )

where z j = x j + i y j , z ′
j = x ′

j + i y ′
j and corresponds to σn .

We shall denote by J0 the multiplication by i , so that in standard real coordinates
any hermitian vector space can be reduced to the above with J0 given by the diagonal

bloc matrix with blocs

(
0 1
−1 0

)
or in the decomposition Cn = Rn ⊕ iRn by the matrix(

0 In

−In 0

)
. The following Proposition is immediately checked

PROPOSITION 2.38. Let h be a hermitian structure on the complex vector space V and
J be the endomorphism corresponding to multiplication by i . Then setting h = g −iωwe
have {

g (J z, z ′) =−ω(z, z ′)
ω(J z, z ′) = g (z, z ′)

In particular J is an isometry for g and a symplectic map for ω.

5The minus sign in front ofω of the above formula allows us to get from the standard hermitian form
on Cn = Rn ⊕ iRn , the standard symplectic form on Rn ⊕Rn . Had we adopted the physicist convention,
we would have had a + sign...
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REMARK 2.39. The skew-symmetric form ω is non-degenerate because ω(J z, z) =
g (z, z) > 0 for all z ̸= 0.

Conclusion: Any hermitian space V has a canonical symplectic form.
We will now answer the following question: can a symplectic vector space be made

into a hermitian space? In how many different ways?

DEFINITION 2.40. A complex structure on a real vector space W is an automorphism
J of W such that J 2 =−Id. This makes W into a complex vector space with (a + i b) · v =
a ·v +b · J v. Ifω is a symplectic structure on W , then J is tame ifω(Jξ,ξ) > 0 for all ξ ̸= 0.
It is compatible if moreover ω(Jξ, Jη) =ω(ξ,η)

Note that if (V ,ω) is symplectic and J compatible, then h(z, z ′) =ω(J z, z ′)−iω(z, z ′)
defines a hermitian structure on V with associated symplectic structure ω. Tameness
is a weaker version that is moire flexible, and can be useful.

REMARK 2.41. The complex structure J already gives us a convenient way to write
that a matrix is symplectic. Indeed, ω(Rx,R y) = −g (JRx,R y) so the condition to be
symplectic is

R∗ JR = J

where R∗ is the adjoint of R, defined by g (Rx, y) = g (x,R∗y) for all x, y ∈ E . This im-
plies in particular that preserving two of the three objects g ,ω, J implies preserving the
third6. So for example

GL(n,C)∩Sp(2n,R) =U (n)

because commuting with J and preserving the symplectic form implies preservation
of the scalar product hence of the hermitian form

O(2n,R)∩Sp(2n,R) =GL(n,C)∩O(2n,R) =U (n)

since preserving g and ω means preserving J and of course h, or commuting with J
and preserving g implies preserving also ω hence the hermitian form.

PROPOSITION 2.42. Let (V ,ω) be a symplectic vector space. Then the set J (ω) of com-
plex structures compatible withω can be identified to the set S(n) of symplectic symmet-
ric and positive matrices. It is therefore contractible.

PROOF. (cf. [MS07]) Notice that the fact thatω(Jξ,η) is a scalar product implies that
ω(Jξ, Jη) = (ξ, Jη) = (Jη,ξ) = ω(J 2η,ξ) = ω(ξ,η). In other words J ∈ Sp(V ,ω). We can
always assume (V ,ω) = (R2n ,σn), so the standard identification of R2n with Cn gives a
standard complex structure J0 and scalar product (ξ,η)0 andσn(ξ,η) = (J0ξ,η)0. Notice
that J∗0 =−J0. We are looking for J such that

• J 2 =−Id
• ω(Jξ, Jη) = (J0 Jξ, Jη)0 = (J0ξ,η)0

6By preserving J we mean commuting with J : this means that the map is complex-linear and not
only real-linear
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• ω(Jξ,ξ) = (J0 Jξ,ξ)0 > 0 for all ξ ̸= 0

The second condition can be rewritten as J∗ J0 J = J0 i.e. J is symplectic. So we are
looking for J symplectic such that the first and third condition hold. But then J0 J = P is
symplectic as the composition of two symplectic maps, symmetric since P∗ = J∗ J∗0 =
−J∗ J0 = −J0 J−1 = J0 J , and positive according to the third condition. Conversely if
we set J = J−1

0 P with P positive symmetric and symplectic we get J 2 = J−1
0 P J−1

0 P =
−J−1

0 (P∗ J0P ) = −J0 J−1
0 = −Id. As a result the map from J ∈ J (ω) to P ∈ S(n) yields a

diffeomorphism. That S(n) is contractible follows from Exercise 2.
□

See Exercise 20 for an alternative proof which is also valid in the tame setting.

EXERCISE 2.43. Let L be a Lagrangian subspace, show that JL is also a Lagrangian
and L ∩ JL = {0}. Conversely given two Lagrangians L1,L2 such that L1 ∩L2 = {0} there
is a complex structure such that JL1 = L2.

4. The symplectic group

We finally study the structure of the symplectic group, forK=R.

PROPOSITION 2.44. The group Sp(2n,R) of linear symplectic maps of (R2n ,σn) is
contained in SL(2n,R) and contains the unitary group U (n).

(1) (Iwasawa decomposition) Each element R of Sp(2n,R) can be written uniquely
as R =QP with Q ∈U (n) =O(2n)∩Sp(2n,R) and P ∈ S(n) symmetric, positive
definite and symplectic.

(2) Sp(2n,R) has U (n) as a deformation retract. It is therefore connected, and has
fundamental group isomorphic to Z.

(3) The subgroup U (n) of Sp(2n,R) acts transitively on the set Λ̃(n) of oriented La-
grangians. Hence Λ̃(n) can be identified to U (n)/SO(n) and the unoriented
Grassmannian Lagrangian Λ(n) to U (n)/O(n).

PROOF. According to Corolllary 2.22, a symplectic map preserves σn
n which is (up

to a factor n!) a volume form, so it belongs to SL(2n,R). Let σn(x, y) = (J x, y) where
J is the standard complex structure. Since elements of U (n) preserve both the scalar
product (•,•) and the complex structure J , they preserve the symplectic form hence
belong to Sp(2n,R). Let R ∈ Sp(2n), then σ(Rx,R y) =σ(x, y) i.e.

(JRx,R y) = (x, y)

Thus as we pointed out in Remark 2.41, R ∈ Sp(2n) is equivalent to R∗ JR = J .
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Now if R is symplectic, so is R∗, since (R∗)JR J = J 2 =−Id hence7

(R∗)−1[(R∗)JR J ]R∗ =−Id ⇔ JR JR∗ =−Id

so that multiplying by J on the left, we get R JR∗ = J .
Now decompose R as R = QP with P symmetric and Q orthogonal, by setting P =

(R∗R)1/2 and Q = RP−1. Since R,R∗ are symplectic so is P (see Exercise 2)and hence Q.
Thus Q is both symplectic and orthogonal, which means that it preserves the hermitian
product (since Q preserves both its real part - the scalar product- and its imaginary
part-the symplectic form), and must then be unitary. This proves (1). Then since P is
also positive definite, the map s 7→ P s is well defined (as exp(s log(P )) and log(P ) is well
defined for a positive symmetric matrix, see again Exercise 2) for s ∈ R and the path
T1−s : QP 7→QP s yields a retraction form Sp(2n) to U (n) since P 0 = Id. This proves the
second claim. For the last one, let v1, ..., vn be an orthonormal basis of a Lagrangian

L. Then h(vi , v j ) = δ j
i since ω(vi , v j ) = 0. Hence there is a unique unitary map sending

the canonical basis e1, ...,en ofCn identified toR2n to (v1, ...vn). Now two basis describe
the same oriented Lagrangian if and only if they differ by an element of SO(n) and the
same unoriented one, if and only if they differ by an element of O(n). □

REMARK 2.45. It may be useful to explicit the embeddings of U (n) and O(n) in
Sp(2n,R) as matrices. If M = A + i B is in U (n), then we have A∗A +B∗B = Idn and
B∗A+ A∗B = 0 and (

A −B
B A

)
is in Sp(2n,R).

If R ∈O(n), then (
R 0
0 R−1

)
is in Sp(2n,R).

COROLLARY 2.46. The set of triples of pairwise transverse Lagrangians has n+1 con-
nected components.

PROOF. We already know that this is the case when we fix L1,L2. Let now (L1,L2,L3)
and (L′

1,L′
2,L′

3) be two triples of pairwise transverse Lagrangians. We can find R ∈
Sp(V ,ω) sending L1 to L′

1 and L2 to L′
2 according to Proposition 2.24 (2). Since Sp(2n,R)

is connected, using a path Rt from id to R, we can deform L1 to L′
1 then L2 to L′

2 and
L3 to L′′

3 so that they remain pairwise transverse. Then L′′
3 can be deformed to L′

3 if and
only if they are in the same connected component of the set of Lagrangians transverse
to L′

1 and L′
2. □

7A word of caution: we cannot just take any scalar product on a symplectic space, and claim that
the transpose of a symplectic map is symplectic. We must use a scalar product compatible with the
symplectic form. Of course in general we mean the standard scalar product, and the standard symplectic
form.



4. THE SYMPLECTIC GROUP 27

Finally the Lie algebra of the symplectic group, that is the algebra of left invariant
vector fields on Sp(2n,R) (canonically identified to TIdSp(2n,R)) endowed with the Lie
bracket is given by

sp(2n,R) = {M ∈ M(2n,2n) | M∗ J + J M = 0}

the Lie bracket being given by [A,B ] = AB −B A. Indeed the linearization at R = Id of
the relation R∗ JR = J is M∗ J + J M = 0. In particular

PROPOSITION 2.47. The solutions R(t ) of the equation Ṙ(t ) = M(t )R(t ), R(0) = Id be-
long to Sp(2n,R) if and only if for all t , M(t ) satisfies M(t )∗ J + J M(t ) = 0 or equivalently
M(t ) = J A(t ) where A(t ) is symmetric.

PROOF. We just saw that TIdSp(2n,R) = {M ∈ M(2n,2n) | M∗ J + J M = 0} and apply-
ing multiplication to the right by R ∈ Sp(2n,R) (which induces a diffeomorphism on
Sp(2n,R)) we get

TR Sp(2n,R) = {MR ∈ M(2n,2n) | M∗ J + J M = 0}

Now Sp(2n,R) is smooth submanifold in M(2n,2n) and a path R(t ) remains in Sp(2n,R)
if and only if R(0) ∈ Sp(2n,R) and for each t the vector Ṙ(t ) belongs to TR Sp(2n,R). This
is exactly the first condition. Now writing M(t ) = J A(t ) we have

J M(t )+M(t )∗ J =−A(t )+ A(t )∗ J∗ J =−A(t )+ A(t )∗

and this vanishes if and only if A(t ) is symmetric, so we get the equivalence with the
second condition. □

4.1. Normal form of real Symplectic matrices. The Krein type. We refer for this
section to [Kre50; Eke90; Abb01]. Let R be an element of Sp(2n,R). Our goal is to
analyze the eigenvalues of R and also their possible bifurcations. It will be useful to
complexify R, that is we consider it as an endomorphism of C2n , so we can talk about
complex eigenvalues8. We denote by Vλ the eigenspace corresponding to the eigen-
value λ and by Eλ = Ker(R −λId)2n the characterisitc space so that Vλ ⊂ Eλ. We call
dim(Vλ) the geometric multiplicity of λ and dim(Eλ) the algebraic multiplicity. We still
denote byω the extension ofω toCn as a bilinear (not hermitian !) form. One should be
careful because J is now different from multiplication by i : J corresponds to the ma-

trix

(
0 −In

In 0

)
, and has eigenvalues ±i each with multiplicity n) while i corresponds

to the diagonal matrix


i ... 0
0 i .. 0
...
0 0 .. i

 (with a eigenvalue i of multiplicity 2n). Besides

the standard hermitian form denoted by 〈•,•〉, we can consider the sesquilinear form
h(v, w) = 〈−i J v, w〉. It is non-degenerate (since i J is invertible) and has signature (n,n)

8We do not use the notation Sp(2n,C) since this has different possible meanings.
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since the matrix i J has eigenvalues i ·i =−1 and i ·(−i ) =+1 both with multiplicities n.
Moreover R preserves h since

h(Rv,Rw) = 〈−i JRv,Rw〉 = 〈−i R∗ JRv,W 〉 = 〈−i J v, w〉

PROPOSITION 2.48. If λ is an eigenvalue of R, then so are λ−1, λ̄, λ̄−1 and the corre-
sponding Vλ (resp. Eλ) all have the same dimension. Moreover for λ=±1 the dimension
of the characteristic space has even multiplicity. Finally for λµ̄ ̸= 1, the spaces Eλ and Eµ
are h-orthogonal. In particular if |λ| ̸= 1, the space Eλ is h-isotropic.

PROOF. We have R∗ JR = J , so that R∗ = JR−1 J−1 means that R∗ and R−1 are con-
jugate, so dimVλ = dimVλ−1 ,dimEλ = dimEλ−1 . Since R is real, we have dimVλ =
dimVλ̄,dimEλ = dimEλ̄ and this proves the first claim. Note that because the de-
terminant of R is +1, −1 must have even multiplicity. Since the sum of the alge-
braic multiplicities is even, then +1 must also have even multiplicity. Now we have if
Ru =λu,Rv =µv that h(u, v) = h(Ru,Rv) =λµ̄h(u, v). So if λµ̄ ̸= 1 we have h(u, v) = 0
so Vλ,Vµ are h-orthogonal. Now set E (k)

λ
= ker(R −λid)k and let us argue by induction

on k+l to prove that E (k)
λ

and E (l )
µ are h-orthogonal. We just proved this for k+l = 2. As-

sume this is proved whenever k+l = m and let us prove it for m+1. Let x ∈ E (k)
λ

, y ∈ E (l )
µ

with k+l = m+1. Then (R−λId)x ∈ E (k−1)
λ

, (R−µId)y ∈ E (l−1)
µ so Rx = u+λx,R y = v+µy

where u ∈ E (k−1)
λ

, v ∈ E (k−1)
µ . By assumption h((R −λId)x, y) = 0 that is

h(x, y) = h(Rx,R y) = h(λx +u,µy + v) =λµh(x, y)+h(u,µy + v)+h(λx +u, v)

but by induction hypothesis h(u,µy + v) = 0 since u ∈ E (k−1)
λ

,µy + v ∈ E (l )
µ and (k −

1)+ l = m, and the same argument proves h(λx +u, v) = 0. So we get

h(x, y) = h(Rx,R y) = h(λx +u,µy + v) =λµh(x, y)

and if λµ ̸= 1 we must have h(x, y) = 0.
For the last statement apply our result to λ=µ. □

LEMMA 2.49. We have

(1) the form h is non-degenerate on Eλ for λ on the unit circle
(2) h is non-degenerate on Eµ⊕E1/µ̄, but Eµ is isotropic for µ outside the unit circle.

PROOF. Since any two spaces Eα,Eβ are h orthogonal providedαβ̄ ̸= 1, we have that
E is an h-orthogonal direct sum of E1,E−1, Eλ for λ ∈ S1 \{±1} or Eµ⊕E1/µ̄ for µ ∈C\S1.
Since h is non-degenerate, it must be non-degenerate on each term of the orthogonal
direct sum. □
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As a result9, setting

ES1 =
h⊕

|λ|=1,λ̸=±1Eλ

ED =
h⊕

|µ|<1(Eµ⊕E1/µ̄)

we can write

E = E1
h⊕E−1

h⊕ES1
h⊕ED

Note that on R2n ⊂C2n we have ℑ(h(x, y)) =−ω(x, y), so that h-orthogonal real spaces
are ω-orthogonal. Since

E1,E−1,Eλ⊕E
λ

, (Eµ⊕Eµ), (E1/µ̄⊕E1/µ)

are real spaces for λ ∈ S1 \ {±1}, |µ| < 1, we have the symplectic decomposition10

ES1 =
ω⊕

|λ|=1,ℑλ>0Eλ⊕E
λ

ED =
ω⊕

|µ|<1,ℑµ>0(Eµ⊕Eµ)⊕ (E1/µ̄⊕E1/µ)

and
E = E1

ω⊕E−1
ω⊕ES1

ω⊕ED

Setting E±
D =⊕

|µ|±1<1(Eµ⊕Eµ̄) we see from Proposition 2.48 that E±
D are Lagrangians in

ED , hence isotropic in E . We summarize our findings in

PROPOSITION 2.50. We have the decomposition

E = E1
ω⊕E−1

ω⊕ES1
ω⊕ED

and ED = E+
D ⊕E−

D where each factor is Lagrangian in the symplectic space ED .

We now want to understand the possible bifurcations of the eigenvalues along a
path of symplectic maps. This will be in particular useful in our study of the Maslov
and Conley-Zehnder indices (see Chapter ??). The crucial tool is the following notion :

DEFINITION 2.51. Let |λ| = 1 and Eλ be the characteristic space associated to λ. The
signature (p, q) of the restriction of h to Eλ is called the Krein type (or Krein signature)
of λ.

There is no point in defining a Krein type for µ outside the unit circle, since h van-
ishes on Eµ and has signature (d ,d) on Eµ⊕E1/µ̄, where d = dim(Eµ).

Thus a symplectic matrix has eigenvalues at ±1, then conjugate pairs on the unit
circle and finally quadruples away from the unit circle. In a continuous family of sym-
plectic matrices, the eigenvalues will move continuously, respecting the above con-
strains. Bifurcations can occur for example if two eigenvalues on the unit circle collide

9where
h⊕ denotes h-orthogonal direct sum

10where ℑ(λ) is the imaginary part of λ.
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(by symmetry this will happen at the same time for its conjugate pair), and give rise to
two pairs of eigenvalues such that µ,µ−1, µ̄, µ̄−1 are all distinct. Whether this can hap-
pen for all collisions on the circle is a question that was addressed by M. Krein. The
answer is negative, as the notion of Krein signature implies.

It is easy to see that if λ has Krein type (p, q), then λ̄ has Krein type (q, p). Also for
λ=±1, since E±1 is the complexification of a real space, it has Krein type p, p. We saw
that if |λ| ̸= 1, the hermitian form h is of signature (p, p) on Eλ. We now prove that
two eigenvalues on the unit circle that collide and move to the complement of the unit
circle must have signature (p1, q1), (p2, q2) such that p1 +p2 = q1 +q2. More generally
we have

PROPOSITION 2.52. Let R be an element in Sp(2n,R) having an eigenvalueλ of mod-
ule 1 with signature (p, q). Then if S is close enough to R, we have

(1) the eigenvalues of S close to λ are λ1, ...λr of module 1 and Krein type (p j , q j ),
pairs of eigenvalues µ1,1/µ̄1, ...,µs ,1/µ̄s of algebraic multiplicity d1, ..,ds where
|µ j | ̸= 1 and they must satisfy the relation

r∑
j=1

p j = p −d ,
r∑

j=1
q j = q −d

where d =∑s
j=1 d j .

COROLLARY 2.53. In particular, with the assumptions of the Pproposition, if λ has
algebraic multiplicity 2

(1) If λ has Krein type (2,0) (resp. (0,2)) and S has distinct simple eigenvalues, then
S must have eigenvalues λ1,λ2 of module 1, and both of Krein type (1,0) (resp.
(0,1))

(2) Ifλ has Krein type (1,1) and S has distinct simple eigenvalues, then S must have
either eigenvaluesλ1,λ2 of module 1, and of Krein type (1,0) and (0,1), or a pair
of eigenvalues µ,1/µ̄ with |µ| ̸= 1.

In other words when two simple eigenvalues on the unit circle collide, they can only
leave the unit circle if they have complementary Krein type.

PROOF. Indeed, let γ be a loop on C bounding a small neighborhood of λ and con-
taing no other eigenvalue of R. We shall assume S is close enough to R so that it
has no eigenvalue on γ. Then let χ be equal to 1 inside γ and zero outside. Then
π(S) = 1

2iπ

∫
γχ(z)(z − S)−1d z is the projector on the sum of the characteristic spaces

corresponding to eigenvalues of S close to λ. The restriction of h to the image of π(R)
has signature (p, q). The same holds for the image of π(S) for S close enough to R.
But the image of π(S) decomposes as the h-orthogonal sum of characteristic spaces
on which the signature of h is (p j , q j ) for those on the unit circle, or (d j ,d j ) for the
sums Eµ j ⊕E1/µ̄ j and therefore p = d +∑r

j=1 p j ,
∑r

j=1 qr +d = q . The particular case is
obtained by noticing that if q or p vanishes, then d = 0. □
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More generally if p = 0 or q = 0 we shay that λ is Krein definite. In this case for S
close to R, no eigenvalue can leave the unit circle. In general, counting with algebraic
multiplicity, starting from an eigenvalue on the unit circle of Krein type (p, q), only
min{p, q} eigenvalues can leave the unit circle.

5. Symplectic vector bundles

This is a first step towards the non-linear situation. A vector bundle should be
thought as a parametrized family of vector spaces, possibly with some extra structure
(complex, orthogonal, volume, symplectic, etc...).

DEFINITION 2.54. Let G be a subgroup of GL(n,R). A G-vector bundle over a man-
ifold M is defined by a space E a projection π : E −→ M such that there is a covering
(U j ) j∈I of M and charts ϕ j : U j ×Rn j −→π−1(U j ) such that on Ui ∩U j the map

ϕ−1
j ϕi : (Ui ∩U j )×Rni −→ (Ui ∩U j )×Rn j

is of the form (x, v) 7→ (x, gi , j (x)v) where gi , j is a smooth map from Ui ∩U j to G. Two
G-vector bundles are equivalent if there is a map f : E1 −→ E2 such that π2 ◦ f = π1 and
f :π−1

1 (x) −→π−1
2 (x) is symplectic.

Note that if M is connected, the dimension n is fixed, and we may thus replace
Rn j it by Rn . In a fancy terminology the gi , j ∈ C∞(Ui ∩U j ,G) form a cocycle11 with
values in G), and two cocycles define equivalent vector bundles if and only if they co-
incide in H 1(M ,G). Note that often one thinks of a vector bundle as just the triple
(E , M ,π) but then the group G is not explicit. In fact any G bundle can be considered
as a GL(n,R) vector bundle. For example a GL(n,C) vector bundle E can be considered
as a GL(2n,R)-vector bundle. One has to be careful,though, since such a vector bundle
can be equivalent to a trivial bundle as GL(n,R) bundle, but not as a GL(n,C)-vector
bundle (see Remark 2.62).

It is often convenient to stress the structure group of the vector bundle. For this
one introduces the notion of principal bundle

DEFINITION 2.55. Let G be a Lie group. A smooth G principal bundle is given by a
smooth manifold P, and a proper right G-action on P. Then we denote by B = P/G the
base of the bundle and π is the projection π : P −→ P/G. A morphism between two
principal bundles with total spaces P,P ′ is an equivariant map from P to P ′. We then

have a commutative diagram P

π
��

f
// P ′

π′
��

P/G
[ f ]
// P ′/G

11Becauseϕ−1
j ϕi ◦ϕ−1

i ϕk ◦ϕ−1
k ϕi = Id on Ui ∩U j ∩Uk we have gi , j ◦g j ,k ◦gk,i = Id : this is what begin

a cocycle means.
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Principal bundles are ubiquitous in differential geometry, and often appears as
frame bundles

EXAMPLE 2.56. Let E be a a vector bundle on B . We denote by Eb the fiber over
b. Let F (E)b be the set of bases of Eb . Then for n = dim(Eb) GL(n,R) acts on F (E)b as
follows: a basis (u1, ...,un) of Eb is nothing else than a linear isomorphism iu :Rn −→ Eb ,
with iu(t1, ..., tn) = t1u1+...+tnun . Then for M ∈GL(n,R) we associate the basis defined
by iv ·M = iU ◦M . This obviously defines a proper right action of GL(n,R) on F (Eb), so
that F (E) becomes a principal GL(n,R)-bundle. Note that if E is a complex bundle,
then taking F (E)b to be the set of complex bases of Eb , makes F (E) a principal GL(n,C)-
bundle, if Eb is symplectic, and we consider F (Eb) the set of symplectic bases, we get a
principal Sp(2n,R)-bundle.

DEFINITION 2.57. Consider a G action on a smooth manifold F . Let E = P ×F /G
where the right G-action is given by (p, f ) ·g = (p ·g ,ρ(g−1) f ). Then E is the fiber bundle
associated to P and the G action on F .

For example if F is a vector space and ρ : G −→GL(F ) is a representation we obtain
the vector bundle associated to the principal bundle (so we do not need that G be a
subgroup of GL(n,R)).

EXERCISE 2.58. Prove that for P = F (E) the frame bundle, and the canonical repre-
sentation of GL(n,R) −→ GL(n,R) given by the identity map, the associated bundle is
E . Same question in the complex, unitary and symplectic case.

An important notion for fiber bundles is that of the reduction of the structural
group. If H is a subgroup of H a G-vector bundle can have its structural group reduced
to H if the cocycles can be assumed to take values in H . In other words

DEFINITION 2.59. Let us consider a principal G-bundle with total space P. Let ρ :
H −→ G be a morphism. We say that the structural group of P can be reduced to H if
there exists an H-bundle Q such that P ≃Q×ρG the isomorphism being a G-equivariant
diffeomorphism. Here Q ×ρ G = (Q ×G)/H where the H action is given by (q, g ) ·h =
(q ·h,ρ(h−1)g ) and the G-action on Q ×ρ G is given by [(q, g )] · g ′ = [(q, g · g ′)].

Note that Q ×ρ G is the associated bundle to Q for the H-action on G given by
h : g 7→ ρ(h)g . Most of the time ρ is an inclusion, this is why we talk of “reduction”
: this means that the cocycle defining P can be chosen to take its values in H instead
of G . But the case where ρ is a covering is interesting in its own right. For example
Spi n(n) is the double cover of SO(n), and a lifting of an SO(n) bundle to Spi n(n) is
called a spin structure on the vector bundle (which may or may not exist, depending
on the vanishing of the second Stiefel-Whitney class). In the symplectic case, we will
be interested in the double cover of SP (2n,R), the metaplectic group MP (2n,R). Note
that a principal bundle is trivial if and only if its structural group can be reduced to the
identity. This is equivalent to the existence of a section of π : P −→ M , since we can
then find an isomorphism M ×G −→ P by setting f (m, g ) = g · s(m).
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PROPOSITION 2.60. If H is subgroup of G and H is a deformation retract of G then
any G-vector bundle is equivalent to a unique (up to equivalence) H-vector bundle. In
particular any vector bundle can be reduced to a O(n) vector bundle (SO(n) if it is ori-
entable). As a result any Sp(2n) vector bundle can be reduced to a U (n) bundle.

PROOF. Assume H is a subgroup of G and we have an equivariant map s : P −→G/H
such that s(p · g ) = g−1s(p). Then the restriction to H of the G-action on s−1(e) = Q
makes Q into a principal H-bundle. It is easy to see that P = Q ×ϕG , so that we can
reduce the structural group of P to H . The existence of s is equivalent to the existence
of a section of the fibre bundle of fibre G/H associated to P where the action of G on
G/H is the obvious one. Indeed if σ(b) = [(p,γ) with p ∈ P,γ ∈ G/H , then for each
p ∈π−1(b) there is a unique γ ∈G/H such that [(p,γ)] ∈σ(b) and we set s(p) = γ. Since
[(p · g , g−1γ] = [(p, g ) we have s(p · g ) = g−1γ. Now if G/H is contractible, this fibre
bundle has a section, so the structure group can be reduced to H . □

One should be a little careful because a priori there can be several non-isomorphic
H bundle such that Q ×ϕG = P as a G-bundle.

COROLLARY 2.61. Any symplectic vector bundle has a well defined complex structure
up to homotopy, hence well defined Chern classes, which are the Chern classes of any of
the corresponding U (n) bundle.

PROOF. Since the inclusion U (n) −→ Sp(2n,R) is a homotopy equivalence, this fol-
lows from Proposition Prop-2.31 (2). □

For the definition of Chern classes we refer to [Mil74] or [Hus94].

REMARK 2.62. A complex (or symplectic ) bundle can be non-trivial, while the un-
derlying real bundle is trivial. For example the tangent space to S2 =CP 1 is a complex
vector bundle. As a real vector bundle, it is the tangent space to S2, and adding to it its
normal bundle inR3, which is trivial, we get a bundle T S2⊕ε1

R
≃ ε3

R
hence T S2⊕ε2

R
≃ ε4

R
,

where εR (resp. εC) denotes the trivial one dimension real (resp. complex) bundle. On
the other hand TCP 1 ⊕εC has first Chern class equal to 2, hence is not trivial12.

Note that since π1(Sp(2n)) =π1(U (n)) =Z, there is a double cover of Sp(2n) called
the metaplectic group . The question of lifting a symplectic bundle to the metaplectic
group is of importance in representation theory. The metaplectic group has no finite
dimensional faithful representation, but some infinite dimensional ones. As a group, it
is a Z/2Z extension of Sp(2n,R). This construction also exists for other local fields. We
refer to Chapter ?? for more on this.

12Alternative proof: assume TCP 1 ⊕ εC ≃ ε2
C

. Given the canonical section on the trivial factor ε1
C

,
taking its image in ε2

C
yields a section of ε2

C
. But these are all homotopic, since π2(S3) = 0. As a result

TCP 1 ≃ TCP 1 ⊕εC/εC ≃ ε2
C

/εC = εC. But this is impossible since the Euler characteristic of TCP 1 = T S2

(as a real bundle) is 2 ̸= 0.
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6. Normalization issues

As we already pointed out, the definition of the "canonical" from σ on R2n and
T ∗Rn can have different signs depending on the author. Recall that we choose the
following normalizations

(1) On R2 with coordinates (x, y) the standard form should induce the standard
orientation, the trigonometric circle should have positive area so that we must
set σ1 = d x ∧d y . More generally the standard form on R2n is σn =∑n

j=1 d x j ∧
d y j ).

(2) On T ∗R the symplectic area below p = f ′(x) between 0 and x = x0 should
be f (x0)− f (0), so the form σR is d p ∧d q . Similarly we define the standard
form σV on T ∗V that we denote, when V is a linear space as V ⊕V ∗ and
σV ((x, x∗)(y, y∗)) = 〈y∗, x〉−〈x∗, y〉.

With these definitions, we get that the "standard" isomorphism from R2 to T ∗R given
by (x, y) −→ (q, p) q = x, y = p is anti-symplectic.

Thus one should be careful, with our conventions σn =−σRn
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7. Exercises and Problems

Unless otherwise specified, vector spaces are on a field of characteristic ̸= 2.

7.1. Skew-symmetric forms.

(1) Let B be a bilinear form yielding a symmetric relation of orthogonality, that is
B(x, y) = 0 ⇔ B(y, x) = 0 then B is either symmetric or antisymmetric.

HINT. We assume B to be non-degenerate (otherwise just divide by the ker-
nel of B, that is well-defined, since B(x, y) = 0 for all y if and only if B(y, x) = 0
for all y). Then B(x,•) and B(•, x) are non zero and have the same kernel so
there is a cx ̸= 0 such that B(x, y) = cxB(y, x) for all y. If B(x, x) ̸= 0 we have, set-
ting y = x, that cx = 1. Now if B(x, x) = 0 assume for some z we have B(z, z) ̸= 0.
By the same argument B(z, x) = B(x, z) and B(z, y) = B(y, z). Now the first
equality implies cx = 1 if B(z, x) ̸= 0. On the other hand if B(z, x) = 0 we have
B(z + x, z + x) = B(z, z) ̸= 0 hence B(z + x, y) = B(y, z + x) but since we already
know that B(z, y) = B(y, z), we get B(x, y) = B(y, x). Finally if for all z we have
B(z, z) = 0 then B is skew-symmetric.

(2) (The space of positive symplectic matrices is contractible) Let A be a positive
definite symmetric linear map on a real vector space V . Let us assume ∥A∥ < 1
(for the norm ∥A∥ = sup{∥Ax∥ | ∥x∥ ≤ 1}) and set

log(I + A) =
+∞∑
j=1

(−1) j+1 A j

j

and for all A,

exp(A) =
+∞∑
j=0

A j

j !

(a) Prove that that if A is positive then so is log(I + A) and that when defined,
the following identity holds :

exp(log(A)) = logexp(A) = A

HINT. Use the fact that the identity holds in R+.

(b) Prove that if A,B are symmetric and A ≤ B means B − A is non-negative,
then 0 ≤ A ≤ B implies ∥A∥ ≤ ∥B∥.

HINT. Use the fact that for a symmetric non-negative matrix

∥A∥ = sup{(Ax, x) | ∥x∥ ≤ 1}

(c) Prove that if M is positive symmetric then we can define log(M) such that
exp(log(M)) = M and such that log(M) is positive.
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HINT. Use that for ε> 0 small enough there is a positive η such that ηId <
εM < I and then εM = Id+ (εM − Id) with (1−η)Id < (Id−εM) < Id so that
∥εM −Id∥ < 1. As a result we can define log(εM) hence log(M) = log(εM)−
log(ε)Id.

(d) Show that if moreover M is symplectic, that is J M J = M∗ (here M∗ = M),
then A = log(M) satisfies A∗ = A and J A+ AJ = 0. Prove that conversely if
A∗ = A and J A+AJ = 0 then exp(A) is symplectic, symmetric and positive.

HINT. Prove that if two symmetric matrices A,B commute we have exp(A+
B) = exp(A)exp(B) and if they are positive, log(AB) = log(A)+log(B) using
the fact that it is true in R∗+. Use also that log(T −1 AT ) = T −1 log(A)T for all
A,T such that A is positive symmetric and T invertible.

(e) Prove that the set S(n) of real matrices which are both positive symmetric
and symplectic is contractible

HINT. If M = exp(A) where A = log(M), the map s 7→ exp(s A) = M s defines
a retraction from S(n) to Id.

(3) Use the previous Exercise to show that any positive definite matrix M has a
unique positive square root, i.e. a matrix P such that P is positive and P 2 = M
and that P and M commute. Prove that if M is moreover symplectic (i.e. M ∈
S(n))) then P is also symplectic.

(4) Use Exercise 2 to show that U (n) is the maximal compact group of Sp(2n,R)

HINT. Prove that if U (n)⊊G ⊂ Sp(2n,R) then G contains a non-trivial ele-
ment of S(n). Prove that the set of P n for n ∈Z is non-compact.

(5) Letω be a symplectic form on a real vector space, τ be a skew-symmetric form
on E and let C be a constant such that

∀x, y ∈ E |τ(x, y)| ≤C |ω(x, y)|
(a) Prove that τ= cω for some constant c
(b) Does the conclusion still holds if we only assumeω (but not τ) to be skew-

symmetric ?
(6) ([MH73]) Let M be a module over a commutative ring R. We assume 2 is in-

vertible in R and M is projective, that is there exists a module N such that
M ⊕N is a free module, i.e. is isomorphic to Rn for some n. s A bilinear skew-
symmetric form on M , B is symplectic if any linear form α : M −→ R can be
written asα : y 7→ B(x, y) for some x ∈ M . We shall assume the ring is such that
any projective module is actually free (this is particular the case for Principal
Ideal Domains).
(a) Prove that M has a symplectic basis (e1, ...,en , f1, ..., fn), that is e j such that

B(ei , f j ) = δ
j
i ,B(ei ,e j ) = B( fi , f j ) = 0. That is (M ,B) is isomorphic to P ⊕

P∗,σ) where σ is the canonical symplectic form on P ⊕P∗.
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(b) Prove that the same holds for Dedekind domains, that is rings such that
any projective module is of the form Rn ⊕a where a is an ideal in R (this is
not the usual definition for a Dedekind domain, but one of its properties
due to Steinitz). From now on we assume we are in one of the two cases
above.

(c) Let L be a maximal projective module such that B vanishes on L. Prove
that there is a basis as above such that (e1, ....,en) is a basis of L.

7.2. Symplectic linear algebra.

(7) Let ω be a skew-symmetric form of rank 2r on a vector space E . Prove that if
T has codimension q , then the rank of ω|T is at least 2r −2q . Prove that if ω
vanishes on T then T has codimension at least q .

(8) Prove that a codimension 1 subspace is always coisotropic. Prove that a codi-
mension 2 subspace is either symplectic or coisotropic.

(9) Prove that a space is coisotropic if and only if it contains a Lagrangian sub-
space.

(10) Prove that a space is coisotropic if and only if it is not contained in any proper
symplectic subspace.

(11) Let (V ,ω) = (L ⊕ L∗,σL). We shall write linear maps as block matrices R =(
A B
C D

)
where A : L −→ L,B : L∗ −→ L, etc. We write A∗ for the adjoint map

A∗ : L∗ −→ L∗ defined by 〈y, Ax〉 = 〈A∗y, x〉 for all x ∈ L, y ∈ L∗.
(a) Prove that R is symplectic if and only if A∗C ,B∗D are symmetric and

A∗D −C∗B = Id.
(b) Consider the group of symplectic matrices preserving L ⊕ 0, so if R is of

the above form we have C = 0. What are the relations satisfied by A,B ,D ?
(c) Prove that this group has the homotopy type of GL(n,R) (i.e. of O(n,R)).

(12) Let ω be a symplectic form on a vector space V of dimension 2n ≥ 4. Prove
that the map

Λ1(V ) −→Λ3(V )

α 7→α∧ω
is injective.

(13) Let (L1,L2,L3) and (L′
1,L′

2,L′
3) be two triples of Lagrangian subspaces in (V ,ω)

such that for all i ̸= j , Li ∩L j = L′
i ∩L′

j = {0}. Let Q (resp. Q ′) be the quadratic

forms on L∗
1 ≃ L3 (resp. (L′

1)∗ ≃ L′
3) associated to the first (resp. second) triple.

We want to prove that there is an elementϕ ∈ Sp(V ,ω) such thatϕ(L j ) = L′
j for

j ∈ {1,2,3} if and only if the quadratic forms Q,Q ′ are conjugate, that is there is
an invertible linear map P : L′

1 −→ L1 such that Q(P∗x∗) = Q ′(x∗) or in terms
of the associated symmetric linear maps A : L∗

1 −→ L1 (resp. A′ : (L′
1)∗ −→ L′

1)
that PAP∗ = A′.
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(a) Prove that we may assume (V ,ω) = (L ⊕L∗,σL) and L1 = L′
1 = L,L2 = L′

2 =
L∗

(b) Prove that if M =
(
P R
S T

)
is symplectic and preserves L and L∗, we have

R = S = 0 and T = (P∗)−1 and that conversely such a map is symplectic
(see Exercise 11) and preserves L and L∗.

(c) Prove that such an M sends the graph of A to the graph of PAP∗. Con-
clude.

(14) ⋆ We want to prove that if an injective linear map ϕ : (E ,ω) −→ (F,ρ) be-
tween symplectic vector spaces sends Lagrangian subspaces to Lagrangian
subspaces, then it is conformally symplectic (i.e. ϕ∗ρ = cω for some c ̸= 0).
(a) Prove that ω(x, y) = 0 implies ρ(ϕx,ϕy) = 0
(b) We assume ρ(ϕx,ϕy) = cω(x, y) with ρ(ϕx,ϕy) ̸= 0 and z linear indepen-

dent from x, y . Then v = ω(x, y)z −ω(x, z)y satisfies ω(x, v) = 0 hence
ω(x, y)ρ(ϕx,ϕz)−ω(x, z)ρ(ϕx,ϕy) = 0, so that there is a constant cx such
that cxω(x, z) = ρ(ϕx,ϕz) for all z

(c) Prove that for all u ∈ E we have ρ(ϕx,ϕu) = cxω(x,u)
(d) Prove that if ω(x, y) ̸= 0 we have cx = cy

(e) Prove that for any x, y ∈ E there exists z such that ω(x, z),ω(y, z) are both
non zero, unless E is the union of two proper hyperplanes.

(f) Prove that E cannot be the union of two proper hyperplanes. Conclude.
(15) Let U (n) be the group of unitary matrices on Cn ≃ R2n and S(n) be the group

of symmetric matrices in the symplectic Lie algebra sp(2n), that is S(n) = {A ∈
M(2n,2n) | t A = A, AJ + J t A = 0}. Then the map

U (n)×S(n) −→ Sp(2n,R)

(U , A) 7→U exp(A)

is a diffeomorphism.
(16) Prove that the action of Sp(2n,K) on the Grassmannian of q-dimensional sub-

spaces of (V ,ω) has for orbits the set of subspaces T where ω|T has rank 2r for
2r ≤ q . What is the dimension (in whatever sense you like) of the orbits.

(17) (Iwasawa and D · N decomposition) Prove that a real symplectic matrix can
be written as M = K AN where K ∈U (n) = O(2n)∩Sp(2n), A is diagonal with
diagonal terms (a1, ..., an , a−1

1 , ..., a−1
n ) and N symplectic and upper triangular,

with 1 on the diagonal.

HINT. In view of Proposition 2.44, (1) it is enough to deal with the case of a
symmetric, positive symplectic matrix.

(18) (a) Prove that any invertible matrix M can be written as D ·U where D ·U =
U ·D , and D is semi-simple (we say that a matrix is semi-simple if it can
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be diagonalized in the algebraic closure of the field13) and U is unipotent
(i.e. (U − Id)k+1 = 0 for some k ≥ 0). This decomposition is unique (and is
called the Dunford or Jordan-Chevalley decomposition14). (see any clas-
sical algebra book, for example [Lan02])

(b) (see [CD77], lemma 1.1) Prove that when M is symplectic, then D and U
are symplectic.

HINT. Set D ′ = J−1(D∗)−1 J ,U ′ = J−1(U∗)−1 J and prove that D ′,U ′ are re-
spectively semi-simple and unipotent and D ′U ′ =U ′D ′ = M.

(c) Prove that if a symplectic matrix is semi-simple, then we can write it, up
to a symplectic base change, as a diagonal of blocks of the following types:

(i)

(
1 0
0 1

)
(ii)

(−1 0
0 −1

)
(iii) Rθ =

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)

(iv) Mr,θ =


r cos(θ) −r sin(θ) 0 0
r sin(θ) r cos(θ) 0 0

0 0 r−1 cos(θ) −r−1 sin(θ)
0 0 r−1 sin(θ) r−1 cos(θ)


7.3. Complex aspects of linear symplectic geometry.

(19) (Isotropic subspaces of hermitian forms) This is a standard theory for qua-
dratic forms, that we need in the hermitian setting in Section 4.1.
(a) Prove (or lookup in [Art57]) the analogue of Witt’s theorem for a hermitian

form: given W1 ⊂ (V1,h1) and W2 ⊂ (V2,h2) and an isometry u : W1 −→W2,
then u extends to an isometry U : (V1,h1) −→ (V2,h2).

(b) Prove that all maximal isotropic subspaces (i.e. spaces where h vanishes)
in (V ,h) have the same dimension, equal to min(p, q) where (p, q) is the
signature of h.

(20) (Contractibility of tame complex structures) Let (V ,ω) be a real symplectic vec-
tor space. Let L0 be a fixed Lagrangian subspace.
(a) Prove that J is determined by L J = JL0 ∈ ΛL0 (V ,ω) and by the isomor-

phism J : L0 −→ JL0 satisying ω(J x, x) > 0 for x ̸= 0.

13This is not the official definition, which would be that any invariant subspace has an invariant
complement. The two properties are however classically equivalent.

14In fact this is usually written as M = D + N with N nilpotent (see [Lan02], p. 559.), but we can
rewrite it as D(I +D−1N ) and U = I +D−1N is unipotent. Chevalley in [Che51] shows that one can
recover D and N by a Newton-type algorithm, without actually computing the eigenvalues of M
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(b) Conversely prove that given L ∈ΛL0 (V ,ω) and an isomorphism F : L0 −→
L such thatω(F x, x) > 0 for x ̸= 0, we can find J tame such that L = JL and
F = J|L0 . Prove that such a J is unique.

(c) Writing ω(x, y) = (
J0x, y

)
prove that ω(F x, x) > 0 for x ̸= 0 is equivalent

to F∗ J0 is positive (a matrix -non-necessarily symmetric- is positive if
(M x, x) > 0 for all x ̸= 0).

(d) Using the fact that ΛL0 (V ,ω) is contractible, and J 7→ JL0 is a fibration of
the space J̃ (ω) of almost complex structures tame with respect toωwith
contractible fiber, prove that J̃ (ω) is contractible.

REMARK 2.63. The above proof can also be adapted to the case of compat-
ible almost complex structures.

(21) Let L,L′ be Lagrangian subspaces in (V ,ω). Prove that there is a symplectic
basis (e1, ..,en , f1, .., fn) of (V ,ω) such that L has basis (e1, ...,ek ,ek+1, ...,en) and
L′ has basis ( f1, ..., fk ,ek+1, ..,en).

(22) (Pfaffian) Let (•,•) be a symmetric non-degenerate product on the K-vector
space V . Let A be a skew-symmetric matrix (i.e. t A = −A). We shall write
ωA(x, y) = (

Ax, y
)
.

(a) Prove that ωA is skew-symmetric, and it is symplectic if and only if A is
invertible

(b) Prove that if V is odd-dimensional, then det(A) = 0. From now on we
assume V has dimension 2n and A is invertible.

(c) Let J be written in an orthonormal basis as a diagonal of blocs of the form(
0 −1
1 0

)
and indicate by σ the corresponding symplectic form. Prove that

if ωA(x, y) =σ(P x,P y) - we shall write ωA = P∗σ- then det(A) = det(P )2.
(d) Prove that if ωA = P∗σ then ωn

A = P∗σn = (n!)det(P )e∗
1 ∧ ...∧ e∗

2n where
(e1, ...,e2n) is an orthonormal basis and (e∗

1 , ...,e∗
2n) the dual basis.

(e) Conclude that there is a polynomial in the coefficients of A, denoted
P f (A), such that det(A) = P f (A)2.

(f) Prove that P f (A) is a polynomial with integral coefficients in the coeffi-
cients of A

HINT. Choose ti , j to be independent variables for i < j and set A = (ai , j )
with ai , j = ti , j for i < j , ai ,i = 0 and ai , j =−t j ,i for j < i . Set K=Q(ti , j ) be
the field of fractions of the ti , j (its elements are quotients of rational poly-
nomials in the ti , j ). Use the previous result to prove that det(A) = R(ti , j )2

with R(ti , j ) ∈Q(ti , j ). Use the fact thatZ[ti , j ] is a Unique Factorization Do-
main (see e.g. [Lan02] p. 111 and 183) to prove that since det(A) ∈ Z[ti , j ]
the same holds for R.
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(23) Let E be a complex vector bundle and E the complex vector bundle having
the same underlying real bundle, but with complex structure −J . Using your
favourite defintion of the first Chern class, prove
(a) we have c1(E) =−c1(E)
(b) if E =V ⊗C then 2c1(E) = 0

7.4. The structure of the symplectic group.

(24) (The structure of Sp(2n,K)) A shear map is a map of the type S(x) = x+m(x)·v
where m is a linear form and v a fixed vector.
(a) Prove that a shear map is symplectic if and only if m(x) = c ·ω(v, x). We

den ote such a map by Sc,v .
(b) Prove that for a shear map Sc,v (defined by Sc,v (x) = x + cω(v, x)v) the

vector v is given by Ker(Sc,v − Id) = (Kv)ω or Im(Sc,v − Id) =Kv .
(c) Prove that Sc,v and Sd ,w commute if and only if ω(v, w) = 0. We shall call

T the subgroup of Sp(2n,V ) generated by shear maps.
(d) Let x, y be such thatω(x, y) ̸= 0. Prove that there is a shear map sending x

to y .
(e) Prove that for all x, y in V , there is a composition of two shear maps send-

ing x to y , so that T acts transitively on V .
(f ) Prove that T acts transitively on pairs of vectors such that ω(x, y) = 1.
(g) Let M ∈ Sp(2n,K). Prove that there exists z such that ω(z, x) = 1 and an

element S in T such that Sx = M x and Sz = M z.
(h) Prove by induction on the dimension that any M ∈ Sp(2n,K) is a product

of shear maps (and in fact at most 2n of them).
(i) Prove by induction that unless n = 1,K = F3 (we excluded15 the case K

has characteristic 2) the subgroup of commutators in Sp(2n,K) contains
all shear maps, hence is equal to Sp(2n,K). Deduce Hint:

(j) Show that Sp(2n,K) is uniformly perfect, that is any element is the prod-
uct of a uniformly bounded number of commutators.

(25) (Simplicity of the projective symplectic group16, see [Die48]) We want to use
the previous exercise to prove that PSp(2n,K) = Sp(2n,K)/{±Id} is a simple
group. Let N be a normal subgroup of Sp(2n,K) not contained in {±Id}. .
(a) Prove the relation [ f , g ][g ,h f h−1] = f [g , [ f −1,h]] f −1

(b) Let v ̸= w and consider the shear maps Sc,v ,Sd ,w . We want to prove
that [Sc,v ,Sd ,w ] = Sc,v ◦ Sd ,w ◦ S−1

c,v ,◦S−1
d ,w ∈ N . Let h ∈ N be such that

ω(v,h(w)) = 0. Using the above relation, and the fact that if h ∈ N and
f ∈ Sp(2nK) we have [ f ,h] ∈ N prove that [Sc,v ,Sd ,w ] ∈ N .

(c) Prove that for given h ̸= ±Id and any v, w ∈ R2n non colinear, there is a
map g in T such that ω(g (v),h(g (w))) = 0.

15In fact ifK has characteristic 2, only Sp(2,F2) and Sp(4,F2) are not perfect. See [OMe78], p.
16Our proof is inspired from [CHS20] itself inspired by the classical works of Fathi, Epstein, Higman.
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HINT. Let y be such that h(y) is non-colinear to y. Let x ∈ h(y)ω be non-
colinear to x such that ω(x, y) = ω(v, w). Since according to Witt’s theo-
rem, Sp(2n,K) acts transitively on pairs of vectors with the same symplec-
tic product, we can find g ∈ Sp(2n,K) such that g v = x, g w = y.

(d) Prove that unless n = 1,K= F3, Sp(2n,K) is a simple group.

(26) (The structure of Sp(2n,K), II) Let M =
(
Idn A

0 Idn

)
be a 2n ×2n matrix where

we decompose K2n = H ⊕V , where H ,V are Lagrangian subspaces, and M :
H −→V is a linear map. We shall identify V to H∗ via the map x 7→σ(x,•).
(a) What is the condition on A so that M is in Sp(2n,K) ?
(b) Describe the set of symplectic maps which preserve H

(27) (Conformal symplectic maps) Let C Sp(2n,K) be the group of conformally
symplectic maps, that is maps such that σ(C x,C y) = k(C )σ(x, y) for all x, y ,
with k(C ) ̸= 0.
(a) Prove that C Sp(2n,K) ≃K∗Id×Sp(2n,K).
(b) Show that the Lie algebra csp(2n,R) of C Sp(2n,R) is given by the set of

matrices satisfying σ(Ax, y)+σ(x, Ay) = k(A)σ(x, y) for some k(A) ∈R.
(c) We assume from now on that K = R. Prove that the characteristic spaces

of C ∈C Sp(2n,R) satisfy Eλ = Ek(C )/λ = Ek(C )/λ̄ and those of A ∈ csp(2n,R)
satisfy Eλ = Ek(A)−λ = Ek(A)−λ̄

(28) Prove that if the eigenvalue λ of M ∈ Sp(2n,K) has Krein type (p, q) then λ has
Krein type (q, p).

7.5. Hotchpotch.

(29) (Symplectic reduction of ellipsoids) Let Q be a positive definite quadratic form
on (R2n ,σ). We want to prove that Q can be reduced to the form

∑n
j=1

1
r 2

j
(x2

j +
y2

j ) where (x1, ..., xn , y1, ..yn) are symplectic coordinates (i.e. σ = ∑n
j=1 d x j ∧

d y j ) and r j ∈R∗+.
(a) Prove that this is equivalent to showing that given the standard scalar

product (•,•) and a symplectic form,ω, we can find real numbers (a1, ..., an)
and an orthonormal basis (e1, ...,en , f1, ..., fn) such thatω=∑n

j=1 a j e∗
j ∧ f ∗

j .
(b) We denote by (•,•) the scalar product defined by Q and define A byω(x, y) =(

Ax, y
)
. Prove that A is a skew-symmetric matrix (i.e.t A =−A) and that if

A preserves some vector space S then it preserves S⊥ (this is a standard
argument for normal operators i.e. operators commuting with their ad-
joint)

(c) Prove that for A as above, there is always a 2-dimensional invariant sub-
space for A and we can find an orthonormal basis (e, f ) of S such that
ω|S = ae∗∧ f ∗

HINT. Look for a complex eigenvector of A.
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(d) Conclude by induction.
(e) Show that any ellipsoid in E can be reduced through a symplectic map to

the standard

E(r1, ...,rn) = {(x1, y1, .., xn , yn) |
n∑

j=1

1

r 2
j

(x2
j + y2

j ) ≤ 1

(f) Prove that the (a1, ..., an) are unique, up to permutation. Hint: Assuming
a1 ≤ a2 ≤ . . . ≤ an , Show that an−k ...an is equal to the the maximal vol-
ume (for ωk ) of a 2k-dimensional unit cube (for k = n this is Hadamard’s
inequality, then argue by induction).

(g) Prove (e.g. by induction) that the symplectic maps preserving E(r1, ...,rn)
for r1 < ... < rn are reduced to products of rotations in the planes (e j , f j )

Remark: the situation is much more complicated for non-definite quadratic
forms (see [Wil36; Hör95] and [Arn97], p.381 )

(30) Show that Exercise 29 can be translated to the following:
(a) Let A be a positive definite matrix. Prove that there exists S ∈ Sp(2n,R), D

a diagonal complex matrix (i.e. commuting with J ) such that A = S∗DS.
(b) Show that this implies that for T ∈ SL(2n,R), there exists S ∈ Sp(2n,R) and

O ∈O(2n,R) and a diagonal complex matrix D such that T =ODS

HINT. (see [AO06], also for some applications) Let T ∗T = S∗DS. Prove that
if B is the unit ball DS(T −1(B)) = B, hence there exists O ∈ O(2n,R) such
that O−1 = DST −1.

(31) (Linear non squeezing theorem) This Exercise makes use of Exercise 29. Let
T ∈ GL(2n,R) be an isomorphism such that whenever the ellipsoid E in R2n

has reduced form
∑n

j=1
1

r 2
j

(x2
j + y2

j ) ≤ 1 where r1 ≤ r2 ≤ ... ≤ rn then T E is an

ellipsoid with reduced form
∑n

j=1
1
s2

j
(x2

j + y2
j ) where s1 ≤ s2 ≤ ... ≤ sn , we must

have r1 = s1. We want to prove that then T is either symplectic or antisymplec-
tic. We shall assume we are in the non-trivial case n > 1.
(a) Prove that our assumption implies that a cylinder C (r ) = D2(r )×R2n−2

has for image by T a cylinder, symplectomorphic to C (r ).
(b) Prove that for S ∈ Sp(2n,R), the maximal affine subspaces contained in

S(C (r )) are the {z} ×V where V is symplectic of dimension 2n − 2 and
z ∈ S(D2(r )). Deduce that T sends a codimension 2 symplectic subspace
to a codimension 2 symplectic subspace.

(c) Prove by using the adjoint T ∗ of T that T ∗ sends a symplectic plane to a
symplectic plane.

(d) Prove that if T ∗ is neither symplectic nor antisymplectic, we can find a
pair of vectors u, v such that ω(u, v) = 1 and ω(Tu,T v) = 0.
Hint: Let e1,e2, f1, f2 be part of a canonical basis, we may assume a1 =



44 2. SYMPLECTIC LINEAR ALGEBRA

ω(Te1,T f1) ̸=ω(Te2,T f2) = a2. Thenω(aTe1+bTe2,cT f1+dT f2) = aca1−
bd a2.

(e) Conclude that T ∗ and hence T is symplectic or anti symplectic.
(32) (Convexity theorem for the moment map of a torus action) Let T be a finite

dimensional torus (i.e. T = (S1)d ) acting on the finite dimensional symplectic
space (V ,ω), that is a group morphism T −→ Sp(V ,ω). This is also called a
symplectic representation of T .
(a) Prove that there is a complex structure compatible with ω and preserved

by T . We denote this structure by i .
(b) Using the fact that irreducible representation of a torus are 1-dimensional

(on the complex numbers), prove that there is a symplectic decomposi-
tion V =V0⊕V1⊕...⊕Vk where V0 is the set of fixed points (i.e. x ∈V0 if and
only if g x = x for all g ∈ T ) and V j are two-dimensional, the action of T
on V j being given by (θ1, ...,θd ) (θ, v) 7→ e i 〈χ j ,θ〉v where θ = (θ1, ...,θd ) ∈ T ,
v ∈ V j and χ j ∈ Zd \ {0} for j ̸= 0 (we set χ0 = 0). The χ j are called the
weights of the representation.

(c) Prove that V0 is symplectic and that if the action is effective (i.e. the set
{g ∈ T | ∀v ∈V , g x = x} is finite) then dim(V ) ≥ 2d .

(d) Let Q be a non-degenerate quadratic form on V invariant by T . Prove
that we can write Q(v0, ..., vk ) = q0(v0) +∑d

j=1 a j |v j |2 where q0 is non-

degenerate and the a j are non-zero real numbers and |v j |2 =ω(i v, v) cor-
responds to the standard norm on V j .

(33) Prove that if K is coisotropic and transverse to a coisotropic C , then KC = (K ∩
C )/Cω is coisotropic.

(34) Using the fact that for a Lagrangian L in (V ,ω) the space ΛL(V ) is contractible,
prove, using the exact homotopy sequence of a fibration (see [Spa66], p. 377)
that for C coisotropic πk (ΛC (V )) ≃πk (Λ(C /Cω)).

(35) (Arf invariant) LetK be a commutative field of characteristic 2. Note that sym-
metric or skew-symmetric forms are then equivalent objects, and we call such
an object a form. However what follows classically belongs to the theory of
quadratic forms. Notice also that the only place in Section 1 where we used the
fact that the characteristic ofK is different form 2 is to claim thatω(x, x) = 0. A
quadratic form on aK-vector space is a map q :K−→K such that there exists
a bilinear form a such that q(x) = a(x, x). We now associate to such a qua-
dratic form 17 the bilinear form b(u, v) = q(u+v)−q(u)−q(v). We notice that
b(u,u) = 0 (so b is alternating).
(a) Prove that there is a decomposition for the bilinear from b of V as a direct

sum of kerb and the (V j )1≤ j≤k where V j is 2-dimensional and there is a
basis (u j , v j ) such that b(u j , v j ) = 1.

17the usual bilinear form associated to a quadratic form is given by 1
2 (q(u + v)−q(u)−q(v)) but of

course the factor 1
2 makes it useless in characteristic 2.
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(b) Prove that the decomposition above is also an orthogonal decomposition
of q as a sum of q0 on ker(b) and of q j on V j . In other words we can write
x = x0+x1+ ...+xk , y = y0+y1+ ...+yk with x0, y0 in Ker(b), x j , y j ∈V j and

q(x, y) = q(x0, y0)+ ...+q(xk , yk )

(c) Prove that on ker(b), we can find a basis such that q0(x1e1 + ...+ xses) =
c1x2

1 + ....+ cs x2
s

(d) Prove that we may, up to a linear change of variables, assume q j (su j +
t v j ) = a j s2 + st +b j t 2

(e) Prove that if U is the additive subgroup ofK of elements of the form x+x2,
then a j b j mod U does not depend on the choice of the basis and that if
K= F2, U = {0} then this number is equal to the prevailing value taken by
q j on V j \ {0} (note that Card(V j \ {0}) = 3)

(f) Prove that if F2r is the unique field with 2r elements, we have an exact se-
quence of additive groups 0 −→ F2 −→ F2r −→U −→ 0 given by the maps
z 7→ z ·1 and x 7→ x2+x, so whenK is a finite field, we have F2r /U ≃Z/2Z.

(g) Prove that Arf(q) = ∑k
j=1 a j b j and is a well defined invariant of the qua-

dratic form whenK= F2r

(h) Prove that in general Arf(q) is well defined as an element ofKmodulo U .

7.6. Heisenberg group and Fourier transform.

(36) (Heisenberg group and representation, see [How80]) Let (V ,ω) be a symplectic
space and H(V ) be the Heisenberg group defined as the space V ⊕K ·E (E is a
formal element) endowed with the group law

(v, t )⋆ (v ′, t ′) = (v + v ′,
1

2
ω(v, v ′)+ t + t ′)

(a) Prove that H(V ) endowed with the above law is indeed a group
(b) Prove thatK ·E is the centre of H(V )
(c) Let χ :K−→C∗ be an additive unitary character of K (i.e. such that χ(t +

t ′) =χ(t )χ(t ′)). Prove thatχhas a unique unitary extension to H(V ) where
K is mapped in H(V ) as its center(i.e. by t 7→χ(t )E ).

(d) Prove that if X is a vector subspace of V , then X ⊕K is an abelian sub-
group of H(V ) if and only if X is isotropic. Prove that maximal abelian
subgroups of H(V ) are in one to one correspondance with the Lagrangian
subspaces of (V ,ω).

(e) Let (e1, ...,en , f1, ... fn) be a canonical basis of (V ,ω) and identify V to V ⊕
0 ⊂ H(V ). Prove the Heisenberg commutation relations ei ⋆ f j − f j ⋆ ei =
δ

j
i E

(f) Prove that the conformal symplectic group C Sp(V ,ω) is contained in Aut (H(V )).
(g) Prove that the inner automorphisms are given by (v, t )⋆ (w, s)⋆ (v, t )−1 =

(w, s +ω(v, w))
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(h) Prove that Aut (H(V )) is generated by the conformal symplectic group,
C Sp(V ,ω) and the inner automorphisms.

(i) Let H = L2(Rn) and let A be the algebra of unbounded operators on H .
Set Q(e j ) f = x j · f ,Q( f j ) f = −i ∂

∂x j
f . Then Q is a representation of H(V )

into the algebra A .
(37) (see [Wei64]) Let G be an abelian locally compact group noted additively. We

denote by Ĝ the Pontryagin dual of G that is the set of groups morphisms from
G to T = S1 = {t ∈ C | |t | = 1}. The pairing between Ĝ and G is denoted by

〈x∗, x〉. Then the map G −→ ̂̂G given by x 7→ (x∗ 7→ 〈x∗, x〉) is an isomorphism
(Pontryagin duality).

For G , H locally compact abelian groups, a bicharacter is a map χ : G ×
H −→ T such that the maps x 7→ χ(x, y) and y 7→ χ(x, y) are characters (of
G and H respectively). We have natural bicharacters on G × Ĝ given by the
formulas

λ((x, x∗), (y, y∗)) = 〈y∗, x〉
B((x, x∗), (y, y∗)) = 〈y∗, x〉 · 〈x∗, y〉−1

A quadratic character ξ : G −→ T is a continuous map such that

ξ(x + y)ξ(x)−1ξ(y)−1

is a bicharacter.
We define H(G), the Heisenberg group of G , to be G ×Ĝ ×T with the law

(x, x∗, s)⋆ (y, y∗, t ) = (x + y, x∗+ y∗, s · t · 〈y∗, x〉)
(a) Prove that the above law makes H(G) into a group
(b) Prove that the set of maps from G×Ĝ to itself preserving B forms a group.

We call it the symplectic group of G ×Ĝ .
(c) Prove that if G = V is a real vector space, Ĝ can be identified to V ∗ with

v∗ corresponding to v 7→ e2iπ〈v∗,v〉 and then H(G) = H(V )/Z where H(V )
has been defined in Exercise 36 and Z acts on the center R of H(V ).

(d) Prove that if G = V is a real vector space, bicharacters are of the form
(x, y) 7→ e2iπb(x,y) where b is a bilinear form and a quadratic character is
of the form ξ(x) = e2iπQ(x) where Q is a quadratic form on V .

(e) Prove that if G = Rn ×T q (where T q is the q-fold product of T = S1), a
quadratic character is of the form ξ(x, y) = e2iπQ(x)χ(x, y) where Q is qua-
dratic on Rn and χ is a character of Rn ×T q (that is of the form (x, y) 7→
e2iπ(〈x∗,x〉+〈y∗,y〉) where x∗ ∈ (Rn)∗, and y∗ ∈Zq ).

(f) Prove that the center of H(G) is {(0,0, t ) | t ∈ T } that we shall identify to T .
(g) Prove that an automorphism of H(G) induces either t 7→ t or t 7→ t−1 on T
(h) We denote by A0(G) the group of automorphisms of H(G) inducing the

identity on T . Prove that such an automorphism descends to a symplectic
map of G ×Ĝ
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(i) Given a symplectomorphism u of G ×Ĝ prove that the automorphisms of
H(G) lifting u are of the form (z, t ) 7→ (u(z), f (z) · t ) where f satisfies

f (z1 + z2) f (z1)−1 f (z2)−1 =λ(u(z1),u(z2))λ(z1, z2)−1

(j) Prove that f is a quadratic character of G .
(k) A classical result of A. Weil [Wei40] (see also [Car40] for a proof without

the axiom of choice) claims that G has a Haar measure, that is a a regu-
lar, locally finite Borel measure invariant by translation, and that such a
measure is unique up to a positive scalar factor. We denote it by d x. It
then makes sense to define L2(G ,C) where the Haar measure is under-
stood. Prove that there is a representation of H(G) in L2(G ,C) defined by
the formula:

(U (x, x∗, t )ϕ)(z) = tϕ(z +x)〈x∗, x〉
(l) Let F : L2(G) −→ L2(Ĝ) be the Fourier transform:

(Fϕ)(x∗) =
∫

G
ϕ(x) · 〈x∗, x〉d x

(m) Prove that for suitable choices of Haar measures on G and Ĝ (i.e. adjusting
the scalar factors), the Fourier transform is an isometry.

HINT. Prove this for a a dense subsets of functions, like compact supported
ones.

(n) Let ρ be a morphism18 from G to Ĝ . Prove that f (x) = 〈ρ(x), x〉 is a qua-
dratic character.

(o) Assume ρ is an isomorphism from G to Ĝ and fρ be the corresponding
quadratic character on G . We also denote by gρ the bicharacter gρ(x∗) =
〈x∗,ρ−1x∗〉−1 on Ĝ . Prove that there exists a unique constant |ρ| such that
the following change of variable formula holds

|ρ|
∫

G
ϕ(ρx)d x =

∫
Ĝ
ϕ(x∗)d x∗

(p) We have for ϕ ∈S (G) the Schwartz space, the formula

F (ϕ∗ fρ)(x∗) =µ( f )|ρ|−1/2F (ϕ)gρ(x∗)

where µ( f ) has modulus 1 and ϕ∗ψ(y) = ∫
G ϕ(x)ψ(y − x)d x. This is for-

mally rewritten as

F ( fρ)(x∗) =µ( f )|ρ|−1/2 fρ(ρ−1x∗)−1

(q) Deduce the formula∫
G

(∫
G
ϕ(x − y) f (y)d y

)
d x =µ( f )|ρ|−1/2

∫
G
ϕ(x)d x

18Caveat: there does not always exist a non-trivial one ! For example for G = S1.
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Note thatµ( f ) can be obtained by applying this formula to anyϕprovided
it has nonzero integral.

(r) Apply the above to the case G =R as a real vector space, and f (x) = e iπax2

and ϕ(x) = e−πx2
.

HINT. Note that the Fourier transform of e− aπx2

2 is e−πx2

2a . One can write
(first changing variable to z = y −x)

Check !!

∫
R

∫
R

e−π(x−y)2
e iπy2

d xd y =
∫
R

∫
R

e−πz2
e iπ(z+x)2

d xd z =∫
R

e iπx2
(∫
R

e2iπzxe−πz2
d z

)
d x
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8. Comments

All of the linear algebra is classical. The term “symplectic” was coined by Herman
Weyl in 1939 (see [Wey39]) to replace the term “complex” that was previously used and
was a source of confusion19. A more detailed study of symplectic linear algebra can be
found in [Art57], including the structure of the symplectic group, outlined in Exercise
24 and due to Dieudonné ([Die48]) and more advanced material is in [OMe78]. The
reduction theory of symplectic maps in the semi-simple case (i.e. no Jordan block) is
classical, and the general case is rather delicate (see [Wil36; LM74; Gut14]. The results
from Krein’s theory are due to Krein ([Kre50] ) and are very useful in stability questions
in mechanics but also in computations of the Conley index for iterations (already in
[Bot56; Edw64] in the case of geodesics, and [Eke84; Vit89] in the general case. Modern
treatments and applications can be found in the books by Ekeland, Long or Abbondan-
dolo (see [Eke90; Lon02; Abb01]). We shall see in Chapter ?? how this theory is related
with iteration formulas for the Conley-Zehnder index (see [CZ84]). The Pfaffian from
Exercise 22 goes back to Cayley in [Cay49]. The emphasis on symplectic reduction,
is due to Weinstein in [Wei71; Wei77]. Witt’s theorem is from [Wit37] in 1937 and is
a basic tool in the theory of quadratic form that we shall encounter again in Chapter
??, Exercise ?? and Exercise ??. We refer to [Ker00] for a short biography of Ernst Witt.
Exercise 35 is about the work of the Turkish mathematician Cahit Arf ([Arf41]), repre-
sented since 2009 on the 10 liras turkish banknote. Both Witt and Arf were in Göttingen
around 1936-38. Arf first went to study in France, with a scholarship to attend Ecole
normale supérieure. After returning to Turkey, he went to Göttingen for his PhD under
the direction of Hasse. At the same time, since Emmy Noether had been expelled from
the university by the Nazis, her student, Witt became Hasse’s assistant(see [LR10]). So
all this aspect of the theory of quadratic forms appeared around 1937-39 even though
Arf’s paper was finally published in 1941 (and 1943 for the second part).

Exercise 32 is the beginning of the proof of the convexity theorem of Atiyah and
Guillemin-Sternberg (see [Ati82; GS82]) has its origin in Kostant’s convexity theorem
concerning the Iwasawa decomposition (see [Kos73]). Exercise 36 is from the first
pages of [LV80].

19The name “complex group” formerly advocated by me in allusion to line complexes, . . . has become
more and more embarrassing through collision with the word “complex” in the connotation of complex
number. I therefore propose to replace it by the Greek adjective “symplectic.” ([Wey39] p.165)





CHAPTER 3

Symplectic differential geometry

If God really exists and if he really has created the world, then,
as we all know, he created it in accordance with the Euclidean
geometry, and he created the human mind with the
conception of only the three dimensions of space. And yet
there have been and there still are mathematicians and
philosophers, some of them indeed men of extraordinary
genius, who doubt whether the whole universe, or, to put it
more wildly, all existence was created only according to
Euclidean geometry and they even dare to dream that two
parallel lines which, according to Euclid can never meet on
earth, may meet somewhere in infinity. I, my dear chap, have
come to the conclusion that if I can’t understand even that,
then how can I be expected to understand about God?

Brothers Karamazov, F. Dostoievsky (1880)

1. Basic results of differential geometry

1.1. Basic facts about differential forms. Remember that the vector space of p-
forms on a smooth manifold M is the set of sections of the vector bundle Λp (T M),
such that (Λp (T M))x =Λp (Tx M), the space of exterior p-forms on Tx M . We denote by
Ωp (M) this vector space. There are two main operations on Ω∗(M) =⊕n

p=0Ω
p (M):

(1) the wedge product ∧, sending Ωp (M)⊗Ωq (M) to Ωp+q (M)
(2) The exterior differential d sending Ωp (M)to Ωp+1(M)

They satisfy the basic properties

(1) α∧β= (−1)deg(α)deg(β)β∧α
(2) d(α∧β) = dα∧β+ (−1)deg(α)α∧dβ

In local coordinates x1, ..., xn we have the 1-forms d x j , differentials of the coordi-
nates functions x j , and a general p-form can locally be written as∑

1≤i1<..<ip≤n
ai1..ip (x)d xi1 ∧ ...∧d xip

where the ai1..ip (x) are smooth functions. From this and a partition of unity argument,
it easily follows that the (anti-commutative, or graded commutative) algebra Ω∗(M) is

51
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generated by its element of the form f ∈Ω0(M) =C∞(M ,R) and d f ∈ dΩ0(M) ⊂Ω1(M).
There are also

(1) The interior product operation, associating to a vector field X the operator iX :
Ωp (M) −→Ωp−1(M) given by (iXα)(x)(v1, ...., vp−1) =α(x)(X (x), v1, ...., vp−1) It
satisfies iX (α∧β) = iXα∧β+ (−1)deg(α)α∧ iXβ.

(2) The pull-back associating to a smooth map f : M −→ N the operator f ∗ :
Ω∗(N ) −→Ω∗(M) defined by f ∗α)(x)(v1, .., vp ) =α( f (x))(d f (x)v1, ...,d f (x)vp )

If ϕt is the flow of the time dependent vector field X t (x) we have the Cartan formula1

d

d t
(ϕt )∗|t=t0

α= (ϕt0 )∗(diX + iX d)α

We denote by LX the operator diX + iX d . The operator LX also applies to vector fields
by the formula

LX Y = d

d t
(ϕt )∗Y|t=0

where ϕ∗(Y ) = dϕ(x)−1Y (ϕ(x)). Traditionally we set [X ,Y ] = LX Y and is called the Lie
bracket. It satisfies the Jacobi identity (see Exercise 18) :

[X , [Y , Z ]]+ [Y , [Z , X ]]+ [Z , [X ,Y ]] = 0

Finally we have for all smooth vector fields X ,Y the formula

LX iY − iY LX = i[X ,Y ]

as well as Palais’s formula

dω(X1, .., Xp+1) =
p+1∑
j=1

(−1) j+1LX jω(X1, ..., X̂ j , .., Xp+1)+ ∑
j<k

(−1) j+kω(LX j Xk , X1, .., X̂ j , ..., X̂k , ...Xp+1)

Here is a useful extension of the Cartan formula

PROPOSITION 3.1. Let X ,Y be smooth manifolds and f : X×]−ε,ε[−→ Y a smooth
map and α a differential form on Y . Then denoting by ft the restriction of f to {t }×X

d

d t
f ∗

t (α)|t=0 = f ∗
0 (i ḟ0

dα+d(i ḟ0
α))

where ḟ0(x) = ∂ ft
∂t (x)|t=0 ∈ TxY , and f ∗

0 (i ḟ0
α) = α( ft (x))( ḟ0(x),d f0(x)ξ1, ...,d f0(x)ξp )

and f (
0 dα) = d f ∗

0 (α)

PROOF. This is obtained by applying the formula for X = ∂
∂t to f ∗α and using that

i ∂
∂t

f ∗α= i ḟt
α.

□

1Named after Élie Cartan (1869-1951). All other references to Cartan in this book refer to his son,
Henri Cartan (1904-2008).
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1.2. Basic facts of differential geometry. Let M be a manifold. We endow it with a
Riemannian metric denoted by g , or for v, w ∈ Tx M we write g (x)(v, w) = 〈v, w〉x . This
defines geodesics (see Exercise 42 for a symplectic viewpoint) and an exponential map
defined for v ∈ Tx M by the property that t 7→ exp(t v) is the unique geodesic starting
from x with speed v . We assume (M , g ) is complete, so by Hopf-Rinow’s theorem, this
is defined for all t .

1.2.1. Tubular neighbourhood theorem.

THEOREM 3.2. Let N be a closed submanifold of M. Let DνN = {(x, v) ∈ T M | x ∈
N , v ∈ (Tx N )⊥, |v | ≤ 1}. Given a positive function ε on N we set Uε(N ) = {exp(t v) | (x, v) ∈
DνN , |t | ≤ ε(x)}. Then for ε small enough, Uε(N ) is a neighbourhood of N in M, and any
neighbourhood of N in M contains such a neighbourhood.

1.2.2. Basic facts on vector fields. Let X (t , z) be a time dependent vector field on the
manifold M . We consider the equation ẋ(t ) = X (t , x(t )) with initial condition x(t0) =
u0. We endow the set of vector fields with the C p topology (p ≥ 1).

THEOREM 3.3 (Cauchy-Lipschitz). For each (t0,u0) there is a neighbourhood such
that the map (t0,u0, X ) 7→ x(t ) from ]t0−δ, t0+δ[×B(u0,δ)×B(X0,δ) −→C p+1(]t0−δ, t0+
δ[, M) is continuous. In particular the maximal existence time of a solution depends
continuously (as a map from M to ]0,+∞]) from the initial condition u0.

1.2.3. Frobenius’s theorem.

DEFINITION 3.4. A distribution D on a manifold M is given by the following data:
for each point x ∈ M we are given a subspace D(x) in Tx M such that in a neighbour-
hood of x there are k linearly independent vector fields X1, ...., Xk such that D(x) =
〈X1(x), ..., Xk (x)〉. In particular dim(D(x)) is locally constant.

A distribution is integrable if through each point x there is a submanifold Sx of M
such that for each x in S, TxS = D(x). The submanifold S (or rather the maximal ones
for inclusion) are called integral submanifolds.

DEFINITION 3.5. A foliation of M is a decomposition of M as a union of subman-
ifolds, such that locally there is a diffeomorphism ϕU : U −→ Rk ×Rn−k and each sub-
manifold S is such that

ϕ(S ∩U ) = ⋃
x∈SU

({x]×Rn−k ∩ϕ(U ))

and the right hand side is the decomposition of ϕ(S ∩U ) into connected components.

THEOREM 3.6 (Frobenius’s theorem). A distribution D is integrable if and only if
whenever X ,Y are vector fields tangent to D, we have that [X ,Y ] is tangent to D. In this
case the integral submanifolds constitute a foliation of M.

1.2.4. Basic facts about transversality. We shall only need the smooth case of Sard’s
lemma. Let f : M m −→ N n be a smooth map between manifolds. All “genericity”statements



54 3. SYMPLECTIC DIFFERENTIAL GEOMETRY

rely on Baire’s theorem that claims that in a complete metric space, a countable inter-
section of open dense sets is itself dense.

DEFINITION 3.7. We say that x is a critical point of f if rank(d f (x)) < min{m,n}.
We say that y ∈ N is a critical value of f if f −1(y) contains a critical point. If y is not a
critical value, we say it is a regular value.

DEFINITION 3.8. Let f : M m −→ N n be a smooth map between manifold and Y l a
submanifold of N . We say that f is transverse to Y (abbreviated as f ⋔ Y if at each point
x such that f (x) = y ∈ Y we have

d f (x)Tx M +T f (x)Y = T f (x)N

Note that even though a manifold has no canonical measure, stating that a set has
measure zero is a well-defined concept. A set A ⊂ N has zero measure if for any chart,
the image of A has measure zero. This notion is of course invariant by diffeomorphism.

THEOREM 3.9 (Sard’s lemma). The set of critical values of f ∈C∞(M , N ) has measure
zero. It is a countable union of closed sets of empty interior.

For the proof we refer to [Mil97]. We now set

DEFINITION 3.10. We define the equivalence relation on C∞(M , N ) as follows: for
f , g ∈ C∞(M , N ) we define f ≃

x,r
g means that f (z)− g (z) = o(d(x, z)r ). In other words,

in any local chart, f and g have the same Taylor expansion up to order r . We denote by
J k

(x,y)(M , N ) the set of k jets of maps sending x to y. Then J k (M , N ) the set of all k-jets of

maps form M to N is a bundle over X ×Y with fiber J k
(x,y)(M , N ).

One should be careful, given a chart, the Taylor expansion identifies J k
(x,y)(M , N )

with a vector space, but this identification is not natural : changing chart yields a dif-
ferent vector space structure (unless k = 1), so J k (M , N ) is not a vector bundle. The
main result we shall use is

THEOREM 3.11 (Thom transversality theorem, see [GG73], thm 4.9). Let W be a
smooth submanifold in J k (M , N ). Then the set

TW =
{

f ∈C∞(M , N ) | j k f ⋔W
}

is a countable intersection of open dense sets in C∞(M , N ) hence is dense. If W is com-
pact then TW is open.

PROPOSITION 3.12 (Morse lemma). A function is said to be a Morse function if for all
critical points d 2 f (x) is non-degenerate. Then Morse functions are generic in C∞(M ,R),
i.e. their complement is a countable union of closed sets of empty interior.

PROOF. Apply Thom’s theorem to J 1(M ,R) and W the set of jets of functions having
a critical point at x, or the set of jets of the constant functions. One checks that j 1 f ⋔W
if and only if f is Morse. □
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2. Definition and examples

DEFINITION 3.13. A two-formω on a smooth manifold M is symplectic if and only if

(1) ∀x ∈ M, ω(x) is symplectic on Tx M;
(2) dω= 0 (ω is closed).

EXAMPLES 3.14.

(1) (R2n ,σn) is symplectic manifold.
(2) (The cotangent bundle or the phase space of classical mechanics) If N is a

manifold, then

T ∗N = {(q, p)|p linear form on Tq M }

is a symplectic manifold. Let q1, · · · , qn be local coordinates on N and let
p1, · · · , pn be the dual coordinates. Then the symplectic form is defined by

ω=
n∑

i=1
d p i ∧d qi .

One can check that ω does not depend on the choice of coordinates and is a
symplectic form. Indeed, define a one-form, called the Liouville form

λ= pd q =
n∑

i=1
p i d qi .

It is well defined since if π : T ∗N −→ N is the projection, λ can be alternatively
defined by

λ(q, p)(ξ) = p ·dπ(ξ)

This makes sense since p ∈ T ∗
q N and dπ(q, p)ξ) ∈ Tq N . Then dλ=ω.

(3) Projective algebraic manifolds (or the space of Algebraic geometry)
The complex projective space, CP n is defined as the quotient of Cn+1 \

{0} by C∗ the action being by multiplication. We denote a point in CP n by
[z0, z1, ..., zn], with (z0, z1, ..., zn) ̸= (0,0, ...,0), so for any non-zero λ in C, we
have [λ · z0, ....,λ · zn] = [z0, ..., zn]. It has a canonical symplectic structure σF S

called the Fubini-Study form, defined by setting |z|2 =∑n
j=0 |z j |2 and

σ(z) = i

2|z|2
n∑

j=0
d z j ∧d z̄ j

This actually defines a symplectic form on Cn+1 \ {0} which is invariant by the
action ofC∗, so defines a 2-form onCP n . This can be seen in a slightly different
way, by considering CP n as the quotient of S2n+1 by the action of S1 given by

θ⋆ (z0, ..., zn) = (e iθz0, ....,e iθzn)

where
∑n

j=0 |z j |2 = 1. Then σ= i
2

∑n
j=0 d z j ∧d z̄ j =∑n

j=0 d x j ∧d y j is S1 invari-
ant, and clearly closed, so induces a closed form on the quotient CP n (this
is an example of Marsden-Weinstein reduction, see Chapter 4, Section 2). The
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vector field generating the S1 action is given by Xθ(z0, ..., zn) = (i z0, ..., i zn). The
tangent space to S2n+1 is given in complex notations2 by

T(z0,...,zn )S
2n+1 =

{
(ζ0, ...,ζn) | ℜ

(
n∑

j=0
z jζ j

)
= 0

}
The orthogonal H(z0,...,zn ) to Xθ in this tangent space is given by

H(z0,...,zn ) =
{

(ζ0, ...,ζn) | ℜ
(

n∑
j=0

z jζ j

)
= 0,ℜ

(
n∑

j=0
i z jζ j

)
= 0

}
={

(ζ0, ...,ζn) |
n∑

j=0
z jζ j = 0

}

This is a complex space, and these sub-bundles of the tangent bundle of S2n+1

are invariant by the S1-action. We can thus identify T[z0,...,zn ]CP n to H(z0,...,zn ).
Since multiplication by i and the S1 action commute, i defines a complex
structure on CP n that we shall denote J0. An alternative proof that CP n is a
complex manifold is by noticing that Cn+1 \{0} has a complex structure invari-
ant by the action of C∗. Since for ζ ̸= 0 we have σF S(ζ, J0ζ) = ∑n

j=0 |ζ j |2 > 0,
this yields a complex structure compatible with σF S . In particular σF S is non-
degenerate, hence symplectic.

Note that with this normalisation, the area of CP 1, that is
∫
CP 1 σ=π.

Now let V be a complex submanifold in CP n , that is such that its tangent
space TzV is a complex subspace of TzCP n . Then the restriction of σF B is of
course closed, and since for ζ ̸= in TzV we have again σF S(ζ, J0ζ) > 0 it is sym-
plectic. In particular when V is compact, Chow’s theorem (see [Cho49]) claims
that V is algebraic, i.e. defined by homogeneous polynomial equations. These
are called projective manifolds and are a special case of Kähler manifolds, de-
fined as complex manifolds having a complex structure and a hermitian met-
ric such that its imaginary part is symplectic.

REMARKS 3.15.

(1) For the above manifolds the symplectic form is often implicit, and we shall
write R2n instead of (R2n ,σn), T ∗N instead of (T ∗N ,dλN ). Again if M is a
symplectic manifold with symplectic form ωM we write M for the symplectic
manifold (M ,−ωM ).

(2) Standard conventions are often incompatible. On R2 we want a symplectic
form such that the standard circle with standard orientation has positive area
: we must choose d x ∧d y . On T ∗S1, we want that the circle p = 1 oriented
as its projection, has positive area: so we must choose d p ∧d x ! So again the

2for a complex number z, ℜ(z) and ℑ(z) are its real and imaginary part
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symplectic form on T ∗Rn and R2n have opposite signs. should have positive
area : ω= i

2 d z ∧d z.

DEFINITION 3.16. A submanifold V in symplectic manifold (M ,ω) is isotropic, La-
grangian or coisotropic if for each x ∈ V , TxV is respectively isotropic, Lagrangian or
coisotropic in (Tx M ,ω(x)).

EXAMPLES 3.17.

(1) A Lagrangian linear subspace in R2n is Lagrangian.
(2) Let α be a one-form on N . Then its graph

Gα = {(x,α(x)) | x ∈ N }

is a submanifold of T ∗N . The restriction of ΛN to Gα is is α (this is why λN

is sometimes called the tautological one-form), so (σN )|Gα = d(λN |Gα
) = dα.

So Gα is Lagrangian if and only if α is closed. Note that conversely, any La-
grangian submanifold of T ∗N that is a graph over N is of the form Gα with α

closed.
(3) Consider RP n ⊂CP n defined by

RP n = {[z0, z1, ..., zn] ∈CP n | ∀ j , z j ∈R}

thenRP n is a Lagrangian submanifold of (CP n ,σF S). This is in fact the case for
any fixed point set of an antisymplectic involution : let s : CP n −→ CP n given
by s([z0, , z1, ..., zn] = [z̄0, z̄1, ..., z̄n]. Then s satisfies s∗σF S = −σF S and RP n is
the fixed point set of s. As a result if i : RP n −→ CP n is the inclusion, since
s ◦ i = i , we have i∗(σF S) = i∗s∗(σF S) =−i∗σF S so i∗(σF S) = 0. The same argu-
ment show that if V (C) is the set of complex points of a real projective smooth
manifold, that is the set of complex zeros in CP n of a set of real homogeneous
polynomials, then V (R) the set of real zeros contained in RP n is a Lagrangian
submanifold.

(4) Let M be a submanifold in N . Then T ∗
N M = {(q, p) ∈ T ∗N | q ∈ M } is coisotropic.

The set
ν∗M = {(q, p) ∈ T ∗N | q ∈ M , p|Tq M = 0}

is a Lagrangian submanifold.
(5) Let π : P −→ N be a submersion. Then if Kπ is the set of cotangent vectors

vanishing on the fibers of π, that is

Kπ = {(y, py ) ∈ T ∗P | py = 0 onπ−1(π(y)}

then Kπ is coisotropic.

Finally we we shall often encounter symplectic maniflds such that ω = dλ. This
leads to

DEFINITION 3.18. (Exact symplectic and Lagrangian manifolds) An exact symplectic
manifold is a pair (M ,λ) such that dλ is a symplectic form. We often write (M ,dλ) even
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though λ is well determined. Given an exact symplectic manifold an exact Lagrangian
submanifold is a pair (L, fL) such that L is Lagrangian and λ|L = d fL .

When we talk about L being exact we do not need to specify fL , but λ must be
explicit : for example on (T 1 ×R,d(p ∧d x)) (i.e. λ = pd x) the curve p = 0 is an exact
Lagrangian, while on on (T 1×R,d((p +1)∧d x)) (i.e. λ= (p +1)d x) it is not, since d x is
not exact on S1.

Finally note that to carry a symplectic structure, there are two necessary require-
ments. We first set

DEFINITION 3.19. An almost complex structure on a manifold M is a smooth section
J of End(T M) such that for each z ∈ M we have J (z)2 = −Id. If (M ,ω) is a symplectic
manifold, the almost complex structure is said to be tame if for each z J (z) is tame for
ω(z) i.e. ω(Jξ,ξ) > 0 and compatible if moreover ω(Jξ, Jη) =ω(ξ,η).

PROPOSITION 3.20. For the smooth manifold M to carry a symplectic form, we must
have

(1) if M is compact, there must be a cohomology class u ∈ H 2(M ,R) such that un ̸= 0
in H 2n(M ,R)

(2) The tangent bundle to M must carry an almost complex structure

More precisely if (M ,ω) is a symplectic manifold, it carries a tame (or compatible) almost
complex structure and the set of such structures is contractible.

PROOF. The first condition is easy since ω being closed represents a cohomology
class, and since ω is symplectic, ωn is a volume form, hence in the compact case is
not exact. The second condition follows from the fact that acccording to Proposition
2.42, the set of compatible almost complex structures is contractible. Therefore the set
J (M ,ω) of compatible almost complex structures can be identified to the set of sec-
tions of a bundle with fiber over z ∈ M given by J (ω(z)) of compatible almost complex
structures on Tz M ,ω(z). We therefore are looking for the set of sections of a bundle
with contractible fibers, and this is a contractible set (in particular is non-empty). □

3. Moser’s lemma and the local triviality of symplectic differential geometry

We are going to prove that, contrary to the Riemannian case, symplectic manifolds
“have no local geometry”. In fact the closeness assumption on ω should be compared
to a flatness condition on a Riemannian metric. A very important tool, with applica-
tions reaching much beyond symplectic geometry is

LEMMA 3.21 (Moser, [Mos65]). Let N be a closed submanifold in M. Let ωt be a
family of symplectic forms defined on M such that ωt |T N is constant. Then there is a
diffeomorphism ϕ defined near N such that ϕ∗ω1 =ω0 and ϕ|N = i d |N . If M is closed,
the diffeomorphism is globally defined.
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PROOF. We will construct a time dependent vector field X (t , x) = X t (x) whose flow
ϕt satisfies ϕ0 = i d and (ϕt )∗ωt = ω0. Differentiating this equality, we see that this is
equivalent to

(
d

d t
(ϕt )∗)ωt + (ϕt )∗(

d

d t
ωt ) = 0.

Then

(ϕt )∗LX tωt + (ϕt )∗(
d

d t
ωt ) = 0.

Since ϕt is diffeomorphism, this is equivalent to

LX tωt + d

d t
ωt = 0.

Using Cartan’s formula LX = d ◦ iX + iX ◦d , we get

d(iX tωt )+ d

d t
ωt = 0.

Since ωt is non-degenerate, the map Tx M → (Tx M)∗ which maps X to ω(X , ·) is
an isomorphism. Therefore, for any one-form β, the equation iXω = β has a unique
solution Xβ. It suffices to solve for βt ,

dβt =− d

d t
ωt .

with the requirement that βt = 0 on TN M for all t , because we want ϕ|N = Id|N , that is
X t = 0 on N . On the other hand, the assumption thatωt =ω0 on T N implies ( d

d tωt ) ≡ 0
on T N . Denote the right hand side of the above equation by αt , then αt is defined in
a neighbourhood U of N . The solution βt is given by Poincaré’s Lemma on the tubular
neighbourhood of N . Here by a tubular neighborhood we mean a neighborhood of N
in M diffeomorphic to the unit disc bundle DνM N of νM N the normal bundle of N in
M (i.e. νM N = {(x, v) ∈ TN M | v ⊥ T N }).

LEMMA 3.22. (Parametrized Poincaré’s Lemma) Let p ≥ 1 and k 7→ αk be smooth
family of p-form on U , a tubular neighbourhood of N , parametrized by k ∈ K a compact
set. Assume that αk is closed and vanishes on T N , then there exists a smooth family of
(p −1)-form βk defined on a neighbourhood V of N such that

(1) αk = dβk

(2) βk vanishes on TN M

PROOF. We omit the parameter since our construction will obviously depend smoothly
on k. It is of course sufficient to prove this on the disc normal bundle of M , DνM N . We
denote by (x,ξ) an element in DνM N where x ∈ M ,ξ ∈ Dνx M . Consider the radial vec-
tor field X (x,ξ) = (0,−ξ) with flow rs(x,ξ) = (x,e−sξ). Note that lims→+∞ rs(x,ξ) = (x,0).
Now

d

d s
r ∗

s α= r ∗
s (LXα) = r ∗

s (diXα) = d(r ∗
s (iXα))



60 3. SYMPLECTIC DIFFERENTIAL GEOMETRY

so that

r ∗
uα−α= d

∫ u

0
r ∗

s (iXα)d s

To prove this we claim that

(1) lims→+∞ r ∗
s α= 0

(2) the integral
∫ +∞

0 r ∗
s (iXα)d s converges

First r ∗
s α(z)(v1, ..., vp ) =α(rs(z))(drs(z)v1, ...,drs(z)vp ) but lims→+∞ rs(x,ξ) = (x,0) and

lims→+∞ drs(x,ξ)(w,η) = (w,0), so if α vanishes on T N we indeed have lims→+∞ r ∗
s α=

0. For the second statement, we have

r ∗
s (iXα)(z)(v1, ..., vp−1) =α(rs(z))(X (rs(z)),drs(z)v1, ...,drs(z)vp−1) =

α(x,e−sξ)((0,−e−sξ), (w1,e−sη1), ..., (wp−1,e−sηp−1))

where v j = (w j ,η j ) so the last term is an 0(e−s) and the integral converges. As a result
the equality r ∗

s α−α = d
∫ s

0 r ∗
s (iXα) holds. Now on N we have iXα = 0 since X van-

ishes on N , hence β=−∫ +∞
0 r ∗

s (iXα)d s satisfies β= 0 on TNU and dβ= α. The same
argument proves the parametrized version. □

We may now conclude the proof of Moser’s lemma. Since ∂
∂tωt vanishes on T N

we may apply Poincaré’s lemma and get βt such that ∂
∂tωt +dβt = 0. Since ωt is non-

degenerate, we may find X t such that iX tωt = βt and X t is unique. Since βt vanishes
on TNU we have X t = 0 on N . This implies, possibly reducing U , that the flow ϕt

of X is defined for x, t as long as ϕt (x) belongs to U . But since X is continuous and
vanishes on N there is a neighbourhood U of N such that |X t (x)| ≤ C d(x, N ) on U .
Then d(ϕt (x), N ) ≤ eC t d(x, N ) so if U contains the set of points defined by d(x, N ) ≤
ε the flow ϕt is defined for 0 ≤ t ≤ 1 on the set defined by d(x, N ) ≤ e−Cε(x). This
concludes our proof. □

EXERCISES 3.23.

(1) (Homotopy formula) Prove that if ϕt is the flow of a time dependent vector
field X t (x), then for all α ∈Ωp (M) we have

(ϕ1)∗(α)− (ϕ0)∗(α) = dKXα+KX dα

where KXα= ∫ 1
0 (ϕt )∗iX tαd t .

(2) Apply the above for the flow of ∂
∂t on N×R and prove that if i0, i1 are the canon-

ical injection of N into N × {0} and N × {1} respectively, then

(i1)∗α− (i0)∗(α) = K dα+dKα

(3) Let F : N × [0,1] −→ M be a smooth map, let i0, i1 be the canonical injection of
N into N × {0} and N × {1} respectively, and f0 = F ◦ i0, f1 = F ◦ i1

f ∗
1 α− f ∗

0 α= dKFα+KF dα

where now KFα= K (F∗α).
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(4) Prove using the above lemma that if N is a submanifold of M , the relative de
Rham cohomology, H∗(M , N ), can be defined in three equivalent ways:
(a) As the set of closed forms vanishing on T N modulo the differential forms

vanishing on T N
(b) As the set of closed forms vanishing on TN M modulo the differential

forms vanishing on TN M
(c) As the set of closed form vanishing in a neighborhood of N modulo the

differential of forms vanishing near N .
(5) Prove that Moser’s lemma holds also if ωt is a family of volume forms.

Moser’s lemma has many applications in symplectic geometry. Let’s start with

PROPOSITION 3.24 (Darboux). Let (M ,ω) be a symplectic manifold. Then for each
z ∈ M, there is a local diffeomorphism ϕ from a neighborhood of 0 in (R2n ,σn) to to a
neighborhood of z0 in M such that ϕ∗ω=σ.

PROOF. According to Proposition 2.19 (1), there exists a linear map L : R2n → Tz M
such that L∗ω(z) = σ. Hence, using a local diffeomorphism ϕ0 : U → W such that
dϕ0(0) = L, where U and W are neighborhoods of 0 ∈ R2n and z0 ∈ M respectively, we
are reduced to the case whereϕ∗

0ω is a symplectic form defined in U andω(z0) = (ϕ∗
0 )σ.

Defineσt = (1− t )ϕ∗
0ω+ tσ in U . We readily see thatσt satisfies the assumptions of

Moser’s Lemma for N = {0}, therefore, there exists ψ such that ψ∗σ1 =σ0 and ψ(0) = 0,
i.e.

ψ∗σ=ϕ∗
0ω.

Then ϕ=ϕ0 ◦ψ−1 is the required diffeomorphism. □

EXERCISES 3.25.

(1) Prove that if (M ,ω) is a closed symplectic manifold and ωt is a smooth family
of symplectic forms such that [ωt ] ∈ H 2(M ,R) is constant, then there is a sym-
plectomorphism from (M ,ω0) to (M ,ω1). There are examples of continous
families of symplectic forms ωt (not in the same cohomology class) such that
ω0 and ω1 are non-symplectomorphic (see [McD87]).

(2) Let ω1, ω2 be symplectic forms on a connected closed surface. Then there
exists a diffeomorphism ϕ such that ϕ∗ω1 =ω2 if and only if

∫
ω1 =

∫
ω2.

Note that in contrast to the Riemannian case, where the neighbourhood of points
can be distinguished, for example in dimension a flat, positively or negative curved
surface do not have isometric neighborhoods, no such distinction is possible in sym-
plectic geometry. In fact the condition of being closed on the symplectic form is the
analogue of a flatness condition on a metric.

PROPOSITION 3.26 (Weinstein’s neighbourhood theorem). (Weinstein, see [Wei73a])
Let L be a closed Lagrangian immersed submanifold in (M ,ω). Then the immersion iL

extends to an immersion of a neighborhood of 0L ⊂ T ∗L where 0L = {(q,0)|q ∈ L} is the
zero section.
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PROOF. The idea of the proof is the same as that of Darboux Lemma, but the linear
argument requires to work on a vector bundle. Let TL M = {(x, v) ∈ T M | x ∈ L}. First,
for any x ∈ L, find a sub-bundle of TL M , V , such that the space V (x) in Tx M satisfies

(1) V (x) ⊂ Tx M is Lagrangian subspace;
(2) V (x)∩TxL = {0};
(3) the map x →V (x) is smooth.

For example if we define a compatible complex structure J on TL M , we see that J (x)TxL
satisfies (1), (2), and (3), so existence of compatible almost complex structures (see
Proposition 2.42) proves the existence of the sub-bundle V . An alternative approach
is to consider the bundle ΛH defined by ΛH (x) =ΛH(x)(Tx M) where ΛH(x)(Tx M) is the
set of Lagrangians subspaces transverse to H(x) = TxL. The spaceΛH (x) is contractible
according to Proposition 2.24 (1). So the bundle has a smooth section, and this defines
V (x). Abusing notations a little, we write L for the zero section in T ∗L. Denote by
TL(T ∗L) the restriction of the tangent bundle T ∗L to L. Denote by TL M the restriction
of the bundle T M to L. Both are symplectic vector bundles over L. For x ∈ L, their
fibres are

Tx(T ∗L) = TxL⊕Tx(T ∗
x L)

and

Tx M = TxL⊕V (x).

We then construct a bundle map A0 : TL(T ∗L) → TL M which restricts to identity on the
factor TxL and sends Tx(T ∗

x L) to V (x). Moreover, we require

ω(A0u, A0v) =σ(u, v),

where u ∈ Tx(T ∗
x L) = T ∗

x L and v ∈ TxL. We set A0 = id : TxL −→ TxL and then this
defines A0 uniquely becauseω identifies V (x) to the dual of TxL (see Exercise 2.26 (1)).
Then we can find ϕ0 from a neighborhood of L in T ∗L to a neighborhood of L in M
such that dϕ0|TL(T ∗L) = A0. This is done as follows, using the exponential map (for the
reader who has not seen the exponential map in Riemannian geometry, we refer to
Exercise 42)

TL(T ∗L)

exp
��

A0 // TL M

exp
��

T ∗L
ϕ

// M

By the construction of A0

ϕ∗
0ω=σ on TL(T ∗L).

Define

ωt = (1− t )ϕ∗
0ω+ tσ, t ∈ [0,1].
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ωt is a family of symplectic forms in a neighborhood of 0L : they are obviously closed,
and since they are non-degenerate on L they are still non-degenerate in a neighbour-
hood of L. Moreover, ωt ≡ ω0 on TL(T ∗L). By Moser’s Lemma, there exists Ψ defined
near 0L such that Ψ∗ω1 =ω0, i.e. Ψ∗σ=ϕ∗

0ω. Then ϕ0 ◦Ψ−1 is the diffeomorphism we
need. □

Note that the above theorem (in fact the first lines of its proof) imply

COROLLARY 3.27. Let L be a Lagrangian immersed submanifold in a symplectic
manifold M. Then its normal bundle νL is isomorphic to its tangent bundle.

PROOF. The almost complex structure J yields the isomorphism between TxL and
νxL = Tx M/TxL. □

For example if L has a Lagrangian immersion inR2n , we must have T L⊕T L = ε2n
R

. It
has been shown in [Aud88] that for n = 2 this implies that for L to be embedded L must
either either be a torus or a non-orentable surface of Euler characteristics divisible by
4. Givental in [Giv86] gave examples of such embeddings except for the Klein bottle.
Then non existence of a Lagrangian embedding of the Kelin bottle was proved much
later by Shevchishin in [She09b] (see also [Nem09]).

We thus proved that even in the neighbourhood of a Lagrangian there is no local
geometry. We can also describe all Lagrangians submanifolds near a given one: since
in T ∗L Lagrangians submanifolds close to the zero sections are graphs of closed one-
forms, Lagrangians near L will be obtained as images of closed one-forms by the sym-
plectomorphism of the above Proposition.

COROLLARY 3.28. Let L be a Lagrangian submanifold in (M ,ω). Consider Φ a sym-
plectomorphism given by Weinstein’s neighbourhood theorem from a neighbourhood of
0L in T ∗L to (M ,ω) sending OL to L. Then any Lagrangian C 1-close to L is of the form
Φ(Gα) where α is a closed 1-form on L.

The most general such “no local geometry” theorem of this kind is

THEOREM 3.29. (Darboux-Weinstein-Givental theorem a.k.a. non-linear Witt theo-
rem. See [Wei71], theorem 4.1 for a weaker version and [AG90] page 26).

Let S1,S2 be two closed submanifolds in (M1,ω1), (M2,ω2). Assume there is a diffeo-
morphism ϕ : S1 −→ S2 which lifts to bundle map

Φ : TS1 M1 −→ TS2 M2

coinciding with dϕ on the sub-bundle T S1, and preserving the symplectic structures, i.e.
Φ∗(ω2) =ω1. Then there is a symplectic diffeomorphism between a neighborhood U1 of
S1 and a neighborhood U2 of S2.

PROOF. Using the exponential map for some Riemannian metric (see Exercise 42),
we prove that there is a map Ψ : U1 −→ U2 sending S1 to S2 and such that DΨ :
TS1 M1 −→ TS2 M2 coincides with Φ. Then we consider the family of symplectic forms
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τt = (1− t )ω1 + tΨ∗ω2. This is a family of symplectic forms in a neighborhood of S1

since τt coincides with ω1 on TS1 M1. Now according to Moser’s Lemma, we can find a
diffeomorphism Ξt in a neighborhood of S1 such that Ξ∗

t (τt ) = τ0 =ω1. So for t = 1 we
get Ξ∗

1Ψ
∗(ω2) =ω1 and Φ◦Ξ1 is the symplectomorphism we are looking for. □

EXERCISE 3.30. Let I1, I2 be two diffeomorphic isotropic submanifold in (M1,ω1),
(M2,ω2). Let E1 = (T I1)ω1 /(T I1) and E2 = (T I2)ω2 /(T I2). Then E1,E2 are symplectic
vector bundles over I1 and I2. Show that I1 and I2 have symplectomorphic neighbor-
hoods if and only if E1

∼= E2 as symplectic vector bundles.

4. The groups DHam(M ,ω) and Diff(M ,ω)

According to Klein’s Erlangen’s program, geometry is the study of the symmetry
group of some structure. Let (M ,ω) be a symplectic manifold. The group playing the
first role here is

DEFINITION 3.31. The group of symplectic diffeomorphisms of the symplectic man-
ifold (M ,ω), denoted by Diff(M ,ω) is the set of diffeomorphisms satisfying ϕ∗ω=ω. We
denote by Diff0(M ,ω) the connected component of Id and Diffc (M ,ω) the set of compact
supported ones.

This is a huge group since it contains DHam(M ,ω), which we will now define.
Let H(t , x) be any smooth function on [0,1]× M and XH the unique vector field

such that3

ω(XH (t , x),ξ) =−dx H(t , x)ξ, ∀ξ ∈ Tx M .

Here dx means exterior derivative with respect to x only. From now on it will be under-
stood that d applies only to the spatial coordinates.

DEFINITION 3.32. Let H ∈C∞([0,1]×M ,R) and consider the vector field XH (t , x). It
is called the Hamiltonian vector field associated to H. If its flow from s to t , ϕ[s,t ]

H is well

defined for s = 0, t = 1 then ϕ1
H =ϕ[0,1]

H is called the Hamiltonian map associated to H.

PROPOSITION 3.33. The flow of XH is in Diff0(M ,ω).

PROOF. To see this,

d

d t
(ϕt )∗ω = (ϕt )∗(LXHω)

= (ϕt )∗(d ◦ iXHω+ iXH ◦dω)

= (ϕt )∗(d(d H)) = 0.

□

REMARKS 3.34.

3See the Comments section for this choice of sign.
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(1) It is worth mentioning that we can replace d H by a closed one-form, α and
define Xα by the identity ω(Xα,ξ) =−α(x)(ξ). The same argument shows that
the flow of Xα is symplectic. For reasons that will appear in the following chap-
ters, such flows are not as fundamental as the one associated to H , and anyway
they become Hamiltonian once we pass to the universal cover of M , since α
becomes exact.

(2) In local coordinates in T ∗N we obtain the classical equations of Hamiltonian
mechanics. Indeed XH (q, p) = (∂H

∂p ,−∂H
∂q ) and the flow equations become

q̇(t ) = ∂H

∂p
(t , q(t ), p(t )), ṗ(t ) =−∂H

∂q
(t , q(t ), p(t ))

For example H(q, p) = 1
2m |p|2+V (q). The equation then become q̇ = 1

m p, ṗ =
−∇V (q), that is mq̈ +V (q) = 0, that is the usual Newton equation. More gen-
erally if we choose local coordinates q1, ..., qn and their dual p1, ..., pn in the
cotangent space, so that λ= ∑n

j=1 p j , q j , the flow is given by the ordinary dif-
ferential equation {

q̇ j = ∂H
∂p j

(t , q, p)

ṗ j =− ∂H
∂q j

(t , q, p)

In particular for a particle in a force field derived from the potential V , the
Hamiltonian is H(q, p) = 1

2m |p|2 −V (q) the flow is given by q̇ = p, ṗ = ∇V (q)
that is equivalent to q̈+∇V (q) = 0 so for a force field deriving from a potential,
we recover Newton’s equation. For the N -body problem, that is N particles at-
tracted to each other by the gravitational force, the potential is

∑
1≤i< j≤N

mi m j

|qi−q j |
we obtain the gravitational potential of N masses of mass mi .

Note that in the previous example, H is the total energy of the particle, and as we
know from any physics course, it is conserved. This is a general phenomenon:

PROPOSITION 3.35. Let XH be the Hamiltonian vector field associated to a time in-
dependent Hamiltonian H (also called autonomous Hamiltonian). Then the levels of H
are preserved by the flow ϕt

H .

PROOF. This immediately follows from the computation

d

d t
H(ϕt

H (x)) = d H(ϕt
H (x))

d

d t
ϕt

H (x) =
d H(ϕt

H (x))X t
H (ϕt (x)) =−ω(XH (ϕt

H (x)), XH (ϕt
H (x))) = 0

□

REMARKS 3.36.

(1) This does not hold for time dependent Hamiltonians.
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(2) On a given energy surface the trajectories do not depend on H but only on
the energy hypersurface. Let now H : M −→ R be a smooth function and c
be a regular value. Then for z ∈ Σ = H−1(0), the restriction of ω(z) to the hy-
perplane TzΣ has kernel RXH (z). So the trajectories of XH define a foliation
on Σ independent from the choice of H : it only depends on Σ. Changing the
Hamiltonian changes the speed at which the trajectories are described, but
not the trajectories themselves. An important question in symplectic topol-
ogy is the existence of closed characteristics. We refer to Section 7 for more on
this.

As the following Lemma will imply, the set of Hamiltonian maps make a group

LEMMA 3.37. (Composition formulas)

(1) Let ψ be a symplectic map and H ∈ C∞([0,1]×M ,R). Set K (t , x) = H(t ,ψ(x)).
Then

XK (t , x) = dψ(x)−1XH (t ,ψ(x))

(2) The flow (ϕt
H )−1 is the flow associated to the Hamiltonian H(t , x)) =−H(t ,ϕt

H (x))
(3) If ϕt

H ,ϕt
K are associated to H ,K then ϕt

Hϕ
t
K is associated to

L(t , x) = H(t , x)+K (t , (ϕt
H )−1(x))

PROOF. For (1) we write

dK (x) = d H(t ,ϕ(x))dϕ(x)v =ω(ϕ(x))(XH (t ,ϕ(x)),dϕ(x)v)

and since dϕ(x) is symplectic, this is equal to ω(x))(dϕ(x)−1XH (t ,ϕ(x)), v), which
means that XK (t , x) = dϕ(x)−1XH (t ,ϕ(x)).

For (3) we write
d

d t

(
ϕt

Hϕ
t
K (x)

)= (
d

d t
ϕH

)
(ϕt

K (x))+dϕH (ϕt
K (x))

(
d

d t
(ϕt

K (x)

)
=

XH (t ,ϕt
Hϕ

t
K (x))+dϕH (ϕt

K (x))XK (t ,ϕt
K (x)) = XL(t ,ϕt

Hϕ
t
K (x))

Setting z =ϕt
Hϕ

t
K (x) this becomes

XH (t , z)+dϕH ((ϕt
H )−1(z))XK (t , (ϕt

H )−1(z))

and the second term, according to (1) is the Hamiltonian vector field associated to
K (t , (ϕt

H )−1(x)).
Now we may prove (1) since by (2) ϕt

Hϕ
t
H

(x) is associated to the Hamiltonian

H(t , x)+H(t , (ϕt
H )−1(x)) = H(t , x)−H(t , (ϕt

H )−1ϕt
H (x)) = 0

□

PROPOSITION AND DEFINITION 3.38. The set of all Hamiltonian maps is a normal
subgroup of Diff(M ,ω), contained in the connected component of the identity. It is de-
noted by DHam(M ,ω). We denote by Ham(M ,ω) the set of Hamiltonian isotopies start-
ing from Id.
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PROOF. This follows immediately from the above Lemma which implies that the in-
verse and composition of Hamiltonian maps is a Hamiltonian map. That the subgroup
is normal follows from (1), since the flow of dψ(x)−1XH (t ,ψ(x)) is ψ−1ϕt

Hψ. □

REMARK 3.39. Denote by Diff0(M ,ω) the component of Diff(M ,ω) containing the
identity. It’s obvious that DHam(M ,ω) ⊂ Diff(M ,ω). Since two different smooth func-
tions yield different flows, we see that DHam(M ,ω) hence Diff0(M ,ω) are pretty big
groups (in particular they are infinite dimensional groups).

Question 3.40. How big is the quotient Diff0(M ,ω)/DHam(M ,ω)?

In the general case we set

DEFINITION 3.41. Let (ϕt )t∈[0,1] be a path in Diff0(M ,ω) generated by the vector field
X t . We set �Flux(ϕt )t∈[0,1] =

∫ 1

0
iX tωd t ∈ H 1(M ,R)

PROPOSITION 3.42. The class �Flux(ϕt )t∈[0,1] only depends on the homotopy class
with fixed endpoints of (ϕt )t∈[0,1]. Thus �Flux defines a morphism from the universal
cover ãDiff0(M ,ω) of Diff0(M ,ω) to H 1(M ,R). If Γ(M ,ω) is the image of the set of closed
loops in Diff0(M ,ω) by Flux, we have a morphism

Flux : Diff0(M ,ω) −→ H 1(M ,R)/Γ(M ,ω)

The same holds for the identity component of the set of compact supported symplecto-
morphisms, Diffc,0(M ,ω) and we get a morphism

Fluxc : Diffc,0(M ,ω) −→ H 1
c (M ,R)/Γc (M ,ω)

LEMMA 3.43. Let γ be a loop representing some class [γ] in π1(M). Set u(s, t ) =
ϕt (γ(s)). Then

〈Flux(ϕt ), [γ]〉 =
∫

S1×[0,1]
u∗ω

In other words, 〈Flux(ϕt ), [γ]〉 is the area fo the cylinder u(S1 × [0,1])

PROOF. Indeed,

d

d t

∫
S1×[0,t ]

u∗ω=
∫

S1×{t }
i ∂
∂t

u∗ω=
∫

S1
ω(X t (γ(s)), γ̇(s))d s

Integrating both sides fro t = 0 to t = 1, we get our Lemma. □

PROOF OF THE PROPOSITON. Clearly if we deform (ϕt )t∈[0,1] with fixed endpoints
the cylinder is deformed but the boundary does not move. Stokes formula implies that
the area of the cylinder does not change. Thus �Flux is defined on the universal cover�Diff0(M ,ω) of Diff0(M ,ω). it is a morphism, since the composition on �Diff0(M ,ω) can
be defined by concatenation. By definition, if Γ(M ,ω) is the set of images of loops, �Flux
descends to a map Flux : Diff0(M ,ω) −→ H 1(M ,R)/Γ(M ,ω) □
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To prove that �Flux(ϕt )t∈[0,1] only depends on the homotopy class with fixed end-
points of (ϕt )t∈[0,1] it is enough to prove that if a loop of symplectic maps extends to a
family parametrized by a disc, then the flux is zero.

We may now characterize the Hamiltonian maps among the symplectic diffeomor-
phisms :

PROPOSITION 3.44. For M a compact (resp. general) symplectic manifold, the sub-
group DHam(M ,ω) (resp. DHamc (M ,ω) coincides with the kernel of Flux (resp. Fluxc ).
In particular if H 1(M ,R) = 0(resp. H 1

c (M ,R) = 0), then DHam(M ,ω) = Diff(M ,ω) (resp.
DHamc (M ,ω) = Diffc (M ,ω)

PROOF. See Exercise 31. □

REMARK 3.45. Note that the Flux is onto. Indeed if α represents a given class in
H 1(M ,R), and X is defined by iXω = α then the time one flow of X has Flux given by
[α].

EXERCISE 3.46. Prove that if ϕt is a path in DHam(M ,ω), it is defined as a Hamil-
tonian flow: ϕt satisfies d

d tϕ
t = XH (ϕt ) for some function H on [0,1]×M .

HINT. Let Xs be the vector field definingϕs , that isϕs is the time-one-flow of Xs(t , x).
Prove that αt = iX tα is closed. Use the fact that the Flux between t and s is exact for any
pair 0 ≤ t < s ≤ 1 to conclude that αt must be exact.

We now assume ω= dλ. Then there is an alternative definition of Flux as follows

PROPOSITION 3.47. If ω is exact then Flux(ϕt )t∈[0,1]) = [(ϕ1)∗λ−λ] ∈ H 1(M ,R). In
particular Γ(M ,ω) = {0}

PROOF. Note that ϕ∗λ−λ is closed for all ϕ ∈ Diff(M ,ω), since

d(ϕ∗λ−λ) =ϕ∗ω−ω= 0.

Ifϕt is the flow of X t we have iXTω= iX t dλ= LX tλ−d(iX tλ). Note also that for a closed
form, the homotopy formula (Exercise 3.23 (3)) implies (ϕt )∗α=α in cohomology.

So in cohomology we have∫ 1

0
(iX t dλ)d t =

∫ 1

0
LX tλd t =

∫ 1

0
(ϕt )∗(LX tλ)d t

∫ 1

0

d

d t
[(ϕt )∗λ]d t =ϕ∗λ−λ

Since the Flux only depends on the endpoint of the path, it is zero for a loop, i.e.
Γ(M ,ω) = {0}.

□

EXAMPLES 3.48.

(1) On T ∗T 1 the translationϕ : (x, p) −→ (x, p+p0) is symplectic, but Flux(ϕ) = p0,
so ϕ is not a Hamiltonian map.
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(2) Similarly if M = T 2 and σ = d x ∧ d y , the map (x, y) −→ (x, y + y0) is not in
DHam(T 2,σ) for y0 ̸≡ 0 mod 1.

Indeed, since the projection π : T ∗T 1 −→ T 2 is a symplectic covering, any
Hamiltonian isotopy on T 2 ending in ϕ would lift to a Hamiltonian isotopy
on T ∗T 1 (if H(t , z) is the Hamiltonian on T 2, H(t ,π(z)) is the Hamiltonian
on T ∗T 1) ending to some lift of ϕ. But the lifts of ϕ are given by (x, y) −→
(x +m, y + y0 +n) for (m,n) ∈Z2, with Flux given by y0 +n ̸= 0.

Since H 1(M ,R) is abelian, this implies that in particular that DHam(M ,ω) con-
tains the commutator subgroup of Diff0(M ,ω). A difficult theorem by Banyaga [Ban78]
states that this inclusion is in fact an equality and that the group DHam(M ,ω) is simple.

REMARK 3.49. The following notation is useful. First of all note that the Hamil-
tonian H : [0,1]×M −→ R defines a path in DHam(M ,ω) starting from Id. The set of
such paths will be denoted by P DHam(M ,ω). An element in P DHam(M ,ω) defines a
Hamiltonian H : [0,1]×M −→ R, unique up to a constant shift, and an element in the
universal cover âDHam(M ,ω) of DHam(M ,ω). So we have exact sequences

0 −→R−→ Ham(M ,ω) −→P DHam(M ,ω) −→ 0

and
0 −→ΩDHam(M ,ω) −→P DHam(M ,ω) −→ DHam(M ,ω) −→ 0

Note that in the compact supported version, H is well-defined (we cannot add a con-
stant as H would not be compact supported anymore) so we get Hamc (M ,ω) = âDHamc (M ,ω)

A subtle fact is whether the subgroup DHam(M ,ω) is C 1-closed in Diff(M ,ω). This
is the so-called C 1 -Flux conjecture. It was proved to hold if and only if Γ(M ,ω) is a
discrete subgroup of H 1(M ,R) and was solved by K. Ono ([Ono06]). The question of
the C 0-flux conjecture, that is whether a C 0-limit of Hamiltonian maps is Hamiltonian,
called the C 0-Flux conjecture is still open in most cases (see [LMP98] and [Buh14]).

Finally note that sinceωn is a volume form, an element preservingω is volume pre-
serving. We denote by Diff(M ,ωn) the group of volume preserving diffeomorphisms.
One of the main questions at the origin of symplectic topology is to understand the
difference between Diff(M ,ω) and Diff(M ,ωn).

5. Lagrangian and Hamiltonian dynamics

The Hamiltonian formulation of mechanics has its origin in the resolution of varia-
tional problems describing the time evolution of mechanical systems. We shall se that
in turn Hamiltonian systems can be described as solutions of a variational problem, so
that for one-parameter (i.e. describing the time evolution of finite dimensional quan-
tities) variational and Hamiltonian systems are equivalent. Let us be more explicit. For
L a smooth function on [0,1]×T M . We consider the quantity

L (γ) =
∫ 1

0
L(t ,γ(t ), γ̇(t ))d t
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where γ ∈ C 1([0,1], M). Existence of minimizers for L (under suitable assumptions
on L) is the fundamental problem of the calculus of variations. The first examples are
Newton’s minimal resistance problem (find a solid of revolution having the least re-
sistance as it moves in a fluid) and the more famous brachistochrone (find a curve
connecting two points, such that a ball sliding without friction on the curve goes from
A to B in the shortest time), around the end of the 17th century. We shall only deal
with finding a critical point of L , without investigating the conditions for being a min-
imum. Note that formally, γ is a critical point if it satisfies the Euler-Lagrange equa-
tion. Indeed, to be a critical point, we need that for any smooth family γε(t ) we have
d

dεL (γε) = 0. This can be rewritten as

d

dε
L (γε)|ε=0 =

∫ 1

0

[
∂L

∂x
(t ,γ(t ), γ̇(t ))

∂γ

∂ε |ε=0
+ ∂L

∂v
(t ,γ(t ), γ̇(t ))

∂γ̇

∂ε |ε=0

]
Integration by part of the second term yields

d

dε
L (γε)|ε=0 =

∫ 1

0

[
∂L

∂x
(t ,γ(t ), γ̇(t ))− d

d t

∂L

∂v
(t ,γ(t ), γ̇(t ))

]
∂γ

∂ε |ε=0
+

∂L

∂v
(1,γ(1), γ̇(1))

∂γ

∂ε
(1)|ε=0 − ∂L

∂v
(0,γ(0), γ̇(0))

∂γ

∂ε
(0)|ε=0

Choosing a family with ∂γ
∂ε

(t )|ε=0 arbitrary and vanishing for t = 0,1 (check that this is

always possible), we see that [∂L
∂x (t ,γ(t ), γ̇(t ))− d

d t
∂L
∂v (t ,γ(t ), γ̇(t )) is a continuous func-

tion which vanishes when integrated against any continuous function vanishing at the
end points. This implies that

(EL)
∂L

∂x
(t ,γ(t ), γ̇(t ))− d

d t

∂L

∂v
(t ,γ(t ), γ̇(t )) = 0

We shall assume L is a Tonelli Lagrangian , that is

DEFINITION 3.50. L is a Tonelli Lagrangian if

(1) L ∈C 2(T M ,R)
(2) L is strictly convex on Tq M for all q ∈ M, that is ∂2L

∂v2 (q, v) is positive definite

(3) L is superlinear in the fibers, that is lim|v |→+∞
L(t ,q,v)

|v | =+∞
(4) The flow of the Euler-Lagrange equation (EL) is complete (i.e. solutions exist for

all time)

REMARK 3.51. Note that the last assumption is superfluous when L does not de-
pend on t . It is necessary in general (see [BM85]).

The equation (EL) is a second order ordinary differential operator. It can be reduced
to a first order equation in many ways, however there is a preferred one. Set for p ∈
T ∗

x M , HL(t , x, p) = supv∈TX M

[〈p, v〉−L(t , x, v)
]
. The maximum is achieved at a single

point, due to the strict convexity of L in v , and this point satisfies p = ∂L
∂v (t , x, v). On the



6. THE POISSON BRACKETS VIEWPOINT 71

other hand ∂H
∂p (t , x, p) = v , the point where the maximum is achieved. This proves that

p = ∂L

∂v
(t , x, v) ⇔ ∂H

∂p
(t , x, p) = v

that is the maps p 7→ ∂H
∂p (t , x, p) and v 7→ ∂L

∂v (t , x, v) are inverse to each other. Note that
the variables (t , x) play no active role here. Given a smooth strictly convex function
ℓ : Rn −→ R, we can define its Legendre dual, h : Rn −→ R and the maps x 7→ dℓ(x)
and p 7→ dh(p) are inverse to each other. Said differently, the graph {(x,dℓ(x)) | x ∈Rn}
coincides with the graph {(dh(p), p) | p ∈Rn}.

We say that h is the Legendre transform of ℓ. Now equation (EL) becomes ṗ(t ) =
∂L
∂x (t , x, v) =−∂H

∂x (t , x, p). Recall that ẋ = v = ∂H
∂p (t , x, p) so we get the first order equation{

ṗ(t ) =−∂H
∂q (t , x, p)

q̇(t ) = ∂H
∂p (t , x, p)

In other words the Euler-Lagrange equation is equivalent to the Hamiltonian equation
for HL .

EXAMPLES 3.52. (1) The motion of a particle in a potential force field is given
by minimizing the integral of T −V where T is the kinetic energy, V the po-
tential energy. So L(t , q, ẋ) = 1

2 |ẋ|2 −V (q), and H(q, p) = 1
2 |p|2 +V (q). The

equations of motion are ẋ = p, ṗ =−∇V (x), that is equivalent to ẍ +V (x) = 0.
(2) Let us consider a Riemannian metric g (x)(v, v) that is a quadratic form in

v ∈ Tx M , depending smoothly on x ∈ M . The metric yields a vector bundle
isomorphism between T M and T ∗M . Thus any function on T M yields a func-
tion on T ∗M . In particular the metric itself yields a function Hg (x, p) on T ∗M .
The flow of Hg corresponds to the geodesic flow, that is the flow such that
Tt (x, v) = (y, w) if and only if the unique geodesic starting from x with speed v
reaches y after time t and has speed w in y .

6. The Poisson brackets viewpoint

Invariant subsets are important objects in the study of a dynamical system. For an
autonomous Hamiltonian vector field, XH a regular hypersurface { f = 0} is invariant if
and only if d f (x)(XH (x)) = 0 on Σ = f −1(0) (we assume 0 is a regular value of f ). This
can be rewritten as ω(XH , X f ) = 0. We then set

DEFINITION 3.53. The Poisson bracket of F,G ∈C∞(M ,R) is defined as {F,G} =ω(XF , XG ) =
−dF (XG ) = dG(XH ). By a slight abuse of language for F,G ∈C∞(R×M ,R) and denoting
Ft ,Gt the restrictions of F,G to {t }×M we set {F,G}(t , x) = {Ft ,Gt }(x).

One obvious property is that {G , H } = −{H ,G}. In fact the Poisson bracket induces
a Lie algebra structure on C∞(M ,R).

PROPOSITION 3.54. We have
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(1) {F,G} =−{G ,F }
(2) X{F,G} = [XF , XG ]
(3) {F,G}ωn = ndF ∧dG ∧ωn−1

(4) If one of the two functions F,G is compact supported, we have
∫

M {F,G}ωn = 0
(5) In local symplectic coordinates q j , p j we have

{F,G}(q, p) =
n∑

j=1

(
∂F

∂q j

∂G

∂p j
− ∂G

∂q j

∂G

∂q j

)
(q, p)

(6) (Leibniz identity) {FG , H } = F {G , H }+G{F, H }
(7) (Jacobi identity) {F, {G , H }}+ {G , {H ,F }}+ {H , {F,G}} = 0

PROOF. We already proved the first statement. For the second, we use the formula
LX iY − iY LX = i[X ,Y ]. Thus i[XF ,XG ] = LXF iXG − iXG LXF . Apply this to ω and we get

i[XF ,XG ]ω= LXF iXGω− iXG LXFω=−LXF dG − iXG diXFω− iXG iXF dω=
−diXF dG + iXF ddG − iXG ddF =−d(ω(XF , XG )) = d{F,G}

Statement ( 3) follows from

−iXG (dF ∧ωn) = {F,G}ωn −ndF ∧dGωn

but since dF ∧ωn vanishes so does the right hand side. Then (4) follows by integration
by parts, since dF ∧dG ∧ωn−1 = d(F dG ∧ωn−1). Formulas (5) and (6) are straightfor-
ward verification. The Jacobi identity (7) follows from (3)

0 = iXF

(
{G , H }ωn −ndG ∧d H ∧ωn−1)=−n{G , H }dF ∧ωn−1 −ndG(XF )d H ∧ωn−1+

nd H(XF )dG ∧ωn−1 +n(n −1)dG ∧d H ∧dF ∧ωn−2 =
−n{G , H }dF ∧ωn−1 −n{F,G}d H ∧ωn−1+

n{F, H }dG ∧ωn−1 +n(n −1)dG ∧d H ∧dF ∧ωn−2

Taking the differential of the above expression, we get

0 =−d{G , H }∧dF ∧ωn−1 −d{F,G}∧d H ∧ωn−1 +d{F, H }∧dG ∧ωn−1 =
dF ∧d{G , H }ωn−1 +d H ∧d{F,G}ωn−1 +dG ∧d{H ,F }ωn−1

and using again (3) we get

{F, {G , H }}+ {H , {F,G}}+ {G , {H ,F }} = 0

Jacobi’s identity. □

REMARKS 3.55.

(1) One should be careful with the different sign conventions in the litterature.
(2) It follows form the above Proposition that the Poisson bracket induces a Lie

algebra structure on C∞(M ,R). This naturally leads to one of the formula-
tions of quantization, that is going from classical mechanics, as described by
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Hamiltonian dynamical systems, to quantum mechanics, as described by op-
erator theory. In an ideal (but unrealistic) world, this should be a Lie alge-
bra morphism from the Lie algebra (C∞(M ,R), {•,•}) to the Lie algebra of self-
adjoint operators of a Hilbert space H , that is (Op(H), [•,•]) where [A,B ] =
1

i h (AB −B A). Unfortunately such a morphism does not exist as soon as we
want to satisfy some physically sound properties, but one can try to approxi-
mate this ideal situation, and approximate representations do exist.

The Lie algebra (C∞(M ,R, {•,•}) is an example of a Poisson algebra

DEFINITION 3.56. A Poisson algebra is an algebra A toghether with a bilinear map
(X ,Y ) 7→ [X ,Y ] satisfying the Jacobi and Leibniz identity.

A nice feature of Poisson brackets is that it allows one to write Hamiltonian flows as
transport equations. Indeed, if ϕt

H is the flow of H , and F is any function, then

PROPOSITION 3.57. For H a Hamiltonian on (M ,ω) and F a smooth function, the
function Ft (z) = F (ϕt

H (z)) satisfies the equation

d

d t
Ft = {H ,Ft }

PROOF. We have, setting Ht (x) = H(t , x)

d

d t
F (ϕt

H (x))|t=t0 = dF (ϕt0
H (x))dϕt0

H (x)XH (t , x) = dFt0 (x)XH (t0, x) = {H ,Ft }

□

In particular we see that F is invariant by ϕt
H if and only if {F, H } = 0. We then say

that F is an integral of motion for the Hamiltonian H . We claim that if F,G are integrals
of motion for H , then so is {F,G}. Indeed, {{F,G}, H } = −{{G , H },F }− {{H ,F },G}, so if
{G , H } = {F, H } = 0 we have {{F,G}, H } = 0. In other words we proved the first statement
of the following

PROPOSITION 3.58.

(1) The set of functions invariant by the flow is a Poisson sub-algebra of C∞(M ,R)
(2) The submanifold C is coisotropic if and only if the set of functions vanishing on

C is a Poisson sub-algebra.
(3) A diffeomorphism ϕ : (M ,ωM ) −→ (N ,ωN ) is symplectic if and only if for all

functions F,G we have {F ◦ϕ,G ◦ϕ} = {F,G}◦ϕ
PROOF. The first statement follows from the well-known that ϕt

F ,ϕs
G commute if

and only if [XF , XG ] = 0, the formula [XF , XG ] = X{F,G} and the fact that XH = 0 if and
only if H is constant. For the second statement assume first that C is coisotropic. Then
H = 0 on C implies that TzC ⊂ Ker(d H(z)) for all z ∈ C , hence XH (z) ⊂ (TzC )ω ⊂ TZ C .
So if F,G vanish on C , we have {F,G} =ω(XF , XG ) = 0 on C . Conversely, assume the set
of functions vanishing on C is a Poisson sub-algebra. Assume TzC is not coisotropic,
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so there exists X ∈ TzCω \ TzC . Let us consider H vanishing on C such that (RX )ω =
kerd H(z). Since TzC ⊂ (RX )ω, this is possible. Now XH (z) = X , and F be a function
vanishing on C such that dF (z)X ̸= 0(this is possible since X ∉ TzC ). Then {F, H } ̸= 0
which contradicts the assumption.

For a symplectic map, we have ϕ∗XH◦ϕ = XH , so

{F ◦ϕ,G ◦ϕ} =ω(ϕ∗(XF ),ϕ∗(XG )) = (ϕ∗ω)(ϕ∗(XF ),ϕ∗(XG )) = {F,G}◦ϕ
Now ϕ is by definition a symplectomorphism from (M ,ϕ∗ωN ) to (N ,ωN ). Setting ρ =
ϕ∗ωM and {F,G}ρ for the Poisson bracket corresponding to ρ, we have {F ◦ϕ,G ◦ϕ}ρ =
{F,G}ωM ◦ϕ. If we assume {F,G}ωN ◦ϕ = {F ◦ϕ,G ◦ϕ}ωM we have {F ◦ϕ,G ◦ϕ}ωM = {F ◦
ϕ,G◦ϕ}ρ for all functions F,G . Sinceϕ is a diffeomorphism, this is equivalent to stating
that {F,G}ρ = {F,G}ωM for all functions F,G . Then dF (X ρ

G ) = dF (XωM
G ) where X ρ

G is the
Hamiltonian for ρ. Since we can choose at each point dF to be any linear form, this
implies X ρ

G = XωM
G for all functions G , and this implies that the duality maps Tz M −→

T ∗
z M induced by ρ and ωM coincides, so that ρ =ωM , i.e. ϕ∗(ωN ) =ωM . □

EXERCISE 3.59. Prove that if a map ϕ preserves the Poisson brackets then it is an
immersion (i.e. dϕ(x) is injective for all x)

6.1. Hamiltonian group action and moment maps. Let G be a Lie group action
on M by symplectic maps, that is for all g , the map m 7→ g ·m is symplectic. A special
case is when this map is in fact Hamiltonian, so we have a map g 7→ Hg so that g ·m =
ϕ1

Hg
(m). Let now X ∈ g = TeG and g t = exp(t X ). Then we set HX = limt→0

1
t Hexp(t X ).

This is not well defined, because Hg is only defined up to a constant. In the compact
case, we can get rid of the indeterminacy by assuming

∫
M HX (m)dm = 0 (if M is not

connected assume this for each connected component). In any case, if there is such a
map, we can assume it is linear

DEFINITION 3.60. (see [Sou97; Kos66]) Let X 7→ HX be a linear map such thatϕt
HX

(m) =
exp(t X ) ·m. We say that the action is Hamiltonian if it is a Lie algebra homomorphism,
that is

H[X ,Y ] = {HX , HY }

The moment map is then defined as the map µ ∈C∞(M ,g) given by 〈µ(x), X 〉 = HX (x)

EXAMPLES 3.61. (1) Let G be the action of the group of euclidean motions that
is generated by rotations SO(3) and translations. So G is the cross product of
SO(3) andR3. Its Lie algebra is the productR3×R3 but the structure is given by
the exterior product of vectors on the first factor (i.e. [u, v] = u ∧ v) and trivial
on the second factor. More precisely

[(u, x), (v, y)] = (u ∧ v,u ∧ y − v ∧x)

The moment map is then given by the angular momentum and the linear mo-
mentum.
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One should be careful: for the action to be Hamiltonian, it is not sufficient that
each element acts by a Hamiltonian flow. If this is the case, we have a linear map g−→
C∞(M ,R), but we demand that this map be a Lie algebra morphism. Note that it may
happen that while this is not a Lie algebra morphism, it becomes one by changing each
HX by a constant : if there is a linear map c : g−→R such that replacing HX by HX +c(X )
we get a Lie algebra morphism, in other words H[X ,Y ] − {HX , HY } = c([X ,Y ]). In terms
of Lie algebra cohomology, maps like (X ,Y ) 7→ c([X ,Y ]) are δc where c is a 1-cycle. On
the other hand the map R : (X ,Y ) 7→ H[X ,Y ] − {HX , HY } satisfies

R(X , [Y , Z ])+R(Y , [Z , X ])+R(Z , [X ,Y ])

thanks to Jacobi’s identity, and thus 4 defines an element in H 2(g,R). As a result R is
a 2-cocycle and is well defined by the action modulo an element in δC 1(g), in other
words [R] ∈ H 2(g). This is the obstruction to the existence of the moment map. We
shall see more about this in Exercise 25 and Chapter 4, Section 2).

7. Contact geometry and Homogeneous symplectic geometry

Contact geometry is the study of hyperplane distributions ξ on the manifold M
which are "maximally non-integrable". A hyperplane distribution, by definition at-
tributes to each point a hyperplane of its tangent space, and this hyperplane varies
smoothly with the point. In other words the hyperplane is locally defined by a 1-form
α such that ξ= Ker(α)

DEFINITION 3.62. A contact structure on the manifold M is a hyperplane distribu-
tion ξ defined locally as the kernel of a 1-form α such that α∧ (dα)n is a volume form.

Note that a contact manifold has dimension dim(M) = 2n+1. The one-formα is not
always defined globally, this is however the case if (and only if) the contact structure is
co-orientable (i.e. there is a globally defined vector field transverse to ξ). If ξ is defined
by α the other one-forms defining ξ are the f α with f a non-vanishing function, so
on each hyperplane ξ there is a conformal symplectic structure5 that is a symplectic
structure well defined up to a positive constant factor. Indeed, if we replace α by f α
we replace dα by f dα. Note also that dα has rank n, and ker(dα) is one-dimensional
(this easily follows from Corollary 2.21).

DEFINITION 3.63. Let α be a contact form. The unique vector field Rα such that
α(Rα) = 1, iRαdα= 0 is called the Reeb vector field of α.

PROPOSITION 3.64. A hyperplane distribution is a contact structure if and only if X
is a vector field defined in the neighbourhood of a point and tangent to ξ, we can find
another vector field tangent to ξ such that [X ,Y ] is not tangent to ξ at the point.

4By definition, a Lie algebra cochain is an alternating map c : gp −→ R and δc(X1, ...., Xp+1) =∑
1≤i< j≤p+1(−1) j (−1)i+ j c([Xi , X j ], X1, ., Xi−1, Xi+1, ...., X j−1, X j+1, .., Xp+1). The Lie algebra cohomology

is, as usual, the space Ker(δ)/Im(δ).
5We mean symplectic as a vector space.
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PROOF. Indeed, we have

dα(X ,Y ) = X ·α(Y )−Y ·α(X )−α([X ,Y ])

so if X ,Y are tangent to ξwe get dα(X ,Y ) =−α([X ,Y ]) ̸= 0, hence dα is symplectic. □

Note that the Reeb vector field is transverse to the contact hyperplanes. Moreover
LRαα= d(iRαα+ iRαdα) = 0. In other words the flow of Rα preserves the contact form.
This is much stronger than preserving the contact structure which is given by the con-
dition LXα= f α. Note also that the Reeb vector field depends on the 1-form α and not
only on ξ.

EXERCISES 3.65. (1) Changingα to f α changes Rα to 1
f Rα+ 1

f 2 Y f where dα(Y f , Z ) =
d f (Z ) for all Z in ξ

(2) In dimension 3 prove that it is enough that there exist locally a pair of vector
fields X ,Y tangent to ξ such that [X ,Y ] is not tangent to ξ.

Contact geometry is very much related to symplectic geometry and many books are
devoted to its study. Modern theory goes back to Bennequin’s proof of the existence of
exotic structures in R3 ([Ben83]) with many spectacular results by Eliashberg ([Eli91;
Eli93; Eli90]), Giroux ([Gir91; Gir94]), etc. Note however that contact geometry has
many features quite different from symplectic geometry.

EXAMPLES 3.66. (1) Let N be a smooth manifold and J 1(N ,R) be the set of
triples (x, p, z) where p ∈ T ∗

x N , z ∈ R. This can be identified with the set of
1-jets of functions from N to R at x where p = d f (x), z = f (x). By definition
the 1-jet of a function at x is its equivalence classe for the relation

f ≃ g ⇔ ( f − g )vanishes to second order

Then J 1(N ,R) = T ∗N ×R and α = d z −λN defines a 1-form whose kernel
is a contact structure. Indeed in local coordinates, (d z −pd q)∧ (d p ∧d q)n =
d z ∧d q1 ∧d p1 ∧ ..∧d qn ∧d pn .

(2) Let us consider PT ∗N the projectivized cotangent bundle, or the bundle of
contact elements of N to be the quotient of T ∗N \ 0N by the dilations (x, p) 7→
(x, t ·p). The vector field X corresponding to this action is conformal, in other
words it satisfies LXλ = λ, so its flow satisfies d∗

t λ = e tλ. As a result its ker-
nel ξN is invariant by the dilation, hence defines a hyperplane distribution on
PT ∗N which is a contact structure.

(3) Let ST ∗N be the unit sphere bundle in T ∗N , that is we fix a metric g on N and
set for p ∈ T ∗

x N , |p|g to be the norm of the linear form p for the metric g . Then

ST ∗N = {(x, p) | |p|g = 1}

with the one form λN |ST ∗N . Note that a priori the contact structure depends
on the choice of the metric, but they will all be contactomorphic. One can
see ST ∗N as the double cover of PT ∗N . We could also have defined ST ∗N
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as the bundle of cooriented contact elements on N , i.e. the set of cooriented
hyperplanes in Tq N .

(4) Let (M ,ω) be a symplectic manifold with [ω] ∈ H 2(M ,Z) and let P be the
U (1) = S1 principal bundle having c1(P ) = [ω]. This bundle has a connection
corresponding to the 1-formα such that dα=π∗(ω) (π : P −→ M is the projec-
tion) and α(Xθ) = 1 where Xθ) is the generator of the S1 action. This is called
the geometric prequantization of (M ,ω).

(5) Let Σ be a smooth hypersurface in Cn . We may assume it is defined by a
smooth function ϕ having 0 as a regular value:

Σ = {z ∈ Cn | ϕ(z) = 0} and its interior defined by ϕ < 0. Consider ξ(z) =
TzΣ∩TzΣ that is the only complex hyperplane contained in TzΣ. One can
show that (Σ,ξΣ) is a contact manifold if and only if it is CR Levi convex, that is
the Levi form h = i∂∂ϕ is positive definite on all complex subspaces. Here ∂,∂
are respectively the complex and anti-complex part of the exterior differential
d defined on complex valued differential forms see Exercice 48 for details and
extensions in the almost complex case. Note that a function satisfying i∂∂ϕ>
0 everywhere is called strictly plurisubharmonic. It is easy to show (Exercise
49) that a convex function is plurisubharmonic.

An important general class of contact structures is obtained as follows

DEFINITION 3.67. Let Σ be a smooth hypersurface in a symplectic manifold (M ,ω).
We say that Σ is of contact type if there is a vector field X defined in a neighbourhood of
Σ such that

(1) LXω=ω (its flow satisfies (ϕt )∗(ω) = e tω so X is conformal)
(2) X is transverse to Σ.

This is equivalent to α= iXα satisfying dα=ω and α restricts to a contact form on
Σ. Indeed, LXω= dα=ω andα∧(dα)n−1 = (iXω)∧ωn−1 = 1

n iX (ωn). Butωn is a volume
form if and only if iXω

n is a volume form on Σ.

EXERCISE 3.68. In the above list of examples, which ones are contact type hyper-
surfaces of a symplectic manifold ?

A remarkable result about contact structures is the stability theorem of Gray

THEOREM 3.69 (Gray’s stability theorem). The set of contact structures is open in the
set of hyperplane distributions. Moreover two contact structures in the same connected
component of the set of contact structures are diffeomorphic.

PROOF. Indeed the condition α∧ (dα)n ̸= 0 is obviously open. Now let αt be a
smooth family of contact forms. We look for ϕt such that (ϕt )∗(αt ) = exp( ft )α0. By
taking the t derivative, we get (ϕt )∗LX tα = d

d t ft exp( ft )α0. Using Cartan’s formula, we
get

(ϕt )∗[LX t dαt + d

d t
αt ] = d

d t
ft exp( ft )α0 = d ft

d t
(ϕt )∗(αt )
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that is equivalent to
d(iX tαt )+ iX t dαt +βt = htαt

This is equivalent to requiring that the left hand side restricted to the contact hyperlane
ξt = Ker(αt ) vanishes, that is

d(iX tαt )+ iX t dαt +βt = 0 on ξt

Set X t ∈ ξt so that iX tαt vanishes. Since the restriction of dαt to ξt is symplectic we
can find X t solving iX t dαt +βt = 0 on ξt , and we found our vector field hence our
isotopy. □

The analogue of Lagrangian is given by Legendrians

DEFINITION 3.70. A submanifold in a contact manifold (M 2n+1,ξ) is Legendrian if
it is tangent to the contact structure and has dimension n.

Note that there cannot be submanifolds V tangent to the contact structure of di-
mension greater than n, since dα will also vanish on V and has rank 2n. We now show
that contact structures are equivalent to homogeneous symplectic structures. Indeed,

DEFINITION 3.71. A homogeneous symplectic manifold is a symplectic manifold
(M ,ω) endowed with a smooth proper and free action of (R,+), such that denoting by
X the vector field associated to the action, we have LXω=ω.

DEFINITION 3.72. Let (M ,ξ) be a contact manifold with a coorientable contact struc-
ture ξ = Ker(α). Then (M ×R,d(e tα)) is a homogenous symplectic manifold called the
symplectization of (M ,α).

Clearly the symplectization of a contact manifold is a homogeneous symplectic
manifold with the homogenous map λ · (z, t ) = (z,λ+ t ).

EXAMPLE 3.73. Let M be a smooth manifold. We denote by T̊ ∗M the manifold
T ∗M \ 0M endowed with the obvious action λ · (q, p) = (q,eλ ·p). This is the symplecti-
zation of ST ∗M .

PROPOSITION 3.74. (Darboux for contact forms) Let α be a 1-form on a neighbour-
hood of 0 in R2n−1 such that α∧ (dα)n−1 does not vanish. Then we can find local coor-
dinates such that α= d z −∑n−1

j=1 y j d x j .

PROOF. We shall reduce this to the Darboux-Weinstein-Givental theorem (Theo-
rem 3.29). First of all notice that near the origin in R2n+1 ×R the form ω = d(e tα) is
symplectic. Here t is the coordinate corresponding to the last factor. Applying Dar-
boux to ω shows that there is a local diffeomorphism ϕ : (R2n+1 ×R,0) −→ (R2n ,0)
such that ϕ∗(σ) = ω. We now consider the hypersurface Σ given by ϕ({t = 0}) and
apply the Darboux-Weinstein-Givental theorem to (Σ,σ|Σ) to prove that there is a dif-
feomorphism ψ : Σ −→ R2n−1 such that ψ∗(

∑n−1
j=1 d x j ∧ d y j ) = dα. Since ker(σ|Σ) is

one-dimensional and locally spanned by a non-vanishing vector field, the rectification
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theorem shows that we can first send the vector field X generating ker(σ) to ∂
∂t . Using

that
(
α−∑n−1

j=1 x j d y j

)
is closed hence locally exact, it is of the form d f for some func-

tion f , and α= d f −∑n−1
j=1 x j d y j . It is then easy to see that d f is linearly independent

from d x j ,d y j and we conclude our proof. □

The following is also consequence of the Darboux-Weinstein-Givental theorem :

PROPOSITION 3.75. Let Σ be a contact type hypersurface in a symplectic manifold
(M ,ω). Then there is a symplectomorphism from a neighbourhood of Σ in (M ,ω) to a
neighbourhood of Σ in its symplectization extending IdΣ. In other words a neighbour-
hood of Σ in M is symplectomorphic to (Σ×]−ε,ε[,d(e tα)).

PROOF. We have a map TΣM −→ TΣ×{0}(Σ×]− ε,ε[) that is the identity on TΣ and
sends X such that iXω=α to ∂

∂t . One checks that this is a symplectic map. Indeed, this
is obvious for pairs of vectors in TΣ, and we only have to check that

ω(X ,u) =σ(
∂

∂t
,u)

for u ∈ TΣ. But by assumption iXω=α= i ∂
∂t
σ. □

As we mentioned in Section 4, Remark 3.36(2), a hypersurface in a symplectic man-
ifold has a characteristic line distribution, and an important question is whether this
distribution has closed trajectories. A famous conjecture due to Weinstein states

Conjecture (Weinstein). If Σ is a contact type hypersurface in (M ,ω) then it has a
closed characteristic.

The conjecture has been proved in a number of cases (see [Vit87a; HV88; HV92;
Tau07] and also [Vit99] for the case of cotangent bundles of simply connected mani-
folds), and counterexamples have been found if the contact-type condition is omitted
(see [Gin95; Gin97; Her99] ). We shall prove it for R2n in Chapter 7, Proposition 7.33.

There is also a contactization operation, in fact two of them. For details on the first
Chern class we refer to [Mil74].

DEFINITION 3.76. Let (W,dλ) be an exact symplectic manifold. Then W ×R endowed
with the one-form α= d z −λ is a contact manifold called the contactization of (W,dλ).
If (W,ω) is a symplectic manifold with [ω] ∈ H 2(W,Z) then there is a unique circle bun-
dle over W with Chern class [ω]. This circle bundle has a connection, α that is S1 invari-
ant and defines a contact structure on P. Its Reeb vector field is the vector field generating
the circle action. The contact manifold (P,α) is called a prequantization of (W,ω).

The Chern-Weil theory in this elementary case tells us that dα = π∗(ω). Two con-
nections differ by a one form on the base, here the form will be closed, i.e. any two
such connections differ by an element of H 1(W,S1) = Hom(π1(W ),S1) which vanishes
if W is simply connected. We shall see later why the name “prequantization”.
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PROPOSITION 3.77 (Homogeneous symplectic geometry is contact geometry). Let
(M ,ω) be a homogeneous symplectic manifold and X be the generator of the action of
(R,+). Then (M ,ω) is symplectomorphic (by a homogeneous map) to the symplectization
of (M/R, iXω)

PROOF. Consider the form α(ξ) =ω(X ,ξ) which is well defined on the quotient Σ=
M/R. This is a contact form on Σ, since

iXω∧ (d(iXω))n−1 = iXω∧ (LXω)n = iXω∧ωn−1 = 1

n
iX (ωn)

and since tangent vectors to Σ are identified to tangent vectors to M transverse to
Σ, this does not vanish. Let t be a coordinate on M such that d t (X ) = 1, and ω̃ =
d(e tπ∗(α)), then (M ,ω) is equal to (Σ×R,d(e tα)). Indeed, let us consider two vec-
tors, first of all in the case where one is X and the other is in d t (Y ) = 0. Then ω̃(X ,Y ) =
e t (d t ∧α+ tdα)(X ,Y ) = e t d t (X )α(Y ) = e t (iXω)(Y ) = ω(X ,Y ). Now assume Y , Z are
both in ker(d t ). Then ω̃(Y , Z ) = d t ∧ tα(Y , Z )+ tdα(Y , Z ) but dα = diXω = ω so that
ω̃(Y , Z ) =ω(Y , Z ). □

EXERCISE 3.78. Prove that T̊ ∗(N ×R) is symplectomorphic to T ∗N ×R×R∗+, the
symplectization of J 1(N ).

HINT. Prove that the contact manifold J 1(N ,R) is contactomorphic to an open set of
ST ∗(N ×R).

EXERCISES 3.79. (1) Prove that the above lift is functorial, that is the lift ofΦ◦Ψ
is Φ̃◦ Ψ̃.

(2) Let ϕ : T ∗M → T ∗M be an exact symplectic map, that is a map such that
ϕ∗(λ)−λ is exact. Prove that there is a lift ofϕ to a contact map ϕ̃ : J 1M → J 1M .
Prove that if (N ,α) is a contact manifold and ψ a diffeomorphism of N such
thatψ∗(α) =α (note that this is stronger than requiring thatψ is a contact dif-
feomorphism, that is ψ∗(α) = f ·α for some nonzero function f ) then ψ lifts
in turn to a homogeneous symplectic map (N ×R∗+,d(tα)) to itself.

(3) Prove that the symplectization of J 1(M) is T ∗(M)×R×R∗+ and explicit the sym-
plectomorphism obtained from the above ϕ̃ by symplectization. Thus to any
symplectomorphismϕ : T ∗M → T ∗M we may associate a homogeneous sym-
plectomorphism

Φ : T ∗(M ×R∗
+) = T ∗M ×R+×R∗ → T ∗(M)×R×R∗

+
Prove that the lift is functorial. That is the lift of ϕ◦ψ is Φ◦Ψ.

There is an analog of Hamiltonian vector fields, these are contact Hamiltonian vec-
tor fields.

DEFINITION 3.80. Let α be a contact form on M. Let H ∈ C∞(M ,R). The contact
Hamiltonian associated to H is the vector field ZH defined by

iZHα=−H , iZH dα= d H −d H(Rα)α
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Indeed if a flow preserves a contact structure, we must have LZα = f α for some
non-vanishing f . Rewriting it as d(iZα)+ iZ dα= f α we see that setting H =−iZα we
must have iZ dα= d H on ξ. Moroever LZHα= f α with f = d H(Rα).

This corresponds to the Hamiltonian K (x, s) = e s H(x) on (Σ×R,d(e sα)). Then

XK = ZH +d H(Rα)
∂

∂s
Conversely a homogeneous Hamiltonian on (Σ×R,d(e sα)) yields a contact Hamilton-
ian on Σ. Note that iZH dα= d H on {α= 0} = ξ and we have

PROPOSITION 3.81. The contact Hamiltonian has the following properties

(1) α(ZH ) = H
(2) LZHα = −d H(Rα)α, so the flow preserves the contact structure, but in general

not the contact form (unless d H(Rα) = 0).
(3) LZH H =−H 2, so H is not preserved by the flow (even in the autonomous case),

but the level H−1(0) is preserved.

Note that the first property allows us to recover easily H from ZH . In local coordi-
nates (q, p, z) we have

ZH (q, p, z) =
n∑

j=1

∂H

∂p j
(q, p, z)

∂

∂q j
−

n∑
j=1

(
∂H

∂q j
(q, p, z)−p j

∂H

∂z
(q, p, z)

)
∂

∂p j
−(

n∑
j=1

p j
∂H

∂p j
(q, p, z)−H(q, p, z)

)
∂

∂z

The analog of the Poisson bracket is called the Lagrange bracket

DEFINITION 3.82. Let F,G be smooth functions on (M ,ξ) where ξ is defined as the
kernel of the one form α. We set

[F,G] =α([ZF , ZG ]) = dG(ZF )−dF (Rα)G

We call [F,G] the Lagrange brackets of F and G

One should be careful : this does not define a Poisson structure (see Exercice 20 for
the definition of Poisson structure !

EXERCISE 3.83. Find the property of Poisson brackets that is not satisfied by the
Lagrange bracket.

Note that if K (x, s) = e sF (x),L(x, s) = e sG(x), then XK = ZF +dF (Rα) ∂∂s , XL = ZG +
dG(Rα) ∂∂s , so

X{K ,L} = [XK , XL] = [ZF , ZG ]+ [dF (Rα)
∂

∂s
, ZG ]− [dG(Rα)

∂

∂s
, ZF ]
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A terminer

We also have as an easy consequence of Proposition 3.81 (1)

PROPOSITION 3.84. We have

Z[F,G] = [ZF , ZG ]

As a result of Proposition 3.77 we have

PROPOSITION 3.85. Let (M ,dλ) be an exact symplectic manifold and L an exact La-
grangian submanifold. Then there is a unique -up to translation- Legendrian Λ in the
contactization of M projecting on L. Let (Σ,ξ) be a contact manifold and Λ a Legen-
drian submanifold. Then Λ×R is a Lagrangian in the symplectization of (Σ,ξ) and any
homogeneous Lagrangian is so obtained.

PROOF. This is left to the reader. □

COROLLARY 3.86. An exact Lagrangian submanifold L in (M ,ω= dλ) has a unique
lift (up to a constant translation) L̂ to the (homogeneous) symplectization of its contac-
tization, (M̂ ,Ω) = (M ×R+∗ ×R,d t ∧dτ−d t ∧λ).

PROOF. Indeed, let f (z) be a primitive of λ on L. Set L̂ = {(z, t ,τ) | z ∈ L,τ = f (z)}.
Then, d(tdτ− tλ) restricted to L̂ equals zero. □

We finally characterize conical Lagrangians and Homogeneous Hamiltonians

PROPOSITION 3.87. Let L be an exact Lagrangian. Then L is a conical (or homoge-
neous) Lagrangian in T ∗X if and only if λ|L = 0.

PROOF. Let X be the homogeneous vector field, that is the vector fleld such that
iXω= λ. Then since for every vector Y ∈ T L we have λ(Y ) =ω(X ,Y ) = 0 since both X
and Y are tangent to L, we haveλL = 0. Conversely ifλ|L = 0 we have for any Y ∈ T L that
ω(X ,Y ) = 0. Then X ∈ T Lω, hence X ∈ T L and this implies that L is homogeneous. □

PROPOSITION 3.88. Let (M ,ω) be a homogenous symplectic manifold and X be the
vector field dual to λ. Then H is a homogenous Hamiltonian of degree one. if and only
if LXHλ= 0. In other words H is one-homogeneous if and only if it preserves λ.

PROOF. Stating that H is one-homogenous is equivalent to iZ d H = LZ H = H . But
this means iZ iXHω= H so that iXH iZω=−H and LXHλ= d(iXHλ)+ iXH dλ= 0. But this
implies LXHλ=−d H +d H = 0. Let us consider a Lagrangian L in the symplectization
of (Σ,α). If L is homogeneous, then it is of the form Λ×R. But if on the contrary L □

8. Normalization

There are different possible normalizations. We can take ω= dλ or ω=−dλ. Then
we can define XH by iXHω= d H or iXHω=−d H . Finally we can define {F,G} as dF (XG )
or as −dF (XG ). We would like in any case that
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(1) For the standard structure on T ∗N we have XH (q, p) = (∂H
∂p ,−∂H

∂q )
(2) for the Poisson brackets X{F,G} = [XF , XG ]

Our choice is dλ=ω, iXHω=−d H and {F,G} =−dF (XG ). This is the same choice as in
[GS77; HZ94] but opposite choice from [MS07].

9. Appendix:
Some properties of Symplectic dynamics

9.1. Basic properties of Hamiltonian dynamics. Since a symplectic map is vol-
ume preserving, it satisfies two important properties. On a manifold a volume form is
a smooth form Ω of top degree without 0 and its volume is

∫
M Ω.

PROPOSITION 3.89 (Poincaré recurrence). Let ϕ be a volume preserving flow of a
domain with finite volume. Let U be a set of positive measure. Then for almost all points
x in U the orbit {ϕn(x),n ≥ 0} returns infinitely many times in U .

PROOF. Consider the sets V j ⊂ U of points that do not return in U before time j .
This implies that V j ,ϕ1(V j ), ...ϕ j (V j ) are disjoint, otherwise we would have ϕp (V j )∩
ϕq (V j ) ̸= ; for 0 < p < q and this implies V j ∩ϕq−p (V j ) ̸= ; a contradiction. Thus
µ(V j ) ≤ µ(M)/ j and hence µ(

⋂
j≥1 V j ) = 0. In other words U1 = U \

⋂
j V j , the set of

points in U that eventually (in the future!) return in U has full measure in U . Then
we can do the same starting from U1, noticing that if a point x in U1 is returning to U1,
then T j1 (x) ∈U1 for some j , but by assumption T j (x) returns to U , so there is a positive
j2 such that T j2 (T j1 (x) ∈U i.e. T j1 (x),T j1+ j2 (x) ∈U and the orbit of x meets U twice.
We denote by U2 this set. By induction we see that points in Uk return at least k times
in U and Uk is defined as the set of points in Uk−1 returning to Uk−1. We clearly have a
decreasing sequence Uk ⊂Uk−1 ⊂ ... ⊂U1 ⊂U and since all Uk have full measure in U ,
we get that U∞ =⋂

k Uk has full measure as announced. □

REMARK 3.90. Poincaré’s paradox states that if you put a lump of sugar in a glass of
water and wait long enough, then the lump will form it self again. The paradox lies in
the fact that “long enough” is longer than the age of the universe.

A second important property of volume preserving maps is an averaging property.
We here assume (M ,µ) is a probability space, so for example (M ,Ω) is a manifold with

a volume form of finite integral, we set µ(U ) =
∫

U Ω∫
M Ω

.

9.2. Ergodic properties.

THEOREM 3.91. (Kingman’s subadditive theorem) Let ( fn)n≥1 be a sequence in L1(M ,µ)
and T : M −→ M a measure preserving map such that

fn+m(x) ≤ fm(x)+ fn(T m(x))

then the sequence ( 1
n fn)n≥1 converges almost everywhere to a T -invariant6 function f .

6i.e. such that f ◦T = f
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This has the following consequence

THEOREM 3.92 (Birkhoff’s ergodic theorem). Let ϕt be an autonomous flow pre-
serving a probability measure µ on M. Then for any function f in L1(dµ), we set
Sn f (x) = 1

n

∑n
j=0 f (ϕn(x)). Then Sn f (x) converges for µ-almost every point x to f which

is ϕ1 invariant and such that∫
M

f (x)dµ(x) =
∫

M
f (x)dµ(x)

In particular if the flow is ergodic (i.e. the only sets which are invariant have measure 0
or full measure) the function f is constant almost everywhere.

We shall not prove these theorem here, several proofs can be found in classical pa-
pers or textbooks (see[Ste89], [HK02] p. 66 theorem 3.5.2, [Pet83])

9.3. Chaos and hyperbolic dynamics. Finally let ϕ be a symplectic diffeomor-
phism. Then dϕ(x) : (Tx M ,ω(x)) −→ (Tϕ(x)M ,ω(ϕ(x))) is a symplectic map. In particu-
lar if we have a fixed point x of ϕ, we shall say that it is hyperbolic if the eigenvalues of
dϕ(x) are not on the unit circle. In this situation, there are stable and unstable mani-
folds which are invariant by the map and tangent toR2n∩⊕

|µ|>1 Eµ andR2n∩⊕
|µ|<1 Eµ,

and these spaces are isotropic hence Lagrangian.

PROPOSITION 3.93. If x is a hyperbolic fixed point of a symplectic map, then W u(x),
W s(x) are both immersed Lagrangian submanifolds.

PROOF. It is again classical (see [HK02], p.130)that W s(x) (resp. W u(x)) is im-
mersed and its tangent space is the sum of the eigenspaces of dϕ(x) with eigenvalues
< 1 (resp. > 1). Moreover for z ∈ W s(x),ξ ∈ TzW s(z), we have dϕn(z)ξ −→ 0 as n goes
to ∞ and since dϕ(z) is symplectic,

ω(z)(ξ,η) =ω(ϕn(z))(dϕn(z)ξ,dϕn(z)η)) −→ 0

so W s(x) is isotropic. Changing ϕ to ϕ−1 exchanges the roles of W s(x) and W u(x).
Since at x we have Tx M = TxW u(x)⊕TxW s(x) they must be Lagrangians. □

Note that the intersections of these Lagrangians are extremely important and use-
ful to detect the chaotic aspect of dynamics. In case they intersect transversely, this
gives rise to the “Smale horseshoe" and chaotic dynamics (see [Sma67]). There is also
a variational approach, that does not require the transversality (see [CES90; Sér93]).

9.4. KAM theorem. Let us consider an integrable system that for now means a
Hamiltonian on T n×Rn given by H(θ, I ) = h(I ). The flow is then given by θ̇ =∇h(I ), İ =
0. The solutions are then given by straight lines winding on the torus : θ(t ) = θ(0)+
t∇h(I (0)), I (t ) = I (0), in particular the tori I = I0 are thus invariant. Poincaré thought
that once this is perturbed, the structure of the invariant tori disappears. This is not
so, as was discovered by Kolmogorov and then Arnold and Moser (see [Kol54; Arn63;
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Mos62]) the first two in the analytic setting, the third one in the smooth case. More
precisely as a simple statement of the so called KAM theorem we have

THEOREM 3.94 (see [Bos86]). Let H0(θ, I ) = h0(I ) a Hamiltonian such that for I = I0

we have D2h(I0) is non-degnerate. Assume that α = (α1, ...,αn) = ∇h(I0) satisfies the
following Diophantine property

∀k ∈Zn \ {0},

∣∣∣∣∣ N∑
i=1

kiαi

∣∣∣∣∣≥ c

(
N∑

i=1
|ki |

)−τ
Then there is a neighbourhood of C∞(T n ×Rn) such that for any H in this neighbour-
hood, there is a smooth Lagrangian n-dimensional torus TH invariant by the flow of
XH and such that the restriction of XH to TH is smoothly conjugate to Rα defined by
Rα(θ) = θ+ tα. Moroever the map H 7→TH is continuous.

Note that one may reduce to finite differentiability (in [Mos62], to C 333) but not
below C 3 (see [Rüs83; Her83]). Note that in dimension 4 the flow remains on an energy
surface and the invariant tori are codimension 1. They separate the space in open sets
which are therefore invariants. The flow is then not ergodic.

9.5. Periods for small autonomous vector fields. As we shall see, fixed points or
periodic orbits are an extremely important feature of Hamiltonian dynamics. If H(x)
is a Hamiltonian on a symplectic manifold (M ,ω) its time 1 periodic orbits are on one
hand the fixed points of the flow, that is the critical points of H , and on the other hand
the non-constant periodic orbits. When H is C 2 small, only the former exist.

PROPOSITION 3.95. Let M be a manifold and U a bounded domain in M. there
exists a constant C such that for any an autonomous vector field X supported in U with
∥X ∥C 1 ≤C , then X has no non-constant periodic orbit of period T ≤ 1.

PROOF. Indeed, it is enough to prove this in a neighborhood of 0 in Rn since for T
small enough x(t ) remains in a chart domain. Consider x(t ) a non-constant periodic
orbit. Set v(t ) = ẋ(t )

|x(t )| which is well defined since ẋ(t ) = X (x(t )) does not vanish. Then
v has values on the unit sphere and is not contained in any open hemisphere, since
this would mean that there is some h ∈ Sn−1 such that 〈h, v(t )〉 > 0 for all t , hence
〈ẋ(t ),h〉 > 0, but then 〈x(T )−x(0),h〉 = ∫ T

0 〈ẋ(t ),h〉d t > 0 contradicting the assumption
x(T ) = x(0). Now according to the Cauchy-Crofton formula (see Exercise 37 or 38, or
[Cro68; San04]) we have that such a curve has length at least 2π. Now

v̇(t ) = ẍ(t )|ẋ(t )|2 −〈ẍ(t ), ẋ(t )〉ẋ(t )

|ẋ(t )|3
so

|v̇(t )| ≤ 2
|ẍ(t )|
|ẋ(t )| ≤ 2|D X (x(t ))|

since ẍ(t ) = D X (x(t ))ẋ(t ). Therefore the length of the curve v is at most 2C T and we
must have 2C T ≥ 2π. So if C <π non-constant orbits of period T ≤ 1 cannot exist. □
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COROLLARY 3.96. Let H be a Hamiltonian on a compact symplectic manifold (M ,ω)
such that the flow of XH is defined for all t in [0,T ]. then there exists a constant C such
that if ∥D2H(x)∥ ≤CT all periodic orbits of period less than T for XH are constant.

PROOF. Just apply the Proposition to XH . □
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10. Exercises and Problems

10.1. Symplectic manifolds.

(1) Prove that S2n has no symplectic structure for n > 1.
(2) Prove that in dimension > 2 if ω is symplectic, then f ω is symplectic, for f ∈

C∞(M ,R) if and only if f is constant. What happens in dimension 2 ?
(3) Prove that R2n has no compact symplectic submanifold. Prove that Cn has no

compact complex submanifold.
(4) (Archimedes’s theorem) Consider the unit sphere S2 represented as {(x, y, z) |

x2 + y2 + z2 = 1} with the standard Fubini-Study metric
(a) Write down the Fubini-Study form in the coordinates (x, y, z)
(b) Consider the cylinder

C = {(x, y, z) ∈R3 | x2 + y2 = 1,−1 ≤ z ≤ 1}

with the symplectic formσ= 1
2 (xd y−yd x)∧d z. Consider the "horizontal

projection" of S2 to C given by f : (x, y, z) 7→ ( x
x2+y2 , y

x2+y2 , z). Prove that f

is symplectic (a slight abuse of language since f is not defined at the north
and south poles: justify why the rest of the exercise makes sense).

(c) Compute the area of the sphere 7

(5) (Alternative proof of Darboux) We consider a germ ω of symplectic form near
0 in R2n .
(a) Let us consider a function f without critical points near 0. Prove that

there are local coordinates (x1, ...., x2n) such that X f = ∂
∂xn

(use the rectifi-
cation theorem in any book on dynamical systems e.g. [HS74], [Arn97]).

(b) Prove that { f , xn} = 1
(c) Prove that if we consider Σ = { f = xn = 0} it is a germ of submanifold of

codimension 2, and that ω|Σ is symplectic
(d) Prove that we can write Σ×R2 and ω=ω|Σ⊕d f ∧d xn

(e) Prove Darboux’s theorem by induction
(f) Prove the Caratheodory-Jacobi-Lie theorem : given r functions f1, ..., fr in

a neighborhood of the point x0 in the symplectic manifold (M ,ω) such
that the d f j (x) are linearly independent and { fi , f j } = 0, we can find func-
tions fr+1, .., fn , g1, ..., gn defined near x0 such that f1, ..., fn , g1, ..gn are sym-
plectic local coordinates near x. In other words the d fi (x),d g j (x) are lin-

early independent and { fi , f j } = {gi , g j } = 0,{ fi , g j } = δ j
i .

7This was discovered, of course without the symplectic terminology, by Archimedes. According
to Plutarch and Cicero, Archimedes requested that the sphere and cylinder be carved on his tombstone
(however according to Plutarch, the reference was to the ratio of the volumes enclosed by the sphere and
cylinder, being in the ratio of two-thirds, not on their areas). See Plutarch, Marcellus 17.7 and Cicero,
Tusculanae Disputationes V, XXIII, 64,65.
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(6) (Local structure of coisotropic submanifolds) Prove that if C is a coisotropic
submanifold, for each point we can find local coordinates (q1, ..., qn , p1, .., pn)
such that C = {(q1, ..., qn , p1, .., pn) | pk+1 = .. = pn = 0}.

(7) Use the Darboux-Weinstein-Givental theorem to prove that all closed curves
have symplectomorphic neighborhoods.

HINT. Show that all symplectic vector bundles on the circle are trivial.

(8) Prove that if ω1,ω2 are symplectic forms which are compatible with the same
almost complex structure, then if they are cohomologous, they are symplec-
tomorphic.

(9) Let n ≥ 2 and ϕ : (M 2n
1 ,ω1) −→ (M 2n

2 ,ω2) be a map such that ϕ∗(ω2) = f ·ω1

where f ∈C∞(M1,R). Prove that f is constant, so that ϕ is conformal.
(10) Let n ≥ 2 and ϕ : (M 2n

1 ,ω1) −→ (M 2n
2 ,ω2) be a map such that the image of any

Lagrangian submanifold is a Lagrangian submanifold. Prove that ϕ is confor-
mal (i.e. ϕ∗ω2 = cω1 for some nonzero constant c)

HINT. Use Exercice 14 from Chapter 14 in Chapter 2 and the fact that for
each Lagrangian subspace V ⊂ Tx M1 we can find a smooth Lagrangian L such
that TxL =V .

(11) (see [GLS09]) Let E
p−→ B be a symplectic fiber bundle with fiber F and base B ,

that is there are charts over open sets of a covering Ui such thatϕi : p−1(Ui ) −→
Ui ×F and the coordinate changes ϕi ◦ϕ−1

j : (Ui ∩U j )×F −→ (Ui ∩U j )×F are
of the type (x, f ) 7→ (x, gi , j (x)( f )) where gi , j (x) ∈ Di f fω(F ).
(a) Prove that the bundle b 7→ H 2(Fb) is naturally endowed with a flat con-

nection (use the lattice H 2(Fb ,Z) ⊂ H 2(Fb ,Z) or look-up "Gauss-Manin
connection").

(b) Assume F is compact and let (ωb)b∈B be a family of symplectic forms vary-
ing smoothly on B . Prove that it defines a symplectic fibration if and only
if [ωb] defines a flat section for the Gauss-Manin connection.

(c) Prove that there exists a 2-form σ on E such that the restriction of σ to a
fiber is ωb (we do not claim σ is closed !).

(d) Prove that (T f F )ω defines a connection on E and this connection is sym-
plectic (i.e. the holonomy map is symplectic).

(12) (Moser with boundary-volume case) We consider a familyΩt of volume forms
on the compact manifold M with smooth boundary ∂M . We assume

∫
M Ωt is

constant and want to prove that there is a smooth flow ϕt such that (ϕt )∗Ωt =
Ω0.
(a) Prove that this can be reduced to finding a vector field X t tangent to ∂M

such that d(iX tΩt )+ d
d tΩt = 0 where with X t tangent to ∂M .

(b) Prove that this is possible provided there is a form Ξt vanishing on ∂M
such that d

d tΩt = dΞt .
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(c) Prove that d
d tΩt is exact, and the existence ofΞt follows from the Poincaré

Lemma (Lemma 3.22).
(13) (Moser with boundary-symplectic case) We want to prove the analogue of the

above Theorem for the case of a symplectic form, i.e. we consider a family ωt

of symplectic forms on the compact manifold M with smooth boundary ∂M .
We would like to prove, under some cohomological assumption, that there is
a smooth flow ϕt such that (ϕt )∗ωt =ω0.
(a) Prove that for such a theorem to hold, we must assume the characteristic

foliation of ωt on ∂M (see Remark 3.36 (2)) does not depend on t .
(b) From now on we assume there is a symplectic map ψt : ∂M −→ ∂M such

that (ψt )∗(ωt )|∂M =ω0|∂M .
(c) Prove thatψt extends to an isotopy (still denotedψt ) such that (ψt )∗(ωt ) =

ω0 in a neighborhood of ∂M .
(d) Prove that it is sufficient to prove the existence of ϕt when ωt = ω0 near

∂M to conclude the existence of ϕt when [ωt −ω0] = 0 in H 2(M ,∂M).
(14) Consider the action of Sp(2n,R) onΛ(n) given by R ·L 7→ R(L). Let us consider

a Lagrangian complement H to L, so that a Lagrangian near L is identified to
a graph of a quadratic form on L. We denote by ΦL,H this map.
(a) Prove that if R(t ) is a smooth path in Sp(2n) starting from the identity,

such that d
d t R(t ) + J A(t )R(t ) = 0 then d

d tΦL,H (R(t )L)|t=0 is the restric-
tion of the quadratic form A(0) to L. In other words it is also equal to

ω
(

d
d t R(t )|t=0x, x

)
(b) Prove that if L,T are two Lagrangian and I = L ∩T and R(t ) is as above,

then d
d tΦL,H (R(t )L)|t=0 = d

d tΦT,H (R(t )L)|t=0 on I .

10.2. Poisson structures.

(15) Let ϕ,ψ be two real-valued smooth functions defined on R2. We set J (ϕ,ψ) to
be the determinant of the matrix(

∂ϕ
∂x

∂ψ
∂x

∂ϕ
∂y

∂ψ
∂y

)

Prove that if F,G are functions defined on a symplectic manifold then {ϕ(F,G),ψ(F,G)} =
J (ϕ,ψ){F,G}.

HINT. One can compute directly. Alternatively use that (ϕ,ψ) sends d x∧d y
to J (ϕ,ψ)d x ∧d y.

(16) Let (M ,ω) be a symplectic manifold and P be defined by F1(z) = . . . = F2r (z) =
0. Prove that P is symplectic if and only if

det({F j ,Fk }) ̸= 0
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(17) Let (P,ω|P ) be a symplectic submanifold of (M ,ω). Let H be a smooth function
on M and XH be the Hamiltonian vector field. Let K = H|P be the restriction
of H to P .
(a) Prove that XK (z) is the projection of XH (z) on Tz M in the direction of

TzPω

(b) Prove that there are smooth functions λ1, . . . ,λ2r such that setting H̃(z) =
H(z)−∑2r

j=1λ j (z)F j (z) we have XK = X H̃ on P .
(c) Assume now that {F j ,Fk } = δ j ,k−r for 1 ≤ j ≤ k ≤ 2r and {F j , H } = 0 for

1 ≤ j ≤ r . Prove that we can take

H̃(z) = H(z)−
r∑

j=1
λ j F j (z)

(18) (Jacobi identity for vector fields) Let X be a vector field. We define DX :
C∞(M ,R) −→C∞(M ,R) to be the map DX f = iX d f . We call derivation a map
D : C∞(M ,R) −→C∞(M ,R) , that is D( f g ) = g D f + f Dg .
(a) Prove that for a derivation D(1) = 0
(b) Prove that DX is a derivation.
(c) Prove that any derivation is of the form DX for some vector field X . Hint:

prove that this is a local result. Then use a chart and Hadamard’s lemma
(a direct consequence of Taylor’s theorem with integral form remainder)
stating that any smooth function can be written locally as

f (x) = f (x0)+
n∑

j=1
(x j −x j

0) f j (x)

where the f j are smooth functions and f j (x0) = ∂ f
∂x j

(x0).

(d) Prove that the commutator of two derivations is a derivation
(e) Define [X ,Y ] by D[X ,Y ] = DX DY −DY DX . Prove that this coincides with

the other definitions of the Lie bracket of vector fields you have seen (or
will find in other textbooks).

(f) Prove that the Jacobi identity

[F, [G , H ]]+ [G , [H ,F ]]+ [H , [F,G]] = 0

holds.
(19) (A silly proof of the Jacobi formula for vector fields) Let X ,Y , Z be three vector

fields on N .
(a) Prove that HX (q, p) = 〈p, X (q)〉 defines a smooth function on T ∗N .
(b) Prove that the Hamiltonian vector field of HX coincides with X on 0N .
(c) Prove that {HX , HY } = H[X ,Y ] on 0N

(d) Use the Jacobi identity for the Poisson bracket to prove the Jacobi identity
for vector fields



10. EXERCISES AND PROBLEMS 91

(20) (Poisson manifolds) Let us consider a bilinear map {•,•} : C∞(M)⊗C∞(M) −→
C∞(M). We shall say that {•,•} is a Poisson structure on M if

• (antisymmetry) {F,G} =−{G ,F }
• (Jacobi identity) {F, {G , H }}+ {G , {H ,F }}+ {H , {F,G}} = 0
• (Leibniz identity) {FG , H } = F {G , H }+G{F, H }

(a) Prove that there is smooth section π of
∧2 T M such that {F,G} = (dF ∧

dG)(π)
(b) Prove that a symplectic manifold is automatically a Poisson manifold.

What is π ?
(c) Let F ∈C∞(M ,R), then G 7→ {F,G} is a derivation (according to the Leibniz

identity), hence corresponds to a vector field XF (see Exercise 18,(18c)) .
(d) Prove that F −→ XF is a Lie algebra morphism between (C∞(M), {, }) and

(X∞(M), [, ]) the Lie algebra of vector fields (with the usual Lie bracket
[•,•]).

(e) Prove that F 7→ XF defines a linear bundle map B : T ∗M −→ T M . We
define the rank of the Poisson structure at m ∈ M to be the rank of Bm .

(f) Prove that if the rank is dim(M) at every point, then M is symplectic.
(g) Prove the following theorem :

THEOREM. Let P be a Poisson manifold, and let p ∈ P. Then there exist
a neighborhood U ⊂ P of p and a diffeomorphic Poisson mapping ϕ =
ϕS ×ϕN : U −→ S ×N where S is a symplectic manifold and N is a Poisson
manifold with rank zero at ϕN (p).

Let us provide the

HINT. Argue by induction on the rank of {, }P at p ∈ P. The case where the
rank is zero is easy. The induction step is obtained by first finding f , g such
that { f , g }(p) ̸= 0 then showing that using the straightening lemma for vec-
tor fields, we can assume f (p) = g (p) = 0 and { f , g } = 1. Then show that
X f , Xg commute and the map ( f , g ) from (P, {, }P ) to R2 with the standard
symplectic structure is a Poisson map. Moreover the flows of X f , Xg define
a mapψ : N×R2 −→ P where N = f −1(0)∩g−1(0) : take (x, s, t ) 7→ϕs

f ϕ
t
g (x).

Prove that ψ is a Poisson map.

(h) Prove that the mappings ϕ in the above theorem defines a foliation of P
by symplectic leaves.

HINT. Let x, y ∈ P. If there is a Hamiltonian vector field whose flow sends x
to y we write x ≃ y and this generates an equivalence relation still denoted
≃. This is also the equivalence relation generated by x ≃ y if and only if
there is path γ connecting x to y such that γ̇(t ) ∈ Fγ(t ) where Fx is the vector
space generated by the set of X f (x) for f ∈C∞(P,R). According to Sussman’s
theorem (see [Sus73; Ste74]), for such a relation, the equivalence classes are
embedded submanifolds, and it is easy to check that these are symplectic.
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(21) Let us consider T ∗N and F be a foliation with Lagrangian leaves defined near
0N and transverse to 0N . Then there exists a unique one-form α, such that
dα=ω, α vanishes on vector fields tangent to F and α vanishes on 0N .

HINT. Prove first that we may assume by a linear change of variable that Fx

-the leaf through (x,0) ∈ L- is tangent to the cotangent fiber through x, Tx(T ∗
x L).

Then prove that for a smooth path γ,
∫
γα can be defined as follows : connect

γ(0) (resp. γ(1)) to 0L by a path contained in Fγ(0) (resp. Fγ(1)) and then connect
the two points in Fγ(0)∩0N and Fγ(1)∩0N respectively. We denote byρ the closed
path thus obtained and set ∫

γ
α=

∫
ρ
λ

Prove that this definition is indeed independent from the choice of ρ, that it
actually defines a smooth one-form and using Stoke’s formula, that dα=ω.

HINT (Alternative hint). Prove that the foliation F is symplectomorphic in
a neighborhood of L to the vertical foliation of T ∗L. Indeed over a chart of L, for
x ∈ L, we see that Fx is the graph of the differential of a function fx(p) = f (x, p)
such that fx(0) = 0,d fx(0) = 0. In other words near p = 0, we have Fx = {(x +
∂ f
∂p (x, p), p) | p ∈Rn}. Locally the symplectic map

φ : (x, p) 7→ (x − ∂ f

∂p
(x, p), p + ∂ f

∂x
(x, p))

gives a symplectomorphism sending Fx to the cotangent fiber. Moreover if in
some neighbourhood of the zero section in T ∗U the foliation Fx already co-
incides with the cotangent fiber, then the symplectomorphism is the identity in
this region. We then cover L by charts, and apply this deformation on each chart
: it moves the foliation to the cotangent fiber. Finally prove that φ∗(λ) =α.

x

x = x0 +d fx0 (p)

x0

p

FIGURE 1. The foliation F
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(22) We want to prove the following ([GS77] page 230, proposition 3.2.)

PROPOSITION. Let α be a one form on T ∗N such that α = 0 on 0N , dα =
ω. Then there is a unique Lagrangian foliation F such that α is the one-form
associated to F by Exercice 21

(a) Prove that if ξ is the vector field such that iξω=α, we have that ξ is confor-
mal, that is Lξω=ω. Setting Dξ(x,0) = Ax we haveω(Axu, v)+ω(u, Ax v) =
ω(u, v) for all u, v ∈ T(x,0)(T ∗N ).

HINT. Write the equation relating d
d t Dϕt (z), Dϕt (z) and Dξ(z)

(b) Prove that the eigenspace for the eigenvalue 0 for Ax contains T(x,0)0N ,
and the eigenvalues of Ax = Dξ(x,0) are 0 and 1, both with multiplicity n.

HINT. Write the relation found in the first question in terms of J , Ax , A∗
x

and use that Ax and A∗
x have the same eigenvalues and their eigenspaces

have the same dimension.

(c) Prove that there is through each point (x,0) an invariant submanifold Fx ,
invariant by the flow, tangent to the eigenspace of Ax corresponding to
the eigenvalue 1 (use the invariant manifold theorem, [Har02], chap. IX).

(d) Prove that Fx is Lagrangian, and the Fx constitute a foliation, that we
denote by F

(e) Use Exercice (21)) to prove that α is the one-form associated to F .
(23) Prove that Exercise 22 has the following consequences.

COROLLARY. With the assumptions of the Proposition in Exercise 22, there
is a symplectic diffeomorphism ϕ defined near 0N such that ϕ|0N = id0N and
ϕ∗(λ) =α, where λ is the canonical Liouville form.

HINT. Construct a symplectic diffeomorphism sending Vx to Fx where Vx =
T ∗

x L is the cotangent fibre over x by using the “alternative hint” in Exercise 21.

COROLLARY. Let L be a Lagrangian submanifold in (M ,ω) and assume ω=
dα. Then denoting iL : L −→ M the embedding, we have an embedding ϕ of
a neighborhood U of the zero section of T ∗L such that ϕ|0L = iL (L and 0L are
canonically identified) and ϕ∗α = β+λ, where λ is the Liouville form in T ∗L,
β is closed and β|L = i∗Lα|L .

HINT. Identify U with a subset of M (with the induced symplectic form) and
consider α̃=α−π∗i∗L (α)−λ. Then α̃|L = 0, so we may write α̃= d g with g = 0
on L (use Lemma 3.22). Then β = d g +π∗i∗L (α) is such that α−β satisfies the
assumptions of the previous Corollary.

(24) Let (g, [, ]) be a Lie algebra and g∗ be its dual. Given a function u ∈C∞(g∗) we
can identify du(α) to an element of g (since a linear form on g∗ is identified to
an element of g). We then set

{u, v}(α) =−α([du(α),d v(α)])
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(a) Prove that this defines a Poisson structure on g∗.
(b) We can identify g to a subspace of C∞(g∗,R) through X 7→ uX where

uX (α) =α(X ). Prove that {uX ,uY } = u[X ,Y ].
(25) (Moment map) Let G be a group acting (smoothly) by Hamiltonian maps on

a closed manifold M . Let v ∈ g. Then, since exp(t v) is a one-parameter sub-
group of G , its image in DHam(M ,ω) is a one parameter subgroup, so is given
by an autonomous Hamiltonian Hv .
(a) Prove that X{Hv ,Hw } = [Xv , Xw ] so that {Hv , Hw } = H[v,w] + c(v, w) where

c(v, w) is a constant
(b) Prove using the Jacobi identity that c is a cocycle, that is

c([v, w], x])+ c([w, x], v)+ c([x, v], w) = 0

so defines an element in H 2(g,R).
(c) Prove that if the above element vanishes in H 2(g,R) (i.e. if there is a map

a : g −→ R such that c(u, v) = a[u, v])) then we can find a function a :
g −→ R such that Kv = Hv + a(v) defines a Lie algebra morphism from g
to C∞(M) i.e.

{Kv ,Kw } = K[v,w]

(d) Prove that if M is compact, then we can normalize Hv by
∫

M Hv (x)d x and
we always have such a Lie algebra morphism.

We call moment map the map µ : M −→ g∗ defined by µ(m)v = Hv (m)
(26) (Noether’s theorem) Let M be a symplectic manifold with a Hamiltonian G-

action having a moment map µ. Let H be a G-invariant Hamiltonian. Prove
that its flow ϕt

H satisfies {H , Hv } = 0 where Hv (m) = µ(m)v is defined in Ex-
ercise 25. Deduce that the functions Hv are preserved by the flow of XH .
This seems obvious, but the translation in Lagrangian terms is not so obvious.
Prove the following
(a) If a Lagrangian is time-independent, then energy is conserved
(b) If the Lagrangian depends only on velocity, then the momenta mvi are

conserved
(c) If the Lagrangian is invariant by rotations around the origin inR3 (or more

generally Rn)) then the angular momenta are conserved (i.e. in dimen-
sion 3, x ∧ v where x is position v velocity and ∧ the cross product.

HINT. The Lie algebra of SO(3) can be identified to R3 with the Lie bracket
corresponding to the cross product. Use the fact that Hu(x, p) = 〈x∧p,u〉 =
det(x, p,u).

(d) Prove that for a Hamiltonian depending only on the distance to the origin,
the areal velocity is constant (this is the second Kepler law).

(27) (Coriolis force see [Mar+07]) Let G be a connected Lie group acting on N . We
assume the action is free and proper.
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(a) Explain how the action of G on N extends to an action (also free and
proper) of G on T ∗N .

(b) Prove that the action of G on T ∗N is Hamiltonian and has a moment map
µ : T ∗N −→ g∗.

(c) Prove that the symplectic manifolds µ−1(0)/G and T ∗(N /G) are symplec-
tomorphic.

HINT. Prove that 0 is a regular value of µ and the action of G on µ−1(0)
is proper. Define the map Φ : µ−1(0) −→ T ∗(N /G) as follows. Notice that
αq ∈ µ−1(0)∩T ∗

q N is equivalent to 〈αq ,ξ〉 = 0 for all ξ ∈ g and we may
associate to it an element of T ∗

[q](N /G). Prove that Φ is G invariant, and

induces a diffeomorphism ϕ :µ−1(0)/G −→ T ∗(N /G), and that it preserves
the respective Liouville forms.

Of course one wonders what happens for ξ ̸= 0. We refer to [Mar+07], (p.
60 ff.) for a detailed explanation. The goal is to compare µ−1(ξ)/Gξ where
Gξ is the isotropy group of ξ for the coadjoint action and T ∗(N /Gξ). These
are not equal, but with reasonable assumptions we get en embedding
from (µ−1(ξ)/Gξ,ωξ) into (T ∗(N /Gξ),σξ −Bξ) where σξ is the canonical
symplectic form on T ∗(N /Gξ), and Bξ an extra term. This extra term is
for example responsible of the Coriolis force in mechanics.

(28) (Poisson manifolds 2) We consider again a Poisson manifold with Poisson
bracket {•,•}. A Poisson manifold is symplectic if its Poisson structure is given
by a symplectic structure as in Exercise 20. A map ϕ : (M , {, }M ) −→ (N , {, }N ) is
a Poisson mapping if and only of { f ◦ϕ, g ◦ϕ}M = { f , g }N ◦ϕ Prove that if M , N
are symplectic, then a Poisson map is symplectic.

(29) We want to prove that the connected components of Diff(M ,ω) are path con-
nected by smooth paths. In other words if ϕ0,ϕ1 are in the same connected
component of Diff(M ,ω), there is a smooth path of symplectic maps from ϕ0

to ϕ1.
(a) Prove that the graph of a symplectic map is a Lagrangian in M ×M
(b) Prove that a Lagrangian C 1 close to the diagonal∆M in M×M is the graph

of a symplectic map
(c) Using Weinstein’s Lagrangian neighbourhood theorem, prove that a La-

grangian C 1 close to the diagonal ∆ can be identified to a closed 1-form
on ∆M

(d) Prove that any two 1-forms are joined by smooth path of closed 1-forms
(e) Conclude that any symplectic map close to the identity can be joined to

the identity by a smooth path of symplectic maps.

10.3. Classification of singularities.

(30) (Morse and Moser) We want first to prove the Morse lemma (see [Mil63])that
states the following:
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LEMMA. Assume f is a smooth function defined in a neighbourhood of 0
such that d f (0) = 0 and d 2 f (0) = Q is a non-degenerate quadratic form. We
claim that there is a local diffeomorphism near 0 such that f ◦ϕ(x) = Q(x).
The reduction of quadratic forms implies that with a further linear change of
variables, we may assume Q(x) = x2

1 + ..+x2
p −x2

p+1 − ...−x2
n .

(a) Consider ft (x) = (1− t ) f (x)+ tQ(x). We want to find ϕt , flow of the vec-
tor field X t (x) such that ft (ϕt (x)) = f0(x). Prove that this is equivalent to
solving

(Q − f )(ϕt (x))+d ft (ϕt (x))X t (ϕt (x)) = 0

with X t (0) = 0.
(b) Prove that the above equation can be rewritten as (Q− f )(y)+d ft (y)X t (y) =

0 for all y in M .
(c) Prove that d ft (0) = 0 and d 2 ft (0) = Q and there exists a smooth fam-

ily of matrices At (x) ∈ Mn(R) such that d ft (x) · v = At (x) · x · v where
At (x) = ∫ 1

0 d 2 ft (sx)d s (use the formula d
d s d f (sx) = d 2 f (sx) · x) and At (0)

is invertible.
(d) Prove similarly that (Q − f )(x) = 〈B(x)x, x〉 where B(x) is in Mn(R).
(e) Show that our equation is now reduced to

〈At (x) ·X t (x), x〉+〈B(x)x, x〉+0

and we can set X t (x) =−At (x)−1B(x)x.
(f ) Prove that the theorem suitably modified still holds in a Banach space,

and also if f is only C k+2 (and then ϕ is only C k ). This proof is due to R.
Palais ([Pal69])

(g) (Tougeron [Tou68], Arnold [Arn68] section 8) Let m be the ideal of the
ring of C∞ germs near 0 of functions vanishing at 0, and J( f ) the ideal

generated by the ∂ f
∂x j

(x). Prove that if g − f ∈M ·J( f ), then we can find ϕ

such that f ◦ϕ= g .
(h) Using the analytic version of Hilbert’s Nullstellensatz (due to W. Rückert,

see [Rüc32] or the more recent proofs in [Dem] (4.22) or [Huy04], 1.1.29 )
stating that if f : (Cn ,0) −→ (C,0) is holomorphic and has 0 as an isolated
critical point thenJ( f ) ⊃Mr for some r , prove that if a holomorphic germ
f has 0 as isolated critical point, then f is conjugate to a polynomial.

HINT. apply the Nullstellensatz to the Taylor expansion of f at order r +1
and then the previous question.

10.4. Various geometric results.

(31) (Flux homomorphism : proof that Ker(Flux) = DHam(M ,ω)) Let (ϕt )t∈[0,1] be a
symplectic isotopy of a connected symplectic manifold M . We want to prove
that if Flux((ϕt )t∈[0,1] = 0 then there is a Hamiltonian isotopy with the same
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endpoints (in particular ϕ1 ∈ DHam(M ,ω). We set X t to be the vector field
generating ϕt and αt = iX tω.
(a) Prove that we can reduce ourselves to the case where

∫ 1
0 αt d t = 0 in H 1(M ,R)

(rather than in H 1(M ,R)/Γ(M ,ω).
(b) Prove that if

∫ 1
0 αt d t is exact, then we can concatenate ϕt with a Hamil-

tonian isotopy so that
∫ 1

0 αt d t = 0, so we are reduced to dealing with this
case.

(c) Prove that it is enough to show that ϕt can be deformed with fixed end
points to a path such that Flux(ϕt ) = 0 for each t ∈ [0,1].

HINT. The property Flux(ϕt ) = 0 for all t implies that for each t we have
iX tω is exact, so X t is a Hamiltonian vector field.

(d) Set βt =
∫ t

0 αsd s and Yt be defined by iYtω=βt . Let s 7→ψs
t be the flow of

Yt (this is an autonomous vector field ! ). Prove that ψ1
t ◦ϕt has vanishing

Flux for all t .
(e) Conclude.

(32) Let us consider T 2n with the standard symplectic form obtained from the cov-
ering R2n/Z2n −→ T 2n . We consider a fundamental domain for this cover
U ⊂R2n : this is a domain such that it is sent bijectively to T 2n by the covering
map. For example {(x1, ..., xn , y1, ..yn) | 0 ≤ xi < 1,0 ≤ yi < 1}. By volume of a
domain, we mean

∫
U σ

n
n and by center of mass, we mean the point with co-

ordinates x j =
∫

U x jσ
n
n , y j =

∫
U y jσ

n
n , y j for 1 ≤ j ≤ n. Prove that a symplectic

diffeomorphism ϕ of T 2n , symplectically isotopic to the identity, is Hamilton-
ian if and only if U and ϕ(U ) have the same center of mass modulo Z2n .

(33) (Multi-Transitivity of the action of DHam(M ,ω)) Let (M ,ω be a connected
symplectic manifold.
(a) Show that the action of DHam(M ,ω) is k-transitive for all k, that is given

x1, ..., xk and y1, ..yk in M we can find ϕ ∈ DHam(M ,ω) such that ϕ(x j ) =
y j for all j ∈ {1, ...,k}

HINT. Prove that there is such a Hamiltonian map supported in U when-
ever x1, y1 ∈U and U is connected. Then argue by induction.

(b) Let x1, ..., xk and y1, ..yk and S j ⊂ Tx j M ,T j ⊂ Ty j M be linear subspaces
such that if S j is of the same type as T j then there is a Hamiltonian map
ϕ such that ϕ(x j ) = y j and dϕ(x j )S j = T j .

HINT. Use the first question to reduce to the case x j = y j and then to the
case n = 1. Finally use the fact that the linear action of Sp(2n) is transi-
tive on linear subspaces of given type and show that for any R ∈ SP (2n)
there is a Hamiltonian map with support in a neighbourhood of 0 such
that dϕ(0) = R
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(34) (Lagrangian isotopies are induced by Hamiltonian flows) Let it : L −→ (M ,ω)
be a continuous family of Lagrangian embeddings (this is called a Lagrangian
isotopy). Then X t = d

dτ it (x)τ=t is a vector field along it . In other words if we
consider i : [0,1]×L −→ M and E to be the bundle i∗(T M) over [0,1]×L, we
have that X is a section of E given by X (t , x) = d

dτ it (x)τ=t .
(a) Prove that there is a natural connection on E such that the horizontal

space is A(t , x) = dit (x)TxL.
(b) Prove that i∗ω vanishes on A(t , x) and is symplectic on the vertical
(c) Prove that using Weinstein’s theorem, that we can extend it to a symplec-

tic embedding jt : DεT ∗L −→ (M ,ω) where DεT ∗L is a neighbourhood of
the zero section in T ∗L.

(d) Prove that provided the family [ω] ∈ H 2(M , it (L)) ≃ H 2(M ,L) is constant,
there is a function H(t , z) defined on [0,1]×DεT ∗L such that X (t , x) =
d jt (x)XH (t , x) for all t ∈ [0,1], x ∈ L. Find a counterexample if this condi-
tion does not hold.

(e) Conclude that if the family [ω] ∈ H 2(M , it (L)) ≃ H 2(M ,L) is constant, then
it (L) =ϕt

H (L).
(f) Prove that the same holds if it is a continuous family of Lagrangian im-

mersion (this is called a Lagrangian regular homotopy).
(35) Let us consider two subgroups of the group of Hamiltonian maps of T ∗N :

(a) The set of fiber preserving symplectic maps, that is of the form (q, p) 7→
(q, p +d f (q)) for some smooth function f

(b) the set of Hamiltonian symplectomorphisms preserving the zero-section
0N .

Prove that the union of these two subgroups generates DHam(T ∗N ,ω)
(36) Let L : V ×L −→L (T ∗N ) be a smooth family of exact Lagrangians and assume

there is a smooth function f on V ×L such that f (v, z) satisfies dz f = λ|Lv .
Prove that there is an exact Lagrangian Λ ∈ T ∗(V ×N ) such that the reduction
of Λ by v = v0 is Lv0 .

(37) (Crofton’s formula, see [Cro68; San04]) Let γ : [0,1] −→ Sn−1 be a smooth curve
on the sphere. We want to prove that if we set for a vector ξ ∈ Sn−1 #(γ∩Eξ) to
be the number (inN∪ {+∞}) of intersection points of γ with the codimension
one sphere Eξ = {x ∈ Sn−1 | 〈ξ, x〉 = 0}. We want to prove that

length(γ) =π
∫

Sn−1
#(γ∩Eξ)dξ

where dξ is the O(n) invariant measure on the sphere with integral one (e.g.
for n = 3 this is 1

4π the usual measure)
(a) Show that if γ is a great circle on the sphere (i.e. the intersection of a plane

through the origin and the sphere) the formula holds
(b) Show that the formula holds if γ is an arc of a great circle
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(c) Let xi = γ(i /N ), and replace γ by the curve γN obtained by connecting
the xi by the shortest arc of a great circle connecting xi and xi+1

(d) Prove that length(γn) converges to the length of γ and that

π

∫
Sn−1

#(γN ∩Eξ)dξ

converges to

π

∫
Sn−1

#(γ∩Eξ)dξ

(e) Conclude
(38) Let γ : S1 −→ Sn−1 be a closed smooth curve on the sphere. We want to prove

that if γ intersects all the En (see Exercise 37) then it has length at least 2π.
(a) Prove that this is a consequence of Crofton’s formula.

We shall now propose an alternative proof.
(b) Let x, y two points on the curve dividing the curve in two paths γ1,γ2 of

equal length. Let n be a vector on a great circle through x, y (this is unique
unless x, y are antipodal, in which case we can conclude immediately).

(c) Prove that γ1 or γ2 intersects Eξ. After a possible change of notation we
assume it is γ1

(d) Let sξ be the symmetry with fixed point set Rξ (and equal to −Id on ξ⊥).
Prove that γ1 ∪ sN (γ1) = γ̃ is a closed curve with the same length as γ

(e) Prove that γ̃ connects two antipodal points in En

(f) Deduce that l eng th(γ̃) ≥ 2π (we admit that the path with shortest length
between antipodal points is a great circle) hence leng th(γ) ≥ 2π.

(39) Let S be a surface in a Riemannian manifold (M , g ). We assume S is minimal,
that is for any embedded curve C on S the area of any surface bounding C
and close to S is greater or equal than the area of S. We want to prove that
if x0 ∈ S and B(x0,r ) is the Riemannian ball of radius r centered at x0, then
limr→0

area(S∩B(x,r ))
πr 2 ≥ 1. We shall assume first that the metric in B(x0,r ) is the

euclidean metric.
(a) Prove that d

dr area(S∩B(x,r )) = length(S∩S(x0,r )) for almost all r . We set
a(r ) = area(S ∩B(x,r )), so that a′(r ) = length(S ∩S(x0,r )).

(b) Prove that S ∩S(x0,r ) cannot be strictly contained in a hemisphere. For
this we may assume the curve is contained in xn ≥ ε > 0. Consider S ∩
{xn = ε} and assume it is a union of smooth curves (which is the case after
small perturbation of ε). These smooth curves bound a union of discs in
{xn = ε} that we denote by ∆.

(c) Prove that area(∆) < area(S∩{xn ≤ ε}). Now we replace S by S′ = S∩ {xn ≥
ε}∪∆.

(d) Prove that S′ bounds C and area(S′) < area(S), contradicting the assump-
tion that C is contained in a hemisphere.
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(e) Use Crofton formula to show that a′(r ) ≥ 2πr and conclude that a(r ) ≥
πr 2.

(f) Prove that limr→0
area(S∩B(x,r ))

πr 2 ≥ 1 holds for any metric by approximating
g by the euclidean metric g (x0).

10.5. Lagrangian and Hamiltonians.

(40) (Beltrami’s equation) Consider the Lagrangian L(q, q̇) independent from t .
Prove that the Euler-Lagrange equation implies that L(q, q̇)− q̇ ∂L

∂ξ
(q, q̇) is con-

stant on a trajectory.

HINT. Write that the Hamiltonian is constant.

(41) Let H : M 2n −→ R be an autonomous Hamiltonian on a symplectic manifold
(M 2n ,ω), and XH the corresponding vector field. Prove that if Σ is a regular
level of H , then there exists a volume form µ on Σ invariant by XH .

HINT. Prove that there existsΩ, a 2n−1-volume form onΣ and a vector field
Y such that iY Ω = ω(n−1). Prove that Y and XH must be colinear. Then find µ
such that iXHµ=ωn and then LXHµ= 0

(42) (The exponential map and tubular neighborhood) Let g (x)(ξ,ξ) be a Riemann-
ian metric where x ∈ M ,ξ ∈ Tx M . We set H(x, p) = g (x)(p, p) for the metric
induced on the dual space, by identifying T ∗

x M to Tx M using g (x) that is the
map

g (x)# : v ∈ Tx M 7−→ p = g (x)(v,•) ∈ T ∗
x M

We consider the Hamiltonian flow ϕt
H on T ∗M and we denote by Φt

H the
corresponding flow on T M . Now we consider the map E : T M −→ M given
by E(x, v) = πΦ1

H (x, v), π : T M −→ M being the projection. We claim that
d

d t E(x, t v)|t=0 = v .

(a) Show for (x(t ), p(t )) =ϕt
H (x(t ), p(t )) that d

d t x(t ) = g (x)#p(t ) where g (x)# :
T ∗

x M −→ Tx M is the duality map i.e. the inverse to p 7→ g (x)p.
(b) Prove that ẋ(t ) = v(t ) where v(0) = v . Conclude that DE(x,0)(0, v) = v .
(c) We want to prove that for M compact, N a smooth compact submanifold,

νN M the normal bundle, E : DενN M −→ M is a diffeomorphism onto
its image that is a neighbourhood of N . Prove that for ε small enough,
E is injective. One can consider a sequence (xn , vn), (yn , wn) such that
E(xn , vn) = E(yn , wn) and vn , wn go to zero. Then prove that xn , yn con-
verges to z ∈ M , and prove that the existence of (xn , vn , (yn , wn) would
contradict the inverse function theorem for E applied at z.

Remark: usually the exponential map is defined after Levi-Civita connection
has been introduced. This is by no means necessary as we just saw. The ad-
vantage of using a Hamiltonian formulation is that we do not have to deal with
the Euler-Lagrange equation, which is a second order equation, and this is a



10. EXERCISES AND PROBLEMS 101

slightly complicated mathematical concept, if one wishes to define it intrinsi-
cally. Of course connections and/or local coordinates do the job.

(43) Let L be a (non necessarily compact) Lagrangian submanifold in T ∗N . Let
f : T ∗N −→ R be a smooth function on N . Prove that if (x, p) ∈ L is such that
f achieves its maximum on L at the point (x0, p0) , we must have X f (x0, p0) ∈
T(x0,p0)L.

(44) (Control theory and Pontryagin maximum principle) The following models
many phenomenon, but for example how to minimize the cost of sending
a rocket to the Moon, how to park a car with minimal effort, etc. Consider
L : N×Ω−→Rwhere N is manifold and U a domain and c : N −→R be smooth
functions. We define on the set of continuous paths the cost function

E(x,u) =
∫ t

0
L(x(t ),u(t ))d t + c(x(T ))

Our goal is to minimize E(x,u) over all “controls” u assumed to belong to some
domain in a Banach space B and all paths from x(0) = x0

ẋ(t ) = f (t , x(t ),u(t ))

We assume that we have existence for all times and uniqueness for solutions
of the above equation (for example N is compact and f is locally Lipschitz in
x, uniformly for u ∈Ω. We look for a function (hereafter named “control”) u
such that E(x,u) is minimal, x0 being fixed. Note that we do not require u to
be continuous in t !
(a) Prove that this can be rewritten as the following problem : consider the

equation 
ẋ(t ) = f (t , x(t ),u(t ))

ċ(t ) = L(x(t ),u(t ))

x(0) = x0,c(0) = 0

For each control u, this defines a flow on the space of (x,c) and we want
to maximize the function F (x,c) = c.

(b) Prove that setting

Hu(t , x,c, p,γ) = γ ·L(x,u(t ))+〈p, f (x,u(t ))〉
where (x,c, p,γ) ∈ T ∗(N ×R), we have that Lu = ϕT

Hu
(V(x0,0)) is the set of

(x(T ),c(T ), p(T ),γ(T )) such that x(t ),c(t ) satisfy the above equation andṗ(t ) =γ∂L

∂x
(x(t ),u(t ))+〈p, f (t , x(t ),u(t ))〉

γ̇(t ) =0

(c) Prove that the family of Lu can be bundled toghether in a LagrangianΛ in
T ∗(N ×R×B) and we want to maximize the function G(x,c,u) = c on Λ.
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(d) Write the condition XG ∈ T(x,p,c,γ,u,v)Λ and prove Pontryagin’s weak max-
imum principle : we must have the above equations to be satisfied and
also for all t ∈ [0,T ]

γ
∂L

∂u
(x(t ),u(t ))+〈p,

∂ f

∂u
(x(t ),u(t ))〉 = 0

(45) (Billiard maps) Consider a convex region Ω with smooth boundary Σ in Rn .
We think of a ball traveling in straight line, but obeying the Descartes reflexion
on the boundary : the speed of the ball and its reflection remain in the same
plane containing the normal vector, and the incoming and outcoming speed
make the same angle with the normal. This is obviously not a smooth map,
since we have some discontinuity at a reflection. But we can look at the map
T +
Σ R

n of pairs (x, v) with x ∈ Σ and v a vector such that 〈v,ν(x)〉 < 0. We set
ϕ(x, v) = (y, w) where y is the point where the line x + t · v meets Σ and w
the speed of the reflected ball at y . Since we can write v =

√
1−|ṽ |2ν(x)+ ṽ

where ṽ ∈ TxΣ has norm less than 1, we then see that the billiard map is a map
DTΣ −→ DTΣ and we can carry it to a map DT ∗Σ −→ DT ∗Σ. Prove that the
billiard map is a C 0 limit of Hamiltonian maps. Assume Ω= {q ∈ N | f (q) ≤ 0}
and 0 is a regular value of f , prove that if Hε(q, p) = 1

ε f (q)+ε|p|2, the limit of
the characteristic flow on Hε = 1 as ε goes to 0 is the billiard map. (see Chapter
8, Section 2 for more)

10.6. Contact geometry and Homogeneous symplectic manifolds.

(46) Let (M ,ξ) be a 3-manifold with a plane distribution. A curve γ is an integral
curve if γ̇(t ) ∈ ξ(γ(t )) for all t .
(a) Prove that ξ is contact if and only if any two points in a connected open

set U can be joined by an integral curve inside U .
(b) Give an example to show that the above becomes false if “inside U ” is

removed.
(c) Prove the analog statement in higher dimension i.e. for a hyperplane dis-

tribution in M 2n+1.
(47) Prove that in T ∗N a Hamiltonian vector field preserves the Liouville form, i.e.

LXHλ = λ if and only if H is positively homogeneous of degree one, that is
H(x,τp) = τH(x, p) for all τ ∈R and (x, p) ∈ T ∗N .

(48) Let (E , J ) be a complex vector space. Let us considerΛp (E) the complex vector
space of complex valued p-forms on E .
(a) Prove thatΛ1(E) =Λ(1,0)(E)⊕Λ(0,1)(E) whereΛ(1,0)(E) is the set ofC-linear

1-forms and Λ(0,1)(E) the set of antilinear one-forms.
(b) We shall denote by Λ(k,p−k)(E) the space of p-forms generated by the ex-

terior products of k forms in Λ(1,0)(E) and k −p forms in Λ(0,1)(E). Prove
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that

Λ(p)(E) =
p⊕

k=0

Λ(k,p−k)(E)

(c) We now do the same for an almost complex manifold (M , J ). Prove that

Ωp (M) =
p⊕

k=0

Ω(k,p−k)(M)

(d) If (M , J ) is complex manifold, i.e. there are holomorphic charts, i.e. holo-
morphic local coordinates z1, ..., zn . We denote by z̄ j the composition of
z j and the complex conjugation. Prove that α ∈Ω(k,p−k) if and only if we
can write locally

α= ∑
i1,...ik , j1..., jp−k

αi1,...ik , j1..., jp−k (z1, ..., zn)d zi1 ∧ ...∧d zik ∧d z̄ j1 ∧ ...∧d z̄ jp−k

(e) Assuming once more that (M , J ) is complex, prove that dΩk,p−k (M) ⊂
Ωk+1,p−k (M)⊕Ωk,p+1−k . We denote the first component of dα by ∂α and
the second by ∂α

(f) Prove that for ϕ a smooth real function, i∂∂ϕ is a real valued (1,1)-form.
(g) Set J∗α(z)(ξ1, ...,ξp ) =α(z)(Jξ1, ..., Jξp ).

(h) Prove that for a smooth function ϕ we have d J∗dϕ= i∂∂ϕ
(i) Let us now again assume (M , J ) is only almost complex. Prove that if

d J∗dϕ is positive on complex lines, then it is a symplectic form, and J
tames it.

(49) Prove that if ϕ is a convex function on R2n =Cn , then it is plurisubharmonic.

HINT. Prove that the restriction of the Levi form to a complex line is the

restriction of ∆ϕ, where (∆ f )(x, y) = ∂2 f
∂x2 (x, y)+ ∂2 f

∂y2 (x, y).

(50) (Pfaff normal form) Use the above Exercise to show that if a 1-form α is such
that dα has constant rank, then
(a) if (dα)r ̸= 0 andα∧(dα)r ≡ 0 there are local coordinates x1, ..., xr , y1, .., yr , z, t1, ..., tn−2r−1

such that α=∑r
j=1 y j d x j

(b) if α∧ (dα)r ̸= 0 and (dα)r+1 ≡ 0 then there are local coordinates such that
α= d z −∑r

j=1 yr d xr .
(c) α= 0 defines a distribution with maximal integral submanifolds (i.e sub-

manifolds V such that TzV ⊂ Ker(α(z)) of dimension r .
(51) Prove that if Λ is a Legendrian submanifold in a contact manifold (M ,ξ) it has

a neighbourhood contactomorphic to a neighbourhood of the zero section in
J 1(Λ,R)

HINT. Reduce to Weinstein’s neighbourhood theorem (Proposition 3.26)
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(52) Let L be a Lagrangian submanifold in (M ,ω) and W a domain with restricted
contact-type boundary ∂W . Let λ be a one-form on W defining the contact
form on ∂W , that is dλ=ω and λ|∂W =α.
(a) Prove that that if ∂W is transverse to L, we may deform L in a neighbour-

hood of ∂W so that there exists a Legendrian submaniifold Λ in (∂W,α)
such that L∩ (∂W ×]−ε,ε[) =Λ×]−ε,ε[. Here ω= d(e tα) in ∂W ×]−ε,ε[.

(b) Let X be the conformal vector field induced by λ, that is iXω = λ. Prove
that X is − ∂

∂t on ∂W ×]−ε,ε[. Prove that there is a conformal vector field
which

(i) Enters ∂W , i.e. X = f (x, t ) ∂∂t +Y (x, t ) where f ≤ 0 everywhere and
f < 0 away from Λ and Y is tangent to ∂W × {t }.

(ii) f = 0 on Λ× {t } for t ∈]−ε,ε[

HINT. Prove that on ∂W ×]−ε,ε[ there is a function H such that d H +e tλ

vanishes on Λ×]−ε,ε[. (by “α vanishes on V ⊂ X ” we mean α(x) vanishes
as an element in T ∗X for x ∈V )

(53) (Contact Hamiltonians) Let (M ,α) be a manifold of dimension 2n+1 endowed
with a contact form α. Let H ∈C∞(M ,R) and ZH the Hamiltonian vector field
from Definition 3.80 by the equations

iXHα=−H , iZH dα= d H −d H(Rα)α

(a) For M = J 1N and α = d z − pd q prove that ZH can be written in coordi-
nates as

ZH =
(
∂H

∂p
(q, p, z),−∂H

∂q
(q, p, z)−p

∂H

∂z
(q, p, z), p

∂H

∂p
(q, p, z)−H(q, p, z)

)
(b) Prove in the general case that if H does not depend on z, then we recover

the Hamiltonian equations of motion, with z(s) is the action, i.e.

z(s) =
∫ s

0
p(t )q̇(t )−H(t , q(t ), p(t ))d t

(c) LetΩbe the volume formΩ=α∧(dα)n . Prove that LZHΩ=−(n+1)d H(Rα)Ω
(d) Assume d H(Rα) does not vanish. Show that Ω̃ = H−n+1Ω is invariant by

ZH .
(e) Show that if H is time independent, LZH H =−Hd H(Rα)

(f) Let H(q, p, z) = p2

2 +V (q)+cz where (q, p, z) ∈ J 1Rn . Write down the equa-
tion of the flow as a second order equation and show that c corresponds
to a damping term.

(g) Let L be a Legendrian submanifold of (M ,α) that is dim(L) = n is maximal
for the inclusion among the submanifolds on which α vanishes, then if
H = 0 on L then the flow of ZH preserves L.

(54) Let S be a smooth hypersurface in M , and π : T ∗M → M be the projection.
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(a) Prove that if ν∗S = {(x, p) | x ∈ S, p|Tx S = 0} is the conormal to S, then S =
π(ν∗S).

(b) Prove that for any homogeneous Lagrangian, L ̸= 0N , in T ∗M ,π|L is a map
of rank at most n −1 (find a trivial kernel).

(c) Prove that if L′ is homogeneous Lagrangian and C 1 close to L (i.e. L′∩
DT ∗M is C 1 close to L ∩DT ∗M), then L′ is the conormal of some hyper-
surface S′. Hint: prove that π(L′) is a (non-empty) smooth hypersurface.

(55) Prove the following

PROPOSITION. Let Σ be a germ of hypersurface near z in a homogeneous
symplectic manifold. Then after a homogeneous symplectic diffeomorphism
we may assume Σ is either locally given by {q1 = 0} or by {p1 = 0}.

(56) Prove that any vector field preserving the contact structure ξ and transverse to
it is the Reeb vector field of some contact form defining ξ.

(57) Let X be vector field on a contact manifold (M ,ξ)defined by the one-form α.
(a) Prove that the flow of X preserves ξ if a and only if LXα = f α for some

smooth function f on M
(b) Prove that if we set X = Y +hRα where Rα is the Reeb vector field

(58) (Euler transformation (see [Fer]) Let us consider J 1(Sn−1,R) and ST ∗(Rn) with
their canonical contact structures. We use the canonical duality in Rn to iden-
tify v ∈ T ∗

u Sn−1 to a vector (again denoted v) in Rn by 〈v,ξ〉 = v(ξ) for all
ξ ∈ TxSn−1.

To a point (u, v, z) in J 1(Sn−1,R) we associate the point x = z ·u + v ∈Rn

(a) Prove that the above map, called the Euler transform is a contact map
(b) Prove that the image of the above map is dense in ST ∗(Rn).
(c) Let C be the smooth boundary of a convex domain containing the origin

in Rn . Let ν∗C be the submanifold of ST ∗(Rn) of pairs (x, p) with x ∈ C ,
p = 0 on TxC . Show that ν∗C is Legendrian.

(d) Show that the image of ν∗C by the Euler transform is the 1-jet of a func-
tion f ∈C∞(Sn−1,R) called the support function of C .

(59) (Euler transformation 2) Let us consider ST ∗(Rn+1) with the standard contact
form λ and J 1(Sn) also with its standard form d z − pd q . Consider Sn as the
unit sphere in Rn+1 and the map

ST ∗(Rn+1) −→ J 1(Sn)

E : (x, y) 7→ (y, x −〈x, y〉y,〈x, y〉) = (q, p, z)

(a) Prove that E is a contact transformation.
(b) For Σ a hypersurface in Rn+1, consider ν+Σ the unit conormal to Σ i.e.

ν+Σ = {(x, y) | x ∈ Σ, y ⊥ TxΣ andy points outwards}. Prove that ν+Σ is a
Legendrian submanifold.

(c) Determine its image by E for Σ convex.
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(60) (Legendre transform) Let f be a convex function on a vector space V . Let Γ( f )
be the graph of d f in V ×V ∗.
(a) Prove that the projection of Γ( f ) on V ∗ is a diffeomorphism if f is strictly

convex or strictly concave (i.e. d 2 f (x) ≥ εId or d 2 f (x) ≤−εId)
(b) Prove that if f is strictly convex and we consider Γ( f ) as the graph of a

map G : V ∗ −→V then G is a the graph of the differential of a function f ∗
defined on V ∗

(c) Prove that f ∗(p) = sup{〈p, x〉− f (x) | x ∈Rn}

10.7. Integrable systems.

(61) (Arnold-Liouville) Let (M ,ω) be a compact symplectic manifold of dimension
2n, H a smooth function. We assume there are n −1 functions, F2, . . . ,Fn such
that {H ,F j } = {Fi ,F j } = 0 and the vectors XH , XF2 , . . . , XFn are linearly indepen-
dent on H(z) = c1,F2(z) = c2, . . . ,Fn(z) = cn for some (c1,c2, . . . ,cn) ∈Rn .
(a) Prove that the set {z ∈ M | H(z) = c1,F2(z) = c2, . . . ,Fn(z) = cn} is an n-

dimensional submanifold, X n . We set F1 = H
(b) Prove that X n is preserved by the flows of XH and the XF j 2 ≤ j ≤ n and

that these flows commute
(c) Prove that for z0 ∈ X n , the map

(t1, . . . tn) 7→ϕ
t1
1 ◦ . . .◦ϕtn

n (z0)

yields a covering from Rn to X n .
(d) Conclude that if X n is compact, it is an n-torus.
(e) Prove that the trajectory of XH is either a closed curve or an irrational line

on the torus (i.e. of the form t 7→ (α1t , ...,αn t ) with the α j not all rational
multiples of the same real number.

(f) Prove that a trajectory is dense in X n if and only if the α j are rationally
independent (i.e.

∑n
j=1 k jα j = 0 for k j ∈Z implies k1 = . . . = kn = 0).

(g) Prove that near X n there are coordinates θ1, . . . ,θn with values in S1 and
real valued coordinates I1,≤ . . . In such that ω = ∑n

j=1 d I j ∧dθ j and F j =
f j (I1, . . . , In) for some smooth function f j ∈C∞(Rn ,R)

(62) (see [MM97])
(a)

(63) (see [Mos83; Jac66]) Let E be the ellipsoid inRn defined by 〈A−1q, q〉 = 1 where
A is a symmetric matrix with distinct real eigenvalues 0 < α1 < .... < αn . We
want to study the system

q̈ =−ν(q)A−1q

where ν(q) is determined so that 〈A−1q(t ), q(t )〉 remains constant i.e.

ν(q) = |A−1q|−2〈A−1q̇ , q̇〉
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(a) Prove that the equations has a Hamiltonian formulation as the restriction
of the Hamiltonian H(q, p) = 1

2 |p|2 to the tangent bundle of the ellipsoid,
that is

〈A−1q, q〉 = 1,〈A−1q, p〉 = 0

(b) Prove that the flow can be written as

(3.1)

{
q̇(t ) = p(t )

ṗ(t ) =−|A−1q |−2〈A−1p(t ), p(t )〉A−1q(t )

(c) Set Qz(q, p) = 〈p, (zId−A)−1q〉 and Qz(q) = 〈q, (zId−A)−1q〉 so that Qz(q) =
1 defines a family of confocal quadrics and Q0(q) = 1,Q0(q, p) = 0 defines
the tangent space to E . We set

Φz(q, p) = (1+Qz(q))Qz(p)−Qz(q, p)2

(d) Using the fact that Qz has a simple pole in z at z = αk and the residue
formula (see [Car95], show that

Φz(q, p) =
n∑

j=1

F j (q, p)

z −αk

where

Fk (q, p) = p2
k +

∑
j ̸=k

(q j pk −p j qk )2

αk −α j

(e) Prove that the Fk Poisson-commute by proving that for z1 ̸= z2 the func-
tions Φz1 and Φz2 commute.

(f) Fix ck = Fk (q, p) and show that for generic ck , these, together with 〈p, q〉 =
0 define an (n −1)-torus T (c1, ...,cn) (use Exercice 61)

(g) Assume the function
∑n

k=1
ck

z−αk
has n −1 real zeros, β1 < .... <βn−1

(h) Consider for (q1, . . . , qn) on the unit sphere the roots (µ1, . . . ,µn−1) of

Qz(q) =
n∑

j=1

q2
j

z −α j

Show that the map (q1, . . . , qn) 7→ (µ1, . . . ,µn−1) defines elliptic coordinates
on the sphere

∑n
j=1 q2

j = 1
(i) Setting

m(z) =
n−1∏
j=1

(z −µ j ), a(z) =
n∏

j=1
(z −α j ),b(z) =

n−1∏
j=1

(z −β j )

prove that Qz(q) = m(z)
a(z) and q2

j =
m(α j

a′(α j )

(j) Prove that Φz(q, q̇) =−Qz(q, q̇)2 for z =µ j so that for z =µ j

Qz(q, q̇) =
√
−b(z)

a(z)
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(k) Prove that in these coordinates, the differential equation becomes

n−1∑
k=1

µ
n− j−1
k µ̇k

2
√−R(µk )

= δ j ,1

for j = 1,2, ...,n −1 where R(z) = a(z)b(z)
(l) Let w 2 = −4R(z) be the hyperelliptic curve of genus n − 1 projecting on

the plane w with branch points at α j ,βk . Its Jacobi mapping is given
by sending the g = n − 1 points (a divisor in the classical terminology)
(µ1, w1), . . . (µn−1, wn−1) to

n−1∑
k=1

∫ (µk ,wk )

(0,0)

zn− j−1
k żk

2
√−R(µk )

d z = s j

Here the integral is in the complex domain and may depend on the choice
of the path from (0,0) to (µk , wk ). This is only well defined if s = (s1, ..., sn−1)
is considered as a point in Cn−1/Γ where Γ is the set of periods of the
above differentials

(m) Prove that in the new variables the equation becomes . . . s j = δ j ,1 or s j (t ) =
δ j ,1t + s j (0)

(n) Deduce that the linear structure on the Arnold-Liouville torus is the same
as the linear structure on the (real part of the ) Jacobian of the algebraic
curve.

(64) (Torus actions on symplectic manifolds-Atiyah’s convexity) Let us consider a
Hamiltonian group action of a compact Lie group G on a symplectic mani-
fold (M ,ω) To any X ∈ g we associate the vector field XM given by XM (x) =
d

d t exp(t X )x|t=0. By assumption there is a map X 7→ HX such that XHX = XM

and X 7→ HX is a Lie algebra morphism from g with the usual Lie bracket to
C∞(M ,R) with the Poisson bracket. When G is a torus, we set H0 = HX0 where
X0 is chosen so that exp t X0 is dense in T .
(a) Prove that the fixed points of X0 = XH0 are the same as the fixed points of

the action and correspond to the critical points of H0

(b) Prove that if F is a connected component of the set of fixed points of T , it
is a non-degenerate critical manifold of H0 (i.e. for x ∈ F , d 2H0(x) is non
degenerate on the normal space to TxF )

(c) Prove that for x ∈ F , we have a decomposition of Tx M as V0(x)⊕V1(x)⊕
....⊕Vk (x) where the V j (x) are symplectic, D2H0(x) = a j |v j |2 on V j and
TxF =V0(x) and a j ̸= 0 for j ̸= 0

(d) Prove that the V j (x) form a symplectic bundle over F and that F is a sym-
plectic manifold.

(e) Prove (using Morse-Bott theory) that F is a non-degenerate critical man-
ifold in the sense of Morse-Bott theory and has even index
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(f) Using Morse-Bott theory(see [Mil63]), prove that H−1(c) is always con-
nected

(g) Prove that if µ is the moment map, µ : M −→ t∗ and X ∈ t has dense ex-
ponential (i.e. the image of t 7→ exp(t X ) is dense in G), then the function
HX (m) = 〈µ(m), X 〉 has connected levels

(h) Prove that the above holds for any X ∈ t
(i) Deduce that the image of µ is convex (Atiyah’s convexity theorem, see

[Ati82][GS82])
(65) (Moment maps, cohomology of Lie groups and mass)
(66) (Local integrability of the sheaf of symplectic relations) On C∞(X ,Y ) we define

the equivalence relation f
r≃ g if in local coordinates we have

f (x)− g (x) = o(|x|r )

We define J r (X ,Y ) to be the set of equivalence classes for
r≃. Let R ⊂ J r (X ,Y )

be a differential relation i.e. R is a subset of the set of r -jets of maps from X to
Y .

We say that R is locally integrable if for any element s0 in J r (X ,Y )(x0,v0)

belonging to R, there is a germ f ∈ C∞(X ,Y ) defined near x0, such that
j r f (x0) = s0 and j r f ∈ R in a neighbourhood of x0. We assume (W,ωW ) is
a symplectic manifold.
(a) Prove that if if (V ,ωV ) is symplectic and R is the symplectic relation in

J 1(V ,W ) defined by

R = {(v, w,L) | v ∈V , w ∈W,L ∈L (TvV ,TwW ), L∗(ωW (w)) =ωV (v)}

Then R is locally integrable
(b) Prove that if dim(V ) ≤ 1

2 dim(W ) and R is the isotropic immersion rela-
tion in J 1(V ,W ), that is R = {(v, w,L) | Ker(L) = 0 and L∗(ωW )(w)) = 0}
then R is locally integrable

(67) We say that a differential relation R is flexible if for any pair of compact poly-
hedra (A,B) with B ⊂ A ⊂V and any family F0 : Op(A) −→W such that j r F0 is
in R and (Ft )t∈[0,1] defined in Op(B), such that we can extend Ft to F̃t defined
on Op(A)× [0,1] and coinciding with Ft on Op(A)× {0}∪Op(B)× [0,1]. The
relation is microflexible if with the same assumption there exists ε > 0 such
that we can extend Ft to F̃t defined on Op(A)× [0,ε] and coinciding with Ft

on Op(A)× {0}∪Op(B)× [0,ε]. Use Exercise 34 to prove that Lagrangian im-
mersions define a microflexible relation. We refer to [Gro86; EM02] to deduce
from this that Lagrangian immersions satisfy the h-principle.

10.8. Connections with Physics.
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(68) (Caratheodory version of the Second Law of Thermodynamics, see [Pau00])8

We are given a smooth manifold M , called the set of “states” of the system. We
are also given two one forms, denoted δQ and δW (the δ indicates that they
are not exact forms). If the system goes from state A to state B through a path
γ, it yields an amount of heat given by

∫
γδQ and an amount of mechanical

work given by
∫
γδW . The fact that δQ,δW are not differentials is reflected

in the fact that these integrals depend on the path γ and not only on its end
points.

An adiabatic evolution of a state x ∈ M is just a smooth path in M tangent
to δQ = 0. The first law of thermodynamics (existence of total energy) is stated
as the existence of a function U on M with differential dU = δW +δQ.
(a) Prove that if δW and δQ were differentials (i.e. exact forms) refrigerators,

air conditioning, etc would not exist.
(b) Caratheodory’s formulation of the Second Law of thermodynamics reads:

Near a given state of a system there are states that cannot be obtained by
an adiabatic process9 We assume dδQ has constant rank and dim(M) =
5. Using Exercice 50 stating that locally δQ = ∑r

j=1 y j d x j or δQ = d z +∑r
j=1 y j d x j prove that the Second Law, as stated by Caratehodory, implies

that r = 1 and δQ = yd x.
(c) Setting y = 1

T , show that there exists functions T,S such that T dS = δQ.
The function S is called the entropy, the function T is the temperature.

(d) For a perfect gas, δW = PdV and δQ = T dS, so we are in 5 dimensional
space with coordinates U ,P,V ,T,S describing the state of the system10,
but they are not independent for a given system : such a system is a sub-
manifold on which dU−PdV −T dS = 0 so it is a 2 dimensional surface ac-
cording to Exercise 50. Prove that this surface is Lagrangian in the P,V ,T,S
space (or Legendrian in U ,P,V ,T,S) space).

(e) For a pure substance, the projection on P,T is usually one-to-one, at least
until we reach a phase transition : at this point P,T remain constant but
S,V vary : for example when water boils P,T remains constant (e.g. if P =
1bar,T = 1000C ), but the volume increases (and so does the entropy). In
other words there are some vertical pieces on the surface. We assume n =
2, then denoting π to be the projection of T ∗R2 −→R2, one can prove that
(L,π) is generically locally diffeomorphic to one of the following maps

(i) (x1, x2) −→ (x1, x2) (regular map)
(ii) (x1, x2) −→ (x1, x2

2) (fold)

8In this Exercise we shall talk about adiabatic processes. The physically inclined reader who knows
what this means (and already heard about entropy in the physicist’s sense) will be more prone to enjoy-
ing this Exercise, however no such knowledge is required.

9To be rigorous, we should add "remaining in the neighbourhhod of the original state".
10U is the total energy, P the pressure, V the volume, T the temperature, S the entropy.
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(iii) (x1, x2) −→ (x1, x3
2 −x1x2) (cusp)

(69) (Deformation quantization) Let (M ,ω) be a symplectic manifold and A the
ring C∞(M)[[h]] of formal power series with coefficients in C∞(M). Here
C∞(M) is identified to C∞(M)⊗h0, and its product is denoted by ( f , g ) 7→ f ·g .
We are looking for an associative product ⋆h on A such that

f ⋆h g = f · g +
+∞∑
j=1

B j ( f , g )h j

and such that f ⋆h g − g ⋆h f = { f , g }h + o(h). This is called a deformation
quantization of C∞(M) for the Poisson structure {, }. Sometimes people as-
sume B1( f , g ) = 1

2 { f , g } that we shall do here.
Since we do note require the convergence of the series, one talks about

formal quantization. Note that associativity puts a lot of constrains on the B j .
The star product is said to be strongly closed if M is closed and

∫
M f ⋆h gωn =∫

M g ⋆h f ωn . We denote the Weyl algebra as the algebra generated by a sym-
plectic vector space (V ,ω), starting from a symplectic basis (e1, ..,en , f1, . . . fn)
by adding 1,ν to the basis elements and setting [ν,ei ] = [ν, fi ] = 0 [ei ,e j ] =
[ fi , f j ] = 0 [ei , f j ] =−νδi , j We set for multi-indicesα,β eα⋆ f β as eα1

1 ⋆. . .⋆eαn
n ⋆

f α1
1 ⋆ . . .⋆ f αn

n . We shall grade W by setting deg(ν) = 2,deg(e j ) = deg( f j ) = 1
and deg(να0 eα⋆ f β) = 2α0 +∑n

j=1(α j +β j ). We write W (k) for the submod-
ule made of elements of degree k, and we have W (k)⋆W (l ) ⊂ W (k + l ) and
[W (k),W (l )] ⊂ νW (k + l −2)
(a) Prove that W is isomorphic to the algebra of polynomial differential op-

erators on Rn , where ei is sent to multiplication by Xi , f j to ∂
∂X j

We define the non-associative product a ◦b = 1
2 (a⋆b +b⋆a)
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11. Comments

The Hamiltonian formulation of mechanics was hinted by Lagrange in [Lag77b;
Lag77c; Lag77a], and the second edition of [Lag11] in 1811 (Part II, section V). He con-
siders first the set of trajectories for the Kepler problem as a space (it is 5-dimensional,
and adding time, becomes 6-dimensional), with the idea that pertubations of the two
body problem will be determined by an evolution of the ellipse defining the Keplerian
trajectories. Lagrange also introduces the “Lagrange parenthesis” a dual to the Pois-
son brackets: the set of Keplerian motions is a symplectic vector space, and in mod-
ern terms, Lagrange notices that the coefficients of the symplectic form are given by
the “Lagrange parenthesis” that he defines. He also defines the “Hamiltonian” for a
mechanical system (i.e. given by Kinetic energy + Potential) and proves that for an au-
tonomous system this is a conserved quantity. He uses the letter H , but since Hamilton
was then only 6 years old, it is conjectured that the letter H was to honour Christian
Huyghens ([Sou86]). The dual point of view, that of POisson brackets was invented by
Lagrange’s student, Poisson in [Poi09].

The development of general Hamiltonian dynamics may well be due to Cauchy11

in 1831 (see [Cau31; Cau37]) where Hamiltonian equations without any reference to
a mechanical system seem to appear for the first time. The Hamiltonian is denoted
by Q and of course he mentions the special case H(q, p) = 1

2 |p|2 −V (q) (in fact for V
the Newtonian potential). While a general Hamiltonian formulation (compared to the
Lagrangian formulation or the Kinetic + Potential formulation) does not add much in
most situations, this will become crucial later on, when dealing with normal forms,
as these require to make changes of variables mixing q and p coordinates. The same
Memoir of Cauchy revisits the Lagrange parenthesis approach, shows that it is dual to
the Poisson brackets and applies these to practical computation.

Shortly after and probably independently, Hamilton [Ham34] introduces again the
Hamiltonian and comments : Lagrange and, after him, Laplace and others, have em-
ployed a single function to express the different forces of a system, and so to form in an
elegant manner the differential equations of its motion. By this conception, great sim-
plicity has been given to the statement of the problem of dynamics; but the solution of
that problem, or the expression of the motions themselves, and of their integrals, de-
pends on a very different and hitherto unimagined function, as it is the purpose of this
essay to show (see [Sou86]).

Hamilton introduces on the occasion Hamilton’s least action principle which claims
that the solutions of Hamilton’s equation are critical points of the action

∫ T
0 [p(t )q̇(t )−

H(t , q(t ), p(t )]d t . Maupertuis’s least action principle is different in that would state for
mechanical systems that trajectories minimize the integral of the kinetic energy12 but

11I owe this reference to Jacques Féjoz.
12In his paper [Mau46], Maupertuis considers that this principle proves the existence of God. His

paper appears in the records of the Berlin Academy not in the "Mathematical Sciences" section, but in
the "Speculative Philosophy section".
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were variations are among the curves conserving energy13. The first one deals with the
time evolution of a trajectory, the second one only the geometrical trajectory ( a priori
it will not say how the particle travels on its trajectory, even though this can be recov-
ered). For the history of the Calculus of Variations see [Gol80] and also [Lüt05], chapter
2.

That the Hamiltonian flows preserve the symplectic form was implicit in [Lag11]
and his successors (see for example [Jac66]), formulated in modern form by Poincaré in
[Poi90], chapter II: “Théorie des invariants intégraux”. He notices that this implies that
the flow also preserves the exterior powers of the symplectic form, and in particular
the volume, whence the recurrence theorem 3.89.

The importance of Lagrangian submanifolds was probably introduced by Einstein
in [Ein17], when looking for higher dimensional classical objects that woud lead to
quantized objects. In dimension 2, these were known to be energy levels (i.e. curves)
enclosing an area that is an integral multiple of h

2π , but Einstein was looking for a higher
dimensional version and found that they should be Lagrangians having periods in-
tegral multiples of h

2π . This was more systematically introduced in [Mas72], and the
Maslov index was introduced by [Arn67].

Darboux’s theorem can be first found in [Dar82a; Dar82b] and was generalized by A.
Weinstein essentially to Lagrangian submanifolds, and then by Givental in the general
case (see Theorem 3.29). The study of Poisson manifolds has gained importance in the
last 50 years. Beyond Lie algebras, Poisson manifolds appear as singular reduction of
symplectic manifolds, in particular in the study of integrable systems.

Moser’s lemma appeared in [Mos65] which was primarily concerned with volume
forms. The idea of the lemma (the isotopy method) has many applications going much
beyond symplectic geometry for example Morse’s lemma and other applications to sin-
gularities are some of them. The question of the optimal regularity of the conjugating
diffeomorphism including in the Sobolev or C k,α class has been thoroughly studied
in particular in the case of volume form (see [DM90; CDK12]). While the density of
smooth symplectic maps in the set of C 1 symplectic maps is easy (see Exercise 4 in
Chapter 4), the volume case is more involved (see [Zeh77] in the C 1,α case (α> 0) and
[Avi10] for the C 1 case).

The chaotic properties of Hamiltonian systems probably originate in Poincaré’s pa-
per on the three body problem ([Poi90]) where the intersection of heteroclinic orbits
yields the non-integrability of the system. The Kolmogorov-Arnold-Moser theorem
was discovered by Kolomogorov in the 50’s (see [Kol54; Arn63], [Mos65] and [Bos86])
and has been an intense domain of study both from the theoretical or the practical
point of view (see also [CG82] and [WR92]).

13There was a controversy between Maupertuis and the German mathematician, König, who attrib-
uted the paternity of the least action principle to Leibniz. Voltaire in “ Histoire du docteur Akakia et du
natif de Saint-Malo” (1752) supports König and makes fun of Maupertuis, in particular of his least action
principle. Voltaire will similarly deride Leibniz in “Candide” in 1759.
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The chaos was revived in the 60’s as computers could visually display what Poincaré
could only imagine14. This started with the Lorentz attractor, then the work of Smale
([Sma67; Ano67]) and many others.

A huge literature is devoted to the variational study of Lagrangian systems. The
case of celestial mechanics is historically among the oldest and most important, and
is for example the source of Poincaré’s last geometric theorem (see the Comments sec-
tion (i.e. 6) in Chapter 6). The problem of celestial mechanics is of course that the
system can have singularities, in particular collisions. This interest has been revived
in recent years, with particular interest for special trajectories of n-body problems,
whether from the theoretical viewpoint, as for example the so-called choreographies
(see [CM00] and [FT04]) or the practical viewpoint as in the Low Energy Transfer for
satellites ([Bel04])

Contact geometry is very closely related to symplectic geometry and we choose to
stress this connection. We refer to [Gei08] for an introduction (and more) to the sub-
ject. An open question was for a long time which manifolds do admit a contact struc-
ture. According to Lutz and Martinet, all 3-manifolds do. It is easy to see that in general,
the tangent bundle of the manifold must contain a codimension 1 complex subbundle.
This happens to be equivalent to the existence of a complex structure on T M⊕ε1. Only
in 2014 did Borman, Eliashberg and Murphy prove that conversely this “formal” con-
tact structure implies the existence of a genuine contact structure on M (see [BEM15]
also for the history of the question). Since the work of Bennequin (see [Ben83]) in di-
mension 3 and then [Nie06] in all dimensions proved that contact structures exist in
two very different flavors : the“tight contact structures” and the “overtwisted contact
structures”. The overtwisted ones cannot bound a symplectic manifold and moreover
the property of being overtwisted has some bearing on the Weinstein conjecture (see
[AH09].

14In [Poi92] he wrote: On sera frappé de la complexité de cette figure, que je ne cherche même pas
à tracer. Rien n’est plus propre à nous donner une idée de la complexité du problème des trois corps, et,
en général, de tous les problèmes de la dynamique où il n’y a pas d’intégrale uniforme. . .



CHAPTER 4

More Symplectic differential Geometry:
Reduction and Generating functions

1. The Metasymplectic principle

This section and the next two illustrate the following

METASYMPLECTIC PRINCIPLE. (A. Weinstein, see [Wei73a; Wei77])

Everything important is a Lagrangian sub-
manifold.

EXAMPLES 4.1. (1) Let (Mi ,ωi ), i = 1,2 be symplectic manifolds andϕ a smooth
map between them. Consider the graph of ϕ,

Γ(ϕ) = {(x,ϕ(x)) | x ∈ M1} ⊂ M1 ×M2

This is a Lagrangian submanifold of M1×M2 where we defined M 2 as the man-
ifold M 2 with the symplectic form −ω2 and the symplectic form on M1×M2 is
given by

(ω1 ⊖ω2)((ξ1,ξ2), (η1,η2)) =ω1(ξ1,η1)−ω2(ξ2,η2)

It is easy to see that Γ(ϕ) is a Lagrangian submanifold if and only ifϕ∗ω2 =
ω1. Note that if M1 = M2, then Γ(ϕ)∩△M = F i x(ϕ).

(2) Let (MC, J ,ω) be a smooth projective manifold, i.e. a smooth manifold given
by the equations

M = {[z0, ..., zN ] ∈CP N | P1(z0, · · · , zN ) = ·· · = Pr (z0, · · · , zN ) = 0}

where P j are homogeneous complex polynomials. We shall assume the map
from Cn \ {0} to Cr

(z0, ..., zn) 7→ (P1(z0, ..., zn), ...,Pr (z0, ..., zn))

has zero as a regular value, so that M is a smooth manifold.
real algebraic geometry is concerned with the case when the P j ’s have real

coefficients. We then set

MR = {[x0, · · · , xN ] ∈RP N | P1(z0, · · · , zN ) = ·· · = Pr (z0, · · · , zN ) = 0}

= M ∩RP N .

115
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One of the problems in real algebraic geometry is to “determine the re-
lation” between MC and MR". It is easy to see that MR is a Lagrangian sub-
manifold of (M ,ω) (of course, possibly empty). Notice that the same com-
plex projective manifold can have different real parts: the simplest example is
MC = S2 = CP 1, which can be embedded in CP 2 either as the set of [z0, z1, z2]
such that z0 = 0 and then M(R) = S1 or as z1 + i z2 = 0 and then M(R) =;.

(3) Lagrangian submanifold appear as generalized solutions of Hamilton-Jacobi
equations (see Section 1 of Chapter 8)

(4) Lagrangian submanifolds appear as wave front set of Fourier integral opera-
tors (see [Hör71]), or singular supports of (constructible) sheaves ([KS90]).

(5) Let us consider a smooth curve on the plane. We are looking for four points
on the curve forming a rectangle of given shape that is with given ratio for the
length of its sides (e.g. if the ratio is 1, we are looking for a square inscribed in
the curve). This is called the rectangular peg problem and was formulated1 by
O. Toeplitz in 1911 (in [Toe11]). It was solved by J.E. Green and A. Lobb in 2020
([GL]) by showing that it is equivalent to the non-existence of a Lagrangian
Klein bottle in (R4,σ4) a result that had been proved by V. Shevchishin in 2009
([She09a]).

2. Symplectic Reduction

Let (M ,ω) be a symplectic manifold and K a submanifold. K is said to be coisotropic
if we have TxK ⊃ (TxK )ω for all x in K , i.e. TxK is coisotropic in Tx M . As x varies in K ,
(TxK )ω defines a sub-bundle of T K hence of T M . A sub-bundle of a tangent bundle
is said to be integrable if there is a foliation of K such that the sub-bundle is equal to
the tangent bundle to the leaves and Frobenius’s theorem (Theorem 3.6) states that a
subbundle is integrable if and only if the Lie bracket of two vector fields tangent to the
sub-bindle is tangent to the sub-bundle. .

LEMMA 4.2. The sub-bundle (TxK )ω of the tangent bundle of K is integrable.

PROOF. Let K be coisotropic in the symplectic manifold (M ,ω), and K (x) = (TxK )ω.
We want to prove that the distribution K is integrable. Let X be a vector field tangent
to (TxK )ω, hence to K , and denote by ω̃ the restriction of ω to K . Applying Cartan’s
formula (see page 52) we have

LX ω̃= diX ω̃+ iX dω̃= d(iX ω̃) = 0

As a result the flow ϕt
X preserves ω̃, hence preserves K , the kernel of ω̃. Therefore

we prove that if X ,Y are vector fields tangent to K , we have (ϕX )∗(Y ) is tangent to
K . Taking the derivative at t = 0 we get d

d t (ϕt
X )∗Y|t=0 = [X ,Y ] ∈ K . We thus proved

that the Lie brackets of two vector fields tangent to K is tangent to K , hence K is an
integrable distribution.

1Toeplitz question was slightly different, he only looked for a square, but did not assume the curve
is smooth. Without the smoothness assumption, the question is still open.
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□

This integrable distribution yields a foliation of K , denoted by CK . We can check
that ω induces a symplectic form (we only need to check it is non-degenerate) on the
quotient space (TxK )/(TxK )ω. One might expect K /CK to be a a “symplectic some-
thing”.

Unfortunately, there is usually no quotient, the topological quotient is not even
Hausdorff., so there is no manifold structure on the quotient. However, as we shall see
at the end of this section, there are certain special cases, when K /CK is a manifold, and
therefore a symplectic manifold.

Let us now see the effect of the above operation on symplectic submanifolds. We
shall need

LEMMA 4.3. (Automatic Transversality) If L is a Lagrangian in M and L intersects
the coisotropic submanifold K transversally, i.e. TxL +TxK = Tx M for x ∈ K ∩L, then L
intersects the leaves of CK transversally, TxL∩TxCK = {0}, for x ∈ K ∩L.

PROOF. Recall from symplectic linear algebra that if Fi are subspaces of a symplec-
tic vector space, then

(F1 +F2)ω = Fω
1 ∩Fω

2 .

We know (TxL)ω = TxL and (Tx M)ω = {0}, then the lemma follows from TxL +TxK =
Tx M . □

Now, let’s assume K /CK is a manifold and denote the projection by π : K → K /CK

and suppose we have a Lagrangian submanifold L of M such that K and L intersect
transversally, so in particular L ∩K is a manifold. Then by the above Lemma, the pro-
jection π : (L∩K ) → K /CK is an immersion. Indeed

kerdπ(x) = TxCK = (TxK )ω

and

kerdπ(x)|Tx (L∩K ) ⊂ kerdπ(x)∩TxL

⊂ (TxK )ω∩TxL = {0}.

Therefore dπ(x)|L∩K is injective and π|L∩K is immersion.

DEFINITION 4.4. Let K be a coisotropic submanifold in (M ,ω) such that K /CK is a
smooth manifold. Let L be a Lagrangian in (M ,ω) such that L is transverse to K . Then
LK = (L∩K )/CK is called the symplectic reduction of L by K .

and we have

PROPOSITION 4.5. Under the assumptions of the definition, the symplectic reduction
of a Lagrangian submanifold is an immersed Lagrangian in (K /CK ,ωK ).
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PROOF. By automatic transversality (Lemma 4.3) L ∩ (TxK )ω= {0} and this implies
that the differential of the projection from L∩K to K /CK is injective, i.e. the map is an
immersion. The only thing left to check is that LK is Lagrangian. Let ω̃ be the induced
symplectic form on K /CK and ṽ a tangent vector to LK . Assume the preimage of ṽ is
v , a tangent vector to L. Since L is Lagrangian and ω̃ is induced from ω, we know LK is
isotropic. It’s Lagrangian by a dimension count. □

The same argument shows that the reduction of an isotropic submanifold (resp.
coisotropic submanifold) is isotropic (resp. coisotropic).

The next proposition tells us that conversely, if K /CK is a manifold, Hamiltonians
on (K /CK ,ωK ) can be lifted to (M ,ω).

PROPOSITION 4.6. Let ϕt
H be a Hamiltonian flow on (K /CK ,ωK ). Then there is a

Hamiltonian H̃ on (M ,ω) such that ϕt
H̃

induces ϕt
H . In other words ϕt

H̃
preserves K and

sends leaves of CK to leaves of CK , and the induced map on (K /CK ,ωK ) is ϕt
H .

PROOF. Let H̃ be any function on [0,1]×M such that H̃|K = H ◦π where π : K −→
K /CK is the projection. Then d H̃ vanishes on the leaves of CK that is on (TxK )ω. Thus
X H̃ is orthogonal to (TxK )ω, i.e. tangent to TxK , hence the flow preserves K . Then
since dϕH̃ is symplectic and preserves K , it will preserve (T K )ω, i.e. sends (TxK )ω to
(TzK )ω where z =ϕt

H̃
(x), and this implies that ϕt

H̃
preserves the leaves of CK . □

EXAMPLES 4.7.

(1) Let N be a symplectic manifold, and V be any smooth submanifold. Define

K = T ∗
V N = {(x, p)|x ∈V , p ∈ T ∗

x N }.

This is a coisotropic submanifold, and its coisotropic foliation CK is given by
specifying the leaf through (x, p) ∈ K to be

CK (x, p) = {(x, p̃) ∈ K | p̃ −p vanishes on TxV }.

It is natural to identify K /CK with T ∗V .
Symplectic reduction in this case, sends a Lagrangian in T ∗N to a La-

grangian in T ∗V .
(2) Let N1, N2 be smooth manifolds and N = N1 ×N2. We write local coordinates

near a point in T ∗N as
(x1, p1, x2, p2).

where (x1, p1) ∈ T ∗N1, (x2, p2) ∈ T ∗N2. Define K = {(x1, p1, x2, p2)|p2 = 0}. The
tangent space of K at a point z = (x1, p1, x2, p2) is given by

{(x1, p1, x2,0) | (x1, p1) ∈ T ∗N1, x2 ∈ N2}

and
(T(x1,p1,x2,0)K )ω = {(x1, p1,u2,0) | u2 ∈ N2}

Then we can identify K /CK with T ∗N1.
Symplectic reduction sends a Lagrangian in T ∗N to a Lagrangian in T ∗N1.
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(3) Let us generalize the above situation to the case of a fibrationπ : P −→ N . Then

Kπ = {(y, py ) | py = 0 onπ−1(π(y))}

the the leaf of the coisotropic foliation through (y0, p0) is

Cπ = {(y, py ) ∈ Kπ | y ∈π−1(π(y0)}

and Kπ/Cπ can be identified to T ∗N .
(4) Let us consider S2n+1 in R2n+2 ≃ Cn+1. Then as a hypersurface S2n+1 is au-

tomatically coisotropic, and the kernel of σn+1 is given by the vector field
X (z0, ..., zn) = i (z0, ...., zn), so that it is the tangent vector field to the S1-action
given by θ 7→ (e iθz0, ...,e iθzn). The quotient is therefore a symplectic manifold
and it is equal to CP n .

(5) (Marsden-Weinstein reduction) Let us consider a Hamiltonian G action of the
connected Lie group G on M with moment map µ : M −→ g∗. This means
that for each v ∈ g the one-parameter subgroup of Hamiltonian maps given
by (t , x) 7→ exp(t v) · x is the flow of the Hamiltonian Hv (x) = µ(x) · v . For µ to
be a moment map, we also require that {Hv , Hw } = H[v,w]. Note that there is a
coadjoint action of G on g∗ as the dual of the linearization of conjugation : i.e.
of (g , X ) 7→ ad(g )X defined by exp(tad(g )X ) = g−1 exp(t X )g . We claim that
the moment map is G equivariant, or equivalently that the comoment map
µ∗ : g−→C∞(M) defined by 〈µ(x),Y 〉 = µ∗(Y )(x) is equivariant for the action
of G on M and the action ad on g. Indeed, the linearized statement of this
would be that

〈dµ(x)Z ,Y 〉 = 〈µ(x), [Z ,Y ]〉
since the linearization of ad(g ) is the map Y 7→ [Z ,Y ]. But Z is by assumption
the Hamiltonian vector field of HZ , so

〈dµ(x)Z ,Y 〉 = d HZ ·Y = d HZ (XHY ) = {HZ , HY } = H[Z ,Y ]

= 〈µ(x), [Z ,Y ]〉
It is easy to see that the converse holds: we have a moment map, if and only
if the map v −→ Hv is G-equivariant. Now let ξ ∈ g∗ be an element fixed by
the coadjoint action (ξ= 0 will always do !) and consider µ−1(ξ). Then G acts
on µ−1(ξ) and if ξ is a regular value of µ, then µ−1(ξ) is a submanifold, and
the G action is locally free2 . Then we claim that µ−1(ξ) is coisotropic and the
coisotropic leaves are the orbits of G : by definition

Txµ
−1(ξ) = ⋂

Z∈g
Ker(〈dµ(x), Z 〉)

where Ker(〈dµ(x), Z 〉) means {v | 〈dµ(x)v, Z 〉 = 0} and its ω-orthogonal is gen-
erated by the (Kerd HZ (x))ω = XHZ (x) = Z (x) and this describes the tangent

2Indeed, the action of exp(t v) locally fixes x if d Hv (x) = 0 that is ℑ(dµ(x)) ⊂ v⊥, where v⊥ = {ξ ∈ g∗ |
〈ξ, v〉 = 0}
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space to the orbit at x. Now if we assume the G-action is free and proper
on µ−1(ξ), then Mξ

G = µ−1(ξ)/G is a manifold and it inherits by our construc-

tion a symplectic form, ωG . The symplectic manifold (Mξ
G ,ωG ) is called the

Marsden-Weinstein reduction of M by G (at ξ). For example for the S1 action
on Cn+1 we have µ(z0, ..., zn) = ∑n

j=0 |z j |2 and since 1 ∈ R is ad invariant (triv-

ially so, since S1 is abelian), we get µ−1(1)/S1 that is CP n ,σF S).

2.1. Lagrangian correspondences. Let Λ be a Lagrangian submanifold in T ∗X ×
T ∗Y . Then it induces a correspondence from T ∗X to T ∗Y (or should we say, between
T ∗X and T ∗Y ) as follows: consider a set A ⊂ T ∗X , and A ×Λ ⊂ T ∗X ×T ∗X ×T ∗Y .
Now, denote by ∆T ∗X the diagonal in T ∗X ×T ∗X . The submanifold K = ∆T ∗X ×T ∗Y
is coisotropic, and we define Λ ◦ A as (A ×Λ) ∩ K /K ⊂ K /K = T ∗Y . When A is a
submanifold, then Λ ◦ A is an immersed submanifold provided A ×T ∗Y is transverse
to Λ.

If A is isotropic or coisotropic, it is easy to check that the same will hold for Λ◦ A.
In particular if L is a Lagrangian submanifold, then so is Λ◦L and can alternatively be
defined as follows : take the symplectic reduction of Λ by L×T ∗Y . This is well defined
at least when L is generic. In particular ifΛ1 is a correspondence from T ∗X to T ∗Y and
Λ2 a correspondence from T ∗Y to T ∗Z then

Λ2 ◦Λ1 = {(x,ξ, z,ζ) | ∃(y,η), (x,ξ, y,η) ∈Λ1, (y,η, z,ζ) ∈Λ2}

Note that Λa (sometimes denoted as Λ−1) is defined as Λa = {(x,ξ, y,η) | (y,η, x,ξ) ∈
Λ}. This is a Lagrangian correspondence from T ∗Y to T ∗X . The composition Λ◦Λa ⊂
T ∗X ×T ∗X is, in general, not equal to the identity (i.e. to ∆T ∗X , the diagonal in T ∗X ),
even though this is the case if Λ is the graph of a symplectomorphism. A fundamental
example is the correspondence associated to a smooth map f : X −→ Y . Then

Λ f = {(x,ξ, y,η) ∈ T ∗X ×T ∗Y | f (x) = y,η◦d f (x) = ξ}

Then if g : Y −→ Z , we have Λg◦ f =Λg ◦Λ f . A more general example is obtained from
C a correspondence from X to Y , that is just a submanifold in X ×Y . Then

ΛC = {(x,ξ, y,η) | (x, y) ∈C , ξd x +ηd y = 0 on T(x,y)C }

is a Lagrangian correspondence. Note that ΛC = ν∗C is the opposite of the conormal
of C in T ∗(X ×Y ).

EXERCISES 4.8. (1) Explicit Λ◦Λa and compute Λ◦Λa for Λ= Vx ×Vy , where
Vx is the cotangent fiber over x.

(2) Let f : X −→ Y be a smooth map. For L a Lagrangian in T ∗Y , define L f =
Λ−1

f ◦L that is

L f =
{
(y, py ) | y = f (x), py ◦d f (x) = px where (x, px) ∈ L

}
(a) Prove that if L f is smooth and of dimension dim(X ) then it is an exact

Lagrangian
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(b) Prove that if f is the injection of a submanifold V in M , then L f = LV , as
defined in Example 4.7 (1)

(c) Prove that if f is a fibration from X to Y then L f coincides with the La-
grangian defined in Example 4.7 (3).

3. Spaces of Lagrangians

Because we shall mainly deal with exact Lagrangians, and we would like to have a
grading, we shall define a space of exact graded Lagrangians as follows.

3.1. Lagrangian branes. For M a symplectic manifold, (here we only need M =
T ∗N ), ifΛ(M) is the bundle of Lagrangians subspaces of the tangent bundle to M , with
fiber the Lagrangian Grassmannian Λ(Tz M) ≃ Λ(n), we denote by Λ̃(M) the bundle
induced by the universal cover Λ̃(n) −→Λ(n).

Given a Lagrangian L, we assume we have a lifting of the Gauss map GL : L −→
Λ(T ∗N ) given by x 7→ TxL to a map G̃L : L −→ Λ̃p (T ∗N ). This is called a grading of L
(see [Sei00]). Given a graded L, the canonical automorphism of the covering induces
a new grading and we denote it as T (L) or L[1], and its q-th iteration as T q (L) or L[q].
The grading will yield an absolute grading for the Floer homology or its analogue the
Generating function homology (see Proposition and Defintion 7.7) of a pair (L1,L2)
and hence for the complex of sheaves in the Theorem stated below. We shall seldom
mention explicitly the grading, but notice that for exact Lagrangians in T ∗N , a grad-
ing always exists since the obstruction to its existence is given by the Maslov class (see
Chapter ??, Subsection ??) , and for exact Lagrangians in T ∗N the Maslov class van-
ishes, as was proved by Kragh and Abouzaid (see [Kra13], and also the sheaf-theoretic
proof by [Gui12]).

DEFINITION 4.9. The set L (M ,dλ) is the set of Lagrangian branes, that is triples
L̃ = (L, fL ,G̃L) where L is a compact connected3 exact graded Lagrangian, fL a primitive
of λ|L and GL a grading. We sometimes talk about an exact Lagrangian, and this is just
the pair (L, fL). We write L(T ∗N ) for the set of L such that for some function fL , (L, fL)
is an exact Lagrangian. Forgetting about fL we get the forgetful functor L (M ,dλ) −→
L(M ,dλ).

When fL is implicit we only write L, for example 0N means (0N ,0) and graph(d f )
means (graph(d f ), f ). For L̃ = (L, fL) and c a real constant, we write L̃ + c for (L, fL +
c). Considering Hamiltonian diffeomorphisms as special correspondences, that is La-
grangians in T ∗N ×T ∗N we can consider the corresponding branes, and denote this

3It is often the case -for example in the cotangent bundle of a compact connected manifold- that
exact Lagrangians must in fact be connected (this follows from [Kra13] who proved that an exact La-
grangian with vanishing Maslov class must intersect). Here we shall assume this for simplicity.



122 4. REDUCTION AND GENERATING FUNCTIONS.

space by DH am(T ∗N ). In particular an isotopy in DH am(T ∗N ) specifies the Hamil-
tonian generating the isotopy (and not just a Hamiltonian defined up to adding a con-
stant). In the compact supported case, we may impose that the Hamiltonian is com-
pact supported, so there is no constant to add.

REMARK 4.10. One may check that the image of the forgetful functor L (M ,dλ) −→
L(M ,dλ) is the set of exact Lagrangians with vanishing Maslov class.

Our goal is to describe Lagrangian submanifolds in T ∗N . Let λ= pd q be the Liou-
ville form of T ∗N . Given any 1-form α on N , we can define a smooth manifold

Gα = {(q,α(q))|x ∈ N ,α(x) ∈ T ∗
q N } ⊂ T ∗N .

recall from Example 3.17 (2) that Gα is Lagrangian if and only if α is closed.
This is equivalent to specifying a lift of L to a Legendrian L̃ in the contactization of

(M ,dλ) (see Definition 3.76). In particular, Gα is exact if and only if α = d f for some
function f on N . In this case,

Gα∩0N = {q |α(q) = d f (q) = 0} =Cr i t ( f ),

where 0N is the zero section of T N . Quite often fL is implicit and we just write L instead
of (L, fL). For example we write 0N instead of (0N ,0) for the zero section, or Gd f for
(Gd f , f ).

Finally, since most of the time we deal with exact Lagrangian Hamiltonianly iso-
topic to the zero section we set

DEFINITION 4.11. We denote by L0(T ∗N ,σ) the connected component of the zero
section in L (T ∗N ,σ) and by L0(T ∗N ,σ) the connected component of the zero section in
L(T ∗N ,σ).

REMARK 4.12. Note that the existence of a grading can be deduced from the exis-
tence of a G.F.Q.I. (see Exercice ??).

3.2. The effect of Hamiltonian isotopies.

PROPOSITION 4.13. The set of Hamiltonians acts on the set L (M ,dλ).

PROOF. The proposition claims that if H is a Hamiltonian and L0 an exact La-
grangian, then L1 = ϕH (L0) is an exact Lagrangian. Moreover fL1 is determined by
L0 and H (but not just by the Hamiltonian map). Indeed, let iL0 : L0 −→ T ∗N be the
inclusion of L0, so that i∗L0

(λN ) = d fL0 , then (ϕt
H ◦ iL0 )∗λN satisfies

d

d t
(ϕt

H ◦ iL0 )∗λN = i∗L0
(ϕt

H )∗(LXHλN ) = i∗L0
(ϕt

H )∗(d(iXHλN )+ iXH dλ) =
i∗L0

(ϕt
H )∗[d(iXHλN −H)]

We thus see that (ϕt
H ◦ iL0 )∗λN is exact and there is a natural choice for the primitive,

given by

fL1 (i1(x)) = fL0 (i0(x))+
∫ 1

0
i∗L0

(ϕt
H )∗[(iXHλN −H)]d t
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□

Again by abuse of language, we often just write ϕ1
H (L0) for the action of H on

(L0, fL0 ).
The next Proposition shows that conversely, families of exact Lagrangians are in-

duced by Hamiltonian isotopies

PROPOSITION 4.14. Let (M ,dλ) be an exact symplectic manifold

(1) Let t 7→ Lt be a smooth family of exact Lagrangians. Then there exists a Hamil-
tonian isotopy ϕt

H such that ϕt
H (L0) = Lt .

(2) If j : Dk ×L0 −→L (M ,ω) is smooth, then there is a smooth family of Hamilton-
ian maps ϕu such that ϕu(L0) = j (u,L0).

(3) (Serre fibration property) Let j : Dk×I −→L (M ,ω) is a family of exact Lagrange
embeddings and ϕ : Dk × {0} −→ H am(M ,ω) such that ϕu | L0 = ju , then there
exits an extension ϕu,t of ϕ to Dk × I such that ϕu,t (L0) = j(u,t )(L0).

PROOF. For the first result we first use Weinstein’s theorem to extend the embed-
ding of L as an embedding Φ of a neighbourhood of the zero section of T ∗L. Now
L′

t = Φ−1(Lt ) is well defined for t small enough, and is a graph over the zero section.
It is of course Lagrangian, so of the form Gαt , and the exactness assumption implies
that αt is exact hence of the from d ft . But then L′

t is the image of 0N by the flow of
H(t , q, p) = d

d t ft (q). Indeed, ϕt
H (q, p) = (q, p +d ft (q). To extend H ◦Φ−1 to M we must

first truncate H near the boundary of the Weinstein neighbourhood using a cut-off
function. This does not change anything as long as we do not modify H on

⋃
t∈[0,ε]

L′
t =

⋃
t∈[0,ε]

ϕt
H (0N )

Now H ◦Φ−1 yields a Hamiltonian that will send L0 to Lt . By the same argument for
each s there exists ε > 0 and a Hamiltonian Hs such that for t ∈]s − ε, t + ε[ we have
ϕt

Hs
(Ls) = Lt . By compactness we can divide [0,1] in intervals of size 1/N so that for

Hk = Hk/N we have ϕ[k/N ,t ]
Hk

(Lk/N ) = Lt for all t ∈] k−1
N , k+1

N [ (here ϕk/N
Hk

= Id). Writing as

usual ϕ[a,b]
H for the flow of XH between times a and b, we set

ϕt =ϕ[τN−1(t ),τN (t )]
N ◦ϕ[τN−2(t ),τN−1(t )]

N−1 ◦ ...◦ϕ[τ1(t ),τ2(t )]
2 ◦ϕ[0,τ1(t )]

1

This is well defined since either τk−1(t ) = τk (t ) (and then by conventionϕ[τk−1(t )=τk (t )]
k =

Id or k−1
N ≤ τ j−1(t ) ≤ τ j (t ) ≤ k+1

N .
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τ3

τ2

τ1

t

FIGURE 1. The functions τ j

One can readily check that for if the τk are suitably chosen as on the above figure,
then ϕt is the required Hamiltonian isotopy.

The same argument works on I k , arguing by induction and using a parametrized
version of Weinstein’s theorem. Let v ∈ I k−1 andΦv a symplectic embedding of a neigh-
bourhood of L0 in T ∗L0 in (M ,ω) such that Φv (L0) = j(v,0)(L0). Then by induction
Φv (L0) = ϕ1

Hv
(L0) and for t small enough j (v, t )(L0) = ϕt ( j (v,0)(L0)) = ϕt ◦ϕ1

Hv
(L0) =

ϕ1
H(v,t )

(L0). As above, gluing these together we get a Hamiltonian family parametrized

by I k−1 × I such that ϕ1
Hv,t

(L0) = j (v, t )(L0).
Finally if we have a family j (v, t ) of Lagrangian embeddings and a family Hv such

that ϕ1
Hv

(L0) = j (v,0)(L0) then if Kv,t is given by the previous lift, we set

ϕ(v,t ) =ϕKv,t ◦ϕ−1
Kv,0

◦ϕ1
Hv

(L0)

□

REMARK 4.15. (1) The above proposition means that the mapϕ 7→ϕ(L0) from
DHamc (M ,ω) to L (M ,ω) the space of exact Lagrangians is a Serre fibration.
This implies that for any CW pair4 (X , A) a map j : X × I −→L (M ,ω) such that
it has a liftϕ1

H(u,t )
for u ∈ X × {0}∪A× I , to Ham(M ,ω), then there is a lift of j to

ϕ1
H(u,t )

on X × I such that ϕ1
H(u,t )

( j (u,0)(L0)) = L(u,t ). This follows immediately
from the following remarks
(a) a lifting property only depends on the homotoy type of the pair
(b) it holds for Dk × I ∪Sk−1 × I since(Dk × I ,Dk × I ∪Sk−1 × I ) has the same

homotopy type as (Dk × I ,Dk × {0})
(c) an induction argument, obtaining X from A by gluing discs attached by

their boundary

4i.e. such that up to a homotopy equivalence, X is obtained from A by inductively gluing discs of
non-decreasing dimensions along their boundary. This includes any pair of compact manifolds.
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(2) If we replace Dk by a compact polyhedron K in (2), we do not know if we can
find a family u 7→ Hu . This is equivalent to stating that ΩDHamc (T ∗N ) is con-
tractible, since we have a fibration

ΩDHamc (T ∗N ) −→P DHamc (T ∗N ) −→ DHamc (T ∗N )

where P DHamc (T ∗N ) is the set of paths starting from the identity in Ham(T ∗N ),
and the map to DHamc (T ∗N ) is the projection to the endpoint. In particular
P DHamc (T ∗N ) is the same as the space of Hamiltonians (up to functions de-
pending only on t ). So if we want that any map from K to Ham(T ∗N ) lifts to
P DHamc (T ∗N ) we must have that ΩDHamc (T ∗N ) is contractible. We have
no idea whether this holds -even understanding π1(DHamc (T ∗N )) is quite
open except in very special cases (see however [Sei97; McD10; LDP99; AL17]).
Note that if we are only interested in the image of K from the geometric point
of view (i.e. the set of ϕufor u ∈ K and not the way it is parametrized), it is
worth mentioning there is another polyhedron PK (the path space of K , which
is contractible) and a map π : PK −→ K such that ȷ ◦π has a lift.

Note that if ω= dλ is exact, an element in ϕH ∈ DHamc (M ,dλ) defines an element
in L (M ×M ,dλ⊖dλ) as the correspondence Γ(ϕ) obtained from (Γ(Id),0) = (∆M ,0) by
applying id×ϕH . In other words we define

fH (z,ϕH (z)) =−
∫ 1

0

[
z∗λ−H(s, z(s))

]
d s

where z(s) = ϕs
H (z) and we define Γ(ϕ1

H , fH ) to be the graph of ϕH in L (M ×M ,dλ⊖
dλ).

4. Generating functions

One of the main motivating questions in symplectic topology has been the

ARNOLD CONJECTURE. If N is a closed manifold, ϕ ∈ DHam(T ∗N ,σN ) and L =
ϕ(0N ), then #(L ∩ 0N ) ≥ catLS(N ), where catLS(N ) is the minimal number of critical
points for a function on N .

REMARK 4.16. If L is exact, C 1 close to 0N , then L = Ld f . Therefore, #(L ∩ 0N ) ≥
2, if we assume N is compact. ( f has at least two critical points, corresponding to
maximum and minimum, and we shall find more with Lusternik-Schnirelman’s theory,
see [LS29; LS34].)

We shall see how the use of generating functions allows us to prove the conjecture
in some cases.

DEFINITION 4.17. A generating function with general fiber over N is a smooth
function S : E →Rwhere E is a fiber bundle over N , such that

1) The map
(q,ξ) 7→ ∂S

∂ξ
(q,ξ)
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has zero as a regular value. As a result the fiberwise critical locus, ΣS = {(q,ξ)|∂S
∂ξ (q,ξ) =

0} is a submanifold. (Note that ∂S/∂ξ is a vector of dimension k, soΣS is a manifold with
the same dimension as N , but may have a different topology.)

2)
iS : ΣS → T ∗N

(q,ξ) 7→ (q, ∂S
∂q (q,ξ))

has image L = LS . Then (LS ,S ◦ iS) is the exact Lagrangian generated by S.
We reserve the term generating function for the case where E is a vector bundle.

LEMMA 4.18. Given S satisfying 1) of the definition then LS defined by 2) is an im-
mersed Lagrangian in T ∗N .

PROOF. Since S is a function from E = N ×Rk to R, the graph of dS in T ∗(N ×Rk )
is a Lagrangian in T ∗(N ×Rk ). We will use the symplectic reduction as in the Example
4.7(2) in the previous Section. Define K as a submanifold in T ∗(N ×Rk ),

K = T ∗N ×Rk × {0}.

K is coisotropic as shown in Example 4.7(2). Locally, the graph of dS is given by

GdS =
{

(q,ξ,
∂S

∂q
(q,ξ),

∂S

∂ξ
(q,ξ))

}
.

Then

ΣS =GdS ∩K .

The regular value condition in 1) ensures that GdS intersects K transversally. By sym-
plectic reduction, we know iS is an immersion and LS is a Lagrangian in T ∗N because
GdS is Lagrangian in T ∗(N ×Rk ). □

REMARK 4.19. If LS is embedded, we have a 1-to-1 correspondence

LS ∩0N ≃Cr i t (S).

This is why it is important to find Generating functions for Lagrangians, as it reduces
the Arnold conjecture to a problem about critical points.

Question: Which L have a generating function?
Answer: (see [Gir90]) L has a generating function if and only if it satisfies the follow-

ing condition : the tangent bundle T L must be stably homotopic to the vertical bundle
of T ∗N .

For local existence, we have

PROPOSITION 4.20. (Hamilton, Jacobi, [Ham34; Ham35; Jac66], Maslov, Hörmander
[Mas72; Hör71])

Let L be a Lagrangian submanifold and (q0, p0) ∈ L. Then there is a generating func-
tion S, such that LS = L in a neighbourhood of (q0, p0).
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PROOF. Note that if T(q0,p0)L is transverse to the vertical, L is locally a graph of a
closed form, hence locally the graph of an exact form. In the general case, up to a
permutation of variables, T(q0,p0)L is transverse to p1 = ...., pr = qr+1 = ... = qn = 0. In-
deed given an injective map from Rn to R2n , we can find n coordinates in R2n such that
composing with the projection we get an isomorphism5, hence L is locally the graph
of f (q1, ....qr , pr+1, ..., pn). Setting q = (q1, ..., qr ), p = (p1, ..., pr ), q̂ = (qr+1, ...., qn), p̂ =
(pr+1, ...., pn) we have that L is given by

p j = ∂ f

∂q j
(q̄ , p̄), qk = ∂ f

∂pk
(q , p̂)

for 1 ≤ j ≤ r,r +1 ≤ k ≤ n. We then set

S(q̄ , q̂ ,ξ) = f (q̄ ,ξ)−〈ξ, q̂〉
and this is the generating function we are looking for. □

4.1. Transversality for Lagrangian submanifolds. We here sketch the fact that
transversality holds for Lagrangian submanifolds the same way it holds for standard
ones. This follows by applying transversality to the generating function, which locally
always exist.

To be completed

5. G.F.Q.I. existence and uniqueness results

DEFINITION 4.21. Let N be a closed manifold and S be a generating function on
N ×Rk . We say that S is quadratic at infinity if there exists a non-degenerate quadratic
form Q on Rk such that

S(q,ξ) =Q(ξ) for |ξ| >> 0.

For simplicity, we will use G.F.Q.I. to mean Generating Function Quadratic at Infin-
ity.. Unfortunately many constructions starting with G.F.Q.I. yield generating functions
that are only asymptotically quadratic. For example if S1 is a G.F.Q.I. for L1 and S2 a
G.F.Q.I. for L2 then S(x, y,ξ,η) = S1(x,ξ)+S2(y,η) is a generating function for L1 ×L2,
but is not quadratic at infinity. The following Proposition allows us to recover a genuine
G.F.Q.I. .

PROPOSITION 4.22. Let S be a generating function of L such that ∥∇(S −Q)∥C 0 ≤ C
We say that such a function is asymptotically quadratic at infinity. Then if L has a
generating function asymptotically quadratic at infinity then there exists S̃, a G.F.Q.I. for
L.

PROOF. Let ρ :R+ →R+ be a non-increasing function such that

(1) ρ ≡ 1 on [0, A]
(2) ρ ≡ 0 on [B ,+∞)

5Because for n ≤ m, an n ×m non-singular matrix has a non zero n ×n minor.
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(3) −ε≤ ρ′ ≤ 0 on R+
Such a function exists provided ε(B − A) > 1. Define

S1(q,ξ) = ρ(|ξ|)S(q,ξ)+ (1−ρ(|ξ|))Q(ξ)

and let us prove that
∂

∂ξ
S1(q,ξ) = 0 ⇐⇒ ∂

∂ξ
S(q,ξ) = 0

Indeed, setting Q(ξ) = 1
2

(
AQξ,ξ

)
we have

∂

∂ξ
S1(q,ξ) = ∂

∂ξ

(
ρ(|ξ|)(S(q,ξ)−Q(ξ)

)+Q(ξ)
)=

ρ′(|ξ|) ξ|ξ|
(
S(q,ξ)−Q(ξ)

)+ρ(|ξ|) ∂
∂ξ

(S −Q)(q,ξ)+ AQξ= 0

Since for some positive constant k we have |Aξ| ≥ k|ξ| and notice that our assumption
implies that for some constant D , we have ∥S −Q∥C 0 ≤C |ξ|+D .

So we estimate ∣∣∣∣ ∂∂ξS1(q,ξ)

∣∣∣∣≥ k|ξ|− (εC |ξ|+D)−C

hence for ε small enough, ∂
∂ξS1(q,ξ) = 0 implies

|ξ| ≤ εD +C

k −εC

and this remains bounded for ε small enough. We thus choose 0 < ε< k
C , then choose

A = εD+C
k−εC then B > A + 1

ε
. >but now on |ξ| ≤ A we have S1(q,ξ) = S(q,ξ) so obviously

LS1 = LS . □

REMARKS 4.23. (1) By abuse of language, we still call S a G.F.Q.I. the replace-
ment of S by S̃ being understood.

(2) Usually Generating functions quadratic at infinity are defined on a vector bun-
dle E over N . However these can be reduced to the standard form we intro-
duced above as follows: let us decompose E as E+⊕E− where E+

x (resp. E−
x ) is

the sum of the positive (resp. negative) eigenspaces for Q(x). Let F± be vector
bundles such that E+⊕F+ and E−⊕F− are trivial bundles. Then the G.F.Q.I.

Ŝ(x,ξ,η+,η−) = S(x,ξ)+|η+|2 −|η−|2

generates the same Lagrangian as S and the positive and negative bundles are
trivial. Now if Q(x)(ξ,ξ) is positive definite on N×Rk we can write Q(x) = A(x)2

with A(x) positive definite (see Exercise 3), and then the change of variables
(x,ξ) −→ (x, A(x)ξ) sends Q to |ξ|2. The same holds for the negative part, so
by a fiberwise diffeomorphism linear on the fiber we reduced ourselves to the
case where Q(x)(ζ) = |ζ+|2 −|ζ−|2 where ζ± ∈Rk± .
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Note that there are two operations on a G.F.Q.I. that do not affect the generated
Lagrangian :

(1) (Fiberwise diffeomorphism) Let (q ;ξ) 7→ (q ;η(q,ξ) be a fiberwise diffeomor-
phism. Then

S̃(q ;ξ) = S(q ;η(q ;ξ))

generates the same Lagrangian as S
(2) (Stabilization) Let Q ′ be a non degenerate quadratic form on Rl and set

S̃(q ;ξ,η) = S(q ;ξ)+Q ′(q)(η)

generates the same Lagrangian as S

THEOREM 4.24. (Sikorav, [Sik87]) Let us assume L is a closed immersed Lagrangian
having a G.F.Q.I. and ϕ ∈ H am(T ∗N ), then so does ϕ(L). The same holds if N is a com-
pact manifold with boundary, ∂L ⊂ T ∗

∂N N and ϕt
H (T ∗

∂N N ) = T ∗
∂N N .

Sikorav’s Theorem is essentially equivalent to a slightly more general fibration the-
orem that we shall now state.

Let Fk be the set of G .F.Q.I . generating immersed Lagrangians and defined on N ×
Rk . A map from a compact space X to Fk is said to be smooth if there is a smooth map
S̃ : X ×N×Rk −→R such that S̃(x, q ;ξ) = Sx(q,ξ) and S̃(x, q ;ξ) =Q(ξ) outside a compact
set.

We shall omit the index to indicate the union of the Fk and a map from X to F

just means6 a map to one of the Fk . Note that the same can be defined for N non-
compact, provided we impose S̃(x, q ;ξ) = Q(ξ) outside a compact set (so this is true
also at infinity in N ).

Now we have a projection map π : F −→ L (T ∗N ). Note that there is an equiva-
lence relation by stabilization and fiberwise diffeomorphism defined above (i.e. the
operations (1), (2) )and we denote by F the quotient quasi-topological space defined
as follows: S : Y −→F is smooth if there exists a smooth map S̃ : Y −→F such that for
all y ∈ Y we have S̃(y,•) ∈ S(y,•). By abuse of language we still denote by π the obvious
map from F −→L (T ∗N ).

We now have

THEOREM 4.25 (Théret’s theorem (see [Thé99])). The map π : F −→ L (T ∗N ) is a
smooth Serre fibration. More precisely given a smooth map j : Dk × [0,1] −→ L (T ∗N )
and a lift S0 : Dk × {0} −→ F such that π ◦ S0 = j|Dk×{0}, then there is an extension S :

Dk × [0,1] −→F such that π◦S = j .

First of all we shall see according to Lemma 4.26, it is enough to deal with the case
k = 0. We consider X to be a smooth manifold with boundary and we shall us the
following Lemma for X = Dk .

6This defines a ”quasi-topology" in the terminology of [Spa63].
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LEMMA 4.26. Let j : X×L0 −→ T ∗N be a smooth family of exact Lagrangians parametrized
by X . Then there is a map v : X ×L0 −→ (Rk )∗ such that J : (u, x) 7→ (u, v(u, x), j (u, x)) is
an exact Lagrangian embedding into T ∗(X ×N ) and J (∂X ×L0) ⊂ T ∗

∂X×N (X ×N ).

PROOF. We shall occasionally write ju(x) for j (u, x). Now the Liouville form on
T ∗(X ×N ) is vdu +λN so for J of the form (u, v(u, x), j (u, x)) we have

J∗(vdu +λN ) = vdu + j∗uλN +λN ( ju(x))
∂ j

∂u
(u, x)du

Since by assumption there is a smooth family fu such that d fu(x) = j∗u (λN ) we may set

v(u, x) =−λN ( ju(x))
∂ j

∂u
(u, x)du + ∂ f

∂u
(u, x)du

Then J∗(vdu +λN ) = d f and J is an exact embedding. It is obvious that J is an em-
bedding, since for fixed u, ju is an embedding, and J (u, x) = J (u′, x) obviously implies
u = u′. □

Note that f is well-defined up to a function of u, so J is well defined up to changing
v to v+c(u) where c is any smooth function depending only on u. Note also that if Su is
a family of G.F.Q.I. for ju(L0) defined on a fixed space N ×Rl , then S̃(u, x,ξ) is a G.F.Q.I.
for J . The converse also holds, since ju0 (L0) is the symplectic reduction of J (Dk ×L0)
over u = u0.

Using the Lemma, we can find J0 : Dk ×L0 −→ T ∗(Dk × N ) and setting jt (u, x) =
j (u, t , x), we get a smooth family Jt : Dk ×L0 −→ T ∗(Dk , N ). Now if S0 is a G.F.Q.I. for J0

and St for Jt we get that S(u, t ,•) is a G.F.Q.I. for ju,t (L0) and this proves the theorem.
We are thus reduced to the case k = 0, that is to Sikorav’s Theorem, that we now prove
using Brunella’s method.

PROOF OF THERÉT’S THEOREM. (Brunella, [Bru91]) Consider first the “special” case
N =Rn and ϕ ∈ H am(T ∗Rn) (note that Rn is non-compact !). We assume L0 coincides
with 0N outside a compact set. Let us first assume ϕ = ϕ1 is defined by a generating
function in the sense of Jacobi, i.e. a function h : Rn ×Rn → R and maps ϕh : T ∗N →
T ∗N given by

ϕh(q1, p1) = (q2, p2) ⇐⇒
{

p1 = ∂
∂q1

h(q1, q2)

p2 =− ∂
∂q2

h(q1, q2)

The graph ofϕh is a submanifold in T ∗Rn×T ∗Rn with symplectic form given byω=
d p1∧d q1−d p2∧d q2. It’s a Lagrangian if and only ifϕh is a symplectic diffeomorphism.

Conversely the graph of dh is a submanifold in T ∗(Rn ×Rn) with the natural sym-
plectic structure and it’s Lagrangian. It is the graph of a symplectic map if and only if
it is transverse to both foliations T ∗Rn × {(q1, p1)} and {(q0, p0)}×T ∗Rn . This is just to
point out that the existence of h is an C 1-open condition onϕ and thatϕh defines a dif-
feomorphism is a C 2-open condition on h. Moreover, up to the addition of a constant
to h, ϕh uniquely determines h. Finally if the transversality assumptions are satisfied
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by all maps in the Hamiltonian path ϕt , then there is a continuous path ht such that
ϕt =ϕht .

Set h0(q1, q2) = 1
2

∣∣q1 −q2
∣∣2, then

ϕh0 (q1, p1) = (q1 −p1, p1).

and any symplectic map ϕ C 1 close to ϕh0 is of the form ϕh . Notice that ϕh0 preserves
the zero section. The same holds for ϕ−h0 given by ϕ−h0 (q1, p1) = (q1 +p1, p1) and we
have ϕ−h0 =ϕ−1

h0
.

We shall now need to slightly extend our defintion of G.F.Q.I. when the base is Rn

(therefore non-compact !)

DEFINITION 4.27. We say that S :Rn ×Rk −→R is a G.F.Q.I. if we have

S(x,ξ) =Q(ξ)

for (x,ξ) outside a compact set, where Q is a non-degenerate quadratic form on Rk

Note that then LS will coincide with the zero section 0Rn outside a compact set.

LEMMA 4.28 (Chekanov’s composition formula, see [Che96]). Let L be a Lagrangian
in T ∗Rn such that L coincides with 0N outside a compact set and has a G.F.Q.I. S(q,ξ). If
h = h0 near infinity, then ϕh(L) has G.F.Q.I. .

S̃(q ;ξ, y) = h(q, y)+S(y ;ξ).

REMARKS 4.29. (1) This S̃ is only approximately quadratic at infinity. We use
Proposition 4.22 to turn it into a real G.F.Q.I. .

(2) We do not assume L is embedded but only immersed. This will be useful later.

For the proof of the claim, we check that LS̃ is ϕh(LS).

∂S̃

∂ξ
(q ;ξ, y) = 0 ⇐⇒ ∂S

∂ξ
(y ;ξ) = 0.

∂S̃

∂y
(q ;ξ, y) = 0 ⇐⇒ ∂h

∂y
(x, y)+ ∂S

∂y
(y ;ξ) = 0.

A point in LS̃ is

(x,
∂S̃

∂x
(x;ξ, y)) = (x,

∂h

∂x
(x, y))

= ϕh(y,−∂h

∂y
(x, y))

= ϕh(y,
∂S

∂y
(y,ξ)).

so (y, ∂S
∂y (y ;ξ)) belongs to LS . □
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We continue the proof of Sikorav’s theorem in the case N =Rn .
So if h is C 2 close to h0, we proved that ϕh(L) has a G.F.Q.I. and then

(ϕ−h0 ◦ϕh)(L)(ϕ−1
h0

◦ϕh)(L)

has G.F.Q.I. . Now any compact supported C 1 small symplectic map ψ can be written
as

ψ=ϕ−1
h0

◦ϕh

where h = h0 outside a compact set.
We may the conclude that for any ψ, C 1 close to the identity, if L has G.F.Q.I. then

ψ(L) has G.F.Q.I. .
Now take ϕt ∈ H am(T ∗N ). Write

ϕt =ϕt
t (N−1)

N

◦ϕ
t (N−1)

N
t (N−2)

N

· · ·ϕ
t
N
0 .

then each factor is C 1 small, so if L has G.F.Q.I. , then ϕt (L) has G.F.Q.I. depending
smoothly on t . This concludes our proof for N =Rn .

We now prove Théret’s theorem in the general case. Let us consider an embedding
of N into Rd . Then TNR

d is coisotropic and its reduction is T ∗N . So if S : Rd ×Rl is a
G.F.Q.I. for L, then SN×Rl is a G.F.Q.I. for LN the symplectic reduction of L by T ∗

NR
d (that

we should denote, in principle by LT ∗
NR

d ). Conversely let L0 ∈ T ∗N having the G.F.Q.I.

S0 : N ×Rl −→R and consider S̃0 an extension of S0 to Rd ×Rl such that

(1) S̃0(q,ξ) =Q(ξ) for (q,ξ) outside a compact set

(2) 0 is a regular value of (q,ξ) −→ ∂S̃0
∂ξ (q,ξ)

The first property is just extension of smooth functions by partition of unity, and the
second an application of Sard’s theorem. Then the reduction of LS̃0

by T ∗
NR

d is L0 and
LS̃0

coincides with 0Rd outside a compact set. Let ϕt
H be a Hamiltonian flow on T ∗N ,

it has an “extension"ϕt
H̃

to T ∗Rd (see Proposition 4.6) so that the reduction ofϕt
H̃

(LS̃0
)

is ϕt
H (L0). Since S̃0 is a G.F.Q.I. for LS̃0

, we proved that ϕt
H̃

(LS̃0
) has a G.F.Q.I. , so does

ϕt
H (L0).

Finally we deal with the case where N has boundary. Let N̂ be its double, that is
N ⊔∂N N , where N is identified with the first copy of N in the double. Then S0 can be
extended to N̂ ×Rk and it is the G.F.Q.I. for L̂0 such that L̂0∩T ∗

N N̂ = L0. Similarly if H is
a Hamiltonian with flow preserving T ∗

∂N N it can be extended to Ĥ with flow satisfying

the same condition7 so that ϕt
Ĥ
=ϕt

H on T ∗N . So finding a G.F.Q.I. for ϕt
Ĥ

(L̂0) yields a

G.F.Q.I. forϕt
H (L0) and this concludes the proof of Théret’s Theorem, hence of Sikorav’s

Theorem.

7In local coordinates such that ∂N is given by pn = 0, the condition on H is ∂H
∂qn

(q̄ , p̄, qn ,0) = 0.



6. COMMENTS 133

REMARK 4.30. (due to A. Weinstein) There are many ways to construct generat-
ing functions quadratic at infinity. It is useful to realize that there is a formal gener-
ating function that is "the mother of all generating functions" : the action functional.
Let P = {γ : [0,1] −→ T ∗N | γ(0) ∈ 0N } and the fibration P −→ N given by γ 7→ q(1).
Consider the function AH (q, p) = ∫ 1

0 (p(t )q̇(t )−H(t , q(t ), p(t )))d t . We claim that "for-
mally", AH is a G.F.Q.I. for ϕ1

H (0N ). Indeed, we have

D AH (γ)δγ=∫ 1
0

{(
q̇(t )− ∂H

∂p (t , q(t ), p(t ))
)
δp(t )−

(
ṗ(t )+ ∂H

∂q (t , q(t ), p(t ))
)
δq(t )

}
d t+

p(1)δq(1)−p(0)δq(0)

As a result if we denote by ξ the fiber direction, we have

∂

∂ξ
AH (γ) = 0 ⇔ q̇(t ) = ∂H

∂p
(t , q(t ), p(t )) ṗ(t ) =−∂H

∂q
(t , q(t ), p(t ))

and then (q(1), ∂
∂q(1) AH (γ)) = (q(1), p(1)) =ϕ1

H (q(0),0), so AH generates L =ϕ1
H (0N ). Of

course this is formal, since we are in an infinite dimensional space, we did not specify
which actual topological space we are considering γ. However this can be made rigor-
ous by using finite dimensional reductions (see [Vit87b], and Exercise 5). The infinite
dimensional case is actually rather helpful in computations (see for example Proposi-
tion 7.19)

As another example, let P = {γ : [0,1] −→ N } with projectionπ(γ) = (γ(0);γ(1)), then
the Lagrangian energy S(γ) = ∫ 1

0 (L(t , q(t ), q̇(t ))d t associated to a Tonelli Lagrangian
(i.e. satisfying the conditions of Definition 3.50 ) on P generates the graph of ϕ1

H in

T ∗(N ×N ) where H is the Legendre dual of L. Indeed, the condition ∂S
∂ξ (γ) = 0 means

that dS(γ) vanishes over all deformations of γ with fixed end points. In other words,
that γ satisfies the Euler-Lagrange equation. Then the set of (q0, ∂S

∂q0
(γ), q1, ∂S

∂q1
(γ) is

given by

(q0,
∂L

∂v
(0, q0q̇0), q1,−∂L

∂v
(1, q1q̇1))

that is (q0, p0, q1,−p1) where ϕ1
H (q0, p0) = (q1, p1).

6. Comments

Proposition 4.20 is due to Hamilton ([Ham34; Ham35]) for Hamiltonian flows. Of
course Hamilton did not know what a Lagrangian submanifold was (neither did La-
grange !), and the notion really appeared in a rarely mentioned paper by Souriau [Sou53]
in 1953 under the name of “saturated isotropic”. It is however implicit among previous
authors, in particular Einstein (in [Ein17]) who realized that quantization conditions in
higher dimensions must quantize Lagrangians (described as submanifolds on which∫
γpd q for γ a closed curve on the manifold, takes a discrete set of values). The notion
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became important starting from Maslov’s fundamental book( [Mas72]) on asymptotics
of PDE.

That variational problems (at least for Lagrangian convex in the v direction) can be
reduced to Hamiltonian systems is rather classical as we saw in Section 5 of Chapter 3.
That a Hamiltonian system can be reduced to a variational problem has been known
as the least action principle : the flow of XH is obtained by looking for critical points
of AH (q, p) = ∫ 1

0 [p(t )q̇(t )−H(t , q(t ), p(t ))]d t on the set of maps (q, p) : [0,1] −→ T ∗M .
Unfortunately for a long time this was considered useless, since the function AH has no
minima, or even critical points of finite Morse index. This changed with P. Rabinowitz’s
paper [Rab78] who used a finite dimensional reduction (Galerkin method) to find peri-
odic orbits of such systems. Shortly after, a duality method due to Clarke and Ekeland
[CE80; Eke79] gave a different approach, first in the case of convex Hamiltonians in
R2n and then for more general situations (see [EL80b; EL80a; Ber+85]). Other finite di-
mensional reductions of the action functional were used by Conley and Zehnder (see
[CZ83; CZ84]) using the Lyapounov-Schmidt reduction on Fourier decomposition of
the path space and Chaperon (see [Cha84b]) using broken-geodesic methods.

These variational formulations all happen to be instances of generating functions
as was pointed out by A. Weinstein for the standard action functional and in [Vit87b] for
more general cases. The advent of Floer theory (see [Flo88a; Flo89]) putting together
the variational approach and Gromov’s pseudo-holomorphic curves from [Gro85] al-
lowed one to work in the most general symplectic manifold. Here again there is a con-
nection between the Floer functional and the generating functions (see [Vit95]). These
methods go beyond the mere search for periodic solutions. For example homoclinic
solutions can be studied using either these classical variational methods ([CES90] or
Floer-type approach ([CS95]). These homoclinic orbits give information about the en-
tropy of the system (see[Sér93]).

7. Exercises and Problems

(1) (Alternative -geometric- proof for the integrability of the isotropic foliation).
Let K be coisotropic in the symplectic manifold (M ,ω), and K (x) = (TxK )ω.
We want to prove that the distribution K is integrable.
(a) Prove the Palais formula :
(b) Prove that this implies that ϕt

X preserves K

(c) Prove that this implies that the bracket of two vector fields tangent to K

is tangent to K (use the formula d
d t (ϕt

X )∗Y|t=0 = [X ,Y ]
(2) (a) Prove that ifω is a closed 2-form (not necessarily non-degenerate) on the

manifold S and if ker(ω|S) has constant rank then it defines a foliation.
(b) Use Stefan and Sussman’s theorem (see [Ste74; Sus73]) to get a foliation

with singularities (that is a partition of the space into immersed subman-
ifolds) without any assumption on the rank of the kernel of ω.

HINT. Consider the set of endpoints of pathsγ(t ) such that γ̇(t ) ∈ ker(ω(γ(t )))
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(3) (see [Hör71] prop. 2.5.7 p. 123 and cor. 3.1.8, page 141 for the homogeneous
case) Let L be a germ of Lagrangian submanifold near 0 in R2n . We assume 0
is an isolated intersection point of L and Rn × {0}.
(a) Prove that we can choose a linear subspace transverse to bothRn×{0} and

T0L.
(b) Prove that there exists S(x,ξ) such that (0,0) is an isolated critical point of

S, and S is a generating function of L in a neighborhood of 0.
(c) Prove that any two such functions, S1,S2 are equivalent, that is after re-

placing S j by S′
j (x,ϕ j (x,ζ)) where ζ= (ξ,η) and S′

j (x,ξ,η) = S j (x,ξ)+Q(η)
where Q is a non-degenerate quadratic form.

(d) Let U be a neighbourhood of (0,0) and SU de note the restriction of S to
U . Prove that lim0∈U H loc∗ (SεU ,S−ε

U ) = H loc∗ (S,0) does not depend on the
choice of S but only on L up to a global shift in grading (i.e. replacing ∗ by
∗+d).

(4) (Density of smooth symplectic maps, see [Zeh77])
(a) Prove that the set of smooth Lagrangian submanifolds is dense in the set

of C 1 Lagrangian submanifolds.

HINT. Use the fact that L has locally a C 2 generating function and smooth
the function in a slightly smaller domain.

(b) Deduce that the set of smooth symplectic maps is dense in the set of C 1

symplectic maps.

HINT. Use the fact that the graph of ϕ is Lagrangian and that after a C 1

perturbation, a graph remains a graph.

(5) (The Amann-Zehnder Generating function) Let H(t , z) be a Hamiltonian on
the 2n-torus identified to Cn/Z2n . We look for 2π-periodic solutions of the
ż(t ) = J∇H(t , z(t )). We set AH (z) = ∫ 2π

0 [ 1
2 (J ż(t ), z(t ))−H(t , z(t ))]d t where J is

multiplication by i
(a) For z ∈ H 1(S1,Cn) = E write z = ∑

j∈Z ek J t zk , PN z = ∑
| j |≤N ek J t zk , QN z =∑

| j |>N ek J t zk where z0 ∈ T 2n and zk ∈Cn . Prove that PN ,QN are orthogo-

nal projectors on spaces EN ,FN such that EN
⊥⊕FN = E

(b) Set D to be the operator sending z to J ż. prove that

QN DQN = DN z = ∑
j∈Z

k Jek J t zk

Prove that DN is invertible on FN and that ∥D−1
N ∥ ≤ 1

N

(c) Let F (x, y) be a function on X ×Y and assume the equation ∂F
∂y (x, y) = 0

is equivalent to y = ϕ(x) for a smooth function f : X −→ Y . Set f (x) =
F (x,ϕ(x)). Prove that there is a one-to-one correspondence between crit-
ical points of f and critical points of F .
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(d) Prove that for z ∈ EN there is a unique ζ ∈ FN such that QN (ζ̇−∇H(z+ζ)) =
0, ans the map z 7→ ζ(z) is smooth.

HINT. Rewrite the equation by using D−1
N and apply Banach-Picard’s fixed

point theorem.

(e) Prove using 5c that a critical point of aH (z) = AH (z + ζ(z)) is a periodic
solution of ż(t ) =∇H(t , z).

(f)
(6) (See [Dus96], page 83.) Let L be a germ of homogeneous Lagrangian. Then

L is locally defined by a homogeneous generating function that is such that
S(q,λ ·ξ) =λ ·S(q,ξ).

HINT. Let S(x,ξ) be a generating function for L. Then Sλ(x,ξ) = S(x,λ ·ξ) is
also a generating function for L.

(7) Let S be a G.F.Q.I. for L in T ∗N . prove that the degree of the projectionπ : L −→
N is ±1. Hint: show that this degree is equal to the intersection number of L
and Vx0 , and that this is equal, for x0 such that Vx0 is transverse to L, to∑

ξ| ∂S
∂ξ (x0,ξ)=0

(−1)
index

(
∂2S
∂ξ2 (x0,ξ)

)

Use then the fact that this quantity is equal to the Euler characteristic of the
pair (E+∞

x0
,E−∞

x0
) and this is equal to the Euler characteristic of H∗(Q+∞,Q−∞)

that is ±1 (depending on the parity of the index of Q).
(8) (Focal surfaces) Let S be a hypersurface in (N , g ) where g is a complete Rie-

mannian metric on N . We get from g an isomorphism ρg (x) : T ∗
x N −→ Tx N ,

and ρ : T ∗N −→ T N the globally induced diffeomorphism. We denote by
Hg (x, p) = g (x)(ρg (x)p,ρg (x)p) and ϕt

g the corresponding Hamiltonian flow
and ψt

g : T N −→ T N be given by ψt
g (ρg (x, p)) = ρg (ϕt

g (x, p)). Note that ψt
g is

the geodesic flow: ψt
g (x, v) = (y, w) where by definition the unique geodesic

starting from x with speed v arrives after time t at y with speed w . Consider
ν∗S =⋃

t∈R,(x,p)∈ν∗Sϕ
t
g (x, p)} ⊂ T ∗N and remember that ν∗S is homogeneous La-

grangian. We also denote by N∗
S the intersection N∗

S = ν∗S ∩ {Hg = 1}.
(a) Prove that the image of ν∗S is ΓS = {(x, v) | v ⊥ TxS} and the image of N∗

S is
CS = {(x, v) | |v |g = 1, x ⊥ v}.

(b) Prove that if ϕt is the flow of a homogeneous Hamiltonian, and t is small
enough there exists a hypersurface S(t ) such that ϕt (ν∗S) = ν∗S(t ).

HINT. Prove first that ϕt (ν∗S) is homogeneous, and then that the projec-
tion on the base of a homogeneous Lagrangian has rank at most n − 1
(where n = dim(N )).

(c) We now consider the case where ϕt = ϕt
g . Prove that for t small enough,

S(t ) can also be defined as the set of points expx(t v) for (x, v) ∈CS
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(d) Prove that, again for t small enough, ϕt
g (N∗S) = N∗S(t )

(e) Prove that in the generic case, for t large, the projection π :ϕt
g (ν∗S) −→ N

has in general singularities and the image of these singularities has codi-
mension 2 in N . Points x such that there exists p such that r kdπ(x, p) :
T(x,p)ϕ

t
g (ν∗S) −→ Tx N has rank n−2 are called focal points. Prove this by

using a local generating function for the Lagrangian ϕt
g (ν∗S)

(f) Prove that in Rn , focal points correspond to points such that the map E :
(x, t ) −→ x + tν(x) where ν(x) is the oriented normal to S at x has rank
< n. This locus is also called a caustic.

(g) Let s 7→ γ(s) be a smooth curve in R3. We assume γ is parametrized by
arc length, that is |γ′(t )| = 1. Then γ′(t ) ⊥ γ(t ) and c(t ) = γ(t )+γ′(t ) is
called the center of curvature of the curve at γ(t ) (and 1/|γ′(t )| the radius
of curvature.

(h) Prove that if a local parametrization of S near x is given by (s, t ) 7→ x(s, t )
we have that the standard scalar product of R3 induces the metric

qS(s, t ) =
∣∣∣∣∂x

∂s

∣∣∣∣2

d s2 +2

〈
∂x

∂s
,
∂x

∂t

〉
d sd t +

∣∣∣∣∂x

∂s

∣∣∣∣2

d t 2

on S called the first fundamental form, and the form

BS(s, t ) =〈
∂2x

∂s2
,ν(x(s, t )

〉
d s2 +2

〈
∂2x

∂s∂t
,ν(x(s, t ))

〉
d sd t +

〈
∂2x

∂t 2
,ν(x(s, t ))

〉
d t 2

the principal curvatures κ1(s, t ),κ2(s, t ) at x(s, t ) are the eigenvalues of
BS(s, t ) with respect to qS , in other words there are vectors e1,e2 such that
BS(ei , v) = κi qS(ei , v) for all v ∈ TxS. We call ci (s, t ) = x(s, t )+κi (s, t )ν(x(s, t ))
the two centers of curvature of S at x(s, t ).

(i) Assume γ(t ) ∈ S and γ is a geodesic on S. Check that the center of curva-
ture of a geodesic on S is located between the two centers of curvature of
S and conversely, any such point is the center of curvature of some geo-
desic.

(j) Prove that the ci (t ) are the focal points of the surface.





CHAPTER 5

Critical point theory according to Conley, Morse and
Lusternik-Schnirelman

Après tant de grands hommes qui ont travaillé sur cette
matiere, je n’ose presque dire que j’ai découvert le principe
universel, sur lequel toutes ces loix sont fondées ; qui s’étend
egalement aux Corps durs & aux Corps élastiques ; d’où
dépend le Mouvement & le Repos de toutes les substances
corporelles.
C’est le principe de la moindre quantité d’action : principe si
sage, si digne de l’Etre suprême, & auquel la Nature paroît si
constamment attachée ; qu’elle l’observe non seulement dans
tous ses changemens, mais que dans sa permanence, elle tend
encore à l’observer. Dans le Choc des Corps, le Mouvement se
distribue de manière que la quantité d’action, que suppose le
changement arrivé, est la plus petite qu’il soit possible. Dans le
Repos, les Corps qui se tiennent en équilibre, doivent être
tellement situés, que s’il leur arrivoit quelque petit
Mouvement, la quantité d’action seroit la moindre.

Les Loix du mouvement et du repos déduites d’un principe
metaphysique, P. L. Moreau de Maupertuis, 1746

After so many great men worked on this subject, I hardly dare to
say that I discovered the universal principle founding these
laws; that applies to elastic as well as hard Bodies; whence
follows the Motion and Rest of all earthly bodies. It is the
principle of least action : principle so wise and worthy of the
Supreme Being; and to which Nature is so constantly attached
that she observes it not only in all its changes, but she also tends
to observe it in Steadiness. In the collision of Bodies, Movement
is distributed in such a way that the quantity of action, after the
change, is as smal as possible. In Rest, the Bodies in equlibrium
must be so placed that if they underwent the slighest movement,
the quantity of action would be diminished.

(Trans. by the author)
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1. Basic facts about homotopy theory

Let X ,Y be two topological spaces and f , g be two continuous maps from X to Y .

DEFINITION 5.1. We say that f and g are homotopic, and denote it by f ≃ g , if there
exists a continuous map F : X × [0,1] −→ Y such that F (x,0) = f (x),F (x,1) = g (x). This
defines an equivalence relation on C 0(X ,Y ).

DEFINITION 5.2. The spaces X ,Y are homotopy equivalent if there are maps f ∈
C 0(X ,Y ), g ∈C 0(Y , X ) such that f ◦ g ≃ IdY , g ◦ f ≃ IdX .

For a pair of topological spaces X , A with A ⊂ X closed, we denote by X /A the
pointed topological space (X \ A)∪ {∗}, where a neighbourhood in X /A of x ∈ X \ A
is just a neighborhood of x in X \ A and a neighbourhood of ∗ is the union of {∗} and a
neighborhood of A. Equivalently there is an obvious map X −→ X /A sending x ∈ X \ A
to x and any point of A to ∗. The topology on X /A is the quotient topology : a set is
open in X /A if and only if its preimage in X is open. Of course we have a distinguished
point, ∗ which we often denote by [A] and note that X /;= X ∪ {∗}, (;,;) = (∗,∗). We
say that X /A is a pointed space and maps between pointed spaces are usually assumed
to send the distinguished point to the distinguished point. For a connected space, the
pointed spaces (X , x) for x ∈ X are all homotopy equivalent, and by abuse of language,
we denote them by X . A useful property with respect to homology or cohomology is

PROPOSITION 5.3. If A has a neighbourhood in A that has A as a deformation retract,
then we have H∗(X , A) = H∗(X /A,∗) and H∗(X , A) = H∗(X /A,∗).

In general if C A is the cone A × [0,1]/A × {0} and X ∪C A be the space X ⊔C A/ ≃
where x ≃ (a, t ) if and only if x = a ∈ A and t = 1. This is a pointed space, with point
given by A× {0}. Then H∗(X , A) = H∗(X ∪C A,∗) (see [Hat02], pp. 124-125).

For two pairs (X , A), (Y ,B) we set (X , A)× (Y ,B) = (X ×Y , A ×Y ∪ X ×B) = (Z ,C )
so that the product corresponds to the smash product of the pointed spaces1 (X /A)∧
(Y /B) = Z /C . Then H∗((X , A)×(Y ,B)) = H∗(X ×Y , A×Y ∪X ×B) = H∗(X , A)⊗H∗(Y ,B).
Finally an obvious form of excision tells us that for a closed subset B ⊂ Å we have (X \
B)/(A \ B) = X /A.

2. The Conley index

In this section we define the Conley index for a dynamical system. In the next sec-
tion, we shall use it to give simplified approach to Morse theory.

Let ξ be a smooth vector field on a manifold. We want to algebraically compute
the size of the invariant set of ξ contained in a domain U ⊂ M . There is a beautiful
theory for this, mostly due to Charles Conley (see [Con78], [Eas75], [Fra86], [Sal85]),
which simplifies in the case of gradient vector fields2 since invariant sets are nothing

1For (X ,∗), (Y ,∗) pointed spaces, the smash product is X ×Y /(X × {∗}∪ {∗}×Y ).
2as topologists, we rather use then negative gradient −∇ f (x) rather than the usual gradient. . .
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but critical points of the function and trajectories connecting them (called “hetero-
clinic” trajectories ). Our first definitions and theorems apply in the general case, but
we shall restrict ourselves to gradient-like vector fields in the next section. We assume
that all vector fields ξ are smooth and complete, so we can deal with the flow ϕt

ξ
of the

smooth vector field X . This is a simplifying assumption, but we will not need anything
more general. We denote by ϕ[a,b]

ξ
(x) the set of points ϕt

ξ
(x) for t ∈ [a,b].

DEFINITION 5.4. Let ξ be vector field on M, and S be a closed subset invariant by the
flow. We say that S is isolated if there is a compact neighbourhood N of S such that S is
the largest invariant set contained in N . The set N is called an isolating neighbourhood
for S.

DEFINITION 5.5. We say that a subset A in N is positively (resp. negatively) invariant
(relative to N ) if for all x in A and t ≥ 0 (resp. t ≤ 0) if ϕ[0,t ](x) ∈ N then ϕ[0,t ](x) ∈ A.

Note that given N , there is a maximal invariant set I (N ,ξ) (usually we shall omit
ξ) contained in N . Then N is an isolating neighborhood for I (N ) if and only if there is
no bounded trajectory3 completely contained in N and touching the boundary of N :
indeed S = I (N ,ξ) should contain this trajectory, but then N would not be a neighbour-
hood of S.

DEFINITION 5.6. Let S be an isolated invariant set and N be an isolating neighbor-
hood for S. A pair (N1, N2) with N2 ⊂ N1 ⊂ N of compact sets is an index pair if

(1) (N1, N2 are positively invariant rel N1)
N2 is positively invariant in N1, that is if x ∈ N2 and for t ≥ 0 we haveϕ[0,t ](x) ∈
N1, then ϕ[0,t ](x) ∈ N2

(2) (N1 \ N2 is an isolating neighbourhood for S)
S = I (N̊1 \ N2)

(3) (exiting N1 has to go through N2)
If x ∈ N1 and for some t > 0, ϕt (x) ∉ N1, then there exists τ ∈]0, t [ such that
ϕτ(x) ∈ N2

Note that the compactness assumption is not strictly necessary. However there are
two possible extensions : first we can assume we are in a locally compact space and
add a restriction on the flow (as in the next section with the Palais-Smale condition) or
adopt Floer’s point of view in which there is no index pair, but the analog of an isolat-
ing neighbourhood is well defined, and the homology H∗(N1, N2) is well defined (see
[Flo88a]), even though N1, N2 are not defined. Even better, in certain cases the topolog-
ical spectra corresponding to N1/N2 is well defined (see an example and application in
[Kra18]).

Given S, the existence of an index pair is not completely obvious in general (see
page 46 of [Con78]). We shall give a proof of this fact. Let us start with the

3A bounded trajectory is a trajectory ϕR(x) completely contained in a bounded set. Note that the
closure of such a trajectory is an invariant set.
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DEFINITION 5.7. Let S be an isolated invariant set with isolating neighbourhood N .
We set

W +
N (S) = {

x ∈ N |ϕ[0,+∞[(x) ∈ N
}

W −
N (S) = {

x ∈ N |ϕ]−∞,0](x) ∈ N
}

These are called the "stable" and "unstable" sets of S in N .

N

S

FIGURE 1. The invariant set S and the isolating block N

Clearly W +(S) is positively invariant and W −(S) is negatively invariant. They are
also compact, since they are defined as an intersection of the closed (hence compact)
sets ϕ−t (N ) for t ≥ 0. Given x in W +

N (S) we have that the ω-limit set of x, that is the
set of accumulation points of ϕt (x) as t goes to +∞ is contained in S. Similarly for the
α-limit set of W −(S).

We summarize this in

PROPOSITION 5.8. The sets W +(S) and W −(S) have the following properties

(1) W +(S) is positively invariant and W −(S) is negatively invariant.
(2) W +(S)∩W −(S) = S
(3) W +(S) and W −(S) are compact

By definition, points outside W −(S) eventually exit from N . We now prove that
points outside a neighbourhood of W −(S) will exit in bounded time.

LEMMA 5.9. Let S be an isolated invariant set with isolating neighbourhood N . Let
U be a neighbourhood of W −(S) (resp. W +(S)) in N . Then there exists T > 0 such that if
z ∉U and ϕ[−t ,0](z) ∈ N (resp. ϕ[0,t ](z) ∈ N ) then t < T .
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W +
N (S)

N

S

W −
N (S)

FIGURE 2. The invariant set S and the isolating block N

PROOF. By contradiction, there would be a sequence (tn)n≥1 going to +∞ and
(zn)n≥1 outside U such that ϕ[−tn ,0](zn) ∈ N . Then if z∞ is the limit of zn the con-
tinuity of the flow implies that for any finite t ≥ 0, ϕ[−t ,0](z∞) ∈ N , but this implies
ϕ]−∞,0](z∞) ∈ N hence z∞ ∈ W −(S). This contradicts the assumption that the zn are
outside a neighbourhood of W −(S). □

DEFINITION 5.10. Let K be a compact set and for t ≥ 0, let Pt (K , N ) be the set of
points at time t of a trajectory starting in K and contained in N , that is

Pt (K , N ) = {
ϕt (x) ∈ N | x ∈ K ,ϕ[0,t ](x) ∈ N

}
We also set

P (K , N ) = {
ϕt (x) ∈ N | t ≥ 0x ∈ K ,ϕ[0,t ](x) ∈ N

}= ⋃
t≥0

Pt (K , N )

We shall say that P (K , N ) is the union of the positive trajectories starting in K and
contained in N . We now have

COROLLARY 5.11. Given neighbourhoods U+ of W +
N (S) and U− of W −(S) in N there

exists T > 0 such that for any t ≥ T we have

(1) Pt (N , N ) ⊂U−.
(2) Pt (N \U+, N ) =;

PROOF. (1) Indeed, take T− as in Lemma 5.9, associated to V =V − then u ∈ Pt (N , N )
if and only if u = ϕt (z) for z ∈ N and ϕ]−t ,0](u) ∈ N , but this implies, according to the
Lemma, that u ∈V .
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(2) Take T+ as in the same Lemma, associated to V +, then u ∈ Pt (N \ V +) means
u = ϕt (z) where z ∉ V + and ϕ[0,t ](z) ∈ N , but this is impossible if t > T+. To conclude
we take T = max{T−,T+}.

□

PROPOSITION 5.12. Let S be an isolated invariant set with isolating neighbourhood
N . Then there exists an index pair (N1, N2) with N1 ⊂ N .

PROOF. In the proof we omit the N subscript as N will be fixed. The idea is that a
neighbourhood of W −(S) can always be used as N1. Indeed, let K be a compact neigh-
bourhood of W −(S), and P (K , N ) be the points on positive trajectories starting in K .
Clearly P (K , N ) is positively invariant and contains W −(S). We claim that moreover it
is compact. Indeed, if xn ∈ K , tn ≥ 0 satisfy ϕ[0,tn ](xn) ∈ N and zn = ϕtn (xn) ∈ P (K , N )
and limn zn = z∞, then either tn is bounded and then, up to taking a subsequence we
may assume that limn xn = x∞ ∈ K , limn tn = t∞ ≥ 0 and then z∞ =ϕt∞(x∞) ∈ P (K , N ).
Otherwise we may assume limn tn = +∞. We claim that this can only happen when
z∞ ∈W −(S). Otherwise, we could find a neighbourhood V of W −(S) not containing the
zn . But according to Lemma 5.9, since ϕ[−tn ,0](zn) = ϕ[−tn ,0](ϕtn (xn)) = ϕ[0,tn ](xn) ∈ N ,
this implies tn ≤ T , which contradicts limn tn = +∞. So we must have z∞ ∈ W −(S) ⊂
P (K , N ), and this proves compactness.

We may thus set N1 = P (K , N ) which is of course positively invariant in N . We then
set N2 = P (N1\V , N1) where V is a neighbourhood of W +(S) in N1. Then N2 is positively
invariant relative4 to N1, does not intersect S, and using again Lemma 5.9, we see that
N2 is compact. Moreover if a trajectory exits from N1 = P (K , N ) it must exit from N
since N1 is positively invariant in N and hence from V , and will thus go through N2.
Then N1 \ N2 will contain S and be contained in the neighbourhood K ∩V of S.

4Because N1 is positively invariant rel N , we may infer that N2 is also positively invariant rel. N
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W +
N (S)

K

V
N

S

W −
N (S)

FIGURE 3. The invariant set S (in red), the isolating block N and the sets
K (in pink) and V (in green)

□

REMARKS 5.13. In view of the following proposition, we notice the following facts
about the index pair constructed above, that we shall denote (N st

1 , N st
2 ) and call “the

standard pair” associated to the data N ,K ,V :

(1) N2 is positively invariant with respect to N , since it is positively invariant with
respect to N1 and N1 is positively invariant with respect to N .

(2) (N st
1 , N st

2 ) is the standard pair associated to N st
1 or to (N st

1 \ N st
2 ).

(3) Let N ⊂ Ñ be two isolating neighbourhoods for S, and (N st
1 , N st

2 ) be the stan-
dard index pair we constructed associated to N ,K ,V , and (Ñ st

1 , Ñ st
1 , ) the stan-

dard pair associated to Ñ , K̃ ,Ṽ . We assume K = N ∩ K̃ and V = Ṽ . Then a
positive trajectory in N starting on K̃ must start in K . So a positive trajectory
in Ñ starting in K remains in N (hence in N st

1 ) until it hits N st
2 . As a result

N st
1 \ N st

2 = Ñ st
1 \ Ñ st

2 so N st
1 /N st

2 ≃ Ñ st
1 /Ñ st

2 .

PROPOSITION 5.14. Let S be an isolated invariant set and N1, N2 be an index pair as
above. Then the pointed homotopy type of the space N1/N2 only depends on S, and is
denoted h(S,ϕt ) (or h(S) if there is no ambiguity). If h(S) ̸= (∗,∗), then S ̸= ;.

PROOF. We will first prove that if (N1, N2) is an index pair, and (N st
1 , N st

2 ) is the stan-
dard index pair associated to N1 \ N2 (and some neighbourhoods K ,V ), then N1/N2 ≃
N st

1 /N st
2 .
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First define

ft (x) =
{
ϕt (x) ifϕ[0,t ](x) ∈ N1 \ N2

[N2] otherwise

By continuity of the flow, ft defines a continuous map N1/N2 −→ N1/N2 for all t ≥ 0.
Let T be defined in Corollary 5.11 associated to (N1, N2) and U− = K and U+ = N \ N st

2 .
For t ≥ T we have

(a) Pt (N1, N1) ⊂ K ⊂ N st
1 (since all points that do not exit in time less than T end

up in K )
(b) Pt (N st

2 , N1) =; (since all points in N st
2 ⊂ N \U+ exit in time less than T )

(c) Pt (N2, N st
1 ) =; (since all points in N2 exit from N1 hence from N st

1 in time less
than T )

and for t ≥ T , ft defines a map from N st
1 /N st

2 to N1/N2, since ft (N st
1 ) ⊂ N1, because

N st
1 ⊂ N1 and ft (N st

2 ) ⊂ N2 because of (b).
Similarly for

g t (x) =
{
ϕt (x) ifϕ[0,t ](x) ∈ N st

1 \ N st
2

[N st
2 ] otherwise

We claim that by positive invariance, g t defines a map N st
1 /N st

2 −→ N st
1 /N st

2 and for
t ≥ T a map from N1/N2 to N st

1 /N st
2 , since according to (a), Pt (N1, N1) ⊂ N st

1 and (c)
implies that g t (N2) ⊂ {

[N st
2 ]

}
.

Now we claim that fT ◦ gT = f2T : N1/N2 −→ N1/N2 and gT ◦ fT = g2T : N st
1 /N st

2 −→
N st

1 /N st
2 . But since f2T : N1/N2 −→ N1/N2 and g2T : N st

1 /N st
2 −→ N st

1 /N st
2 are homo-

topic to f0 = Id and g0 = Id, the maps fT , gT are homotopy inverse of each other.
Note that the above proof implies that the homotopy type of N st

1 /N st
2 does not de-

pend on the choice of K ,V . Note also that according to Remark 5.13 (3), N st
1 /N st

2 does
not depend on N . This concludes our proof of the main statement.

That h(S) ̸= ∗ implies S ̸= ; is clear : if S = ;, then W ±(S) = ;, so we can choose
K =;, hence N st

1 = N st
2 =; and since (;,;) = (∗,∗) we may conclude. □

For a shorter proof, we refer to Exercice 2 (or [Sal85]). In fact the proof of the theo-
rem tells us more than stated : given two pairs N1, N2 and N ′

1, N ′
2, there is a well defined

(up to homotopy) homotopy equivalence from N1/N2 to N ′
1/N ′

2. These spaces and
maps can be put together, and they define what is called a connected simple system5

the index of S, denoted I (S) or I (S,ϕt ). It is a more refined invariant than h(S), and
allows sometimes to solve some subtle questions, but we shall not use this result here.

One of the important features of the Conley index is the continuity. To be precise,
we have

5This is a category having a single morphism between any two objects- which is then necessarily an
isomorphism. It is the formalization of the sentence "unique up to a unique isomorphism". In our case
h(S) is unique, up to a homotopy equivalence which is itself unique up to homotopy...
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PROPOSITION 5.15 (Continuation theorem, see [Con78; Sal85]). Let ξt
λ

be a contin-
uous family of vector fields. Let N be an isolating neighbourhood for all the invariant
sets Sλ of ξλ. Then h(Sλ) does not depend on λ.

PROOF. We refer the reader to Conley’s book or Salamon’s article.
□

Note that given a family of vector fields ξλ, the set of λ for which N is an isolating
neighbourhood for Sλ is open. Note that the reader who does not want to bother with
homotopy types can consider only the (co)homology of our spaces, and notice that
H∗(X /A,∗) = H∗(X , A). In practice, this is all we shall use.

The most common and convenient case of index pair is when B is a domain with
smooth boundary, N1 = B , N2 = ∂−B where ∂−B is the set of exit points from B , that is

∂−B = {x ∈ B | ∃ε> 0,ϕ]0,ε[(x)∩B =;}

We also define ∂+B = {x ∈ B | ∃ε> 0,ϕ]−ε,0[(x)∩B =;} and we now set

DEFINITION 5.16. Let B be a compact codimension 0 submanifold with boundary,
∂B. B is an isolating block if ∂B = ∂−B ∪∂+B where ∂−B = {x ∈ B | ∃ε> 0,ϕ]0,ε[(x)∩B =
;} and ∂+B = {x ∈ B | ∃ε> 0,ϕ]−ε,0[(x)∩B =;}.

REMARK 5.17. Our assumption excludes the case of a set given by B = {(x, y) | y <
x sin(1/x)) | x ∈ [−1,1]} and ξ = ∂

∂x . In this case, the trajectory exits and reenters infin-
itely many times as x goes to 0 so 0 ∉ ∂B+∪∂B−.

In concrete terms, this means that each point x of the boundary is either a strict
ingress point, if x ∈ ∂+B ,ϕ[0,ε[(x) ∈ B , a strict egress point if x ∈ ∂−B ,ϕ]−ε,0](x) ∈ B or is
touched by a trajectory tangent to ∂B from outside (i.e. if a trajectory has a single point
of contact with ∂B ) if x ∈ ∂−B ∩∂+B .

PROPOSITION 5.18. Let B be an isolating block, and S the maximal invariant set in
B. Then S is an isolated invariant set and (B ,∂−B) is an index pair for S.

PROOF. Indeed, S is isolated since there can be no trajectory contained in B and
not contained in B̊ . The second statement is then clear. □

Note that for gradient like flows, S is of the form a union of critical points and het-
eroclinic orbits, and that if ξ is a negative pseudogradient of the function f that is
d f (x) · ξ(x) < 0 outside the set of critical points, then any neighbourhood of a set S
consisting of critical points and connecting trajectories which is an isolated set yields
an index pair.

REMARK 5.19. We sometimes deal with a degenerate situation, where ξ is tangent
to a subset of ∂B . We can usually add to the vector field ε(x)ν(x) where ν(x) is normal
to ∂B and be reduced to the above case.
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EXAMPLES 5.20. (1) Let f be a smooth function on the compact closed mani-
fold M . Then ( f b , f a) is an index pair for −∇ f (x) and H∗( f b/ f a) = H∗( f b , f a).
We can also consider U = f b \ f a as an isolating block, and ∂−U = f

−1(a).
(2) We may also consider a union U of trajectories contained in f b \ f a . Then the

part of ∂U not contained in f = a or f = b is a union of trajectories, so we do
not have an isolating block. However we can extend the definition of isolating
block to this more general situation.

(3) Let M be a compact manifold with boundary ∂M , f be a smooth function
on M , and consider the vector field ξ(x) = −∇ f (x). On ∂M the vector filed
ξ can either point inward or outward. Set ∂−M be the region where ξ points
outwards. Then U = f b\ f a is an isolating block, and ∂−U = f −1(a)∪(∂−M∩U ).
As a result H∗(U ,∂−U ) = H∗( f b , f a ∪ (∂−U ∩ f b)).

(4) Let f be a function having an isolated non-degenerate critical point. Accord-
ing to Morse’s lemma (see exercice 30 in Chapter 3) after applying a local dif-
feomorphism, we can write f (x, y) = |x|2−|y |2 where x ∈Rn−i , y ∈Ri . Consider
B = Dn−i ×D i , an isolating block for −∇ f , with exit set Dn−i ×∂D i . The Conley
index is then Dn−i × (D i ,∂D i ), that has the homotopy type of (Si ,∗).

(5) Let f having a non-degenerate critical manifold V , and d 2 f has negative bun-
dle ν− and positive bundle ν+ so that the normal bundle is ν= ν+⊕ν−. Then
taking for B a square tubular neighbourhood of V , that is on each fiber we take
D+×D− , the product of the unit disc bundles of ν+ and ν−, and the exit set
will be ∂D+×D− and the Conley index is homotopic to D+/∂D+. This is by
definition the Thom space of ν+.

It is often useful in the end to consider the cohomology of h(S) and we get in Ex-
ample 1, using excision, that H∗(B ,∂−B) = H∗( f b , f a). We may thus consider that the
(homological) contribution of the critical points and connecting trajectories contained
in f [a,b] is given by H∗( f b , f a). Conley theory for gradient flows can be considered as
an extension of this situation : we want to be able to talk about the topological con-
tribution of a set of critical points and connecting trajectories, without assuming that
this is the set of all critical points and trajectories contained between two level sets.

For a pair of pointed spaces X ,Y we define the sum (or wedge sum) X ∨Y as the
union X ∪Y divided by the relation identifying the two base points. Then we claim the
following obvious result

PROPOSITION 5.21. Let S,S′ be isolated invariant sets with index pairs (N1, N2), (N ′
1, N ′

2).
Assume that there is an isolating neighbourhood M of S ∪ S′ containing no trajectory
connecting S and S′, so that S ∪S′ is an isolated invariant set in M. Let (M1, M2) be an
index pair in M. Then

h(S ∪S′) = h(S)∨h(S′) = (M1/M2)

This is particularly useful to prove that there must be a trajectory connecting S and
S′ as in the following
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EXAMPLES 5.22. (1) In the first example, we have h(S) = (∗,∗),h(S′) = (S1,∗)
and h(S ∪S′) is equal to (∗,∗) which is different from (∗∨S1,∗).

FIGURE 4. A situation where h(S ∪S′) ̸= h(S)∨h(S′). In red the exit set.

(2) In the next example, we have a connecting trajectory between S and S′, but it
cannot be detected by the Conley index. This is not surprising since a hetero-
clinic connection between two hyperbolic points with the same index can be
"killed" by a small deformation, which will not modify h(S ∪S′).

FIGURE 5. A situation where h(S ∪ S′) = h(S)∨h(S′), in spite of a con-
nection between S and S′.
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(3) Let X ,Y be two manifolds and ϕt ,ψt be flows on each of them respectively.
Then ϕt ×ψt is a flow on X × Y and if S,T are isolated invariant sets with
(N1, N2), (M1, M2) their respective index pairs in X and Y , we have h(S ×T ) =
h(S)∧h(T ), since (N1 ×M1, N2 ×M1 ∪N1 ×M2) is an index pair for S ×T .

3. Conley index for gradient flows and Morse theory

In this section, we assume M is a complete Riemannian manifold and f ∈C∞(M ,R)
is a smooth function on a possibly noncompact manifold M , that we however assume
to be finite-dimensional.

We will here apply the results and methods of the previous section to the vector
field ξ = −∇ f (x) or to similar vector fields called “pseudo-gradients vector fields” for
f . Remember that an invariant set is a union of critical points and heteroclinic orbits
connecting them.

DEFINITION 5.23. A pseudo-gradient vector field ξ for a smooth function f is a vector
field such that there exists a neighbourhood U of the set of critical points such that

(1) In U there is a riemannian metric such that ξ(x) =−∇ f (x)
(2) There is a positive constant C such that outside of U we have d f (x)ξ(x) ≤−C
(3) If moreover f is a Morse function, we assume that in some chart where f (u1, ...,un) =

u2
1 + . . .+u2

n−i −u2
n−i+1 − . . .−u2

n , the metric is the euclidean metric so that we
have ξ(u) =−∇ f (u) = (−u1, . . . ,−un−i ,un−i+1, . . . ,un)

A generic function in C 2(M ,R) is Morse (see [Mil63]). This is just transversality, a
consequence of Sard’s theorem (see Exercise 3). We shall sometimes deal with the more
general situation of a Morse-Bott function, that is a function having non-degenerate
critical submanifolds). We shall usually assume the pseudo-gradient is Morse-Smale,
that is the stable and unstable manifolds of two different critical points xi , x j (or two
critical submanifolds Vi ,V j ) are transverse. That this can be achieved by an arbitrarily
small smooth perturbation is proved for example in Milnor’s book ([Mil65], Lemma
5.2). For a Morse or Morse-Bott function, the sets W +(S),W −(S) associated to a critical
point or critical manifold S are immersed submanifolds (see Exercise 4).

When dealing with a non-compact manifold M we assume it is endowed with a
complete riemannian metric and assume the function f satisfies the following Palais-
Smale condition (denoted from now on as (PS) condition)

DEFINITION 5.24 (Condition (PS), see [PS64]). If a sequence (xn)n≥1 satisfies

(1) d f (xn) → 0
(2) f (xn) → c

then (xn)n≥1 has a converging subsequence.

REMARK 5.25. Clearly, the limit of the subsequence is a critical point at level c.

The main consequence of the (PS) condition is that the set of critical points in a
region where f is bounded is compact (apply the condition to a sequence of critical



3. CONLEY INDEX FOR GRADIENT FLOWS AND MORSE THEORY 151

points). But there is more, that is that topologically nothing happens outside a compact
set. In our setting, this means that we can use non-compact index pairs, i.e. we may
replace the compactness assumption on N1 by the assumption that f is bounded on
N1. This is a consequence of the following fact :

LEMMA 5.26. Assume f satisifies the Palais -Smale condition. Let V be a neighbour-
hood of K[a,b] the set of critical points in f [a,b]. Let ϕt (x) be the flow of −∇ f (x). Then
there exists T > 0 such that if ϕ[s,t ](z) ∈ f [a,b] \V then t − s < T .

PROOF. Indeed,

d

d t
f (ϕt (x)) = d f (ϕt (x))∇ f (ϕt (x)) =−|d f (ϕt (x))|2

The Palais -Smale condition implies that there exists ε0 > 0 such that, as long as we stay
outside V , we have |d f (ϕt (x))|2 ≥ ε0. As a result f (ϕt (x))− f (x) ≤−ε0t , so T = b−a

ε0
will

do. □

From this we easily infer

PROPOSITION 5.27. Let N1, N2 be a pair satisfying the assumption of an index pair
for −∇ f (x) except that compactness is replaced by N1 ⊂ f [a,b]. Then there exists N 1, N 2

an index pair (in the usual sense) such that N1/N2 ≃ N 1/N 2

PROOF. We first notice that the compactness of S is an immediate consequence of
the previous Lemma. Indeed V is compact, and the set of bounded trajectories in f [a,b]

is contained in ϕ[0,T ](V ), and is therefore compact. Moreover by the same argument,
W −

N (S) is also compact, since the portion of trajectory outside a compact neighbour-
hood of S, correspond to a bounded time interval. As a result W −

N (S) is compact, and
hence we can construct, as in Proposition 5.12 an index pair (N st

1 , N st
2 ) in a neigbour-

hood of W −
N (S). Now if we follow the flow of −∇ f (x), since N st

1 is a neighbourhood of
W −

N (S), it sends N1 to N st
1 and the proof is the same as for Proposition 5.14.

□

Move or remove the following Proposition ?

Note the following

PROPOSITION 5.28. Let B be an isolating block for ξ=−∇ f , a,b regular values of f .
Then (B∩ f [a,b],∂−B∩ f [a,b]∪ f −1(a)) is also an index pair (for the invariant set S∩ f [a,b]).

PROOF. The proof is left as as an exercise. □

In the Morse case, the situation is quite simpler. Let x j be a critical point of index
j and consider (N j , N j−1) an index pair with {x j } a maximal invariant set. Note that
the W ±

N j
(x j ) are injectively immersed submanifolds (in fact injectively immersed discs)
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obtained by following the flowlines of −∇ f (x) starting form the local unstable disc. In
the local coordinates given by Definition 5.23 we have

W −
loc (x j ) =

{
(0, ...,0,un+1−i , ...,un) |

i∑
j=1

u2
n+1− j ≤ ε

}
We can arbitrarily orient one of the two, and the other one will be automatically ori-
ented if we require that x j is a positive intersection of W +

N j
(x) and W −

N j
(x). The gradient

flow is said to be Morse-Smale if stable and unstable manifolds intersect transversely.
In particular a heteroclinic orbit can only go from a point of index j to a point of in-
dex less than j . According to our Proposition, we can replace the pair (N j , N j−1) by a
standard pair, that is here a union of neighbourhoods of the W −

N j
(x j ) modulo their exit

set, that is clearly homologous to W −
N j

(x j ) modulo its boundary. Note that an orienta-

tion of W −
N j

(x j ) is equivalent to choosing a generator of Hd j (W −
N j

(x j ),∂W −
N j

(x j )), where

d j = index(d 2 f (x j )).
Now we claim the following

PROPOSITION 5.29 ([Con78; Flo88b]). Let f be a smooth function satisfying the
Palais-Smale condition and ξ a pseudo-gradient vector field. For any pair of real num-
bers a < b, there is a family N j of compact sets such that N−1 = f a , Nn ⊂ f b , (N j , N j−1) is
an index pair for ξ containing all critical points of index j . We have H k (N j , N j−1) = km j

for k = j and 0 otherwise. Moreover the map

δ j : H j (N j , N j−1) −→ H j+1(N j+1, N j )

has for matrix (d k,l
j ) 1≤k≤m j

1≤l≤m j+1

where d k,l
j counts the number of gradient trajectories of ξ

between xk and yl .
Moreover we have the homotopy equivalence

Nn/N−1 ≃ f b/ f a

PROOF.
Reprendre

The construction is done by induction. We set N−1 = f a , and assume N j has
been constructed. Consider the set x1, ..., xm j of critical points of index j , and the
neighbourhoods U j (xk ) of the unstable manifold of xk , W −

j (xk ) = W −
N j

(xk ). A tra-

jectory in W −
j (xk ) either ends up in f a or stops at a critical point of lower index (by

the Morse-Smale condition). In both cases for t large enough ϕt (∂W −
j (xk )) will be

in N j−1. As in the construction of the standard index pairs, we can replace the pair
(N j , N j−1) by the union of the neighbourhoods of W −

N j
(x j ) represented in Figure 6. On

this pair, it is clear that W −
j (xk ) = W −

N j
(xk ) generates the homology H∗(N j , N j−1) and
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U (xk )

W −
j (xk )

W +
j (xk )

∂−U j (xk )

U j (xk)

FIGURE 6. The sets W +
N j

(xk ) in solid black, W −
N j

(xk ) is the dotted line.

We have U (xk ) in blue and ∂−Uxk in red.

W +
j (xk ) = W +

N j
(xk ) is dual to this generator, so represents, by intersection, the gen-

erator of the cohomology H∗(N j , N j−1). Let y1, ...ym j+1 be the critical points of index
j +1. We define N j+1 as the union of N j and the neigbourhoods U j+1(yk ) of the un-

stable manifolds W −
j+1(yk ). Clearly H∗(N j+1, N j ) is generated by the

[
W −

j+1(yl )
]

, and

the map ∂ j+1 : H j+1(N j+1, N j ) −→ H j (N j , N j−1) is given by ∂ j+1(y j ) =
[
∂W −

j+1(yl )
]

in

H j (N j , N j−1) and the xk component is given by intersecting with W +
j (xk ), so is given

by ∂W −
j+1(yl )∩W +

j (xk ). Its matrix is then given by (d k,l
j ) 1≤k≤m j

1≤l≤m j+1

. Now it is well known

that ∂ j is dual to δ j . □

REMARKS 5.30. (1) We used the following facts. If A ⊂ B ⊂ X where X is a man-
ifold (not necessarily closed) and V ∩ B is a closed submanifold in B \ A of
codimension k, then intersection with V defines a class in H k (B , A), by send-
ing σ ∈Ck (B , A) to #(σ∩V ) the intersection number of V and σ counted with
signs. Indeed V ∩B defines a class in the Borel-Moore homology of B (that is
the homology of the chain complex of locally finite chains) H B M∗ (B) and the
Poincaré duality (which is not an isomorphism, since we do not assume X is
a closed manifold), associates to V a class in H n−∗(B , A) (for more details see
[Hat02], p. 239 and [BM60]).

(2) Note that the inclusion Nn ⊂ f b is a homotopy equivalence. Indeed, there is
a t ≥ 0 such that f (x) ≤ b implies ϕt (x) ∈ Nn , because Nn contains f a and a
neighbourhood of all critical points. But by Lemma 5.26 if x ∉ Nn then for t
large enoughϕ[0,t ](x) will not be contained in f [a,b] \Nn . Since f is decreasing
on the flow and Nn is positively invariant, we must haveϕt (x) ∈ Nn ∪ f a = N n .
Since the flow preserves N−1 = f a , we thus proved that (Nn , N−1) is homotopy
equivalent to ( f b , f a).

This implies (see [Tho49; Mil65; Wit82; Lau92] and [Flo88b] for this proof)
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THEOREM 5.31. (Thom-Smale-Witten) Let f be a smooth function satisfying the
Palais-Smale condition and ξ a pseudo-gradient vector field for f . Let C j (a,b) be the
group generated by the critical points of index j contained in f [a,b] and δ j be the map
defined by the matrix counting (with sign) the number of trajectories of ξ from xk to yl .
Then we have

H∗(C∗([a,b],d∗)) = H∗(Nn , N−1) = H∗( f b , f a)

PROOF. We set C j = H j (N j , N j−1) and note that according to Proposition 5.29,
under the identification of C j (a,b) with H j (N j , N j−1) the map δ j coincides with the
coboundary map

δ j : H j (N j , N j−1) −→ H j+1(N j+1, N j )

We wish tho prove that the cohomology of (C∗,δ∗) equals H∗( f b , f a). We consider the
diagram

0 C j+1

H j (N j+1, N j ) ≃ 0 // H j (N j+1, N j−2)
α // H j (N j , N j−2)

OO

γ
// H j+1(N j+1, N j ) //

OO

...

H j (N j , N j−1)

δ j
55

β

OO

≃ // C j

OO

H j−1(N j−1, N j−2)

δ j−1

OO

≃ // C j−1

OO

By exactness of the horizontal sequence, we have H j (N j+1, N j−2) = Im(α) = ker(γ).
Sinceβ is onto, ker(γ) = ker(γ◦β)/ker(β). But Ker(γ◦β) = Ker(δ j ) and Ker(β) = Im(δ j−1)
because the left-hand side vertical sequence is exact. Finally, we get H j (N j+1, N j−2) =
Ker(δ j )/Im(δ j−1). Now to conclude the proof we shall notice that replacing N j+1 by
Nn and N j−2 by N0 does not affect the cohomology in degree j . The intuition behind
this claim is that crossing a level containing a critical point of index k can only modify
the cohomology in degrees k −1,k or k +1. Since going from N j+1 to Nn (resp. from
N0 to N j−2) we only cross critical points of index greater than j +2 (resp. less or equal
to j − 2) this will not modify H j . Now let us give a little bit more detail. First of all
H j−1(Nk , N0) = 0 for k ≤ j −2 is proved by induction, using the long exact sequence

0 = H j−1(Nk , N0) // H j (Nk+1, Nk ) // H j (Nk+1, N0) // H j (Nk , N0) = 0 ..

From the exact sequence of the triple (N j+1, N j−2, N0)

0 = H j−1(N j−2, N0) // H j (N j+1, N j−2) // H j (N j+1, N0) // H j (N j−2, N0) = 0 ..
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we may deduce that H j (N j+1, N0) = H j (N j+1, N j−2). A similar argument shows that
H j (N j+1, N0) ≃ H j (Nn , N0). □

COROLLARY 5.32. (Morse inequalities) Let f be a Morse function on a manifold M,
satisfying the Palais-Smale condition. Let m j (a,b) be the number of critical points in
f [a,b] of index j and b j (a,b) = dim H j ( f b , f a). Then we have for all p

p∑
j=0

(−1)p− j m j (a,b) ≥
p∑

j=0
(−1)p− j b j (a,b)

In particular ifχ is the Euler characteristic, we haveχ(H∗( f b , f a)) =∑n
j=0(−1)p− j m j (a,b)

and for all j , m j (a,b) ≥ b j (a,b).

PROOF. Let us start with the Euler characteristics. If (C∗,δ∗) is a chain complex,
then its homology H∗(C∗,δ∗) satisfies the equation∑

j
(−1) j dim(C j ) =∑

j
(−1) j dim(H j )

Indeed we have exact sequences

0 // Ker(δ j ) // C j // Im(δ j ) // 0

0 // Im(δ j−1) // Ker(δ j ) // H j // 0

so dim(C j ) = dim(Ker(δ j )+dim(Im(δ j )) and dim(H j ) = dim(Ker(δ j )−dim(Im(δ j−1))
taking the alternating sum, we get∑

j
(−1) j dim(C j ) =∑

j
(−1) j dim(Ker(δ j )+∑

j
(−1) j dim(Im(δ j )) =∑

j
(−1) j dim(Ker(δ j )−∑

j
(−1) j dim(Im(δ j−1)) =∑

j
(−1) j dim(H j )

Consider the truncated complex τp (C∗)

0 // C 0 δ0
// C 1 δ1

// ... C p δp
//// Im(δp ) // 0

This is again a chain complex, and it has the same homology as (C∗,δ∗), up to di-
mension p and its p +1 homology is zero. Therefore

p∑
j=0

(−1) j dim(H j ) =
p∑

j=0
(−1) j dim(C j )+ (−1)p+1 dim(Im(δp ))

as a result
p∑

j=0
dim(C j )−

p∑
j=0

(−1) j dim(H j ) = dim(Im(δp )) ≥ 0

□

Theorem 5.31 may be extended without effort as follows
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THEOREM 5.33. Let f be a smooth function satisfying the Palais-Smale condition
and ξ a Morse-Smale pseudo-gradient vector field for f . Let S be a compact invari-
ant set for ξ, that is a union of critical points and heteroclinic orbits connecting them
and (N1, N2) an index pair for S. Let C j (N1, N2) be the complex generated by the critical
points in S of index j , and δ j : C j (N1, N2) −→C j+1(N1, N2) be given by the matrix count-
ing (with sign) the number of trajectories of ξ contained in N1 \ N2 and connecting xk

to yl . Then we have
H∗(C∗(N1, N2),δ∗) = H∗(N1, N2)

A proof will be added here

4. Lusternik-Schnirelman and the calculus of critical levels

We now consider a function f ∈C∞(M ,R) but do not make any assumption on the
critical points. We still assume in this section that all functions satisfy the Palais-Smale
condition. Given a < b < c, there is natural embedding

( f b , f a) ,→ ( f c , f a).

inducing a morphism
H∗( f c , f a) → H∗( f b , f a).

DEFINITION 5.34 (Cohomological critical value). Let α ∈ H∗( f c , f a) \ {0}. Define

c(α, f ) = inf{b| image of α in H∗( f b , f a) is not zero}.

Note that we could define c(0, f ) as +∞, but this is not very useful. Since the em-
bedding also induces

H∗( f b , f a) ,→ H∗( f c , f a),

the same can be done for ω ∈ H∗( f c , f a) \ {0}.

DEFINITION 5.35. For ω ∈ H∗( f c , f a) \ {0}, define

c(ω, f ) = inf{b|ω is in the image of H∗( f b , f a)}.

EXAMPLE 5.36. Let M be a compact manifold 1 the generator of H 0(M) and µM

the generator of H m(M), where m = dim(M). Then c(1, f ) = min f ,c(µM , f ) = max( f ).
Indeed, the map H 0(M) −→ H 0( f a) is non zero as long as f a is non-empty, that is as
long as a ≥ min( f ). So c(1, f ) = min( f ). On the other hand µM can be represented by a
class supported in an arbitrarily small open set (think of the de Rham cohomology, µM

can be represented by a bump function times a volume form), alternatively H m(X ) = 0
if X is a manifold with non-empty boundary. Thus if a < max f the map H m(M) −→
H m( f a) is zero and c(µM , f ) = max f .

PROPOSITION 5.37. The numbers c(α, f ) and c(ω, f ) are critical values of f . More-
over if α ∈ Hd ( f c , f a) (resp. ω ∈ H d ( f c , f a)), then Kc contains a critical point with index
i , nullity ν such that

i ≤ d ≤ d +ν
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PROOF. We prove only the case of c(α, f ) since the proof for c(ω, f ) is similar. Let
γ= c(α, f ), assume γ is not a critical value. Since f satisfies (PS) condition, we have

H d ( f γ+ε, f γ−ε) = 0

Consider the long exact sequence for the triple ( f γ+ε, f γ−ε, f a),

H d ( f γ+ε, f γ−ε) → H d ( f γ+ε, f a) → H d ( f γ−ε, f a) → H d+1( f γ+ε, f γ−ε)

Then H d ( f γ+ε, f γ−ε) = 0 implies that the second arrow above is injective. But by defi-
nition of γ, the image of α in H d ( f γ+ε, f a) is non-zero while its image in H d ( f γ−ε, f a)
vanishes which contradicts the injectivity. In fact this argument shows that H d ( f c+ε f c−ε) ̸=
0. For the second statement, we make a C 2 small perturbation, so that f becomes a
Morse function. If a critical point x0 has index i and nullity ν then d 2 f (x) is positive
definite on a space of dimension n −ν− i and negative definite on as space of dimen-
sion i . By continuity this still holds after C 2-perturbation, so the critical points of the
perturbed function that appear near x0 all have index j such that i ≤ j ≤ i +ν. So if d ∉
[i , i +ν] we have created no critical point of index d , but this implies H d ( f c+ε f c−ε) = 0
contradicting the definition of c = c(α, f ). □

We are now going to show that Poincaré dual classes induce corresponding critical
values for f and − f . Recall Alexander duality (see [Spa66] page 342 theorem 10)

AD : H∗( f c , f a)
≃ // H n−∗

c (X − f a , X − f c ) = H n−∗
c ((− f )−a , (− f )−c )

In our situation, the Palais-Smale condition implies that we may forget about the com-
pact support (use Proposition 5.27).

PROPOSITION 5.38. Assume that f satisfies the Palais-Smale condition. Then for
ω ∈ H∗( f c , f a) \ {0},

1) c(ω, f ) =−c(AD(ω),− f );
2) If M is compact, a =−∞ and c =+∞ we have c(1, f ) =−c(µ,− f ) where 1 ∈ H 0(M)

and µ ∈ H n(M) are generators.

PROOF. (1) Using the fact that X \ f a = (− f )−a and that according to Lemma
5.27, H∗

c ((− f )−a , (− f )−b) ≃ H∗((− f )−a , (− f )−b), the proof reduces to diagram
chasing on the following, where vertical arrows are induced by inclusions

H∗( f c , f b)
AD // H n−∗(X \ f a , X \ f c ) = H n−∗((− f )−b , (− f )−c )

H∗( f c , f a)

OO

AD // H n−∗(X \ f a , X \ f b) = H n−∗((− f )−a , (− f )−c )

OO

H∗( f b , f a)

OO

AD // H n−∗(X \ f c , X \ f b) = H n−∗((− f )−b , (− f )−a)

OO
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Indeed, b ≥ c(ω, f ) if and only if the lower left vertical map H∗( f b , f a) −→
H∗( f c , f a) has ω in its image. Since AD is an isomorphism, this is equivalent
to stating that α = AD(ω) ∈ H n−∗((− f )−a , (− f )−c ) is contained in the image
of H n−∗((− f )−a , (− f )−b) i.e. that its image in H∗((− f )−b , (− f )−a) is zero. As a
result b ≥ c(ω, f ) if and only if −b ≤ c(α,− f ) that is b ≥−c(α,− f ). This means
that c(ω, f ) =−c(α,− f ).

(2) It follows from the fact that

c(1, f ) = min( f ) and c(µ, f ) = max( f ).

□

We refer to Exercice 7 for a generalization of this result.
The following is a crucial result : it shows that critical values associated to certain

pairs of cohomology classes must be distinct (see Exercice 8 for more examples). Be-
yond multiplicity results, this theorem will also crucially imply the triangle inequality
for capacities

THEOREM 5.39. (Lusternik-Schnirelman6) Assumeα ∈ H∗( f c , f a)\{0} andβ ∈ H∗(M)\
{0}, then

(5.1) c(α∪β, f ) ≥ c(α, f )

If equality holds in equation 5.1 with common value γ, then for any neighborhood U of
Kc = {x| f (x) = γ,d f (x) = 0}, we have β ̸= 0 in H∗(U ).

PROOF. Inequality 5.1 is obvious because α = 0 in H∗( f b , f a) implies α∪β = 0 in
H∗( f b , f a).

Assume equality holds in (5.1). Then to any sufficiently small neighbourhood U of
Kc we may associate by Proposition 5.12 an index pair (N1, N2) such that N1 ⊂U . This
follows from the fact that using the (PS) condition, we see that for ε small enough, the
critical points in f c+ε\ f c−ε are contained in U . Indeed, if we had a sequence (xn)n≥1 of
critical points in f c+εn \( f c−εn ∪U ) we would get a limiting point x∞, a critical point in
f =c \U , a contradiction. Moreover ( f c+ε, f c−ε) is another index pair, so we must have
H∗( f c+ε, f c−ε) = H∗(N1, N2). Now assumeβ vanishes in H∗(U ) hence in H∗(N1). Then
α has non-zero image in H∗( f c+ε, f c−ε) = H∗(N1, N2), but then α∪β= 0 in H∗(N1, N2)
hence in H∗( f c+ε, f c−ε). But this implies that c(α∪β, f ) ≥ c +ε a contradiction.

□

6Schnirelman is also sometimes spelled Shnirelman, both are transcriptions of Xnirelm&an. Lus-
ternik is sometimes spelled Ljusternik or Liusternik, both transcriptions of L�st&ernik. Both were in-
volved in the 1930’s in the Luzin affair, (concerning the mathematician Luzin, see [DL16]), in which
Luzin was accused in Soviet Union of being an “enemy of the People". One of the main official charges
against Luzin was that Luzin published his best work abroad. Ironically, Lusternik and Shnirelman’s
theorem was published in french in French journals (see [LS29; LS34]).
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REMARK 5.40. Note first that in this section, H∗ can be any cohomological theory.
If β ̸= 0 in H p (U ) for all neighbourhoods U of Kc , If equality in (5.1) holds, then β ̸= 0
in H p (U ) for all neighbourhoods U of Kc . This implies by definition that the cohomo-
logical dimension of Kc is at least p. If p ≥ 1 this implies that the Lebesgue covering
dimension of Kc is non-zero, which implies that Kc cannot be totally disconnected7. In
particular Kc must be uncountable.

We now have

PROPOSITION 5.41. Let f be a function on C∞(M ,R) satsifying the Palais-Smale con-
dition. Let α ∈ H∗( f c , f a) and β j ∈ H∗(M) \ H 0(M). If α∪β1∪ ...∪βk ̸= 0 in H∗( f c , f a),
then f has at least k +1 critical points in f c .

PROOF. Indeed, we have

c(α, f ) ≤ c(α∪β1, f ) ≤ ... ≤ c(α∪β1 ∪ ...∪βk , f ) ≤ c

If all these critical values are distinct, then f has at least k+1 critical points below level
c. If two critical values are equal, then according to to Remark 5.40 there are infinitely
many critical points. □

DEFINITION 5.42. Let M be a topological space. We define cl (M) to be the maximum
number of classes of positive degree such that their product is non-zero.

COROLLARY 5.43. Let f ∈C∞(M ,R) with M compact, then

#Cr i t ( f ) ≥ cl (M)+1

PROOF. Apply the Proposition with α= 1. □

We state for future use the following property.

PROPOSITION 5.44. Let u : M −→ N be a map, then we have for α ∈ H∗( f c , f a) and
u∗(α) ∈ H∗(( f ◦u)c , ( f ◦u)a) the following inequality

c(α, f ) ≤ c(u∗(α), f ◦u)

PROOF. The map u sends ( f ◦u)c to f c . Then we have an induced map

u∗ : H∗( f b , f a) −→ H∗(( f ◦u)b , ( f ◦u)a)

and a commutative diagram H∗( f b , f a)
u∗
// H∗(( f ◦u)b , ( f ◦u)a)

H∗( f c , f a)
u∗
//

OO

H∗(( f ◦u)c , ( f ◦u)a)

OO
so that if α goes to

0 in H∗( f b , f a), then u∗(α) goes to 0 in H∗(( f ◦u)b , ( f ◦u)a). As a result we get the
inequality. □

7see https://encyclopediaofmath.org/wiki/Zero-dimensional_space

https://encyclopediaofmath.org/wiki/Zero-dimensional_space
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5. Appendix: When is a flow gradient-like ? Conley’s Lyapounov functions

This section to be reworked

Until now we only dealt with pseudo-gradient flows on manifolds, that is flows ϕt

such that there exists a function f on M such that f (ϕt (x)) is strictly decreasing except
at critical points, plus some local condition near the set of zeros of ξ. But we have not
dealt with the following question :

given a flow, is it the pseudo-gradient of some function ?
The behaviour near critical points is delicate, because a pseudo-gradient is defined

as a real gradient near such points, so we shall weaken the question and also localize
it. We thus set

DEFINITION 5.45. Let ϕt be a flow in M and U be an open relatively compact set in
M. We say that a flow is gradient-like on U , if there is a function f ∈C∞(U ,R) such that
d f (x)ξ(x) ≤ 0 in U and the inequality is strict outside the set of zeroes of ξ.

So our question is:
When is a vector field gradient-like on U ?
Usually we are interested in the case U = M , but we shall see an application of the

general case. Note that this sections is inspired by [Fat22], [WY73] where stronger state-
ments are proved (in particular ξ is only assumed to be C 1, but the function obtained
is still smooth).

In the sequel we shall always assume U is compact. As a result the reader can check
that we do not need the flow to be defined for all t , but only to be defined as long as
ϕt (x) remains in U , which is automatic by a standard theorem for ODE. We may also
replace ξ(x) by ρ(x)ξ(x) where ρ is supported in a compact neighbourhood of U and
ρ = 1 on U . Then the trajectories of the new vector field coincide with the trajectories
of the old one as long as they remain in U and the new vector field is complete. It will
be convenient to know the following

LEMMA 5.46 (Conley, see [Con78], p.33).

(1) Let U be a domain and f a function defined on U , such that f (ϕt (x)) ≤ f (x) for
all t > 0 and such that the inequality is strict for x ∈W . Then the function

g (x) =
∫ +∞

0
e−t f (ϕt (x))d t

satisfies d g (x)ξ(x) ≤ 0 and the inequality is strict for x ∈W .
(2) Let f be a smooth function such that f (ϕ1(x)) ≤ f (x). Then the function F (x) =∫ 1

0 f (ϕu(x))du satisfies F (ϕs(x)) ≤ F (x) for all s ≥ 0. More precisely d
d t F (ϕt (x)) =

f (ϕ1(x))− f (x).

PROOF. The proof is straightforward :
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(1)

d g (x)ξ(x) =
∫ +∞

0
e−t d f (ϕt (x))dϕt (x)ξ(x)d t =

∫ +∞

0
e−t d f (ϕt (x))ξ(ϕt (x))d t

since ξ(ϕt (x)) = dϕt (x)ξ(x). Now the integrand is nonpositive and since∫ t

0
d f (ϕt (x)ξ(ϕt (x)))d t = f (ϕt (x))− f (x)

it will be negative for t large enough, the integral defining d g (x)ξ(x) must also
be strictly negative.

(2) We have

d

d t
F (ϕt (x)) = d

d t
F (ϕt (x)) =

∫ 1

0

d

d t
f (ϕu+t (x))du =∫ 1

0

d

du
f (ϕu+t (x))du = f (ϕ1(x))− f (x) ≤ 0

Therefore F is decreasing along the trajectories and F (ϕs(x)) ≤ F (x) for all x.

□

DEFINITION 5.47 (Pseudo-orbits and chain recurrent set). Let ϕt be a flow on M, U
an open set in M. Let x, y ∈ U and ε,T positive numbers. We define an (ε,T )(ε,T )(ε,T ) pseudo-
orbit of length Tn in UUU from xxx to yyy a (discontinuous) path γ : [0,Tn] −→ U such that
there exist (Tk )0≤k≤n with Tk −Tk−1 ≥ T and

(1) γ(0) = x,γ(Tn) = y
(2) γ(t ) =ϕt−Tk (γ(Tk )) for Tk ≤ t < Tk+1

(3) d(ϕTk+1−Tk (γ(Tk )),γ(Tk+1)) ≤ ε
We say that x is chain recurrent in U if for any (ε,T ) there is an (ε,T ) pseudo-orbit in U
from x to itself. We denote by R(U ) the set of chain recurrent points in U . The flow is
chain recurrent on U if every point is chain recurrent (i.e R(U ) =U ).

REMARKS 5.48. (1) An (ε,T ) pseudo-orbit in U is made of pieces of real orbits
of length at least Tk −Tk−1 ≥ T , and we allow jumps of size at most ε.

(2) It is easy to see that the chain recurrent set is invariant by the flow.
(3) Moreover given η > 0, t0 > 0, if ϕt0 (x) = z, we may choose ε(t0,η) > 0 suffi-

ciently small, so that any (ε,1) pseudo-orbit of length t0 will pass at distance
at most η from z. This immediately follows from the continuity of the flow.
Moreover ε(t0,η) can be chosen independent from x ∈U provided U is com-
pact.

(4) The same argument as above implies that any (ε,1) orbit is approximated by
an (η,T ) orbit for η < η(ε,T ). As a result it is enough to only deal with (ε,1)
pseudo-orbits to simplify notations.
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Conley’s theorem states that any flow is decomposed into a gradient-like flow and
a chain recurrent flow (but theses flows are then on metric spaces, not on the original
manifold M).

DEFINITION 5.49. Let ϕt be a flow on M and U an open set in M. A function f on U
is a Lyapounov function if for all x ∈U we have d f (x)ξ(x) ≤ 0. The critical set for f in
U is the set C ( f ,U ) of critical points of f that is the set of x ∈U such that d f (x)ξ(x) = 0.
The Lyapounov functions is said to be strict if d f (x)ξ(x) < 0 whenever x is not in R(U )
(i.e. C ( f ,U ) =R(U )).

Note that if f (ϕt (x)) = f (x) for some t ̸= 0 such that ϕ[0,t ](x) ⊂ U , then x is called
a neutral point. Note that if ξ is the vector field generating ϕt , then the set of neutral
points is contained in the set of x such that d f (x)ξ(x) = 0 (but may be smaller). In the
litterature several extra conditions are often imposed to Lyapounov functions.

We first characterize the recurrence set.

DEFINITION 5.50. An attractor in U is an isolated invariant set A ⊂ U such that
there is an isolating neighbourhood V ⊂U of A such that ϕt (V ) ⊂ V for all t > 0. Then
A =⋂

t≥0ϕ
t (V ). A repeller is the attractor of the flow ϕ−t . The repeller associated to A in

U is the set A∗
U = {x ∈ U | ϕ[0,+∞[(x) ⊂ U \ V } = ⋂

t≥0ϕ
−t (U \ V ), that is the set of orbits

that remain in U \V for positive time. We denote by A (U ) the set of attractors in U .

Note that automatically A and A∗
U are indeed invariant sets and a repeller has U \V

as isolating neighbourhood. It is in fact the set of points which remain in U but do not
end up in A in positive time.

EXAMPLES 5.51. (1) For the vector field −∇ f , the set of minima of f is an at-
tractor A, and then A∗ is the set of the other critical points and heteroclinic
orbits which do not end up in A.

(2) If a is a regular value of f , and ξ a pseudo-gradient for f , then the set A(ξ, a)
of critical points with critical value below a and of connecting orbits between
them is an attractor. Then A∗(ξ, a) is the set of critical points and heteroclinic
orbits contained in M \ A(ξ, a). Note that A∗(ξ, a) = A(−ξ,−a).

PROPOSITION 5.52. Let ϕt be a flow on M. Then

R(U ) = ⋂
A∈A (U )

(A∪ A∗
U )

PROOF. First we prove that if x ∉ A∪A∗
U for some attractor A, then x ∉R(U ). Indeed

let V be a neighbourhood of A in U . We may choose V so that x ∉V and then if x ∉ A∗
U

then ϕt0 (x) ∉ U \ V for some t0 ≥ 0 and if η < d(ϕt0 (x),U \ V ) there is an ε > 0 such
that any (ε,1) pseudo-orbit passes in the complement of U \ V . If such a pseudo-orbit
remains in U , then it must pass in V . Set η < d(U \ V ,ϕ1(V )). Then since ϕt0+1(x) ∈
ϕ1(V ), for ε small enough, an (ε,1) pseudo-orbit γ will satisfy d(γ(t0 +1),ϕt0+1(x)) < η
hence γ(t0 + 1) ∈ V . But then d(γ(t0 + 2),ϕ1(γ(t0 + 1))) < η hence γ(t0 + 2) ∈ V . By
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induction, we see that the pseudo-orbit is trapped in V so cannot go back to x and
x ∉R(U )

Conversely assume x ∈⋂
A∈A (U )(A∪A∗

U ) and assume there is no (ε,T ) pseudo-orbit
from x to x. Let ΩU (x,ε) ⊂ U be the set of y such that there is an (ε,T ) pseudo-orbit
in U from x to y . This set is open by definition and ϕt (ΩU (x,ε)) ⊂ ΩU (x,ε) for t >
0. Indeed, it is enough to prove this for 0 ≤ t ≤ T and if z ∈ ΩU (x,ε) there exists an
(ε,T ) pseudo-orbit γ from x to y with d(y, z) < ε and d(ϕt (y),ϕt (z)) < ε for 0 ≤ t ≤
T . Then concatenating γ(0,Tn) with ϕ[0,T ](z) we get an (ε,T )-pseudo-orbit of length
Tn +T from x to ϕt (z). We thus get an attractor A = ⋂

t≥0ϕ
t (ΩU (x,ε)). If x ∈ A then

there would be an (ε,1) pseudo-orbit in U from x to x contradicting our assumption.
So we must have x ∈ A∗

U . Let then z be a limit point of the sequence ϕnT (x). Since

ϕnT (x) ∈ϕmT (Ω(x,ε)) for all m < n, andϕmT (Ω(x,ε)) is closed, we may conclude z ∈ A.
But then we cannot have x ∈ A∗

U since by definition the orbit of a point in A∗
U remains

in U but never approaches A. □

EXERCISE 5.53. Prove for ξ a pseudo-gradient flow for f , that R is the set of critical
points of f .

LEMMA 5.54. The number of attractors is countable.

PROOF. Let (U j ) j∈N be a countable basis for the topology of M . For each A there

is a neighbourhood U of A such that ϕ1(U ) ⊂U . Since there is a set I A ⊂ N such that
A ⊂ ⋃

i∈I (A)Ui ⊂U , we may by compactness of A replace I (A) by a finite set and U by⋃
i∈I (A)Ui . Thus to each A we can associate a finite subset of N, and this determines

A since A = ⋂
nϕ

n(U ). But the set of finite subsets of N is countable, and since we
constructed an injection form the set of attractors to the set of finite subsets ofN, so is
the set of attractors. □

LEMMA 5.55. Let A be an attractor in U for the flow ϕt . Then there exists a smooth
function F : U −→ [0,1] such that A = F−1(0), A∗ = F−1(1) and dF (x)ξ(x) < 0 in the
complement of A∪ A∗.

PROOF. Let V be a neighbourhood of A such that ϕt (V ) ⊂V for t > 0. In particular
ϕ1(V ) ⊂V . Let W be a neighbourhood of U and g be smooth function such that

(1) g = 1 on U \V
(2) g = 0 on ϕ1(V )∪M \W
(3) 0 ≤ g ≤ 1.

Then if x,ϕ1(x) ∈U , we have g (ϕ1(x)) ≤ g (x) since

• either x ∈ M \V and then g (x) = 1 so obviously g (ϕ1(x)) ≤ g (x)
• or x ∈V and then ϕ1(x) ∈ϕ1(V ) and f (ϕ1(x)) = 0 so obviously g (ϕ(x)) ≤ g (x).

According to Lemma 5.46 we have that f (x) = ∫ 1
0 g (ϕu(x))du satisfies f (ϕs(x)) ≤ f (x)

for all s ≥ 0 and d f (x)ξ(x) < 0 whenever g (ϕ1(x)) < g (x). In particular this holds for
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x ∈V \ϕ1(V ). We set

F (x) = ∑
n∈Z

1

2 ·3|n| g (ϕn(x))

and the function F is also smooth. Notice that
∑

n∈Z 1
2·3|n| = 1, so that 0 ≤ F (x) ≤ 1.

Moreover if x ∈ A, then g (ϕn(x)) = 0 and F = 0 and if x ∈ A∗
U , then g (ϕn(x)) = 1 for all

n ∈ZNow let x in U . If x ∉ A∗
U ∪ A there exists n such that

(1) if the orbit of x remains in U we haveϕn(x) ∈V \ϕ1(V ) and such an n is unique
(2) ϕn(x) ∈ M \U and n is minimal.

Moreover we have ϕn(x) ∈ (V \ϕ1(V ))∪ (M \U ) and this defines n uniquely. As a result
0 < F (x) < 1 and

dF (x)ξ(x) = 1

2 ·3|n| d g (ϕn(x))ξ(ϕn(x)) < 0

□

THEOREM 5.56. (Existence theorem for strict Lyapounov functions) Letϕt be the flow
of the smooth vector field ξ in M and U an open relatively compact subset. Then there is
a smooth strict Lyapounov function for ξ on U .

PROOF. Since the number of attractors is countable and R is the intersection of the
An ∪ A∗

n , there is a function fn such that fn = 0 on An fn = 1 on A∗
n and d fn(x)ξ(x) < 0

elsewhere, we set

L(x) = ∑
n∈N

cn fn(x)

where the cn are positive and
∑

n∈N cn∥ fn∥C n <+∞ (so that for all k, we have
∑

n∈N cn∥ fn∥C k <
+∞, hence the sum converges in C k for all k) . Then L is smooth and dL(x)ξ(x) < 0 un-
less x is in the intersection of the An ∪ A∗

n , that is x is in R(U ). □

COROLLARY 5.57. If the set of chain recurrent points is equal to the set of fixed points
then the flow is gradient like.

PROOF. Indeed, the Lyapounov functions satisfies dL(x)ξ(x) < 0 outside of the set
of zeros of ξ, so the flow is gradient-like for L. □

COROLLARY 5.58 ([DH72] thm. 6.4.1, [Sul76], Thm II.26, and also [LS94; Fat22]). If
ξ is a vector field on a manifold M and K a compact subset, then there is a a function f
defined in a neighbourhood of K such that d f (x) ·ξ(x) < 0 on K if and only if there is no
orbit completely contained in K .

PROOF. Assume no trajectory is completely contained in K . First there is a neigh-
bourhood U of K such that for all points in K and all T > 0 there exist s < −T < T < t
such thatϕs(x) ∉U ,ϕt (x) ∉U . Otherwise there would be points x in K such that either
Lα(x) or Lω(x) is in U , so there would be invariant sets arbitrarily close to K hence an
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invariant set in K . This implies that R(U ) =;. But then Theorem 5.56implies the exis-
tence of a smooth strict Lyapounov function in U . Obviously this implies that K con-
tains no element of R, hence the strict Lyapounov function on K satisfies dL(x)ξ(x) < 0
on K .
Unfinished

□
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6. Exercises and Problems

(1) Prove that if S, N are isolated invariant set and corresponding isolating neigh-
bourhood, then there is a neighbourhood of N that is still isolating for S, and
that N is still isolating for a nearby flow.

(2) (Equivalence of homotopy index for S, the fast track, [Sal85]) Let (N1, N2) and
(N ′

1, N ′
2) be index pairs for the isolated invariant set S.

(a) Prove that there exists T > 0 such that for t ≥ T we have
• ϕ[−t ,t ](x) ∈ N1 \ N2 implies x ∈ N ′

1 \ N ′
2

• ϕ[−t ,t ](x) ∈ N ′
1 \ N ′

2 implies x ∈ N1 \ N2

(b) choose t ≥ T . Prove that the map f : N1/N2 −→ N ′
1/N ′

2 given by
• f (x) =ϕ3t (x) if ϕ[0,2t ](x) ∈ N1 \ N2 and ϕ[t ,3t ](x) ∈ N ′

1 \ N ′
2

• f (x) = [N ′
2] otherwise

is a continuous map and that all these maps are homotopic
(c) Prove that if g : N ′

1/N ′
2 −→ N "1/N "2 corresponds as above to the pairs

(N ′
1, N ′

2) and (N "1, N "2), h to the index pairs (N1, N2) and (N "1, N "2), then
h is homotopic to g ◦ f

(d) Reprove Proposition 5.14.
(3) (Sard’s theorem ) Let f ∈C k (Rn ,R).

(a) Prove that if k ≥ n the set of critical values of f has measure 0.

HINT. First prove the result for n = 1. Then for n = 2, the set ∂ f
∂x1

(x1, x2) = 0

is a C 1 curve outside the set where ( ∂2 f
∂x1∂x2

, ∂
2 f
∂x2

1
) = (0,0) and we may apply

the case n = 1. Then the image of the set of points where D2 f (x1, x2) = 0 has
measure 0. Extend then to any dimension and replace Rn by any manifold
M (see [Mil97]).

(b) Prove that there are measure 0 sets that cannot be the set of critical values
of a C∞ function.

HINT. Apply Sard’s theorem to (x, y) 7→ f (x)+ f (y) to show that the set of
critical values, C f , must satisfy C f +C f = {x + y | x ∈C f } has measure 0 (or

even C (k)
f = {x1 + ...+xk | x j ∈C f } has measure 0.

(c) Prove that there is a function in C 1(R,R) having as set of critical values
the "middle third" Cantor set (i.e. C is the set of

∑+∞
j=0

an
3n with an ∈ {0,2}

and also the intersection of the Cn where C0 = [0,1] and Cn is written as a
union of intervals, Cn+1 is obtained by removing the "middle third of each
interval. ).

HINT. (see [Gri85] ) Consider fn with compact support on [0,1] \ Cn such
that on any interval of [0,1] \ Cn we have

∫
I fn(t )d t = |I | where |I | is the

lenght of the interval. Show that fn converges to a continuous function, f
and g (t ) = ∫ t

0 f (s)d s answers our requirements.
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(d) Prove that there is a function in C 1(R2,R) having as set of critical values
an interval.

(4) (The stable and unstable manifolds for a Morse function) Let f be a Morse
function and x be a critical point. Prove that the unstable manifold of −∇ f (x)
is the immersed image of a disc. Prove that the same holds if f is Morse-Bott,
except that the unstable manifold is now the immersed image of the negative
bundle of the critical manifold.

(5) (Local Lefschetz fixed point [McC89]) Let U be an open set with smooth bound-
ary ∂U in a closed manifold M , f a smooth function with isolated critical
points and ξ be a pseudo-gradient vector field (i.e. d f (x)ξ(x) > 0 on the com-
plement of the critical points. We denote by ∂−U the subset of ∂U where ξ
points outwards from ∂U . Prove that the Euler characteristic of H∗(U ,∂−U ) is
equal to the sum of the Lefschetz indices of ξ at the critical points of f inside
U .

(6) Let f be a function defined on a manifold and having an isolated critical point
at x0 with critical value c.
(a) We set H∗

loc ( f , x0) to be the limit over the neighbourhoods U of x0 of
H∗( f c+ε∩U , f c−ε)∩U ) for ε small enough. Prove that it is well defined.

(b) Let us consider the gradient vector field ∇ f (x) on M , and set L(∇ f , x0)
to be the index of this vector field near x0 (L is for Lefschetz as this is
also called the Lefschetz index). Prove that L(∇ f , x0) is equal to the Euler
characteristic of H∗

loc ( f , x0) (use Exercise 5).
(c) From now on, we assume the manifold has dimension 2. Using Lusternik-

Schnirelman’s theory, prove that there is only one degree d for which
H d

l oc ( f , x0) is non-zero (show first by contradiction that it cannot be nonzero
for d = 0,1, then apply this to − f ).

(d) Prove that L(∇ f , x0) ≤ 1.
(e) Give examples of functions such that L(∇ f , x0) = 1−h for all non-negative

values of h.
(7) Let V be a linear subspace in H d ( f c , f a) (resp. W a linear subspace in Hd ( f c , f a))

and define

c(V , f ) = inf{b |V contains the Kernel of the map H∗( f c , f a) −→ H∗( f b , f a)}

c(W, f ) = sup{b |W contains the image of H∗( f b , f a)}

Let us remind that for coefficients in a field, the universal coefficient theo-
rem states that H∗(X ,K) ≃ Hom(H∗(X ,K),K) (see [Hat02], p.199)
(a) Prove that both c(V , f ) and c(W, f ) are critical values of f .
(b) Prove that if Vω = {α | 〈α,ω〉 = 0} and Wα = {ω | 〈α,ω〉 = 0} then c(Vω, f ) =

c(ω, f ) and c(Wα, f ) = c(α, f )
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(c) More generally, set V ⊥ = {ω ∈ H∗( f c , f a) | 〈α,ω〉 = 0}. Then c(V , f ) =
−c(AD(V ⊥),− f ) where AD is Alexander duality from H∗( f b , f a) to
Hn−∗((− f )−a , (− f )−b) and similarly for W .

One aspect of Poincaré duality is the statement that the bilinear form defined
on H k (X )⊗H n−k (X ) by (α,β) −→α∪βdefines a non-degenerate pairing. Thus
for ω ∈ Hk (X ), the map α 7→ 〈α,ω〉 defines a linear form and is thus associated
to a classβ ∈ H n−k (X ), called its Poincaré dual and denoted PD(ω). We denote
by V ◦ the orthogonal of V for this pairing.
(a) Prove that if V1,V2 are in duality, then PD(V ⊥

1 ) =V ◦
2

(b) Prove that c(V , f ) =−c(V ◦,− f )
(8) (Massey products and critical levels, see [Vit97]) Let f be a smooth function

on the manifold M satisfying the (PS) condition. Let x, y, z be de Rham co-
homology classes (see[BT82]) represented by closed forms α,β,γ respectively.
Assume x · y, y · z = 0.

Then define 〈x, y, z〉 as follows : there is a form σ,τ such that
• α∪β= dσ
• β∪γ= dτ

(a) Let A be an affine subspace of H (M) and we set c(A, f ) = sup{c(u, f ) | u ∈
A}. Prove that provided A ̸= {0}, c(A, f ) is a critical value for f .

(b) Prove that the form α∪ τ+σ∪ γ is closed and represents a cohomol-
ogy class, well defined in H∗(M)/(x ·H∗(M)+ zH∗(M)) and denoted by
〈x, y, z〉

(c) Prove that if 〈x, y, z〉 ̸= 0, then we can define c(〈x, y, z〉, f ) and we have

c(z, f ) ≥ min{c(x, f ),c(z, f )}

and equality can only occur if Ȟ j (Kc ) ̸= 0 for some j in {deg(z),deg(x)+
deg (y)−1,deg (z)+deg(z)−1}.

HINT. Imitate the proof of Lusternik-Shnirelman’s theorem.

7. Comments

The search for maxima and minima of functions is as old (or even older) as Calcu-
lus: Fermat, Pascal, Leibniz, Newton all searched for some maxima or minima. How-
ever the notion that the minimum is sometimes not achieved was not clarified un-
til quite late : it is well known that Dirichlet principle about existence of a harmonic
function on the disc with prescribed value on the boundary originally was “proved” by
stating that such a function realizes the minimum of

∫
D |∇u|2d x among the function

such that u = f on ∂D . Weierstrass gave a counterexample of a functional having no
minimum. As a result other methods were used to prove existence of harmonic func-
tions with prescribed values on the boundary, notably Poincaré’s “balayage” method (
[Poi99]) before Hilbert made the minimization method rigorous. As for finding critical
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points which were neither maxima nor minima, they were usually reduced to max-
ima or minima by adding some constrain. For example Poincaré’s method to prove
the existence of a closed geodesic on a convex 2-sphere was to look for the shortest
curve such that the integral of the curvature enclosed by the curve is half the value of
the integral of the total curvature (that is equal to 2π by Gauss-Bonnet). The minmax
method introduced by Birkhoff in [Bir17] corresponds in modern language to finding
the c(α, f ) for some class α and proving that it is a critical value of f . This method
was then developed by Lusternik-Shnirelman ([LS29; LS34] and Morse [Mor34]. The
postwar approach is set in the framework of Hilbert or Banach spaces in [PS64] and
Birkhoff and Lusternik-Shnirelman’s ideas were rediscovered in different guises (under
the name of Mountain pass for example in [AR73], etc) and used in particular for find-
ing solutions of ODE, of PDE (see [Nir81] for a survey), in the framework of Geometric
measure theory, etc.

The Thom-Smale-Witten theorem (Theorem 5.31) was proved in different guises,
first partially by Thom in [Tho49], where he uses a Morse function to construct a celle
decomposition of the manifold. However the identification of the boundary maps
seems to be missing. Smale’s proof of the h-cobordism theorem, and in particular the
proof presented by Milnor in [Mil65] identifies the boundary maps as the number of
trajectories connecting two critical points (of consecutive indices). However the proof
is only completely done for an ordered Morse function, but a posteriori this is irrel-
evant. Witten in [Wit82] gives a proof of the theorem connecting this to Hodge the-
ory. The small eigenvalues of the Witten Laplacian are in one-to-one correspondence
with critical points, and the non-zero (but small) eigenvalues are paired by the instan-
tons, that correspond to the trajectories connecting the critical points. This point of
view was made rigorous in particular in the work of Helffer-Sjöstrand ([HS84; HS85b;
HS85a; HS85c]) and Bismut ([Bis86]. Laudenbach ([Lau92]) explores the fact that the
homology classes are represented by the unstable manifolds of the critical points. Our
proof follows Floer in [Flo88b] and is shows the advantages of Conley’s theory even in
the simple framework of gradient flows.

The existence of Lyapounov functions is due to Conley. It has been revisited many
times including in recent years, in particular to extend its setting from compact to non-
compact metric spaces, to improve on the regularity of the Lyapounov function, and
to apply it in the case of homeomorphisms and not flows. This section borrows from
[Aki93; Fra17; FP19].

The last chapter of this topological theory of critical points should have been the
persistence homology point of view but we had no space to develop here. This origi-
nates from ideas due to Barannikov ( [Bar94a]), rediscovered some years later and be-
came a central tool in topological data analysis [ELZ02; ZC05]. This was also applied to
PDE (see [LNV13]) and then symplectic topology starting from [PS16].





CHAPTER 6

Generating functions for Lagrangians on cotangent bundles of
compact manifolds.

The goal of this chapter is to prove the Arnold conjecture and some applications,
using the results of Chapter 5 and to prove the uniquenes theorem for G.F.Q.I. . As an
application we may define Generating function homology for Lagrangians and their
spectral invariants.

1. Applications of the Existence theorem for G.F.Q.I. and Morse-Conley theory

We first need to show that a G.F.Q.I. has critical points. Indeed, a G.F.Q.I. satisfies
the (PS) condition. It suffices to check this for a non-degenerate quadratic form Q.
Let Q(x) = 1

2 (AQ x, x), then dQ(x) = AQ (x). Since Q is nondegenerate, we know AQ is
invertible and

dQ(xn) → 0 =⇒ AQ xn → 0 =⇒ xn → 0.

We now have

PROPOSITION 6.1. For b >> 0 and a << 0 we have

H∗(Sb ,Sa) ∼= H∗−i (N ).

PROOF. One can replace S by Q since S =Q at infinity. Define

Qλ = {ξ|Q(ξ) ≤λ}.

H∗(Sb ,Sa) = H∗(N ×Qb , N ×Qa)

= H∗(N )×H∗(Qb ,Qa).

Since Q is a quadratic form, it’s easy to see H∗(Qb ,Qa) is the same as H∗(D−,∂D−)
where D− is the disk in the negative eigenspace of Q (hence has dimension i ndex(Q),
the number of negative eigenvalues). □

Due to this isomorphism, to each α ∈ H∗(N ), we associate α̃ ∈ H∗(S∞,S−∞) corre-
sponding toα⊗T , where T is the generator of H∗(D(E−),S(E−)). We shall call this map
the Thom isomorphism1. Define

c(α,S) = c(α̃,S).

1even though the whole point of Thom’s isomorphism is that it holds for non-trivial bundles.
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Since Alexander duality induces Poincaré duality via the Thom isomorphism, i.e. AD(α⊗
T ) = PD(α)⊗T , we have

PROPOSITION 6.2. Let α ∈ H d (N ) and PD(α) ∈ Hn−d (N ) be Poincaré dual classes.
Then we have

c(α,S) =−c(PD(α),−S)

We claim the next result will be crucial in the sequel.

PROPOSITION 6.3. (Triangle inequality for G.F.Q.I. ) For α1,α2 ∈ H∗(N ),

c(α1 ∪α2,S1 ⊕S2) ≥ c(α1,S1)+ c(α2,S2),

where
(S1 ⊕S2)(x,ξ1,ξ2) = S1(x,ξ1)+S2(x,ξ2).

PROOF. First let us consider (S1⊠S2)(x, y ;ξ,η) = S(x,ξ)+S(y,η). We have (S1⊠S2)c =⋃
t∈R(Sc−t

1 × S t
2). Now if [α] is a cohomology class vanishing on Sc1−ε

1 it can be repre-
sented by a cocycle vanishing on Sc1−ε

1 . Similarly for [β] a class vanishing on Sc2−ε
2 , we

may assume the cocycleβ vanishes on Sc2−ε
2 . We may then conclude thatα⊠β vanishes

on
⋃

t∈R(Sc−t
1 ×S t

2) provided c ≤ c1 + c2 −2ε. As a result

c(α⊠β,S1 ⊠S2) ≥ c(α,S1)+ c(β,S2)

Now applying Proposition 5.44 to the diagonal map d : X −→ X × X and noticing that
(S1 ⊠S2)◦d = S1 ⊕S2 we get the triangle inequality. □

REMARK 6.4. The isomorphism mentioned above is precisely

H∗(N )⊗H∗(D−,∂D−) = H∗(S∞,S−∞)
α⊗T 7→ T ∪p∗α

where p : E = N ×Rk → N is the projection. Now for E = E1 ×N E2 = {(z1, z2) ∈ E1 ×E2 |
p1(z1) = p2(z2)} we denote by π1 : E −→ E1,π2 : E −→ E2 the projections.

H∗((S1 ⊕S2)∞, (S1 ⊕S2)−∞) ∼= H∗(N ) ⊗ H∗(D−
1 ,∂D−

1 ) ⊗ H∗(D−
2 ,∂D−

2 )
T ∪p∗α α T1 T2

So for α=α1 ∪α2

T ∪p∗α = (π1)∗T1 ∪ (π2)∗T2 ∪p∗(α1 ∪α2)

= (π1)∗(T1 ∪p∗
1α1)∪ (π2)∗(T2 ∪p∗

2α2)

As a result we get

PROPOSITION 6.5. Let S be a G.F.Q.I. on N ×Rk . Then S has at least cl (N )+1 critical
points. If they are all non degenerate we have the Morse inequalities

p∑
j=1

(−1)p− j m j (S) ≥
p∑

j=1
(−1)p− j b j (N )

where m j (S) is the number of critical points of index j + index(Q) of S (here Q is the
quadratic form asymptotic to S at infinity).
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PROOF. The first statement follows from Corollary 5.43. The second is the Morse
inequality, using the fact that H∗(S∞,S−∞) = H∗−i (N ). □

We finally have, for a G.F.Q.I. S defined on a bundle E over Y , and for f : X −→ Y
a smooth map a map f̃ : f ∗E −→ E living over f , in other words the following is a
commutative diagram

f ∗E

��

f̃
// E

��
X

f
// Y

We

REMARK 6.6. LS is always exact since λ|LS = dS|ΣS .

LS = {(x,
∂S

∂x
(x,ξ))|∂S

∂ξ
(x,ξ) = 0}.

λ|LS = pd x = ∂S

∂x
(x,ξ)d x = dS,

since for points on LS , ∂S
∂ξ = 0.

A result by Fukaya, Seidel and Smith ([FSS08]) and then by [Kra13] grants that under
quite general assumptions, the projection π : L → N of an exact Lagrangian submani-
fold is a homotopy equivalence.

EXERCISE 6.7. Prove that if L has G.F.Q.I. S, then deg(π : L → N ) =±1.

HINT. Choose a generic point x0 ∈ N . The degree is the multiplicity with sign of the
intersection of L and the fiber over x0. That is counting the number of ξwith ∂S

∂ξ
(x0,ξ) = 0,

i.e. the number of critical points of function ξ 7→ S(x0,ξ) with sign

(−1)
i ndex( d2S

dξ2 (x0,ξ))
.

Therefore

deg(π : L → N ) =∑
ξ j

(−1)
i ndex( d2S

dξ2 (x0,x j ))

where the summation is over all ξ j with ∂S
∂ξ

(x0,ξ j ) = 0. The summation is finite since S

has quadratic infinity and the sum is the Euler number of the pair (Sb ,Sa) for large b
and small a. Finally, check that for all quadratic form Q, the Euler number of (Qb ,Qa)
is ±1.

By the previous claim, for large b and small a

H∗(Sb ,Sa) ∼= H∗−i (N ).

Since N is compact, we know H∗(N ) ̸= 0. This implies that S has at least one critical
point and (LS ∩0N ) ̸= ;.
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THEOREM 6.8 (Hofer’s Lagrangian intersection theorem ([Hof85]). Let N be a com-
pact manifold and L =ϕ(0N ) for some ϕ ∈ H am(T ∗N ), then

#(L∩0N ) ≥ cl (N )+1

If all intersection points are transverse, then

#(L∩0N ) ≥∑
b j (N ).

Here

cl (N ) = max{k|∃α1, · · · ,αk−1 ∈ H∗(N ) \ H 0(N ) such that α1 ∪·· ·∪αk−1 ̸= 0}

and
b j (N ) = dim H j (N ).

Note that for N = T n this had been proved by M. Chaperon in [Cha84a].

PROOF. We know that L has a G.F.Q.I. by Sikorav’s Theorem (Theorem 4.24) and
according to Proposition 6.5 the G.F.Q.I. has the announced number of critical points.
Since each critical point corresponds to a point in L∩0N , this concludes the proof. □

COROLLARY 6.9. if L =ϕ1(0N ), then

#(L∩0N ) ≥ 2

THEOREM 6.10. (Conley-Zehnder[CZ83]) Let ϕ ∈ H am(T 2n), then

#F i x(ϕ) ≥ 2n +1.

If all fixed points are non-degenerate, then

#F i x(ϕ) ≥ 22n .

REMARK 6.11. 2n is the cup-length of T 2n and 22n is the sum of Betti numbers of
T 2n .

PROOF. Let (xi , yi ) be coordinates of T 2n . We will write (x, y) for simplicity. The

symplectic form is given byω= d y∧d x. Consider T 2n×T 2n with coordinates (x, y, X ,Y ),
whose symplectic form is given by

ω= d y ∧d x −dY ∧d X .

With thisω, the graph ofϕ,Γ(ϕ) is a Lagrangian. Consider another symplectic manifold
T ∗T 2n , denote the coordinates by (a,b, A,B). Note that x, y, X ,Y , a,b take value in T n =
Rn/Zn and A,B takes value in Rn .

It has the natural symplectic form as a cotangent bundle

ω= d A∧d a +dB ∧db.

Define a map F : T ∗T 2n → T 2n ×T 2n

F (a,b, A,B) = (
2a −B

2
,

2b + A

2
,

2a +B

2
,

2b − A

2
) mod Zn .
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It’s straightforward to check that F is a symplectic covering.

Let △T 2n be the diagonal in T 2n ×T 2n . It lifts to 0T 2n ⊂ T ∗T 2n and the projection π
induces a bijection between 0T 2n and △T 2n . Of course 0T 2n is only one component in
the preimage of △T 2n corresponding to A = B = 0 (other components are given by A =
A0,B = B0 where A0,B0 ∈Zn . Now assume ϕ is the time one map of ϕt ∈ H am(T 2n).

Γ(ϕt ) = (i d ×ϕt )(△T 2n ).

This Hamiltonian isotopy lifts to a Hamiltonian isotopy Φt of T ∗T 2n such that

π◦Φt =φt ◦π.

Then the restriction of the projection to Φt (0T 2n ) remains injective, since

π(Φt (u)) =π(Φt (v))

implies

φt (π(u)) =φt (π(v))

but since π is injective on 0T 2n and φt is injective, this implies u = v .
Therefore to distinct points in Φt (0T 2n )∩0T 2n correspond distinct points in Γ(ϕ)∩

△T 2n = F i x(ϕ).
According to Hofer’s theorem, the first set has at least 2n + 1 points, so the same

holds for the latter. □

REMARK 6.12. The theorem doesn’t include all fixed pointϕ. Indeed, we could have
done the same with any other component ofπ−1(△T 2n ) (they are parametrized by pairs
of vectors (A0,B0) ∈Zn ×Zn), and possibly obtained other fixed points. What is so spe-
cial about those we obtained ? It is not hard to check that they correspond to peri-
odic contractible trajectories on the torus. Indeed, a closed curve on the torus is con-
tractible if and only if it lifts to a closed curve onR2n . Now, our curve isΦt (a,b,0,0) and
projects on (i d×ϕt )(x, y, x, y) = (x, y,φt (x, y)). SinceΦ1(a,b,0,0) ∈ 0T 2n , we may denote
Φ1(a,b,0,0) = (a′,b′,0,0), and since φ1(x, y)) = (x, y), we have a′ = x = a,b′ = y = b.
Thus Φt (a,b,0,0) is a closed loop projecting on (i d ×ϕt )(x, y, x, y), this last loop is
therefore contractible, hence the loop ϕt (x, y) is also contractible.

THEOREM 6.13. (Poincaré and Birkhoff) Let ϕ be an area preserving map of the an-
nulus, shifting each circle (boundary) in opposite direction, then #F i x(ϕ) ≥ 2.

PROOF. Assume ϕ is the time one map of a Hamiltonian flow ϕt associated to
H = H(t ,r,θ), where (r,θ) is the polar coordinates of the annulus(1 ≤ r ≤ 2). Assume
without loss of generality

∂H

∂r
> 0 for r = 2

and
∂H

∂r
< 0 for r = 1.
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One can extend H to [ 1
2 , 5

2 ]×S1 such that ∂H
∂r (r,θ) < 0 for r < 1, ∂H

∂r (r,θ) > 0 for r > 2 and

H(t ,r,θ) =−r on [
1

2
,

2

3
]

and

H(t ,r,θ) = r on [
7

3
,

5

2
].

Take two copies of this enlarged annulus and glue them together to make a torus. Then
#F i x(ϕ) ≥ 3. At least one copy has two fixed points. □

2. First proof of the Arnold Conjecture

Let N be a compact manifold and ϕ ∈ H am(T ∗N ), then L =ϕ(0N ) is a Lagrangian.
We have proved the following

THEOREM 6.14. Let N be a compact manifold and ϕ ∈ H am(T ∗N ), then L =ϕ(0N )
is a Lagrangian having a G.F.Q.I. .

There are several consequences

• Hofer’s theorem: #(ϕ(0N )∩0N ) ≥ 2; (In fact Hofer’s theorem says more.)
• Conley-Zehnder theorem: #F i x(ϕ) ≥ 2n +1 for ϕ ∈ H am(T 2n);
• Poincaré-Birkhoff Theorem.

We are going to deal with
1) Uniqueness of G.F.Q.I. of L
2) Calculus of critical levels.

REMARK 6.15. Theorem 6.14 extends to continuous family, i.e. ifϕλ is a continuous
family of Hamiltonian diffeomorphisms and Lλ =ϕλ(0N ), then there exists a continu-
ous family of G.F.Q.I. Sλ.

REMARK 6.16. Theorem 6.14 holds also for Legendrian isotopies as we shall see in
Appendix 4 and [Che96]). Let J 1(N ,R) ≡ T ∗N ×R and define

α= d z −pd q.

DEFINITION 6.17. Λ is called a Legendrian if and only if α|Λ = 0.

Given a smooth function f ∈C∞(N ,R), the submanifold defined by

z = f (x), p = d f , q = x

is a Legendrian. One similarly associates to a generating function, S : N ×Rk −→ R a
legendrian submanifold (under the same transversality assumptions as for the Legen-
drian case)

ΛS = {(x,
∂S

∂x
(x,ξ),S(x,ξ)) | ∂S

∂ξ
= 0}
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Denote the projection from T ∗N ×R to T ∗N by π. Then any Legendrian submanifold
projects down to an (exact) Lagrangian. Moreover, any exact Lagrangian can be lifted
to a Legendrian. Note however that there are Legendrian isotopies that do not project
to Lagrangian ones. So Chekanov’s theorem is in fact stronger than Sikorav’s theorem,
even though the proof is the same.

3. Uniqueness of G.F.Q.I.

Let ϕ ∈ H am(T ∗N ) and L = ϕ(0N ). Denote a G.F.Q.I. for L by S. We will show that
we can obtain different G.F.Q.I. by the following three operations.

(1) (Conjugation) If smooth map ξ : N ×Rk → Rk satisfies that for each x ∈ N ,
ξ(x, ·) :Rk →Rk is a diffeomorphism and linear at infinity, then we claim:

S̃(x,η) = S(x,ξ(x,η))

is again G.F.Q.I. for L. Recall from the definition of generating function

LS̃ = {(x,
∂S̃

∂x
(x,η))|∂S̃

∂η
(x,η) = 0}

and

LS = {(x,
∂S

∂x
(x,ξ))|∂S

∂ξ
(x,ξ) = 0}.

Since ∂ξ
∂η

is invertible, the chain rule says ∂S̃
∂η

(x,η) and ∂S
∂ξ

(x,ξ(x,η)) simultane-
ously. On such points,

∂S̃

∂x
(x,η) = ∂S

∂x
(x,ξ(x,η))+ ∂S

∂ξ
· ∂ξ
∂x

= ∂S

∂x
(x,ξ(x,η)).

(2) (Stabilization) If q is a non-degenerate quadratic form, then

S̃(x,ξ,η) = S(x,ξ)+q(η)

is a G.F.Q.I. for L, the reason being that

∂S̃

∂x
(x,ξ,η) = ∂S

∂x
(x,ξ)

and
∂S̃
∂ξ = ∂S̃

∂η = 0 ⇐⇒
{

Aqη= 0 =⇒ η= 0
∂S
∂ξ

(x,ξ) = 0

where Aq is given by (Aqη,η) = q(η) for all η and is invertible since q is non-
degenerate.

(3) (Shift) By adding a constant,

S̃(x,ξ) = S(x,ξ)+ c.

DEFINITION 6.18. Two G.F.Q.I. , S1,S2 are said to be equivalent if by applying to each
of them some of the operations (1), (2),(3) we get G.F.Q.I. S̃1, S̃2 such that S̃1 = S̃2.
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The G.F.Q.I. is unique up to the above operations in the sense that

THEOREM 6.19 (Uniqueness theorem for G.F.Q.I. ([Vit92; Thé99]). If S1, S2 are G.F.Q.I.
for L =ϕ(0N ), then they are equivalent.

PROOF. First of all we want to prove

LEMMA 6.20. The set of Lagrangians satisfying the uniqueness property is stable by
Hamiltonian isotopy.

PROOF. This is just the rephrasing of the standard fact that for a Serre fibration all
the fibers are homotopy equivalent (hence have the same number of connected com-
ponents). This will reduce our argument to dealing with the case of the zero section. So
consider π : F −→L (T ∗N ) be the fibration defined in Chapter 4, Theorem 4.25. Then
let L1 = ϕ(L0) and assume uniqueness holds for L. We claim that if S1,S′

1 are G.F.Q.I.
for L1, they can be connected by a path in π−1(L1). Indeed, let Lt be a path connect-
ing L0 and L1. Then by the path lifting property, up to equivalence, there is a path
St ,S′

t , such that they are both G.F.Q.I. for Lt . Now S0,S′
0 are G.F.Q.I. for L0 and since we

assume uniqueness for L0, they are equivalent, so doing the same operations on the
whole path, we may assume S0 = S′

0. Now consider the loop in L (t∗N ) going from L1

to L0 and then back. It is of course contractible and we can deform it to the constant
path at L1. On the other hand following St from S1 to S0 = S′

0 and then S′
t from S′

0 to S′
1

is a lift of this loop. Now the deformation of the loop in L (T ∗N ) to the constant path at
L1 can be lifted to F , and at the end of this deformation, we obtain a path over π−1(L1)
connecting S1 to S′

1.
Now we need to prove that if there is a path of G.F.Q.I. St generating L1 then S0

and S1 are equivalent. This will use the idea of Moser’s lemma, but in a slightly more
complicated situation. We look for a fiber preserving isotopy (x,ξ) 7→ (x,ϕt (x,ξ)) such
that St (x,ϕt (x,ξ)) = S0(x,ξ). This is given by a family of time-dependent vector fields
X t (x,ξ) defined on Rk parametrized by x ∈ N : we have d

d tϕt (x,ξ) = Xx(t ,ϕt (x,ξ)).
Then, taking the time derivative of St (x,ϕt (x,ξ)) = S0(x,ξ) we get

∂

∂ξ
St (x,ξ)X t (x,ξ)+ ∂

∂t
St (x,ϕt (x,ξ)) = 0

Note that if Σt = {(x,ξ) | ∂
∂ξSt (x,ξ) = 0}, the above equation can be trivially solved in the

complement of a neighbourhood of Σt : set

X t (x,ξ) =−
∂
∂t St (x,ϕt (x,ξ))

∥ ∂
∂ξSt (x,ξ)∥2

∇ξSt (x,ξ)

Since the set of solutions is C∞ linear, we are reduced to finding a solution in a
neighbourhood of Σt .

We claim that we may assume Σt = Σ0 and it = i0. Indeed the σt are fiberwise
diffeomorphic by i−1

t ◦ i0 since it and i0 preserve the fibers over N . This extends to a
fiberwise diffeomorphism of the ambient space N ×Rk . Once this is done, we must
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have it = i0 on Σ=Σ0, since fL = St ◦ it on Σ, we have that St = S0 on Σ. We now need a
parametrized version of Hadamard’s lemma, there is a vector valued function defined
on Σ such that

∂

∂ξ
St (x,ξ)X t (t ,ξ)+ ∂

∂t
St (x,ϕt (x,ξ)) = 0

□

LEMMA 6.21 (Hadamard’s lemma). Let (t , x,ξ) 7→ Ft (x,ξ) be a smooth map from
[0,1]×N ×Rk to Rk such that 0 is a regular value and (Ft )−1(0) = Σ is fixed. Let Gt (x,ξ)
be a function from [0,1]× N ×Rk to R vanishing on Σ. Then there exists Vt (x,ξ) from
[0,1]×N ×Rk to Rk such that in a neighbourhood of Σ

〈Ft (x,ξ),Vt (x,ξ)〉 =Gt (x,ξ)

PROOF. First of all this reduces to a local statement: indeed if we cover Σ by open
sets U j , ρ j is a corresponding partition of unity, and we solve the above equation by

V j
t (x,ξ) in U j , then Vt (x,ξ) =∑

j ρ j (x,ξ)V j
t (x,ξ) solves the above equation in the union

of the U j .
Now let U j be such that there is a chart ϕ j : (Σ×Rk )∩U j −→ V j ×W j where V j ⊂

Rn ,W j ⊂Rk andϕ j (x,0) = (ψ j (x),0). We are thus reduced to Ft (v, w) and Gt (v, w) such
that Gt (v,0) = 0 and dFt (v,0) is onto. Then a further change of coordinates reduces to
the case Ft (v, w) = w , so we must write

Gt (v, w) =
n∑

i=1
wi G i

t (v, w)

But this is just the fundamental theorem of calculus

Gt (v, w) =Gt (v,0)+
n∑

i=1
wi

∫ 1

0

∂G

∂wi
(sv, w)d s

and since Gs(v,0) = 0, this concludes our proof by setting

V i
t (x,ξ) =

∫ 1

0

∂G

∂wi
(sv, w)d s

□

To conclude the proof of our theorem, we must prove that uniqueness holds for
0N . So consider S a G.F.Q.I. for 0N . Clearly the only critical points of S is a Morse-Bott
critical manifold Z projecting diffeomorphically on N since the projection of ΣS to N
identifies with the projection of LS on the base N of T ∗N . So by a fiber preserving
diffeomorphism, we may assume Z = N × {0}. Then set Sx(ξ) = S(x,ξ), we may assume
Sx is a quadratic form qx at 0, and coincides with Qx =Q at infinity.

PROPOSITION 6.22. Let S be a G.F.Q.I. equal to Q at infinity, and coinciding with q
near N × {0} and having no other fiberwise critical point. Then S is fiberwise diffeomor-
phic to q.
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PROOF. □

□

The main consequence of this theorem is that given L =ϕ(0N ), for different choices
of G.F.Q.I. , we know the relation between H∗(Sb ,Sa). It suffices to trace how H∗(Sb ,Sa)
changes by operation 1,2,3.

It’s easy to see that H∗(Sb ,Sa) is left invariant by operation 1, because the pair
(Sb ,Sa) is diffeomorphic to (S̃b , S̃a).

For operation 3,
H∗(S̃b , S̃a) = H∗(Sb−c ,Sa−c ).

For operation 2, we claim that for b > a

H∗(S̃b , S̃a) = H∗−i (Sb ,Sa)

where i is the index of q . We have two cases to check: replacing S(x,ξ) by S(x,ξ)+η2

and by S(x,ξ)−η2, where η ∈R.

LEMMA 6.23. Let S̃(x,ξ,η) = S(x,ξ)+η2. Then H∗(S̃b , S̃a) = H∗(Sb ,Sa)

PROOF. Indeed, we have a retraction by deformation S̃ t −→ S t given by p : (x,ξ,η) 7→
(x,ξ) and having as homotopy inverse j : (x,ξ) 7→ (x,ξ,0). We have p ◦ j = id and
j ◦p is the map (x,ξ,η) 7→ (x,ξ,0) and this is homotopic to the identity by rt (x,ξ,η) =
(x,ξ, tη). □

LEMMA 6.24. Let S̃(x,ξ,η) = S(x,ξ)−η2. Then H∗(S̃b , S̃a) = H∗−1(Sb ,Sa)

PROOF. Note that (−S̃)(x,ξ,η) = (−S)(x,ξ)+η2. We shall reduce this Lemma to the
previous one, using Alexander duality ([Spa66], page 296, theorem 17). Note that if S is
defined on E with dim(E) = d , then S̃ is defined on Ẽ = E ⊕R, of dimension d +1.

AD : H∗(Sb ,Sa) → H d−∗
c (E −Sa ,E −Sb) = H d−∗

c ((−S)−a , (−S)−b).

According to Proposition 5.27, H∗
c ((−S)−a , (−S)−b) ≃ H∗((−S)−a , (−S)−b). Thus we have

the following diagram,

H∗(Sb ,Sa)
AD−1

// Hd−∗(E −Sa ,E −Sb) = H d−∗((−S)−a , (−S)−b)

≃(byLemma 6.23)
��

H∗+1(S̃b , S̃a) Hd−∗(Ẽ − S̃a , Ẽ − S̃b) = Hd−∗((−S̃)−a , (−S̃)−b).
AD

oo

As a result H∗(S̃b , S̃a) = H∗−1(Sb ,Sa). □

REMARK 6.25. The theorem holds for L =ϕ(0N ) only, no result is known for general
L. However we shall see in the second part using sheaves, that for any exact embedded
L having a G.F.Q.I. , S (whether or not L is Hamiltonianly isotopic to the zero section2),
H∗(Sb ,Sa) does not depend on the choice of S.

2even though Arnold nearby Lagrangian conjecture implies it has one.



4. APPENDIX : CONTACT TOPOLOGY AND LINEAR AT INFINITY GENERATING FUNCTIONS 181

Let us however mention

Conjecture. (Arnold’s nearby Lagrangian conjecture, see [Arn87; LS91]) Let L ⊂ T ∗N
be an exact Lagrangian, then there exists ϕ ∈ H am(T ∗N ) such that L =ϕ(0N ).

4. Appendix : contact topology and Linear at infinity generating functions

We now deal with the case of a Legendrian submanifold in J 1(N ,R). We have a
projection J 1(N ,R) −→ T ∗N . This map takes the one-jet of a function tand forgets
about its value, to only remember its derivative. First of all, according to Proposition
3.86, an exact Lagrangian in T ∗N has a unique - up to translation- lift to a Legendrian
in J 1(N ,R). We shall deal with two extensions of the previous results

(1) We prove that Théret’s theorem extends to embedded Legendrians : we only
need a regular Lagrangian isotopy lifting to a Legendrian isotopy to guarantee
the existence of G.F.Q.I.

(2) For N = Rn , we replace G.F.Q.I. by GFLI, that is a Generating Function Linear
at Infinity. When studying compact Legendrian submanifolds in J 1(Rn ,R) or
compact Lagrangians in T ∗(Rn) we cannot use GFQI since for a Legendrian (or
Legendrian) having a G.F.Q.I. , the projection on the base must be onto. This
is unsuitable for studying knots. However a variation of G.F.Q.I. , the Linear at
Infinity Generating functions (GFLI) is available, and has been developed in
[JT06; ST13; BST15; SS16]. They satisfies the analogue of Théret’s theorem.

DEFINITION 6.26. A smooth function S : N ×R×Rk −→ R is a Generating func-
tion Linear at Infinity if it is a Generating function and outside a compact set we have
S(x,η, v) = L(η), where L is a linear form. The associated Legendrian is given by

ΛS =
{

(x,
∂S

∂x
(x,η),S(x,η)) | ∂S

∂η
(x,η) = 0,

∂S

∂v
(x,η) = 0

}
Note that an embedded Legendrian will project on an immersed Lagrangian, and

the double points of the immersion corresponds to the so-called chords of the Legen-
drian Let Λ be a Legendrian in J 1(N ,R). A chord of Λ is an (unordered) pair of points
(x, p, z), (x, p, z ′) in Λ. The difference |z ′− z| is called the height of the chord.

As a result, if S is a GFLI for Λ, we are not so much interested in critical points of S,
corresponding to intersection points of Λ with M × {0}×R but rather critical points of
the difference function.

DEFINITION 6.27. Let S : N ×Rk −→ R be a GFLI for the Legendrian Λ in J 1(N ,R).
Then DS(x,ξ,η) = S(x,ξ)− S(x,η) is called the difference function associated to S. We
set G H∗(Λ; a,b) = H∗(Db

S ,Da
S ) and G H∗(Λ) = H∗(D+∞

S ,Dε
S) where ε is positive, small

enough so that there are no chords of height less than ε.

The fibration theorem hold in our setting. Let Fl be the set of Generating functions
linear at infinity.



182 6. GENERATING FUNCTIONS FOR HAMILTONIANS

THEOREM 6.28 (Théret’s theorem (see [Thé99])). The map π : F l −→L ⌉}(J 1N ) is a
smooth Serre fibration. More precisely given a smooth map j : Dk × [0,1] −→L eg (J 1N )
and a lift S0 : Dk × {0} −→ F l such that π ◦ S0 = j|Dk×{0}, then there is an extension S :

Dk × [0,1] −→F l such that π◦S = j .

PROPOSITION 6.29. Chords are in one-to-one correspondence with critical points of
D and the critical values correspond to the height. We say that a chord is non-degenerate
if it corresponds to a non-degenerate critical point of D. As a result if all the chords are
non-degenerate we have

#(Chords(Λ)) ≥∑
j

dimG H j (Λ)

Contrary to the Lagrangian case, where the total Generating Function cohomology
equals the cohomology of the base, we may here have different values for G H∗(Λ).
However this only depends on the Legendrian isotopy class of Λ.

PROPOSITION 6.30 ([Tra01]). Let t 7→Λt be an isotopy of Legendrian submanifolds.
Then G H∗(Λ0) =G H∗(Λ1).

PROOF. We know by Théret’s theorem that we may find St (x,ξ) a GFLI defined on
[0,1]×N ×Rk such that St generates Λt . We then get for 0 < ε< c with ε small enough,
and c large enough, that no critical value of Dt =DSt crosses the levels ε or c. Then Dt0

satisfies the (PS) condition and (Dt0
c ,Dt0

ε) is an index pair for any pseudo-gradient
vector field of Dt0 associated to the invariant set made of critical points in Dt0

c \ Dt0
ε

and heteroclinic trajectories connecting them. For t close to t0, since t 7→Dt is contin-
uous for the C 2 topology, we have that for t close to t0,

(1) The set Dc
t0

\Dε
t0

is an isolating block for ∇Dt

(2) The isolated invariant set for ∇Dt is contained in a neighbourhood of the iso-
lated invariant set for ∇Dt0 and

As a result the maximal invariant set for ∇Dt contained in Dc
t0

\ Dε
t0

coincides with the
maximal invariant set for ∇Dt contained in Dc

t \Dε
t . This implies

H∗(Dc
t ,Dε

t ) = H∗(Dc
t0

,Dε
t0

)

for t close to 0. So for each t0 ∈ [0,1] we can find δ> 0 such that for t ∈]t0 −δ, t0 +δ[ we
have G H∗(Λt ) = G H∗(Λt0 ) By a compactness argument we may cover [0,1] by finitely
many such intervals ]t0 −δ, t0 +δ[. But then G H∗(Λ0) =G H∗(Λ1). □

REMARK 6.31. For an immersed generic Lagrangian L , there is an embedded Leg-
endrian lift Λ and G H∗(Λ) counts the number of chords of Λ, which are in one-to-one
correspondence with the double points of L. One could think that this gives an easy
way to estimate the number of such double points, but there is no simple way to deter-
mine the Legendrian isotopy class of Λ from inspecting L. The only easy result is that
if Λ is Legendrian isotopic to the lift of an embedded Lagrangian, then G H∗(Λ) = 0.
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5. Notations and conventions

Let M be a closed manifold and α,β be cohomology classes in H d (M), H n−d (M),
a,b be homology classes in Hd (M), Hn−d (M). We have Poincaré duality

PD : Hd (M) −→ H n−d (M)

sending a to β if and only if

∀α ∈ H d (M) 〈α, a〉 = 〈α∪PD(a), [M ]〉
6. Comments

The Poincaré-Birkhoff theorem also known as “Poincaré last geometric theorem”
was stated by Poincaré in 1912 in [Poi12]. Poincaré could only deal with some very
special cases, and the theorem was then proved by Birkhoff in 1913 in [Bir13]. We refer
to [Bir27; BN77] for more recent expositions. Birkhoff himself complained in his 1926
book ([Bir27]), that

“Poincaré’s last geometric theorem and modifications thereof yield an additional in-
strument for establishing the existence of periodic motions. Up to the present time no
proper generalization of this theorem to higher dimensions has been found, so that its
application remains limited to dynamical systems with two degrees of freedom.” This
was revived tirelessly by Arnold (see [Arn65; Arn97]) starting from the 60’s. In the 70’s
some extension of Birkhoff’s results to surfaces was proved by Nikishin ([Nik74], see
Exercise 1) and then Y. Eliashberg ([Eli78]), and a contact version in dimension 3 by
D. Bennequin in, his thesis ([Ben83]). Higher dimensional results started with Conley
and Zehnder [CZ83], and then Gromov [Gro85]. This brought together Hamiltonian dy-
namics and the then emerging field of symplectic topology. In Gromov’s terminology
([Gro86]) this are illustrations of symplectic rigidity. The idea of a generating functions
goes back to Jacobi (see [Jac66]) and the version with extra variables to Hörmander
(see [Hör71]) and it was pointed out by A. Weinstein that the action functional was an
infinite dimensional generating function and it was proved in [Vit87b] that their finite
dimensional-reductions shared this property. The importance of the quadratic at in-
finity property goes back to Laudenbach and Sikorav ([LS85]).

While Theorem 6.8 or Corollary 6.9 look like topological theorems, their straight-
forward extension to symplectic continuous maps (or rather “Hamiltonian continuous
maps”) holds in dimension 2 (see [Mat00]), but, surprisingly, does not hold in dimen-
sion greater than 4 (see [BHS18]): there are symplectic homeomorphisms of any sym-
plectic manifold having only one fixed point.

The description of Lagrangians through generating functions in T ∗N tends to be
superseded by a description using sheaf theory (see [Tam08; GKS12; Gui12; Vit19])
which allows to use the same ideas for general exact Lagrangians, without assuming
they are Hamiltonianly isotopic to the zero section. We shall use this approach in the
second volume of these notes. Note however that in some instances, it seems that Gen-
erating function still give more information (see for example [Abo+]).
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Generating functions are also used in the contact setting, see [Tra01; JT06; BST15;
CS15; SS16]

Numerical integration of Hamiltonian systems faces two difficulties both related
to the fact that their trajectories cannot be asymptotically stable: since the linearized
map is volume preserving, it cannot have its eigenvalues of module less than 1, while
one is interested in computations to predict the trajectories of particles in high pow-
ered accelerators or the behaviour of the solar system over periods of several hundred
millions years. These computations are very sensitive to very small inaccuracies in the
initial conditions, the parameter of the equations and the choice of the discretization
methods.

At least one would like the discretized map to be symplectic as well. This was first
proposed by DeVogelaere ([De 56]) in 1956 (see also the survey in [CS90]). It was later
discovered by Lasagni in [Las88], that certain Runge-Kutta methods are in fact sym-
plectic. The second difficulty stems from the fact that even when the Hamiltonian is
time-independent, so that the flow preserves the levels of the Hamiltonian, the approx-
imating scheme does not preserve any level set : even if the original system lives on a
bounded enegy level, the discretized system can very well diverge to infinity. In fact
both questions are somehow related (see Exercises 8 and 9).
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7. Exercises and Problems

(1) (Nikishin’s index theorem) Let F be an area preserving diffeomorphism of the
plane having an isolated fixed point at 0. We write F (q, p) = (Q(q, p),P (q, p)).
The index of the fixed point 0 is the degree of the map f (q, p) = (Q(q, p)−
q,P (q, p)−p) defined from D(ε) \ {0} to R2 \ {0} (the index of such a map f is

the index of the restriction to the circle of radius r < ε of z 7→ f (z)
| f (z)| . We denote

this number L(F,0) (L is for Lefschetz as this is also called the Lefschetz index).
We want to prove that L(F,0) ≤ 1.
(a) Show that L(F,0) does not depend on the choice of r
(b) Show that if 0 is a non-degenerate fixed point of F (that is det(dF (0)−Id) ̸=

0), then L(F,0) ∈ {±1}
(c) We assume dF (0) is degenerate. Show that after a suitable (symplectic!)

change of coordinates, we may assume dF (0) =
(
1 a
0 1

)
where a ∈ {0,ε}

where ε> 0.
(d) Prove that the graph of F that is

Γ(F ) = {(x, y, X ,Y ) = (Q, p,P −p, q −Q) | F (q, p) = (Q,P )}

is Lagrangian in R4 with the symplectic form d X ∧d x +dY ∧d y and that
it is (locally) a graph over (x, y).

(e) Prove that Γ(F ) is the graph of the differential of a function S(x, y) =
S(Q, p) and that

F (q, p) = (Q,P ) ⇐⇒ P −p = ∂S

∂Q
(Q, p), q −Q = ∂S

∂p
(Q, p)

(f) Using Exercise 6 of Chapter 5 conclude that L(F,0) ≤ 1.
(2) (Characterization of exact Lagrangians, see [Sik91]) Let Γα be the graph of a

non-closed one form in T ∗N for N compact. Prove that there is a neigh-
bourhood of Γα containing no Lagrangian submanifold Hamiltonianly iso-
topic to the zero section. Consider L ∩ ν∗γ where γ is a smooth loop in N
and ν∗γ= {(γ(t ), p) | 〈p, γ̇(t )〉 = 0}. Prove that
(a) If L is Hamiltonianly isotopic to 0N we have L∩ν∗γ ̸= ;
(b) Prove that if α is a one-form on S1, there is a function f on S1 such that

α−d f = cdθ where
∫

S1 α= 2πc.
(c) Prove that if α is not closed there is a Hamiltonian isotopy of the type

(x, p) 7→ (x, p − td f (x)) moving Γα away from ν∗γ
(d) Conclude

(3) Prove that the mapπ1(Ham(T 2n)) −→π1(T 2n) given by (ϕt )t∈[0,1] −→ (ϕt (x))t∈[0,1]

is zero. For this notice that we may reduce to the case where (ϕt )t∈[0,1] is gen-
erated by some Hamiltonian H , then use Remark 6.12 to prove that one of the
orbits must be contractible and finally that they are all homotopic, hence all
contractible.
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(4) We want to prove a homotopical version of Lemma 6.24, that is that the pair
(S̃b , S̃a) is homotopy equivalent to the suspension of (Sb ,Sa). The suspension
of the pair (X , A) is given by Σ(X , A) = (X × I , X × {0,1}∪ A × I ). We look at the
set S̃b = {S(x,ξ)−η2 ≤ b} and look at the projection (x,ξ,η) 7→ (x,ξ). So for fixed
(x,ξ) the set of η such that S̃(x,ξ,η) ∈ S̃b is given by

• R if S(x,ξ) ≤ b
• R\]− rb(x,ξ),rb(x,ξ)[ where rb(x,ξ)2 = S(x,ξ)−b if (x,ξ) ∉ Sb

(a) Show that S̃b is homotopy equivalent to (Sb × I )∪ ((E \ Sb)×∂I ),
(b) Let (X , A) be a pair. Show that the suspension Σ(X , A) of (X , A) is homo-

topy equivalent to

(X × I ∪ (E \ X )×∂I , A× I ∪ (E \ A)×∂I )

(c) Prove that (S̃b , S̃a) is homotopy equivalent to Σ(Sb ,Sa).
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Spectral invariants in symplectic topology

1. Actions and indices for intersection points

Let (M ,dλ) be an exact symplectic manifold (M ,dλ). We assume that for all La-
grangians, the relative Chern class vanishes on discs, that is c1(M)π2(M ,L) = 0. Note
that this condition is automatically satisfied for a cotangent bundle. It then follows
from Corollary ?? that the Maslov class of the Lagrangian is well defined.

Remember that in Definition 4.9, we defined the Lagrangian branes as the triples
(L, fL ,G̃) such that L is a connected exact Lagrangian, d fL = λL and G̃ is a grading,
assuming that the Maslov class of L vanishes. Also that L(M ,dλ) is just the set of exact
Lagrangians and the image of L (M ,dλ) by the forgetful functor (L, fL ,G̃) 7→ L is the set
of exact Lagrangians with vanishing Maslov class. We often denote by L̃ an element in
L (M ,dλ) and L its image in L(M ,dλ). For the definition of the index i of a path in the
Lagrangian Grassmannian we refer to Definition ??

DEFINITION 7.1. Let L̃1, L̃2 ∈L (M ,dλ). Let x, y ∈ L̃1∩ L̃2 . We denote by ℓL̃1,L̃2
(x) the

quantity fL1 (x)− fL2 (x) and by ℓL1,L2 (x, y) = ℓL̃1,L̃2
(x)−ℓL̃1,L̃2

(y). If there is no ambiguity,

we just write ℓ(x, y). Since Tx L̃1,Tx L̃2 belong to Λ̃(Tx M) they define a unique path -up-
to homotopy- connecting TxL1 to TxL2, hence an index i (Tx L̃1,Tx L̃2). We set mL1,L2 (x) =
i (Tx L̃1,Tx L̃2) and

mL1,L2 (x, y) = i (Tx L̃1,Tx L̃2)− i (Ty L̃1,Ty L̃2)

It is easy to check that ℓL1,L2 (x, y) does not depend on the choice of fL1 , fL2 since
replacing fL j by fL j + c j where c j is a constant does not change the value of

ℓL̃1,L̃2
(x)−ℓL̃1,L̃2

(y) = ( fL1 (x)− fL2 (x))− ( fL1 (y)− fL2 (y))

Similarly mL1,L2 (x, y) does not depend on the choice of the gradings G̃1,G̃2 of L̃1, L̃2

since Note that the assumption on the vanishing of the Maslov class and Proposition
?? imply that the number i (Tγ(t )L1,Tγ(t )L2) is well defined.

2. Lagrangians in T ∗N and their spectral invariants

In this section N will be a smooth connected manifold. If N is not compact all
isotopies, Hamiltonians, diffeomorphisms will be assumed to be compact supported
unless otherwise stated.

DEFINITION 7.2. We denote by L0(T ∗N ) and L0(T ∗N ) the set of elements L̃,L in
L (T ∗N ,dλ) and L(T ∗N ,dλ) Hamiltonianly isotopic to the zero section.

187
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If L ∈L (T ∗N ) let fL be a primitive of λ|L . For any path γ in L connecting x to y , we
have

∫
γλ= fL(x)− fL(y).

PROPOSITION 7.3. Let L1,L2 be exact Lagrangians with vanishing Maslov class, and
x, y ∈ L1 ∩L2. Let γ1 (resp. γ2) be a path in L1 (resp. L2) connecting x to y. Then

ℓL1,L2 (x, y) =
∫
γ1

λ−
∫
γ2

λ

and

mL1,L2 (x, y) = i (Tγ(t )L1,Tγ(t )L2)

We sometimes use the notation fL1,L2 (x) = fL1 (x) − fL2 (x). When L1,L2 have a
G.F.Q.I. we may state

PROPOSITION 7.4. Let Si be G.F.Q.I. for Li ∈ L (T ∗N ) (i = 1,2). Then intersection
points of L1 ∩ L2 are in one-to-one correspondence with critical points of S(x,ξ,η) =
S1(x,ξ)−S2(x,η). Moreover if

x = (q, p) = (q,
∂

∂q
S1(q,ξ)) = (q,

∂

∂q
S2(q,η))

are such intersection points, we have

ℓL1,L2 (x) = S1(q,ξ)−S2(q,η)

mL1,L2 (x, x ′) = index(d 2S(x,ξ,η))− index(d 2S(x ′,ξ′,η′))

PROOF. If ΣS1 is the fiber-critical locus of S1 that is {(q,ξ) | ∂S1
∂ξ

(q,ξ) = 0}, then λL

corresponds (via iS) to dSΣS . Therefore fL j ◦ iS j = S j if x = iS j (q,ξ j ) we have fL1 (x)−
fL2 (x) = S1(q,ξ1)−S2(q,ξ2) □

Ifϕt
H is the flow of the Hamiltonian H(t , z), there is another formula for ℓ(x, y) from

Proposition 4.13.

PROPOSITION AND DEFINITION 7.5. Let L ∈L (T ∗N ).

(1) We can normalize the G.F.Q.I. of L so that S = fL ◦ iS on ΣS .
(2) Let L1 =ϕ1

H (L) and γ(t ) =ϕt
H (z). Then for z ∈ L we have

fL1 (ϕ1
H (z)) = fL(z)+

∫ 1

0
[γ∗λ−H(t ,γ(t ))]d t

defines a function on L1 satisfying d fL1 =λ|L1 . Therefore we shall writeϕ1
H (L, fL) =

(ϕ1
H (L), fL1 ), but keeping in mind that the operation on the left hand side de-

pends on the choice of H and not just on the Hamiltonian isotopy (so changing
H to H + c changes fL1 to fL1 − c)
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PROOF. Setγ to be a path from x to y in L and u(s, t ) = (ϕt
H (γ(s), t ) ∈ M×R. Consider

the form λ−Hd t on M ×R and let us compute∫
[0,1]2

u∗(d(λ−Hd t )) =
∫

[0,1]2
u∗(ω−d H ∧d t )

We claim that this integral vanishes, because XH − ∂
∂t is in the kernel ofω−d H∧d t .

As a result applying Stoke’s formula we get, setting x(t ) =ϕt (x), y(t ) =ϕt (y)

0 =
∫
∂[0,1]2

u∗(λ−Hd t ) =∫ 1

0
γ∗λ−γ∗(ϕ1)∗λ+

∫ 1

0
x∗λ−H(t , x(t ))d t −

∫ 1

0
y∗λ−H(t , y(t ))d t

Now since if γ is a path in L from x to y ,ϕ1γ is a path in L1 fromϕ1(x) toϕ1(y), we have

fL(x)− fL(y)− fL1 (ϕ1(x))+ fL1 (ϕ1(y)) =
∫ 1

0
x∗λ−H(t , x(t ))d t −

∫ 1

0
y∗λ−H(t , y(t ))d t

In other words up to constant, fL1 (x) = fL(x)+∫ 1
0 x∗λ−H(t , x(t ))d t . We can choose the

constant so that we have an equality. □

REMARK 7.6.

(1) One should be careful: as an exact Lagrangian, ϕ1
H (L) (we should maybe write

ϕH (L, fL)) does not depend only on the flow, but on the choice of H .
(2) It will be sometimes more convenient to rewrite the formula “backwards” that

is, setting for z ∈ Lt =ϕt
H (L) and ρ(s) =ϕ−s

H (z) so that ρ(t ) ∈ L

fLt (z) = fL(ρ(t ))−
∫ t

0

[
ρ∗λ+H(t − s,ρ(s))

]
d s

(3) According to Corollary 23 there is a symplectomorphismψ defined in a neigh-
borhood of 0L in T ∗L such thatψ(0L) = L andψ∗(λN ) =λL+π∗

L(d fL◦ψ), where
πL : T ∗L −→ L is the canonical projection. Then if ψ−1(L1) is the graph of
d g1, then fL1 = fL + g1 ◦ψ. So we can look at a Hamiltonian H defined in a
neighborhood of the zero section of L. For small time t we have ϕt

H (0L) =
g r (−t · H0L ) + o(t ). Indeed, up to higher order terms in t , we have q(t ) =
q(0)+ t ∂H

∂p (q(0),0), p(t ) = −t ∂H
∂q (q(0),0). Then to write p(t ) = dG(q(t )) we set

h(q) = H(q,0) so p(t ) = −t · dh(ρt (q(t ))) where ρt is the inverse of q(0) 7→
q(0) + t ∂H

∂p (q(0),0) + o(t ) which is of the form Id + o(1). As a result G(q) =
−t ·h(q)+o(t ). In other words if Lt = ϕt

H (L) we have the formula d
d t fLt (z) =

−H(t , z).

Let L ∈ L (T ∗N and S a G.F.Q.I. for L. We proved in the previous section that then
the numbers c(α,S) for α ∈ H∗(N ) are independent from the choice of S. Similarly
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PROPOSITION AND DEFINITION 7.7 (see [Tra94]). Let L1,L2 in L0(T ∗N ), and let Si be
a G.F.Q.I. for Li equal at infinity to the quadratic forms Qi of index di . We set d = d1+d2

and
G H∗(L1,L2; a,b) = H∗−d ((S1 ⊖S2)b , (S1 ⊖S2)a)

and is called the Generating function cohomology of (L1,L2) between a and b. It does not
depend on the choice of the Si . For convenience, if Si are quadratic at infinity but do not
correspond to embedded Lagrangians, we shall write G H∗(S1,S2; a,b) for H∗−d ((S1 ⊖
S2)b , (S1 ⊖S2)a).

DEFINITION 7.8. Let L ∈ L0(T ∗N ). The common value of the c(α,S) where S is any
G.F.Q.I. of L are denoted c(α,L). Let 1 be the generator of H 0(N ) and µN be the generator
of H n(N ). We set c+(L) = c(µN ,L),c−(L) = c(1N ;L), and

γ(L) = c(µN ;L)− c(1;L)

We also set c(α;L,L′) = c(α;S ⊖S′), where S (resp. S′) is a G.F.Q.I. for L (resp L′) and

γ(L,L′) = c(µN ;L,L′)− c(1N ;L,L′)

This is well defined on the set of (pairs of ) Lagrangians Hamiltonianly isotopic to 0N .

First of all we have that c(α, ;L,L′) is a critical value for S ⊖ S′, that is there exists
(q,ξ,ξ′) such that

∂S

∂ξ
(q,ξ) = 0,

∂S′

∂ξ′
(q,ξ′) = 0,

∂S

∂q
(q,ξ)− ∂S′

∂q
(q,ξ′) = 0

But then (q, ∂S
∂q (q,ξ)) = (q, ∂S′

∂q (q,ξ′)) ∈ L ∩ L′ and S(q,ξ) − S′(q,ξ′) = fL(q, ∂S
∂q (q,ξ)) −

f ′
L(q, ∂S

∂q (q,ξ)). This proves

THEOREM 7.9 (Representation theorem). Let c = c(α;L,L′). Then there exists (q, p) ∈
L∩L′ such that fL(q, p)− fL′(q, p) = c(α,L).

PROOF. Indeed on ΣS we have dS − pd q = dS −λ = 0 since ∂S
∂ξ = 0 on ΣS . Thus

fL(z1)− fL(z2) = S(q1,ξ1)−S(q2,ξ2) = ∫
γλ where iS(q j ,ξ j ) = (q j , p j ) = z j (for j = 1,2).

□

PROPOSITION 7.10. Let ϕt be a Hamiltonian isotopy in T ∗N and L1,L2 ∈ L (T ∗N ).
Then t 7→ c(α,ϕt (L1),ϕt (L2)) is constant.

PROOF. Indeed, we have ϕt
H (L1)∩ϕt

H (L2) =ϕt
H (L1 ∩L2) and for x ∈ L1 ∩L2

fϕt
H (L j )(ϕ

t
H (x)) = fL j (x)+

∫ t

0
γ∗λ−H(s,γ(s))d s

where γ(s) =ϕs
H (x). Therefore we have

fϕt
H (L1)(ϕ

t
H (x))− fϕt

H (L2)(ϕ
t
H (x)) = fL1 (x)− fL2 (x)
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does not depend on t . Moreover the set of fL1 (x)− fL2 (x) for x ∈ L1 ∩L2 is the set of
critical values of S1⊖S2 so, according to Sard’s theorem, has empty interior. As a result,
since fϕt

H (L1)(ϕ
t
H (x))− fϕt

H (L2)(ϕ
t
H (x)) varies continuously with t , and has value in a set

of empty interior, it must be constant. □

From Lusternik-Schnirelman’s theorem (Theorem 5.39), we can deduce that γ de-
fines a metric on L (T ∗N ), the set of Lagrangians Hamiltonianly isotopic to the zero
section.

PROPOSITION 7.11. For any L1,L2,L3 ∈L (T ∗N ), the following properties hold :

c+(L1,L2) =−c−(L1,L2) = c+(L2,L1)

c+(L1,L3) ≤ c+(L1,L2)+ c+(L2,L3)

c−(L1,L3) ≥ c−(L1,L2)+ c−(L2,L3)

γ(L1,L3) ≤ γ(L1,L2)+γ(L2,L3)

γ(L1,L2) = 0 ⇔ L1 = L2

The functionγdefines a metric on L (T ∗N ) that is invariant by the action of DHam(T ∗N ).

PROOF. Using Proposition 7.10, it is enough to deal with the case L2 = 0N . The
first statement follows from Lusternik-Schnirelman (Theorem 5.39). Indeed, γ(L) = 0
implies c(1,S) = c(µ,S), hence Kc the set of critical points at level c is such that µ ∈
H∗(Kc ) is nonzero. But Kc can be identified to a subset of L ∩0N , hence of N . But on
any proper subset of N the class µ vanishes. As a consequence L ∩ 0N = 0N , that is
0N ⊂ L and this implies L = 0N . The second statement follows from the fact that if S is a
G.F.Q.I. for L, then −S is a G.F.Q.I. for L, Proposition 6.2 stating that c(1,−S) =−c(µ,S)
and (−S1)⊖ (−S2) =−(S1 ⊖S2) = S2 ⊖S1.

The inequalities will be a consequence of the Triangle inequality for G.F.Q.I. (see
Prop 6.3). and denoting by S1,S3 G.F.Q.I. of L1,L3 we only have to prove

c+(S1 ⊖S3) ≤ c+(S1)+ c+(−S3)

since the second inequality follows by replacing Li by Li and the last one by subtracting
the first two. Applying the triangle inequality we have

c(1,S1 ⊖S3) ≥ c(1,S1)+ c(1,−S3) = c(1,S1)− c(µN ,S3)

c(1,S3 ⊖S1) ≥ c(1,S3)+ c(1,−S1) = c(1,S3)− c(µN ,S1)

and since c(1,S3 ⊖S1) =−c(µN ,S1 ⊖S3) this can be rewritten as

−c(1,S1 ⊖S3) ≤−c(1,S1)+ c(µN ,S3)

c(µ,S1 ⊖S3) ≤−c(1,S3)+ c(µN ,S1)

that is
c+(S1 ⊖S3) ≤ c+(S1)+ c+(−S3)

or else
c+(L1,L3) = c+(L1,L2)+ c+(L2,L3)
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Finally we must prove that γ(L,L′) = 0 implies that L = L′. According to Proposi-
tion it is enough to deal with the case L′ = 0N . Now γ(L,0N ) = 0 means c(1N ,L,0N ) =
c(µN ,L,0N ). According to Theorem 5.39 the equality of the critical levels imply that
π∗(µN ) is non-zero in a neighborhood of Kc the set of critical points at level c = c(1N ,L,0N ) =
c(µN ,L,0N ). We thus proved that µN in non-zero in any neighborhood of L∩0N . But if
L ∩0N ̸= 0N , since L ∩0N is compact, it is contained in the complement of a neighbor-
hood V . But µN vanishes on the complement of V , a contradiction. We thus proved
that L∩0N = 0N , that is 0N ⊂ L. But since L is embedded we have L = 0N (this is obvious
if N is connected, otherwise just argue connected component by connected compo-
nent).

The symmetry γ(L1,L2) = γ(L2,L1) follows immediately from the property γ(−S) =
γ(S) itself an obvious consequence of the equality c(µ,S) = −c(1,−S) (see Proposition
5.38).

□

EXAMPLE 7.12. Let Li = graph(d fi ). Then one easily checks that
c+(L1,L2) = supx∈N f2(x)− f1(x),
c−(L1,L2) = infx∈N f2(x)− f1(x),
γ(L1,L2) = osc( f1 − f2)

We may now use this to define a distance on H amc (T ∗N ).

DEFINITION 7.13. We set

ĉ+(ψ) = sup
L∈L (T ∗N )

c+(ψ(L),L)

ĉ−(ψ) = inf
L∈L (T ∗N )

c−(ψ(L),L)

γ̂(ψ) = γ(ψ, Id) = sup
L∈L (T ∗N )

γ(ψ(L),L)

In general we set γ̂(ϕ,ψ) = γ̂(ψ−1ϕ)

REMARK 7.14. With this definition, we do not know whether γ̂(ψ) = ĉ+(ψ)− ĉ−(ψ).

PROPOSITION 7.15. We have c+(ψ−1) =−c−(ψ) and the inequalities

ĉ+(ϕψ) ≤ ĉ+(ϕ)+ ĉ+(ψ)

ĉ−(ϕψ) ≥ ĉ−(ϕ)+ ĉ−(ψ)

The function γ̂ defines a distance on H amc (T ∗N ). In particular γ̂(ψ) = 0 if and only if
ψ= Id.

PROOF. The equality follows from the equality c+(ψ−1(L),L) = c+(L,ψ(L)) =−c−(ψ(L),L).
The first inequality follows from the fact that

ĉ+(ϕψ) = sup
L∈L (T ∗N )

c+(L,ϕψ(L)) ≤

sup
L∈L (T ∗N )

c+(L,ψ(L))+ sup
L∈L (T ∗N )

c+(ψ(L),ϕψ(L))
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First if γ(L,ψ(L)) = 0 for all L ∈ L (T ∗N ) we have that for all L, ψ(L) = L. Now assume
ψ(z) ̸= z for some z ∈ T ∗N . Then let L be a Lagrangian through z avoiding ϕ(z). Then
ψ(L) ̸= L, a contradiction. We still have to prove the existence of L, that is given two
points in T ∗N , there exists a Lagrangian through one of them avoiding the second one.
But by the bi-transitivity of H amc (T ∗N ) (see Exercice 33 from Chapter 3) this property
does not depend on the choice of the pair of points. Choosing one point on the zero
section and one outside proves our claim.

Now γ(ψ−1) = γ(ψ) because γ(L,ψ−1(L)) = γ(ψ(L),L) = γ(L,ψ(L)).
Finally we must prove that γ̂(ψ) is finite. This follows from Proposition 7.18. □

Note that for compact supported Hamiltonian flows inR2n there is another possible
definition of the spectral invariant, using the fact that T ∗Rn ×T ∗Rn ≃ T ∗∆T ∗Rn where
∆T ∗Rn is the diagonal. The isomorphism is given by

ρ : (q, p,Q,P ) 7→ (q,P, p −P,Q −q)

Note that if L is a Lagrangian in T ∗Rn coinciding with the zero section at infinity, we
can compactify L to a Lagrangian in T ∗Sn by adding a point at infinity.

DEFINITION 7.16. Let ψ ∈ DHamc (R2n) be the group of time-one maps of compact
supported Hamiltonians. Set Γψ to be the compactification of the image by ρ of the

graph ofψ in T ∗Rn×T ∗Rn . Thus Γψ is an exact Lagrangian in T ∗S2n and we normalize
fΓψ by setting fΓψ = 0 at infinity. Then we set

c±(ψ) = c±(Γψ) and γ(ψ) = γ(Γψ)

We shall prove in Exercise 4 that γ is a metric. Then we can compare this metric
with the Hofer norm ([Hof90]) defined on Ham(M ,ω) by

∥ψ∥H = inf

{∫ 1

0

[
sup
x∈M

H(t , x)− inf
x∈M

H(t , x)

]
d t

∣∣∣ϕ1
H =ψ

}
PROPOSITION 7.17. We have

(1) c+(ϕ−1) =−c−(ϕ)
(2) c−(ϕ) ≤ 0 ≤ c+(ϕ)
(3) γ(ϕ) = 0 if and only if ϕ= Id
(4) c+(ϕψ) ≤ c+(ϕ)+ c+(ψ)

PROOF. We must compare the Lagrangian Γϕ = {(q,P, p −P,Q −q) |ϕ(q, p) = (Q,P )}
and Γϕ−1 = {(q,P, p −P,Q − q) | ϕ(Q,P ) = (q, p)}. The map (q, p,Q,P ) 7→ (P,Q, p, q) is

symplectic, and sends Γϕ to Γϕ−1 . As a result

c−(ϕ) = c(1,Γϕ) = c(1,Γϕ−1 ) =−c(µ,Γϕ−1 ) =−c+(ϕ−1)

For the second statement, it is enough to prove c−(ϕ) ≤ 0. Note that Γϕ coincides with
the zero section at infinity. As a result, S(x,ξ) = q(ξ) for x the point at infinity. As a result
if E−

x is the negative eigenspace of q at x, we have [E−
x ] ∈ H∗(S∞,S−∞) represents the
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class 1⊗T . Since S ≤ 0 on E−
x , we get c−(ϕ) ≤ 0. This together with our first statement

implies the second statement for c+. As for the third statement, we know that γ(ϕ) = 0
if and only if Γϕ =∆ and this is of course equivalent to ϕ= Id. Finally we have

c(1,ϕ(L)) = c(1,ϕ(L),0N ) = c(1,L,ϕ−1(0N )) ≥ c(1,L)+ c(1,ϕ−1(0N )))

Applying this to N = S2n , L = Γψ ⊂ T ∗S2n and replacing ϕ by Id×ϕ, using that (Id×
ϕ)(Γψ) = Γϕψ and (Id×ϕ)(0S2n ) = id×ϕ)(∆) = Γϕ, we get

c(1,ϕψ) ≥ c(1,ψ)− c(µ,ϕ−1) = c(1,ψ)+ c(1,ϕ)

the last equality is obtained by using the first statement. Using again the first state-
ment, we get

c+(ϕψ) ≤ c+(ϕ)+ c+ψ)

□

PROPOSITION 7.18 (Spectral norm estimate I ). Let ϕ be the time-one map of the
Hamiltonian H. We then have the inequality

γ(ϕ) ≤ ∥ϕ∥H

In particular

(1) ∥ϕ∥H defines a metric on Hamc (T ∗T n) by dH (ϕ1,ϕ2) = ∥ϕ1ϕ
−1
2 ∥H . (This is the

Hofer metric, see [Hof90])
(2) H 7→ c+(ϕH ), H 7→ c−(ϕH ) and H 7→ γ(ϕH ) are continuous for the C 0-topology.

This will follow from the more general situation dealt by the following proposition

PROPOSITION 7.19 (Spectral norm estimate I - the Lagrangian case ). Let ϕt
H be the

flow of H and L1,L2 be two Lagrangians in L (T ∗N ). Then

c(α,ϕt
H (L1),L2) ≤ c(α,L1,L2)+ sup

{−H(t , z), z ∈ϕt
H (L1)∩L2

}
In particular setting ∥H∥L2 = sup{−H(t , z), z ∈ L2}, we have

c(α,ϕt
H (L1),L2) ≤ c(α,L1,L2)+∥H∥L2

Let us mention some consequences:

COROLLARY 7.20.

c+(ϕt
H (L1),L2) ≤ c+(L1,L2)+ sup

{−H(t , z), z ∈ϕt (L1)∩L2
}

c−(ϕt
H (L1),L2) ≥ c−(L1,L2)+ inf

{
H(t , z), z ∈ϕt (L1)∩L2

}
c(α,ϕt

H (L),L) ≤ ∥H∥L ≤ ∥H∥C 0

PROOF. The first inequality follows from applying the Proposition to α = µN . The
second by taking c−(ϕt

H (L1),L2) =−c+(L2,ϕt
H (L1)) =−c+(ϕ−t

H (L1),L2) Applying the Propo-
sition to L1 = L2 we get the last inequality. □

We shall need the
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LEMMA 7.21. Let ft (x) be a differentiable family of smooth functions and assume for
t0 in some interval I we have d ft0 (x0) = 0 implies ( ∂

∂t ft )|t=t0 (x0) ≥ 0. Let c(t ) = ft (xt ) be
a continuous path of critical values (note that t 7→ xt does not need to be continuous).
Then c(t) is increasing for t ∈ I .

PROOF. We first assume ∂
∂t ft (x) > 0 whenever d ft (x) = 0. then we may perturb the

family ft so that the inequality still holds (t , x) 7→ ft (x) is smooth, and except for finitely
many t ’s, ft is Morse and has a single critical point on each critical level. As a result we
can write in the complement of this finite set c(t ) = ft (xt ) with d ft (xt ) = 0 and xt is
uniquely defined. Moreover t 7→ xt is smooth, since we can apply the implicit function
theorem to d ft (x) = 0 provided d 2 ft (x) is invertible. Now since

d

d t
c(t ) = ∂

∂t
( ft (xt )) = (

∂

∂t
ft )(xt )+d ft (xt )

∂

∂t
xt = (

∂

∂t
ft )(xt ) > 0

we get that t 7→ c(t ) is increasing except for finitely many values of t . Since it is contin-
uous, it is increasing on the whole interval [0,1].

Now for the general case, we replace ft (x) by ft (x)+εt with ε> 0, we get that for all
ε and any t1 < t2 we have c(α, ft1 )+εt1 ≤ c(α, ft2 )+εt2. This of course implies c(α, ft1 ) ≤
c(α, ft2 ) i.e. t 7→ c(α, ft ) is increasing.

□

PROOF. Let S t
1(x,ξ) be a G.F.Q.I. for ψt (L1) and S2(x,η) be a G.F.Q.I. for L2. Then we

want to estimate c(µN ,S t
1⊖S2), but for this it is enough to estimate d

d t (S t
1⊖S2)(x,ξ,η) for

d(S t
1⊖S2)(x,ξ,η) = 0. But this means

∂St
1

∂ξ
(x,ξ,η) = 0, ∂S2

∂η
(x,ξ,η) = 0 and (x,

∂St
1

∂x (x,ξ,η)) =
(x, ∂S2

∂x (x,ξ,η)) ∈ψt (L1)∩L2. Now (S t
1 ⊖S2)(x,ξ,η) is equal to fLt

1
(x, p)− fL2 (x, p) where

(x, p) ∈ Lt
1∩L2 corresponds to (x,ξ,η). Then we must compute d

d t ( fLt
1
− fL2 )(x, p). Using

the formula from Remark 7.6 (2) we get

d

d t
fLt

1
(z) = d fL1 (ρ(t ))ρ̇(t )− [

ρ∗λ(t )+H(t ,ρ(t ))
]

since λ= d fL on L, we have
d

d t
fLt (z) =−H(t ,ρ(t ))

where ρ(t ) ∈ L and z = ρ(0) ∈ Lt
1 ∩L2. □

PROOF OF PROPOSITION 7.19. Let S t
1(x,ξ) be a G.F.Q.I. for Lt

1 =ψt (L1) and S2(x,η)
be a G.F.Q.I. for L2. Then we want to estimate c(α,S t

1 ⊖S2). On one hand we know that
c(α,S t

1⊖S2) = (S t
1⊖S2)(xt ,ξt ,ηt ) where (xt ,ξt ,ηt ) is a critical point of S t

1⊖S2 thus corre-
sponding to a point zt ∈ψt (L1)∩L2. Moreover (S t

1 ⊖S2)(xt ,ξt ,ηt ) = fLt
1
(zt )− fL2 (zt ) by

the representation Theorem (Thm 7.9). By a small perturbation of L2 we may assume
that for t outside a finite subset E of [0,1], (S t

1⊖S2) is a Morse function with distinct crit-
ical values. As a result for t outside tE , the map t 7→ (xt ,ξt ,ηt ) is uniquely defined and
smooth by the implicit function theorem. We will now compute d

d t (S t
1 ⊖S2)(xt ,ξt ,ηt )
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and show it is bounded by sup
{−H(t , z), z ∈ψt (L1)∩L2

}
on the complement of E .

Since t 7→ c(α,S t
1 ⊖S2) is continuous this yields the bound of the Proposition.

A revoir !

The computation of d
d t (S t

1 ⊖S2)(xt ,ξt ,ηt ) is based on the fact that the action func-
tional is generating function in a generalized sense. Let P t (L1,L2) be the set of smooth
paths γ : [0, t ] −→ M such that1 γ(0) ∈ L1,γ(t ) ∈ L2. Then

At (γ) = fL1 (z(0))+
∫ 1

0
[γ∗λ−H(s,γ(s))]d s − fL2 (γ(t ))

is such that DAt (γ) = 0 if and only if γ(s) = ψs(γ(0)) and then At (γ) = fL2 (γ(t )) −
fLt

1
(γ(t )).

So c(α,ψt (L1),L2) = (S t
1 ⊖S2)(xt ,ξt ,ηt ) = fLt

1
(zt )− fL2 (zt ) = At (γt ) for some critical

point γt of At , and γt (s) = ψs(γ(0)),γt (t ) = zt . Generically in L2 and t , the critical
values of At —which coincide with the critical values of S1

t ⊖S2— are distinct and the
intersection points zt depends smoothly on t , so the same holds for γt (t ). We may thus
apply the Lemma, but for convenience we want all the At to be defined on a single
space, so we replace z by ζ such that ζ(u) = γ(tu) where ζ ∈P1(L1,L2) is a fixed space.
Then substituting s = tu in the formula for At we obtain

At (γ) = fL1 (ζ(0))+ t
∫ 1

0
[λ(z(tu))γ̇(tu)−H(tu,γ(tu))]du − fL2 (γ(t ))

and using ζ(u) = γ(tu), ζ̇(u) = t γ̇(tu)

At (z) = fL1 (ζ(0))+
∫ 1

0
[λ(ζ(u))ζ̇(u)− t H(tu,ζ(u))du − fL2 (ζ(1))

Now setting Bt (ζ) for At (γ) we have

d

d t
Bt (ζ) =− d

d t

∫ 1

0
t H(tu,ζ(u))du =−

∫ 1

0
H(tu,ζ(u))du − t

∫ 1

0
u
∂H

∂t
(tu,ζ(u))du =

−
∫ 1

0
H(tu,ζ(u))du −

∫ 1

0
u
∂

∂u
H(tu,ζ(u))du = −

∫ 1

0

d

du
[uH(tu,ζ(u)]du

the last equality follows because dz H(su,ζ(u))ζ̇(u) = 0 if ζ(u) is a trajectory of XH , and
the time-one flow of H(su,ζ) is ψt . But the last term is H(t ,ζ(1)), and since ζ(1) ∈
L2 ∩ψt (L1) this concludes our proof.

□

REMARK 7.22. See Exercice 10 for a similar estimate for the Hofer norm.

1Here by DA we mean the variational derivative, i.e. defined for ξ a vector field along γ by setting
expγ(ξ)(s) = expγ(s) ξ(s), we define DA (γ)ξ= d

dεA (expγ(εξ))|ε=0.
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PROOF OF PROPOSITION 7.18. It is enough to prove that if ϕ1
H =ψ then

γ(ψ) ≤
∫ 1

0
[sup

x∈M
H(t , x)− inf

x∈M
H(t , x)]d t

Now γ(ψ) = γ(Γψ) and Γψ is the image of ∆= Γ(Id), the compactification of the diago-
nal, by the extension of Id×ϕt , that is generated by K (t , x1, p1, x2, p2) = H(t , x1, p1). But
then Proposition 7.19 implies the inequality

c+(Γψ) ≤ sup
{

K (t , z) | t ∈ [0,1], z ∈∆
}
= sup

{
H(t , x, p) | t ∈ [0,1], (x, p) ∈R2n}

Finally we want to prove that we can replace sup
{

H(t , x, p) | t ∈ [0,1], (x, p) ∈R2n
}

by∫ 1
0 supx∈M H(t , x)d t . For this we notice that if τ(t ) is an increasing diffeomorphism

of [0,1], then the time-one map associated to the Hamiltonian τ′(t )H(τ(t ), z) is the
same as the one associated to H(t , z). So let I+ = ∫ 1

0 supx∈M H(t , x)d t , and set M(t ) =
supx∈M H(t , x). If M is strictly positive, choose τ satisfying the equation{

τ′(t ) = I+
M(τ(t ))

τ(0) = 0

Since K (t , z) = τ′(t )H(τ(t ), z) has the same time-one flow as H and maxz K (t , z) = I+,
we are done. If M vanishes, we take τ satisfying the equation{

τ′(t ) = (1+δ) I+
M(τ(t ))+ε τ(0) = 0

where ε > 0 and δ adjusted so that τ(1) = 1. This then proves that we may obtain ϕ as
the time-one of a Hamiltonian such that supx∈M τ′(t )H(τ(t ), x) ≤ (1+δ)I+ and since ε
and hence δ are arbitrarily small, this proves our claim.

□

PROOF OF PROPOSITION 7.18. □

COROLLARY 7.23. If H ≤ 0 we have c+(ϕH ) = 0. More generally if H1 ≤ H2 we have

c+(ϕH1 ) ≤ c+(ϕH2 )

PROOF. The first statement follows immediately from Proposition 7.19, applied to
α=µ and the fact that c+(ϕ) ≥ 0. □

REMARK 7.24. The above Corollary implies that if ϕ is generated both as the time-
one of a non-negative and a non-positive Hamiltonian, it must be equal to the identity
: indeed, the first assumption implies c+(ϕ) = 0 the second that c−(ϕ) = 0, so γ(ϕ) = 0
and ϕ = Id. This also follows by the examination of the Calabi invariant. However the
property ϕ ⪰ Id defined by c+(ϕ) = 0 is not equivalent to being generated by a non-
negative Hamiltonian (see Exercise 19).

When H is C 2 small we have
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PROPOSITION 7.25. There exists ε > 0 such that if H is autonomous and ∥H∥C 2 ≤ ε

we have

c+(ϕ1
H ) = max H ,c−(ϕ1

H ) = min H

PROOF. We know that for ε small enough, ϕt
H has no periodic orbit of period less

than 1 other than the constants (see Proposition 3.85). By a generic perturbation, we
may assume H has only finitely many critical values. Now for s small enough, since
Γ(ϕs

H ) is C 1 close to the zero section, there is Ss(q,P ), a G.F.Q.I. for Γ(ϕs
H ) with no fi-

bre variables. Moreover Ss(q,P ) = s · H(q,P )+o(s) and the critical points of S and H
coincide, since they correspond to fixed points of ϕs

H . As a result, for s smaller than
the difference between distinct critical values of H , we have c+(S) = maxS = s max H .
But then by our assumption, 1

s c+(ϕs
H ) takes values in the set of critical values of H ,

by Sard’s theorem and the continuity of this function of s, this must be constant, so
c+(H) = max H . The case where H is not generic is proved by approximation : we may
write H = C 0 − lim Hk where c+(Hk ) = max Hk . The same argument yields the other
equality. □

COROLLARY 7.26. The metric γ extends to Ham∞(R2n), the set of Hamiltonians such
that lim|z|→∞ H(t , z) = 0, where the limit is uniform in t.

PROOF. We can write a Hamiltonian H ∈ Ham∞(R2n) as limk Hk where the Hk are
compact supported : just take χ to be a function onR+ such that 0 ≤χ(r ) ≤ 1, equal to 1

on [0,1] and vanishing on [2,+∞[. Then Hk (t , z) =χ
( |z|

k

)
H(t z) satisfies the inequality

∥Hk −H∥ ≤ sup
|z|≥k

|H(t , z)|

□

Let U be a bounded domain in T ∗N . We set

DEFINITION 7.27. We define for an open set U

c(U ) = sup{c+(ϕ1
H ) | supp(H) ⊂U and bounded }

γ(U ) = sup
V

inf
ψ

{γ(ψ) |ψ(V )∩V =;, V ⊂U is bounded }

where H is a (time-dependent) Hamiltonian.
For a closed set F we set c(F ) = inf{c(U ) |U ⊃ F } and γ(F ) = inf{γ(U ) |U ⊃ F }.

Its main properties are

PROPOSITION 7.28. (Properties of the spectral capacity) We have the following
properties

(1) The functions c,γ are symplectically invariant : ifψ is a conformally symplectic
map i.e. ψ∗(ω) = kω, then c(ψ(U )) = kc(U ) and γ(ψ(U )) = kγ(U ) for any set U

(2) c,γ are monotone : if V ⊂U then c(U ) ≤ c(V ) and γ(V ) ⊂ γ(U ).
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PROOF. For the first statement, we use that any conformally symplectic map in R2n

is isotopic to the identity among conformally symplectic maps.

Teminer

□

A consequence of the first property is the outer continuity of the capacity for certain
sets, that is γ(U ) = inf{γ(V ) |V ⊃U }. The reader has already encountered these sets

DEFINITION 7.29 (see Definition 3.67). A hypersurface Σ in a symplectic manifold
(M ,ω) is of contact type if there exists a conformal vector field defined in a neighborhood
of σ and transverse to Σ. The hypersurface is of restricted contact type if the vector field
is globally defined on all of M.

The complement of Σ will have two connected components. The one such that
X points outwards is defined as the interior. One can often relax the definition of re-
stricted contact type by requiring that X is defined in the interior of Σ. This is the only
meaningful definition in the case of an ambient compact manifold, since there cannot
be a global conformal vector field (the flow of such a vector field would expand the
volume ).

EXAMPLES 7.30. (1) The starshaped hypersurfaces in T ∗N , that is those trans-
verse to the radial vector field p ∂

∂p =∑n
j=1 p j

∂
∂p j

are of restricted contact type,

since the radial vector field is conformal.
(2) In (R2n ,σ) the starshaped hypersurfaces that is those transverse to the radial

vector field q ∂
∂q +p ∂

∂p =∑n
j=1 q j

∂
∂q j

+p j
∂
∂p j

are of restricted contact type.

We refer to [Lau97] for using handle attachment to obtain contact hypersurfaces
with more interesting topologies. Hypersurfaces of contact type are characterized as
having a neighborhood foliated by hypersurfaces having the same closed characteris-
tics (see Proposition 3.75 in Chapter 3). We now want to prove some continuity of the
capacity γ. Recall that the Hausdorff distance between U and V is

dH (U ,V ) = max

{
sup
x∈V

d(x,U ),sup
y∈U

d(y,V )

}
In other words denoting by Ut = {x | d(x,U ) ≤ t } for t > 0 we have d(U ,V ) ≤ a if and
only if U ⊂Va ,V ⊂Ua . We may now state

PROPOSITION 7.31 (Capacity-regularity of contact boundary subsets). If U is an
open set bounded by a compact hypersurface of contact type, then we have γ(U ) =
inf{γ(V ) | V ⊃ U } = sup{γ(V ) | V ⊂ U }. More generally if d is the Hausdorff distance,
for each ε> 0 there exists δ such that dH (V ,U ) ≤ δ implies |γ(V )−γ(U )| ≤ ε

PROOF. Let ρt be the flow of the conformal vector field X . Then for each τ >
0 there exists δ > 0 such that dH (V ,U ) < δ implies that ρ−τU ⊂ V ⊂ ρτ(U ). This
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implies e−τγ(U ) ≤ γ(V ) ≤ eτγ(U ) and choosing τ such that (eτ − 1)γ(U ) ≤ ε (hence
(1−e−τ)γ(U ) > ε) proves our claim.

□

A last useful tool for computations is the

PROPOSITION 7.32 (Displacement inequality). Letψ in H am0(T ∗N ) such thatψ(U )∩
U =;. Then

c(U ) ≤ γ(ψ)

As a result
c(U ) ≤ γ(U ) <+∞

PROOF. Let us consider a Hamiltonian H supported in U and ϕt be its flow. Then
the fixed points of ψ ◦ϕt are fixed points of ψ, since ψϕt (x) = x implies x does not
belong to U (otherwise y = ϕt (x) ∈ U and then x ∈ U ∩ψ(U )). According to the rep-
resentation theorem, c±(ψ◦ϕt ) = ℓψϕt (x,∗) for x a fixed point of ψ◦ϕt , that is a fixed
point of ψ and as usual ∗ is a point outside the support of ψ. Since the set of ℓψϕt (x,∗)
does not depend on t , and the set has measure 0, and depends continuously on t , it
must be constant. So we get c+(ψϕ1) = c+(ψ) hence

c(ϕ1) ≤ c+(ψϕ1)+ c+(ψ−1) = c+(ψ)+ c+(ψ−1) = γ(ψ)

□

3. Applications

The previous theorem allows us to prove (Conjecture 7 from Chapter 3)

PROPOSITION 7.33 (Weinstein’s conjecture in R2n , see [Vit87a]). Let Σ be a contact
type compact hypersurface bounding a domain U . Then there exists a closed character-
istic γ of Σ such c(U ) equals the action of the characteristic, that is

∫
γλ where λ= iXω.

PROOF. Let H be a Hamiltonian vanishing on U and, identifying a neighborhood
of ∂U to (Σ× [−ε,ε[,d(e tα)), as was proved in Proposition 3.75. Set H = h(t ) with h = 0
for t ≤ 0 and h(t ) = a for t ≥ ε/2. We choose a > γ(Uε) where Uε =U ∪Σ× [0,ε[. Then
the periodic orbits of the flow of H are

(1) The constants inside U with action 0
(2) The constants outside U with action a
(3) Closed characteristics on some Σε =Σ×{ε}. But since Σε is conformally equiv-

alent to Σ, they have the same closed characteristics.

We must check that we cannot have only constant periodic trajectories. But if this was
the case, we would have c+(H) ∈ {0, a}. But the first case is impossible since the flow
of H is not the identity, and the second case also since c(H) ≤ c(Uε) < a. Therefore we
must have a closed characteristic on some Σt hence on Σ. □

Note that the only requirement for the proof is that γ(U ) is finite. Thus a similar
proof yields
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PROPOSITION 7.34. Let Σ be a contact type compact hypersurface bounding a com-
pact domain U in T ∗P where P is a non-closed manifold. Then there exists a closed
characteristic γ of Σ such ĉ(U ) equals the action of the characteristic, that is

∫
γλ where

λ= iXω.

One has to be careful that N not being closed, we have not defined c+,c−. But we
may assume N is a manifold with boundary (since U is bounded) and replace N by
its double2 N . In the sequel c+,c− refer to the c+,c− of the obvious extensions of the
Hamiltonians to T ∗N . Similarly ĉ± refer to the extensions to T ∗N .

We first need to prove the following weak form of the representation theorem (The-
orem 7.9)

PROPOSITION 7.35. Let Lk be a sequence in L (T ∗N ), where N is a closed manifold,
such that limk c+(ψ(Lk ),Lk ) = ĉ+(ψ). Then given any neighbourhood U of the set of fixed
points of ψ with action ĉ+(ψ), we have for k large enough Lk ∩U ̸= ;.

LEMMA 7.36. Let L1,L2 be two exact Lagrangians in an exact Liouville manifold
(M ,dλ). Let B(z,r ) be a symplectic ball and assume L1 ∩L2 ∩B(z,r ) = {z}, and TzL1 ∩
TzL2 = {0}. Then there is a symplectic map ψ : B(z,r /2) −→ B(z,r ) such that

ψ(L1 ∩B(z,r /2)) =Rn × {0}∩B(z,r /2)

and

ψ(L2 ∩B(z,r /2)) = {0}×Rn ∩B(z,r /2)

PROOF.
A reprendre

Let λ0 = iρω be the standard Liouville form on the ball, so that ρ is the radial vector
field. Then if λ is the standard Liouville form, we have in B(z,r ) that λ = λ0 +d f for
some function f . So cutting off f , we may assume we have a Liouville vector field
such that X = ρ in B(z,r ). Note also that if ψt is the flow of X , then ψt (L) is an exact
Lagrangian isotopy, hence induced by a Hamiltonian isotopy. Now ψt (L)∩B(z,r ) =
ψt (L∩ψ−t (B(z,r ))) =ψt (L∩B(z,e−t r )) = e t (L∩B(z,e−t r )). Clearly as t goes to infinity,
this converges to TzL. Since Sp(2n) acts transitively on the set of pairs of Lagrangians,
we may send TzL1,TzL2 on the standard Lagrangians.

□

PROOF. We argue by contradiction. Note that c+(ψ(L),L) = fψ(L)(z1)− fL(z1) where
z1 ∈ψ(L)∩L. Write z1 =ψ(z0), so that

fψ(L)(z1) = fL(z0)+
∫ 1

0
pq̇ −H(t , q(t ), p(t ))d t

2The double of a manifold P with boundary ∂P is the manifold P ∪∂P P where P is P with the oppo-
site orientation.



202 7. SPECTRAL INVARIANTS IN SYMPLECTIC TOPOLOGY

where (q, p) : [0,1] −→ T ∗N is the trajectory of XH form z0 = (q(0), p(0)) to z1 = (q(1), p(1)).
By a small C∞ perturbation of L (or of H), we may assume L is transverse toψ(L). Then

ψ(L)

z1z0 L

z1z0 L′

FIGURE 1. The sets L,ψ(L) and L′

□

Finally the same proof as above works if we can prove γ̂(U ) < +∞. For this it is
enough that U be displaceable, i.e. there exists H such thatϕH (U )∩U =;. So we need

LEMMA 7.37. Let U be a bounded set in the cotangent bundle of a non-closed mani-
fold. Then there exists a Hamiltonian isotopy ψt such that ψ1(U )∩U =;

PROOF. Now let f be a function on N without critical points on N . Then ap-
plying the Hamiltonian flow of K (q, p) = f (q) we have ϕt

K (q, p) = (q, p + td f (q)). If
C = min{|d f (q)| | q ∈ W } where W is the projection of U on N , and T C > 2sup{|p| |
(q, p) ∈U }, then ϕT

K (U )∩U =;. We may thus take ψt =ϕtT
K

□

We may now conclude

PROOF OF PROPOSITION 7.34. The argument is the same as in Proposition 7.32.
So it is enough to find a bound depending only on U = supp(ψ) (and not on L) for
c+(ψ(L),L). Let ψ such that ψ(U )∩U = ; as provided by the above Lemma. Then
ψ(L)∩ϕt (L) does not depend on t , since if ψ(x) =ϕ−t (y) with x, y ∈ L. But then y ∉U ,
otherwise we would have ϕ−t (y) ∈ U and this is impossible since ψ(U )∩U = ;. So
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y ∉ U and x ∈ L′ = ψ−1(L ∩ (T ∗N \ U )) and ψ(L) ∩ϕ−t (L) = ψ(L′) ∩ L′. As a result
c+(L,ψ(ϕ1(L))) = c+(L,ψ(L)) ≤ T ∥K ∥C 0 .

Now let H be a Hamiltonian associated to U as in the proof of Proposition 7.33.
Then ĉ+(ϕH ) is bounded and according to Proposition 7.35 there is a fixed point ofϕH .
This orbit will be on Σε provided we can prove ĉ+(ϕH ) ∉ {0, a} where a = sup{ H(z) | z ∈
T ∗N }. But a can be chosen arbitrarily large, while we know that ĉ+(ϕH ) is bounded by a
quantity depending only on U , so we only need to prove ĉ+(ϕH ) > 0. But if this was not
the case we would have c+(ϕ1

H (L),L) ≤ 0 for all L. On the other hand c−(ϕ1
H (L),L) ≥ 0

for all L by Corollary 7.20. But this implies γ(ϕH (L),L) = 0 for all L and ϕH = Id which
is impossible. □

The Weinstein conjecture has been proved in a number of cases for other ambient
symplectic manifolds (see [Vit87a; HV88; HV92] and also [Vit99] for the case of cotan-
gent bundles of simply connected manifolds), and remarkably for all contact mani-
folds of dimension 3 (see [Hof93b; Tau07] and counterexamples have been found if the
contact-type condition is omitted (see [Gin95; Gin97; Her99] ).

Another nice application is the following, originally proved using holomorphic
curves

PROPOSITION 7.38 (Gromov’s non-squeezing theorem ([Gro85]). In (R2n ,ω) we have

γ(B 2n(r )) =πr 2 = γ(B 2(r )×R2n−2)

As a result if there is a symplectic embedding from B 2n(r ) into B 2(R)×R2n−2 then r ≤ R.

PROOF. It is enough to prove that c(B 2(r )) = γ(B 2(r )) = πr 2. Indeed γ(B 2(r ) ×
R2n−2) ≤ γ(B 2(r )) because γ(ϕ× Id) = γ(ϕ). Now for all positive ε, we must find ϕ sup-
ported in B 2(r ) such that c(ϕ) ≥ πr 2 − ε. But the Hamiltonian H(q, p) = h(q2 + p2)
such that h = 0 in [0,r −δ], 0 ≤ h(t ) ≤ ε,h′(t ) ≥ 0 on [0,r ] and h′(r ) > 1 satisfies this
inequality since the only non-trivial 1-periodic orbits are the circles of radius ρ such
that h′(ρ) ∈πZ, and their action is a multiple of πρ2 −h(ρ) so ≥πr 2 −2ε. □

r

H

H(ρ)−ρH ′(ρ) −

FIGURE 2. The Hamiltonian H
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While the properties ofγmentioned in Proposition 7.28 are shared by U 7→ vol(U )2/n ,
this is not the case for this last property, since vol(B 2(r )×R2n−2) =+∞.

COROLLARY 7.39. Let E(r1, ...,rn) be the ellipsoid in R2n defined as

E(r1, ...,rn) =
{

(q1, p1, ..., qn , pn) |
n∑

j=1

1

r 2
j

(q2
j +p2

j )

}
with r1 ≤ r2 ≤ .. ≤ rn . Then γ(E(r1, ...,rn)) =πr 2

1 .

PROOF. Obvious, since B(r1) ⊂ E(r1, ...,rn) ⊂ D2(r1)×R2n−2 andγ(B(r1)) = γ(D2(r1)×
R2n−2) =πr 2

1 , we then conclude by monotonicity of γ. □

Functions satisfying the conclusions of Propositions 7.28 and 7.38 are called sym-
plectic capacities3.

DEFINITION 7.40. Let c : P (M ,ω) −→ R+ be a function defined in the subsets of a
symplectic manifold. We say that c is a capacity if it satisfies the following properties

(1) The functions c is symplectically invariant : if ψ is a conformally symplectic
map i.e. ψ∗(ω) = kω, then c(ψ(U )) = kc(U ) for any set U .

(2) c is monotone : if V ⊂U then c(U ) ≤ c(V ) and γ(V ) ⊂ γ(U ).
(3) c is normalized: c(B 2n(r )) =πr 2 = c(B 2(r )×B 2n−2(R)) for any R ≥ r .

We slightly changed the third property, because we do not want to assume that
there is an embedding of B 2(r )×R2n−2 into (M ,ω) (even though this is usually the case
for cotangent bundles at least for small r ). Since B 2n(r ) ⊂ B 2(r )×B 2n−2(r ) we know
already that c(B 2(r )×B 2n−2(r )) ≥πr 2, so only the upper bound is useful. There are sev-
eral symplectic capacities, defined by using different methods. Another consequence
of the existence of the capacities is the following

THEOREM 7.41 (Gromov-Eliashberg’s theorem). Let ψn be a sequence of symplectic
maps of the symplectic manifold (M ,ω). Assume there is a mapψ such thatψ= limnψn ,
where the limit is for the C 0-topology (uniformly on compact sets). If ψ is C 1 then ψ is a
symplectomorphism.

PROOF. Assume ψ is neither symplectic nor anti-symplectic, so for some x ∈ M the
same holds for dψ(x). Then taking Darboux charts at x and ψ(x), we can assume ψ is
a map from an open set of R2n to R2n such that ψ(0) = 0 and assume dψ(0) is neither
symplectic nor anti-symplectic. According to Exercise 31 of Chapter 2, we can then
find an ellipsoid E = E(r1, . . .rn) such that γ(dψ(0)E) ̸= γ(E). Up to rescaling we may
assume γ(E) = 1 and γ(dψ(0)E) = c ̸= 1.

Since dψ(0)(E) is convex hence of restricted contact type, the capacity-regularity of
contact boundary subsets (see Proposition 7.31) implies that for each η> 0 there exists
δ> 0 such that dH (U ,dψ(0)E) < δ implies

|γ(U )−γ(dψ(0)E)| < η
3One should be careful as this word has a meaning in harmonic analysis
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Take δ to correspond to η= |c−1|
2 . Since ψε(x) = 1

εψ(εx) C 0-converges to dψ(0)x as
ε goes to 0, we have

dH (ψε(E),dψ(0)E) ≤ δ

3
for 0 < ε≤ ε0.

On the other hand sinceψn C 0 converges toψ, for each εwe have dH ( 1
ε
ψn(εE)),ψε(E))

converges to 0 as n goes to +∞ so for n ≥ N0 we have

dH (
1

ε0
ψn(ε0E),ψε0 (E)) < δ

3

As a result we have

dH ((
1

ε0
ψn(ε0E),dψ(0)E) ≤ 2δ

3

hence

|γ(
1

ε0
ψn(ε0E))−γ(dψ(0)E)| < |c −1|

2

but since ψn is symplectic, γ( 1
ε0
ψn(ε0E)) = γ(E) and we get

|γ(E)−γ(dψ(0)E)| < |c −1|
2

which is impossible since γ(E) = 1 and γ(dψ(0)E) = c. □

REMARKS 7.42. (1) Note that the theorem is local : the proof also implies that
if the limit ψ exists and is smooth only in an open domain U , then the limit
is symplectic in U . This is an important point, since many other symplectic
rigidity statements are global.

(2) The original Gromov-Eliashberg result only claimed that if ϕ is a diffeomor-
phism, then it is symplectic. The above proof only requires that ϕ is smooth
and show that ϕ must be a local diffeomorphism. If the manifold is closed (or
if the ϕn preserve the boundary) it follows that ϕ is a global diffeomorphism
by a degree theory argument.

(3) Assuming the ψn are Hamiltonians can we conclude ψ is Hamiltonian ? This
is called the C 0-flux conjecture One can also prove that a C 0 limit of maps pre-
serving the capacities of domains with contact-type boundary must preserve
the capacities of domains with contact-type boundary. We do not need to as-
sume the maps are homeomorphisms, and in fact one we shall give examples
of such maps which are not (see Exercise 13). However all known examples
are invertible outside of a set of zero capacity.

These results are at the origin of C 0-symplectic topology.

A natural question is whether γ could be compared with the C 0 distance. This was
known for R2n (see [Vit92]) the proof is easily adapted to any cotangent bundle of a
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non-compact manifold, for surfaces [Sey13a], and finally proved in full generality4 by
Buhovski, Seyfaddini, Humilière [BHS21].

A consequence of the above is

PROPOSITION 7.43 (C 0-continuity of the capacity). Let U ⊂ T ∗N be a bounded set.
For each positive ε there exists a positive δ such that for any ϕ1

H ∈ H am0(T ∗N ), with H
supported in U we have

dC 0 (ϕ, Id) < δ=⇒ γ(ϕ) < ε
In other words γ is continuous for the C 0 topology.

PROOF. Note that due to the formulation of the Proposition, there is no ned to as-
sume N is closed (since U is assumed to be bounded anyway). The proof has two parts.
In the first one, we prove the result assumingϕ is the identity on some open ball B , this
is called the ε-trick.

LEMMA 7.44. For any bounded set U ⊂ T ∗N there exists CU and ϕ ∈ H am0(T ∗N )
such that

(1) supp(ϕ) ⊂U
(2) d(x,ϕ(x)) ≥ ε for x ∈V , where V ⊂V ⊂U
(3) |ℓϕ(x)| ≤CUε for each fixed point x of ϕ.

PROOF. Let us assume U is contained in BR (W ) for W a bounded set in N . Then
let X be a unit vector field5 on W and Hε(x, p) = 2εχ(x, p)〈p, X (x)〉 where χ = 1 in a
neighborhood of BR (W ) and ∥Dχ∥ ≤ 1. On U , the flow ϕt

ε =ϕHε satisfies d(z,ϕ1
ε(z)) ≃

2ε+ o(ε) as ε goes to 0. We shall assume ε small enough so that d(z,ϕε(z)) ≥ ε. For
ε small enough, Hε satisfies the assumptions of Corollary 3.96 hence has no non-
constant periodic orbits. Therefore for any periodic point of Hε, we have |ℓϕε(x)| =
|Hε(x)| ≤CR,W ε □

Let us chooseϕε as in the lemma. We have from (3) that γ(ϕε) ≤ ε. Nowϕεψ has no
fixed points inside U since in this region d(z,ϕε(z)) ≥ ε while d(z,ψ(z)) < ε. Thus the
fixed points of ϕεψ are the fixed points of ϕε and we get that c±(ϕεψ) = c±(ϕε) hence
c+(ψ) ≤ c+(ϕεψ)+c+(ϕ−1

ε ) = c+(ϕε)−c−(ϕε) = γ(ϕε) ≤ 2Cε. Similarly −c−(ψ) ≤ 2Cε and
we finally conclude γ(ψ) ≤ 4Cε. □

Finally we have

PROPOSITION 7.45. Let (Hk )k≥1 be a sequence of Hamiltonians on T ∗N and (ϕk )k≥1

the sequence of their time-one flows.

(1) If Hk
C 0

−→ H and H is smooth, then ϕk γ-converges to ϕ the time-one flow of H.

4Using Floer homology, on a general aspherical symplectic manifold.
5This always exists on a non-closed manifold. Of course we do not assume any behavior on the

boundary.
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(2) If Hk
C 0

−→ H and ϕk
C 0

−→ ϕ where both H and ϕ are smooth, then ϕ is the time-
one flow of H.

PROOF. It is enough to deal with the case H = 0. Indeed, let ψ be the time-one flow
of H . Then ψ−1ϕn is the time-one flow of Kn(t , z) = Hn(t ,ψt (z))− H(t ,ψt (z)). Since
Kn converges to 0 in the C 0 topology, it is enough to prove that ψ−1ϕn C 0-converges

to Id. But since γ(ϕk ) ≤ ∥Hk∥C 0 by Proposition 7.18, we have ϕk
γ−→ Id. Together with

ϕk
C 0

−→ϕ and Proposition 7.43 this implies that ϕ= Id. □

3.1. Stability of special submanifolds. The above theorem can be extended to the
following

THEOREM 7.46 (see [LS94]). Let (Lk )k≥1 be a sequence of exact Lagrangian subman-
ifolds. Then if (Lk )k≥1 converges for the Hausdorff metric to the smooth manifold L∞,
then L∞ is an exact Lagrangian.

To be rewritten

LEMMA 7.47. Let us assume the Euler characteristic of V is zero and there is a point x0

where V is not Lagrangian (i.e. Tx0 L is not Lagrangian). Then there exists a Hamiltonian
flow ϕt

H such that ϕt (V )∩V =; for t small enough.

PROOF. We consider the vector bundle TxV ω which is isomorphic to T V and has
dimension n. It will be enough to find a vector field ξ near V such that ξ is a non-
vanishing section of T V ω and has no orbit completely contained in V . Let us first
consider the set W ⊂ U such that TxV ω is close to TxV . We can assume that this is
an open set with smooth boundary. Let F be a smooth function on W without critical
points. Then we can lift ∇F to TxV ω, to a vector field ξ without zeros, and without
recurrence, since dF (x)ξ(x) < 0. Now let us consider U = V \ W . By assumption we
have a vector field ξ on ∂U and any extension of ξ to U has the sum of its indexes equal
to zero (by considering the projection on V of the vector field and applying Poincaré-
Hopf, since χ(V ) = 0). We can thus extend ξ to a vector field without zeros. This vector
field could now have some orbit contained in V , but such an orbit must necessarily
enter U . Now we cover U by flow boxes B j , so that any orbit completely contained in
V must go through one of these boxes. On each box let η be a vector field such that
η(x) ∈ TxV ω \ TxV and perturb ξ by adding a large multiple of η j . Then the new vector
field is not tangent to each trajectory through the flow box must exit V . But since all
orbits remaining in V must go through some B j we see that no trajectory remains in V .

We now apply Corollary 5.58 from Chapter 5 and get a Lyapounov function H such
that d H(z)ξ(z) < 0 on V . This implies that XH (z) ∉ TzV as this is equivalent, by duality,
to d H(z) ̸= 0 on TzV ω. □

PROOF OF THEOREM 7.46. Assume first χ(V ) = 0 and let us argue by contradiction.
Assume for k large enough Lk is an exact Lagrangian contained in a neighbourhood of
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V . Let H be a Hamiltonian vector field such that ϕH (V )∩V =;. Then ϕH (Lk )∩Lk =
; but this contradicts the proof of the Arnold conjecture. For the general case, just
replace Lk ∈ T ∗N by Lk × 0S1 ⊂ T ∗(N ×S1) which will Hausdorff converge to V × 0S1 .
Since χ(V ×S1) = 0 we conclude that L×0S1 must be Lagrangian and so must V . □

3.2. Orderability of the symplectic group. Let us consider Hamiltonian maps in
DHamc(R2n), where the Hamiltonian is supported in the unit disc. Since we may nor-
malize the Hamiltonian to vanish outside a compact set, we may define c±(ϕH ), which
does not depend on the choice of H .

DEFINITION 7.48. We say that ϕH is positive and write Id ≺ϕH if c−(ϕH ) = 0.

PROPOSITION 7.49. We have

(1) If H ≥ 0 then Id ≺ϕH

(2) If ϕ≺ψ and ψ≺ϕ then ϕ=ψ
(3) If Id ≺ϕ and Id ≺ψ then Id ≺ϕ◦ψ

4. The Poisson bracket approach

Let us now state a Poisson bracket approach to symplectic rigidity:

THEOREM 7.50 (C 0-closedness of Poisson brackets. See [CV08]). Let (Fk )k≥1 and
(Gk )k≥1 be two sequences of functions with fixed bounded compact support. Assume

(1) C 0 − limk Fk = F,C 0 − limk Gk =G
(2) C 0 − limk {Fk ,Gk } = 0
(3) F,G are smooth

Then {F,G} = 0

PROOF. Let ϕt
k be the flow associated to Fk and ψt

k associated to Gk . Consider the
isotopy

t 7→ϕt
kψ

s
kϕ

−t
k ψ−s

k

It is generated for given s, by the Hamiltonian

Lk
s (t , z) = Fk (z)−Fk (ψ−s

k ϕ−t
k (z))

Indeed

dLk
s (t , z) = dFk (z)−dFk (ψ−s

k ϕ−t
k (z))dψ−s

k (ϕ−t
k (z))◦dϕ−t

k (z)

and using Lemma 3.37 we get

XLk
s
(t , z) = XFk (z)−dϕt

k (ψs
k (z))◦dψs

k (z))XFk (ψ−s
k ϕ−t

k (z))
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Now
d

d t
ϕt

kψ
s
kϕ

−t
k ψ−s

k (u) =
(

d

d t
ϕt

k

)
(ψs

kϕ
−t
k ψ−s

k (u))+

(dϕt
k )(ψs

kϕ
−t
k ψ−s

k (u))◦ (dψs
k )(ϕ−t

k ψ−s
k (u))

(
d

d t
ϕ−t

k

)
(ψ−s

k (u)) =
XFk (ϕt

kψ
s
kϕ

−t
k ψ−s

k (u))−dϕt
k (ψs

k (u))◦dψs
k (u))XFk (ψ−s

k ϕ−t
k (ϕt

kψ
s
kϕ

−t
k ψ−s

k (u)))

and setting z =ϕt
kψ

s
kϕ

−t
k ψ−s

k (u) we recover the above formula.

Now Lk
0 = 0 so

Lk
s (z) =

∫ s

0

d

d s
Lk

s (z)d s =−
∫ s

0
dFk (ψ−s

k ϕ−t
k (z))

d

d s
ψ−s

k (ϕ−t
k (z))d s =∫ s

0
dFk (ψ−s

k ϕ−t
k (z))XGk (ψ−s

k (ϕ−t
k (z))d s =

∫ s

0
{Fk ,Gk }(ψ−s

k (ϕ−t
k (z))d s

Therefore for s ≥ 0
∥Lk

s (z)∥ ≤ s∥{Fk ,Gk }∥C 0

and this implies that as k goes to infinity Lk
s converges to 0. It then follows from Propo-

sition 7.18 that for s, t ≥ 0

γ(ϕt
kψ

s
kϕ

−t
k ψ−s

k ) ≤ st∥{Fk ,Gk }∥C 0

henceϕt
kψ

s
kϕ

−t
k ψ−s

k

γ−→ Id. On the other hand, since Fk C 0-converges to F , Proposition
7.45 (1) implies that ϕt

k γ-converges to ϕt , the flow of XF . Similarly ψs
k γ-converges to

ψs , and we thus conclude ϕt
kψ

s
kϕ

−t
k ψ−s

k γ-converges to ϕtψsϕ−tψ−s and by unique-
ness of the γ-limit we get

ϕt
kψ

s
kϕ

−t
k ψ−s

k = Id

Since this holds for all s, t , we get {F,G} = 0, using Proposition 3.54 (2)
□

REMARK 7.51. (1) The theorem is non-obvious, since {F,G} involves the first
derivatives of F,G , but our assumptions are only of C 0-convergence. However
if the sequence Fn is constant, then the theorem becomes obvious since we
may write the condition {F,Gn} = 0 as dGn(XF ) = 0 : but this is equivalent to
Gn(ϕs

F (z))−Gn(z) = 0 for all s ∈R.
(2) The theorem extends to “pseudo-representations of finite-dimensional Lie al-

gebras" that is sequences of maps ρn : g−→C∞
0 (M ,R) such that for each X ∈ g

C 0 − limρn(X ) = ρ(X ). Then if the image of ρ is contained in C∞
0 , Humilière

proved that ρ is a representation of g in C∞
0 (M ,R) (see [Hum09]). The theorem

actually implies Gromov-Eliashberg’s theorem, at least a version for compact
supported symplectic diffeomorphisms (see [Hum09], Appendix A).

(3) The analogue of the theorem becomes false if we replace the assumption
{Fk ,Gk } = 0 by {Fk ,Gk } = H and try to conclude that {Fk ,Gk } = H as the fol-
lowing exercise shows.
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EXERCISE 7.52. On T ∗T 1, take Fn = χ(p)p
n

cos(nq),Gn = χ(p)p
n

sin(nq) and show that

Fn ,Gn C 0-converge to 0 while {Fn ,Gn} does not.

We may now give a new proof of Theorem 7.41

SECOND PROOF OF THEOREM 7.41. First of all let us place ourselves in a Darboux
chart and let (r j ,θ j ) be cylindrical coordinates, so that

λ= 1

2

n∑
j=1

r 2
j dθ j

and ω = ∑n
j=1 r j dr j ∧dθ j with r j ∈ [0,ρ0] and θ j ∈ S1. We set R = (r1, ..,rn) ∈ Rn+,Θ =

(θ1, ...,θn) ∈Tn .
Let now for 1 ≤ j ≤ n ψ j (r1,θ1, ...,rn ,θn) = χ j (r1, ...,rn) = χ j (R) be compact sup-

ported functions such that their differentials are linearly independent at some point R0

and setting ψ = (ψ1, ...,ψn) we have that for c = (χ1(R0), ...,χn(R0)) that the set ψ−1(c)
is a Lagrangian submanifold L near (R0,Θ0). Clearly by composing ψ with a local sym-
plectic map, we can arrange that T(R0,Θ0)L is any Lagrange linear subspace of T(R0,Θ0)M .
Let (Φn)n≥1 be a sequence of symplectic maps converging to Φ. Then the ψ j obvi-
ously commute and so do the ψ j ◦Φn . If Φ is smooth, then by Theorem 7.50 the ψ j ◦Φ
also commute. As a result near (R0,Θ0) the set ψ−1(c) is a Lagrangian, Lc , and since
(ψ◦Φ)−1(c) =Φ−1(ψ−1(c)) and the ψ j ◦Φ commute, we get that Φ−1(Lc ) is coisotropic.
Since we can choose for T(R0,Θ0)L any Lagrangian subspace and for (R0,Θ0) any point in
M we get that the preimage by dΦ(z) of any Lagrangian subspace of Tz M is coisotropic.
Now ifϕn is a sequence of symplectic maps C 0-converging toϕ, we apply the above ar-
gument to the sequenceΦn : M×M −→ M×M given byΦn(u, v) = (u,ϕn(v)) and Lc =∆
the diagonal in M ×M . Then

Φ−1(∆) = {(u,ϕ(v)) | u =ϕ(v),u, v ∈ M } = {(ϕ(v), v) | v ∈ M }

and this is just the graph of ϕ, up to a permutation of the variables. If ϕ is smooth, this
graph is then coisotropic hence Lagrangian, since it has dimension dim(M), and we
know that this implies that ϕ is symplectic. □

REMARK 7.53. A different proof was presented in [Hum09], Appendix A (see also
for a variant [CV13]), which however requires the ϕn to be defined everywhere and to
coincide with the identity outside of a fixed compact set.

5. Spectral invariants and symplectic reduction

Let V ⊂ N be a submanifold and consider the coisotropic submanifold T ∗
V N =

{(q, p) ∈ T ∗N | x ∈ V }. Let S defined on N × E be a G.F.Q.I. for a Lagrangian L in
T ∗N and assume L is transverse to T ∗

V N . We can define the reduction of L to T ∗V ,
LV = {(q, p) ∈ T ∗V | ∃(q, p ′) ∈ L∩T ∗

V N , p ′
|Tq V = p}.

PROPOSITION 7.54. The Lagrangian LV has the G.F.Q.I. SV = SV ×E .
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PROOF. This follows immediately from the fact that (q, ∂S
∂q (q,ξ)) ∈ T ∗

V N if and only

if q ∈ N and the restriction of ∂S
∂q (q,ξ) to TqV is the differential of the restriction, that is

∂S
∂q (q,ξ)|V ×E = ∂SV

∂q (q,ξ). □

The following will also turn out to be useful. Let f : M −→ N be a smooth map. Let
L ∈ T ∗N and consider the inverse image of L by the correspondence

Λ f = {(x, px , y, py ) | y = f (x), px = py ◦d f (x)}

We consider Λ−1
f (L) in T ∗M (see Chapter 4 Section 2.1). Then

PROPOSITION 7.55. We have for β ∈ H∗(N ) \ {0},α ∈ H∗(M) \ {0}, f : M −→ N a
smooth map and S f (x;ξ) = S( f (x);ξ)

c(β,S) ≤ c( f ∗(β),S f ))

c(α,S f )) ≤ c( f !(α),S)

In particular if S is a G.F.Q.I. for L ∈L (T ∗N ) and Λ−1
f ◦L ∈L (T ∗M)

c(β,L) ≤ c( f ∗(β),Λ−1
f (L))

c(α,Λ−1
f (L)) ≤ c( f !(α),L)

where f ! is the transfer map (also called the Umkehr map) from H k (M) to H k+dim(M)−dim(N )(N ).

PROOF. Indeed, if S is a G.F.Q.I. for L, then S f (x;ξ) = S( f (x);ξ) is a G.F.Q.I. for
Λ−1

f (L). Then denoting f̃ (x,ξ) = ( f (x),ξ), we have S f = S ◦ f̃ and S t
f = {(x,ξ) | S f (x,ξ) ≤

t } is the image by f̃ of S t .
So we may consider the map f̃ ∗ : H∗(Sb ,Sa) −→ H∗(Sb

f ,Sa
f ) and the commutative

diagram

H∗(Sc ,Sa)

f ∗

��

// H∗(Sb ,Sa)

f ∗
��

H∗(Sc
f ,Sa

f ) // H∗(Sb
f ,Sa

f )

If b < c(β,S), β has image zero by the top horizontal arrow, hence f ∗(β) has also image
0 by the lower horizontal arrow and we get that b ≤ c( f ∗(β),S f ). This proves the first
inequality.

Setting EY = Y ×Rk ,EX = X ×Rk we get by Alexander duality ([Spa66], p.296, theo-
rem 17)

Hq (S t ,S−∞) ≃ H n−q (EY \ S−∞,EY \ S t ) = H n−q (EY , (−S)−t )

and similarly

Hq (S t
f ,S−∞

f ) ≃ H m−q (EY \ S−∞
f ,EY \ S t

f ) = H m−q (EY , (−S f )−t )
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where m = dim(X )+k,n = dim(Y )+k. Thus the map

f̃∗ : Hq (EY , (−S)−t ) −→ Hq (EY , (−S f )−t )

induces a map
f̃ ! : H m−q (S t ,S−∞) −→ H n−q (S t

f ,S−∞
f )

Using now the following diagram (where d = dim(N )−dim(M))

H∗+d (Sc ,Sa) // H∗+d (Sb ,Sa)

H∗(Sc
f ,Sa

f )

f̃ !

OO

// H∗(Sb
f ,Sa

f )

f̃ !

OO

we see that if b < c(α,S f ) then b ≤ c( f !(α),S) and this proves the second statement.
□

REMARKS 7.56. (1) The result holds for any S that is quadratic at infinity.
(2) In our case the map f ! is defined as follows. First denote by EX = X ×Rk (resp.

EY = Y ×Rk ) and by f̃ : X ×Rk −→ Y ×Rk the map (x,ξ) 7→ ( f (x),ξ). Then note
that S f = S◦ f̃ so that S t is exactly f̃ (S t

f ), hence EY \S t is exactly f̃ (EX \S t
f ). We

thus have a map

f̃∗ : H∗(EX \ S t
f ,EX \ Sa

f ) −→ H∗(EY \ S t ,EY \ Sa)

By Alexander duality ([Spa66], theorem 10 p. 342) this induces a map

H m− j (S t
f ,Sa

f ) −→ H n− j (S t
f ,Sa

f )

where m = dim(X ),n = dim(Y ).

In particular we get

COROLLARY 7.57. Let f : M m −→ N n be map between connected compact manifolds

(1)
c−(L) ≤ c−(Λ−1

f (L))

hence
γ(Λ−1

f (L)) ≤ γ(L)

(2) If f : M −→ N satisfies the following condition: f ∗(µN ) ̸= 0 in H∗(M) then

γ(Λ−1
f (L)) = γ(L)

PROOF. For (1) we apply the first inequality of Proposition 7.55 to α = 1 The in-
equality c+(L) ≥ c+(Λ−1

f (L)) follows by replacing L by L (i.e. S by −S). Substracting
the two we get the second inequality. To get equality we must only prove the reverse
inequality.

Now since f !(α∪ f ∗(µN )) = f !(α)∪µN , if f !(α) = 1, we have f !(α∪ f ∗(µN )) = µN

so that f ∗(µN ) ̸= 0. Conversely if f ∗(µN ) ̸= 0 there is a class α ∈ H d (M) such that α∪
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f ∗(µN ) = µM and then since f !(α) ∈ H 0(N ) for degree reasons and f !(α∪ f ∗(µN )) =
f !(µM ) = µN on one hand, and to f !(α)µN on the other. As a result f !(α) = 1. Thus
by Proposition 7.55 we have c(α,Λ−1

f (L)) ≤ c(1N ,L), but c(1M ,Λ−1
f (L)) ≤ c(α,Λ−1

f (L)) by

Lusternik-Shnirelman’ Theorem (Theorem 5.39). As a result c(1M ,Λ−1
f (L)) ≤ c(1N ,L)

i.e. c−(Λ−1
f L) ≤ c−(L) and this implies first c+(Λ−1

f L) ≥ c+(L) and finally

γ(Λ−1
f (L)) ≥ γ(L)

□

As a consequence since if iM : M −→ N is an inclusion then (ΛiM )−1 is the symplec-
tic reduction, we have

COROLLARY 7.58 (Spectral inequality for reduction I). We have for α ∈ H∗(V ),β ∈
H∗(N ) S a G.F.Q.I. over N , and iV : V −→ N the inclusion

c(α,S) ≤ c(i∗V (α),SV )

c(β,SV ) ≤ c(i !
V (β),S)

where i !
V is the transfer map. In particular if S is the G.F.Q.I. for L ∈ L (T ∗N ) and its

reduction LV belongs to L (T ∗V ) then

c(α,L) ≤ c(i∗V (α),LV )

c(β,LV ) ≤ c(i !
V (β),L)

A different situation is when N = M ×P , then T ∗N = T ∗M ×T ∗P and we can con-
sider the coisotropic submanifold ZP = {(x, px , y, py ) ∈ T ∗N ×T ∗P | η = 0}. Then the
space Zω

P is the foliation T ∗N×{p,0)} and the manifold ZP /(ZP )ω is isomorphic to T ∗N .
The reduction of L ⊂ T ∗N by ZP is LZP = {(x, px , y,η) | (x, px , y,0) ∈ L}/ ≃P where

(x, px , y,0) ≃P (x ′, p ′
x , y ′,0) ⇔ x = x ′, px = p ′

x

An important tool to relate the spectral invariants of L,LV ,LZP is the following.

PROPOSITION 7.59 (Spectral inequality for reduction II). Let S(x, y,ξ) be a G.F.Q.I.
defined on the bundle E over M ×P. We identify H∗(M ×P ) to H∗(M)⊗ H∗(P ) by the
Künneth isomorphism. Let α ∈ H∗(M). Then

c(α⊗1P ,S) ≤ inf
p∈P

c(α,Sp ) ≤ sup
p∈P

c(α,Sp ) ≤ c(α⊗µP ,S)

PROOF. Consider the following diagram
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H∗(M ×P )

i∗p
��

T // H∗(E∞,E−∞)

��

// H∗(E t ,E−∞)

��
H∗(M)

Tp // H∗(E∞
p ,E−∞

p ) // H∗(E t
p ,E−∞

p )

where the vertical maps are induced by the injection ip : M −→ M × {p} and corre-
sponds via the Künneth isomorphism, to the projection H∗(M)⊗H∗(P ) −→ H∗(M)⊗
H 0(P ). Now if t < c(α⊗ 1,S) then the composition of the top horizontal maps sends
α⊗1 to a zero. This implies that the composition of the bottom horizontal maps sends
α to zero. But this in turn means that t ≤ c(α,Sp ) and as a result c(α⊗1,S) ≤ c(α,Sp )
for all p in P . This implies the first inequality. The second inequality is obvious. The
third is obtained by using the diagram

H∗(M ×P )
T // H∗(E∞,E−∞) // H∗(E t ,E−∞)

H∗(M)

i !
p

OO

Tp // H∗(E∞
p ,E−∞

p )

OO

// H∗(E t
p ,E−∞

p )

OO

where i !
p : H k (M) −→ H k+p (M ×P ) is the push-forward or shriek6 map in cohomology.

Since i !
p (α) =α⊗µP , we get that if t < c(α,Sp ) then the image ofα by the lower horizon-

tal map is zero, but this implies that the image of α⊗µP by the composition of the top
horizontal maps is zero, that is t ≤ c(α⊗µP ,S). As a result c(α,Sp ) ≤ c(α⊗µP ,S). □

PROPOSITION 7.60 (Reduction capacity inequality). Let V be a submanifold of N .
We have for a G.F.Q.I. S the inequality γ(SV ) ≤ γ(S). As a result if (Li )V ∈ L (T ∗V ) we
have

γ((L1)V , (L2)V ) ≤ γ(L1,L2)

If L is a Lagrangian in L (T ∗N ×T ∗P ) we have for each p ∈ P γ(Sp ) ≤ γ(S) hence if
Lp ∈L (T ∗N ), we have

γ((L1)p , (L2)p )) ≤ γ(L1,L2)

PROOF. We have i !
V (µV ) = µN and i∗V (1N ) = 1V . Then according to Proposition

7.58, we have c(µV ,SV ) ≤ c(i !
V (µV ),L) = c(µN ,S) and c(1N ,S) = c(i∗V (1N ),S) ≤ c(1V ,SV ).

Substracting the inequalities we get the first part of the Proposition. Now if S1,S2

are G.F.Q.I. for L1 and L2 we have according to the first part of the Proposition that
γ((S1 ⊖ S2)V ) ≤ γ(S1 ⊖ S2), that is γ((L1)V , (L2)V ) ≤ γ(L1,L2). The second part follows
from the first applied to V = N × {p}. □

This implies

COROLLARY 7.61. Let L1,L2 ∈L (T ∗X ) and V ∈L (T ∗Y ). Then

γ(L1 ×V ,L2 ×V ) = γ(L1,L2)
6also called umkehr or transfer map
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PROOF. Notice that for y ∈ Y we have (Li ×V )y = Li and we have

γ(L1,L2) ≤ γ(L1 ×V ,L2 ×V )

For the reverse inequality let S1(x,ξ),S2(x,η) be G.F.Q.I. for Li and T (y,ζ) be a G.F.Q.I.
for V . Applying the triangle inequality (Proposition 6.3) we get

c(1X ⊠1Y , (S1 ⊖S2)⊠ (T ⊖T )) ≥ c(1X , (S1 ⊖S2))+ c(1Y , (T ⊖T ))

which together with

c(µX ⊠µY , (S1 ⊖S2)⊠ (T ⊖T )) ≤ c(µX , (S1 ⊖S2))+ c(µY , (T ⊖T ))

implies

γ((S1 ⊖S2)⊠ (T ⊖T )) ≤ γ(S1 ⊖S2)+γ(T ⊖T )

Now γ(T ⊖T ) = γ(V ,V ) = 0 hence γ(L1 ×V ,L2 ×V ) ≤ γ(L1,L2)+γ(V ,V ) = γ(L1,L2) □

In particular since a Lagrangian correspondence is the composition of a product
and a symplectic reduction, we have

PROPOSITION 7.62 (Correspondence is capacity non-expansive). Let Λ be a La-
grangian correspondence in T ∗X ×T ∗Y having a G.F.Q.I.Σ(x, y,η). Then for any L1,L2 ∈
L (T ∗X ) we have

γ(Λ◦L1,Λ◦L2) ≤ γ(L1,L2)

Similarly if Λ1,Λ2 are Lagrangian correspondences having a G.F.Q.I. and L ∈ L (T ∗N ),
we have

γ(Λ1 ◦L,Λ2 ◦L) ≤ γ(Λ1,Λ2)

PROOF. First of all we obviously have

γ(L1 ×Λ,L2 ×Λ) = γ(L1,L2)

Then sinceΛ◦L is the reduction ofΛ×L by the coisotropic subspace ν∗∆X ×T ∗Y that
is by the submanifold V =∆X ×Y , the reduction inequality implies the first inequality.
The second inequality similarly follows from

γ(L×Λ1,L×Λ2) = γ(Λ1,Λ2)

□

COROLLARY 7.63. Let ϕH be the time-one flow of the compact supported Hamilton-
ian H on T ∗N . Then for L ∈L (T ∗N ) we have

γ(ϕH (L),L) ≤ γ(ϕH )

PROOF. We take Λ = Γ(ϕH ), notice that Λ ◦L = ϕH (L) and apply Proposition 7.62.
□

Ajouter le cas de c±. Conséquence : if H ≥ c on L then c+(ϕH ) ≥ c

We now apply this result to the comparison between γ and γ̂.



216 7. SPECTRAL INVARIANTS IN SYMPLECTIC TOPOLOGY

COROLLARY 7.64. We have the inequality

γ̂(ψ) ≤ γ(ψ)

PROOF. We start with a preliminary remark : if ψt is a Hamiltonian isotopy on R2n

with compact support, then this is not the case for Id×ψt since however large will x
be, we usually have (id×ψt )(x, y) = (x,ψt (y)) ̸= (x, y) for some y . However, supp(id×
ψt ) ⊂ R2n × supp(ψt ) ⊂ R2n × K for some compact K , hence its intersection with a
neighborhood of the diagonal is compact. As a result, if L is in a neighborhood of the
diagonal, (Id×Ψt )(L) is a compact supported Hamiltonian isotopy of L. Let Γψ be the
compactification of the image by ρ of the graph of ψ. Let L be a Lagrangian in T ∗N .
Then 0N ×ψ(L) = (Id×ψ)(0N ×L) = Γψ◦(0N ×L). Then applying first Corollary 7.61 and
then Corollary 7.62 we get

γ(ψ(L),L) = γ(0N ×ψ(L),0N ×L) = γ(Γψ(0N ×L),0N ×L) ≤ γ(Γψ,ΓId) = γ(ψ)

Taking the supremum on the left hand side over all L concludes the proof. □

Finally we introduce the following :

DEFINITION 7.65. Let H ,K ∈C∞([0,1]×T ∗M ,R). We set

γ(H ,K ) = sup
t∈[0,1]

γ(ϕt
H ,ϕt

K )

Thus Hn −→ H if and only if ϕt
Hn

−→ϕt
H uniformly in t for t ∈ [0,1].

6. Notations and conventions

In our definition, an exact Lagrangian contains the information of the primitive fL

of λ|L . We could identify it with its lift, a Legendrian manifold, but this would lead
to some confusions : for example an exact Lagrangian is embedded if L is embedded,
which is different than requiring that its Legendrian lift is embedded.

An exact Lagrangian brane also contains a lift sL of the tangent space to Λ̃(T M) the
bundle over M with fibre Λ̃(Tx M) the universal cover of Λ(TxE). In other words sL is
a section of Λ̃(T M) over L such that s(x) projects on TxL. Then if we denote by T the
canonical action of π1(Λ(n)) = Z as the group of deck transformations of Λ̃(TxE) we
write L[n] to be L with sL replaced by T n sL . Again when no confusion shall arise we
only write L for the brane, and L will also denote the set of points of the Lagrangian
brane.

The definitions for c+,c− in the literature7 are conflicting. We would like a positive
Hamiltonian to generate a positive flow. For the standard equations, the Hamiltonian
H(q, p) = f (q) has flow given by ṗ = −∇ f (q), so the image of the zero section is the
graph of a negative function.

7Including in the author’s papers !
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7. Comments

7.1. First steps in symplectic rigidity. Gromov’s non-squeezing (from [Gro85]) to-
gether with the Conley-Zehnder’s theorem was one of the first results in symplectic
topology. It was later extended by Lalonde and McDuff ([LM95]).

Beyond non-squeezing, the question of “symplectic packing” is an exciting domain
of symplectic topology : how many symplectic balls or ellipsoid or polydiscs can be dis-
jointly embedded in a given ball or ellipsoid or polydisc. We refer to an abundant lit-
terature on the subject and among others [Bir01; MP94; Sch05; MS12; Ush19; Ber+21].

Even though the first symplectic invariant was Gromov’s "width" (see [Gro85]), the
axiomatic formulation as a capacity is due to Ekeland and Hofer (see [EH89; EH90])
who defined capacities using Hamiltonian dynamics. Our version of Theorem 7.41 is
a little stronger than the original, as Gromov and Eliashberg assumed that ψ is a dif-
feomorphism (this could be weakened to assume that ψ is a homeomorphism using a
result by Arens in [Are46]) while here this is part of the conclusion of the theorem. This
proof is from [EH89]. The original proof used Gromov’s result stating that Diff(M ,ω) is
either C 0 closed or C 0 dense in Diff(M ,ωn) (see [Gro86] for the statement and proof)
Our second proof using Poisson brackets was unpublished. There are other proofs,
for example using symplectic shape (see [MS14]). The Laudenbach-Sikorav theorem
(Theorem 7.46) in full generality also implies the Gromov-Eliashberg theorem since
the graph of the ϕk is a Lagrangian submanifold. However there is for now no local
version of the Laudenbach-Sikorav theorem unless one assumes Lk = ϕk (L0) for a se-
quence of symplectic maps.

The analog of Theorem 7.41 for contact diffeomorphisms is due to Bennequin in
dimension 3 using the existence of exotic contact structures on R3 and again that
Diff(M ,ξ) is either C 0 closed or C 0 dense in Diff(M) (again from [Gro86])). In higher
dimension the same proof works once we know there are exotic structures on R2n+1, a
result due to Niederkruger ([Nie06]). Here we cannot use the approach using capaci-
ties, since the analog of symplectic capacities do not exist on R2n+1. However a proof
using contact shape is due to Müller ([Mul90]) and this again implies the stronger result
that an embedding is contact if and only if it preserves the shape8.

7.2. Closed characteristics. The first proof of Weinstein’s conjecture was in [Vit87a],
the proof we present is different from the original one, since capacities did not exist at
the time. More general ambient manifolds were dealt with in [HV88] and [Vit99] for
cotangent bundles (at least in the simply connected case), [FHV90] for manifolds of
the type P ×Cwhere P is compact, in [HV92] for manifolds with certain non-vanishing
Gromov-Witten invariants (see also [LT00]). All these examples are for contact hyper-
surfaces in a symplectic manifold (such contact manifolds are called “fillable”).

8It is wrong to think that a smooth limit of contact maps is a contact map as the sequence of maps

(x, y, z) 7→ (
x

n
,

y

n
,

z

n2 ) shows.
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In dimension 3 a number of cases - including non-fillable cases- and in particu-
lar for all contact forms on S3 were proved in [Hof93b] and finally the conjecture was
proved for any 3-dimensional contact manifold by Taubes, using the equivalence be-
tween Seiberg-Witten and Gromov-Witten invariants (see [Tau07]).

In higher dimensions, there are criteria using Symplectic homology [Vit99; She22]
and Contact homology For the case of exotic structures, see [AH09], for connections
with other notions, see [AFM15; CF09]. For existence of periodic orbits on hypersur-
faces which are not of contact type, existence - first for a dense set of levels and then
for almost all levels (for the Lebesgue measure)- was proved by Hofer-Zehnder and
then Struwe (see [HZ94; Str90]). Counterexamples to existence when the contact-type
condition is removed are due to V. Ginzburg and M. Herman [Gin95; Gin97; Her99]).

7.3. Capacities and metrics. The metric γ was introduced in [Vit92] at the same
time Hofer introduced the Hofer metric ([Hof90]). It was then extended to more gen-
eral manifolds by Schwarz ([Sch00] and then Oh ([Oh05; Oh06]) in the Hamiltonian set-
ting and by Leclercq for Lagrangian submanifolds ([Lec08]). The proof of the Gromov-
Eliashberg theorem we present is essentially the one from [EH89].

7.4. Spaces and metrics. The C 0-continuity of capacities in R2nis due to the au-
thor ([Vit92]) for the capacities defined in this book and to Sikorav ([Sik90]) for Hofer’s
displacement energy. For the capacity, the proof relies on the so-called ε-shift trick,
easily adapted to any open symplectic manifold. For closed manifolds this was proved
for surfaces in [Sey13a], in general aspherical manifolds9 in the amazing paper by
Bukhovski, Seyfaddini, Humilière [BHS21] and extended by E. Shelukhin to CP n in
[She18] and Y. Kawamoto [Kaw20] to negative monotone manifolds.

The first study of the completion of the group of Hamiltonian symplectomorphism
for the γ distance10 is due to Humilière in [Hum08]. Instead of the completion for the γ
distance, we could have used the distance between the barcodes of the functions (see
[LNV13]) but it follows from Kislev-Shelukhin (see [KS22]) that this yields an equivalent
distance. Theorem 7.50 is due to Cardin and the author in [CV08], but the subject was
developed on one hand by V. Humiliere, in particular in [Hum09] where it was extended
to “pseudo-representations” and on the other hand for bounds on the C 0-norm of the
brackets and related questions by Entov-Polterovich and collaborators ([EP10; EP09;
EPR10; EPZ07; Buh10; PR14]). See [Vit22] for recent results.

9i.e. such that [ω]π2(M) = 0, using Floer homology
10In fact Humilière used the γ̂ distance.
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8. Exercises and Problems

(1) (Weinstein -Moser) (see [Wei73b]) Let H be a smooth function on R2n , having
a critical point at 0 and such that H(0) = 0 and D2H(0) is positive definite.
We want to prove that H−1(c) has n distinct closed characteristics for c small
enough.

This problem originates from Lyapounov’s thesis in 1892 (see [Lia07] for
the french translation and [Lia92]) for an english translation) and Weinstein’s
result was extended by [EL80a] to “pinched convex sets" and to starshaped
ones in [Ber+85] and then by Y. Long and C. Zhu ([LZ02; Lon06].

(2) Prove that if U is a starshaped neighborhoodof the zero section, that is (q, p) ∈
U implies (q, t p) ∈ U for all t > 0, then L (U ) is also the set of Lagrangians L
such that there is a Hamiltonian isotopy supported in U

HINT. Start from a Hamiltonian isotopy in T ∗N . Show that we can assume
the Hamiltonian has compact support. Conclude that t ·L = {(q, t p) | (q, p) ∈ L}
can be obtained from the 0N by an isotopy supported in U . Conclude by show-
ing that the restriction of the conformal isotopy t 7→ (q, t p) to an exact La-
grangian L′ is induced by a Hamiltonian isotopy with support in a neighbor-
hood of

⋃
t∈[0,1] t ·L.

(3) Prove that if C is a codimension 2 coisotropic subspace, D(Cω) a disc in its
orthogonal complement, then c(D(Cω)×C ) =+∞.

Next exercise must be integrated to the text!

(4) We want to prove that γ defined in Definition 7.16 is a distance. The only non-
obvious fact is the triangle inequality. Let ψt be a Hamiltonian isotopy and L
a Lagrangian. Let S1

t be a G.F.Q.I. forψt (L) and S2
t a G.F.Q.I. forψtψ

−1
1 (0N ). We

first want to prove that

(*) c(α,ψ1(L)) = c(α,S1
0 ⊖S2

0)

(a) Prove that the critical values for S1
t ⊖S2

t do not depend on t .

HINT. Prove that the critical values corresponding to intersection points
of ψt (L)∩ψtψ

−1
1 (0N ) =ψt (L ∩ψ−1

1 (0N )). Then show that this set does not
depend on t

(b) Prove that c(α∪β,ψ1(L)) ≥ c(α,L)+ c(β,ψ1(0N ))

HINT. Use (*) and apply the triangle inequality to obtain c(α∪β,ψ1(L)) ≥
α,L)+ c(β,ψ−1

1 (0N )). Then prove that c(β,ψ−1
1 (0N )) = c(β,ψ1(0N )) by ap-

plying once more (*)to L = 0N .

(c) Let ϕt ,ψt be Hamiltonian flows with compact support on R2n and ϕ =
ϕ1,ψ=ψ1. Set Ψ=ψ× Id on T ∗X ×T ∗X and L = Γϕ be the graph of ϕ in
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R2n ×R2n
identified to T ∗∆R2n . Prove that

c(1,Γψϕ) = c(1,Ψ(Γϕ)) ≥ c(1,Γϕ)+ c(1,Ψ(∆R2N )) = c(1,Γϕ)+ c(1,Γψ)

(d) Prove that the reverse inequality holds for c(µN ,•) and conclude that

γ(ϕψ) ≤ γ(ϕ)+γ(ψ)

(5) Prove that in general γ(U ) ̸= sup{γ(ϕ1
H ) | supp(ϕt

H ) ⊂U and bounded} in other
words the assumption on the support of the Hamiltonian cannot be replaced
by the assumption on the support of the isotopy.

(6) Prove that for a domain U , if a function H is non-negative and satisfies H ≥
γ(U ) on U then c−(ϕH ) ≤−c(U )

(7) Prove that for a compact manifold N there is no embedded Lagrangian Hamil-
tonianly isotopic to 0N - other than 0N - such that L = L where L = {(q,−p) |
(q, p) ∈ L}.

HINT. Use the representation theorem (7.9 ) to find two points x± and a path
γ in L from x− to x+ such that

∫
γλ> 0. Show that if L = L there is another path

γ′ from x− to x+ such that
∫
γ′ λ< 0 and conclude. (See also Exercice 2)

(8) Let U be connected (but not simply-connected) domain in the plane. We want
to prove that c(U ) = γ(U ) is the area of the smallest simply-connected domain
containing U .
(a) Prove that it is enough to prove this for an annulus that is a domain with

a single hole (use the monotonicity of c and γ).
(b) Prove using Moser’s lemma that the case of a general annulus can be re-

duced to the case of a standard annulus

A(r,R) = {
(q, p) ∈R2 | r 2 ≤ q2 +p2 ≤ R2}

and prove that γ(A(r,R)) ≤πR2.
(c) Prove, using an embedding of the disc in the annulus that c(A(r,R)) ≥

π(R2 − r 2).

(d) Considering a Hamiltonian H(q, p) = h( q2+p2

2 ) where h is represented on
Figure 3. The intersection of the dashed lines with the vertical axis repre-
sent h(ρ)−ρh′(ρ). Since our trajectories must have −πR2 ≤ h′(ρ)−h(ρ) <
0, choosing a > πR2 we see that c−(ϕH ) is not represented by a constant

trajectory. Similarly the trajectory with ρ ≃ r 2

2 and h(ρ) ≃ 0 will have

h(ρ)−ρh′(ρ) < 0 so cannot represent c−(ϕH ), and the same for ρ ≃ R2

2

and (h(ρ) ≃ a (then h(ρ)−ρh′(ρ) > a > πR2

2 ). So the only remaining pos-

sibilities are ρ ≃ r,h(ρ) ≃ a and ρ ≃ R2

2 ,h(ρ) ≃ 0. In the second case we

get h(ρ)−ρh′(ρ) ≤−πR2and in the first c−(ϕH ) ≃ k r 2

2 −a with k such that

k r 2

2 −a ≥−πR2. Now if we increase R, we see that c+(ϕH ) will not change
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since it is determined by the value of h near r 2/2. On the other hand
c+(ϕH ) must become larger than π(R2 − r 2) large enough

A terminer

ρ

a

h

h(ρ)−ρh′(ρ)

r

FIGURE 3. The Hamiltonian H of Exercice 8.

(9) (The limit of capacity preserving maps preserves the capacity) Let ψn be con-
tinuous maps preserving γ (or c) that is γ(ψn(U )) = γ(U ) for any restricted
contact type domain U . We want to prove that if ψ is the C 0 limit of the se-
quence ψn then ψ preserves the capacity of restricted contact type sets. Con-
sider for t ∈ [−ε,ε] the sets Ut = ρt (U ), images by the conformal vector field
transverse to ∂U obtained by the definition of restricted contact type. We have
ρ−t (U ) ⊂U = ρ0(U ) ⊂ ρt (U ) for t > 0.
(a) Show that γ(ρt (U )) = e tγ(U )
(b) Prove the statement by using the fact that for n large enough

(ψn(ρ−ε(U ))) ⊂ψ(U ) ⊂ (ψn(ρε(U )))

(10) (“Usher’s observation”, see [Ush15], theorem 1.3) The goal of this exercise is to
prove the following theorem

THEOREM. Let (M ,ω) be a symplectic manifold, H(t , x) be a Hamiltonian
and A be a compact subset in (M ,ω). Then there exists K (t , x) such that ϕ1

K =
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ϕ1
H and ∫ 1

0
oscx∈ϕt

K (A) Kt d t =
∫ 1

0
oscx∈A Ht d t

COROLLARY. Let A be a compact set in (M ,ω) and H(t , x) a Hamiltonian.
Then there exists a Hamiltonian K (t , x) such that

osc[0,1]×M K (t , x) ≤
∫ 1

0
oscx∈A Ht d t

and ϕ1
K =ϕ1

H on A. In particular ϕ1
H (A) =ϕ1

K (A).

(a) Write the formula for the Hamiltonian H , Ĥ generating the flows ϕt
H

=
(ϕt

H )−1 and ϕt
Ĥ
= (ϕ1−t

H )(ϕ1
H )−1.

(b) Write the formula for the Hamiltonian K generating the flowϕt
K = (ϕt

Ĥ
)−1 =

ϕ1
H ◦ ((ϕH )1−t )−1

(c) Prove that K (t ,ϕt
K (z)) = H(1− t , z)

(d) Using that ϕ1
K =ϕ1

H prove the theorem
(e) Using the fact that if H1 = H on

⋃
t∈[0,1]ϕH

t (A) we have ϕt
H1

= ϕt
H on A,

prove the corollary.
(f) Use the above to reprove Proposition 7.19

(11) (Seyfaddini’s theorem, see [Sey13b] ) Let Diff(D,∂D) be the set of diffeomor-
phisms of D2n equal to Id in some (non-prescribes) neighbourhood of the
boundary. We shall admit that this is a separable metric space for the C∞ met-
ric, so that there is a countable dense subset.
(a) By plugging-in a dense sequence of suitably rescaled elements of a dense

sequence, prove that there exists ϕ ∈ Diff(D,∂D) such that the set of its
conjugates ψ◦ϕ◦ψ−1 where ψ ∈ Diff(D,∂D) is C 0 dense in Diff(D,∂D).

(b) Prove that this is not possible if we replace Diff(D,∂D) by Diff0
ω(D,∂D) the

connected component of Id in Diffω(D,∂D).

HINT. Prove that ifϕ ̸= Id there exists B(x,ε) such thatϕ(B(x,ε))∩B(x,ε) =
; and this implies γ(ϕ) ≥πε2. Conclude that this holds for the whole orbit.
Then apply Proposition 7.43.

(12) (A capacity preserving map which is not a homeomorphism)
Let an = 1+1/n,bn = 1/n and Kn be the domain obtained by smoothing

the boundary of the rectangle [−an , an]× [−bn ,bn] and having the same area,

that is 4 n+1
n2 . Let D(rn) be the disc with the same area as Kn (rn =

√
4 n+1
πn2 )

(a) Use Moser’s lemma (Lemma 3.21 of Chapter 3 to find a symplectomor-
phism un from Kn \ Kn+1 to D(rn) \ D(rn+1). Show that we may assume
that un and un+1 coincide in a neighborhood of ∂Kn ∩∂Kn+1

(b) Prove that the above construction yields a symplectic map u from K1 \
K∞ = K1 \ [−1,1]× {0} to D(r1) \ {0}.
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(c) Prove that if we extend u to v by sending [−1,1]×{0} to 0, we get a capacity
preserving map from K1 to D(r1) that is not a homeomorphism.

(d) Extend the above construction to higher dimensions.
(e) Is v the C 0-limit of symplectic smooth maps ?
(f) Does v have an inverse in the γ-completion àDHam(R2n) of DHam(R2n).

(13) (see [MS07], p. 463, prop. 12.2.2 )
(14) (Struwe quasi-existence theorem, see [Str90]) Let H be an autonomous Hamil-

tonian in R2n such that H−1(c) is a compact regular level for c ∈ [a,b]. Then
for almost all c ∈ [a,b], H−1(c) has a closed characteristic.

(15) (Hofer-Zehnder capacity) (see [Hof93a]) We consider an autonomous Hamil-
tonian H(z), its flow ϕt

H . For a point z, we denote by A(z, H) the action∫ 1
0 [pq̇ − H(t , z)]d t . where z(t ) = ϕt

H (z). We shall say that H is admissible if
H is compact supported and the only solutions of ϕt

H (z) = z for 0 < t ≤ 1 are
constants (i.e. points where d H(z) = 0). We denote by Hamad the set of ad-
missible Hamiltonians. Let U be a domain in R2n . We set

cH Z (U ) = sup
{∥H∥C 0 | H ∈ Hamad , supp(H) ⊂U

}

A priori cH Z (U ) ∈ [0,+∞].
(a) Prove that for U ⊂V we have cH Z (U ) ⊂ cH Z (V )
(b) Prove that cH Z (λ ·U ) =λ2cH Z (U )
(c) Prove that if ϕ is symplectic, cH Z (ϕ(U )) = cH Z (U )

We want now to prove that if U is bounded then cH Z (U ) <+∞.
(d) Let H be an admissible Hamiltonian. Prove that for all s ∈ [0,1], Hs(q, p) =

s ·H(q, p) has no 1-periodic orbit other than the constant.
(e) Imitate the proof of Proposition 7.25 to prove that for H admissible, c+(ϕH ) =

maxz∈R2n H(z) and c−(ϕH ) = minz∈R2n H(z)
(f) Conclude that if max H > c+(H), H cannot be admissible
(g) Prove that cH Z (U ) ≤ c(U )
(h) Prove that cH Z (B 2n(r )) =πr 2 and CH Z (Z (r )) =πr 2.

(16) Let (Lk )k≥1 be a sequence of exact Lagrangians in T ∗N such that Lk converges
to X for the Hausdorff topology, where dim(X ) = n .
(a) Prove that X must be Lagrangian

A terminer

(17) (Hamiltonian pseudo-representations, see [Hum09]) Let Fn ,Gn , Hn be sequences
of compact supported Hamiltonians such that {Fn ,Gn} = Hn , {Fn , Hn} = {Gn , Hn} =
0.
(a) Prove that if F = C 0 − limFn ,G = C 0 − limGn , H = C 0 − lim Hn and F,G , H

are smooth, then {F,G} = H , {F, H } = {G , H } = 0.



224 7. SPECTRAL INVARIANTS IN SYMPLECTIC TOPOLOGY

HINT. Repeat the proof in the case of commuting Hamiltonians and apply
to get the last two equalities. Now use the equality

d

d s
Gn(ϕs

Fn
(x)) = Hn(ϕs

Fn
(x))

(b) Extend to the case where we only assume limn{Fn ,Gn} = Hn , limn{Fn , Hn} =
limn{Gn , Hn} = 0

See [Hum09] and [Buh10] as well as [EP10; EP09; EPR10; EPZ07] for a general-
ization of this result.

(18) ( See [EP10]) Let Fk ,Gk be smooth compact supported functions (with com-
mon compact support) such that C 0 − limFk = F,C 0 − limGk = G and F,G are
smooth. We want to prove that

∥{Fk ,Gk }∥C 0 ≤ liminf
k

∥{Fk ,Gk }∥C 0

We remind the reader that the Hamiltonian pathϕt
kψ

s
kϕ

−tψ−s
k is generated by

the Hamiltonian

Lk
s (t , z) =

∫ s

0
{Fk ,Gk }(ψ−s

k ϕ−t
k (z))d s

(a) Prove that c+(ϕt
kψ

s
kϕ

−tψ−s
k ) ≤ st supz{Fk ,Gk }

(b) Prove thatγ−lim(ϕt
kψ

s
kϕ

−tψ−s
k ) =ϕtψsϕ−tψ−s and deduce that c+(ϕtψsϕ−tψ−s) = limk c+(ϕt

kψ
s
kϕ

−tψ−s
k )

(c) Prove that if F,G are smooth, then for s small enough and 0 ≤ t ≤ 1,
ϕtψsϕ−tψ−s is generated by a C 2 small Hamiltonian, and that as a re-
sult, using Proposition 7.25 we have c+(ϕtψsϕ−tψ−s) = st supz{F,G}(z)

(d) Conclude that supz{F,G}(z) ≤ liminfsupz supz{Fk ,Gk }
(e) By replacing c+ by c− show that infz{F,G}(z) ≥ limsupinfz supz{Fk ,Gk }
(f) Conclude

(19) (A partial order) We say that a Hamiltonian map is positive if c−(ϕ) = 0.
(a) Prove that the set of positive Hamiltonians is a semi-group.
(b) Prove that this semi-group generates DHamc (T ∗Rn)

(20) (HLS inequality, see [Sey15], [HRS16] and [GT]) Let F,G be two smooth func-
tions supported in the bounded domains U ,V ⊂R2n such that U ∩V = ; and
U ,V can be "separated", i.e. moved by a symplectic isotopy : there exists a
symplectic isotopyψs such thatψs(U )∩V =; for all s and there is a real num-
ber a such that

V ⊂ {xn > a},ψ1(U ) ⊂ {xn < a}

We want to prove that

c(α,F +G) ≤ max{c(α,F ),c(α,G)}

We denote by Fs = F ◦ψs and byϕt
Fs

,ϕt
G the flows of XFs , XG and by Hs = Fs+G .

(a) Give an example of two disjoint sets that cannot be separated
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(b) Prove that the periodic orbits of ϕt
Fs

are the images by ψs of the periodic

orbit of ϕt
F0

(c) Prove that the set of actions of the periodic orbits of XHs does not depend
on s and deduce that c(α,Fs +G) = c(α,F +G)

(d) Assume U ⊂ B n(0,R)×B n(0,R). Prove that the graph Γ(ϕ1
F ) ofϕ1

F , defined
as

Γ(ϕ1
F ) = {(q,P, p −P,Q −q) |ϕ1

F (q, p) = (Q,P )}

coincides with the zero section outside of B n(0,R)×B n(0,R)
(e) Let SF (q,P ;ξ) be the G.F.Q.I. for ϕF , so that p − Ps = ∂S

∂q (q,Ps ;ξ),Qs −
q = ∂S

∂P (q,Ps ;ξ) for ∂S
∂ξ

(q,Ps ;ξ) = 0. Prove that for (q,P ) outside B(0,R)×
B(0,R), ξ 7→ S(q,P ;ξ) has a unique critical point with critical value 0 (note
that S has been normalized to have a unique critical point with critical
value 0 at infinity)

(f) Prove that we may assume SF (q,P ;ξ) = q(ξ) outside B(0,R)×B(0,R) where
q is a non-degenerate quadratic form.

(g) Show that we may assume, by modifying ψ that supp(F1) ⊂ B(−2xR ,R)×
B(−2xR ,R) and supp(G) ⊂ B(2xR ,R)×B(2xR ,R)

(h) Assume SF1 is a G.F.Q.I. for ϕF1 and SG a G.F.Q.I. for ϕG Prove that we
may assume that SF1 (q,P ;ξ) = q(ξ) outside B(−2xR ,R)×B(−2xR ,R), while
SG (q,P ;η) = q ′(η) outside B(2xR ,R)×B(2xR ,R)

(i) Prove that SH1 (q,P ;ξ,η) = SF1 (q,P ;ξ)+SG (q,P ;η) is a G.F.Q.I. for the graph
of ϕH1 .

(j) Let C representing a cycle in H∗(S+∞
G ,S−∞

G ) contained in Sc
G Prove that

after deforming C inside Sc
G , we may assume that for (q,P ;ξ) ∈ C and

(q,P ) ∉ B(2xR ,R)×B(2xR ,R), we have S(q,P ;ξ) ≤ 0.

HINT. Follow the gradient of −∇ξS(q,P ;ξ) and use the fact that in the com-
plement of B(2xR ,R)×B(2xR ,R), we have a single critical point with criti-
cal value 0

(k) Let C1 representing a cycle in H∗(S+∞
F1

,S−∞
F1

) contained in Sc1
F1

and C2 rep-

resenting a cycle in H∗(S+∞
G ,S−∞

G ) contained in Sc2
G . We assume C1 and C2

have been deformed as in the previous question. Prove that

C1 ×R2n C2 =
{
(q,P ;ξ,η)

(
q,P ;ξ) ∈C1, (q,P ;η) ∈C2

}
is contained in Sc

H1
where c ≤ max{c1,c2}.

(l) Suppose [C1] is the image ofα ∈ H∗(S2n) by the isomorphism H∗(S2n) −→
H∗−i (S+∞

F1
,S−∞

F1
) and [C2] the image of α by the isomorphism H∗(S2n) −→

H∗− j (S+∞
G ,S−∞

G ). We shall admit that [C1 ×R2n C2] is the image of α by the
isomorphism H∗(S2n) −→ H∗(S+∞

H1
,S−∞

H1
)

(m) Prove the theorem stated





CHAPTER 8

Applications to Hamilton-Jacobi equations

The problems we shall deal with in this chapter have a common feature : they
all have some type of singularity that essentially disappears when seen from the C 0-
symplectic point of view. For the Kepler problem, this is the collision orbits, for Hamilton-
Jacobi, the caustics, and for billiards, the bouncing instant. We shall show that these
have flow living in �H am0(T ∗N ).

1. Hamilton-Jacobi equations-the geometric approach

Let H : T ∗N −→ R be a smooth function. We want to solve the equation with the
unknown function u ∈C 1(N ,R)

(HJ1)

 H(x,
∂u

∂x
(x)) = 0

u(x) = f (x) onΣ

One also considers equations involving the function u itself, that is of the type

(HJ1)

H(x,
∂u

∂x
(x),u(x)) = 0

u(x) = f (x) onΣ

Let us first explain the construction of the local solutions by the method of charac-
teristics.

1.1. The method of characteristics. We shall illustrate this method with the equa-
tion

(HJ1)


∥∥∥∥∂u

∂x
(x)

∥∥∥∥−1 = 0

u(x) = f (x) onΣ

Note first that the data of u onΣ prescribes the differential of u in the direction tangent
to Σ.

So if we decompose a linear form p ∈ T ∗
z N as p = pT +pν where pν vanishes on TzΣ,

and write du(z) = ∂T u(z)+∂νu(z), we will have = ∂T u(z) = d f (z), and only ∂νu(z) is
free so that we must first solve on Σ the equation H(z,d f (z)+pν(z)) = 0 for a function
pν :Σ−→ T ∗

ΣN such that pν(z) = 0 on TzΣ. In our special case, we need that ∥d f (x)∥ ≤
1, and if this is the case, we have two choices for pν(z), one corresponding to each side
of Σ. Let us assume we made such a choice, for example by choosing one side of Σ

227
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and denoting by ν(x) the normal pointing towards this side, and then pν(z) such that
〈pν(z),ν(z)〉 > 0. In our special situation we choose the one defined by the arrows on
Figure 1. Then graph(d f ) is a Lagrangian submanifold in T ∗Σ, and it has an isotropic
lift to T ∗N given by

Λ f =
{
(z,d f (z)+pν(z)) | z ∈Σ}

In local coordinates if Σ is given by xn = 0, Λ f is locally defined as the set of(
x1, . . . , xn−1,0,

∂ f

∂x1
(z), . . . ,

∂ f

∂xn−1
, pν(z)

)

z

Σ

ν(z)

FIGURE 1. The normals to the hypersurface Σ.

Since the graph of du is also a Lagrangian, it must be contained in H−1(0) and must
contain Λ f . If XH is transverse to Λ f , then locally

L = ⋃
s∈R

ϕs
H (Λ f )

will be a Lagrangian submanifold contained in H−1(0). Indeed, ϕs
H preserves H−1(0)

and since by construction Λ f ⊂ H−1(0), we will construct locally a Lagrangian. Since
Λ f is a graph, the same will hold if consider the subset of L given by

Lε =
⋃

s∈[0,ε]
ϕs

H (Λ f )

Note that in our case the flow ϕs
H is the geodesic flow that is given the scalar product

associated to the Riemanian metric defining ∥ • ∥: we let v(p) ∈ Tz N to be defined by
duality

〈p, w〉 = (v(p), w)g

and the geodesic flow is given by

(x, v) 7→ (expx(t v),d expx(t v)v)
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Not that if we set Σt =π(ϕt
H (Λ f )) and if Σt is smooth, which will be the case for small t ,

then the reduction of L over Σt is exactly ϕt
H (Λ f ).

In our special case the flow is simply ϕt (x, p) = (x + t ·p, p). By Proposition 4.13 the
action of ϕH is given by

f (ϕt
H (x0, p0)) = f (x0, p0)+

∫ t

0
(ϕs

H )∗ [λ−Hd s]

which in our special case reduces to f (x + t · p, p) = f (x, p)+ t since ∥p∥ = 1. We see
however that there are at least two issues

(1) Σt is not embedded (or even immersed)
(2) at a given point x u(x) can be multiply defined, that is there are (x0, p0) and

(x ′
0, p ′

0) in Λ f such that ϕt
H (x0, p0) and ϕt

H (x ′
0, p ′

0) have the same projection x1

on N and the values fL(x1, p1), fL(x1, p ′
1) are distinct. We then do not know

which value to choose for uL(x1)

This is why the method of characteristics can only be used to define the solution in
a neighbourhood of Σ, where we can guarantee (at least if Σ is compact) that neither of
the above problem will occur. In our special case, we see that the function u is given by
u(x) = d(x,Σ) in a neighbourhood of Σ. Notice however that the function d(x,Σ) is

(1) well defined everywhere, not just near Σ
(2) satisfies the equation ∥Du(x)∥ = 1 almost everywhere. The points where u is

non smooth are called focal points of the hypersurface. They form a closed set
of measure zero, as they correspond (see e.g. [Mil63]) to the singularities of
the map

Σ×R+ −→Rn

(x, t ) 7→ x + tν(x)

(or (x, t ) 7→ expx(tν(x)) in the case of a general geodesic flow, see also Exercice
8 from Chapter 4)

To conclude, we saw that

(1) Elementary consideration of symplectic geometry allow us to solve (HJ1) lo-
cally (the method fo characteristics).

(2) There are difficulties to use this method to extend the solutions globally, be-
cause of the appearance of singularities (focal points, called shocks in the the-
ory of Hamilton-Jacobi equations) and that solutions would be multi-valued.

(3) However we still can have globally defined solutions at the cost of admitting
that solutions need not be everywhere smooth.

There are basically two methods to find global solutions of the Hamilton-Jacobi
equation, the viscosity method, for which we refer to [CL83; Lio82; Bar94b] recently
revived as weak-KAM solutions (see [Fat; Arn12; AS22; Ber07]), and the variational
method initiated by Chaperon and Sikorav (see [Cha91; Sik89]) and developed in [OV94;
Vit96].
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1.2. Variational solutions for evolution Hamilton-Jacobi equations. In the spe-
cial case where N = M ×R and we set H(t , q, p) be a smooth Hamiltonian, we want to
solve the equation

(HJE)


∂u

∂t
u(t , q)+H(t , q,

∂u

∂q
(t , q)) = 0

u(0, q) = f (q)

The “geometric approach” consists in first replacing u by the Lagrangian submanifold
obtained by considering the graph of its differential, then to decide that the solution to
the equation should be a Lagrangian submanifold, not necessarily a graph.

DEFINITION 8.1. A geometric solution to the equation (HJ1) (resp. (HJE)) is a La-
grangian submanifold L in T ∗N (resp. T ∗(N×R)) , such that H(q, p) vanishes in L (resp.
τ+H(t , q, p) vanishes on L). A geometric solution to the equation (HJE) is a Lagrangian
submanifold L in T ∗(N ×R), such that τ+ H(t , q, p) vanishes on L, the projection of L
on N ×R is proper and the reduction of L at t = 0 is Gd f .

We assumed for simplicity that N is compact, but the theory extends to the non-
compact setting, even though one has to take care of the behaviour at infinity (see
[CV08]).

REMARKS 8.2. (1) The case (HJE) is formally a special case of (HJ1), by taking
N = M ×R and K (q, p, t ,τ) = τ+H(t , q, p), except that of course M ×R is non-
compact ! However it is much easier to solve (HJE) !

(2) If a Lagrangian is a geometric solution of (HJ1), it must be invariant by the
flow of H . Indeed, the vector XH (z) is ω-orthogonal to any vector in Tz{(q, p) |
H(q, p) = 0}, hence to TzL. But TzL is maximal isotropic, so XH (z) ∈ TzL and
this implies invariance of L by the flow. The same argument holds for (HJE),
except that the flow is now XK

Our first result is

THEOREM 8.3. [Sik89; Cha91] There exists a unique geometric solution for equation
(HJE).

PROOF. Indeed, letϕs
H be the flow of H . Then consider the flow on T ∗(N ×R) given

by Φs
H (q, p, t ,τ) = (ϕs

H (q, p), t + s,τ−H(t ,ϕs
H (q, p))) that is the flow of the autonomous

Hamiltonian K (q, p, t ,τ) = τ+H(t , q, p) on T ∗(N ×R). Then let

L0 = {(q,d f (q),0,−H(0, q,d f (q)))

and
Λ= ⋃

s∈R
ϕs

H (L0)× {s} =Φ1
H (L0)

We claim that Λ is Hamiltonian isotopic to the zero section. Note that it is obvious
that Λ∩ {t = t0}/(τ) the symplectic reduction of Λ at t = t0 is Hamiltonianly isotopic to
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0N , since it is equal to Lt0 =ϕ
t0
H (L0) and L0 is obviously isotopic to 0N . In our case, set

Ku(q, p, t ,τ) = τ+uH(t , q, p) and the flow of Ku , denotedΦs
Ku

satisfiesΛ=Φ1
K1

(L0). □

As a consequence, Lt0 has a G.F.Q.I. denoted by St0 and we may assume t 7→ St is
continuous. Moreover St is unique.

We shall consider equation (HJE), it is called the Cauchy problem for the evolu-
tion Hamilton-Jacobi equation. This is a special case of the general Hamilton-Jacobi
equation (HJ1)

Of course we shall make the assumptions on H precise later on. The classical
method to solve these equations is called “the method of characteristics”. The idea
is that if ϕt

H is the Hamiltonian flow of H , we could hope that ϕt (Λ f ) = graph(dut ) for
some function ut and then ut solves (HJE).

DEFINITION 8.4. Let L be smooth Lagrangian submanifold in T ∗N having S(x,ξ)
as Generating Function Quadratic at Infinity. Fix a coefficient field K. We denote by
uL(x) = c(1x ,Sx) and call it the selector associated to L.

REMARK 8.5. For different choices of K the selectors may be different. See an ex-
ample in [Wei13]. In the sequel we assume a choice ofK has been made.

We then have

PROPOSITION 8.6 ([OV94]). The function uL is continuous and there exists a closed
set of zero measure, ZL , such that uL is smooth on N \ ZL and on this set (x,duL(x)) ∈ L.

PROOF. Let Z 1
L be the set of singular values of the projection π : L −→ N . Then Z 1

L is
closed of zero measure. Let U be a connected component of N \ Z 1

L . Then π restricted
to π−1(U ) is a covering. We set

Z 2
L =

{
x ∈ N | ∃η ̸= η′, ∂S

∂ξ
(x,η) = ∂S

∂ξ
(x,η′) = 0, S(x,η) = S(x,η′)

}
Note that for η ̸= η′ as above we must have ∂S

∂x (x,η) ̸= ∂S
∂x (x,η′) since iS : ΣS −→ T ∗N is

an embedding.
We now claim that Z 2

L is closed in N \ Z 1
L . Indeed let xn ∈ Z 2

L having limit x ∈ N \
Z 1

L . Let ηn ,η′n be a sequence corresponding to xn , so that ηn ̸= η′n . By extracting a
subsequence, we may assume ηn −→ η,η′n −→ η′.

Then,

• either η ̸= η′ and then we cannot have ∂S
∂x (x,η) = ∂S

∂x (x,η′) otherwise iS would
not be an embedding. Thus we have x ∈ Z 2

L .
• or we have η = η′. Then the if un = iS(xn ,ηn),u′

n = iS(xn ,η′n) we have un ̸= u′
n

and π(un) = π(u′
n) = xn . Setting z = limn un = limn u′

n we have z ∈ L since L is
closed, and π(z) = x. But then dπ(z) is not onto, otherwise π would yield a lo-
cal diffeomorphism between a neighborhood W of z in L and a neighborhood
of x in N . Then for n large enough, un ,u′

n should be in W but this would imply
un = u′

n a contradiction. As a result x ∈ Z 1
L .
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Assume now that Z 2
L ∩(N \Z 1

L ) is not a set of zero measure and x0 ∈ Z 2
L be a point in Z 2

L ∩
(N \Z 1

L ). Sinceπ is a covering near U , set (x0,η) and (x0,η′) be the corresponding points.
Then in a neighborhood of x0 we may find smooth functions η(x),η′(x) coinciding with
η,η′ at x0 such that (x,η(x)), (x,η′(x)) ∈ΣS .

Then the set of x such that

S(x,η(x)) = S(x,η′(x)) and
∂S

∂x
(x,η(x)) ̸= ∂S

∂x
(x,η′(x))

has zero measure since this is equal, setting f (x) = S(x,η(x)) − S(x,η′(x)) to the set
f (x) = 0,d f (x) ̸= 0. But this is a nonsingular hypersurface, so has measure zero. Since
we can only have a countable number of sheets over x0, we get that Z 2

L ∩ (N \ Z 1
L ) is

a countable union of sets of measure zero, so has measure zero. Since Z 1
L has also

measure zero, this proves our first claim. We set ZL = Z 1
L ∪Z 2

L .
Finally our Proposition follows if we can prove that we can find a smooth map η de-

fined on N \ ZL such that uS(x) = S(x,η(x)). But if x0 ∉ ZL , we can find a neighborhood
U of x0 such that π is a trivial covering from π−1(U ) to U . Consider the various smooth
sections, η j (x). Since x ∉ Z 2

L we cannot have S(x,η j (x)) = S(x,ηk (x)) for j ̸= k unless
∂S
∂x (x,η j (x)) = ∂S

∂x (x,ηk (x)), but then L would not be embedded.
So uS defines a unique j such that uS(x) = S(x,η j (x)) in U and then uS is smooth

in U . Since η j is smooth, we have

duL(x) = ∂S

∂x
(x,η j (x))+ ∂S

∂ξ
(x,η j (x))

but since the last term is zero, we get

(x,duL(x)) =
(

x,
∂S

∂x
(x,η j (x))

)
∈ L

This concludes our proof. □

As a consequence we get

THEOREM 8.7. Let uH , f be a variational solution of (HJE). Then uH , f is continuous.
It is C∞ and satisfies the equation (HJE) outside a closed set of measure zero.

REMARK 8.8. Let us mention here a result of Seyfaddini and the author, that is
mentioned in [Vic12]. Let Lk be a sequence γ-converging to a smooth Lagrangian
L. Then L ⊂ limk Lk , that is for each z ∈ L there is a sequence zk ∈ Lk such that
limk zk = z. This is a direct consequence of lemma 7 in [HLS15]. This can be proved
directly as follows. Indeed, if this was not the case, we would have B(z,r ) such that
B(z,r )∩Lk =;. Then for any ϕH generated by a Hamiltonian H supported in B(z,r ),
we have γ(Lk ,ϕ(Lk )) = 0, hence γ(L,ϕ(L)) = 0. But it is easy to see by a local construc-
tion that this does not hold for all ϕ supported near z.
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2. Billiard’s dynamics

(see [Vit00; BG89; Iri12])
Let us consider a domain bounded by a smooth closed curve in the plane, or more

generally a compact domain Ω, bounded by a smooth hypersurface Σ = ∂Ω in a Rie-
mannian manifold N (assumed to be complete). The billiard defined by Ω is the fol-
lowing discrete dynamical system on

ν+1Σ= {(x, p) ∈ T ∗N | x ∈Σ,〈p,ν(x)〉 > 0, |p| = 1}

Note that in the case of a curve, ν+Σ is a circle and we get a diffeomorphism of S1. For
(x, p) ∈ ν+Σ we define (x, p) by p is obtained by symmetry with respect to ν(x) from p.
The dynamical billiard is describes as follows

DEFINITION 8.9. Let Ω be as above. We define ΦΩ(x, p) = (x ′, p ′) where the unique
geodesic from x with speed p exits Σ at x ′ with speed p ′. We call x1, x2, ...., xn a bouncing
trajectory if there exists p1, ..., pn such that ΦΣ(x j , p j ) = (x j+1, p j+1).

Note that if we hitΣ tangentially, we do not record the point, called a glancing point.

PROPOSITION 8.10. The map ΦΣ is smooth provided the interior of Σ is geodesi-
cally strictly convex. In a billiard trajectory, the p j are uniquely defined. Moreover the
x2, ..., xn are critical points of the function

Σn−2 −→R

(y2, ..., yn−1) 7→
n−2∑
j=2

d(y j , y j+1)+d(x1, y2)+d(yn−1, xn)

There is another way of looking at billiard trajectories by recording the geodesic
connecting the two points

DEFINITION 8.11. Let Ω be as above. A billiard trajectory is a continuous curve γ :
[0, l ] −→Ω such that there is a finite set Bγ ⊂ [0, l ] such that

(1) 0, l ∈ Bγ

(2) for t ∉ Bγ we have γ̇(t ) = 1 and ∇γ̇γ̇= 0 i.e. γ is a geodesic
(3) for t ∈ Bγ γ has left and right derivatives, γ̇−, γ̇+ such that γ̇−− γ̇+ ∈Rν(γ(t ))
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3. Exercises and Problems

3.1. Applications of the selector.

(1) (Maxwell relation) Let us consider the Lagrangian L in T ∗R of Figure 2

FIGURE 2. The Lagrangian L and the graph of duL

where the graph of the differential of the selector is the thicker line. Prove
that the areas in the figure below are equal

FIGURE 3. Maxwell equal area condition

(2) Let G be a group acting transitively on N and we consider the induced action
on T ∗N . Then the only G-invariant Lagrangian Hamiltonianly isotopic to the
zero section is 0N .

HINT. Let uL(x) be a selector associated to L. Then ug L(x) = uL(g x) and
conclude that uL is constant. Use Proposition 8.6 to show that 0N ⊂ L.

(3) Use the method of Exercice 2 to reprove Exercice 7
(4) (Contact Hamilton-Jacobi equation) Let us consider a function H(q, p, z) on

the contact manifold J 1(N ,R). We defined the contact Hamiltonian XH in Def-
inition 3.80. We also define a co-Legendrian manifold as a manifold Λ such
that at each poin t z ∈Λ we have that Tz ∩ker(α) is Lagrangian in (ker(α),dα)
and contains the Reeb vector field.
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(a) Prove that the flow by a contact Hamiltonian of a co-Legendrian is co-
Legendrian.

(b) Prove that If H = 0 on a co-Legendrian submanifoldΛ, then XH is tangent
to Λ.

(c) Assume now that N = M ×R
Unfinished

3.2. Hamilton-Jacobi PDE and flows.

(5) Letϕt be the Hamiltonian flow associated to H(t , q, p) on T ∗N . We setϕt (q, p) =
(Qt (q, p),Pt (q, p)). Let

Γ(ϕ) = {
(t ,τ(t , q, p), q, p,Qt (q, p),Pt (q,P ))

∣∣ t ∈R, (q, p) ∈ T ∗N
}

(a) Determine τ(t , q, p) so that Γ(ϕ) is Lagrangian in R2 ×T ∗N ×T ∗N
(b) We assume N = Rn and let S(t ,Q, p,ξ) be a generating function (not nec-

essarily quadratic at infinity) for Γ(ϕ) that is

Γ(ϕ) =
{

(t ,
∂S

∂t
(t ,Q, p;ξ),Q,

∂S

∂Q
(t ,Q, p;ξ))

∣∣ ∂S

∂ξ
(t ,Q, p;ξ) = 0

}
Prove that Qt (q0, p0),Pt (q0, p0) are defined by

0 =∂S

∂ξ
(t ,Q, p;ξ)

q0 =∂S

∂p
(t ,Qt , p0;ξ)

Pt = ∂S

∂Q
(t ,Qt , p;ξ)

In other words Qt (q0, p0) is defined by the first two equations and then Pt

is determined by the third one.
(c) Prove that S satisfies the following Hamilton-Jacobi equation

∂S

∂t
(t ,Q, p;ξ)+H(t ,Q,

∂S

∂Q
(t ,Q, p;ξ)) = 0

∂S

∂ξ
(t ,Q, p;ξ) = 0

(d) What does this become if there is no ξ variable ? If H is of the form 1
2 |p|2+

V (q) so that the equation is p = q̇ , q̇ = ∇V (q) or q̈(t )+∇V (q(t )) = 0, so
that we only need to find q(t ) (because p(t ) = q̇(t )) ?

(6) (see [Jac66], Chap 30) Let x ∈Rn and consider the equation ẍ = 0. We are going
to transform - following Jacobi- this equation through a change of variable
into a much more interesting one, proving in particular the law of addition of
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abelian integrals !! Let us consider (x1, . . . , xn) ∈ Rn a1 < a2 < . . . < an be fixed
real numbers and consider the real roots of

n∑
j=1

x2
j

a j +λ
= 1

We denote them by λ1 >λ2 > . . . >λn . The λ= (λ1, ...,λn) are called the elliptic
coordinates of the point (x1, ..., xn). Note that for fixed λ the above hypersur-
face is a conic, and forλk corresponds to a conic of signature n−k (for example
for n = 2 an ellipse and a hyperbola, for n = 3 an ellipsoid, a one-sheeted hy-
perboloid, and a two-sheeted hyperboloid). One can check that they intersect
orthogonally, and they are confocal (i.e. have the same focal points Note that
λ j only depends on the x2

j .
We set

A(z) =
n∏

j=1
(z +a j )

and

F (z; x) = A(z)−
n∑

j=1
x2

j

∏
k ̸= j

(ak + z) =
n∏

j=1
(z −λ j )

We shall write F (z) when the x j are implicit.

(a) Prove that indeed,
∑n

j=1

x2
j

a j+λ − 1 = 0 has n real solutions in λ such that

−ak <λk <−ak−1 (find the poles in λ of the expression
∑n

j=1

x2
j

a j+λ )

(b) We want to recover x2
j from the λ j . Prove that

x2
k =−

∏n
j=1(ak +λ j )∏
j ̸=k (ak −a j )

= F (−ak )

A′(−ak )

HINT. x2
k is the residue of F (z)

A(z) at z =−ak

(c) (Technical lemma 1) Prove that setting

Mk (λ) = Mk (λ1, ...,λn) =
n∑

j=1

x2
j

(a j +λk )2

we have

Mk (λ) = F ′(λk )

A(λk )
=

∏n
j ̸=k (λk −λ j )∏n
j=1(a j +λk )

HINT. Mk is the value of d
d z

F (z)
A(z) at z =λk
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(d) (Technical lemma 2) Prove that for any polynomial R(z) =∑
1≤l≤n−1 pl z l−1

of degree n −1 we have
n∑

k=1

R(λk )∏
j ̸=k (λk −λ j )

= 1

HINT. Use the fact that the sum of all residues of a meromorphic func-
tion (including the one at infinity) is zero (see [Car95], chapter 3, section5).
Show that for R(z)∏n

j=1(z−λ j ) the residue at infinity is −pn−1.

(e) Let F (x1, ..., xn) and G(λ1, ...,λn) = F (x1, ...xn) if λ j = λ j (x1, ..., xn). Prove
that

n∑
k=1

(
∂F

∂xk

)2

=
n∑

k=1

1

Mk (λ)

(
∂G

∂λk

)2

(f) Prove that
∑n

k=1

(
∂F
∂xk

)2 = 1 has the general solution

F (x1, ..., xn) = p1x1 + ...+pn xn

with
∑n

j=1 p2
j = 1 and corresponds to the Hamiltonian H(x, p) = 1

2 p2

(g) We consider the Hamilton-Jacobi equation

(HJ’)
n∑

k=1

1

Mk (λ)

(
∂G

∂λk
(λ)

)2

= 1

Prove that it is equivalent to

n∑
k=1

∏n
j=1(a j +λk )∏n
j ̸=k (λk −λ j )

(
∂G

∂λk
(λ)

)2

=
n∑

k=1

R(λk )∏
j ̸=k (λk −λ j )

for R a unitary polynomial (i.e. with leading coefficient 1) of degree n −1
(use question 6d)

(h) Prove that G solves the above whenever G(λ1, ...,λn) =∑n
k=1 Gk (λk ) where

n∏
j=1

(a j +λk )G ′
k (λk )2 = R(λk )

(i) Prove that

Gk (z; p) = ck +
∫ z

0

√√√√zn−1 +∑
1≤l≤n−1 pl z l−1∏n

j=1(a j + z)
d z

solves the above for p = (p1, ..., pn−1)
(j) Prove that this yields all solutions of the Hamilton-Jacobi equation

(k) Use the previous exercice to prove that the solution λ(t ) is given by
n∑

k=1

∂Gk

∂pl
(λk , p1, ..., pn−1) = ql
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that is
n∑

k=1

∫ λk

0

z l−1d z√
(zn−1 +∑

1≤l≤n−1 pl z l−1)
∏n

j=1(a j + z)
d z =

n∑
k=1

∫ λk

0

z l−1d zp
R(z)A(z)

= ql

(l) Fix the (ql , pl ). Prove that the λ1, ...,λn satisfying the equality

n∑
k=1

∫ λk

0

z l−1d zp
R(z)A(z)

= ql

are the roots of F (z, x) where x j = ξ j t +η j

(m) Note that w 2 = R(z)A(z) defines a hyperelliptic curve of genus 2n−1, and
the integrals

∫
z l−1 d zp

R(z)A(z)
are called elliptic integrals of the first kind.

For n = 2 we get an ellitpic curve. Prove that translating the relation x(t +
s)+x(0) = x(t )+x(s) in terms of λ implies the addition law on a cubic.

(n) Prove that the linear structure on the torus given by the Arnold-Liouville
theorem coincides with the linear structure on the real part of the Jaco-
bian curve of a hypereliiptic curve.

3.3. Hamilton-Jacobi equations and symplectic integrators.

(7) (Symplectic integrators I , see [HLW06] p. 182 and seq.) Letϕt (q, p) be the flow
of the Hamiltonian H(q, p), assumed to be smooth.
(a) Prove that for t small enough, we have a generating function St (q,P ) for

ϕt , that is

(Q,P ) =ϕt (q, p) ⇔ p −P = ∂St

∂q
(q,P ),Q −q = ∂St

∂P
(q,P )

(b) Prove that St satisfies the Hamilton-Jacobi equation
∂St

∂t
(q,P ) = H(q + ∂St

∂P
,P )

S0(q,P ) = 0

(c) Prove that for t close to 0 we have a Taylor expansion

St (q,P ) = t H(q,P )+ t 2
〈
∂H

∂q
(q,P ),

∂H

∂P
(q,P )

〉
+o(t 2)

More generally we set S( j )
t (q,P ) to be the degree j +1 Taylor polynomial

of the expansion of St in t . Thus

S(0)
t = t H(q,P )

S(1)
t (q,P ) = t H(q,P )+ t 2

〈
∂H

∂q
(q,P ),

∂H

∂P
(q,P )

〉
etc. Compute S(2)

t .
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Denote by Φ( j )
t (q, p) the map defined by the generating function S( j )

t . That is

(Q,P ) =Φ( j )
t (q, p) ⇔ p −P = ∂S( j )

t

∂q
(q,P ),Q −q = ∂S( j )

t

∂P
(q,P )

Note that this defines an implicit numerical scheme : computing Q,P from

q, p requires solving an implicit equation, that is Q−q = ∂S
( j )
t

∂P (q,P ). However if
j = 1 and H is the sum of a kinetic and potential energy (i.e. H(q, p) = T (p)+
U (q) the scheme becomes explicit.
(d) Prove that the scheme thus defined is of order j , that is

∥Φ( j )
h (q, p)−ϕh(q, p)∥ ≤O(h j+1)

and that setting nh = T we have

∥(Φ( j )
h )n(q, p)−ϕT (q, p)∥ ≤O(nh j+1) =O(h j )

(e) Let H (1)
t (q, p) be given by Ht (q, p) = H(q, p)+t H1(q, p). Prove that we can

choose H1 such that

|H (1)
h (Φ( j )

h (q, p))−H (1)
h (q, p)| ≤O(h2)

hence

|H (1)
h ((Φ( j )

h )n(q, p))−H (1)
h (q, p)| ≤O(nh2)

and setting nh = T , the numerical scheme obtained by replacing ϕT by

(Φ j
h)n preserves the energy H (1) up to an O(h).

(f) Prove that we can find H ( j )(q, p) = H(q, p)+ t H1(q, p)+ . . .+ t j H j (q, p)
such that

|H ( j )
h ((Φ( j )

h )n(q, p))−H ( j )
h (q, p)| ≤O(nh j+1)

so that H ( j ) is preserved by (Φ( j )
h )n for nh = T up to a term of order O(h j ).

In particular we can take T ≃ C h1− j , i.e. compute long time solutions,
and we will quite accurately preserve the energy H ( j ).

(g) Write a python (or Matlab or your favorite programming language) code

for the Hamiltonian H(q, p) = p2+q2

2 +
(8) (Numerical schemes for Hamiltonian flows [HLW06]) Let H(q, p) be a smooth

Hamiltonian with flow ϕt
H and (Q,P ) =Φh(q, p) for h ∈R∗+ a map. We say that

Φh is a symplectic integrator of order p if Φh is a symplectic map and

|ϕt
H (q, p)− (Φt )(q, p)| ≤O(t p+1)

for (q, p) in a bounded region. The aim is, given H , to construct Φh in a
reasonable explicit way (as opposed to ϕt which is usually not explicit) and
then approximate numerically ϕt by considering the sequence (qn+1, pn+1) =
Φh(qn , pn) for n = N where N h = t .
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(a) Consider the explicit Euler scheme

Q = q +h
∂H

∂p
(q, p),P = p −h

∂H

∂q
(q, p)

Prove that in general it is not a symplectic integrator
(b) Consider the symplectic Euler scheme defined by the implicit equation

Q = q +h
∂H

∂p
(q,P ),P = p −h

∂H

∂q
(q,P )

Prove that this is a symplectic integrator of order 1. Note that Q is explicit
in q,P but computing P requires solving an implicit equation.

HINT. Φh is given by a generating function ! See Exercise 7.

(c) Prove that in general Φh does not preserve a first integral (i.e. there is no
hypersurface preserved by Φh .

(d) Compute the symplectic Euler scheme for H(q, p) = 1
2 p2 −V (q) (in this

case the scheme is in fact explicit). Using any computing program com-
pare the explicit and symplectic Euler scheme for V (q) = cos(q)

(9) We continue Exercise 8.
(a) Prove that zn+1 = zn +hXH ( zn+zn=1

2 ) defines a symplectic integrator of or-
der 2

(b) Let (ai , j ) be an s × s matrix, and set ci = ∑s
j=1 ai , j and define a level s

Runge-Kutta method for ż(t ) = f (t , z(t )) to be given by solving

ki = f

(
t0 + ci h, y0 +h

s∑
j=1

ai , j k j

)
and let Z =Φh(z) be defined by

Z = z +h
s∑

j=1
bi ki

(c) We want to prove the following theorem due to Bochev and Scovel ([BS94]):

THEOREM. Assume the constants ai , j ,bi are so chosen that Φh preserves
the levels of QC (z) = 〈C z, z〉 whenever this is the case for ż(t ) = f (z(t )).
Then the Runge-Kutta method is a symplectic integrator of order s.

(10) (see [Yos90] and [EPR10] for application to symplectic topology) Let H ,K be
two non-commuting Hamiltonians. We want to approximate the flow ϕt

H+K
by a composition

ϕ
a1t
H ◦ϕb1t

K ◦ . . .◦ϕak t
H ◦ϕbk t

K

where we must determine optimal values of a j ,b j for fixed k i.e. values such
that the difference with ϕt

H+K is as small as possible as a function of t .
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(a) Look up the Baker-Campell-Hausdorff formula1 to express the general ex-
pression of exp(X )exp(Y ) as an exponential of an infinite series

X +Y + 1

2
[X ,Y ]+ 1

12
([X , [X ,Y ]]− [Y , [X ,Y ]])+ 1

24
[X , [Y , [Y , X ]]]+ . . .

We denote by B(X ,Y ) the above expression. This formula holds for the ex-
ponential of any finite dimensional Lie algebra, and converges provided
X ,Y are small enough.

HINT. We can always write the formal series of log(exp(X )exp(Y )) where
X ,Y are non commuting variables. It is clear that we shall get a series with
terms of the form X r1 Y s1 . . . X rk Y sk . What is less obvious is that the sum
of the terms of degree k can be expressed in term of iterated commutators :
setting [X ,Y ] = X Y −Y X . See [Eic68] for a short proof. Even less obvious is
finding the minimal number of them (thus there is only one term of order
4, while we could expect terms of the type [X , [X , [Y , X ]]]).

(b) Give an example of element in a Lie group that can not be written as an ex-
ponential. Use this to show that the Baker-Campbell-Hausdorff formula
can diverge.

HINT. The matrix M =
(−1 1

0 −1

)
cannot be an exponential since it has

negative eigenvalues and is non-diagonalizable (it would have to be the
exponential of a matrix having ±(2k + 1)iπ as eigenvalues hence diago-
nalizable, a contradiction). Thus for J the standard symplectic matrix and

N =
(
0 −1
0 0

)
we have exp(πJ )exp(N ) =

(−1 0
0 −1

)(
1 −1
0 1

)
= M is not an

exponential.

(c) Prove that the following version of the Baker-Campbell-Hausdorff for-
mula holds for two smooth vector fields X ,Y . We set exp(t X ) to be the
flow of X . We set Bk (X ,Y ) to be the coefficient of t k in the formal power
series B(t X , tY ). Then we have∣∣∣∣∣exp(t X )exp(tY )−exp(

k∑
j=0

B j (X ,Y )t j )

∣∣∣∣∣≤O(t k+1)

Note that since there are arbitrarily small diffeomorphisms which are not
exponential of an autonomous vector field, it is unlikely that the Baker-
Campbell-Hausdorff formula converges however small X ,Y are assumed
to be.

HINT. One just has to prove that both terms have a Taylor series and that
these coincide up to order k. The existence of the Taylor series for exp(t X )exp(tY )

1Sometimes also called Campbell-Baker-Hausdorff-Dynkin formula.
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follows from the strong form of Cauchy-Lipschitz that claims smoothness
of the solutions of a smooth differential equation : this implies it has a
Taylor expansion. Equality holds by a formal argument, since it holds in a
formal Lie algebra.

(d) Use the Baker-Campbell-Hausdorff formula to find a symplectic integra-
tor of order 1. Of order 2. Of order 4.

3.4. Thermodynamics.

(11) (Phase diagrams, Hamilton-Jacobi and variational solutions) We consider as
in Exercice 68 in Chapter 3 a closed thermodynamical system. An set of equi-
libria of the system is given by a Legendrian submanifold of J 1(Rn). In vari-
ables (q1, q2, p1, p2, z) the variables q j are called “extensive” variables and the
p j “intensive” variables. For example pressure and temperature are intensive
variables P,T while volume and entropy V ,S are extensive. The one form is
in this case given by dU −T dS −PdV and the equation dU −T dS −PdV = 0
translates the fact that the total variation of the energy is the sum of the heat
outgoing and the work done by the system.

A terminer
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4. Comments

The geometric approach to Hamilton-Jacobi equations coincides, for short time,
with the classical method of characteristics. This method is due to Paul Charpit de Vil-
lecourt2 who presented it at the French Academy in 1784. The manuscript was long
lost, until a copy was found in some of Lacroix’s papers but is still unpublished3 (see
[GE82; Sal30; Sal37]. The method of characteristics was then developed by Lagrange,
Monge, Pfaff, Jacobi. Strangely enough, going in the opposite direction, from the
Hamiltonian equations of dynamics to the Hamilton-Jacobi equation appeared much
later in Hamilton’s work and then in Jacobi’s lectures on Dynamics (see [Jac66]) where
it plays a crucial role (see for example Exercice 5). The need for symplectic integra-
tors came from the very practical problem of modeling particles in accelerators over a
huge number of revolutions. As such it was rediscovered several times, after pioneer-
ing (and unpublished) work by De Vogelaere (see [De 56] and [SC]) in the 1950’s, the
in the 1980’s (see [Rut83; Cha83; Fen85; Yos90]) It was then used for other systems (see
[CS90] for some examples) and in particular for long term modeling of the solar system
(see [LR01])

The variational approach for the study of billiards goes back to Birkhoff ([Bir27],
and we refer to recent work by [BG89]. The approach using symplectic capacities goes
back to [Vit00] and was developed by many authors among them [Iri12; AO14] etc.

2Sometimes known as de Ville Coer or just Paul Charpit.
3Jacobi insists on the importance of publishing Paul Charpit’s Memoir
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form, 22
Heteroclinic trajectories, 141
Hofer’s distance or metric, 193
Hofer’s Lagrangian intersection theorem, 174
Hofer-Zehnder capacity, 223
Homogeneous

symplectic manifold, 78
Homotopy formula, 60
Hypersurface

of contact type, 77, 199
of restricted contact type, 199
starshaped, 199

Index
Conley, 140
pair, 141

Ingress point, 147
Integral of motion, 73
Integrator
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symplectic, 239
Integrators, symplectic, 238
Isolated invariant set

stable set, 142
unstable set, 142

Isolated set, 141
Isolating block, 147
Isolating neighbourhhod, 141
Isotropic

subspace, 13

Jacobi identity, 72

Kingman subadditive theorem, 83
Krein signature, 29

Lagrange brackets, 81
Lagrangian

correspondence, 120
Grassmannian, 18
selector, 231
subspace, 13

Lagrangian branes, 121
Lagrangian dynamics, 69
Lagrangian submanifold

exact, 57
Laudenbach-Sikorav

Lagrangian convergence theorem, 207
Legendrian

submanifold, 78
Leibniz identity, 72
Lemma

Hadamard, 179
Morse, 54
Moser, 58
Poincaré, 59
Sard, 54

Lie algebra
of the symplectic group, 27

Local generating function, 126
Locally integrable differential relation, 109

Manifold
complex projective, 56
symplectic, 55

Marsden-Weinstein reduction, 119
Metaplectic group, 33
Method of characteristics, 227
Microflexible differential relation, 109
Moment map, 94

Morse lemma, 95
Morse’s lemma, 54
Moser’s lemma, 58
Moser’s theorem

boundary version, 88
symplectic boundary version, 89

Nikishin’s theorem, 185
Non-squeezing

non-linear, 203
Non-squeezing theorem

linear, 43

Palais-Smale condition, 150
Phase space, 55
Plurisubharmonic function, 77
Poincaré

Lemma, 59
Poisson brackets

C 0-closedness, 208
Principal bundle, 31
Projective

real manifold, 57
Projective manifolds, 55, 56
Pseudo-orbits, 161

Quadratic character, 46
Quantization, 72

Real projective manifold, 57
Rectification theorem, 87
Reduction

capacity inequality I, 214
Marsden-Weinstein, 119
spectral inequality, II, 213
symplectic, 116

Regular
value, 54

Regularity
of capacity, 199

Representation
Heisenberg, 45

Representation theorem, 190
restricted contact type

hypersurface, 199

Sard’s lemma, 54
Selector

of a Lagrangian submanifold, 231
Sesquilinear, 22
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form, 22
Sikorav

existence theorem, 129
Spectral capacity, 198
Spectral inequalities, 211
Spectral inequality for reduction I, 213
Spectral inequality for reduction II, 213
Starshaped

hypersurface, 199
Structure

complex, 22
complex, 24

Submanifold
legendrian, 78

Subspace
coisotropic, 13
isotropic, 13
Lagrangian, 13
symplectic, 13

Sum, 148
Symplectic

vector space, 11
direct sum, 12
group, 64
homogeneous manifold, 78
integrator, 239
integrators, 238
Lie algebra, 27
linear group, 25
manifold, 55
map, 13
orthogonal, 12
reduction, 116
subspace, 13
vector bundle, 31
vector space, 11

Symplectic group
Lie algebra, 27

Symplectic manifold
exact, 57

Symplectomorphism, 13

Tame
almost complex structure, 58
complex structure, 24

Théret
fibration theorem, 129
fibration theorem, contact case, 182

Theorem

convexity, 44
Arnold-Liouville, 106
Birkhoff’s ergodic, 84
Caratheodory-Jacobi-Lie, 87
Cauchy-Lipschitz, 53
Darboux, 61
Darboux, contact case, 78
Darboux-Weinstein-Givental, 63
decomposition, 14
Frobenius, 53
Gromov non squeezing, 203
Gromov-Eliashberg, 204
Hofer’s Lagrangian intersection, 174
Kingman’s subadditive, 83
Laudenbach-Sikorav, 207
linear non-squeezing, 43
Moser with boundary, 88
Moser with boundary, symplectic case, 89
of Cardin-Viterbo, 208
representation, 190
Sikorav existence, 129
Spectral norm estimate I, 194
Spectral norm estimate I- the Lagrangian

case, 194
Théret’s fibration, 129
Théret’s fibration, contact case, 182
Thom’s transversality, 54
Witt’s, 15

Thermodynamics, 110, 242
Thom’s transversality theorem, 54
Tonelli Lagrangian, 70
Transversality

Thom’s theorem, 54
Transverse

vector spaces, 18

Uniqueness theorem
for G.F.Q.I. , 178

Variational solution of Hamilton-Jacobi
equations, 230

Vector bundle, 31
symplectic, 31

Vector space
symplectic, 11

Wedge sum, 148
Weinstein conjecture

proof, 200
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